
IBM
®

Net.Data

Reference
Version 7

���

IBM
®

Net.Data

Reference
Version 7

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 387.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface vii
About Net.Data. vii
About This Book viii

Who Should Read This Book ix
About Examples in This Book ix
How to Read the Syntax Diagrams . . . ix

Chapter 1. Net.Data Macro Language
Constructs 1
Net.Data Macro Syntax. 1
Common Syntax Elements 5

Variable Name 5
Variable Reference 5
Strings 7

Macro Language Constructs 8
Comment Block 10
DEFINE Block or Statement 12
ENVVAR Statement 17
EXEC Block or Statement 18
FUNCTION Block 21
Function Call (@) 30
HTML Block 33
IF Block 35
INCLUDE Statement 42
LIST Statement 45
MACRO_FUNCTION Block. 47
MESSAGE Block 51
REPORT Block 56
ROW Block 59
TABLE Statement 61
WHILE Block 63
XML Block 67

Chapter 2. Variables 71
User-defined Variables 72

Conditional Variables 72
Environment Variables 73
Executable Variables 74
Hidden Variables 75
List Variables 76
Table Variables 78

Net.Data Table Processing Variables 79
Nn 80
NLIST 81
NUM_COLUMNS 82

NUM_ROWS 83
ROW_NUM 84
TOTAL_ROWS 85
V_columnName 86
VLIST 87
Vn 88

Net.Data Report Variables 89
ALIGN. 90
DTW_DEFAULT_REPORT 91
DTW_HTML_TABLE 92
RPT_MAX_ROWS 93
START_ROW_NUM 95

Net.Data Language Environment Variables . . 98
DATABASE 99
DB_CASE 101
DB2PLAN 102
DB2SSID 103
DTW_APPLET_ALTTEXT 104
DTW_EDIT_CODES 105
DTW_PAD_PGM_PARMS 106
DTW_SAVE_TABLE_IN 108
DTW_SET_TOTAL_ROWS 109
DTW_USE_DB2_PREPARE_CACHE. . . 111
LOCATION 113
LOGIN 114
NULL_RPT_FIELD 115
PASSWORD. 116
SHOWSQL 117
SQL_STATE 119
TRANSACTION_SCOPE 120

Net.Data Miscellaneous Variables 122
DTW_CURRENT_FILENAME 123
DTW_CURRENT_LAST_MODIFIED . . 124
DTW_DEFAULT_MESSAGE 125
DTW_LOG_LEVEL 126
DTW_MACRO_FILENAME 127
DTW_MACRO_LAST_MODIFIED . . . 128
DTW_MBMODE 129
DTW_MP_PATH 131
DTW_MP_VERSION. 132
DTW_PRINT_HEADER 133
DTW_REMOVE_WS 134
RETURN_CODE 135

Chapter 3. Net.Data Built-in Functions 137

© Copyright IBM Corp. 1997, 2000 iii

||

||

Function Names 137
Input and Output Parameters 138
Function Result Formatting 138
Function Parameter Rules 138
General Functions. 139

DTW_ADDQUOTE 140
DTW_CACHE_PAGE 142
DTW_DATE 147
DTW_EXIT 149
DTW_GETCOOKIE 151
DTW_GETENV 154
DTW_GETINIDATA 156
DTW_HTMLENCODE 158
DTW_QHTMLENCODE 160
DTW_SENDMAIL 162
DTW_SETCOOKIE 169
DTW_SETENV. 173
DTW_TIME 175
DTW_URLESCSEQ 177

Math Functions 180
DTW_ADD 181
DTW_DIVIDE 183
DTW_DIVREM 185
DTW_FORMAT 187
DTW_INTDIV 191
DTW_MULTIPLY 193
DTW_POWER 195
DTW_SUBTRACT. 197

String Functions 199
DTW_ASSIGN 200
DTW_CHARTOHEX 201
DTW_CONCAT 203
DTW_DELSTR 205
DTW_HEXTOCHAR 207
DTW_INSERT 209
DTW_LASTPOS 211
DTW_LENGTH 213
DTW_LOWERCASE 214
DTW_POS 216
DTW_REPLACE 218
DTW_REVERSE 220
DTW_STRIP 222
DTW_SUBSTR 224
DTW_TRANSLATE 226
DTW_UPPERCASE 228

Word Functions 230
DTW_DELWORD 231
DTW_SUBWORD 233
DTW_WORD 235
DTW_WORDINDEX 237

DTW_WORDLENGTH 239
DTW_WORDPOS 241
DTW_WORDS 243

Table Functions 245
DTW_TB_APPENDROW 246
DTW_TB_COLS 248
DTW_TB_DELETECOL 250
DTW_TB_DELETEROW 252
DTW_TB_DLIST 254
DTW_TB_DUMPH 257
DTW_TB_DUMPV 259
DTW_TB_GETN 261
DTW_TB_GETV 263
DTW_TB_HTMLENCODE 265
DTW_TB_INPUT_CHECKBOX 267
DTW_TB_INPUT_RADIO 269
DTW_TB_INPUT_TEXT. 271
DTW_TB_INSERTCOL 273
DTW_TB_INSERTROW 275
DTW_TB_LIST 277
DTW_TB_QUERYCOLNONJ 280
DTW_TB_ROWS 282
DTW_TB_SELECT 284
DTW_TB_SETCOLS 287
DTW_TB_SETN 289
DTW_TB_SETV 291
DTW_TB_TABLE 293
DTW_TB_TEXTAREA 296

Flat File Interface Functions 298
Access to Flat File Data Sources 298
Flat File Interface Delimiters 301
Locking Files 302
FFI Built-in Functions 302
DTWF_APPEND 303
DTWF_CLOSE 306
DTWF_DELETE 308
DTWF_INSERT 311
DTWF_OPEN 314
DTWF_READ 316
DTWF_READFILE 320
DTWF_REMOVE 323
DTWF_SEARCH 325
DTWF_UPDATE 329
DTWF_WRITE 333

Web Registry Functions 337
DTWR_ADDENTRY 338
DTWR_CLEARREG 340
DTWR_CLOSEREG 342
DTWR_CREATEREG. 343
DTWR_DELENTRY 345

iv IBM
®

Net.Data: Reference

DTWR_DELREG 347
DTWR_LISTREG 348
DTWR_LISTSUB 350
DTWR_OPENREG 352
DTWR_RTVENTRY 354
DTWR_UPDATEENTRY 356

Persistent Macro Functions. 358
DTW_ACCEPT 359
DTW_COMMIT 361
DTW_ROLLBACK 362
DTW_RTVHANDLE 363
DTW_STATIC 364
DTW_TERMINATE 366

Appendix A. Net.Data Technical Library 367

Appendix B. Deprecated Features . . . 369
EXEC_SQL 369
HTML_INPUT 369
HTML_REPORT 369

INCLUDE_URL 369
SQL 369
SQL_MESSAGE 370
SQL_REPORT 371
SQL_CODE 371

Appendix C. Net.Data Operating System
Reference 373

Notices 387
Trademarks 390

Glossary 393

Index 397

Contacting IBM 403
Product Information 403

Contents v

vi IBM
®

Net.Data: Reference

Preface

Thank you for selecting Net.Data®, the IBM® development tool for creating
dynamic Web pages! With Net.Data you can rapidly develop Web pages with
a dynamic content by incorporating data from a variety of data sources and
by using the power of programming languages you already know.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data
from both relational and non-relational database management systems
(DBMSs), including DB2, IMS, ODBC-enabled databases, and databases that
can be accessed through DRDA, and using applications written in
programming languages such as Java, JavaScript, Perl, C, C++, and REXX. The
Net.Data family of products provides similar capabilities on machines
executing the Windows NT, AIX, OS/2, OS/390, OS/400, HP-UX, PTX, Linux,
and Sun Solaris operating systems.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that
Net.Data interprets to create dynamic Web pages with customized content
based on input from the user, the current state of your databases, other data
sources, existing business logic, and other factors that you design into your
macro.

A request, in the form of a URL (uniform resource locator), flows from a
browser, such as Netscape Navigator or Internet Explorer, to a Web server that
forwards the request to Net.Data for execution. Net.Data locates and executes
the macro, and builds a Web page that it customizes based on functions that
you write. These functions can:
v Encapsulate business logic within applications written in, but not limited to,

C, C++, RPG, COBOL, JAVA, Perl, or REXX programming languages
v Access databases such as DB2
v Access other data sources such as flat files

Net.Data passes this Web page to the Web server, which in turn forwards the
page over the network for display at the browser.

Net.Data can be used in server environments that are configured to use
interfaces such as HyperText Transfer Protocol (HTTP) and Common Gateway
Interface (CGI). HTTP is an industry-standard interface for interaction
between a browser and Web server, and CGI is an industry-standard interface

© Copyright IBM Corp. 1997, 2000 vii

for Web server invocation of gateway applications like Net.Data. These
interfaces allow you to select your favorite browser or Web server for use
with Net.Data.

For improved performance, Net.Data supports a variety of Web server
Application Programming Interfaces (APIs). In addition, Net.Data can be
lauched as a Java servlet.

About This Book

This book explains the syntax and usage of Net.Data language constructs,
variables, and functions.

This book might refer to products or features that are announced, but not yet
available.

More information, sample Net.Data macros, demos, and the latest copy of this
book, is available from the following World Wide Web sites:
v http://www.ibm.com/software/data/net.data
v http://www.as400.ibm.com/netdata

Throughout this book, there are tables containing ’X’s to indicate on which
operating system a particular feature of Net.Data is available.

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X

The abbreviations in the table represent the following operating systems.

AIX IBM Advanced Interactive Executive

HP-UX Hewlett Packard UNIX

Linux Open Source Linux

OS/2 IBM OS/2

OS/390 IBM OS/390

OS/400 IBM OS/400

PTX IBM/Sequent DYNIX/ptx

SUN Sun Solaris

Win NT Microsoft Windows NT

viii IBM
®

Net.Data: Reference

|
|

||||||||||

|||||||||
|

|

||

||

||

||

||

||

||

||

||

Who Should Read This Book
People involved in planning and writing Net.Data applications can use the
information in this book to understand what language constructs, variables,
and functions Net.Data provides.

To understand the concepts discussed in this book, you should be familiar
with Web servers, simple SQL statements, and HTML (including using HTML
forms), and the information in Net.Data Administration and Programming Guide.

About Examples in This Book
Examples used in this book are kept simple to illustrate specific concepts. The
examples are not intended to show all of the ways in which Net.Data
constructs can be used. Likewise, some of the examples are fragments of code
that cannot be executed by themselves.

How to Read the Syntax Diagrams
The following rules apply to the syntax diagrams used in this book:
v Read the syntax diagrams from left to right, from top to bottom, following

the path of the line.
The >>--- symbol indicates the beginning of a statement.
The ---> symbol indicates that the statement syntax is continued on the next
line.
The >--- symbol indicates that a statement is continued from the previous
line.
The --->< symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the
>--- symbol and end with the ---> symbol.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on
the execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.

Preface ix

|

If you must choose one of the items, one item of the stack appears on the
main path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the
main path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that
can be repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains punctuation, you must separate repeated items
with the specified punctuation.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). In Net.Data, keywords
can be in any case. Terms that are not keywords appear in lowercase letters
(for example, column-name). They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such
symbols are shown, you must enter them as part of the syntax.

x IBM
®

Net.Data: Reference

Chapter 1. Net.Data Macro Language Constructs

This chapter describes the Net.Data macro syntax and the language constructs
used in the Net.Data macro. The language constructs consist of a keyword
and a statement or block in the Net.Data macro, specify different variable
types, and perform other special tasks such as including files.

This chapter describes:
v “Net.Data Macro Syntax”
v “Common Syntax Elements” on page 5
v “Macro Language Constructs” on page 8

Net.Data Macro Syntax

A Net.Data macro is a text file consisting of a series of Net.Data macro
language constructs that:
v Specify the layout of Web pages
v Define variables and functions
v Call functions that are defined in the macro or that Net.Data passes to

language environments for processing

Each statement is composed of one or more language constructs, which in
turn are composed of keywords, special characters, strings, names, and
variables. The following diagram depicts the global structure of a syntactically
valid Net.Data macro. See “Macro Language Constructs” on page 8 for
detailed syntax of each element in the global structure.

© Copyright IBM Corp. 1997, 2000 1

The Net.Data macro contains two parts: the declaration part and the
presentation part. You can use these parts multiple times and in any order.
v Declaration part contains the definitions of variables and functions in the

macro.
v Generation part contains HTML or XML blocks that contain statements that

specify the layout of the generated document. This part includes the report
section.

Figure 1 on page 3 shows the declaration and presentation parts of the macro.

�� �

comment block
define statement
define block
function block
macro if block
macro_function block
include statement
message block

HTML block
XML block

�

� �

comment block html block
define statement
define block
function block
macro if block
macro_function block
include statement
message block

��

2 IBM
®

Net.Data: Reference

|
|
|

Variables and functions that are used in the declaration or generation part
must be defined before being used by a variable reference or a function call.

Figure 2 on page 4 demonstrates the parts of a macro. The declaration part
contains the DEFINE and FUNCTION definition blocks. The HTML or XML
blocks act as input and output blocks.

Net.Data Macro File Structure

%{Comment %}

Declaration Part

Presentation Part

%Define…

%Include…

%Function…

%Message…

Output block
.
.
.

Input block
.
.
.

Figure 1. Macro Structure

Chapter 1. Net.Data Macro Language Constructs 3

|
|

|
|
|

The Net.Data macro language is a free-form language, giving you flexibility
for writing your macros. Unless specifically noted, extra white space
characters are ignored. Each of the Net.Data macro language constructs is

%{ ********************** Define block ************************%}
%DEFINE {

page_title="Net.Data macro Template"
%}

%{ ********************** Function Definition block ************************%}
%FUNCTION(DTW_REXX) rexx1 (IN input) returns(result)

{ %EXEC{ompsamp.cmd %}
%}

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

result = date()
%}

%{ ********************** HTML Block: Input ************************%}
%HTML (INPUT) {
<html>
<head>
<title>$(page_title)<title>
</head><body>
<h1>Input Form</h1>
Today is @today()

<form method="post" action="output">
Type some data to pass to a REXX program:

<input name="input_data" type="text" size="30" />

<input type="submit" value="enter" />

<hr />
<p>[Home page]
</form>
</body></html>
%}

%{ ********************** HTML Block: Output ************************%}
%HTML (OUTPUT) {
<html>
<head>
<title>$(page_title)</title>
</head><body>
<h1>Output Page</h1>
<p>@rexx1(input_data)
<p><hr>
<p>[Home page |
Previous page]
</body></html>
%}

Figure 2. The Macro Template Format

4 IBM
®

Net.Data: Reference

described in the following section, along with several other elements that are
used to define the constructs. The Net.Data macro language supports DB2
WWW Connection language elements for backward compatibility. Although
these language elements are described in “Appendix B. Deprecated Features”
on page 369, it is recommended that you use the Net.Data language
constructs.

The examples show some of the ways you can use the language constructs,
variables, functions, and other elements in your macros. You can download
the samples and demos from the Net.Data Web pages for more extensive
examples:
v http://www.ibm.com/software/data/net.data
v http://www.as400.ibm.com/netdata

Common Syntax Elements

The following syntax elements are used frequently in the language construct
descriptions:
v “Variable Name”
v “Variable Reference”
v “Strings” on page 7

Variable Name
Purpose:

Identifies a variable. A variable is an object whose value can change during
the execution of a macro.

Variable names must begin with a letter or underscore (_) and contain any
alphanumeric characters, underscores, hash marks (#), or periods (.). All
variable names are case sensitive except N_columnName and V_columnName
(See “Net.Data Table Processing Variables” on page 79 for more information
about these two exceptions.).

Variable Reference
Purpose:

Returns the value of a variable and is specified with $ and (). For example: if
VAR = ’front’, $(VAR) returns the value ’front’. Variable references are
evaluated during run time. When a variable is defined for an EXEC statement
or block, Net.Data runs the specified action when it reads the variable
reference.

You can dynamically generate a variable reference by including variable
references, strings, and function calls within a variable reference. For example:

Chapter 1. Net.Data Macro Language Constructs 5

|
|

if frontside = ’blue’, $($(VAR)side) returns the value ’blue’. If you reference a
dynamcially-generated variable that does not follow the variable name rules,
Net.Data resolves the reference to an empty string.

Restrictions::

v Variable references cannot be used as an OUT parameter to a function call.
v Leading and trailing whitespace is ignored.
v Whitespace (including a newline character) is not allowed between function

calls, strings, and variable references.
v A variable reference with any other white space returns an empty string.

Syntax:

�� $ (function_call)
(1)

string
variable_reference

��

Notes:

1 String can contain only the characters that are allowed in variable
names: alphanumeric characters, underscores (_), hash marks (#), or
periods (.).

Example 1: Variable reference

If you have defined a variable homeURL:
%DEFINE homeURL="http://www.ibm.com/"

You can refer to the homepage as $(homeURL) and create a link:
Home page

Example 2: Dynamically-generated variable reference

You can dynamically generate variable references that in turn dynamically
reference a field value in a row:
%define{
var1="value1"
var2="value2"
var3="value3"
@DTW_ASSIGN (INDEX, "1")
%}
%WHILE (INDEX < 3) {
$(var$(INDEX))
@DTW_ADD(INDEX, "1", INDEX)
%}

6 IBM
®

Net.Data: Reference

|

|

|

|

|

|
|

|

|

|

Returns:
value1
value2
value3

Example 3: A dynamic variable reference with nested variable references and
a function call
%define my = "my"
%define u = "lower"
%define myLOWERvar = "hey"

$($(my)@dtw_ruppercase(u)var)

The variable reference returns the value of hey.

Strings
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.
See the string parameter description in each language construct for restrictions
when used with the language construct.

Strings in quotes (“”), can contain any character except the new-line character.
If the string is in brackets, ({ %}), it can contain any character including the
new-line character. For example,
%define multiline = {
first line
second line
%}

To specify double quotes inside a quoted string, use two pairs of double
quotes. A string used as function argument or as term in a comparison
expression can contain double quotes. For example, if you define a string
value as:
%DEFINE result = " ""Hello world!"" "

The value of result is:
"Hello world!"

An HTML statement is a string.

Strings used as function arguments, terms, and variable values can contain
variable references and function calls. In the following example, the function
call myfunc2 has a string parameter that contains a variable reference and a
function call.

Chapter 1. Net.Data Macro Language Constructs 7

%html(report) {
@myfunc2("abc$(var1)@myfunc()")

%}

Net.Data resolves the variable reference $(var1) and the function call
@myfunc(), rather than interpreting them literally as part of the string, before
passing the string to the function myfunc2.

Macro Language Constructs

This section describes the language constructs used in the Net.Data macro.

Each language construct description can contain the following information:

Purpose
Defines why you use the language construct in the Net.Data macro.

Syntax
Provides a diagram of the language construct’s logical structure.

Parameters
Defines all the elements in the syntax diagram and provides cross
references to other language constructs’ syntax and examples.

Context
Explains where in the Net.Data macro structure the language
construct can be used.

Restrictions
Defines which elements it can contain and specifies any usage
restrictions.

Examples
Provides simple examples and explanations for using the keyword
statement or block within the Net.Data macro.

The following constructs are used in the macro; please refer to each constructs
description for syntax and examples.
v “Comment Block” on page 10
v “DEFINE Block or Statement” on page 12
v “ENVVAR Statement” on page 17
v “EXEC Block or Statement” on page 18
v “FUNCTION Block” on page 21
v “Function Call (@)” on page 30
v “HTML Block” on page 33
v “IF Block” on page 35
v “INCLUDE Statement” on page 42

8 IBM
®

Net.Data: Reference

v “LIST Statement” on page 45
v “MACRO_FUNCTION Block” on page 47
v “MESSAGE Block” on page 51
v “REPORT Block” on page 56
v “ROW Block” on page 59
v “TABLE Statement” on page 61
v “WHILE Block” on page 63
v “XML Block” on page 67

Chapter 1. Net.Data Macro Language Constructs 9

Comment Block

Purpose
Documents the functions of the Net.Data macro. Because the COMMENT
block can be used anywhere in the macro, it is not documented in the other
syntax diagrams.

The COMMENT block can also be used in the Net.Data initialization file.

Syntax

�� %{ text %} ��

Values

text Any string on one or more lines. Net.Data ignores the contents of all
comments.

Context

Comments can be placed anywhere between Net.Data language constructs in
a Net.Data macro or the Net.Data initialization file

Restrictions
Any text or characters are allowed; however, comment blocks cannot be
nested.

Examples
Example 1: A basic comment block
%{
This is a comment block. It can contain any number of lines
and contain any characters. Its contents are ignored by Net.Data.
%}

Example 2: Comments in a FUNCTION block
%function(DTW_REXX) getAddress(IN name, %{ customer name %}

IN phone, %{ customer phone number %}
OUT address %{ customer address %}
)

{
....

%}

Example 3: Comments in an HTML block
%html(report) {

%{ run the query and save results in a table %}
@myQuery(resultTable)

10 IBM
®

Net.Data: Reference

%{ build a form to display a page of data %}
<form method="POST" action="report">

%{ send the table to a REXX function to send the data output %}
@displayRows(START_ROW_NUM, submit, resultTable, RPT_MAX_ROWS)

%{ pass START_ROW_NUM as a hidden variable to the next invocation %}
<input name="START_ROW_NUM" type="hidden" value="$(START_ROW_NUM)" />

%{ build the next and previous buttons %}
%if (submit == "both" || submit == "next_only")

<input name="submit" type="submit" value="next" />
%endif

%if (submit == "both" || submit == "prev_only")
<input name="submit" type="submit" value="previous" />
%endif

</form>
%}

Example 4: Comments in a DEFINE block
%define {

START_ROW_NUM = "1" %{ starting row number for output table %}
RPT_MAX_ROWS = "25" %{ maximum number of rows in the table %}
resultTable = %table %{ table to hold query results %}

%}

Example 5: Comments in the Net.Data initialization file
%{ changes: removed RETURN_CODE parm and DTW_DEFAULT ENVIRONMENT statement %}

...

ENVIRONMENT (DTW_SQL) dtwsql (IN LOCATION, DB2SSID, DB2PLAN, TRANSACTION_SCOPE)
ENVIRONMENT (DTW_ODBC) odbcdll (IN LOCATION, TRANSACTION_SCOPE)
ENVIRONMENT (DTW_PERL) perldll ()
ENVIRONMENT (DTW_REXX) rexxdll ()
ENVIRONMENT (DTW_FILE) filedll ()
ENVIRONMENT (DTW_APPLET) appldll ()
ENVIRONMENT (DTW_SYSTEM) sysdll ()

Chapter 1. Net.Data Macro Language Constructs 11

DEFINE Block or Statement

Purpose
The DEFINE section defines variables names in the declaration part of the
macro and can be either a statement or a block.
v Use statements to define one variable at a time
v Use blocks to define several variables

The variable definition can be on a single line, using double quotes (″″), or
can span multiple lines, using brackets and a percent sign ({ %}). After the
variable is defined, you can reference it anywhere in the macro.

Syntax

�� %DEFINE
(1)

(STATIC)
(1)

TRANSIENT

�

�

�

define entry
{ %}

define entry
include statement

��

define entry:

�

�

variable name = ″ ″
string
variable reference
function call

{ %}
string
variable reference
function call
new_line

exec statement
table statement
envvar statement

conditional variable
abbreviated conditional variable

list statement

12 IBM
®

Net.Data: Reference

conditional variable:

variable name ? �

�

″ ″
string
variable reference
function call

{ %}
string
variable reference
function call

�

� �

�

: ″ ″
string
variable reference
function call

{ %}
string
variable reference
function call

abbreviated conditional variable:

? �

�

″ ″
string
variable reference
function call

{ %}
string
variable reference
function call

Notes:

1 STATIC and TRANSIENT are keywords for persistent macros, which are
currently available on the OS/400 operating system, only.

Chapter 1. Net.Data Macro Language Constructs 13

Values

%DEFINE
A keyword that defines variables.

STATIC
A keyword that specifies that the variable retains its value across macro
invocations within a persistent transaction. This is the default for
persistent macros.

TRANSIENT
A keyword that specifies that this variable does not retain its value across
macro invocations. This is the default for non-persistent macros.

define entry:

variable name
A name that identifies a variable. See “Variable Name” on page 5 for
syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation.
If the string appears within double quotes, the new-line character is
not allowed.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See
“Variable Reference” on page 5 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or
a Net.Data built-in function with specified arguments. See “Function
Call (@)” on page 30 for syntax and examples.

exec statement
The EXEC statement. The name of an external program that executes
when a variable is referenced or a function is called. See “EXEC Block
or Statement” on page 18 for syntax and examples.

table statement
The TABLE statement. Defines a collection of related data containing
an array of identical records, or rows, and an array of column names
describing the fields in each row. See “TABLE Statement” on page 61
for syntax and examples.

envvar statement
The ENVVAR statement. Refers to environment variables. See
“ENVVAR Statement” on page 17 for syntax and examples.

14 IBM
®

Net.Data: Reference

conditional variable
Sets the value of a variable based on whether another variable or
string is empty.

abbreviated conditional variable
Sets the value of a variable based on whether another variable or
string is empty. A shorter form of the conditional variable.

list statement
The LIST statement. Defines variables that are used to build a
delimited list of values. See “LIST Statement” on page 45 for syntax
and examples.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See “INCLUDE Statement” on page 42 for syntax and examples.

Context
The DEFINE block or statement must be in an IF block or outside all other
blocks in the declaration part of the Net.Data macro.

Restrictions
v Can contain the following elements:

– Comment block
– Conditional variables
– LIST statement
– TABLE statement
– Variable references
– INCLUDE statement
– EXEC statement
– Function calls
– ENVVAR statement

v You cannot use a variable in its own definition. For example, the following
variable definition is not allowed:
%DEFINE var = "The value is $(var)."

Examples
Example 1: Simple variable definitions
%DEFINE var1 = "orders"
%DEFINE var2 = "$(var1).html"

During run time, the variable reference $(var2) is evaluated as orders.html.

Example 2: Quotes inside a string
%DEFINE hi = "say ""hello"""
%DEFINE empty = ""

Chapter 1. Net.Data Macro Language Constructs 15

|
|

|
|

When displayed, the variable hi has the value say ″hello″. The variable empty
contains the empty string.

Example 3: Definition of multiple variables
%DEFINE{ DATABASE = "testdb"

home = "http://www.ibm.com/software"
SHOWSQL = "YES"
PI = "3.14150"

%}

Example 4: Multiple-line definition of a variable
%DEFINE text = {This variable definition

spans two lines
%}

Example 5: This example of a conditional variable demonstrates how the
variable var takes the resulting value inside the quotations marks (“”) if the
resulting value does not contain any NULL values.
%DEFINE var = ? "Hello! $(V)@MyFunc()"
%}

16 IBM
®

Net.Data: Reference

|

ENVVAR Statement

Purpose
Defines a variable as an environment variable in the DEFINE block. When the
ENVVAR variable is referenced, Net.Data returns the current value of the
environment variable by the same name.

Syntax

�� %ENVVAR ��

Context
The ENVVAR statement can be in the DEFINE block or statement.

Values

%ENVVAR
The keyword for defining a variable as an environment variable in a
DEFINE block. This variable gets the value of an environment variable
anywhere in the macro.

Restrictions
The ENVVAR statement can contain no other elements.

Examples
Example 1: In this example, ENVVAR defines a variable, which when
referenced, returns the current value for the environment variable
SERVER_SOFTWARE, the name of the Web server.
%DEFINE SERVER_SOFTWARE = %ENVVAR

%HTML (REPORT){
The server is $(SERVER_SOFTWARE).
%}

Chapter 1. Net.Data Macro Language Constructs 17

EXEC Block or Statement

Purpose
Specifies an external program to execute when a variable is referenced or a
function is called.

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:
1. It searches the EXEC_PATH in the Net.Data initialization file. See the

configuration chapter in Net.Data Administration and Programming Guide for
your operating system for more information about EXEC_PATH.

2. If Net.Data does not locate the program, it searches the directories defined
by the system. If it locates the executable program, Net.Data runs the
program.

Authorization Tip: Ensure that the user ID under which Net.Data executes
has access rights to any files referenced by the EXEC statement or block. See
the section on specifying Web server access rights to Net.Data files in the
configuration chapter of Net.Data Administration and Programming Guide for
your operating system for more information.

The EXEC statement and block are used in two different contexts and have
different syntax, depending where they are used. Use the EXEC statement in
the DEFINE block, and use the EXEC block in the FUNCTION block.

Syntax
The EXEC statement syntax when used in the DEFINE block:

�� %EXEC �″ string ″
variable reference
function call

��

The EXEC block syntax when used in the FUNCTION block:

�� %EXEC �{ string %}
variable reference
function call

��

18 IBM
®

Net.Data: Reference

Values

%EXEC
The keyword that specifies the name of an external program to be
executed when a variable is referenced or when a function is called. When
Net.Data encounters a variable reference that is defined in an EXEC
statement, it processes what the EXEC statement declares for the variable.

string
Any sequence of alphabetic and numeric characters and punctuation. If
the string appears within double quotes, the new-line character is not
allowed.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See “Function Call
(@)” on page 30 for syntax and examples.

Context
The EXEC block or statement can be found in these contexts:
v DEFINE block
v FUNCTION block

Restrictions
The EXEC block or statement can contain these elements:
v Comment block
v String
v Variable references
v Function call

The following Net.Data-provided language environments support the EXEC
statement:
v REXX
v System
v Perl

Examples
Example 1: Executable file referenced by a variable
%DEFINE mycall = %EXEC "MYEXEC.EXE $(empno)"

%HTML (report){
<p>Here is the report you requested:
<hr>$(mycall)
%}

Chapter 1. Net.Data Macro Language Constructs 19

This example executes MYEXEC.EXE on every reference to the variable, mycall.

Example 2: Executable file referenced by a function
%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, INOUT d){

%EXEC{ mypgm.cmd this is a test %}
%}

This example executes mypgm.cmd when the function my_rexx_pgm is called.

20 IBM
®

Net.Data: Reference

FUNCTION Block

Purpose
Defines a subroutine that Net.Data invokes from the macro. The executable
statements in a FUNCTION block can be inline statements directly interpreted
by a language environment, or they can be a call to an external program.

EXEC Blocks in Function Blocks: If you use the EXEC block within the
FUNCTION block, it must be the only executable statement in the
FUNCTION block. Before passing the executable statement to the language
environment, Net.Data appends the file name of the program in the EXEC
block to a path name determined by the EXEC_PATH path configuration
statement in the initialization file. The resulting string is passed to the
language environment to be executed.

The method that the language environment uses to process the EXEC block
depends on the particular language environment; the REXX, System, and Perl
Net.Data-provided language environments support the EXEC block.

Using Special Characters in Language Statements: When characters that
match Net.Data language constructs syntax are used in the language
statements section of a function block as part of syntactically valid embedded
program code (such as REXX or Perl), they can be misinterpreted as Net.Data
language constructs, causing errors or unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter
characters, %{. When the macro is run, the %{ characters are interpreted as the
beginning of a COMMENT block. Net.Data then looks for the end of the
COMMENT block, which it thinks it finds when it reads the end of the
function block. Net.Data then proceeds to look for the end of the function
block, and when it can’t be found, issues an error.

Use one of the following methods to use Net.Data special characters as part of
your embedded program code, without having them interpreted by Net.Data
as special characters:
v Use the EXEC statement to call the program code, rather than putting the

code inline.
v Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:
%function(DTW_PERL) func() {

...
for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {

Chapter 1. Net.Data Macro Language Constructs 21

|

&make_links($Rtitles{$num}{$num_words});
}
...
%}

To ensure that Net.Data interprets the %{ characters as Perl source code rather
than as a Net.Data COMMENT block delimiter, rewrite the function in either
of the following ways:
v Use the %EXEC statement:

%function(DTW_PERL) func() {
%EXEC{ func.prl %}

%}

v Use a variable reference to specify the %{ characters:
%define percent_openbrace = "%{"

%function(DTW_PERL) func() {
...
for $num_words (sort bynumber keys $(percent_openbrace) $Rtitles{$num} }) {
&make_links($Rtitles{$num}{$num_words});
}
...
%}

Syntax

�� %FUNCTION (lang_env) function_name parm passing spec �

�
;

returns spec { function body %} ��

parm passing spec:

�

()
,

(1)
IN

name
OUT datatype
INOUT

returns spec:

RETURNS (name)

22 IBM
®

Net.Data: Reference

function body:

� inline statement block
exec block

�

�

�

�

(2)
report block

message block

message block
(2)

report block

Notes:

1 The default parameter type of IN applies when no parameter type is
specified at the beginning of the parameter list. A parameter without a
parameter type uses the type most recently specified in the parameter
list, or type IN if no type has been specified. For example, in the
parameter list (parm1, INOUT parm2, parm3, OUT parm4, parm5),
parameters parm1, parm3, and parm5 do not have parameter types. The
parameter parm1 has a type of IN because no initial parameter type has
been specified. The parameter parm3 has a type of INOUT because it is
the most recently specified parameter type. Similarly, the parameter
parm5 has a type of OUT because it is the most recently specified type in
the parameter list.

2 The repeated report block is valid for:
v SQL and ODBC language environments when processing stored

procedures that return multiple result sets for the OS/390(R)
operating systems.

v Functions calling any language environment for the OS/400(R),
OS/2(R), Windows NT, and UNIX operating systems.

Values

%FUNCTION
The keyword that specifies a subroutine that Net.Data invokes from the
macro.

lang_env
The language environment that processes the function body. See the
Net.Data Administration and Programming Guide for more information.

Chapter 1. Net.Data Macro Language Constructs 23

function_name
The name of the function being defined that can be an alphabetic or
numeric string that begins with an alphabetic character or underscore and
contains any combination of alphabetic, numeric, or underscore characters.

parm passing spec:

IN Specifies that Net.Data passes input data to the language
environment. IN is the default.

OUT
Specifies that the language environment returns output data to
Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment
and the language environment returns output data to Net.Data.

datatype
Specifies the datatype of the paramater. For a list of supported
datatypes for stored prodedures, see the operating system appendix of
Net.Data Reference.

name
An alphabetic or numeric string beginning with an alphabetic
character or underscore and containing any combination of alphabetic,
numeric, or underscore characters.

returns spec:

RETURNS
Declares the variable that contains the function value assigned by the
language environment, after the function completes.

function body:

inline statement block
Syntactically valid statements from the language environment
specified in the function definition, for example; REXX, SQL, or Perl.
See Net.Data Administration and Programming Guide for a description of
the language environment you are using. See the programming
language’s programming reference for syntax and usage. The string
representing the inline statement block can contain Net.Data variable
references and function calls, which get evaluated before execution of
the inline statement block (program).

exec block
The EXEC block. The name of an external program that executes
when the function is called. See “EXEC Block or Statement” on
page 18 for syntax and examples.

24 IBM
®

Net.Data: Reference

report block
The REPORT block. Formatting instructions for the output of a
function call. You can use header and footer information for the
report. See “REPORT Block” on page 56 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages,
and the actions Net.Data takes when a function call is returned. See
“MESSAGE Block” on page 51 for syntax and examples.

Context
The FUNCTION block can be found in these contexts:
v IF block
v Outside of any block or statement in the declaration part of the Net.Data

macro.

Restrictions
v The FUNCTION block can contain these elements:

– Comment block
– EXEC block
– MESSAGE block
– REPORT block
– Inline statement blocks

v SQL statements in the inline statement block can have the following
lengths. Your database might have different restrictions; refer to your
database documentation to determine if your database has a smaller
restriction. IBM DB2 database restrictions are listed below, if they are
different from the Net.Data limits:
– For OS/2, Windows NT, and UNIX: 64 KB

DB2 has the following restrictions:
- DB2 Universal Database V6 or higher: 64 KB
- DB2 Universal Database V5.2 or lower: 32 KB

– For OS/390: 32 KB
– For OS/400: 32 KB

Examples
The following examples are general and do not cover all language
environments. See Net.Data Language Environment Reference for more
information about using FUNCTION blocks with a specific language
environment.

Example 1: A REXX substring function

Chapter 1. Net.Data Macro Language Constructs 25

%DEFINE lstring = "longstring"
%FUNCTION(DTW_REXX) substring(IN x, y, z) RETURNS(s) {

s = substr("$(x)", $(y), $(z));
%}
%DEFINE a = {@substring(lstring, "1", "4")%} %{ assigns "long" to a %}

When a is evaluated, the @substring function call is found and the substring
FUNCTION block is executed. Variables are substituted in the executable
statements in the FUNCTION block, then the text string s =
substr("longstring", 1, 4) is passed to the REXX interpreter to execute.
Because the RETURNS clause is specified, the value of the @substring
function call in the evaluation of a is replaced with “long”, the value of s.

Example 2: Invoking an external REXX program
v Net.Data macro:

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}
%}
%HTML(INPUT) {
<p> Original variable values: $(w) $(x) $(z)
<p> @my_rexx_pgm(w, x, y, z)
<p> Modified variable values: $(w) $(x) $(z)
%}

Variables w and x correspond to the INOUT parameters a and b in the
function. Their values and the value of y, which corresponds to the IN
parameter c, should already be defined from HTML form input or from a
DEFINE statement. Variables a and b are assigned new values when
parameters a and b return values. The variable z is defined when the OUT
parameter d returns a value.

v REXX program mypgm.cmd:
/* Sample REXX Program for Example 2 */
/* Test arguments */
num_args = arg();
say 'There are' num_args 'arguments';
do i = 1 to num_args;

say 'arg' i 'is "'arg(i)'"'
end;
/* Set variables passed from Net.Data */
d = a || b || c; /* concatenate a, b, and c forming d */
a = ''; /* reset a to null string */
b = ''; /* reset b to null string */
return;

v Output from mypgm.cmd:
There are 1 arguments
arg 1 is "this is a test"

The EXEC statement tells the REXX language environment to tell the REXX
interpreter to execute the external REXX program mypgm.cmd. Because the

26 IBM
®

Net.Data: Reference

REXX language environment can directly share Net.Data variables with the
REXX program, it assigns the REXX variables a, b, and c the values of the
Net.Data variables w, x and y before executing mypgm.cmd. mypgm.cmd can
directly use the variables a, b, and c in REXX statements. When the program
ends, the REXX variables a, b, and d are retrieved from the REXX program,
and their values are assigned to the Net.Data variables w, x, and z. Because
the RETURNS clause is not used in the definition of the my_rexx_pgm
FUNCTION block, the value of the @my_rexx_pgm function call is the null
string, “”, (if the return code is 0) or the value of the REXX program return
code (if the return code is nonzero).

Example 3: An SQL query and report
%FUNCTION(DTW_SQL) query_1(IN x, IN y) {

SELECT customer.num, order.num, part.num, status
FROM customer, order, shippingpart
WHERE customer.num = '$(x)'

AND customer.ordernumber = order.num
AND order.num = '$(y)'
AND order.partnumber = part.num

%REPORT{
<p>Here is the status of your order:
<p>$(NLIST)

%ROW{

$(V1) $(V2) $(V3) $(V4)
%}

%}
%}
%DEFINE customer_name="IBM"
%DEFINE customer_order="12345"
%HTML(REPORT) {

@query_1(customer_name, customer_order)
%}

The @query_1 function call substitutes IBM for $(x) and 12345 for $(y) in the
SELECT statement. Because the definition of the SQL function query_1 does
not identify an output table variable, the default table is used (see the TABLE
variables block for details). The NLIST and Vi variables referenced in the
REPORT block are defined by the default table definition. The report
produced by the REPORT block is placed in the output HTML where the
query_1 function is invoked.

Example 4: A system call to execute a Perl script
v Net.Data macro:

Chapter 1. Net.Data Macro Language Constructs 27

%FUNCTION(DTW_SYSTEM) today() RETURNS(result) {
%exec{ perl "today.prl" %}

%}
%HTML(INPUT) {

@today()
%}

v Perl program today.prl:
$date = ′date′;

chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

The System language environment interprets the executable statements in a
FUNCTION block by passing them to the operating system through the C
language system() function call. This method does not allow Net.Data
variables to be directly passed or retrieved to the executable statements, as the
REXX language environment does, so the System language environment
passes and retrieves variables as described here:
v Input parameters are passed as system environment variables through the

putenv() function and can be retrieved by the executing program. Different
languages reference the variables differently. A UNIX cshell script refers to
environment variables by preceding the environment variable name with a
’$’, such as $x. A Perl language script refers to them by referencing the
associative array %ENV, such as %ENV{'x'}. A DOS batch (.BAT) file refers
to the variable name enclosed in percent signs, such as %x%.

v Output parameters are passed back to the language environment by writing
to a pipe whose name is passed in the environment variable DTWPIPE,
except on the OS/400 platform, where output parameters are passed back
to the language environment as system environment variables. The data
that is written to the named pipe has the form name="value". If a variable
name corresponding to an output parameter is written this way, the new
value replaces the current value. If a variable name is written that does not
correspond to an output parameter, it is ignored.

When the @today function call is encountered, Net.Data performs variable
substitution on the executable statements. In this example, there are no
Net.Data variables in the executable statements, so no variable substitution is
performed. The executable statements and parameters are passed to the
System language environment, which creates a named pipe and sets the
environment variable DTWPIPE to the name of the pipe.

Then the external program is called with the C system() function call. The
external program opens the pipe as write-only and writes the values of output
parameters to the pipe as if it were a standard stream file. The external
program generates HTML output by writing to STDOUT. In this example, the
output of the system date program is assigned to the variable result, which is

28 IBM
®

Net.Data: Reference

the variable identified in the RETURNS clause of the FUNCTION block. This
value of the result variable replaces the @today() function call in the HTML
block.

Example 5: Perl language environment
%FUNCTION(DTW_PERL) today() RETURNS(result) {

$date = ′date′;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

%}
%HTML(INPUT) {

@today()
%}

Compare this example with Example 4 to see how the EXEC block is used. In
Example 4, the System language environment does not understand how to
interpret Perl programs, but the language environment does know how to call
external programs. The EXEC block tells it to call a program called perl as an
external program. The actual Perl language statements are interpreted by the
external Perl program. Example 5 has no EXEC block, because the Perl
language environment is able to directly interpret Perl language statements.

Chapter 1. Net.Data Macro Language Constructs 29

Function Call (@)

Purpose
Invokes a FUNCTION block, MACRO_FUNCTION block, or built-in function
with specified arguments. If the function is not a built-in function, you must
define it in the Net.Data macro before you specify a function call.

Syntax

�� @function_name (

�

�

,

variable_name
variable reference
function call

″ string ″
variable reference
function call

) ��

Values

@function_name
The name of any existing function. An alphabetic or numeric string that
begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

variable name
A name that identifies a variable. See “Variable Name” on page 5 for
syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation,
except the new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments.

Context
Function calls can be found in these contexts:
v HTML block
v REPORT block

30 IBM
®

Net.Data: Reference

v ROW block
v DEFINE block
v IF block
v MACRO_FUNCTION block
v MESSAGE block
v WHILE block
v Function call statement
v Outside of any block in the declaration part of the Net.Data macro

Restrictions
v Function calls can contain these elements:

– Comment block
– Strings
– Function calls
– Variable References

v OUT or INOUT parameter values cannot contain variable references,
function calls, or literal strings.

Examples
Example 1: A call to the SQL function formQuery
%FUNCTION(DTW_SQL) formQuery(){
SELECT $(queryVal) from $(tableName)
%}

%HTML (input){
<p>Which columns of $(tableName) do you want to see?</p>
<form method="post" action="report">
<input name="queryval" type="checkbox" value="name" />Name
<input name="queryval" type="checkbox" value="mail" />E-mail
<input name="queryval" type="checkbox" value="fax" />FAX
<input type="submit" value="submit request" />
</form>
%}

%HTML (report){
<p>Here are the columns you selected:
<hr>@formQuery()
%}

Example 2: A call to a REXX function with input and output parameters
%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}
%}
%HTML(INPUT) {
<p> Original variable values: $(w) $(x) $(z)
<p> @my_rexx_pgm(w, x, y, z)
<p> Modified variable values: $(w) $(x) $(z)
%}

Chapter 1. Net.Data Macro Language Constructs 31

Example 3: A call to a REXX function, with input parameters, that uses
variable references and function calls
%FUNCTION(DTW_REXX) my_rexx_pgm(IN a, b, c, d, OUT e) {

...
%}
%HTML(INPUT) {
<p> @my_rexx_pgm($(myA), @getB(), @retrieveC(), $(myD), myE)
%}

Example 4: A macro that illustrates the use of the INOUT parameter.
%DEFINE a = "initial value of a"

%FUNCTION(DTW_REXX) func1(INOUT x) {
Say 'value at start of function:

Say 'x =' x
Say '<p>'
x = "new value of a"
%REPORT {

<p>value at start of report block:

x = $(x)

@dtw_assign(x, "newest value of a")
value at end of report block:

x = $(x)

%}
%}

%HTML(report) {
initial values:

a = $(a)

@func1(a)
value after function call:

a = $(a)

%}

Resulting output:
initial values:
a = initial value of a

value at start of function:
x = initial value of a

value at start of report block:
x = new value of a

value at end of report block:
x = newest value of a

value after function call:
a = newest value of a

32 IBM
®

Net.Data: Reference

HTML Block

Purpose
Defines how a Web page is to be presented. The name of the HTML block to
be executed is specified on the URL when Net.Data is invoked. The HTML
block can contain most Net.Data macro language statements and any valid
presentation statements, such as HTML and Javascript.

Syntax

�� %HTML (name) �{ %}
variable reference
if block
function call
HTML statement
include statement
while block

��

Values

%HTML
The keyword that specifies the block that contains HTML tags and text to
be displayed on the client’s browser.

name
An alphabetic or numeric string that begins with an alphabetic character
or underscore and contains any combination of alphabetic, numeric, or
underscore characters, including periods.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings
that represent integers and have no leading or trailing white space. They
can have a single leading plus (+) or minus (-) sign. See “IF Block” on
page 35 for syntax and examples.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See “Function Call
(@)” on page 30 for syntax and examples.

Chapter 1. Net.Data Macro Language Constructs 33

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See “INCLUDE Statement” on page 42 for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing.
See “WHILE Block” on page 63 for syntax and examples.

Context
The HTML block can be found in these contexts:
v IF block
v Outside of any block in the declaration part of the Net.Data macro

Restrictions
The HTML block can contain these elements:
v Comment block
v IF block
v HTML statements
v INCLUDE statement
v WHILE block
v Variable references
v Function calls

Examples
Example 1: HTML block with include files for headings and footings
%HTML(example1){
%INCLUDE "header.html"
<p>You can put any HTML in an HTML block.
An SQL function call is made like this:
@xmp1()
%INCLUDE "footer.html"
%}

Example 2: HTML block with a name that contains a period
%HTML(my.report){
%INCLUDE "header.html"
<p>You can put any HTML in an HTML block.
An SQL function call is made like this:
@xmp1()
%INCLUDE "footer.html"
%}

34 IBM
®

Net.Data: Reference

IF Block

Purpose
Performs conditional string processing. The IF block provides the ability to
test one or more conditions, and then to perform a block of statements based
on the outcome of the condition test. You can use the IF block in the
declaration part of a Net.Data macro, the HTML block, the
MACRO_FUNCTION block, the REPORT block, the WHILE block, and the
ROW block, as well as nest it inside another IF block.

String values in the condition list are treated as numeric for comparisons if
they are strings that represent integers and have no leading or trailing white
space. They can have a single leading plus (+) or minus (-) sign.

Restriction: Net.Data does not support numerical comparison of non-integer
numbers; for example, floating point numbers.

Nested IF blocks: The rules for IF block syntax are determined by the block’s
position in the macro. If an IF block is nested within an IF block that is
outside of any other block in the declaration part, it can use any element that
the outside block can use. If an IF block is nested within another block that is
in an IF block, it takes on the syntax rules for the block it is inside.

In the following example, the nested IF block must follow the rules used
when it is inside an HTML block.
%IF block
...

%HTML block
...

%IF block

You can nest up to 1024 IF blocks.

Syntax

�� %IF condition list statement_block else_if spec %ENDIF ��

condition list:

((condition list))
condition list && condition list
condition list || condition list
! condition list

condition
term

Chapter 1. Net.Data Macro Language Constructs 35

statement_block:

�

(1)
define block

(1) (2)
define statement

(1)
function block
function call

(1)
HTML block

(2)
HTML statement
if block
include statement

(1)
macro_function block

(1)
message block

(2)
string

(2)
variable reference

(2)
while block

condition:

term < term
>
<=
>=
!=
==

term:

�

variable_name
variable reference
function call

″ string ″
variable reference
function call

36 IBM
®

Net.Data: Reference

else_if spec:

� %ELIF (condition_list) statement_block
%ELSE statement_block

Notes:

1 This language construct is valid when the IF block is located outside of
any other block in the declaration part of the macro.

2 This language construct is valid when the IF block is located in an
HTML block, MACRO_FUNCTION block, REPORT block, ROW block,
or WHILE block.

Values

%IF
The keyword that specifies conditional string processing.

condition list
Compares the values of conditions and terms. Condition lists can be
connected using Boolean operators. A condition list can be nested inside
another condition list.

statement_block
The following valid Net.Data macro constructs. Please see diagram notes
and restrictions to determine the context in which the macro constructs
are valid.

define statement
The DEFINE block or statement. Defines variables and sets
configuration variables. Variable names must begin with a letter or
underscore (_) and contain any alphanumeric characters or
underscore. See “DEFINE Block or Statement” on page 12 for syntax
and examples.

function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a FUNCTION block can
contain language statements that are directly interpreted by a
language environment, or they can indicate a call to an external
program. See “FUNCTION Block” on page 21 for syntax and
examples.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or

Chapter 1. Net.Data Macro Language Constructs 37

a Net.Data built-in function with specified arguments. See “Function
Call (@)” on page 30 for syntax and examples.

HTML block
Includes any alphabetic or numeric characters, as well as HTML tags
to be formatted for the client’s browser.

HTML statement
Includes any alphabetic or numeric characters, and HTML tags to be
formatted for the client’s browser.

if block
The IF block. Performs conditional string processing. String values in
the condition list are treated as numeric for comparisons if they are
strings that represent integers and have no leading or trailing white
space. They can have a single leading plus (+) or minus (-) sign.

include statement
The INCLUDE statement. Reads and incorporates a file into the
Net.Data macro. See “INCLUDE Statement” on page 42 for syntax and
examples.

macro_function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a MACRO_FUNCTION
block can contain Net.Data macro language source statements. See
“MACRO_FUNCTION Block” on page 47 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages,
and the actions Net.Data takes when a function call is returned. See
“MESSAGE Block” on page 51 for syntax and examples.

string
Any sequence of alphabetic and numeric characters and punctuation.
If the string is in the term of the condition list, it can contain any
character except the new-line character. If the string is in the
executable block of code, it can contain any character, including the
new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See
“Variable Reference” on page 5 for syntax information.

while block
The WHILE block. Performs looping with conditional string
processing. See “WHILE Block” on page 63 for syntax and examples

38 IBM
®

Net.Data: Reference

condition
A comparison between two terms using comparison operators. An IF
condition is treated as a numeric comparison if both of the following
conditions are true:
v The condition operator is one of the following operators:

<,<=,>,>=,==,!=
v Both terms are strings representing valid integers, where a valid integer

is a string of digits, optionally preceded by a plus (+) or minus (-) sign,
and no other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, or function call.

%ELIF
A keyword that starts the alternative processing path and can contain
condition lists and most Net.Data macro statements.

%ENDIF
A keyword that closes the %IF block.

%ELSE
A keyword that executes associated statements if all other condition lists
are not satisfied.

Context
The IF block can be found in these contexts:
v Outside of any other block in the declaration part of a Net.Data macro
v HTML block
v IF block
v MACRO_FUNCTION block
v REPORT block
v ROW block
v WHILE block

Restrictions
The IF block can contain these elements when located outside of any other
block in the declaration part of the Net.Data macro:
v Comment block
v DEFINE block
v DEFINE statement
v FUNCTION block
v Function call
v HTML block
v IF block
v INCLUDE statement
v MACRO_FUNCTION block

Chapter 1. Net.Data Macro Language Constructs 39

v MESSAGE block
v Variable reference

The IF block can contain these elements when located in the HTML block,
MACRO_FUNCTION block, REPORT block, ROW block, or WHILE block of
the Net.Data macro:
v Comment block
v Function calls
v IF block
v INCLUDE statement
v HTML statement
v String
v Variable reference
v WHILE block

You can nest up to 1024 IF blocks.

Examples
Example 1: An IF block in the declaration part of a Net.Data macro
%DEFINE a = "1"
%DEFINE b = "2"
...
%IF ($(DTW_HTML_TABLE) == "YES")

%define OUT_FORMAT = "HTML"
%ELSE

%define OUT_FORMAT = "CHARACTER"
%ENDIF

%HTML(REPORT) {
...
%}

Example 2: An IF block inside an HTML block
%HTML(REPORT) {
@myFunctionCall()
%IF ($RETURN_CODE) == $(failure_rc))

<p> The function call failed with failure code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(warning_rc))

<p> The function call succeeded with warning code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(success_rc))

<p>The function call was successful.
%ELSE

P>The function call returned with unknown return code $(RETURN_CODE).
%ENDIF
%}

Example 3: A numeric comparison

40 IBM
®

Net.Data: Reference

%IF (ROW_NUM < "100")
<p>The table is not full yet...

%ELIF (ROW_NUM == "100")
<p>The table is now full...

%ELSE
<p>The table has overflowed...

%ENDIF

A numeric comparison is done because the implicit table variable ROW_NUM
always returns an integer value, and the value that is being compared is also
an integer.

Example 4: Nested IF blocks
%IF (MONTH == "January")

%IF (DATE = "1")
HAPPY NEW YEAR!

%ELSE
Ho hum, just another day.

%ENDIF
%ENDIF

Chapter 1. Net.Data Macro Language Constructs 41

INCLUDE Statement

Purpose
Reads and incorporates a file into the Net.Data macro in which the statement
is specified.

Net.Data searches the directories specified in the INCLUDE_PATH statement
in the initialization file to find the include file.

You can use include files the same way you can in most high-level languages.
They can insert common headings and footings, define common sets of
variables, or incorporate a common subroutine library of FUNCTION block
definitions into a Net.Data macro.

Net.Data executes an INCLUDE statement only once when processing the
macro and inserts the content of the included file at the location of the
INCLUDE statement in the macro. Any variable references in the name of the
included file are resolved at the time the INCLUDE statement is first
executed, not when the content of the included file is to be executed.

When an INCLUDE statement is in a ROW or WHILE block, Net.Data does
not repeatedly execute the INCLUDE statement. Net.Data executes the
INCLUDE statement the first time it executes the ROW or WHILE block,
incorporates the content of the included file into the block, and then
repeatedly executes the ROW or WHILE block with the content of the
included file.

Authorization Tip: Ensure that the user ID under which Net.Data executes
has access rights to any files referenced by the INCLUDE statement. See the
section on specifying Web server access rights to Net.Data files in the
configuration chapter of Net.Data Administration and Programming Guide for
more information.

Syntax

�� %INCLUDE �" string "
variable reference

��

Values

%INCLUDE
The keyword that indicates a file is to be read and incorporated into the
Net.Data macro.

42 IBM
®

Net.Data: Reference

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

string
Any sequence of alphabetic and numeric characters and punctuation,
except the new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

Context
The INCLUDE statement can be found in these contexts:
v DEFINE block
v HTML block
v REPORT block
v ROW block
v IF block
v MESSAGE block
v MACRO_FUNCTION block
v WHILE block
v Outside of any block in the declaration part of the Net.Data macro

Restrictions
The INCLUDE statement can contain these elements:
v Comment block
v Strings
v Variable references

Function calls in the string are not allowed.

You can nest up to ten INCLUDE statements.

Examples
Example 1: An INCLUDE statement in an HTML block
%HTML(start){
%INCLUDE "header.hti"
...
%}

Example 2: An INCLUDE statement in a REPORT block
%REPORT {

%INCLUDE "report_header.txt"
%ROW {

Chapter 1. Net.Data Macro Language Constructs 43

%INCLUDE "row_include.txt"
%}
%INCLUDE "report_footer.txt"

%}

Example 3: Variable references in an INCLUDE statement
%define REMOTE_USER = %ENVVAR
%include "$(REMOTE_USER).hti"

44 IBM
®

Net.Data: Reference

LIST Statement

Purpose
Builds a delimited list of values. You can use the LIST statement when you
construct SQL queries with multiple items like those found in some WHERE
or HAVING clauses.

Syntax

�� �%LIST " " variable name
string
variable reference
function call

��

Values

%LIST
The keyword that specifies that variables are to be used to build a
delimited list of values.

string
Any sequence of alphabetic and numeric characters and punctuation,
except the new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See “Function Call
(@)” on page 30 for syntax and examples.

variable name
A name that identifies a variable. See “Variable Name” on page 5 for
syntax information.

Context
The LIST statement can be found in these contexts:
v DEFINE statement

Restrictions
The LIST statement can contain these elements:
v Comment block
v Variable references
v Function calls

Chapter 1. Net.Data Macro Language Constructs 45

v Strings

Examples
Example 1: A list of variables
%DEFINE{
DATABASE="custcity"
%LIST " OR " conditions
conditions="cond1='Sao Paolo'"
conditions="cond2='Seattle'"
conditions="cond3='Shanghai'"
whereClause=conditions ? "WHERE $(conditions)" : ""
%}

For more information on using LIST statements with variables, see “List
Variables” on page 76.

46 IBM
®

Net.Data: Reference

|
|

MACRO_FUNCTION Block

Purpose
Defines a subroutine that can be invoked from the Net.Data macro. The
executable statements in a MACRO_FUNCTION block must be Net.Data
macro language source statements.

Syntax

�� %MACRO_FUNCTION function_name parm passing spec �

� returns spec { function body %} �

report block
%} ��

parm passing spec:

�

()
,

(1)
IN

name
OUT
INOUT

returns spec:

RETURNS (name)

function body:

�

variable reference
if block
function call
HTML statement
include statement
while block

Chapter 1. Net.Data Macro Language Constructs 47

Notes:

1 The default parameter type of IN applies when no parameter type is
specified at the beginning of the parameter list. A parameter without a
parameter type uses the type most recently specified in the
parameter list, or type IN if no type has been specified. For example, in
the parameter list (parm1, INOUT parm2, parm3, OUT parm4, parm5),
parameters parm1, parm3, and parm5 do not have parameter types. The
parameter parm1 has a type of IN because no initial parameter type has
been specified. The parameter parm3 has a type of INOUT because it is
the most recently specified parameter type. Similarly, the parameter
parm5 has a type of OUT because it is the most recently specified type in
the parameter list.

Values

%MACRO_FUNCTION
The keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a MACRO_FUNCTION
block must contain language statements that Net.Data directly interprets.

function_name
The name of the function being defined. An alphabetic or numeric string
that begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

parm passing spec:

IN Specifies that Net.Data passes input data to the language
environment. IN is the default.

OUT
Specifies that the language environment returns output data to
Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment
and the language environment returns output data to Net.Data.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters. name can represent a Net.Data table or a result set.

returns spec:

RETURNS
Declares the variable that contains the function value after the
function completes.

function body:

48 IBM
®

Net.Data: Reference

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See
“Variable Reference” on page 5 for syntax information.

if block
The IF block. Performs conditional string processing. String values in
the condition list are treated as numeric for comparisons if they
represent integers and have no leading or trailing white space. They
might have one leading plus (+) or minus (-) sign.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or
a Net.Data built-in function with specified arguments. See “Function
Call (@)” on page 30 for syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags
to be formatted for the client’s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the
Net.Data macro. See “INCLUDE Statement” on page 42 for syntax and
examples.

while block
The WHILE block. Performs looping with conditional string
processing. See “WHILE Block” on page 63 for syntax and examples.

report block
The REPORT block. Formatting instructions for the output of a function
call. You can use header and footer information for the report. See
“REPORT Block” on page 56 for syntax and examples.

Context
The MACRO_FUNCTION block can be found in these contexts:
v IF block
v Outside of any block in the declaration part of the Net.Data macro

Restrictions
The MACRO_FUNCTION block can contain these elements:
v Comment block
v HTML statements
v IF block
v INCLUDE statement
v REPORT block
v WHILE block
v Variable references
v Function calls

Chapter 1. Net.Data Macro Language Constructs 49

Examples
Example 1: A macro function that specifies message handling
%MACRO_FUNCTION setMessage(IN rc, OUT message) {
%IF (rc == "0")

@dtw_assign(message, "Function call was successful.")
%ELIF (rc == "-1")

@dtw_assign(message, "Function failed, out of memory.")
%ELIF (rc == "-2")

@dtw_assign(message, "Function failed, invalid parameter.")
%ENDIF
%}

Example 2: A macro function that specifies header information
%MACRO_FUNCTION setup(IN browserType) {
%{ call this function at the top of each HTML block in the macro %}
%INCLUDE "header_info.html"
@dtw_rdate()
%IF (browserType == "IBM")

@setupIBM()
%ELIF (browserType == "MS")

@setupMS()
%ELIF (browserType == "NS")

@setupNS()
%ELSE

@setupDefault()
%ENDIF
%}

Example 3: A macro function that contains a REPORT block
%MACRO_FUNCTION myfunc (INOUT table) {

%REPORT {
<table>
%ROW {

<tr><td>$(V1)</td><td>$(V2)</td></tr>
%}
</table>

%}
%}

Example 4: A macro function that uses the RETURNS keyword
%MACRO_FUNCTION myfunc () RETURNS(VALUE) {

@DTW_ASSIGN(VALUE, "Success...")
%}

50 IBM
®

Net.Data: Reference

MESSAGE Block

Purpose
Specifies messages to display and actions to take based on the return code
from a function.

Define the set of return codes, along with their corresponding messages and
actions in the MESSAGE block. When a function call completes, Net.Data
compares its return code with return codes defined in the MESSAGE block. If
the function’s return code matches one in the MESSAGE block, Net.Data
displays the message and evaluates the action to determine whether to
continue processing or exit the Net.Data macro.

A MESSAGE block can be global in scope, or local to a single FUNCTION
block. If the MESSAGE block is defined at the outermost macro layer, it is
considered global in scope. When multiple global MESSAGE blocks are
defined, only the last block processed is considered active. If the MESSAGE
block is defined inside a FUNCTION block, the block is local in scope to the
FUNCTION block where it is defined. See the MESSAGE block section in the
Net.Data Administration and Programming Guide for return code processing
rules.

Syntax

�� %MESSAGE { �

� �

return code spec : message text spec
SQLSTATE action spec

�

� % } ��

return code spec:

DEFAULT
+DEFAULT
-DEFAULT

msg_code
-
+

include statement

Chapter 1. Net.Data Macro Language Constructs 51

SQLSTATE:

SQLSTATE : state_id

message text spec:

�

�

" "
string
variable reference
function call
(new_line)

{ %}
string
variable reference
function call

include statement

action spec:

EXIT
:

CONTINUE
include statement

Values

%MESSAGE
A keyword for the block that defines a set of return codes, the associated
messages, and the actions Net.Data takes when a function call is returned.

return code spec
A positive or negative integer. If the value of the Net.Data
RETURN_CODE variable matches the return code spec value, the remaining
information in the message statement is used to process the function call.
You can also specify messages for return codes not specifically entered in
the MESSAGE block.

+DEFAULT
A keyword used to specify a default positive message code. Net.Data
uses the information in this message statement to process the function
call if RETURN_CODE is greater than zero (0) and an exact match is
not specified.

52 IBM
®

Net.Data: Reference

-DEFAULT
A keyword to specify a default negative message code. Net.Data uses
the information in this message statement to process the function call
if RETURN_CODE is less than zero (0) and an exact match is not
specified.

DEFAULT
A keyword to specify the default message code. Net.Data uses the
information in this message statement to process the function call, if
all of the following conditions are met:
v If RETURN_CODE is greater or less than zero, but not zero
v If no exact match for the return code is specified
v If the +DEFAULT or -DEFAULT values are not specified for when

RETURN_CODE is greater or less than zero

msg_code
The message code that specifies errors and warnings that can occur
during processing. A string of numeric digits with values from 0 to 9.

SQLSTATE
A keyword that provides application programs with common codes for
common error conditions.The SQLSTATE values are based on the
SQLSTATE specification contained in the SQL standard, and the coding
scheme is the same on all IBM implementations of SQL. This value is
matched with the Net.Data variable SQL_STATE.

state_id
The SQLSTATE. An alphamumeric string of five characters (bytes)
with a format of ccsss, where cc indicates class and sss indicates
subclass.

message text spec
A string that is sent to the Web browser if either the RETURN_CODE
matches the return_code value or the SQL_STATE variable matches the
SQLSTATE value in the current message statement.

string
Any sequence of alphabetic and numeric characters and punctuation.
If the string appears within double quotes, the new-line character is
not allowed.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See
“Variable Reference” on page 5 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or

Chapter 1. Net.Data Macro Language Constructs 53

|
|
|

|
|
|
|

|
|
|
|

|
|

a Net.Data built-in function with specified arguments. See “Function
Call (@)” on page 30 for syntax and examples.

action spec
Specifies what action Net.Data takes if the RETURN_CODE variable
matches the return_code value, or the SQL_STATE variable matches the
SQLSTATE value in the current message statement.

EXIT
A keyword that specifies to exit the macro immediately when the
error or warning corresponding to the specified message code occurs.
This value is the default.

CONTINUE
A keyword that specifies to continue processing when the error or
warning corresponding to the specified message code occurs.

include statement
The INCLUDE statement. Reads and incorporates a file into the
Net.Data macro. The INCLUDE statement can appear anywhere in the
MESSAGE. See “INCLUDE Statement” on page 42 for syntax and
examples.

Context
The MESSAGE block can be found in these contexts:
v FUNCTION block
v IF block
v Outside of all blocks or statements in the declaration part of the Net.Data

macro

Restrictions
The MESSAGE block can contain these elements:
v Comment block
v Function calls
v Variable references
v HTML statements
v Strings
v INCLUDE statement

For OS/390: SQL functions cannot be called from inside SQL functions.

Examples
Example 1: A local MESSAGE block
%{ local message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my_function() {

%EXEC { my_command.cmd %}
%MESSAGE{
-601: {<h3>The table has already been created, please go back and enter your name.</h3>

54 IBM
®

Net.Data: Reference

|
|

|

|

<p>Return
%}
default: "<h3>Can't continue because of error $(RETURN_CODE)</h3>"%} : exit

%}

Example 2: A global MESSAGE block
%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : continue
%}

%{ local message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my_function() {

%EXEC { my_command.cmd %}
%MESSAGE {

-100 : "Return code -100 message" : exit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : exit

%}

Example 3: A MESSAGE block containing INCLUDE statements.
%message {

%include "rc1000.msg"
%include "rc2000.msg"
%include "defaults.msg"

%}

Chapter 1. Net.Data Macro Language Constructs 55

REPORT Block

Purpose
Formats output from a function call. You can enter a table name parameter to
specify that the report is to use the data in the named table. Otherwise, the
report is generated with the first output table found in the function parameter
list, or with the default table data if no table name is in the list.

Syntax

�� %REPORT
(name)

{ �

string
if block
variable reference
function call
HTML statements
include statement
while block

row block
�

� �

string
if block
variable reference
function call
HTML statements
include statement
while block

%} ��

Values

%REPORT
The keyword for specifying formatting instructions for the output of a
function call. You can use header and footer information for the report.

name
This value represents a Net.Data table or result set. See the Report Block
section in the Net.Data Administration & Programming Guide for more
information.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent

56 IBM
®

Net.Data: Reference

integers and have no leading or trailing white space. They can have one
leading plus (+) or minus (-) sign. See “IF Block” on page 35 for syntax
and examples.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See “Function Call
(@)” on page 30 for syntax and examples.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See “INCLUDE Statement” on page 42 for syntax and examples.

row block
The ROW block. Displays HTML formatted data once for each row of
data that is returned from a function call. See “ROW Block” on page 59 for
syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing.
See “WHILE Block” on page 63 for syntax and examples.

Context
The REPORT block can be found in these contexts:
v FUNCTION statement or block
v MACRO_FUNCTION block

Restrictions
The REPORT block can contain these elements:
v Comment block
v IF block
v INCLUDE statements
v ROW blocks
v WHILE blocks
v Function calls

For OS/390: SQL functions cannot be called from inside SQL functions.
v HTML statements
v Strings
v Variable references

Chapter 1. Net.Data Macro Language Constructs 57

|

For OS/390: REPORT blocks are not allowed in MACRO_FUNCTION blocks.

Examples
Example 1: A two-column HTML table showing a list of names and locations
%FUNCTION(DTW_SQL) mytable() {
%REPORT{
<h2>Query Results</h2>
<p>Select a name for details.
<table border=1>
<tr><td>Name</td><td>Location</td>
%ROW{
<tr>
<td>
$(V1)
</td>
<td>$(V2)</td>
%}
</table>
%}

Selecting a name in the table calls the details HTML block of the name.mac
Net.Data macro and sends it the two values as part of the URL. In this
example, the values can be used in name.mac to look up additional details
about the name.

58 IBM
®

Net.Data: Reference

ROW Block

Purpose
Processes each table row returned from a function call. Net.Data processes the
statements within the ROW block once for each row.

Syntax

�� %ROW { �

string
if block
variable reference
function call
HTML statements
include statement
while block

%} ��

Values

%ROW
The keyword that specifies that HTML formatted data is to be displayed,
once for each row of data returned from a function call.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings
that represent integers and have no leading or trailing white space. They
can have a single leading plus (+) or minus (-) sign. See “IF Block” on
page 35 for syntax and examples.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or
built-in functions with specified arguments. See “Function Call (@)” on
page 30 for syntax and examples.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’s browser.

Chapter 1. Net.Data Macro Language Constructs 59

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See “INCLUDE Statement” on page 42 for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing.
See “WHILE Block” on page 63 for syntax and examples.

Context
The ROW block can be found in these contexts:
v REPORT block

Restrictions
The ROW block can contain these elements:
v Comment block
v IF blocks
v INCLUDE statements
v WHILE blocks
v Function calls

For OS/390: SQL functions cannot be called from inside SQL functions.
v Variable references
v HTML statements
v Strings

Examples
Example 1: A two-column HTML table showing a list of names and locations
%REPORT{
<h2>Query Results</h2>
<p>Select a name for details.
<table border=1>
<tr><td>Name</td><td>Location</td>

%ROW{
<tr>
<td>
$(V1)</td>
<td>$(V2)</td>
%}

</table>
%}

Selecting a name in the table calls the details HTML block of the name.mac
Net.Data macro and sends it the two values as part of the URL. In this
example, the values can be used in name.mac to look up additional details
about the name.

60 IBM
®

Net.Data: Reference

|

TABLE Statement

Purpose
Defines a variable which is a collection of related data. The variable contains a
set of rows and columns including a row of column headers describing the
fields in each row. A table statement can only be in a DEFINE statement or
block.

When a TABLE variable is referenced while executing an HTML block,
Net.Data displays the content of the table as either a plain character table or,
if the DTW_HTML_TABLE variable is set to YES, as an HTML table. When a
TABLE variable is referenced while executing an XML block, Net.Data returns
the table as a RowSet.

Syntax

�� %TABLE upper limit ��

upper limit:

(number)
ALL

Values

%TABLE
A keyword that specifies the definition of a collection of related data
containing an array of identical records, or rows, and an array of column
names describing the fields in each row.

upper limit
The number of rows that can be contained in the table. If the upper limit
value is not specified, the table can contain an unlimited number of rows.

number
A string of digits. A value of 0 allows for unlimited number of rows
in the table.

ALL
A keyword that allows for an unlimited number of rows in the table.

Context
The TABLE statement can be found in these contexts:
v DEFINE statement

Chapter 1. Net.Data Macro Language Constructs 61

Restrictions
The TABLE statement can contain these elements:
v Comment block
v Numbers

Examples
Example 1: A Net.Data table with an upper limit of 30 rows
%DEFINE myTable1=%TABLE(30)

Example 2: A Net.Data table that uses the default of all rows
%DEFINE myTable2=%TABLE

Example 3: A Net.Data table that specifies all rows
%DEFINE myTable3=%TABLE(ALL)

62 IBM
®

Net.Data: Reference

WHILE Block

Purpose
Provides a looping construct based on conditional string processing. You can
use the WHILE block in the HTML block, the REPORT block, the ROW block,
the IF block, and the MACRO_FUNCTION block. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can have
a single leading plus (+) or minus (-) sign.

Syntax

�� %WHILE condition list { �

function call
HTML statement
if block
include statement
while block
variable reference
string

%} ��

condition list:

((condition list))
condition list && condition list
condition list || condition list
! condition list

condition
term

condition:

term < term
>
<=
>=
!=
==

term:

Chapter 1. Net.Data Macro Language Constructs 63

�

variable_name
variable reference
function call

″ string ″
variable reference
function call

Values

%WHILE
The keyword that specifies loop processing.

condition list
Compares the values of conditions and terms. Condition lists can be
connected using Boolean operators. A condition list can be nested inside
another condition list.

condition
A comparison between two terms using comparison operators. An IF
condition is treated as a numeric comparison if both of the following
conditions are true:
v The condition operator is one of the following operators:

<,<=,>,>=,==,!=
v Both terms are strings representing valid integers, where a valid integer

is a string of digits, optionally proceeded by a plus (+) or minus (-)
sign, and no other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, for function call.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or
built-in functions with specified arguments. See “Function Call (@)” on
page 30 for syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’s browser.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent
integers and have no leading or trailing white space. They can have one
leading plus (+) or minus (-) sign. See “IF Block” on page 35 for syntax
and examples.

64 IBM
®

Net.Data: Reference

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See “INCLUDE Statement” on page 42 for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing.
See “WHILE Block” on page 63 for syntax and examples.

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation. A
string in the term of the condition list can contain any character except the
new-line character.

variable name
A name that identifies a variable. See “Variable Name” on page 5 for
syntax information.

Context
The WHILE block can be found in these contexts:
v HTML block
v REPORT block
v ROW block
v MACRO_FUNCTION block
v IF block
v WHILE block

Restrictions
The WHILE block can contain these elements:
v Comment block
v IF block
v WHILE block
v Strings
v HTML statements
v Function calls
v Variable references
v INCLUDE statements

Examples
Example 1: A WHILE block that generates rows in a table
%DEFINE loopCounter = "1"

%HTML(build_table) {
%WHILE (loopCounter <= "100") {

%{ generate table tag and column headings %}

Chapter 1. Net.Data Macro Language Constructs 65

%IF (loopCounter == "1")
<table border>
<tr>
<th>Item #
<th>Description
</tr>

%ENDIF

%{ generate individual rows %}
<tr>
<td>
<td>$(loopCounter)
<td>@getDescription(loopCounter)
</tr>

%{ generate end table tag %}
%IF (loopCounter == "100")

</table>
%ENDIF

%{ increment loop counter %}
@dtw_add(loopCounter, "1", loopCounter)

%}
%}

66 IBM
®

Net.Data: Reference

XML Block

Purpose
Defines how a Web page is to be presented in XML-enabled Web clients. The
name of the XML block to be executed is specified on the URL when Net.Data
is invoked. The XML block can contain most Net.Data macro language
statements and any XML content.

Syntax

�� %XML (name) �{ XML prolog %}
variable reference
if block
function call
XML statement
include statement
while block

��

Values

%HTML
The keyword that specifies the block that contains HTML tags and text to
be displayed on the client’s browser.

name
An alphabetic or numeric string that begins with an alphabetic character
or underscore and contains any combination of alphabetic, numeric, or
underscore characters, including periods.

XML prolog
Insert an XML prolog, declaring any stylesheets, DTD’s or other
requirements for your XML document. The detailed format of an XML
prolog is defined at http://www.w3.org/TR/1998/REC-xml-19980210. The
following is an example of a basic prolog using one of the Net.Data
provided stylesheets:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="ndTable.xsl" ?>

variable reference
Returns the value of a variable and is specified with $ and (). For
example: if VAR=‘abc’, then $(VAR) returns the value ‘abc’. See “Variable
Reference” on page 5 for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings

Chapter 1. Net.Data Macro Language Constructs 67

|

|
|
|
|
|

|

||

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

that represent integers and have no leading or trailing white space. They
can have a single leading plus (+) or minus (-) sign. See “IF Block” on
page 35 for syntax and examples.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See “Function Call
(@)” on page 30 for syntax and examples.

XML statements
Includes any XML that is simply well-formed or also complies with the
DTD or stylesheet you might have specified in the XML prolog.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See “INCLUDE Statement” on page 42 for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing.
See “WHILE Block” on page 63 for syntax and examples.

Context
The XML block can be found in these contexts:
v IF block
v Outside of any block in the declaration part of the Net.Data macro

Restrictions
The XML block can contain these elements:
v Comment block
v IF block
v XML statements
v INCLUDE statement
v WHILE block
v Variable references
v Function calls

Examples
Example 1. An XML block including a standard prolog and calling a function:
%XML(report3){
%INCLUDE "style3header.xml"
<title>Results</title>
<XMLBlock>
@xmp1()
</XMLBlock>
%}

Example 2. xmp1() could be defined to return a small result set from an SQL
query:

68 IBM
®

Net.Data: Reference

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

%FUNCTION DTW_SQL xmp1() {
SELECT LASTNME,EMPNO FROM EMPLOYEES
WHERE LASTNME LIKE 'M%'

%}

%XML(report3){
<xml version="1.0" ?>
<xml-stylesheet type="text/xsl" href="ndReport.xsl" ?>
<title>Results</title>
<XMLBlock>
@xmp1()
</XMLBlock>
%}

The following output would be produced:
Content Type: text/xml

<xml version="1.0" ?>
<xml-stylesheet type="text/xsl" href="ndReport.xsl" ?>
<title>Results</title>
<XMLBlock>
<RowSet>

<Row number="1">
<Column name="LASTNME">Mason</Column>
<Column name="EMPNO">520</Column>

</Row>
<Row number="2">

<Column name="LASTNME">Masse</Column>
<Column name="EMPNO">559</Column>

</Row>
<Row number="3">

<Column name="LASTNME">Mercury</Column>
<Column name="EMPNO">312</Column>

</Row>
</RowSet>
</XMLBlock>

Chapter 1. Net.Data Macro Language Constructs 69

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

70 IBM
®

Net.Data: Reference

Chapter 2. Variables

Net.Data provides two types of variables: user-defined variables and Net.Data
variables.

“User-defined Variables” on page 72
Variables that you define for your application. You can define the
variables that perform the following tasks:
v “Conditional Variables” on page 72

Assign a variable value based on the value of another variable or
string.

v “Environment Variables” on page 73

Use the ENVVAR language construct to reference environment
variables.

v “Executable Variables” on page 74

Use the EXEC language construct to invoke other programs from a
variable reference.

v “Hidden Variables” on page 75

Hide variable reference from HTML source.
v “List Variables” on page 76

Build a delimited string of values using the LIST language
construct.

v “Table Variables” on page 78

Pass an array of values to and from a function. Can be used for
report output.

Net.Data Variables

Variables that are for miscellaneous processing and file manipulation,
table processing, report formatting, and language environments.

Some variables have values that you can define or modify, others are
defined by Net.Data. The description for the variable specifies
whether you define a value or not. See the description of a variable to
determine how the value is defined.

The following variable types are provided by Net.Data:
v “Net.Data Table Processing Variables” on page 79

Defined by Net.Data to let you process Net.Data tables. Use these
variables to access data from SQL queries and function calls. They
are only recognized inside REPORT or ROW blocks, unless
otherwise specified.

v “Net.Data Report Variables” on page 89

© Copyright IBM Corp. 1997, 2000 71

Help you customize reports from a function. You can define report
variables in the DEFINE section, or assign them in any Net.Data
block.

v “Net.Data Language Environment Variables” on page 98

Help you customize the way FUNCTION blocks are processed,
using language environments.

v “Net.Data Miscellaneous Variables” on page 122

Defined by Net.Data to affect Net.Data processing, find out the
status of a function call, and obtain information about the result set
of a database query. Some miscellaneous variables are set by
Net.Data and cannot be changed.

The output for many Net.Data variables varies depending on the
operating system on which it runs.

User-defined Variables

This section describes the user-defined variables. You define these variables
within the macro.

Conditional Variables

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

A conditional variable is one that is set based on the value of another variable
or string. This is also called a ternary operation.

The syntax to conditionally set a variable is:

condVar = testVar ? trueValue : falseValue

Where:

condVar
The conditional variable to be set.

testVar
A test variable used to determine the condition. An empty string is
evaluated as false.

trueValue
Is the value to use if the test variable is true.

falseValue
Is the value to use if the test variable is false.

72 IBM
®

Net.Data: Reference

Example 1: A conditional variable defined with two possible values
varA = varB ? "value_1" : "value_2"

varB is the test. So, varA is assigned either ″value_1″ or ″value_2″, depending
on whether varB exists and does not contain a NULL value.

Example 2: A conditional variable defined with a variable reference
varname = ? "$(value_1)"

In this case, varname is null if value_1 is null, otherwise varname is set to
value_1.

Example 3: A conditional variable used with a LIST statement and WHERE
clause
%DEFINE{
%list " AND " where_list
where_list = ? "custid = $(cust_inp)"
where_list = ? "product_name LIKE '$(prod_inp)%'"
where_clause = ? "WHERE $(where_list)"
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT * FROM prodtable $(where_clause)

%}

Conditional and LIST variables are most effective when used together. The
above example shows how to set up a WHERE clause in the DEFINE block.
The variables cust_inp and prod_inp are HTML input variables passed from the
Web browser, usually from an HTML form. The variable where_list is a LIST
variable made of two conditional statements, each statement containing a
variable from the Web browser.

If the Web browser returns values for both variables cust_inp and prod_inp, for
example, IBM and 755C, the where_clause is:
WHERE custid = IBM AND product_name LIKE '755C%'

If either variable cust_inp or prod_inp is null or not defined, the WHERE clause
changes to omit the null value. For example, if prod_inp is null, the WHERE
clause is:
WHERE custid = IBM

If both values are null or undefined, the variable where_clause is null and no
WHERE clause appears in SQL queries containing $(where_clause).

Environment Variables

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

Chapter 2. Variables 73

|

|

|
|

X X X X X X X X X

Environment variables let you use the Net.Data ENVVAR language construct
to reference environment variables that exist in the process under which
Net.Data is running.

Example 1: A variable is assigned the value of an environment variable
%define SERVER_NAME=%ENVVAR

...

The server is $(SERVER_NAME)

The environment variable SERVER_NAME has the value of the current server
name, which, in this example, is www.ibm.com.
The server is www.ibm.com

See “ENVVAR Statement” on page 17 for more information about the
ENVVAR statement.

Executable Variables

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Executable variables allow you to invoke other programs from a variable
reference using the executable variable feature. An executable variable is
defined in a Net.Data macro using the EXEC language element. For more
information about the EXEC language element, see “EXEC Block or
Statement” on page 18.

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:
1. It searches the EXEC_PATH in the Net.Data initialization file. See the

configuration chapter in Net.Data Administration and Programming Guide for
more information about EXEC_PATH.

2. If Net.Data does not locate the program, it searches the directories defined
by the system. If it locates the executable program, Net.Data runs the
program.

Example 1: An executable variable definition
%DEFINE runit=%exec "testProg"

74 IBM
®

Net.Data: Reference

The variable runit is defined to execute the executable program testProg; runit
becomes an executable variable.

Net.Data runs the executable program when it encounters a executable
variable reference in a Net.Data macro. For example, the program testProg is
executed when a executable variable reference is made to the variable runit in
a Net.Data macro.

A simple method is to reference an executable variable from another variable
definition. Example 2 demonstrates this method. The variable date is defined
as an executable variable and dateRpt is then defined as a variable reference,
that contains the executable variable.

Example 2: An executable variable as a variable reference
%DEFINE date=%exec "date"
%DEFINE dateRpt="Today is $(date)"

When Net.Data resolves the variable reference $(dateRpt), Net.Data searches
for the executable date, runs the program, and returns:
Today is Tue 11-07-1995

An executable variable is never set to the value of the output of the
executable program it calls. Using the previous example, the value of date is
null. If you use it in a DTW_ASSIGN function call to assign its value to
another variable, the value of the new variable after the assignment is null
also. The only purpose of an executable variable is to invoke the program it
defines.

You can also pass parameters to the program to be executed by specifying
them with the program name on the variable definition.

Example 3: Executable variables with parameters
%DEFINE mph=%exec "calcMPH $(distance) $(time)"

The values of distance and time are passed to the program calcMPH.

Hidden Variables

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

With hidden variables, you can reference variables while hiding the actual
variable value in your HTML source. To use hidden variables:
1. Define a variable for each string you want to hide.

Chapter 2. Variables 75

2. In the HTML block where the variables are referenced, use double dollar
signs instead of a single dollar sign to reference the variables. For example,
$$(X) instead of $(X).

Do not reference hidden variables with dynamically constructed variable
names.

Example 1: Hidden variables in a HTML form
%HTML(INPUT) {
<form ...>
<p>Select fields to view:
<select name="field">
<option value="$$(name)"> Name
<option value="$$(addr)"> Address
.
.
.
</form>
%}

%DEFINE{
name="customer.name"
addr="customer.address"
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

%}
.
.
.

When the HTML form is displayed on a Web browser, $$(name) and
$$(addr)are replaced with $(name) and $(addr) respectively, so the actual
table and column names never appear on the HTML form. When the
customer submits the form, the HTML(REPORT) block is called. When
@mySelect() calls the FUNCTION block, $(Field) is substituted in the SQL
statement with customer.name or customer.addr in the SQL query.

List Variables

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

You can use list variables to build a delimited string of values. They are
particularly useful in helping you construct an SQL query with multiple items
like those found in some WHERE or HAVING clauses.

76 IBM
®

Net.Data: Reference

The blanks are significant. Usually you want to have a blank space on both
sides of the value. Most queries use Boolean or mathematical operators (for
example, AND, OR, and >). See “LIST Statement” on page 45 for syntax and
more information.

Example 1: Use of conditional, hidden, and list variables
%HTML(INPUT){
<form method="post" action="/cgi-bin/db2www/example2.max/report">
Select one or more cities:

<input type="checkbox" name="conditions" value="$$(cond1)" />Sao Paulo

<input type="checkbox" name="conditions" value="$$(cond2)" />Seattle

<input type="checkbox" name="conditions" value="$$(cond3)" />Shanghai

<input type="submit" value="submit query" />
</form>
%}

%DEFINE{
DATABASE="custcity"
%LIST " OR " conditions
cond1="cond1='Sao Paolo'"
cond2="cond2='Seattle'"
cond3="cond3='Shanghai'"
whereClause= ? "WHERE $(conditions)"
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist
$(whereClause)
%}

%HTML(REPORT){
@mySelect()
%}

If no boxes are checked in the HTML form, conditions is null, so whereClause
is also null in the query. Otherwise, whereClause has the selected values
separated by the Boolean operator OR. For example, if all three cities are
selected, the SQL query is:
SELECT name, city FROM citylist
WHERE cond1='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

Example 2: Value separators
%DEFINE %LIST " | " VLIST
%REPORT{
%ROW{
$(ROW_NUM): $(VLIST)
%}
%}

Chapter 2. Variables 77

The table processing variable VLIST uses two quotes and an OR bar, (|), as a
value separator in this example. The string of values are separated by the
value in quotes.

Table Variables

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

The table variable defines a collection of related data. It contains a set of rows
and columns including a row of column headers. Use table variables to pass
groups of values to a function. You can refer to the individual elements of a
table (the rows) in a REPORT block of a function or by using table built-in
functions. Table variables are often used for output from an SQL function and
input to a report, but you can also pass them as IN, OUT, or INOUT
parameters to any non-SQL function. Tables can only be passed to SQL
functions as OUT parameters. See “TABLE Statement” on page 61 for syntax
and more information.

When a TABLE variable is referenced, Net.Data displays the content of the
table as either a plain character table, or as an HTML table if the
DTW_HTML_TABLE variable is set to YES. When an XML block is executed,
Net.Data returns a RowSet structure (see “XML Block” on page 67).

Example 1: A SQL result set that is passed to a REXX program
%DEFINE{
DATABASE = "iddata"
MyTable = %TABLE(ALL)
DTW_DEFAULT_REPORT = "NO"
%}

%FUNCTION(DTW_SQL) Query(OUT table) {
select * from survey
%}

%FUNCTION(DTW_REXX) showTable(INOUT table) {
Say 'Number of Rows: 'table_ROWS
Say 'Number of Columns: 'table_COLS
do j=1 to table_COLS

Say "Here are all of the values for column " table_N.j ":"
do i = 1 to table_ROWS

Say ""i": " table_V.i.j
end

end
%}

%HTML (report){
<html>
<pre>

78 IBM
®

Net.Data: Reference

@Query(MyTable)
<p>
@showTable(MyTable)
</pre>
</html>
%}

The HTML REPORT block calls an SQL query, saves the result in a table
variable and then passes the variable to a REXX function.

Net.Data Table Processing Variables

Net.Data defines these variables for use in the REPORT and ROW blocks,
unless noted otherwise. Use these variables to reference values that your
queries return.
v “Nn” on page 80
v “NLIST” on page 81
v “NUM_COLUMNS” on page 82
v “NUM_ROWS” on page 83
v “ROW_NUM” on page 84
v “TOTAL_ROWS” on page 85
v “V_columnName” on page 86
v “VLIST” on page 87
v “Vn” on page 88

Chapter 2. Variables 79

Nn

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The column name returned by a function call or query for column n.

You can reference Nn in REPORT and ROW blocks.

Examples
Example 1: A variable reference for a column name
The name of column 2 is $(N2).

Example 2: Saves the value of a column name for use outside a REPORT
block using DTW_ASSIGN
%define col1=""
...
%function (DTW_SQL) myfunc() {

select * from atable
%report {

@dtw_assign(col1, N1)
%row{ %}

%}
%}

%html(report) {
@myfunc()
The column name for the first column is $(col1)
%}

This example shows how you can use this variable outside the REPORT block
by using DTW_ASSIGN. For more information, see “DTW_ASSIGN” on
page 200.

Example 3: Nn within an HTML table to define column names
%REPORT{
<h2>Product directory</h2>
<table border=1 cellpadding=3>
<tr><td>$(N1)</td><td>$(N2)</td><td>$(N3)</td>
%ROW{
<tr><td>$(V1)</td><td>$(V2)</td><td>$(V3)</td>
%}
</table>

%}

80 IBM
®

Net.Data: Reference

NLIST

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Contains a list of all the column names from the result of a function call or
query. The default separator is a space.

You can reference NLIST in REPORT and ROW blocks.

Examples
Example 1: A list of column names with ALIGN
%DEFINE ALIGN="YES"
...
%FUNCTION (DTW_SQL) myfunc() {
select * from MyTable
%report{
Your query was on these columns: $(NLIST).
%row {
...
%}
%}
%}

The list of column names uses a space between column names with ALIGN
set to YES.

Example 2: A %LIST variable to change the separator to ″ | ″
%DEFINE %LIST " | " NLIST
...
%FUNCTION (DTW_SQL) myfunc() {
select * from MyTable
%report{
Your query was on these columns: $(NLIST).
%row {
...
%}
%}
%}

Chapter 2. Variables 81

NUM_COLUMNS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The number of table columns that Net.Data is processing in the report block;
the columns are returned by a function call or query.

You can reference NUM_COLUMNS in REPORT and ROW blocks.

Examples
Example 1: NUM_COLUMNS used as a variable reference with NLIST
%REPORT{
Your query result has $(NUM_COLUMNS) columns: $(NLIST).
...
%}

82 IBM
®

Net.Data: Reference

NUM_ROWS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
The number of rows in the table that Net.Data is processing in the REPORT
block. The number of rows is affected by the value of the upper limit
parameter defined for the Net.Data table holding the data. For example, if
upper limit is set to 30, but the SELECT statement returns 1000 rows, the value
of NUM_ROWS is 30. Additionally, if upper limit is set to 30 and the SELECT
statement returns 20 rows, NUM_ROWS equals 20. See “TABLE Statement” on
page 61 for more information about the TABLE statement and the upper limit
parameter.

NUM_ROWS is not affected by the value of START_ROW_NUM as long as
START_ROW_NUM is not passed to the language environment. For example,
if START_ROW_NUM is set to 5 (specifying that the table displayed on the
Web page should be populated starting with row 5) and the SELECT
statement returns 25 rows, NUM_ROWS is set to 25, not 21. The first four
rows are discarded from the table, but are included in the value of
NUM_ROWS. However, if START_ROW_NUM is passed to the language
environment, then NUM_ROWS will only contain the number of rows starting
at the row specified by START_ROW_NUM. In the example above,
NUM_ROWS will be set to 21.

You can reference NUM_ROWS in REPORT and ROW blocks.

Examples
Example 1: Displays the number of names being processed in the REPORT
block
%DEFINE DTW_SET_TOTAL_ROWS="YES"

%REPORT{
<h2>E-mail directory</h2>

%ROW{
Name: $(V2)

Location: $(V3)
%}

Names displayed: $(NUM_ROWS)

Names found: $(TOTAL_ROWS)
%}

Chapter 2. Variables 83

ROW_NUM

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
A table variable whose value Net.Data increments each time a row is
processed in a Net.Data table. The variable acts as a counter and its value is
the number of the current row being processed.

RPT_MAX_ROWS can affect the value of ROW_NUM. For example, if 100
rows are in a table, and you have set RPT_MAX_ROWS to 20, the final value
of ROW_NUM is 20, because row 20 was the last row processed.

You can reference ROW_NUM only from within a ROW block.

Examples
Example 1: Populates a column in the HTML output by using ROW_NUM to
label each row in the table
%REPORT{
<table border=1>
<tr><td> Row Number </td> <td> Customer </td>
%ROW{
<tr><td> $(ROW_NUM) </td> <td> $(V_custname) </td>
%}
</table>
%}

The REPORT block produces a table like the one shown below.

Row Number Customer
1 Jane Smith
2 Jon Chiu
3 Frank Nguyen
4 Mary Nichols

84 IBM
®

Net.Data: Reference

TOTAL_ROWS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The total number of rows a query returns, no matter what the value of
upper_limit for the TABLE language construct. For example, if
RPT_MAX_ROWS is set to display a maximum of 20 rows, but the query
returns 100 rows, this variable is set to 100 after ROW processing.

Operating system differences:

v On the OS/400 operating system, this variable can be referenced anywhere
in a REPORT or ROW block.

v On the OS/390, OS/2, Windows NT, and UNIX operating systems, this
variable can be referenced in the REPORT footer, only.

Language Environment Restriction: Use this variable only with the following
database language environments:
v SQL
v ODBC
v Oracle

Required: You must set DTW_SET_TOTAL_ROWS to YES to use this variable.
See “DTW_SET_TOTAL_ROWS” on page 109 for more information.

Examples
Example 1: Displays the total number of names found
%DEFINE DTW_SET_TOTAL_ROWS="YES"

%REPORT{
<h2>E-mail directory</h2>

%ROW{
Name: $(V2)

Location: $(V3)
%}

Names found: $(TOTAL_ROWS)
%}

Chapter 2. Variables 85

V_columnName

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The value for the specified column name for the current row. The variable is
not set for undefined column names. A query containing two column names
with the same name gives unpredictable results. Consider using an AS clause
in your SQL to rename duplicate column names.

You can reference V_columnName only within a ROW block.

Net.Data assigns the variable for each column in the table; use the variable in
a variable reference, specifying the name of the column you want to reference.
To use this variable outside the block, assign the value of V_columnName to a
previously defined global variable or an OUT or INOUT function parameter
variable.

Values
V_columnName

Table 1. V_columnName Values

Values Description

columnName The column name in current row of the database table.

Examples
Example 1: Using V_columnName as a variable reference
%FUNCTION(DTW_SQL) myQuery() {
SELECT NAME, ADDRESS from $(qtable)
%REPORT{

%ROW{

Value of NAME column in row $(ROW_NUM) is $(V_NAME).

%}
%}
%}

86 IBM
®

Net.Data: Reference

|
|
|
|
|

VLIST

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
A list of all the field values for the current row being processed in a ROW
block.

You can reference VLIST only within a ROW block. The default separator is a
space.

Net.Data assigns the variable for each row in the table; reference the variable
to obtain the values of all the fields in the current row. To use this variable
outside the block, assign the value of VLIST to a previously defined global
variable or an OUT or INOUT function parameter variable.

Examples
Example 1: Using list tags to display query results
%DEFINE ALIGN="YES"

%REPORT{
Here are the results of your query:

%ROW{
$(VLIST)
%}

%}

Example 2: Using a list variable to change the separator to <p>

%DEFINE %LIST "<p>" VLIST

%REPORT{
Here are the results of your query:
%ROW{
<hr>$(VLIST)
%}
%}

Chapter 2. Variables 87

|
|
|
|

Vn

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The value for the specified column number n for the current row.

You can reference Vn only within a ROW block.

Net.Data assigns the variable for each field in the table; use the variable in a
variable reference, specifying the number of the field you want to reference.
To use this variable outside the block, assign the value of Vn to a previously
defined global variable or an OUT or INOUT function parameter variable.

Examples
Example 1: Report displaying an HTML table
%REPORT{
<h2>E-mail directory</h2>
<table border=1 cellpadding=3>
<tr><td>Name</td><td>E-mail address</td><td>Location</td>
%ROW{
<tr><td>$(V1)</td>
<td>$(V2)</td>
<td>$(V3)</td>
%}
</table>
%}

The second column shows the e-mail address. You can send the person a
message by clicking on the link.

88 IBM
®

Net.Data: Reference

Net.Data Report Variables

These variables help you customize your reports. Each variable has a default
value. You can override the default value by assigning a new value to the
variable.
v “ALIGN” on page 90
v “DTW_DEFAULT_REPORT” on page 91
v “DTW_HTML_TABLE” on page 92
v “RPT_MAX_ROWS” on page 93
v “START_ROW_NUM” on page 95

Chapter 2. Variables 89

ALIGN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Controls leading and trailing spaces used with the table processing variables
NLIST and VLIST.

Performance Tip: Use ALIGN only when necessary as it requires that
Net.Data determine the maximum column length for all columns in the table
to calculate padding requirements. This process can impact performance.

When set to YES, ALIGN provides padding to align table processing variables
for display. If you want to embed query results in HTML links or form
actions, use the default value of NO to prevent Net.Data from surrounding
report variables with leading and trailing spaces.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
ALIGN="YES"|"NO"

Table 2. ALIGN Values

Values Description

YES Net.Data adds leading and trailing spaces to report
variables with spaces to align them for display.

NO Net.Data does not add leading or trailing spaces. NO is the
default.

Examples
Example 1: Using the ALIGN variable to separate each column by a space
%DEFINE ALIGN="YES"
<p>Your query was on these columns: $(NLIST)

90 IBM
®

Net.Data: Reference

DTW_DEFAULT_REPORT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Determines whether Net.Data generates a default report for functions that
have no REPORT block. When this variable is set to YES, Net.Data generates
the default report. When set to NO, Net.Data suppresses default report
generation. Suppressing the default report is useful, for example, if you
receive the results of a function call in a table variable and want to pass the
results to a different function to process.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_DEFAULT_REPORT="YES"|"NO"|"MULTIPLE"

Table 3. DTW_DEFAULT_REPORT Values

Values Description

YES Net.Data generates the default report for functions without
REPORT blocks and displays the results at the browser. YES
is the default.

For OS/390: Net.Data generates default reports for each
result set or output table that is not assigned to a REPORT
block.

NO Net.Data discards the default report for functions without
REPORT blocks.

MULTIPLE Net.Data generates default reports for result sets or output
tables that are not assigned to a REPORT block, in
functions with multiple REPORT blocks

For OS/390: MULTIPLE is not supported

Examples
Example 1: Overriding the default report generated by Net.Data
%DEFINE DTW_DEFAULT_REPORT="NO"

Chapter 2. Variables 91

DTW_HTML_TABLE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Displays results in an HTML table instead of displaying the table in a
text-type format (that is, using the TABLE tags rather than the PRE tags). This
variable has no effect on the output of an XML block.

The generated TABLE tag includes a border and cell-padding specification:
<table border cellpadding=2>

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_HTML_TABLE="YES"|"NO"

Table 4. DTW_HTML_TABLE Values

Values Description

YES Displays table data using HTML table tags.

NO Displays table data in a text format, using PRE tags. NO is
the default.

Examples
Example 1: Displays results from an SQL function with HTML tags
%DEFINE DTW_HTML_TABLE="YES"

%FUNCTION(DTW_SQL){
SELECT NAME, ADDRESS FROM $(qTable)
%}

92 IBM
®

Net.Data: Reference

|
|

RPT_MAX_ROWS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Specifies the number of rows in a table that are processed in a function
REPORT block or during the generation of a default report if a REPORT block
is not specified.

The database language environments use this variable to limit the number of
rows returned, which can subtantially improve performance for large result
sets. Use this variable with START_ROW_NUM to break queries with large
result sets into smaller tables, each on its own HTML page.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
RPT_MAX_ROWS="ALL"|"0"|"number"

Table 5. RPT_MAX_ROWS Values

Values Description

ALL Indicates that there is no limit on the number of rows to be
displayed in a table generated by a function call. All rows
will be displayed.

0 Specifies that all rows in the table will be displayed. This
value is the same as specifying ALL.

number A positive integer indicating the maximum number of rows
to be displayed in a table generated by a function call.

If the FUNCTION block contains a REPORT and ROW
block, this number specifies the number of times the ROW
block is executed.

Examples

Example 1: Defines RPT_MAX_ROWS in a DEFINE statement
%DEFINE RPT_MAX_ROWS="20"

The above method limits the number of rows any function returns to 20 rows.

Example 2: Uses HTML input to define the variable with an HTML form

Chapter 2. Variables 93

Maximum rows to return (0 for no limit):
<input type="text" name="rpt_max_rows" size=3 />

The lines in the above example can be placed in a FORM tag to let the
application users set the number of rows they want returned from a query.

94 IBM
®

Net.Data: Reference

START_ROW_NUM

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Specifies the starting row number in a table that will get processed in a
function REPORT block or during the generation of a default report if a
REPORT block is not specified.

The database language environments use this variable to determine the
starting row in the result set to begin processing. To subtantially improve
performance for large result sets, use this variable with RPT_MAX_ROWS to
break queries with large result sets into smaller tables.

OS/400, Windows NT, OS/2, and UNIX users: To pass this variable to the
language environment, include it as an IN parameter in the database language
environment’s ENVIRONMENT statement in the Net.Data initialization file.
To learn more about the database language environment statement, see the
configuration chapter of the Net.Data Administration and Programming Guide for
your operating system.

OS/390 users: START_ROW_NUM is implicitly passed to the database
language environments when it is defined in the macro.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
START_ROW_NUM="number"

Table 6. START_ROW_NUM Values

Values Description

number A positive integer indicating the row number with which to
begin displaying a report. The default value is 1.

If START_ROW_NUM is specified in a database language
environment’s environment statement in the initialization
file, this number specifies the row number of the result set
processed by the database language environment.

If START_ROW_NUM is not passed to the language
environment, this number specifies the row number of the
Net.Data table used to display a report.

Chapter 2. Variables 95

Examples
Example 1: Scrolling with HTML form Next and Previous buttons
%define {

DTW_HTML_TABLE = "YES"
START_ROW_NUM = "1"
RPT_MAX_ROWS = "10"
totalSize = ""
includeNext = "YES"
includePrev = "YES"
includeLast = "YES"
includeFirst = "YES"

%}

%function(DTW_SQL) myQuery(){
select * from NETDATADEV.CUSTOMER

%}

%function(DTW_SQL) count(OUT size){
select count(*) from NETDATADEV.CUSTOMER
%report{

%row{
@DTW_ASSIGN(size,V1)

%}
%}

%}

%html(report) {
%{ get the total number of records if we haven't already %}
%if (totalSize == "")

@count(totalSize)
%endif

%{ set START_ROW_NUM based on the button user clicked %}
%if (totalSize <= RPT_MAX_ROWS)

%{ there's only one page of data %}
@DTW_ASSIGN(START_ROW_NUM, "1")
@DTW_ASSIGN(includeFirst, "NO")
@DTW_ASSIGN(includeLast, "NO")
@DTW_ASSIGN(includeNext, "NO")
@DTW_ASSIGN(includePrev, "NO")

%elif (submit == "First Page" || submit == "")
%{ first time through or user selected "First Page" button %}
@DTW_ASSIGN(START_ROW_NUM, "1")
@DTW_ASSIGN(includePrev, "NO")
@DTW_ASSIGN(includeFirst, "NO")

%elif (submit == "Last Page")
%{ user selected "Last Page" button %}
@DTW_SUBTRACT(totalSize, RPT_MAX_ROWS, START_ROW_NUM)
@DTW_ADD(START_ROW_NUM, "1", START_ROW_NUM)
@DTW_ASSIGN(includeLast, "NO")
@DTW_ASSIGN(includeNext, "NO")

%elif (submit == "Next")
%{ user selected "Next" button %}
@DTW_ADD(START_ROW_NUM, RPT_MAX_ROWS, START_ROW_NUM)
%if (@DTW_rADD(START_ROW_NUM, RPT_MAX_ROWS) > totalSize)

96 IBM
®

Net.Data: Reference

@DTW_ASSIGN(includeNext,"NO")
@DTW_ASSIGN(includeLast, "NO")

%endif
%elif (submit == "Previous")

%{ user selected "Previous" button %}
@DTW_SUBTRACT(START_ROW_NUM, RPT_MAX_ROWS, START_ROW_NUM)
%if (START_ROW_NUM <= "1")

@DTW_ASSIGN(START_ROW_NUM,"1")
@DTW_ASSIGN(includePrev,"NO")
@DTW_ASSIGN(includeFirst,"NO")

%endif
%endif

%{ run the query to get the data %}
@myQuery()

%{ output the correct buttons at the bottom of the report %}
<center>

<form method="POST" action="report">
<input name="START_ROW_NUM" type="hidden" value="$(START_ROW_NUM)" />
<input name="totalSize" type="hidden" value="$(totalSize)" />

%if (includeFirst == "YES")
<input name="submit" type="submit" value="First Page" />

%endif
%if (includePrev == "YES")

<input name="submit" type="submit" value="Previous" />
%endif
%if (includeNext == "YES")

<input name="submit" type="submit" value="Next" />
%endif
%if (includeLast == "YES")

<input name="submit" type="submit" value="Last Page" />
%endif
</form>

</center>
%}

Chapter 2. Variables 97

Net.Data Language Environment Variables

Use these variables with functions to help you customize the way FUNCTION
blocks are processed by language environments. Each variable has a default
value. You can override the default value by assigning a new value to the
variable.
v “DATABASE” on page 99
v “DB_CASE” on page 101
v “DB2PLAN” on page 102
v “DB2SSID” on page 103
v “DTW_APPLET_ALTTEXT” on page 104
v “DTW_EDIT_CODES” on page 105
v “DTW_PAD_PGM_PARMS” on page 106
v “DTW_SAVE_TABLE_IN” on page 108
v “DTW_SET_TOTAL_ROWS” on page 109
v “LOCATION” on page 113
v “LOGIN” on page 114
v “NULL_RPT_FIELD” on page 115
v “PASSWORD” on page 116
v “SHOWSQL” on page 117
v “SQL_STATE” on page 119
v “TRANSACTION_SCOPE” on page 120

98 IBM
®

Net.Data: Reference

DATABASE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X

Purpose
Specifies the database or ODBC data source to access when calling a database
function. This variable can be changed multiple times within a macro to
access multiple databases or ODBC data sources.

OS/400 operating system: This variable is optional. Net.Data, by default,
specifies DATABASE=“*LOCAL”; the DTW_SQL language environment uses
the local relational database directory entry.

Windows NT, OS/2, and UNIX operating systems: Define this variable before
calling any database function, except when using the DTW_ORA (Oracle)
language environment. Additionally, you must use Live Connection when
accessing multiple databases from the same HTML block and through the
same language environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DATABASE="dbname"

Table 7. DATABASE Values

Values Description

dbname The name of the database Net.Data connects to.

Examples
Example 1: Specifies to connect to the CELDIAL database for any SQL
operations
%DEFINE DATABASE="CELDIAL"

%FUNCTION (DTW_SQL) getRpt() {
SELECT * FROM customer
%}

%HTML (report) {
%INCLUDE "rpthead.htm"
@getRpt()
%INCLUDE "rptfoot.htm"
%}

The database CELDIAL is accessed when the function getRpt is called.

Chapter 2. Variables 99

Example 2: Overrides previous DATABASE definitions with DTW_ASSIGN
%DEFINE DATABASE="DB2C1"
...
%HTML(monthRpt){
@DTW_ASSIGN(DATABASE, "DB2D1")
%INCLUDE "rpthead.htm"
@getRpt()
%INCLUDE "rptfoot.htm"
%}

The HTML block queries the database DB2D1, regardless of what the previous
value for DATABASE was.

100 IBM
®

Net.Data: Reference

DB_CASE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Specifies which case to use for SQL commands and converts all characters to
either upper or lower case. If this variable is not defined, the default action is
to not convert the SQL command characters.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DB_CASE="UPPER"|"LOWER"

Table 8. DB_CASE Values

Values Description

UPPER Converts all SQL command characters to upper case.

LOWER Converts all SQL command characters to lower case.

Examples
Example 1: Specifies upper case for all SQL commands
%DEFINE DB_CASE="UPPER"

Chapter 2. Variables 101

DB2PLAN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Allocates a plan for a connection to a local DB2 subsystem. The variable
specifies the name of a plan for the Net.Data SQL language environment at
the local DB2 subsystem that Net.Data will access.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Requirement: For the value of this variable in the macro to take effect, it must
be listed on the ENVIRONMENT statement for the SQL language
environment. See the Administration and Programming Guide for your operating
system for more information.

Values
DB2PLAN="plan_name"

Table 9. DB2PLAN Values

Values Description

plan_name The name of the DB2 plan. The name can be eight
characters or less.

Examples
Example 1: Specifies the plan in the DEFINE statement
%DEFINE DB2PLAN="DTWGAV22"

102 IBM
®

Net.Data: Reference

|
|

DB2SSID

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Establishes a connection to a local DB2 subsystem. The variable specifies the
subsystem ID of the local DB2 subsystem that Net.Data will access. Only one
local database connection is allowed for each macro.

Requirement: For the value of this variable in the macro to take effect, it must
be listed on the ENVIRONMENT statement for the SQL language
environment. See the Administration and Programming Guide for your operating
system for more information.

Values
DB2PLAN="subsytem_id"

Table 10. DB2SSID Values

Values Description

subsystem_id The name of the DB2 subsytem. The name can be eight
characters or less.

Examples
Example 1: Specifies a subsystem ID in the DEFINE statement
%DEFINE DB2SSID="DBNC"

Chapter 2. Variables 103

|
|

DTW_APPLET_ALTTEXT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Displays HTML tags and text to browsers that do not recognize the APPLET
tag and is used with the the Applet language environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_APPLET_ALTTEXT="text_and_markup"

Table 11. DTW_APPLET_ALTTEXT Values

Values Description

text_and_markup Text and markup that should be displayed to browsers that
do not recognize the APPLET tag.

Examples
Example 1: Alternate text that indicates a Web browser restriction
%DEFINE DTW_APPLET_ALTTEXT="<p>Sorry, your browser is not java-enabled.</p>"

104 IBM
®

Net.Data: Reference

|

|

DTW_EDIT_CODES

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Converts NUMERIC, DECIMAL, INTEGER and SMALLINT data types that
are returned as a result of an SQL operation for the DTW_SQL language
environment. The variable DTW_EDIT_CODES is a string of characters that
correspond to the resulting columns of the table that DTW_SQL LE will build;
for example, the fifth character in DTW_EDIT_CODES will be applied to the
fifth column of the result set if that column is one of the supported types.
This single character can be any of the supported system supplied edit codes
that are defined in Data Description Specification Reference.

For example, a DECIMAL(6,0) field would normally be displayed as the
character string ’112698’. By specifying an edit code of ’Y’ for that column in
the variable DTW_EDIT_CODES, the corresponding column in the resulting
table is displayed as a character string that represents the date of ’11/26/98’.

Tip: Applying a user-supplied edit code to a column that results in a
character string with non-numeric characters (such as commas or currency
symbols) can cause syntax errors if the character string is sent back to the
server for subsequent processing within a Net.Data macro. For example, the
non-numeric column value might be used for numeric comparisons in
subsequent DTW_SQL functions calls, causing syntax errors.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_EDIT_CODES="edit_code"

Table 12. DTW_EDIT_CODES Values

Values Description

edit_code Specifies a string of characters that correspond to the
resulting columns of the table that the SQL language
environment builds.

Examples
Example 1:
@DTW_ASSIGN(DTW_EDIT_CODES "JJLJJ*******Y")

Chapter 2. Variables 105

DTW_PAD_PGM_PARMS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Indicates to a language environment whether character parameters (data type
of CHAR or CHARACTER) are to be padded with blanks when they are
being passed to a program or stored procedure.

For IN or INOUT parameters, if the length of parameter value is less than the
precision that is specified, blanks are inserted to the right of the parameter
value until the length of the parameter value is the same as the precision.

For OUT parameters, the parameter value is set to precision blanks.

After the call to the program or stored procedure, all trailing blanks are
removed from OUT and INOUT parameter values.

Set this variable in the Net.Data initialization file to specify a value for all of
your macros. You can override the value by defining it in the macro. If
DTW_PAD_PGM_PARMS is not defined in the macro, it uses the value in the
Net.Data initialization file.

DTW_PAD_PGM_PARMS is supported by the Direct Call and SQL language
environments.

Values
DTW_PAD_PGM_PARMS="YES"|"NO"

Table 13. DTW_PAD_PGM_PARMS Values

Values Description

YES All IN and INOUT character parameter values are left
justified and padded with blanks for the defined precision
of the parameter, before the parameters are passed to a
program or stored procedure. Trailing blanks are removed
after the call to a program or stored procedure.

NO No padding is added to character parameter values (values
are NULL-terminated) when passing parameters to
programs or stored procedures. Trailing blanks are not
removed after calling a program or stored procedure.

106 IBM
®

Net.Data: Reference

Examples
Example 1: Pads parameters with blanks
DTW_PAD_PGM_PARMS="YES"

Chapter 2. Variables 107

DTW_SAVE_TABLE_IN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Identifies a table variable that the SQL language environment uses to store
table data from a query. This table can then be used later, for example, in a
REXX program that analyzes table data.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_SAVE_TABLE_IN="table_name_var"

Table 14. DTW_SAVE_TABLE_IN Values

Values Description

table_name_var The name of a table for the SQL language environment to
store table data from a query.

Examples
Example 1: A previously-defined table variable used in a REXX call
%DEFINE theTable = %TABLE(2)
%DEFINE DTW_SAVE_TABLE_IN = "theTable"

%FUNCTION(DTW_SQL) doQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='MONITOR'
%}

%FUNCTION(DTW_REXX) analyze_table(myTable) {
%EXEC{ anzTbl.cmd %}

%}

%HTML(doTable) {
@doQuery()
@analyze_table(theTable)
%}

A REXX FUNCTION block calls the REXX program anzTbl.cmd, which uses
the table variable theTable to analyze data in the table. The variable theTable
was returned from a previous SQL function call.

108 IBM
®

Net.Data: Reference

DTW_SET_TOTAL_ROWS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Specifies to a database language environment that the total number of rows in
the result set for a query should be assigned to TOTAL_ROWS.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

OS/400, OS/2, Windows NT, and UNIX users: To pass this variable to the
language environment, include it as an IN variable in the database language
environment’s ENVIRONMENT statement in the Net.Data initialization file.
See the configuration chapter of Net.Data Administration and Programming
Guide to learn more about the database language environment statement.

OS/390 users: DTW_SET_TOTAL_ROWS is implicitly passed to the database
language environments when it is defined in the macro.

Performance tip: Setting DTW_SET_TOTAL_ROWS to YES affects
performance because to determine the total rows, the database language
environment requires that all rows be retrieved.

Values
DTW_SET_TOTAL_ROWS="YES"|"NO"

Table 15. DTW_SET_TOTAL_ROWS Values

Values Description

YES Assigns the value of the total number of rows to the
TOTAL_ROWS variable. Important: You must set this value
if you want to reference the variable TOTAL_ROWS to
determine the number of rows returned from a query.

NO Net.Data does not set the TOTAL_ROWS variable and
TOTAL_ROWS cannot be referenced in a macro. NO is the
default.

Examples
Example 1: Defines DTW_SET_TOTAL_ROWS for using TOTAL_ROWS
%DEFINE DTW_SET_TOTAL_ROWS="YES"

...

%FUNCTION (DTW_SQL) myfunc() {

Chapter 2. Variables 109

select * from MyTable
%report {
...
%row
...
%}
<p>Your query is limited to $(TOTAL_ROWS) rows. The query returned too many rows.
%}
%}

110 IBM
®

Net.Data: Reference

DTW_USE_DB2_PREPARE_CACHE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Specifies that Net.Data should take advantage of DB2’s prepare cache feature.
Net.Data does this by substituting Net.Data variables in an SQL statement
with parameter markers, and then binding the statement before passing it to
DB2 for processing. If DB2 is set up for prepare cache and if the statement has
been previously executed, using the same values in the Net.Data variables,
DB2 can take advantage of the cached information. This feature will boost
performance on SQL queries that are called repeatedly and that have many
SQL query values that remain the same.

Restrictions:
v Net.Data replaces every variable in the SQL statement with a parameter

marker; therefore, the statement can reference Net.Data variables only in the
where clause of the query. For example, a statement such as SELECT $(col)
FROM TAB1 is not allowed with this feature.

v Special care must be taken to handle single quotes correctly in your
referenced variables. For example, if the column returns a string that
contains quotes, such as ″O’Brien,″ use the DTW_ADDQUOTE() function to
escape the string’s single quotes.

Values
DTW_USE_DB2_PREPARE_CACHE="YES"|"NO"

Table 16. DTW_USE_DB2_PREPARE_CACHE Values

Values Description

YES Specifies that variable references and DB2 parameters
should be substituted with parameter markers.

NO Specifies that no parameter markers will be used; the
statement will not be changed. This is the default.

Examples
Example 1: Parameter marker in where clause.
%DEFINE DTW_USE_DB2_PREPARE_CACHE="YES"

...

Chapter 2. Variables 111

|

||||||||||

|||||||||
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

||

||

||
|

||
|
|

|
|

|
|
|
|

%FUNCTION (DTW_SQL) myfunc() {
select id,projname,due from projects
where month in '$(m)' and year in '$(y)'

%}

The resulting statement to DB2 would be:
select id,projname,due from projects
where month in ? and year in ?

112 IBM
®

Net.Data: Reference

|
|
|
|

|

|
|

|

LOCATION

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Establishes a connection to a remote database server. The variable specifies the
name by which the remote server is known to the local DB2 subsystem. The
value of LOCATION must be defined in the SYSIBM.SYSLOCATIONS table of
the Communications Database (CDB). If this variable is not defined within a
macro, any SQL requests made by the macro are executed at the local DB2
subsystem.

Requirement: For the value of this variable in the macro to take effect, it must
be listed on the ENVIRONMENT statement for the SQL language
environment. See the Administration and Programming Guide for your operating
system for more information.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
LOCATION="remote_dbase_name"

Table 17. LOCATION Values

Values Description

remote_dbase_name The name of a valid remote database server that is defined
in the SYSIBM.SYSLOCATIONS table of the CDB. The
name can be eight characters or less.

Examples
Example 1: Defines the remote database location in the DEFINE statement
%DEFINE LOCATION="QMFDJ00"

Chapter 2. Variables 113

|
|

LOGIN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X

Purpose
Provides access to protected data by passing a user ID to the database
language environment. Use this variable with PASSWORD to incorporate the
security algorithms of DB2.

OS/400 Users: OS/400 ignores both LOGIN and PASSWORD if the
DATABASE variable is not defined or if it is set to a value of ″*LOCAL″.
Database access is routed through the user profile under which Net.Data is
running.

Security tip: While you can code this value in the Net.Data macro, it is
preferable to have the application user enter user IDs in an HTML form.
Additionally, using the default value of the Web server ID provides a level of
access that might not meet your security needs.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
LOGIN="database_user_id"

Table 18. LOGIN Values

Values Description

database_user_id A valid database user ID. The default is to use the user ID
that started the Web server.

Examples
Example 1: Restricting access to the user ID, DB2USER
%DEFINE LOGIN="DB2USER"

Example 2: Using an HTML form input line
USERID: <input type="text" name="login" size=6 />

This example shows a line you can include as part of an HTML form for
application users to enter their user IDs.

114 IBM
®

Net.Data: Reference

NULL_RPT_FIELD

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Specifies a string the user can provide to the DTW_SQL language
environment to represent NULL values that are returned in an SQL result set.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
NULL_RPT_FIELD="null_char"

Table 19. NULL_RPT_FIELD Values

Values Description

null_char Specifies a string to represent NULL values that are
returned in an SQL result set. The default is an empty
string.

Examples
Example 1: Specifies a string representing NULL values in the SQL language
environment
%DEFINE NULL_RPT_FIELD = "++++"

Chapter 2. Variables 115

PASSWORD

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X

Purpose
Provides access to protected data by passing a password to the database
language environment. Use this variable with LOGIN to incorporate the
security algorithms of DB2.

OS/400 Users: OS/400 ignores both LOGIN and PASSWORD if the
DATABASE variable is not defined or if it is set to a value of ″*LOCAL″.
Database access is routed through the user profile under which Net.Data is
running.

Security tip: While you can code this value in the Net.Data macro, it is
preferable to have application users enter passwords in an HTML form.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
PASSWORD="password"

Table 20. PASSWORD Values

Values Description

password Specifies a valid password to provide automatic access to
the database language environment.

Examples
Example 1: Restricting access to application users with the password
NETDATA
%DEFINE PASSWORD="NETDATA"

Example 2: HTML form input line
PASSWORD: <input type="password" name="password" size=8 />

This example shows a line you can include as part of an HTML form for
application users to input their own passwords.

116 IBM
®

Net.Data: Reference

SHOWSQL

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Hides or displays the SQL of the query used on the Web browser. Displaying
the SQL during testing is especially helpful when you are debugging your
Net.Data macros. SHOWSQL can only be used if DTW_SHOWSQL is set to
YES in the Net.Data configuration file. For more information about the
DTW_SHOWSQL configuration variable, see the configuration chapter in
Net.Data Administration and Programming Guide for your operating system.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
SHOWSQL="YES"|"NO"

Table 21. SHOW_SQL Values

Values Description

YES Displays the SQL of the query sent to the database.

NO Hides the SQL of the query sent to the database. NO is the
default.

Restriction: SHOWSQL generates HTML or XML markup. When used within
other presentation statements, such as JavaScript, syntax errors can occur.

Examples
Example 1: Displays all SQL queries

In the configuration file:
DTW_SHOWSQL YES

In the macro:
%DEFINE SHOWSQL="YES"

Example 2: Specifying whether to display SQL using HTML form input.

In the configuration file:
DTW_SHOWSQL YES

In the macro:

Chapter 2. Variables 117

SHOWSQL: <input type="radio" name="showsql" value="yes" /> Yes
<input type="radio" name="showsql" value="" checked /> No

118 IBM
®

Net.Data: Reference

SQL_STATE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Accesses or displays the SQL state value returned from the database.

This variable is a predefined variable and its value cannot be modified. Use
the variable as a variable reference.

Examples
Example 1: Displays the SQL state in the REPORT block
%FUNCTION (DTW_SQL) val1() {
select * from customer
%REPORT {
...
%ROW {
...
%}
SQLSTATE=$(SQL_STATE)
%}

Chapter 2. Variables 119

TRANSACTION_SCOPE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Specifies the transaction scope for SQL commands, determining whether
Net.Data issues a COMMIT after each SQL command or after all SQL
commands in an HTML block complete successfully. When you specify that
all SQL commands must complete successfully before a commit, an
unsuccessful SQL command causes all previously executed SQL to the same
database in that block to be rolled back.

For the TRANSACTION_SCOPE variable to take effect, include it in the
ENVIRONMENT statement in the Net.Data configuration file. You can then
specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Consistency considerations: On operating systems other than OS/400 and
OS/390, updates to the database receiving unsuccessful responses might be
rolled back while the updates to the other databases accessed in the same
HTML block might be committed when all of the following conditions are
true:
v TRANSACTION_SCOPE = "MULTIPLE" is specified
v Multiple databases are accessed in one HTML block (which is possible

when using Live Connection)
v An unsuccessful response is returned from an SQL request

If you access multiple databases from Net.Data on OS/400 or using IBM’s
DataJoiner, you can achieve multiple database update coordination and
consistency when updating from Net.Data.

On OS/400 and OS/390, TRANSACTION_SCOPE = "MULTIPLE" causes all IBM
database updates issued from a single HTML block to be committed or rolled
back together.

On operating systems other than OS/400, the REXX, Perl, and Java language
environments run in their own separate operating system processes. Thus, any
database updates you issue from these language environments are committed
or rolled back separately from database updates issued from a Net.Data
macro, regardless of the Net.Data TRANSACTION_SCOPE value.

Values
TRANSACTION_SCOPE="SINGLE"|"MULTIPLE"

120 IBM
®

Net.Data: Reference

Table 22. TRANSACTION_SCOPE Values

Values Description

SINGLE Net.Data issues a COMMIT after each SQL command in an
HTML block successfully completes.

MULTIPLE Specifies the Net.Data issues a COMMIT only after all SQL
commands in an HTML block complete successfully.
MULTIPLE is the default.

Examples
Example 1: Specifies to issue a COMMIT after each transaction
%DEFINE TRANSACTION_SCOPE="SINGLE"

Chapter 2. Variables 121

Net.Data Miscellaneous Variables

These variables are Net.Data-defined variables that you can use to affect
Net.Data processing, find out the status of a function call, and obtain
information about the result set of a database query, as well as determine
information about file locations and dates. You might find these variables
useful in functions you write or use them when testing your Net.Data macros.
v “DTW_CURRENT_FILENAME” on page 123
v “DTW_CURRENT_LAST_MODIFIED” on page 124
v “DTW_DEFAULT_MESSAGE” on page 125
v “DTW_LOG_LEVEL” on page 126
v “DTW_MACRO_FILENAME” on page 127
v “DTW_MACRO_LAST_MODIFIED” on page 128
v “DTW_MBMODE” on page 129
v “DTW_MP_PATH” on page 131
v “DTW_MP_VERSION” on page 132
v “DTW_PRINT_HEADER” on page 133
v “DTW_REMOVE_WS” on page 134
v “RETURN_CODE” on page 135

122 IBM
®

Net.Data: Reference

DTW_CURRENT_FILENAME

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The name and extension of the current input file. The input file is either a
Net.Data macro or a file specified in an INCLUDE statement.

This variable is a predefined variable and its value cannot be modified. Use
the variable as a variable reference.

Examples
<p>This file is <i>$(DTW_CURRENT_FILENAME)</i>,
and was updated on $(DTW_CURRENT_LAST_MODIFIED).

Chapter 2. Variables 123

DTW_CURRENT_LAST_MODIFIED

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The date and time the current file was last modified. The current file can be a
Net.Data macro or a file specified in an INCLUDE statement. The output
format is determined by the system on which Net.Data runs.

This variable is a predefined variable and its value cannot be modified. Use
the variable as a variable reference.

Examples
<p>This file is <i>$(DTW_CURRENT_FILENAME)</i>,
and was updated on $(DTW_CURRENT_LAST_MODIFIED).

124 IBM
®

Net.Data: Reference

DTW_DEFAULT_MESSAGE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Contains the message text returned from a call to a built-in function or to
language environment when an error occurs.

You can use the DTW_DEFAULT_MESSAGE variable in any part of the
Net.Data macro.

This variable is a predefined variable, it is not recommended to modify its
value. Use the variable as a variable reference.

Examples
Example 1: A message stating whether the function completed successfully
@function1()
%IF ("$(RETURN_CODE)" == "0")
The function completed successfully.
%ELSE
The function failed with the return code $(RETURN_CODE). The error message

returned is "$(DTW_DEFAULT_MESSAGE)".
%ENDIF

Example 2: The default text for when a function returns a non-zero return
code
%MESSAGE{
default: {<h2>Net.Data received return code: $(RETURN_CODE).
Error message is $(DTW_DEFAULT_MESSAGE)</h2> %} : continue
%}

The user sees the default error message, if a function returns a return code
other than 0.

Chapter 2. Variables 125

DTW_LOG_LEVEL

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
The level of messages that Net.Data writes to the log file.

You can specify the value of this variable using a DEFINE statement or with
the @DTW_ASSIGN() function.

Requirement: Define DTW_LOG_DIR in the Net.Data initialization file to
initiate logging; otherwise Net.Data does not log messages when you specify
the DTW_LOG_LEVEL variable in the macro.

Values
DTW_LOG_LEVEL="OFF|ERROR|WARNING"

Table 23. DTW_LOG_LEVEL Values

Values Description

OFF Net.Data does not log errors. OFF is the default.

ERROR Net.Data logs error messages.

WARNING Net.Data logs warnings, as well as error messages.

Examples
%DEFINE DTW_LOG_LEVEL="ERROR"

126 IBM
®

Net.Data: Reference

DTW_MACRO_FILENAME

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The name and extension of the current Net.Data macro.

This variable is a predefined variable and its value cannot be modified. Use
the variable as a variable reference.

Examples
<p>This Net.Data macro is <i>$(DTW_MACRO_FILENAME)</i>,
and was updated on $(DTW_MACRO_LAST_MODIFIED).

Chapter 2. Variables 127

DTW_MACRO_LAST_MODIFIED

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The date and time the Net.Data macro was last modified. The output format
depends on the system on which Net.Data runs.

This variable is a predefined variable and its value cannot be modified. Use
the variable as a variable reference.

Examples
<p>This Net.Data macro is <i>$(DTW_MACRO_FILENAME)</i>,
and was updated on $(DTW_MACRO_LAST_MODIFIED).

128 IBM
®

Net.Data: Reference

DTW_MBMODE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X

Purpose
Provides multibyte character set (MBCS) support for Net.Data built-in string
and word functions. You can set this variable in the Net.Data initialization file,
but you can use it in the macro to set or override the current setting.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

OS/400 users: Net.Data for OS/400 automatically enables functions for MBCS
support and does not need this variable. Net.Data for OS/400 ignores this
variable in macros that are migrated to the OS/400 operating system.

This configuration variable works with the DTW_UNICODE configuration
variable. If DTW_UNICODE uses the default value of NO, the value of
DTW_MBMODE is used. If DTW_UNICODE is set to a value other than NO,
its value is used. Table 24 illustrates how the settings of these two variables
determine how built-in functions process strings:

Table 24. Relationship Between the Settings of DTW_UNICODE and DTW_MBMODE

If DTW_UNICODE is set
to ...

If DTW_MBMODE=YES If DTW_MBMODE=NO

NO Supports DBCS mixed with
SBCS

Supports SBCS only

UTF8 Supports UTF-8 Supports UTF-8

Values
DTW_MBMODE="YES"|"NO"

Table 25. DTW_MBMODE Values

Values Description

YES Specifies MBCS support for string and word functions.

NO Specifies that string and word functions do not have MBCS
support. NO is the default.

Examples
Example 1: Overrides the value in the INI file

INI file:

Chapter 2. Variables 129

DTW_MBMODE NO

Macro:
%DEFINE DTW_MBMODE = "YES"

130 IBM
®

Net.Data: Reference

DTW_MP_PATH

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The path and name of the Net.Data executable file. Depending on your
system, the output looks like the following sample path and name:
/usr/lpp/internet/server_root/cgi-bin/db2www

This variable is a predefined variable and its value cannot be modified. Use
the variable as a variable reference.

Examples
The Net.Data executable file is $(DTW_MP_PATH).

Chapter 2. Variables 131

DTW_MP_VERSION

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The version and release number of Net.Data running on the server.

This variable is a predefined variable and its value cannot be modified. Use
the variable as a variable reference.

Examples
This Web application uses $(DTW_MP_VERSION).

132 IBM
®

Net.Data: Reference

DTW_PRINT_HEADER

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Specifies text for the HTTP header.

You must have this variable set before Net.Data processes any text sent to the
Web browser, because Net.Data reads this variable once before displaying text
and does not look at it again. Any changes to the DTW_PRINT_HEADER
variable are ignored after Net.Data has sent text to the browser.

If you are using DTW_PRINT_HEADER to generate your own headers
(DTW_PRINT_HEADER = ″NO″), you must either ensure that
DTW_REMOVE_WS is set to ″NO″ or use the DTW_rHEXTOCHAR() built-in
function to generate a new line after the HTTP headers.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_PRINT_HEADER="YES"|"NO"

Table 26. DTW_PRINT_HEADER Values

Values Description

YES Net.Data prints out the text Content-type: text/html or
Content-type: text/xml for the HTTP header. YES is the
default.

NO Net.Data does not print out an HTTP header. You can
generate custom HTTP header information.

Examples
Example 1: Setting DTW_PRINT_HEADER to NO to customize your own
header.
%define DTW_REMOVE_WS="YES"
%define DTW_PRINT_HEADER="NO"
@DTW_ASSIGN(CRLF, "@DTW_rHEXTOCHAR("0D25")")
%HTML(report) {
Expires: Thu, 31 Jul 2000 16:00:00 GMT$(CRLF)
Content-type: text/html$(CRLF)$(CRLF)

The Time is @DTW_rtime()
%}

Chapter 2. Variables 133

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

DTW_REMOVE_WS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
If you set the value of this variable to ″YES″ in the DEFINE block, Net.Data
will remove extra white space in the resulting web pages.

Using <pre></pre> tags: Defining this variable to YES affects the amount and
type of white space that is printed. If the variable is set to YES, portions of
HTML pages that use <pre></pre> tags might not display as intended.

Values
DTW_REMOVE_WS="YES"|"NO"

Table 27. DTW_REMOVE_WS Values

Values Description

YES Net.Data compresses a sequence of two or more white
spaces to one new-line character, generating shorter HTML
result pages.

NO Net.Data does not compress white spaces. NO is the
default.

Examples
Example 1: Removing extraenneous white space
DTW_REMOVE_WS="YES"

134 IBM
®

Net.Data: Reference

|

|
|

|

RETURN_CODE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
The return code returned by a call to a built-in function or a call to a language
environment. Net.Data uses this value to process MESSAGE blocks. You can
use this variable to determine whether a function call succeeded or failed. A
value of zero indicates successful completion of a function call.

You can reference the RETURN_CODE variable in any part of the Net.Data
macro.

This value is predefined; it is not recommended to modify the value. Use it as
a variable reference.

Examples
Example 1: A message stating whether the function completed successfully
@function1()
%IF ("$(RETURN_CODE)" == "0")
The function completed successfully.
%ELSE
The function failed with the return code $(RETURN_CODE).
%ENDIF

Example 2: A default message when a return code is not 0
%MESSAGE{
default: "<h2>Net.Data received return code: $(RETURN_CODE)</h2>" : continue
%}

If a function returns a return code other than 0, the default message is
displayed.

Chapter 2. Variables 135

136 IBM
®

Net.Data: Reference

Chapter 3. Net.Data Built-in Functions

Net.Data provides a wide variety of functions that you can use without
creating your own FUNCTION blocks. Net.Data built-in functions are divided
into the following categories:
v General-purpose functions help you develop Web pages with Net.Data and

do not fit in the other categories. See “General Functions” on page 139.
v Math functions perform mathematical operations. See “Math Functions” on

page 180.
v String-manipulation functions modify strings and characters. See “String

Functions” on page 199.
v Word-manipulation functions modify words or sets of words. See “Word

Functions” on page 230.
v Table-manipulation functions help you generate forms and reports from

your table data. See “Table Functions” on page 245.
v Flat-file interface functions perform file input and output. See “Flat File

Interface Functions” on page 298.
v Web-registry functions perform operations on a Web registry. See “Web

Registry Functions” on page 337.
v Persistent macro functions support transaction processing in Net.Data. See

“Persistent Macro Functions” on page 358

Although some function parameters are described as having type integer or
float, the terms are used to denote a string that represents an integer or float
value, respectively.

Function Names

Net.Data built-in functions begin with DTW, which is a reserved prefix.
User-defined functions should not use this prefix.

Using the DTW prefix for functions that are not Net.Data built-in functions may
result in unpredictable behavior.

Built-in function names are not case sensitive.

© Copyright IBM Corp. 1997, 2000 137

Input and Output Parameters

Functions can have parameter passing specifications that determine whether
Net.Data uses the parameter for input, output, or both input and output.
These parameter passing specifications are specified by the following
keywords:

IN Specifies that the parameter passes input data to the language
environment from Net.Data.

OUT Specifies that the parameter returns output data from the language
environment to Net.Data.

INOUT
Specifies that the parameter passes input data to the language
environment and returns output data from the language environment
to Net.Data.

Function Result Formatting

Many functions have one or more of the following forms:
v Functions beginning with DTW_r and DTWR_r return their results to the

function call, so they do not have an output parameter. This example shows
the server time:
Current local time is @DTW_rTIME().

v Functions beginning with DTW_m perform the function on multiple
parameters. Each parameter behaves as both an input parameter and an
output parameter. The function is performed on the parameter and the
results are returned in the parameter. This example converts the three input
parameters to all capital letters for a consistent look in the display:
@DTW_mUPPERCASE(model, style, shipNo)
Shipment $(shipNo) contains $(quantity) of model $(model) $(style).

v Other functions beginning with DTW_, DTWF_, and DTWR_ return their
results in an output parameter. You must specify the output parameter. This
example shows the server time:
@DTW_TIME(nowTime)
Current local time is $(nowTime).

Function Parameter Rules

Place function parameters in the correct order. You must specify all input
parameters before the last input parameter can be specified, or specify a null
(“”) to accept the default. For example, you can call DTW_TB_INPUT_TEXT
as in the following example:
@DTW_TB_INPUT_TEXT(myTable, "1", "2", "", "", "32")

138 IBM
®

Net.Data: Reference

In the above example the fourth and fifth parameters use default values.
Include them as nulls to indicate that “32” is the value for MAXLENGTH in
the generated HTML. The final parameter is not specified, so the default value
is used. If you choose to accept the default value for MAXLENGTH and the
two previous parameters, omit them, as shown below:
@DTW_TB_INPUT_TEXT(myTable, "1", "2")

You must specify intermediate null values in the parameter lists for input
parameters when subsequent non-null input parameters exist. You do not need
to specify intermediate null input parameters before specifying your final
output parameter.

General Functions

General functions help you develop Web pages with Net.Data and do not fit
in the other categories. The following functions are general-purpose functions:
v “DTW_ADDQUOTE” on page 140
v “DTW_CACHE_PAGE” on page 142
v “DTW_DATE” on page 147
v “DTW_EXIT” on page 149
v “DTW_GETCOOKIE” on page 151
v “DTW_GETENV” on page 154
v “DTW_GETINIDATA” on page 156
v “DTW_HTMLENCODE” on page 158
v “DTW_QHTMLENCODE” on page 160
v “DTW_SENDMAIL” on page 162
v “DTW_SETCOOKIE” on page 169
v “DTW_SETENV” on page 173
v “DTW_TIME” on page 175
v “DTW_URLESCSEQ” on page 177

Chapter 3. Net.Data Built-in Functions 139

DTW_ADDQUOTE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Replaces single quotes in an input string with two single quotes.

Format
@DTW_ADDQUOTE(stringIn, stringOut)
@DTW_rADDQUOTE(stringIn)
@DTW_mADDQUOTE(stringMult, stringMult2, ..., stringMultn)

Parameters

Table 28. DTW_ADDQUOTE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.
DTW_mADDQUOTE can have multiple
input strings.

string stringOut OUT A variable that contains the modified
form of stringIn.

string stringMult INOUT v On input: A variable that contains a
string.

v On output: A variable containing the
input string with each single quote (')
character replaced by two
single-quote characters.

Return Codes

Table 29. DTW_ADDQUOTE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

140 IBM
®

Net.Data: Reference

Usage Notes
Consider using this function for all SQL INPUT statements where input is
obtained from a Web browser. For example, if you enter O'Brien as a last
name, as in the following example, the single quote might give you an error:
INSERT INTO USER1.CUSTABLE (LNAME, FNAME)
VALUES ('O'Brien', 'Patrick')

Using the DTW_ADDQUOTE function changes the SQL statement and
prevents the error:
INSERT INTO USER1.CUSTABLE (LNAME, FNAME)
VALUES ('O''Brien', 'Patrick')

Examples
Example 1: Adds an extra single quote on the OUT parameter
@DTW_ADDQUOTE(string1,string2)
v Input: string1="John's Web page"
v Returns: string2="John''s Web page"

Example 2: Adds an extra single quote on the returned value of the function
call
@DTW_rADDQUOTE("The title of the article is 'Once upon a time'")
v Returns: "The title of the article is ''Once upon a time''"

Example 3: Adds extra single quotation marks on each of the INOUT
parameters of the function call
@DTW_mADDQUOTE(string1,string2)
v Input: string1="Joe's bag", string2="'to be or not to be'"
v Returns: string1="Joe''s bag", string2="''to be or not to be''"

Example 4: Inserts extra single quotation marks into data being inserted in a
DB2 table
%FUNCTION(DTW_SQL) insertName(){
INSERT INTO USER1.CUSTABLE (LNAME,FNAME)
VALUES ('@DTW_rADDQUOTE(lastname)', '@DTW_rADDQUOTE(firstname)')
%}
v Input: lastname="O'Brien", firstname="Patrick"
v Returns: "O''Brien", "Patrick"

Chapter 3. Net.Data Built-in Functions 141

DTW_CACHE_PAGE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X

Purpose
Caches partial or complete Web pages that are generated as a result of the
processing of macros.

Format
@DTW_CACHE_PAGE(cacheID, pageID, age, status)

Parameters

Table 30. DTW_CACHE_PAGE Parameters

Parameter Use Description

cacheID IN A string variable identifying the cache where the
page will be placed.

pageID IN A string variable containing an identifier used to
locate the cached page in a subsequent
DTW_CACHE_PAGE cache request. The string can
be a URL.

age IN A string variable containing a length of time in
seconds. This parameter determines whether a page
has expired. If the page is older than age, the page
is not sent to the browser.

If age is specified as -1, and the page exists in the
cache, Net.Data sends it to the Web browser
regardless of its age directly from the cache.
Net.Data does not replace the page in the cache.

142 IBM
®

Net.Data: Reference

Table 30. DTW_CACHE_PAGE Parameters (continued)

Parameter Use Description

status OUT A string variable indicating the state of the cached
page. Possible values are in lowercase:

v ok: The output page will be cached when the
macro execution terminates.

v new: The page is not in the cache.

v renew: The page is in the cache, but has expired.

v no_cache: The cache identifier specified does not
exist. It must be defined in the cache
configuration files. Your macro can continue
executing without page caching.

v inactive: The cache you specified has been
marked inactive. Your macro can continue
executing without page caching.

v busy: Your macro has issued the
DTW_CACHE_PAGE built-in function before in
this execution. Your macro can continue
executing.

v error: An error occurred while trying to
communicate with the cache.

Return Codes

Table 31. DTW_CACHE_PAGE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Chapter 3. Net.Data Built-in Functions 143

Usage Notes
1. When invoked, DTW_CACHE_PAGE() attempts to retrieve the specified

page from the cache and to send it to the Web browser as if it were the
output page generated from the macro. If the page is found and it has not
expired, Net.Data stops processing the macro, exits from the macro, and
sends the cached page to the Web browser.
If the requested page is not in the cache or the existing cached page is
older than the value of age, Net.Data generates a new output page. When
the macro successfully completes, Net.Data sends the new page to the
browser and caches the page.

2. For most caching applications, specify DTW_CACHE_PAGE() at the top of
the macro to cache all of the Web page that is generated when the macro
executes. This technique makes it easier to maintain the macro when the
macro is updated. For example, when the function is in the middle of the
macro, it might not be noticed when a HTML report section is added
earlier in the macro. Net.Data would not cache the new report output.
Additionally, this method improves performance as Net.Data stops all
further processing when it determines that the page is cached.
For advanced caching applications, you can place the function in specific
locations of the macro when you need to make the decision to cache at a
specific point during processing, rather than at the beginning of the macro.
For example, you might need to make the caching decision based on how
many rows are returned from a query or function call.

Examples
Example 1: Places the DTW_CACHE_PAGE() function at the beginning of the
macro to capture all HTML output
%IF (customer_status == "Classic")
@DTW_CACHE_PAGE("mymacro.mac", "http://www.mypage.org", "-1", status)
%ENDIF
% DEFINE { ...%}

...

%HTML(OUTPUT) {
<title>This is the page title
</head>
<body>
<center>
This is the Main Heading
<p>It is $(time). Have a nice day!
</body>
</html>

%}

Example 2: Places the function in the HTML block because the decision to
cache depends on the expected size of the HTML output

144 IBM
®

Net.Data: Reference

%DEFINE { ...%}

...

%FUNCTION(DTW_SQL) count_rows(){
select count(*) from customer

%REPORT{
%ROW{
@DTW_ASSIGN(ALL_ROWS, V1)

%}
%}
%}

%FUNCTION(DTW_SQL) all_customers(){
select * from customer

%}

%HTML(OUTPUT) {
<html>
<head>
<title>This is the customer list
</head>
<body>

@count_rows()

%IF ($(ALL_ROWS) > "100")
@DTW_CACHE_PAGE("mymacro.mac", "http://www.mypage.org", "-1", status)
%ENDIF

@all_customers()

</body>
</html>
%}

In this example, the page is cached or retrieved based on the expected size of
the HTML output. HTML output pages are considered cache-worthy only
when the database table contains more than 100 rows. Net.Data always sends
the text in the OUTPUT block, This is the customer list, to the browser
after executing the macro; the text is never cached. The lines following the
function call, @count_rows(), are cached or retrieved when the conditions of
the IF block are satisfied. Together, both parts form a complete Net.Data
output page.

Example 3: Dynamically retrieves the cache ID and the cached page ID
%HTML(OUTPUT) {
%IF (customer == "Joe Smith")

@DTW_CACHE_PAGE(@DTW_rGETENV("DTW_MACRO_FILENAME"),
@DTW_rGETENV("URL"),"-1", status)

%ENDIF

Chapter 3. Net.Data Built-in Functions 145

...

<html>
<head>
<title>This is the page title</title>
</head>
<body>
<center>
<h3>This is the Main Heading</h3>
<p>It is @DTW_rDATE(). Have a nice day!</p>
</center>
</body>
</html>

%}

146 IBM
®

Net.Data: Reference

DTW_DATE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the current system date in the specified format.

Format
@DTW_DATE(format, stringOut)
@DTW_DATE(stringOut)
@DTW_rDATE(format)
@DTW_rDATE()

Parameters

Table 32. DTW_DATE Parameters

Data Type Parameter Use Description

string format IN A variable or literal string specifying the
data format. Valid formats include:

D - Day of the year (001–366)

E - European date format
(dd/mm/yy)

N - Normal date format (dd mon
yyyy)

O - Ordered date format
(yy/mm/dd)

S - Standard date format
(yyyymmdd)

U - USA date format (mm/dd/yy)

The default is N.

string stringOut OUT A variable that contains the date in the
specified format.

Return Codes

Table 33. DTW_DATE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

Chapter 3. Net.Data Built-in Functions 147

Table 33. DTW_DATE Return Codes (continued)

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1: Normal date format
@DTW_DATE(results)
v Returns: results = "25 Apr 1997"

Example 2: European date format
@DTW_DATE("E", results)
v Returns: results="25/04/97"

Example 3: US date format
%HTML(report){
<p>This report created on @DTW_rDATE("U").</p>
v Returns: 04/25/97

148 IBM
®

Net.Data: Reference

DTW_EXIT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Specifies to leave the macro immediately. Net.Data sends any Web pages that
are generated prior to DTW_EXIT() being called to the Web browser .

Format
@DTW_EXIT()

Return Codes

Table 34. DTW_EXIT Return Codes

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

Usage Notes
1. Use DTW_EXIT() to immediately stop the processing of a macro. Using

this technique saves the time Net.Data would use to process the entire file.
2. Ensure that the entire macro is syntactically correct before adding the

DTW_EXIT() function. Using DTW_EXIT() causes Net.Data to stop
processing the macro when it encounters the call to this function, which
can prevent you from catching errors that occur after the DTW_EXIT()
function has been processed.

Examples
Example 1: Exiting a macro
%HTML(cache_example) {

<html>
<head>
<title>This is the page title</title>
</head>
<body>
<center>
<h3>This is the Main Heading</h3>
<!!!>
<! Joe Smith sees a very short page !>
<!!!>
%IF (customer == "Joe Smith")

@DTW_EXIT()

Chapter 3. Net.Data Built-in Functions 149

%ENDIF

...

</body>
</html>
%}

150 IBM
®

Net.Data: Reference

DTW_GETCOOKIE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the value of the specified cookie.

Format
@DTW_GETCOOKIE(IN cookie_name, OUT cookie_value)
@DTW_rGETCOOKIE(IN cookie_name)

Parameters

Table 35. DTW_GETCOOKIE Parameters

Data Type Parameter Use Description

string cookie_name IN A variable or literal string that specifies
the name of the cookie.

string cookie_value OUT A variable containing the value of the
cookie retrieved by the function, such as
user state information.

OS/400 and OS/390 users: If the cookie
value has URL style encodings (for
example ″%20″), the cookie value is
decoded before the value is returned.

Workstation users: If the cookie value
has URL style encodings (for example
″%20″), the cookie value is not decoded
before the value is returned.

Return Codes

Table 36. DTW_GETCOOKIE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

Chapter 3. Net.Data Built-in Functions 151

Table 36. DTW_GETCOOKIE Return Codes (continued)

Return Code Explanation

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

8000 The cookie cannot be found.

Usage Notes
Define and retrieve a cookie in two separate HTTP requests. Because a cookie
is visible only after it has been sent to the client, if a macro tries to get a
cookie that was defined in the same HTTP request, you might receive
unexpected results.

Examples
Example 1: Retrieves cookies that contain user ID and password information
@DTW_GETCOOKIE("mycookie_name_for_userID", userID)
@DTW_GETCOOKIE("mycookie_name_for_password", password)

Example 2: Determines if a cookie for a user exists before gathering user
information
%MESSAGE {

8000 : "" : continue
%}

%HTML(welcome) {
<html>
<body>
<h1>Net.Data Club</h1>
@DTW_GETCOOKIE("NDC_name", name)
%IF ($(RETURN_CODE) == "8000") %{ The cookie is not found. %}
<form method="post" action="remember">
<p>Welcome to the club. Please enter your name.

<input name="name" />
<input type="submit" value="submit" />

</form>
%ELSE
<p>Hi, $(name). Welcome back.</p>
%ENDIF
</body>
</html>
%}

The HTML welcome section checks whether the cookie NDC_name exists. If the
cookie exists, the browser displays a personalized greeting. If the cookie does

152 IBM
®

Net.Data: Reference

not exist, the form prompts for the user’s name, and posts it to the HTML
remember section, which sets the user’s name into the cookie NDC_name as
shown below:
%HTML(remember) {

<html>
<body>
<h1>Net.Data Club</h1>
@DTW_SETCOOKIE("NDC_name",

name,
"expires=Wednesday, 01-Dec-2010 00:00:00;path=/")

<p>Thank you.</p>
<p>Come back</p>
</body>
</html>
%}

Chapter 3. Net.Data Built-in Functions 153

DTW_GETENV

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the value of the specified environment variable.

Format
@DTW_GETENV(envVarName, envVarValue)
@DTW_rGETENV(envVarName)

Parameters

Table 37. DTW_GETENV Parameters

Data Type Parameter Use Description

string envVarName IN A variable or literal string.

string envVarValue OUT The value of the environment variable
specified in envVarName. A null string is
returned if the value is not found.

Return Codes

Table 38. DTW_GETENV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
You can also use the ENVVAR statement to reference the values of
environment variables. For more information, see “ENVVAR Statement” on
page 17.

Examples
Example 1: Returns the value for the PATH statement on the OUT parameter
@DTW_GETENV(myEnvVarName, myEnvVarValue)

154 IBM
®

Net.Data: Reference

v Input: myEnvVarName = "PATH"
v Returns: myEnvVarValue = "/usr/bin"

Example 2: Returns the value for the PATH statement
@DTW_rGETENV(myPath)
v Input: myPath = "PATH"
v Returns: "/usr/bin"

Example 3: Returns the value for the protocol of the server
<p>The server is @DTW_rGETENV("SERVER_PROTOCOL").</p>

Returns:

The server is ″HTTP/1.0″.

Chapter 3. Net.Data Built-in Functions 155

DTW_GETINIDATA

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the value of the specified configuration variable.

Format
@DTW_GETINIDATA(iniVarName, iniVarValue)
@DTW_rGETINIDATA(iniVarName)

Parameters

Table 39. DTW_GETINIDATA Parameters

Data Type Parameter Use Description

string iniVarName IN A variable or literal string.

string iniVarValue OUT The value of the configuration variable
specified in iniVarName.

Return Codes

Table 40. DTW_GETINIDATA Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
1. If a configuration variable is specified that is not the configuration file,

Net.Data returns an empty string.
2. For OS/390, OS/2, Windows NT, and UNIX users: configuration path

variables (MACRO_PATH, EXEC_PATH, and INCLUDE_PATH), as well as
ENVIRONMENT statements, cannot be retrieved with this call.

3. For OS/400 users: ENVIRONMENT statements cannot be retrieved with
this call.

156 IBM
®

Net.Data: Reference

Examples
Example 1: Returns the Net.Data path variable value.
myEnvVarName = "FFI_PATH"
@DTW_GETINIDATA(myEnvVarName, myEnvVarValue)

Yields: myEnvVarValue = "D:\FFI"

Chapter 3. Net.Data Built-in Functions 157

DTW_HTMLENCODE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Encodes selected characters using HTML character escape codes.

Format
@DTW_HTMLENCODE(stringIn, stringOut)
@DTW_rHTMLENCODE(stringIn)

Parameters

Table 41. DTW_HTMLENCODE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

string stringOut OUT A variable containing the modified input
string in which certain characters have
been replaced by the HTML character
escape codes.

Return Codes

Table 42. DTW_HTMLENCODE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
1. Use this function to encode character data that you do not want the Web

browser to interpret as HTML. For example, by using the appropriate
escape code, you can display characters such as less-than (<) and
greater-than (>) within a Web page, which would otherwise be interpreted
by the browser as components of HTML tags.

158 IBM
®

Net.Data: Reference

2. Table 43 shows the characters that are encoded by the
DTW_HTMLENCODE function.

Table 43. Character Escape Codes for HTML

Character Name Code

SPACE Space

" Double quote "

Number sign

% Percent %

& Ampersand &

[Left bracket (

] Right bracket)

+ Plus +

\ Slash /

: Colon :

; Semicolon ;

< Less than <

= Equals =:

> Greater than >:

? Question mark ?:

@ At sign @

/ Backslash \

| Carat ^

{ Left brace {

| Straight line |

} Right brace }

x Tilde ~

Examples
Example 1: Encodes the space character
@DTW_HTMLENCODE(string1,string2)
v Input: string1 = "Jim's dog"
v Returns: string2 = "Jim's dog"

Example 2: Encodes spaces, the less-than sign, and the equal sign
@DTW_rHTMLENCODE("X <= 10")

v Returns: "X <= 10"

Chapter 3. Net.Data Built-in Functions 159

DTW_QHTMLENCODE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Performs the same function as @DTW_HTMLENCODE but also encodes the
single-quote character (') as '. The HTML character escape codes that
DTW_QHTMLENCODE uses are shown in Table 43 on page 159.

Format
@DTW_QHTMLENCODE(stringIn, stringOut)
@DTW_rQHTMLENCODE(stringIn)

Parameters

Table 44. DTW_QHTMLENCODE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

string stringOut OUT A variable that contains the modified
form of stringIn in which certain
characters are replaced by the HTML
character escape codes.

Return Codes

Table 45. DTW_QHTMLENCODE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1: Encodes an apostrophe and a space
@DTW_QHTMLENCODE(string1,string2)
v Input: string1 = "Jim's dog"
v Returns: string2 = "Jim's dog"

160 IBM
®

Net.Data: Reference

Example 2: Encodes apostrophes, spaces, and an ampersand
@DTW_rQHTMLENCODE("John's & Jane's")
v Returns: "John's & Jane's"

Chapter 3. Net.Data Built-in Functions 161

DTW_SENDMAIL

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Dynamically builds and transmits electronic mail (e-mail) messages.

Format

Note to Beta customers
The implementation of this feature is still under review and might
change when the product is released for general availability.

@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy, IN ReplyTo, IN Organization, IN
Attachments)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy, IN ReplyTo, IN Organization)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy, IN ReplyTo)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message)

Parameters

Table 46. DTW_SENDMAIL Parameters

Data Type Parameter Use Description

string sender IN A variable or literal string that specifies
the author’s address. This parameter is
required. Valid formats are:

v Name <user@domain>

v <user@domain>

v user@domain

162 IBM
®

Net.Data: Reference

|
|

|
|
|

Table 46. DTW_SENDMAIL Parameters (continued)

Data Type Parameter Use Description

string recipient IN A variable or literal string that specifies
the e-mail addresses to which this
message will be sent. This value can
contain multiple recipients, separated by
a comma (,). This parameter is required.
Valid recipient formats are:

v Name <user@domain>

v <user@domain>

v user@domain

string message IN A variable or literal string that contains
the text of the e-mail message. This
parameter is required.

string subject IN A variable or literal string that contains
the text of subject line. This is an
optional parameter. You must specify a
null string (″″) to specify additional
parameters.

string CarbonCopy IN A variable or literal string that contains
the e-mail addresses, or names and
e-mail addresses of additional recipients.
This value can contain multiple
additional recipients separated by a
comma (,). See the Recipient parameter
for valid recipient formats. This is an
optional parameter. You must specify a
null string (″″) to specify additional
parameters.

string BlindCarbonCopy IN A variable or literal string that contains
the e-mail addresses, or names and
e-mail addresses of additional recipients,
but the recipients do not appear in the
e-mail header. This value can contain
multiple additional recipients separated
by a comma (,). See the Recipient
parameter for valid recipient formats.
This is an optional parameter. You must
specify a null string (″″) to specify
additional parameters.

Chapter 3. Net.Data Built-in Functions 163

Table 46. DTW_SENDMAIL Parameters (continued)

Data Type Parameter Use Description

string ReplyTo IN A variable or literal string that contains
the e-mail address to which replies to
this message should be sent. This is an
optional parameter. You must specify a
null string (″″) to specify additional
parameters. Valid ReplyTo formats are:

v Name <user@domain>

v <user@domain>

v user@domain

string Organization IN A variable or literal string that contains
the organization name of the sender. This
is an optional parameter.

string Attachments IN A variable or literal string that specifies
the relative paths to the files to be sent.
This value can contain multiple files,
separated by a comma (,), but can not
contain a ″..″ string. These files will be
searched in the order of directories
listed in the ATTACHMENT_PATH
configuration variable.

The following content types can be sent
as attachments:

v image/jpeg

v image/gif

v audio/basic

v application/octet-stream (general)

Return Codes

Table 47. DTW_SENDMAIL Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

164 IBM
®

Net.Data: Reference

|

Table 47. DTW_SENDMAIL Return Codes (continued)

Return Code Explanation

7000 Net.Data is unable to connect to the specified SMTP server.

7001 An SMTP error occurred while Net.Data tried to relay the
e-mail message to the specified SMTP server.

7002 The specified SMTP server does not support the Extended
Simple Mail Transfer Protocol (ESMTP).

Usage Notes
1. You can use the optional configuration variable, DTW_SMTP_SERVER, to

specify the SMTP server to use for transmitting e-mail messages. The
value of this parameter can either be a hostname or an IP address. When
this variable is not defined, Net.Data uses the local host as the SMTP
server. See the configuration chapter in the Net.Data Administration and
Programming Guide for your operating system to learn more about this
variable. DTW_SMTP_SERVER is ignored on OS/390.

2. OS/2, Windows NT, and UNIX users: Standard Simple Mail Transfer
Protocol (SMTP) servers accept only 7-bit data, such as U.S. ASCII
characters. If your message has 8-bit characters, it is recommended that
you specify an Extended Simple Mail Transfer Protocol (ESMTP) server;
ESMTP servers accept 8-bit characters. Net.Data does not encode your
8-bit data into 7-bit data. If you do not have access to an ESMTP server,
remove all 8-bit characters from the e-mail message.
Net.Data for OS/390 users do not need to modify e-mail messages for
SMTP servers.

3. Character set support:
v OS/400 users: You can use the optional configuration variable,

DTW_SMTP_CHARSET to specified which ASCII character to use when
converting the message from EBCDIC to ASCII. If
DTW_SMTP_CHARSET is not specifcied, the default character set is
iso-8859–1. See the configuration chapter in Net.Data Administration and
Programming Guide for OS/400 to learn more about this variable and the
supported character sets.

v OS/2, Windows NT, and UNIX users: Table 48 describes the supported
character sets:

Table 48. Character sets supported by Net.Data

Locale Character set OS/2 or UNIX
codepage

Windows NT
codepage

U.S, Western Europe ″iso-8859-1″ 819 1252

Japan ″x-sjis″ 943 932

Chapter 3. Net.Data Built-in Functions 165

|

Table 48. Character sets supported by Net.Data (continued)

Locale Character set OS/2 or UNIX
codepage

Windows NT
codepage

Chinese (simplified) ″gb2312″ 1381 936

Korea ″euc-kr″ 970 949

Chinese (traditional) ″big5″ 950 950

4. The following list describes conditions under which Net.Data does not
send an e-mail message:
v The specified SMTP server cannot be reached.
v The specified SMTP server does not support the 8BITMIMEExtended

Simple Mail Transfer Protocol (ESMTP), but the specified e-mail
message contains non-U.S. ASCII characters.

Examples
Example 1: Function call that builds and sends a simple e-mail message
@DTW_SENDMAIL("<ibmuser1@ibm.com>", "<ibmuser2@ibm.com>","There is a
meeting at 9:30.", "Status meeting")

The DTW_SENDMAIL function sends an e-mail message with the following
information:
Date: Mon, 3 Apr 1998 09:54:33 PST
To: <ibmuser2@ibm.com>
From: <ibmuser1@ibm.com>
Subject: Status meeting

There is a meeting at 9:30.

The information for Date is constructed by using the system date and time
functions and is formatted in a SMTP-specific data format.

Example 2: Function call that builds and sends an e-mail message with
multiple recipients, carbon copy and blind carbon copy recipients, and the
company name
@DTW_SENDMAIL("IBM User 1 <ibmuser1@ibm.com>", "IBM User 2 <ibmuser2@ibm.com>,
IBM User 3 <ibmuser3@ibm.com>, IBM User 4 <ibmuser4@ibm.com>", "There is a
meeting at 9:30.", "Status meeting", "IBM User 5 <ibmuser5@ibm.com>",
"IBM User 6 <ibmuser6@ibm.com", "meeting@ibm.com", "IBM")

The DTW_SENDMAIL function sends an e-mail message with the following
information:
Date: Mon, 3 Apr 1998 09:54:33 PST
To: IBM User 2 <ibmuser2@ibm.com>, IBM User 3 <ibmuser3@ibm.com>,

IBM User 4 <ibmuser4@ibm.com>
CC: IBM User 5 <ibmuser5@ibm.com>

166 IBM
®

Net.Data: Reference

|

BCC: IBM User 6 <ibmuser6@ibm.com>
From: IBM User 1 <ibmuser1@ibm.com>
ReplyTo: meeting@ibm.com
Organzation: IBM
Subject: Status meeting

There is a meeting at 9:30.

Example 3: Macro that builds and sends e-mail through a Web form interface
%HTML(start) {
<html>
<body>
<h1>Net.Data E-Mail Example</h1>
<form method="post" action="sendemail">
<p>To:
<input name="recipient" /></p>
<p>Subject:
<input name="subject" /></p>
<p>Message:
<textarea name=message rows=20 cols=40>
</textarea></p>
<p><input type="submit" value="Send E-mail"></p>
</form>
</body>
</html>
%}

%HTML(sendemail) {
<html>
<body>
<h1>Net.Data E-Mail Example</h1>
@DTW_SENDMAIL("Net.Data E-mail Service <netdata@us.ibm.com>",
recipient, message, subject)
<p>E-mail has been sent out.</p>
</body>
</html>
%}

This macro sends e-mail through a Web form interface. The HTML start
section displays a form into which the recipient’s e-mail address, a subject,
and a message can be typed. When the user clicks on the Send E-mail button,
the message is sent out to the recipients specified in the HTML(sendemail)
section. This section calls DTW_SENDMAIL and uses the parameters obtained
from the Web form to determine the content of the e-mail message, as well as
the sender and recipients. Once the e-mail messages have been sent, a
confirmation notice is displayed.

Example 4: A macro that uses an SQL query to determine the list of recipients
%Function(DTW_SQL) mailing_list(IN message) {

SELECT EMAIL_ADDRESS FROM CUSTOMERS WHERE ZIPCODE='CA'
%REPORT {

Sending product information to our customers in California...<p>
%ROW {

@DTW_SENDMAIL("John Doe Corp. <john.doe@doe.com>", V1, message,
"New Product Release")

Chapter 3. Net.Data Built-in Functions 167

E-mail sent out to customer $(V1).

%}

%}
%}

This macro sends out an automated e-mail message to a specified group of
customers determined by the results of a SQL query from the customer
database. The SQL query also retrieves the e-mail addresses of the customers.
The e-mail contents are determined by the value of message and can be static
or dynamic (for example, you could use another SQL query to dynamically
specify the version number of the product or the prices of various offerings).

168 IBM
®

Net.Data: Reference

DTW_SETCOOKIE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates JavaScript code that sets a cookie on the client system.

Format
@DTW_SETCOOKIE(IN cookie_name, IN cookie_value, IN adv_opts)
@DTW_SETCOOKIE(IN cookie_name, IN cookie_value)

Parameters

Table 49. DTW_SETCOOKIE Parameters

Data Type Parameter Use Description

string cookie_name IN A variable or literal string that specifies the
name of the cookie

string cookie_value IN A variable or literal string the specifies the value
of the cookie.

Avoid using semicolons, commas, and spaces as
a part of cookie_value. When they are required,
use the Net.Data function DTW_rURLESCSEQ to
process the string that contains the special
characters before passing it to
DTW_SETCOOKIE. For example,

@DTW_SETCOOKIE("my_cookie_name",
@DTW_rURLESCSEQ("my cookie value"))

string adv_opts IN A string that contains optional attributes,
separated by semicolons, that are used to define
the cookie.*

Chapter 3. Net.Data Built-in Functions 169

Table 49. DTW_SETCOOKIE Parameters (continued)

Data Type Parameter Use Description

*The optional attributes can be:

expires = date
Specifies a date string that defines the valid lifetime of the cookie. After the
date expires, the cookie is not longer stored or retrieved. Syntax:

weekday, DD-month-YYYY HH:MM:SS GMT

Where:

weekday
Specifies the full name of the weekday.

DD
Specifies the numerical date of the month.

month
Specifies the three-character abbreviation of the month.

YYYY
Specifies the four-character number of the year.

HH:MM:SS
Specifies the timestamp with hours, minutes, and seconds.

domain = domain_name
Specifies the domain attributes of the cookie, for use in domain attribute
matching.

path = path
Specifies the subset of URLs in a domain for which the cookie is valid.

secure Specifies that the cookie is transmitted only over secured channels to
HTTPS servers.

When the secure option is not specified, the cookie can be sent over
unsecured channels. The secure option does not require that the browser
encrypt the cookie, nor does it ensure that the page containing the
DTW_SETCOOKIE statement is transmitted over SSL.

For additional information about all of the advanced options, see the Netscape
cookie specification at http://home.netscape.com

Return Codes

Table 50. DTW_SETCOOKIE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

170 IBM
®

Net.Data: Reference

Table 50. DTW_SETCOOKIE Return Codes (continued)

Return Code Explanation

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

Usage Notes
1. If the client Web browser does not support Java Script, the browser does

not set the cookie.
2. Because DTW_SETCOOKIE generates Java Script code, do not call

DTW_SETCOOKIE inside a <script> or <noscript> HTML element.
3. To retrieve a cookie, use the DTW_GETCOOKIE() function. See

“DTW_GETCOOKIE” on page 151 to learn how to define a cookie.
4. Define and retrieve a cookie in two separate HTTP requests. Because a

cookie is visible only after it has been sent to the client, if a macro tries to
get a cookie that was defined in the same HTTP request, you might
receive unexpected results.

Examples
Example 1: Defines cookies that contain user ID and password information
with the Secure advanced option
@DTW_SETCOOKIE("mycookie_name_for_userID", "User1")
@DTW_SETCOOKIE("mycookie_name_for_password", "sd3dT", "secure")

Example 2: Defines cookies that contain the expiration date advanced option
@DTW_SETCOOKIE("mycookie_name_for_userID", "User1",

"expires=Wednesday 01-Dec-2010 00:00:00")
@DTW_SETCOOKIE("mycookie_name_for_password", "sd3dT",

"expires=Wednesday, 01-Dec-2010 00:00:00;secure")

Function calls should be on one line; the lines are split in this example for
formatting purposes.

Example 3: Determines if a cookie for a user exists before gathering user
information
%HTML(welcome) {

<html>
<body>
<h1>Net.Data Club</h1>
@DTW_GETCOOKIE("NDC_name", name)
%IF ($(RETURN_CODE) == "8000") %{ The cookie is not found. %}

Chapter 3. Net.Data Built-in Functions 171

<form method="post" action="remember">
<p>Welcome to the club. Please enter your name.

<input name="name">
<input type="submit" value="submit">

</form>
%ELSE
<p>Hi, $(name). Welcome back.
%ENDIF
</body>
</html>
%}

The HTML(welcome) section checks whether the cookie NDC_name exists. If the
cookie exists, the browser displays a personalized greeting. If the cookie does
not exist, the browser prompts for the user’s name, and posts it to the
HTML(remember) section. This section records the user’s name into the cookie
NDC_name as shown below:
%HTML(remember) {

<html>
<body>
<h1>Net.Data Club</h1>
@DTW_SETCOOKIE("NDC_name", name,
"expires=Wednesday, 01-Dec-2010 00:00:00;path=/")
<p>Thank you.</p>
<p>Come back</p>
</body>
</html>
%}

172 IBM
®

Net.Data: Reference

DTW_SETENV

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Assigns an environment variable with a specified value and returns the
previous value.

Format
@DTW_SETENV(envVarName, envVarValue, prevValue)
@DTW_rSETENV(envVarName, envVarValue)

Parameters

Table 51. DTW_SETENV Parameters

Data Type Parameter Use Description

string envVarName IN A variable or literal string representing
the environment variable.

string envVarValue IN A variable or literal string with the
value to which the environment variable
is assigned.

string prevValue OUT A variable that contains the previous
value of the environment variable.

Return Codes

Table 52. DTW_SETENV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
If no previous value for the environment variable is found, an empty string is
returned.

Chapter 3. Net.Data Built-in Functions 173

Examples
Example 1: Returns the value for the previous path
@DTW_SETENV("PATH", "myPath", prevValue)
v Input: envVarName = "PATH", envVarValue = "myPath"
v Returns: prevValue = "myPreviousPath"

Example 2: Returns the value for the previous path and assigns the value for
PATH value
@DTW_rSETENV("PATH", "myPath")
v Input: envVarName = "PATH", envVarValue = "myPath"
v Returns: "myPreviousPath", PATH = "myPath"

174 IBM
®

Net.Data: Reference

DTW_TIME

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the current system time in the specified format.

Format
@DTW_TIME(stringIn, stringOut)
@DTW_TIME(stringOut)
@DTW_rTIME(stringIn)
@DTW_rTIME()

Parameters

Table 53. DTW_TIME Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string specifying the
time format. Valid formats are:

C - Civil time (hh:mmAM/PM using
a 12-hour clock)

L - Local time (hh:mm:ss)

N - Normal time (hh:mm:ss using a
24-hour clock); default

X - Extended time (hh:mm:ss.ccc,
using a 24-hour clock and where ccc
is the number of milliseconds)

H - Number of hours since midnight

M - Number of minutes since
midnight

S - Number of seconds since
midnight

string stringOut OUT A variable that contains the time in the
specified format.

Return Codes

Table 54. DTW_TIME Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

Chapter 3. Net.Data Built-in Functions 175

Table 54. DTW_TIME Return Codes (continued)

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1: Twenty-four hour clock format
@DTW_TIME(results)
v Returns: results = "10:30:53"

Example 2: Civil time format
@DTW_TIME("C", results)
v Returns: results = "10:30AM"

Example 3: Returns the number of minutes since midnight with the function
call
@DTW_rTIME("M")
v Returns: ″630″

Example 4: Returns the default time and data formats with the function call
%REPORT{
<p>This report was created at @DTW_rTIME(), @DTW_rDATE().</p>
%}
v Returns: This report was created 15:04:39, 01 May 1997.

176 IBM
®

Net.Data: Reference

DTW_URLESCSEQ

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Replaces selected characters not allowed in a URL with their escape values,
known as URL-encoded codes.

Format
@DTW_URLESCSEQ(stringIn, stringOut)
@DTW_rURLESCSEQ(stringIn)

Parameters

Table 55. DTW_URLESCSEQ Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

string stringOut OUT A variable containing the input string
with characters that are not allowed in
URLs that are replaced with their
hexadecimal escape values.

Return Codes

Table 56. DTW_URLESCSEQ Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
Use this function to pass any of the characters listed in Table 57 to another
macro or HTML block.

Table 57. Character Escape Values for URLs

Character Name Code

Chapter 3. Net.Data Built-in Functions 177

Table 57. Character Escape Values for URLs (continued)

SPACE Space %20

" Double
quote

%22

Number
sign

%23

% Percent%25

& Ampersand%26

+ Plus %2B

\ Backslash%2F

: Colon %3A

; Semicolon%3B

< Less
than

%3C

= Equals %3D

> Greater
than

%3E

? Question
mark

%3F

@ At
sign

%40

[Left
bracket

%5B

/ Slash %5C

] Right
bracket

%5D

| Carat %5E

{ Left
brace

%7B

| Straight
line

%7C

} Right
brace

%7D

x Tilde %7E

Examples
Example 1: Replaces the space and an ampersand characters in string1 with
their escape values and assigns the result to string2
@DTW_URLESCSEQ(string1,string2)

178 IBM
®

Net.Data: Reference

v Input: string1 = "Guys & Dolls"
v Returns: string2 = "Guys%20%26%20Dolls"

Example 2: Replaces space and ampersand characters with their escape codes.
@DTW_rURLESCSEQ("Guys & Dolls")
v Returns: "Guys%20%26%20Dolls"

Example 3: Uses DTW_rURLESCSEQ in a ROW block, and replaces space and
’at’ characters with their escape codes.
%ROW{
<p><a href="fullRpt.mac/input
?name=@DTW_rURLESCSEQ(V1)&email=@DTW_rULRESCSEQ(V2)">
$(V1)
%}
v Input: V1=″Patrick O’Brien″, V2=″obrien@ibm.com″
v Returns:

<p><a href="fullrpt.mac/input?name=Patrick%20O'Brien
&email="obrien%40ibm.com">Patrick O'Brien</p>

When the application user clicks on the name ″Patrick O’Brien,″ the values
specified for the name and e-mail address flow within the query string of the
URL that causes Net.Data to execute the input section of the fullrpt.mac
macro.

Chapter 3. Net.Data Built-in Functions 179

Math Functions

These functions let you do mathematical calculations.

NLS considerations for math functions: Net.Data displays decimal points in
numerical values based on regional settings specified at the Web server under
which Net.Data is running. For example, if the decimal point is specified as a
comma (,) at the Web server, Net.Data uses the comma to format decimal
data. Net.Data uses the following settings to determine which character is
used to specify a decimal point:

For OS/390, Windows NT, OS/2, and UNIX operating systems:
The LOCALE under which the Web server executes

For the OS/400 operating system:

v V4R2 or subsequent releases: specified by the user profile under
which the process is running.

v V4R1 or previous releases: retrieved from the QDECFMT system
value.

The following functions are available for mathematical calculations:
v “DTW_ADD” on page 181
v “DTW_DIVIDE” on page 183
v “DTW_DIVREM” on page 185
v “DTW_FORMAT” on page 187
v “DTW_INTDIV” on page 191
v “DTW_MULTIPLY” on page 193
v “DTW_POWER” on page 195
v “DTW_SUBTRACT” on page 197

180 IBM
®

Net.Data: Reference

DTW_ADD

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Adds two numbers.

Format
@DTW_ADD(number1, number2, precision, result)
@DTW_ADD(number1, number2, result)
@DTW_rADD(number1, number2, precision)
@DTW_rADD(number1, number2)

Parameters

Table 58. DTW_ADD Parameters

Data Type Parameter Use Description

float number1 IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains the sum of
number1 and number2.

Return Codes

Table 59. DTW_ADD Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

Chapter 3. Net.Data Built-in Functions 181

Table 59. DTW_ADD Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that
was outside the supported range of -999,999,999 to
+999,999,999.

Examples
Example 1:
@DTW_ADD(NUM1, NUM2, "2", result)
v Input: NUM1 = "105", NUM2 = "3"
v Returns: result = "1.1E+2"

Example 2:
@DTW_rADD("12", NUM2, "5")
v Input: NUM2 = "7.00"
v Returns: "19.00"

182 IBM
®

Net.Data: Reference

DTW_DIVIDE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Divides one number by the other.

Format
@DTW_DIVIDE(number1, number2, precision, result)
@DTW_DIVIDE(number1, number2, result)
@DTW_rDIVIDE(number1, number2, precision)
@DTW_rDIVIDE(number1, number2)

Parameters

Table 60. DTW_DIVIDE Parameters

Data Type Parameter Use Description

float number1 IN A variable or literal string representing a
number that is to be divided.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains the result of
number1 divided by number2.

Return Codes

Table 61. DTW_DIVIDE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

Chapter 3. Net.Data Built-in Functions 183

Table 61. DTW_DIVIDE Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that
was outside the supported range of -999,999,999 to
+999,999,999.

Examples
Example 1:
@DTW_DIVIDE("8.0", NUM2, result)
v Input: NUM2 = "2"
v Returns: result = "4"

Example 2:
@DTW_rDIVIDE("1", NUM2, "5")
v Input: "1", NUM2 = "3"
v Returns: "0.33333"

Example 3:
@DTW_rDIVIDE(NUM1, "2", "5")
v Input: NUM1 = "5"
v Returns: "2.5"

184 IBM
®

Net.Data: Reference

DTW_DIVREM

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Divides one number by the other and returns the remainder.

Format
@DTW_DIVREM(number1, number2, precision, result)
@DTW_DIVREM(number1, number2, result)
@DTW_rDIVREM(number1, number2, precision)
@DTW_rDIVREM(number1, number2)

Parameters

Table 62. DTW_DIVREM Parameters

Data Type Parameter Use Description

float number1 IN A variable or literal string representing a
number that is to be divided.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains the remainder
of number1 divided by number2.

Return Codes

Table 63. DTW_DIVIDEREM Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

Chapter 3. Net.Data Built-in Functions 185

Table 63. DTW_DIVIDEREM Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that
was outside the supported range of -999,999,999 to
+999,999,999.

Usage Notes
The sign of the remainder, if nonzero, is the same as that of the first
parameter.

Examples
Example 1:
@DTW_DIVREM(NUM1, NUM2, result)
v Input: NUM1 = "2.1", NUM2 = "3"
v Returns: result = "2.1"

Example 2:
@DTW_rDIVREM("10", NUM2)
v Input: NUM2 = "0.3"
v Returns: "0.1"

Example 3:
@DTW_rDIVREM("3.6", "1.3")
v Returns: "1.0"

Example 4:
@DTW_rDIVREM("-10", "3")
v Returns: "-1"

186 IBM
®

Net.Data: Reference

DTW_FORMAT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Customizes the formatting for a number.

Format
@DTW_FORMAT(number, before, after, expp, expt, precision, result)
@DTW_FORMAT(number, before, after, expp, expt, result)
@DTW_FORMAT(number, before, after, expp, result)
@DTW_FORMAT(number, before, after, result)
@DTW_FORMAT(number, before, result)
@DTW_FORMAT(number, result)
@DTW_rFORMAT(number, before, after, expp, expt, precision)
@DTW_rFORMAT(number, before, after, expp, expt)
@DTW_rFORMAT(number, before, after, expp)
@DTW_rFORMAT(number, before, after)
@DTW_rFORMAT(number, before)
@DTW_rFORMAT(number)

Parameters

Table 64. DTW_FORMAT Parameters

Data Type Parameter Use Description

float number IN A variable or literal string representing a
number.

integer before IN A variable or literal string representing a
positive whole number. This is an
optional parameter. You must enter a
null string ("") to have additional
parameters.

integer after IN A variable or literal string representing a
positive whole number. This is an
optional parameter. You must enter a
null string ("") to specify additional
parameters.

integer expp IN A variable or literal string representing a
positive whole number. You must
specify a null string ("") to specify
additional parameters.

Chapter 3. Net.Data Built-in Functions 187

Table 64. DTW_FORMAT Parameters (continued)

Data Type Parameter Use Description

integer expt IN A variable or literal string representing a
positive whole number. You must enter
a null string ("") to specify additional
parameters.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains the number
with the specified rounding and
formatting.

Return Codes

Table 65. DTW_FORMAT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

Usage Notes
1. If number is the only parameter is specified, the result is formatted as if

@DTW_rADD(number,“0”) was executed.
2. The before and after parameters describe how many characters are used for

the integer and decimal parts of the result parameter, respectively. If you
omit either or both of these parameters, the number of characters used for
that part is as many as is needed.

3. If the before parameter is not large enough to contain the integer part of
the number (plus the sign for a negative number), an error results. If the
before parameter is larger than needed for that part, the number parameter

188 IBM
®

Net.Data: Reference

value is padded on the left with blanks. If the after parameter is not the
same size as the decimal part of the number parameter, the number is
rounded (or extended with zeros) to fit. Specifying 0 causes the number to
be rounded to an integer.

4. The expp and expt parameters control the exponent part of the result. The
expp parameter sets the number of places for the exponent part; the default
is to use as many as is needed (which may be zero). The expt parameter
sets the trigger point for use of exponential notation. The default is the
default value of the precision parameter.

5. If expp is 0, no exponent is supplied and the number is expressed in
simple form with added zeros as necessary. If expp is not large enough to
contain the exponent, an error results.

6. If the number of places needed for the integer or decimal part exceeds expt
or twice expt, respectively, use the exponential notation. If expt is 0,
exponential notation is always used unless the exponent is 0. (If expp is 0,
this overrides a 0 value of expt.) If the exponent is 0 when a nonzero expp
is specified, then expp+2 blanks are supplied for the exponent part of the
result. If the exponent is 0 and expp is not specified, the simple form is
used.

Examples
Example 1:
@DTW_FORMAT(NUM, BEFORE, result)
v Input: NUM = "3", BEFORE = "4"
v Returns: result= " 3"

Example 2:
@DTW_FORMAT("1.73", "4", "0", result)
v Returns: result = " 2"

Example 3:
@DTW_FORMAT("1.73", "4", "3", result)
v Returns: result = " 1.730"

Example 4:
@DTW_FORMAT(" - 12.73", "", "4", result)
v Returns: result = "-12.7300"

Example 5:
@DTW_FORMAT("12345.73", "", "", "2", "2", result)
v Returns: result = "1.234573E+04"

Example 6:
@DTW_FORMAT("1.234573", "", "3", "", "0", result)

Chapter 3. Net.Data Built-in Functions 189

v Returns: result = "1.235"

Example 7:
@DTW_rFORMAT(" - 12.73")
v Returns: " – 12.73"

Example 8:
@DTW_rFORMAT("0.000")
v Returns: "0"

Example 9:
@DTW_rFORMAT("12345.73", "", "", "3", "6")
v Returns: "12345.73"

Example 10:
@DTW_rFORMAT("1234567e5", "", "3", "0")
v Returns: ″123456700000.000″

Example 11:
@DTW_rFORMAT("12345.73", "", "3", "", "0")
v Returns: "1.235E+4"

190 IBM
®

Net.Data: Reference

DTW_INTDIV

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Divides one number by the other and returns the integer part of the result.

Format
@DTW_INTDIV(number1, number2, precision, result)
@DTW_INTDIV(number1, number2, result)
@DTW_rINTDIV(number1, number2, precision)
@DTW_rINTDIV(number1, number2)

Parameters

Table 66. DTW_INTDIV Parameters

Data Type Parameter Use Description

float number1 IN A variable or literal string representing a
number a number that is to be divided.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains integer part of
number1 divided by number2.

Return Codes

Table 67. DTW_INTDIV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Chapter 3. Net.Data Built-in Functions 191

Table 67. DTW_INTDIV Return Codes (continued)

Return Code Explanation

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that
was outside the supported range of -999,999,999 to
+999,999,999.

Examples

Example 1:
@DTW_INTDIV(NUM1, NUM2, result)
v Input: NUM1 = "10", NUM2 = "3"
v Returns: result = "3"

Example 2:
@DTW_rINTDIV("2", NUM2)
v Input: NUM2 = "3"
v Returns: "0"

192 IBM
®

Net.Data: Reference

DTW_MULTIPLY

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Multiplies two numbers.

Format
@DTW_MULTIPLY(number1, number2, precision, result)
@DTW_MULTIPLY(number1, number2, result)
@DTW_rMULTIPLY(number1, number2, precision)
@DTW_rMULTIPLY(number1, number2)

Parameters

Table 68. DTW_MULTIPLY Parameters

Data Type Parameter Use Description

float number1 IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains the product of
number1 and number2.

Return Codes

Table 69. DTW_MULTIPLY Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

Chapter 3. Net.Data Built-in Functions 193

Table 69. DTW_MULTIPLY Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that
was outside the supported range of -999,999,999 to
+999,999,999.

Examples
Example 1:
@DTW_MULTIPLY(NUM1, NUM2, result)
v Input: NUM1 = "4", NUM2 = "5"
v Returns: result = "20"

Example 2:
@DTW_rMULTIPLY("0.9", NUM2)
v Input: NUM2 = "0.8"
v Returns: "0.72"

194 IBM
®

Net.Data: Reference

DTW_POWER

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Raises a whole number to a whole number power.

Format
@DTW_POWER(number1, number2, precision, result)
@DTW_POWER(number1, number2, result)
@DTW_rPOWER(number1, number2, precision)
@DTW_rPOWER(number1, number2)

Parameters

Table 70. DTW_POWER Parameters

Data Type Parameter Use Description

float number1 IN A variable or literal string representing a
number that is to be raised to a power.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains the result of
number1 raised to the power of number2.

Return Codes

Table 71. DTW_POWER Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Chapter 3. Net.Data Built-in Functions 195

Table 71. DTW_POWER Return Codes (continued)

Return Code Explanation

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that
was outside the supported range of -999,999,999 to
+999,999,999.

Examples
Example 1:
@DTW_POWER(NUM1, NUM2, result)
v Input: NUM1 = "2", NUM2 = "-3"
v Returns: result = "0.125"

Example 2:
@DTW_rPOWER("1.7", NUM2, precision)
v Input: NUM2 = "8", precision = "5"
v Returns: "69.758"

196 IBM
®

Net.Data: Reference

DTW_SUBTRACT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Subtracts one number from the other number.

Format
@DTW_SUBTRACT(number1, number2, precision, result)
@DTW_SUBTRACT(number1, number2, result)
@DTW_rSUBTRACT(number1, number2, precision)
@DTW_rSUBTRACT(number1, number2)

Parameters

Table 72. DTW_SUBTRACT Parameters

Data Type Parameter Use Description

float number1 IN A variable or literal string representing a
number from which another number is
to be subtracted.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result OUT A variable that contains the difference of
number1 and number2.

Return Codes

Table 73. DTW_SUBTRACT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

Chapter 3. Net.Data Built-in Functions 197

Table 73. DTW_SUBTRACT Return Codes (continued)

Return Code Explanation

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that
was outside the supported range of -999,999,999 to
+999,999,999.

Examples
Example 1:
@DTW_SUBTRACT(NUM1, NUM2, comp)
%IF(comp > "0")
<p>$(NUM1) is larger than $(NUM2).
%ENDIF

v Input: NUM2 = "2.07"
v Returns: "-0.77"

This example shows a way to compare numeric values, which are strings in
Net.Data.

Example 2:
@DTW_SUBTRACT(NUM1, NUM2, result)
v Input: NUM1 = "1.3, NUM2 = "1.07"
v Returns: result = "0.23"

Example 3:
@DTW_rSUBTRACT("1.3", NUM2)
v Input: NUM2 = "2.07"
v Returns: "-0.77"

198 IBM
®

Net.Data: Reference

String Functions

The following functions are the set of standard string functions that Net.Data
supports:
v “DTW_ASSIGN” on page 200
v “DTW_CHARTOHEX” on page 201
v “DTW_CONCAT” on page 203
v “DTW_DELSTR” on page 205
v “DTW_HEXTOCHAR” on page 207
v “DTW_INSERT” on page 209
v “DTW_LASTPOS” on page 211
v “DTW_LENGTH” on page 213
v “DTW_LOWERCASE” on page 214
v “DTW_POS” on page 216
v “DTW_REPLACE” on page 218
v “DTW_REVERSE” on page 220
v “DTW_STRIP” on page 222
v “DTW_SUBSTR” on page 224
v “DTW_TRANSLATE” on page 226
v “DTW_UPPERCASE” on page 228

MBCS support for OS/390, OS/2, Windows NT, and UNIX: You can specify
multibyte character set (MBCS) support for word and string functions with
the DTW_MBMODE configuration value. Specify this value in the Net.Data
initialization file; the default is no support. You can override the value in the
initialization file by setting the DTW_MBMODE variable in a Net.Data macro.
See the configuration variable section in Net.Data Administration and
Programming Guide and “DTW_MBMODE” on page 129 for more information.

MBCS support for OS/400: DBCS support is provided automatically and does
not require this variable.

Unicode support for OS/2, Windows NT, and UNIX: You can specify
Unicode UTF-8 support for word and string functions with the
DTW_UNICODE configuration value. Specify this value in the Net.Data
initialization file; the default is no support. See the configuration variable
section in the Net.Data Administration and Programming Guide for more
information

Chapter 3. Net.Data Built-in Functions 199

|
|
|
|
|
|

DTW_ASSIGN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Assigns a value to a variable.

Format
@DTW_ASSIGN(stringOut, stringIn)

Parameters

Table 74. DTW_ASSIGN Parameters

Data Type Parameter Use Description

string stringOut OUT A variable that contains the literal string
identical to stringIn.

string stringIn IN A variable or literal string.

Return Codes

Table 75. DTW_ASSIGN Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1:
@DTW_ASSIGN(RC, "0")
v Sets RC to ″0″.

Example 2:
@DTW_ASSIGN(string1, string2)
v Sets string1 to the value of string2.

200 IBM
®

Net.Data: Reference

DTW_CHARTOHEX

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Converts each character in a string to two hexadecimal characters.

Format
@DTW_CHARTOHEX(stringIn, stringOut)
@DTW_rCHARTOHEX(stringIn)

Parameters

Table 76. DTW_CHARTOHEX Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string that is to be
converted.

string stringOut OUT A variable that contains stringIn
represented in hexadecimal format.

Return Codes

Table 77. DTW_CHARTOHEX Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
Each hexadecimal character represents 4-bits of the input character (a
character is represented by 8 bits).

Examples
Example 1: EBCDIC operating systems
@DTW_rCHARTOHEX("12345")
v Returns: "F1F2F3F4F5"

Chapter 3. Net.Data Built-in Functions 201

Example 2: ASCII operating systems
@DTW_rCHARTOHEX("12345")
v Returns: "3132333435"

202 IBM
®

Net.Data: Reference

|

DTW_CONCAT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Concatenates two strings.

Format
@DTW_CONCAT(stringIn1, stringIn2, stringOut)
@DTW_rCONCAT(stringIn1, stringIn2)

Parameters

Table 78. DTW_CONCAT Parameters

Data Type Parameter Use Description

string stringIn1 IN A variable or literal string.

string stringIn2 IN A variable or literal string.

string stringOut OUT A variable that contains the string
'stringIn1stringIn2', where string1 is
concatenated with string2.

Return Codes

Table 79. DTW_CONCAT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1:
@DTW_CONCAT("This", " is a test.", result)
v Returns: result = "This is a test."

Example 2:

Chapter 3. Net.Data Built-in Functions 203

@DTW_CONCAT(string1, "1-2-3", result)
v Input: string1 = "Testing "
v Returns: result = "Testing 1-2-3"

Example 3:
@DTW_rCONCAT("This", " is a test.")
v Returns: "This is a test."

204 IBM
®

Net.Data: Reference

DTW_DELSTR

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Deletes a substring of a string from the nth character for length characters.

Format
@DTW_DELSTR(stringIn, n, length, stringOut)
@DTW_DELSTR(stringIn, n, stringOut)
@DTW_rDELSTR(stringIn, n, length)
@DTW_rDELSTR(stringIn, n)

Parameters

Table 80. DTW_DELSTR Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

integer n IN The position of the character at which
the substring to delete begins. If n is
greater than the length of stringIn,
stringOut is set to the value of stringIn.

integer length IN The length of the substring to delete.
The default is to delete all characters to
the end of stringIn.

string stringOut OUT A variable that contains the modified
form of stringIn.

Return Codes

Table 81. DTW_DELSTR Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

Chapter 3. Net.Data Built-in Functions 205

Table 81. DTW_DELSTR Return Codes (continued)

Return Code Explanation

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_DELSTR("abcde", "3", "2", result)
v Returns: result = "abe"

Example 2:
@DTW_rDELSTR("abcde", "4", "1")
v Returns: "abce"

206 IBM
®

Net.Data: Reference

DTW_HEXTOCHAR

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Converts each hexadecimal character in a string to a character value.

Format
@DTW_HEXTOCHAR(stringIn, stringOut)
@DTW_rHEXTOCHAR(stringIn)

Parameters

Table 82. DTW_HEXTOCHAR Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string that is to be
converted.

string stringOut OUT A variable that contains stringIn
represented in character format.

Return Codes

Table 83. DTW_HEXTOCHAR Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Usage Notes
Each hexadecimal character in the input string represents 4 bits in the
resultant character string (a character is represented by 8 bits). The input
string must contain an even number of hexadecimal characters and can
contain the following characters: 0-9, A-F, and a-f.

Chapter 3. Net.Data Built-in Functions 207

Examples
Example 1: EBCDIC operating systems
@DTW_rHEXTOCHAR("F1F2F3")
v Returns: "123"

Example 2: ASCII operating systems
@DTW_rHEXTOCHAR("313233")
v Returns: "123"

208 IBM
®

Net.Data: Reference

|

DTW_INSERT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Inserts a string into another string starting after the nth character.

Format
@DTW_INSERT(stringIn1, stringIn2, n, length, pad, stringOut)
@DTW_INSERT(stringIn1, stringIn2, n, length, stringOut)
@DTW_INSERT(stringIn1, stringIn2, n, stringOut)
@DTW_INSERT(stringIn1, stringIn2, stringOut)
@DTW_rINSERT(stringIn1, stringIn2, n, length, pad)
@DTW_rINSERT(stringIn1, stringIn2, n, length)
@DTW_rINSERT(stringIn1, stringIn2, n)
@DTW_rINSERT(stringIn1, stringIn2)

Parameters

Table 84. DTW_INSERT Parameters

Data Type Parameter Use Description

string stringIn1 IN A variable or literal string to be inserted
into stringIn2.

string stringIn2 IN A variable or literal string.

integer n IN The character position in stringIn2 after
which stringIn1 is inserted. If n is greater
than the length of stringIn2, it is padded
with the padding character, pad, until it
has enough characters. The default is to
insert at the beginning of stringIn2.

integer length IN The number of characters of stringIn1 to
insert. The string is padded with the
padding character, pad, if this parameter
is greater than the length of stringIn1.
The default is the length of stringIn1.

integer pad IN The padding character, as described for
n and length. The default pad character
is a blank.

string stringOut OUT A variable that contains stringIn2
modified by inserting part or all of
stringIn1.

Chapter 3. Net.Data Built-in Functions 209

Return Codes

Table 85. DTW_INSERT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_INSERT("123", "abc", result)
v Returns: result = "123abc"

Example 2:
@DTW_INSERT("123", "abc", "5", result)
v Returns: result = "abc 123"

Example 3:
@DTW_INSERT("123", "abc", "5", "6", result)
v Returns: result = "abc 123 "

Example 4:
@DTW_INSERT("123", "abc", "5", "6", "/", result)
v Returns: result = "abc//123///"

Example 5:
@DTW_rINSERT("123", "abc", "5", "6", "+")
v Returns: "abc++123+++"

210 IBM
®

Net.Data: Reference

DTW_LASTPOS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the position of the last occurrence of a string in another string,
starting from the nth character and working backwards (right to left).

Format
@DTW_LASTPOS(stringIn1, stringIn2, n, position)
@DTW_LASTPOS(stringIn1, stringIn2, position)
@DTW_rLASTPOS(stringIn1, stringIn2, n)
@DTW_rLASTPOS(stringIn1, stringIn2)

Parameters

Table 86. DTW_LASTPOS Parameters

Data Type Parameter Use Description

string stringIn1 IN A variable or literal string searched for
in stringIn2.

string stringIn2 IN A variable or literal string.

integer n IN The character position in stringIn2 to
begin searching for stringIn1. The
default is to start searching at the last
character and scan backwards (from
right to left).

integer position OUT The position of the last occurrence of
stringIn1 in stringIn2. If no occurrence is
found, 0 is returned.

Return Codes

Table 87. DTW_LASTPOS Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

Chapter 3. Net.Data Built-in Functions 211

Table 87. DTW_LASTPOS Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_LASTPOS(" ", "abc def ghi", result)
v Returns: result = "8"

Example 2:
@DTW_LASTPOS(" ", "abc def ghi", "10", result)
v Returns: result = "8"

Example 3:
@DTW_rLASTPOS(" ", "abc def ghi", "7")
v Returns: "4"

212 IBM
®

Net.Data: Reference

DTW_LENGTH

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the length of a string.

Format
@DTW_LENGTH(stringIn, length)
@DTW_rLENGTH(stringIn)

Parameters

Table 88. DTW_LENGTH Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

integer length OUT A symbol containing the number of
characters in stringIn.

Return Codes

Table 89. DTW_LENGTH Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1:
@DTW_LENGTH("abcdefgh", result)
v Returns: result = "8"

Example 2:
@DTW_rLENGTH("")
v Returns: "0"

Chapter 3. Net.Data Built-in Functions 213

DTW_LOWERCASE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns a string in all lowercase.

Format
@DTW_LOWERCASE(stringIn, stringOut)
@DTW_rLOWERCASE(stringIn)
@DTW_mLOWERCASE(stringMult1, stringMult2, ..., stringMultn)

Parameters

Table 90. DTW_LOWERCASE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string with
characters of any case.

string stringOut OUT A variable that contains stringIn with all
characters in lowercase.

string stringMult INOUT v On input: A variable that contains a
string.

v On output: A variable that contains
the input string converted to
lowercase.

Return Codes

Table 91. DTW_LOWERCASE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

214 IBM
®

Net.Data: Reference

Examples
Example 1:
@DTW_LOWERCASE("This", stringOut)
v Returns: stringOut = "this"

Example 2:
@DTW_rLOWERCASE(string1)
v Input: string1 = "Hello"
v Returns: "hello"

Example 3:
@DTW_mLOWERCASE(string1, string2, string3)
v Input: string1 = "THIS", string2 = "IS", string3 = "LOWERCASE"
v Returns: string1 = "this", string2 = "is", string3 = "lowercase"

Chapter 3. Net.Data Built-in Functions 215

DTW_POS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the position of the first occurrence of a string in another string, using
a forward search pattern.

Format
@DTW_POS(stringIn1, stringIn2, n, nOut)
@DTW_POS(stringIn1, stringIn2, nOut)
@DTW_rPOS(stringIn1, stringIn2, n)
@DTW_rPOS(stringIn1, stringIn2)

Parameters

Table 92. DTW_POS Parameters

Data Type Parameter Use Description

string stringIn1 IN A variable or literal string to search for.

string stringIn2 IN A variable or literal string to search.

integer n IN The character position in stringIn2 to
begin searching. The default value is to
start searching at the first character of
stringIn2.

integer nOut OUT A variable that contains the position of
the first occurrence of stringIn1 in
stringIn2. If no occurrence is found, 0 is
returned.

Return Codes

Table 93. DTW_POS Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

216 IBM
®

Net.Data: Reference

Table 93. DTW_POS Return Codes (continued)

Return Code Explanation

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_POS("day", "Saturday", result)
v Returns: result = "6"

Example 2:
@DTW_POS("a", "Saturday", "3", result)
v Returns: result = "7"

Example 3:
@DTW_rPOS(" ", "abc def ghi", "5")
v Returns: "8"

Chapter 3. Net.Data Built-in Functions 217

DTW_REPLACE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Replaces characters in a string.

Format
@DTW_REPLACE(stringIn, stringFrom, stringTo, n, option, stringOut)
@DTW_REPLACE(stringIn, stringFrom, stringTo, n, stringOut)
@DTW_REPLACE(stringIn, stringFrom, stringTo, stringOut)
@DTW_rREPLACE(stringIn, stringFrom, stringTo, n, option)
@DTW_rREPLACE(stringIn, stringFrom, stringTo, n)
@DTW_rREPLACE(stringIn, stringFrom, stringTo)

Parameters

Table 94. DTW_REPLACE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string that is to be
searched.

string stringFrom IN A variable or literal string that is to be
replaced.

string stringTo IN A variable or literal string that replaces
occurrences of stringFrom.

integer n IN The position of the character at which to
begin the search.

string option IN Specifies whether to replace all
occurrences, or just the first occurrence,
and can have one of the following
values:

A or a Replaces all occurrences. The
default is A.

F or f Replaces only the first
occurrence.

string stringOut OUT A variable that contains stringIn with
occurrences of stringFrom replaced by
stringTo.

218 IBM
®

Net.Data: Reference

Return Codes

Table 95. DTW_REPLACE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1:
@DTW_rREPLACE("ABCABCABC", "AB", "1234")
v Returns: "1234C1234C1234C"

Chapter 3. Net.Data Built-in Functions 219

DTW_REVERSE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Reverses a string so that the last character is first, second to last is second,
until the entire string is reversed.

Format
@DTW_REVERSE(stringIn, stringOut)
@DTW_rREVERSE(stringIn)

Parameters

Table 96. DTW_REVERSE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string to reverse.

string stringOut OUT A variable that contains the reversed
form of stringIn.

Return Codes

Table 97. DTW_REVERSE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1:
@DTW_REVERSE("This is it.", result)
v Returns: result = ".ti si sihT"

Example 2:
@DTW_rREVERSE(string1)
v Input: string1 = "reversed"

220 IBM
®

Net.Data: Reference

v Returns: "desrever"

Chapter 3. Net.Data Built-in Functions 221

DTW_STRIP

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Removes leading blanks, trailing blanks, or both from a string.

Format
@DTW_STRIP(stringIn, option, stringOut)
@DTW_STRIP(stringIn, stringOut)
@DTW_rSTRIP(stringIn, option)
@DTW_rSTRIP(stringIn)

Parameters

Table 98. DTW_STRIP Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

string option IN Specifies which blanks to remove from
stringIn. The default is B.

B or b - remove both leading and
trailing blanks

L or l - remove leading blanks only

T or t - remove trailing blanks only

string stringOut OUT A variable that contains stringIn with
blanks removed as specified by option.

Return Codes

Table 99. DTW_STRIP Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

222 IBM
®

Net.Data: Reference

Table 99. DTW_STRIP Return Codes (continued)

Return Code Explanation

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_STRIP(" day ", result)
v Returns: result = "day"

Example 2:
@DTW_STRIP(" day ", "T", result)
v Returns: result = " day"

Example 3:
@DTW_rSTRIP(" a day ", "L")
v Returns: "a day "

Chapter 3. Net.Data Built-in Functions 223

DTW_SUBSTR

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns a substring of a string, with optional pad characters.

Format
@DTW_SUBSTR(stringIn, n, length, pad, stringOut)
@DTW_SUBSTR(stringIn, n, length, stringOut)
@DTW_SUBSTR(stringIn, n, stringOut)
@DTW_rSUBSTR(stringIn, n, length, pad)
@DTW_rSUBSTR(stringIn, n, length)
@DTW_rSUBSTR(stringIn, n)

Parameters

Table 100. DTW_SUBSTR Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string to be
searched.

integer n IN The first character position of the
substring. The default is to start at the
beginning of stringIn

integer length IN The number of characters of the
substring. The default is the rest of the
string.

string pad IN The padding character used if n is
greater than the length of stringIn or if
length is longer than stringIn. The
default is a blank.

string stringOut OUT A variable that contains a substring of
stringIn.

Return Codes

Table 101. DTW_SUBSTR Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

224 IBM
®

Net.Data: Reference

Table 101. DTW_SUBSTR Return Codes (continued)

Return Code Explanation

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_SUBSTR("abc", "2", result)
v Returns: result = "bc"

Example 2:
@DTW_SUBSTR("abc", "2", "4", result)
v Returns: result = "bc "

Example 3:
@DTW_SUBSTR("abc", "2", "4", ".", result)
v Returns: result = "bc.."

Example 4:
@DTW_rSUBSTR("abc", "2", "6", ".")
v Returns: "bc...."

Chapter 3. Net.Data Built-in Functions 225

DTW_TRANSLATE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns a string with each character translated to another character or
unchanged.

Format
@DTW_TRANSLATE(stringIn, tableO, tableI, default, stringOut)
@DTW_TRANSLATE(stringIn, tableO, tableI, stringOut)
@DTW_TRANSLATE(stringIn, tableO, stringOut)
@DTW_TRANSLATE(stringIn, stringOut)
@DTW_rTRANSLATE(stringIn, tableO, tableI, default)
@DTW_rTRANSLATE(stringIn, tableO, tableI)
@DTW_rTRANSLATE(stringIn, tableO)
@DTW_rTRANSLATE(stringIn)

Parameters

Table 102. DTW_TRANSLATE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

string tableO IN A variable or literal string used as a
translation table. Use null (″″) to specify
tableI or default; otherwise this parameter
is optional.

string tableI IN A variable or literal string searched for
in stringIn. Use null (″″) to specify
default; otherwise this parameter is
optional.

string default IN The default character to use. The default
is a blank.

string stringOut OUT A variable that contains the translated
result of stringIn.

226 IBM
®

Net.Data: Reference

Return Codes

Table 103. DTW_TRANSLATE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Usage Notes
1. If tableI, tableO, and the default character are not in the parameter list, the

stringIn parameter is translated to uppercase.
2. If tableI and tableO are in the list, each character in the input string is

searched for in tableI and translated to the corresponding character in
tableO. If a character in tableI has no corresponding character in tableO, the
default character is used instead.

Examples
Example 1:
@DTW_TRANSLATE("abbc", result)
v Returns: result = "ABBC"

Example 2:
@DTW_TRANSLATE("abbc", "R", "bc", result)
v Returns: result = "aRR "

Example 3:
@DTW_rTRANSLATE("abcdef", "12", "abcd", ".")
v Returns: "12..ef"

Example 4:
@DTW_rTRANSLATE("abbc", "", "", "")
v Returns: "abbc"

Chapter 3. Net.Data Built-in Functions 227

DTW_UPPERCASE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns a string in uppercase.

Format
@DTW_UPPERCASE(stringIn, stringOut)
@DTW_rUPPERCASE(stringIn)
@DTW_mUPPERCASE(stringMult1, stringMult2, ..., stringMultn)

Parameters

Table 104. DTW_UPPERCASE Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string with
characters of any case.

string stringOut OUT A variable that contains stringIn with all
characters in uppercase.

string stringMult INOUT v On input: A variable that contains a
string.

v On output: A variable that contains
the input string converted to
uppercase.

Return Codes

Table 105. DTW_UPPERCASE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

228 IBM
®

Net.Data: Reference

Examples
Example 1:
@DTW_UPPERCASE("Test", result)
v Returns: result = "TEST"

Example 2:
@DTW_rUPPERCASE(string1)
v Input: string1 = "Web pages"
v Returns: "WEB PAGES"

Example 3:
@DTW_mUPPERCASE(string1, string2, string3)
v Input: string1 = "This", string2 = "is", string3 = "uppercase"
v Returns: string1 = "THIS", string2 = "IS", string3 = "UPPERCASE"

Chapter 3. Net.Data Built-in Functions 229

Word Functions

These functions supplement the string functions by modifying words or sets
of words. Net.Data interprets a word as a space-delimited string, or a string
with spaces on both sides. Here are some examples:

String value Number of words

one two three 3

one , two , three 5

Part 2: Internet Sales Grow 5

MBCS support for OS/390, OS/2, Windows NT, and UNIX: You can specify
multibyte character set (MBCS) support for word and string functions with
the DTW_MBMODE configuration value. Specify this value in the Net.Data
initialization file; the default is no support. You can override the value in the
initialization file by setting the DTW_MBMODE variable in a Net.Data macro.
See the configuration variable section in Net.Data Administration and
Programming Guide and “DTW_MBMODE” on page 129 for more information.

MBCS support for OS/400: DBCS support is provided automatically and does
not require this variable.

Unicode support for OS/2, Windows NT, and UNIX: You can specify
Unicode UTF-8 support for word and string functions with the
DTW_UNICODE configuration value. Specify this value in the Net.Data
initialization file; the default is no support. See the configuration variable
section in the Net.Data Administration and Programming Guide for more
information

The following functions are word functions that Net.Data supports:
v “DTW_DELWORD” on page 231
v “DTW_SUBWORD” on page 233
v “DTW_WORD” on page 235
v “DTW_WORDINDEX” on page 237
v “DTW_WORDLENGTH” on page 239
v “DTW_WORDPOS” on page 241
v “DTW_WORDS” on page 243

230 IBM
®

Net.Data: Reference

|
|
|
|
|
|

DTW_DELWORD

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Deletes words in a string, starting from word n for the number of words
specified by length.

Format
@DTW_DELWORD(stringIn, n, length, stringOut)
@DTW_DELWORD(stringIn, n, stringOut)
@DTW_rDELWORD(stringIn, n, length)
@DTW_rDELWORD(stringIn, n)

Parameters

Table 106. DTW_DELWORD Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

integer n IN The word position of the first word to
be deleted.

integer length IN The number of words to delete. The
default is to delete all words from n to
the end of stringIn. Optional parameter.

string stringOut OUT A variable that contains the modified
form of stringIn.

Return Codes

Table 107. DTW_DELWORD Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Chapter 3. Net.Data Built-in Functions 231

Table 107. DTW_DELWORD Return Codes (continued)

Return Code Explanation

1007 A parameter contains a value which is not valid.

Examples
Example 1
@DTW_DELWORD("Now is the time", "5", result)
v Returns: result = "Now is the time"

Example 2:
@DTW_DELWORD("Now is the time", "2", result)
v Returns: result = "Now"

Example 3:
@DTW_DELWORD("Now is the time", "2", "2", result)
v Returns: result = "Now time"

Example 4:
@DTW_rDELWORD("Now is the time.", "3")
v Returns: "Now is"

232 IBM
®

Net.Data: Reference

DTW_SUBWORD

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns a substring of a string, beginning at word n s for the number of
words specified by length.

Format
@DTW_SUBWORD(stringIn, n, length, stringOut)
@DTW_SUBWORD(stringIn, n, stringOut)
@DTW_rSUBWORD(stringIn, n, length)
@DTW_rSUBWORD(stringIn, n)

Parameters

Table 108. DTW_SUBWORD Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

integer n IN The word position of the first word of
the substring. A null is returned if this
value is greater than the number of
words in stringIn.

integer length IN The number of words in the substring. If
this value is greater than the number of
words from n to the end of stringIn, all
words to the end of stringIn are
returned. The default is to return all
words from n to the end of stringIn.

string stringOut OUT A variable that contains a substring of
stringIn specified by n and length.

Return Codes

Table 109. DTW_SUBWORD Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

Chapter 3. Net.Data Built-in Functions 233

Table 109. DTW_SUBWORD Return Codes (continued)

Return Code Explanation

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_SUBWORD("Now is the time", "5", result)
v Returns: result = ""

Example 2:
@DTW_SUBWORD("Now is the time", "2", result)
v Returns: result = "is the time"

Example 3:
@DTW_SUBWORD(Now is the time", "2", "2", result)
v Returns: result = "is the"

Example 4:
@DTW_rSUBWORD("Now is the time", "3")
v Returns: "the time"

234 IBM
®

Net.Data: Reference

DTW_WORD

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the nthe word in a string.

Format
@DTW_WORD(stringIn, n, stringOut)
@DTW_rWORD(stringIn, n)

Parameters

Table 110. DTW_WORD Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

integer n IN The word position of the word to return.
If this value is greater than the number
of words in stringIn, a null is returned.

string stringOut OUT A variable that contains the word at
word position n.

Return Codes

Table 111. DTW_WORD Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples
Example 1:
@DTW_WORD("Now is the time", "3", result)

Chapter 3. Net.Data Built-in Functions 235

v Returns: result = ″the″

Example 2:
@DTW_WORD("Now is the time", "5", result)
v Returns: result = ""

Example 3:
@DTW_rWORD("Now is the time", "4")
v Returns: "time"

236 IBM
®

Net.Data: Reference

DTW_WORDINDEX

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the character position of the first character in the nth word of a string.

Format
@DTW_WORDINDEX(stringIn, n, stringOut)
@DTW_rWORDINDEX(stringIn, n)

Parameters

Table 112. DTW_WORDINDEX Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

integer n IN The word position of the word to index.
If this value is greater than the number
of words in the input string, 0 is
returned.

string stringOut OUT A variable that contains the character
position of the nth word of stringIn.

Return Codes

Table 113. DTW_WORDINDEX Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Chapter 3. Net.Data Built-in Functions 237

Examples
Example 1:
@DTW_WORDINDEX("Now is the time", "3", result)
v Returns: result = "8"

Example 2:
@DTW_WORDINDEX("Now is the time", "6", result)
v Returns: result = "0"

Example 3:
@DTW_rWORDINDEX("Now is the time", "2")
v Returns: ″5″

238 IBM
®

Net.Data: Reference

DTW_WORDLENGTH

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the length of the nth word of a string.

Format
@DTW_WORDLENGTH(stringIn, n, stringOut)
@DTW_rWORDLENGTH(stringIn, n)

Parameters

Table 114. DTW_WORDLENGTH Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

integer n IN The word position of the word whose
length you want to know. If this value is
greater than the number of words in the
input string, 0 is returned.

string stringOut OUT A variable that contains the length of
the nth word in stringIn.

Return Codes

Table 115. DTW_WORDLENGTH Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Chapter 3. Net.Data Built-in Functions 239

Examples
Example 1:
@DTW_WORDLENGTH("Now is the time", "1", result)
v Returns: result = "3"

Example 2:
@DTW_rWORDLENGTH("Now is the time", "6")
v Returns: "0"

240 IBM
®

Net.Data: Reference

DTW_WORDPOS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the word number of the first occurrence of one string within another.

Format
@DTW_WORDPOS(stringIn1, stringIn2, n, stringOut)
@DTW_WORDPOS(stringIn1, stringIn2, stringOut)
@DTW_rWORDPOS(stringIn1, stringIn2, n)
@DTW_rWORDPOS(stringIn1, stringIn2)

Parameters

Table 116. DTW_WORDPOS Parameters

Data Type Parameter Use Description

string stringIn1 IN A variable or literal string.

string stringIn2 IN A variable or literal string to search.

integer n IN The word position in stringIn2 to begin
searching. If this value is larger than the
number of words in stringIn2, 0 is
returned. The default is to search from
the beginning of stringIn2.

string stringOut OUT The word position of stringIn1 in
stringIn2.

Return Codes

Table 117. DTW_WORDPOS Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Chapter 3. Net.Data Built-in Functions 241

Table 117. DTW_WORDPOS Return Codes (continued)

Return Code Explanation

1007 A parameter contains a value which is not valid.

Usage Notes
Multiple blanks are treated as single blanks for comparison.

Examples
Example 1:
@DTW_WORDPOS("the", "Now is the time", result)
v Returns: result = "3"

Example 2:
@DTW_WORDPOS("The", "Now is the time", result)
v Returns: result = "0"

Example 3:
@DTW_WORDPOS("The", "Now is the time", "5", result)
v Returns: result = "0"

Example 4:
@DTW_WORDPOS("is the", "Now is the time", result)
v Returns: result = "2"

Example 5:
@DTW_rWORDPOS("be", "To be or not to be", "3")
v Returns: "6"

242 IBM
®

Net.Data: Reference

DTW_WORDS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the number of words in a string.

Format
@DTW_WORDS(stringIn, stringOut)
@DTW_rWORDS(stringIn)

Parameters

Table 118. DTW_WORDS Parameters

Data Type Parameter Use Description

string stringIn IN A variable or literal string.

string stringOut OUT A variable that contains the number of
words in stringIn.

Return Codes

Table 119. DTW_WORDS Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1:
@DTW_WORDS("Now is the time", result)
v Returns:

result = ″4″

Example 2:
@DTW_rWORDS(" ")

Chapter 3. Net.Data Built-in Functions 243

v Returns: "0"

244 IBM
®

Net.Data: Reference

Table Functions

These functions simplify working with Net.Data tables and are more efficient
than writing your own functions using REXX, C, or Perl.
v “DTW_TB_APPENDROW” on page 246
v “DTW_TB_COLS” on page 248
v “DTW_TB_DELETEROW” on page 252
v “DTW_TB_DELETECOL” on page 250
v “DTW_TB_DLIST” on page 254
v “DTW_TB_DUMPH” on page 257
v “DTW_TB_DUMPV” on page 259
v “DTW_TB_GETN” on page 261
v “DTW_TB_GETV” on page 263
v “DTW_TB_HTMLENCODE” on page 265
v “DTW_TB_INPUT_CHECKBOX” on page 267
v “DTW_TB_INPUT_RADIO” on page 269
v “DTW_TB_INPUT_TEXT” on page 271
v “DTW_TB_INSERTCOL” on page 273
v “DTW_TB_INSERTROW” on page 275
v “DTW_TB_LIST” on page 277
v “DTW_TB_QUERYCOLNONJ” on page 280
v “DTW_TB_ROWS” on page 282
v “DTW_TB_SELECT” on page 284
v “DTW_TB_SETCOLS” on page 287
v “DTW_TB_SETN” on page 289
v “DTW_TB_SETV” on page 291
v “DTW_TB_TABLE” on page 293
v “DTW_TB_TEXTAREA” on page 296

Chapter 3. Net.Data Built-in Functions 245

DTW_TB_APPENDROW

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X

Purpose
Adds one or more rows to the end of a Net.Data table.

Format
@DTW_TB_APPENDROW(table, rows)

Parameters

Table 120. DTW_TB_APPENDROW Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable for which rows
are appended.

integer rows IN The number of rows to append to table.

Return Codes

Table 121. DTW_TB_APPENDROW Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

1010 Data was written to the table until it was full, and the
remainder of the data was discarded.

Usage Notes
1. The number of columns in the table must be set before calling

DTW_TB_APPENDROW(). You can set the number of columns with the

246 IBM
®

Net.Data: Reference

DTW_TB_SETCOLS() or DTW_TB_INSERTCOL() functions, or by passing
the table to a language environment to be set.

2. You can assign values to the new rows with the DTW_TB_SETV() function
after rows are appended to the table, or pass the table to a language
environment for processing.

3. If there is a limit on the total number of rows allowed in the table, and the
number of rows to be appended can cause the limit to be exceeded, an
error is returned to the caller.

Examples
Example 1: Appends ten rows to the table
%DEFINE myTable = %TABLE

@DTW_TB_APPENDROW(myTable, "10")

Chapter 3. Net.Data Built-in Functions 247

DTW_TB_COLS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the number of columns in a Net.Data table.

Format
@DTW_TB_COLS(table, cols)
@DTW_TB_rCOLS(table)

Parameters

Table 122. DTW_TB_COLS Parameters

Data Type Parameter Use Description

table table IN The macro table variable for which the
number of columns are returned.

integer cols OUT A variable that contains the number of
columns in table.

Return Codes

Table 123. DTW_TB_COLS Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1: Retrieves the number of columns and assigns the value to cols

248 IBM
®

Net.Data: Reference

%DEFINE myTable = %TABLE
%DEFINE cols = ""
...
@FillTable(myTable)
...
@DTW_TB_COLS(myTable, cols)

Example 2: Retrieves and displays the value for the current number of
columns in the table
%DEFINE myTable = %TABLE
...
@FillTable(myTable)
...
<p>My table contains @DTW_TB_rCOLS(myTable) columns.</p>

Chapter 3. Net.Data Built-in Functions 249

DTW_TB_DELETECOL

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X

Purpose
Deletes one or more columns from a Net.data table.

Format
@DTW_TB_DELETECOL(table, after_col, cols)

Parameters

Table 124. DTW_TB_DELETECOL Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable from which
columns are to be deleted.

integer after_col IN The number of the column after which
subsequent columns are to be delted. To
delete the first column, specify 0.

integer cols IN The number of columns to delete from
table.

Return Codes

Table 125. DTW_TB_DELETECOL Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

250 IBM
®

Net.Data: Reference

Examples
Example 1: Deletes the third and fourth columns from the table
%DEFINE myTable = %TABLE

@DTW_TB_DELETECOL(myTable, "3", "2")

Example 2: Deletes the first column from the table
%DEFINE myTable = %TABLE

@DTW_TB_DELETECOL(myTable, "0", "1")

Chapter 3. Net.Data Built-in Functions 251

DTW_TB_DELETEROW

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X

Purpose
Deletes one or more rows from a Net.Data table.

Format
@DTW_TB_DELETEROW(table, start_row, rows)

Parameters

Table 126. DTW_TB_DELETEROW Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable from which
rows are to be deleted.

integer start_row IN The row number of the first row in table
to delete.

integer rows IN The number of rows to delete from table.

Return Codes

Table 127. DTW_TB_DELETEROW Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Usage Notes
The number of columns in the table must be set before calling
DTW_TB_DELETEROW(). You can set the number of columns with the

252 IBM
®

Net.Data: Reference

DTW_TB_SETCOLS() or DTW_TB_INSERTCOL() functions, or by passing the
table to a language environment to be set.

Examples
Example 1: Deletes five rows starting at row 10 of a table
%DEFINE myTable = %TABLE

@DTW_TB_DELETEROW(myTable, "10", "5")

Example 2: Deletes all of the rows of a table
%DEFINE myTable = %TABLE

@DTW_TB_DELETEROW(myTable, "1", @DTW_TB_rROWS(myTable))

Chapter 3. Net.Data Built-in Functions 253

DTW_TB_DLIST

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates an HTML definition list from a Net.Data table.

Format
@DTW_TB_DLIST(table, term, def, termstyle, defstyle, link, link_u, image,
image_u)
@DTW_TB_DLIST(table, term, def, termstyle, defstyle, link, link_u, image)
@DTW_TB_DLIST(table, term, def, termstyle, defstyle, link, link_u)
@DTW_TB_DLIST(table, term, def, termstyle, defstyle, link)
@DTW_TB_DLIST(table, term, def, termstyle, defstyle)
@DTW_TB_DLIST(table, term, def, termstyle)
@DTW_TB_DLIST(table, term, def)
@DTW_TB_DLIST(table, term)
@DTW_TB_DLIST(table)

Parameters

Table 128. DTW_TB_DLIST Parameters

Data Type Parameter Use Description

table table IN A symbol specifying the macro table
variable to display as an HTML
definition list.

integer term IN The column number in table that
contains term name values (the text to
go after the <dt> tag). The default is to
use the first column.

integer def IN The column number in table containing
term definition values (the text to go
after the <dd> tag). The default is to use
the second column.

string termstyle IN A variable or literal string that contains
a list of HTML elements for the term
name values. The default is to use no
style tags.

254 IBM
®

Net.Data: Reference

Table 128. DTW_TB_DLIST Parameters (continued)

Data Type Parameter Use Description

string defstyle IN A variable or literal string containing a
list of HTML elements for the term
definition values. The default is to use
no style tags.

string link IN Specifies for which HTML elements an
HTML link is generated. Valid values
are DT and DD. The default is not to
generate HTML links.

integer link_u IN The column number in table that
contains the URLs for the HTML
references. The default is not to generate
HTML links.

string image IN Specifies for which HTML elements an
inline image is generated. Valid values
are DT and DD. The default is not to
generate inline images (DT).

integer image_u IN The column number in table that
contains the URLs for the inline images.
The default is not to generate inline
images.

Return Codes

Table 129. DTW_TB_DLIST Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Chapter 3. Net.Data Built-in Functions 255

Examples
Example 1: Creates a definition list producing the HTML shown below,
depending on the table data
@DTW_TB_DLIST(Mytable,"3","4","b i","strong","DD","2","DT","1")

Results:
<dl>
<dt>
<img src="http://www.mycompany.com/images/image1.gif"
alt=""><i>image1text</i></dt>
<dd>
link1text</dd>
<dt>
<img src="http://www.mycompany.com/images/image2.gif"
alt=""><i>image2text</i></dt>
<dd>
link2text</dd>
<dt>
<img src="http://www.mycompany.com/images/image3.gif"
alt=""><i>image3text</i></dt>
<dd>
link3text</dd>
<dt>
<img src="http://www.mycompany.com/images/image4.gif"
alt=""><i>image4text</i></dt>
<dd>
link4text</dd>
</dl>

256 IBM
®

Net.Data: Reference

DTW_TB_DUMPH

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Prints out the contents of a Net.Data table using the HTML <pre> tag, where
each row of the table is displayed on one line.

Format
@DTW_TB_DUMPH(table)

Parameters

Table 130. DTW_TB_DUMPH Parameters

Data Type Parameter Use Description

table table IN A symbol specifying the macro table
variable to display.

Return Codes

Table 131. DTW_DB_DUMPH Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1007 A parameter contains a value which is not valid.

Usage Notes
If the Net.Data table is empty, an error is returned.

Examples
Example 1:
@DTW_TB_DUMPH(Mytable)

The HTML generated by this example looks like this:

Chapter 3. Net.Data Built-in Functions 257

<pre>
Name Department Position
Jack Smith Internet Technologies Software Engineer
Helen Williams Database Development Manager
Alex Jones Manufacturing Industrial Engineer
Tom Baker Procurement Sales Rep
</pre>

258 IBM
®

Net.Data: Reference

DTW_TB_DUMPV

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Prints out the contents of the Net.Data table using the HTML <pre> tag,
where each field of the table is on one line.

Format
@DTW_TB_DUMPV(table)

Parameters

Table 132. DTW_TB_DUMPV Parameters

Data Type Parameter Use Description

table table IN A symbol specifying the macro table
variable to display.

Return Codes

Table 133. DTW_TB_DUMPV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1007 A parameter contains a value which is not valid.

Usage Notes
If the Net.Data table is empty, an error is returned

Examples
Example 1:
@DTW_TB_DUMPV(Mytable)

The HTML generated for this example looks like this:

Chapter 3. Net.Data Built-in Functions 259

<pre>
http://www.mycompany.com/images/image1.gif
http://www.mycompany.com/link1.html
image1text
link1text
http://www.mycompany.com/images/image2.gif
http://www.mycompany.com/link2.html
image2text
link2text
http://www.mycompany.com/images/image3.gif
http://www.mycompany.com/link3.html
image3text
link3text
http://www.mycompany.com/images/image4.gif
http://www.mycompany.com/link4.html
image4text
link4text
</pre>

260 IBM
®

Net.Data: Reference

DTW_TB_GETN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns a column heading from a Net.Data table.

Format
@DTW_TB_GETN(table, col, name)
@DTW_TB_rGETN(table, col)

Parameters

Table 134. DTW_TB_GETN Parameters

Data Type Parameter Use Description

table table IN The macro table variable from which a
column name is returned.

integer col IN The column number of the column
whose name is to be returned.

string name OUT A variable that contains the name of the
column specified in col.

Return Codes

Table 135. DTW_TB_GETN Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Chapter 3. Net.Data Built-in Functions 261

Usage Notes
Before calling DTW_TB_GETN(), set the number of columns in the table. You
can set the number of columns with the DTW_TB_SETCOLS() or
DTW_TB_INSERTCOL() functions, or by passing the table to a language
environment to be set.

Examples
Example 1: Retrieves the column name of column 4
%DEFINE myTable = %TABLE
%DEFINE name = ""
...
@FillTable(myTable)
...
@DTW_TB_GETN(myTable, "4", name)

Example 2: Retrieves the column name of the last column in the table
%DEFINE myTable = %TABLE
...
@FillTable(myTable)
...
<p>The column name of the last column is @DTW_TB_rGETN(myTable,
@DTW_TB_rCOLS(myTable))</p>

262 IBM
®

Net.Data: Reference

DTW_TB_GETV

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the value at a given row and column in a Net.Data table.

Format
@DTW_TB_GETV(table, row, col, value)
@DTW_TB_rGETV(table, row, col)

Parameters

Table 136. DTW_TB_GETV Parameters

Data Type Parameter Use Description

table table IN The macro table variable for which a
table value is returned.

integer row IN The row number of the value to be
returned.

integer col IN The column number of the value to be
returned.

string value OUT A variable that contains the value at the
row and column specified in row and
col.

Return Codes

Table 137. DTW_TB_GETV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Chapter 3. Net.Data Built-in Functions 263

Table 137. DTW_TB_GETV Return Codes (continued)

Return Code Explanation

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Usage Notes
Before calling DTW_TB_GETV(), set the number of columns in the table. You
can set the number of columns with the DTW_TB_SETCOLS() or
DTW_TB_INSERTCOL() functions, or by passing the table to a language
environment to be set.

Examples
Example 1: Retrieves the table value at row 6, column 3
%DEFINE myTable = %TABLE
%DEFINE value = ""
...
@FillTable(myTable)
...
@DTW_TB_GETV(myTable, "6", "3", value)

Example 2: Retrieves the table value at row 1, column 1
%DEFINE myTable = %TABLE
...
@FillTable(myTable)
...
<p>The table value of row 1, column 1 is @DTW_TB_rGETV(myTable, "1", "1").</p>

264 IBM
®

Net.Data: Reference

DTW_TB_HTMLENCODE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Replaces certain characters in the data located in a Net.Data table with their
corresponding HTML character escape codes.

Format
@DTW_TB_HTMLENCODE(table, collist)
@DTW_TB_HTMLENCODE(table)

Parameters

Table 138. DTW_TB_HTMLENCODE Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable to modify.

string collist IN The column numbers in table to encode.
The default is to encode all columns.

Return Codes

Table 139. DTW_TB_HTMLENCODE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Chapter 3. Net.Data Built-in Functions 265

Usage Notes
The characters that are replaced are indicated in the table below.

Name Character Code

Ampersand & &

Double quote ″ "

Greater than > >

Less than < <

Examples
Example 1:
@DTW_TB_HTMLENCODE(Mytable, "3 4")

The special characters in columns 3 and 4 of the specified table are replaced
with their encoded forms.

266 IBM
®

Net.Data: Reference

DTW_TB_INPUT_CHECKBOX

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates one or more HTML check box input tags from a Net.Data table.

Format
@DTW_TB_INPUT_CHECKBOX(table, prompt, namecol, valuecol, rows,
checkedrows)
@DTW_TB_INPUT_CHECKBOX(table, prompt, namecol, valuecol, rows)
@DTW_TB_INPUT_CHECKBOX(table, prompt, namecol, valuecol)
@DTW_TB_INPUT_CHECKBOX(table, prompt, namecol)

Parameters

Table 140. DTW_TB_INPUT_CHECKBOX Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as
check box input tags.

string prompt IN The column number in table or a string
containing the text to display next to the
check box. This parameter is required
but can have a null (″″) value. When
prompt is null, the value used is the
value defined for namecol.

string namecol IN The column number in table or a string
containing the input field names.

integer valuecol IN The column number in table that
contains the input field values. The
default is 1.

integer rows IN The list of rows in table from which to
generate the input fields. The default is
to use all rows.

integer checkedrows IN The list of rows specifying which rows of
table to check. The default is not to
check fields.

Chapter 3. Net.Data Built-in Functions 267

Return Codes

Table 141. DTW_TB_INPUT_CHECKBOX Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Examples
Example 1: Generates HTML for three check box input tags
@DTW_TB_INPUT_CHECKBOX(Mytable,"3","4","","2 3 4","1 3 4")

Results:
<input type="checkbox" name="link2text" value="1" />image2text

<input type="checkbox" name="link3text" value="1" checked />image3text

<input type="checkbox" name="link4text" value="1" checked />image4text

268 IBM
®

Net.Data: Reference

DTW_TB_INPUT_RADIO

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates HTML radio button input tags from a Net.Data table.

Format
@DTW_TB_INPUT_RADIO(table, prompt, namecol, valuecol, rows,
checkedrows)
@DTW_TB_INPUT_RADIO(table, prompt, namecol, valuecol, rows)
@DTW_TB_INPUT_RADIO(table, prompt, namecol, valuecol)

Parameters

Table 142. DTW_TB_INPUT_RADIO Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as
radio button input tags.

string prompt IN The column number in table or a string
containing the text to display next to the
radio button. Required parameter, but
can contain a null (″″) value. When
prompt is null, uses the value of valuecol.

string namecol IN The column number in table or a string
containing the input field names.

integer valuecol IN The column number in table that
contains the input field values.

string rows IN The list of rows in table from which to
generate the input fields. The default is
to use all rows.

integer checkedrows IN A row number in table to display the
corresponding radio button as checked.
Only one value is allowed.

Return Codes

Table 143. DTW_TB_INPUT_RADIO Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

Chapter 3. Net.Data Built-in Functions 269

Table 143. DTW_TB_INPUT_RADIO Return Codes (continued)

Return Code Explanation

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Examples
Example 1: Generates HTML for three radio button input tags
@DTW_TB_INPUT_RADIO(Mytable,"3","Radio4","4","2 3 4","4")

Results:
<input type="radio" name="radio4" value="link2text" />image2text

<input type="radio" name="radio4" value="link3text" />image3text

<input type="radio" name="radio4" value="link4text" checked />image4text

270 IBM
®

Net.Data: Reference

DTW_TB_INPUT_TEXT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates HTML <input /> tags for specified rows in a Net.Data table.

Format
@DTW_TB_INPUT_TEXT(table, prompt, namecol, valuecol, size, maxlen,
rows)
@DTW_TB_INPUT_TEXT(table, prompt, namecol, valuecol, size, maxlen)
@DTW_TB_INPUT_TEXT(table, prompt, namecol, valuecol, size)
@DTW_TB_INPUT_TEXT(table, prompt, namecol, valuecol)
@DTW_TB_INPUT_TEXT(table, prompt, namecol)

Parameters

Table 144. DTW_TB_INPUT_TEXT Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as
text input tags.

string prompt IN The column number in table or a string
containing the text to display next to the
input field. If prompt is null, no text is
displayed.

string namecol IN The column number in table that
contains the input field names.

integer valuecol IN The column number in table that
contains the default input field values,
which is specified for the VALUE
attribute on the INPUT tag. The default
is to not generate the VALUE attribute
value.

integer size IN The number of characters of the input
field, which is specified for the SIZE
attribute on the INPUT tag. The default
is the length of the longest default input
value, or 10 if no default input exists.

Chapter 3. Net.Data Built-in Functions 271

Table 144. DTW_TB_INPUT_TEXT Parameters (continued)

Data Type Parameter Use Description

integer maxlen IN The maximum length of an input string,
which is specified for the MAXLENTH
attribute of the INPUT tag. The default
is not to generate the MAXLENGTH
attribute value.

integer rows IN The list of rows in table from which to
generate the input fields. The default is
to use all rows.

Return Codes

Table 145. DTW_TB_INPUT_TEXT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Examples
Example 1: Returns three HTML <input /> tags
@DTW_TB_INPUT_TEXT(Mytable,"3","3","4","35","40","1 2 3")

Results:
<p>image1text
<input type="text" name="image1text" value="link1text" size="35" maxlength="40" /></p>
<p>image2text
<input type="text" name="image2text" value="link2text" size="35" maxlength="40" /></p>
<p>image3text
<input type="text" name="image3text" value="link3text" size="35" maxlength="40" /></p>

272 IBM
®

Net.Data: Reference

DTW_TB_INSERTCOL

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Inserts one or more columns into a Net.Data table.

Format
@DTW_TB_INSERTCOL(table, after_col, cols)

Parameters

Table 146. DTW_TB_INSERTCOL Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable into which
columns are to be inserted.

integer after_col IN The column number of the column after
which the new columns are to be
inserted. To insert columns at the
beginning of the table, specify 0.

integer cols IN The number of columns to insert into
table.

Return Codes

Table 147. DTW_TB_INSERTCOL Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Chapter 3. Net.Data Built-in Functions 273

Examples
Example 1: Inserts five columns at the end of a table
%DEFINE myTable = %TABLE

@DTW_TB_INSERTCOL(myTable, @DTW_TB_rCOLS(myTable), "5")

Example 2: Inserts a column at the beginning of a table
%DEFINE myTable = %TABLE

@DTW_TB_INSERTCOL(myTable, "0", "1")

274 IBM
®

Net.Data: Reference

DTW_TB_INSERTROW

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Inserts one or more rows into a Net.Data table.

Format
@DTW_TB_INSERTROW(table, after_row, rows)

Parameters

Table 148. DTW_TB_INSERTROW Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable into which
rows are to be inserted.

integer after_row IN The number of the row after which new
rows are inserted. To insert rows at the
beginning of the table, specify 0.

integer rows IN The number of rows to insert into table.

Return Codes

Table 149. DTW_TB_INSERTROW Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Chapter 3. Net.Data Built-in Functions 275

Usage Notes
Before calling DTW_TB_INSERTROW(), set the number of columns in the
table. You can set the number of columns with the DTW_TB_SETCOLS() or
DTW_TB_INSERTCOL() functions, or by passing the table to a language
environment to be set.

Examples
Example 1: Inserts a row after row five of a table
%DEFINE myTable = %TABLE

@DTW_TB_INSERTROW(myTable, "5", "1")

Example 2: Inserts three rows at the start of a table
%DEFINE myTable = %TABLE

@DTW_TB_INSERTROW(myTable, "0", "3")

276 IBM
®

Net.Data: Reference

DTW_TB_LIST

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates an HTML list from a Net.Data table.

Format
@DTW_TB_LIST(table, listtype, listitem, itemstyle, link_u, image_u)
@DTW_TB_LIST(table, listtype, listitem, itemstyle, link_u)
@DTW_TB_LIST(table, listtype, listitem, itemstyle)
@DTW_TB_LIST(table, listtype, listitem)
@DTW_TB_LIST(table, listtype)

Parameters

Table 150. DTW_TB_LIST Parameters

Data Type Parameter Use Description

table table IN A symbol specifying the macro table
variable to display as an HTML list.

string listtype IN The type of list to generate. Acceptable
values include:

DIR

MENU

OL

UL

integer listitem IN The column number in table containing
the list values (the text to go after the
 tag). The default is to use the first
column.

string itemstyle IN A variable or literal string containing a
list of HTML elements for the term
name values. The default is to use no
style tags.

integer link_u IN The column number in table that
contains the URLs for the HTML links.
If this value is not specified, no HTML
links are generated.

Chapter 3. Net.Data Built-in Functions 277

Table 150. DTW_TB_LIST Parameters (continued)

Data Type Parameter Use Description

integer image_u IN The column number in table that
contains the URLs for the inline images.
If this value is not specified, no inline
images are generated.

Return Codes

Table 151. DTW_TB_LIST Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Examples
Example 1: Generates HTML tags for an ordered list
@DTW_TB_LIST(Mytable,"OL","4","TT U","2","1")

Results:
<tt><u>

<img src="http://www.mycompany.com/images/image1.gif"
alt="">link1text

<img src="http://www.mycompany.com/images/image2.gif"
alt="">link2text

<
IMG SRC="http://www.mycompany.com/images/image3.gif"
ALT="">link3text

278 IBM
®

Net.Data: Reference

<img src="http://www.mycompany.com/images/image4.gif"
alt="">link4txt

</u></tt>

Chapter 3. Net.Data Built-in Functions 279

DTW_TB_QUERYCOLNONJ

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Returns the column number associated with a column heading of a Net.Data
table.

Format
@DTW_TB_QUERYCOLNONJ(table, name, col)
@DTW_TB_rQUERYCOLNONJ(table, name)

Parameters

Table 152. DTW_TB_QUERYCOLNONJ Parameters

Data Type Parameter Use Description

table table IN The macro table variable from which a
column number is to be returned.

string name IN The name of the column heading for
which the column number is returned. If
the column heading does not exist in the
table, 0 is returned.

integer col OUT A variable that contains the column
number of the column whose name is
specified in name.

Return Codes

Table 153. DTW_TB_QUERYCOLNONJ Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

280 IBM
®

Net.Data: Reference

Table 153. DTW_TB_QUERYCOLNONJ Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
1. Before calling DTW_TB_QUERYCOLNONJ(), set the number of columns in

the table. You can set the number of columns with the
DTW_TB_SETCOLS() or DTW_TB_INSERTCOL() functions, or by passing
the table to a language environment to be set.

2. If the column heading does not exist in the table, 0 is returned.

Examples
Example 1: Retrieves the column number for the column whose name is
SERIAL_NUMBER

%DEFINE myTable = %TABLE
%DEFINE col = ""

@DTW_TB_QUERYCOLNONJ(myTable, "SERIAL_NUMBER", col)

Example 2: Retrves the column number for the column whose name is
SERIAL_NUMBER

%DEFINE myTable = %TABLE
<p>The "SERIAL_NUMBER" column is column number @DTW_TB_rQUERYCOLNONJ(myTable, "SERIAL_NUMBER")</p>

Chapter 3. Net.Data Built-in Functions 281

DTW_TB_ROWS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Returns the number of rows in a Net.Data table.

Format
@DTW_TB_ROWS(table, rows)
@DTW_TB_rROWS(table)

Parameters

Table 154. DTW_TB_ROWS Parameters

Data Type Parameter Use Description

table table IN The macro table variable for which the
current number of rows is returned.

integer rows OUT A variable that contains the current
number of rows in table.

Return Codes

Table 155. DTW_TB_ROWS Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Examples
Example 1: Retrieves the current number of rows in the table and assigns the
value to rows

282 IBM
®

Net.Data: Reference

%DEFINE myTable = %TABLE
%DEFINE rows = ""
...
@FillTable(myTable)
...
@DTW_TB_ROWS(myTable, rows)

Chapter 3. Net.Data Built-in Functions 283

DTW_TB_SELECT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates an HTML selection list from a Net.Data table.

Format
@DTW_TB_SELECT(table, name, optioncol, size, multiple, rows,
selectedrows, valuecol)
@DTW_TB_SELECT(table, name, optioncol, size, multiple, rows,
selectedrows)
@DTW_TB_SELECT(table, name, optioncol, size, multiple, rows)
@DTW_TB_SELECT(table, name, optioncol, size, multiple)
@DTW_TB_SELECT(table, name, optioncol, size)
@DTW_TB_SELECT(table, name, optioncol)
@DTW_TB_SELECT(table, name)

Parameters

Table 156. DTW_TB_SELECT Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as a
SELECT field.

string name IN The value of the NAME attribute of the
SELECT field.

integer optioncol IN The column number in table with values
to use in the OPTION tags of the
SELECT field. The default is to use the
first column.

integer size IN The number of rows in table to use for
OPTION tags in the SELECT field. The
default is to use all the rows.

string multiple IN Specifies whether multiple selections are
allowed. The default is N, which does
not allow multiple selections.

string rows IN The row numbers from table to use in
the SELECT field. The default is to use
all the rows.

284 IBM
®

Net.Data: Reference

Table 156. DTW_TB_SELECT Parameters (continued)

Data Type Parameter Use Description

string selectedrows IN The list of rows from table whose
OPTION tags are checked. To specify
more than one row, you must have the
multiple parameter set to Y. The default
is to select the first item.

string valuecol IN The column number in table to use for
the VALUE attribute of the OPTION
tags. The default value is 1. This
parameter is optional.

Return Codes

Table 157. DTW_TB_SELECT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Examples
Example 1: Generates an HTML SELECT menu with multiple selections
@DTW_TB_SELECT(Mytable,"URL6","4","","y","1 2 4","1 4")

Results:
<select name="url6" size="3" multiple>
<option selected>image1text
<option>image2text
<option selected>image4text
</select>

Example 2: Uses the valuecol parameter to generate an HTML SELECT menu
that uses a column number from which to obtain the values.

Chapter 3. Net.Data Built-in Functions 285

@DTW_TB_SELECT(Mytable,"URL6","4","","y","1 2 4","1 4", "2")

Results:
<select name="url6" size="3" multiple>
<option value="text_string1" selected>image1text</option>
<option value="text_string2">image2text</option>
<option value="text_string4" selected>image4text</option>
</select>

286 IBM
®

Net.Data: Reference

DTW_TB_SETCOLS

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Sets the number of columns in a Net.Data table.

Format
@DTW_TB_SETCOLS(table, cols)

Parameters

Table 158. DTW_TB_SETCOLS Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable for which the
number of columns is set.

integer cols IN The initial number of columns to
allocate in table.

Return Codes

Table 159. DTW_TB_SETCOLS Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

Usage Notes
1. The DTW_TB_SETCOLS() function can only be used once for a table.

Afterwards, use the DTW_TB_DELETECOL() or DTW_TB_INSERTCOL()
functions to change the number of columns in the table.

2. Specify the column headings by using the DTW_TB_SETN() function.

Chapter 3. Net.Data Built-in Functions 287

Examples
Example 1: Allocates three columns for the table and assigns the names to the
columns
%DEFINE myTable = %TABLE

@DTW_TB_SETCOLS(myTable, "3")
@DTW_TB_SETN(myTable, "Name", "1")
@DTW_TB_SETN(myTable, "Address", "2")
@DTW_TB_SETN(myTable, "Phone", "3")

288 IBM
®

Net.Data: Reference

DTW_TB_SETN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Assigns a name to a column heading in a Net.Data.

Format
@DTW_TB_SETN(table, name, col)

Parameters

Table 160. DTW_TB_SETN Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable in which a
column name will be set.

string name IN A character string that is assigned to the
column heading of the column specified
in col.

integer col IN The column number of the column
whose heading is being set.

Return Codes

Table 161. DTW_TB_SETN Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Chapter 3. Net.Data Built-in Functions 289

Usage Notes
1. Before calling DTW_TB_SETN(), set the number of columns in the table.

You can set the number of columns with the DTW_TB_SETCOLS() or
DTW_TB_INSERTCOL() functions, or by passing the table to a language
environment to be set.

2. To delete a column heading, assign the column heading value to NULL.

Examples
Example 1: Assigns a name to column headings 1 through 3
%DEFINE myTable = %TABLE

@DTW_TB_SETCOLS(myTable, "3")
@DTW_TB_SETN(myTable, "Name", "1")
@DTW_TB_SETN(myTable, "Address", "2")
@DTW_TB_SETN(myTable, "Phone", "3")

Example 2: Delete the column heading for column 2. This is done by passing
a variable on the function call which has not been defined. By default, this
variable will have a value of NULL
%DEFINE myTable = %TABLE

@DTW_TB_SETN(myTable, nullVar, "2")

290 IBM
®

Net.Data: Reference

DTW_TB_SETV

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Assigns a value to a particular row and column in a Net.Data table.

Format
@DTW_TB_SETV(table, value, row, col)

Parameters

Table 162. DTW_TB_SETV Parameters

Data Type Parameter Use Description

table table INOUT The macro table variable in which a
table value will be set.

string value IN A character string that is assigned to the
table value of the row and column
specified in row and col.

integer row IN The row number of the value to be set.

integer col IN The column number of the value to be
set.

Return Codes

Table 163. DTW_TB_SETV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Chapter 3. Net.Data Built-in Functions 291

Usage Notes
1. Before calling DTW_TB_SETV(), set the number of columns in the table.

You can set the number of columns with the DTW_TB_SETCOLS() or
DTW_TB_INSERTCOL() functions, or by passing the table to a language
environment to be set.

2. To delete a table value, assign the value to NULL.

Examples
Example 1: Assigns a value to row 3 column 3
%DEFINE myTable = %TABLE

@DTW_TB_SETV(myTable, "value3.3", "3", "3")

Example 2: Delete the table value at row 4, column 2. This is done by passing
a variable on the function call which has not been defined. By default, this
variable will have a value of NULL.
%DEFINE myTable = %TABLE

@DTW_TB_SETV(myTable, nullVar, "4", "2")

292 IBM
®

Net.Data: Reference

DTW_TB_TABLE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates an HTML table from a Net.Data table.

Format
@DTW_TB_TABLE(table, options, collist, cellstyle, link_u, image_u,
url_text, url_style)
@DTW_TB_TABLE(table, options, collist, cellstyle, link_u, image_u,
url_text)
@DTW_TB_TABLE(table, options, collist, cellstyle, link_u, image_u)
@DTW_TB_TABLE(table, options, collist, cellstyle, link_u)
@DTW_TB_TABLE(table, options, collist, cellstyle)
@DTW_TB_TABLE(table, options, collist)
@DTW_TB_TABLE(table, options)
@DTW_TB_TABLE(table)

Parameters

Table 164. DTW_TB_TABLE Parameters

Data Type Parameter Use Description

table table IN A macro table variable to display as an
HTML table.

string options IN The table attributes inside the TABLE
tag. The default is to use no attributes.
Valid values include:

v BORDER

v CELLSPACING

v WIDTH

string collist IN The column numbers in table to use in
the HTML table. The default is to use all
the columns.

string cellstyle IN A list of HTML style elements, such as B
and I, to go around text in each TD tag.
The default is not to use style tags.

Chapter 3. Net.Data Built-in Functions 293

Table 164. DTW_TB_TABLE Parameters (continued)

Data Type Parameter Use Description

integer link_u IN The column number in table containing
URLs used to create HTML links. You
must specify the column in collist also.
The default is not to generate HTML
links.

integer image_u IN The column number in table containing
URLs used to create inline images. You
must specify the column in collist also.
The default is not to generate image
tags.

integer url_text IN The column number in table containing
text to display for HTML links or inline
images. The default is to use the URL
itself.

string url_style IN A list of HTML style elements for the
text specified in url_text. The default is
not to generate style tags.

Return Codes

Table 165. DTW_TB_TABLE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Examples
Example 1: Generates HTML tags for a table with a border and using B (bold)
and I (italics) tags
@DTW_TB_TABLE(Mytable,"BORDER","4 2 1","i","2","1","4","b")

294 IBM
®

Net.Data: Reference

Results:
<table border>
<tr>
<th>TITLE</th>
<th>LINKURL</th>
<th>IMAGEURL</th>
<tr>
<td><i>link1text</i></td>
<td>link1text</td>
<td>link1text</td>
</tr><tr>
<td><i>link2text</i></td>
<td>link2text</td>
<td>link2text</td>
</tr><tr>
<td><i>link3text</i></td>
<td>link3text</td>
<td>link3text</td>
</tr></table>

Chapter 3. Net.Data Built-in Functions 295

DTW_TB_TEXTAREA

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Generates an HTML text area from a Net.Data table.

Format
@DTW_TB_TEXTAREA(table, name, numrows, numcols, valuecol, rows)
@DTW_TB_TEXTAREA(table, name, numrows, numcols, valuecol)
@DTW_TB_TEXTAREA(table, name, numrows, numcols)
@DTW_TB_TEXTAREA(table, name, numrows)
@DTW_TB_TEXTAREA(table, name)

Parameters

Table 166. DTW_TB_TEXTAREA Parameters

Data Type Parameter Use Description

table table IN A macro table variable to show as a
TEXTAREA tag.

string name IN The name of the text area.

integer numrows IN The height of the text area, specified in
rows. The default is the number of rows
in table.

integer numcols IN The width of the text area, specified in
columns. The default is the length of the
longest row in table.

integer valuecol IN The column number in table whose
values are shown in the text area. The
default is the first column.

string rows IN A list of rows in table used to generate
the TEXTAREA tag. The default is to use
all rows.

Return Codes

Table 167. DTW_TB_TEXTAREA Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

296 IBM
®

Net.Data: Reference

Table 167. DTW_TB_TEXTAREA Return Codes (continued)

Return Code Explanation

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

1008 A parameter is outside of table bounds.

Examples
Example 1: Generates HTML TEXTAREA tags and specifies which rows to
include
@DTW_TB_TEXTAREA(Mytable,"textarea5","3","70","4","1 3 4")

Results:
<textarea name="textarea5" rows="3" cols="70">
link1text
link3text
link4text
</textarea>

Chapter 3. Net.Data Built-in Functions 297

Flat File Interface Functions

The flat file interface (FFI) enables you to open, read, and manipulate data
from flat file sources (text files), as well as store data in flat files. The
following flat file interface built-in functions are available:
v “DTWF_APPEND” on page 303
v “DTWF_CLOSE” on page 306
v “DTWF_DELETE” on page 308
v “DTWF_OPEN” on page 314
v “DTWF_READ” on page 316
v “DTWF_READFILE” on page 320
v “DTWF_REMOVE” on page 323
v “DTWF_SEARCH” on page 325
v “DTWF_UPDATE” on page 329
v “DTWF_WRITE” on page 333

The following sections discuss how to use the FFI built-in functions and
access flat file sources:
v “Access to Flat File Data Sources”
v “Flat File Interface Delimiters” on page 301
v “Locking Files” on page 302

Access to Flat File Data Sources
You use the FFI_PATH path configuration statement in the Net.Data
initialization file to list the directories and sub-directories that are allowed to
be specified when using the FFI functions and to provide security for those
files not in directories included in the path statement. The Net.Data
initialization file is shipped without FFI_PATH. See Net.Data Administration
and Programming Guide to learn how to configure the path.

The FFI_PATH uses the following syntax:
FFI_PATH /path1;/path2;/path3...

When you call the FFI language environment in a macro function, you specify
the path to the flat file that the FFI function is working with, using the
filename parameter of the FFI function. For example:
%DEFINE myfile = "/macros/myfile.txt" @DTWF_READ(myfile, ...)

The following sections discuss:
v “How Net.Data Determines the Flat File Location” on page 299
v “Flat File Configuration Rules” on page 300
v “Security Recommendations” on page 300

298 IBM
®

Net.Data: Reference

|

v “Authorization Requirement” on page 301

How Net.Data Determines the Flat File Location
Net.Data uses the information in the filename parameter for FFI functions to
search the FFI_PATH statement in the Net.Data initialization file and
determine whether to use a specified directory or the current directory.

When a file name is specified on an FFI function, Net.Data attempts to locate
the file by searching each of the paths listed in FFI_PATH, starting from the
first path that is specified. Net.Data uses the first copy that it finds. If the file
is not found, then Net.Data attempts to find the file in the current working
directory of the process or thread in which Net.Data is running.

Example: Net.Data uses the FFI_PATH configuration statement to locate a file

The FFI_PATH contains the following directories:
FFI_PATH /macros;/macros/org1;/macros/org2

And, the file is located in both the current directory and /macros/org1. If the
function call is:
DTWF_READ("myfile.txt")

Net.Data will use /macros/org1/myfile.txt.

If the DTWF_READ function is being used to read an existing file, and a file
name of myfile.txt is specified, then Net.Data searches the directories
/macros, /macros/org1 and /macros/org2 for the file, assuming that the
FFI_PATH contains the list of paths specified above.

Determining the Current Directory:

The current directory for Net.Data depends on the configuration of your Web
server:
v If you are using CGI, the current directory is the directory that Net.Data is

running from.
v If you are using a Web server API, the current directory can vary. If the

server’s default request routing or resource mapping is changed, the current
directory might be changed, also.

Recommendations for specifying flat file access:

Use the following recommendations to ensure that Net.Data can access flat file
data sources.
v When using the DTWF_OPEN function to create flat files, ensure that you

specify a directory path that is in FFI_PATH or that you know what the

Chapter 3. Net.Data Built-in Functions 299

current directory is. If you do not specify a directory, Net.Data attempts to
create the file in the current working directory.

v If you include directories in the filename parameter, specify the full path that
matches one of the paths in FFI_PATH because Net.Data does not search
sub-directories within directories specified in FFI_PATH.

v Use absolute paths for the filename parameter, especially if you are using a
Web server API.

Flat File Configuration Rules
Use the following rules when adding or updating the FFI_PATH in the
Net.Data initialization file:
v Path statements in FFI_PATH must contain valid printable characters. FFI

does not allow paths that include a question mark (?) or double quotes (“”).
v All directories and sub-directories that are used with the filename parameter

in the macro must be specified in the FFI_PATH. Sub-directories of the
paths listed in filename are not searched unless explicitly specified in
FFI_PATH.

v Use absolute paths for the FFI_PATH statement.

Security Recommendations
You can specify which files FFI functions can access with the FFI_PATH
statement in the Net.Data initialization file. FFI only searches the paths listed
in the statement, so files in other directories are protected from unauthorized
access.

For example, you can specify an FFI_PATH similar to the one below,
designating directories for public or guest user IDs.
FFI_PATH C:\public;E:\WWW;E:\guest;A:

The following list provides recommendations for making your flat files secure:
v Choose which directories are appropriate to use for flat file operations.

These directories need to be added to the FFI_PATH to limit searching to
those directories.

v Use care letting people perform DTWF_REMOVE or other export
operations in the macro to prevent people from removing or altering files
with extensions .dll and .cmd that you might have in the current directory.

v Take appropriate steps to safeguard the files on the system by using
reasonable control over what macros are added to the system.

v Do not specify a path in FFI_PATH that lets anonymous FTP users write to
the path. If you do, somebody can put a Net.Data macro on the system that
allows actions that were not previously allowed.

v Do not add the path of the Net.Data initialization file to the FFI_PATH.

300 IBM
®

Net.Data: Reference

Authorization Requirement
Ensure that the user ID under which Net.Data executes has access rights to
files used by the FFI built-in functions. See the section on specifying Web
server access rights to Net.Data files in the configuration chapter of Net.Data
Administration and Programming Guide for more information.

Flat File Interface Delimiters
In order to improve performance, you can keep the Net.Data tabular output
from a series of SQL requests in a flat file. You can retrieve the flat file in
subsequent requests, instead of re-issuing the SQL requests.

Net.Data flat files can be created from Net.Data tables and Net.Data tables can
be built from flat files. In order to make the transformations between the
tables and flat files, you must define the mapping between columns in a table
and records in a flat file. A delimiter is a flag or separator that FFI uses when
dividing the file into parts (such as columns of a row) according to the
requested transform. Delimiters provide a method for defining how portions
of records in a flat file can be separated and mapped to columns in a table,
and how columns in a table can be mapped to records in a flat file.

There are two types of delimiters:

New-line character (ASCIITEXT)
Use this transformation when your table is made up of one column.
Net.Data maps each line in the corresponding flat file onto a single
row in the table. In this case, the new-line character in the flat file is
the only delimiter used.

New-line character and delimiter string (DELIMITED)
Use this transformation when your table is made up of multiple
columns. When Net.Data writes row data to a line in a flat file, it
places the delimiter string as a separator between the column entries.
When Net.Data rebuilds a table from a flat file, it uses the delimiter
string to determine how much of each line to place in a column of the
table. In this case, the regular new-line character separates the lines in
the flat file that correspond to rows in the table, and the delimiter
string separates the items within a single line.

For read operations, the delimiter separates the contents of the file into rows
and columns of a table. For write operations, the delimiter indicates the end
of a value in a table row and column. Net.Data passes the delimiter to the FFI
as a Net.Data macro string and does not include a null character at the end of
the characters unless explicitly listed in the DELIMITER parameter.

To use the null character in the delimiter, specify the DELIMITER parameter
as a slash and a zero in double quotes, “\0”, instead of an empty string by

Chapter 3. Net.Data Built-in Functions 301

using two double quotes, “″″”. If you specify the ASCIITEXT transform,
Net.Data uses the new-line character as the delimiter and ignores any
requested delimiter.

Undesirable changes to a file can occur if you use a different delimiter for
write operations than for read operations. Net.Data writes the file with the
new delimiter.

The maximum length of a delimiter is 256 characters.

Locking Files
You can lock flat files using the DTWF_OPEN and DTWF_CLOSE functions.
With these functions, Net.Data reserves a flat file so that no other applications
can read or update the file.

To lock a file, use the DTWF_OPEN function. This function ensures the file is
unavailable to other applications and prevents the file from changing between
the time it is read and updated.

To free the file, use the DTWF_CLOSE function. This function releases the file
so that other applications can read or update the file.

FFI Built-in Functions
v “DTWF_APPEND” on page 303
v “DTWF_CLOSE” on page 306
v “DTWF_DELETE” on page 308
v “DTWF_INSERT” on page 311
v “DTWF_OPEN” on page 314
v “DTWF_READ” on page 316
v “DTWF_READFILE” on page 320
v “DTWF_REMOVE” on page 323
v “DTWF_SEARCH” on page 325
v “DTWF_UPDATE” on page 329
v “DTWF_WRITE” on page 333

302 IBM
®

Net.Data: Reference

|

DTWF_APPEND

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Writes the contents of a Net.Data table to the end of a text file.

Format
@DTWF_APPEND(filename, transform, delimiter, table, retry, rows)
@DTWF_APPEND(filename, transform, delimiter, table, retry)
@DTWF_APPEND(filename, transform, delimiter, table)

Parameters

Table 168. DTWF_APPEND Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file to which the
variable’s contents are being added. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string transform IN The format of the file:

v ASCIITEXT - writes the table to the
file with a new-line character between
column values and ignores the
delimiter parameter.

v DELIMITED - writes the table to the
file with the delimiter specified in the
delimiter parameter.

A new-line character in a file indicates
the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED
transforms.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

Chapter 3. Net.Data Built-in Functions 303

Table 168. DTWF_APPEND Parameters (continued)

Data Type Parameter Use Description

table table IN The table variable from which the
records are read.

For non-OS/400 users: The maximum
length of a row in an FFI table is 16383
characters. This limit includes a null
character for each column in the
Net.Data macro table.

integer retry IN The number of times to retry if the file
cannot be appended to immediately. The
default is not to retry.

integer rows IN The maximum number of rows from
table to append. The default is to
append all the rows. Specifying 0
appends all rows.

Return Codes

Table 169. DTWF_APPEND Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

2000 A flat file interface built-in function could not find the
specified file.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

304 IBM
®

Net.Data: Reference

Table 169. DTWF_APPEND Return Codes (continued)

Return Code Explanation

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Usage Notes
The current contents of a file affect the results of using DTWF_APPEND,
especially the contents of the last column of the last row. If a new-line
character follows the last column value of the last row of the file, appended
data is placed in a new row. Otherwise, appended data becomes part of the
last row of the file. If the file to be appended does not exist, a file is created.

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE

%}
@DTWF_APPEND(myFile, "DELIMITED", " ;", myTable)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE

%}
@DTWF_APPEND(myFile, "ASCIITEXT", " ;", myTable)

Example 3:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE

%}
@DTWF_APPEND(myFile, "ASCIITEXT", " ;", myTable, "0", "10")

Chapter 3. Net.Data Built-in Functions 305

|

DTWF_CLOSE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Closes a file opened by DTWF_OPEN.

Format
@DTWF_CLOSE(filename, retry)
@DTWF_CLOSE(filename)

Parameters

Table 170. DTWF_CLOSE Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file to close. On
successful completion of the call, this
parameter returns the fully qualified file
name.

integer retry IN The number of times to retry if the file
cannot be closed immediately. The
default is not to retry.

Return Codes

Table 171. DTWF_CLOSE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

2002 A flat file interface built-in function could not close the
specified file because it was not opened by this macro
invocation.

306 IBM
®

Net.Data: Reference

Table 171. DTWF_CLOSE Return Codes (continued)

Return Code Explanation

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

Examples
Example 1:
@DTWF_CLOSE(myFile, "5")

Chapter 3. Net.Data Built-in Functions 307

||
|
|
|

DTWF_DELETE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Deletes lines from a text file.

Format
@DTWF_DELETE(filename, transform, delimiter, retry, rows, startline)
@DTWF_DELETE(filename, transform, delimiter, retry, rows)
@DTWF_DELETE(filename, transform, delimiter, retry)
@DTWF_DELETE(filename, transform, delimiter)

Parameters

Table 172. DTW_DELETE Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file whose records are
to be deleted. On successful completion
of the call, this parameter returns the
fully qualified file name.

string transform IN The format of the file:

v ASCIITEXT - writes the table to the
file with a new-line character between
column values and ignores the
delimiter parameter.

v DELIMITED - writes the table to the
file with the delimiter specified in the
delimiter parameter.

A new-line character in a file indicates
the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED
transforms.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

integer retry IN The number of times to retry if the
records cannot be deleted immediately.
The default is not to retry.

integer rows IN The maximum number of rows to
delete. The default is to delete all the
rows. Specifying 0 deletes all rows.

308 IBM
®

Net.Data: Reference

|

Table 172. DTW_DELETE Parameters (continued)

Data Type Parameter Use Description

integer startline INOUT The line number from which to begin
deleting. A value of 1 means to begin
deleting at the first line. If this value is
greater than the number of lines in the
file, an error is returned and the value
of this parameter is changed to the
number of lines in the file. The default
is 1.

Return Codes

Table 173. DTWF_DELETE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

2000 A flat file interface built-in function could not find the
specified file.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Chapter 3. Net.Data Built-in Functions 309

||
|
|
|
|
|
|
|

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "5000"
myRows = "2"

%}
@DTWF_DELETE(myFile, "Delimited", "|", myWait, myRows)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myStart = "1"
myRows = "2"

%}
@DTWF_DELETE(myFile, "Asciitext", "|", "0", myRows, myStart)

310 IBM
®

Net.Data: Reference

DTWF_INSERT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Inserts lines into an existing text file.

Format
@DTWF_INSERT(filename, transform, delimiter, table, retry, rows, startline)
@DTWF_INSERT(filename, transform, delimiter, table, retry, rows)
@DTWF_INSERT(filename, transform, delimiter, table, retry)
@DTWF_INSERT(filename, transform, delimiter, table)

Parameters

Table 174. DTWF_INSERT Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file to which records
are inserted. On successful completion
of the call, this parameter returns the
fully qualified file name.

string transform IN The format of the file:

v ASCIITEXT - writes the table to the
file with a new-line character between
column values and ignores the
delimiter parameter.

v DELIMITED - writes the table to the
file with the delimiter specified in the
delimiter parameter.

A new-line character in a file indicates
the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED
transforms.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

Chapter 3. Net.Data Built-in Functions 311

|

Table 174. DTWF_INSERT Parameters (continued)

Data Type Parameter Use Description

table table IN The table variable from which lines are
inserted into the file.

For non-OS/400 users: The maximum
length of a row in an FFI table is 16383
characters. This limit includes a null
character for each column in the
Net.Data macro table.

integer retry IN The number of times to retry if the file
cannot be written to immediately. The
default is not to retry.

integer rows IN The maximum number of rows to insert
from table. The default is to insert all the
rows. A value of 0 inserts all the rows.

integer startline INOUT The line number from which to begin
inserting. If this value is greater than the
number of lines in the file, an error is
returned and the value of this parameter
is changed to the number of lines in the
file. Specifying 0 means to insert starting
at the beginning of the file. The default
is 0.

Return Codes

Table 175. DTWF_INSERT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

312 IBM
®

Net.Data: Reference

|
|
|
|
|
|
|
|

Table 175. DTWF_INSERT Return Codes (continued)

Return Code Explanation

1007 A parameter contains a value which is not valid.

2000 A flat file interface built-in function could not find the
specified file.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "3000"

%}
@DTWF_INSERT(myFile, "Delimited", "|", myTable, myWait)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myStart = "1"
myRows = "2"

%}
@DTWF_INSERT(myFile, "Asciitext", "|", myTable, "0", myRows, myStart)

Chapter 3. Net.Data Built-in Functions 313

DTWF_OPEN

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Opens a text file.

Format
@DTWF_OPEN(filename, mode, retry)
@DTWF_OPEN(filename, mode)

Parameters

Table 176. DTWF_OPEN Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file to open. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string mode IN The type of access requested:

v r - opens an existing file for reading.

v w - creates a file for writing.
(Destroys existing file of same name,
if it exists.)

v a - opens a file for appending.
Net.Data creates the file if it is not
found.

v r+ - opens an existing file for reading
and writing.

v w+ - creates a file for reading and
writing. (Destroys existing file of
same name, if it exists.)

v a+ - opens a file in append mode for
reading or appending. Net.Data
creates the file if it is not found.

integer retry IN The number of times to retry if the file
cannot be opened immediately. The
default is not to retry.

314 IBM
®

Net.Data: Reference

Return Codes

Table 177. DTWF_OPEN Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

2000 A flat file interface built-in function could not find the
specified file.

2001 A flat file interface built-in function could not open the
specified file because it was in use by this or another process,
and could not be shared in the specified mode.

Usage Notes
1. When the file does not exist, an absolute path for the filename should be

specified, and the directory where the file is to be created must match a
directory specified in FFI_PATH. If an absolute path is not used, the file
will be opened in the current working directory.

2. DTWF_OPEN keeps the file open, otherwise, the file is closed after each
flat file operation.

3. Use DTWF_OPEN to reduce the number of times a file is open. If
DTWF_OPEN is not used, the file is closed after each flat file operation.
The file is left open until it is closed using DTWF_CLOSE or macro
processing ends.

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myMode = "r+"

%}
@DTWF_OPEN(myFile, myMode, "1000")

Chapter 3. Net.Data Built-in Functions 315

DTWF_READ

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Reads lines from a text file into a Net.Data table.

Format
@DTWF_READ(filename, transform, delimiter, table, retry, lines, startline,
columns)
@DTWF_READ(filename, transform, delimiter, table, retry, lines, startline)
@DTWF_READ(filename, transform, delimiter, table, retry, lines)
@DTWF_READ(filename, transform, delimiter, table, retry)
@DTWF_READ(filename, transform, delimiter, table)

Parameters

Table 178. DTWF_READ Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file whose records are
read into a table variable. On successful
completion of the call, this parameter
returns the fully qualified file name.

string transform IN The format of the file:

v ASCIITEXT - writes the table to the
file with a new-line character between
column values and ignores the
delimiter parameter.

v DELIMITED - writes the table to the
file with the delimiter specified in the
delimiter parameter.

A new-line character in a file indicates
the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED
transforms.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

316 IBM
®

Net.Data: Reference

|
|

|

|

Table 178. DTWF_READ Parameters (continued)

Data Type Parameter Use Description

table table OUT The table variable into which the file
records are read.

For non-OS/400 users: The maximum
length of a row in an FFI table is 16383
characters. This limit includes a null
character for each column in the
Net.Data macro table.

integer retry IN The number of times to retry if the file
cannot be read immediately. The default
is not to retry.

integer lines INOUT The number of lines in the file to read
into the table. A value of 0 means to
read to the end of the file or until the
table is full; this is the default. Upon
successful completion of this funciton
call, the number of rows in the resulting
table is returned.

integer startline IN The line in the file from which to start
reading. The default is to start reading
at the first line.

integer columns OUT Returns the number of columns in the
table.

Return Codes

Table 179. DTWF_READ Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

Chapter 3. Net.Data Built-in Functions 317

|

Table 179. DTWF_READ Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

1010 Data was written to the table until it was full, and the
remainder of the data was discarded.

2000 A flat file interface built-in function could not find the
specified file.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "1000"

%}
@DTWF_READ(myFile, "DELIMITED", ";", myTable, myWait)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "0"
myRows = "0"
myStartrow = "1"
myColumns = ""

%}
@DTWF_READ(myFile, "DELIMITED", ";", myTable, myWait, myRows,

myStartrow, myColumns)

Example 3:

318 IBM
®

Net.Data: Reference

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

%}
@DTWF_READ(myFile, "ASCIITEXT", ";", myTable)
@DTW_TB_TABLE(myTable,"BORDER","")

Chapter 3. Net.Data Built-in Functions 319

DTWF_READFILE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X

Purpose
Use this function to read in a file and assign it to a variable. The function
searches FFI_PATH for the specified file.

This function can be used to pass a large amount of data to another function
or stored procedure. If the file data contains NULL characters, it might be
truncated when the variable is referenced in the macro.

Format
@DTWF_READFILE(fileIn,varOut)

Parameters

Table 180. DTW_READFILE Parameters

Data Type Parameter Use Description

string fileIn IN The name of the file to read in.

string varOut OUT The variable that is assigned the
contents of the file.

Return Codes

Table 181. DTWF_READFILE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

320 IBM
®

Net.Data: Reference

|
|

|
|
|

Table 181. DTWF_READFILE Return Codes (continued)

Return Code Explanation

1007 A parameter contains a value which is not valid.

1010 Data was written to the table until it was full, and the
remainder of the data was discarded.

2000 A flat file interface built-in function could not find the
specified file.

2001 A flat file interface built-in function could not open the
specified file because it was in use by this or another process,
and could not be shared in the specified mode.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Examples
Example 1: A file is read and displayed in all caps.
%HTML(report){
@DTWF_READFILE("sample.html",sampfile)
@DTW_UPPERCASE(sampfile)
%}

Example 2: In this example, a file is uploaded to the server, then is read in
using DTWF_READFILE and passed to a stored procedure for processing and
display in an XML browser.

In the configuration file:
DTW_UPLOAD_DIR /usr/lpp/internet/server_root/tmplobs
FFI_PATH /usr/lpp/internet/server_root/tmplobs

In the macro:
%DEFINE{

DATABASE="SALES_DB"
%}

%FUNCTION(DTW_SQL) dxx_GenXML(IN CLOB dad, IN CHAR(31) result_tab,
IN INTEGER ovType, IN VARCHAR(1024) over,

Chapter 3. Net.Data Built-in Functions 321

|
|
|
|
|
|

IN INTEGER MaxRow, OUT INTEGER NumRow,
OUT INTEGER dxxRC, OUT VARCHAR(99) dxxMSG) {

CALL db2xml!dxxGenXML
%REPORT{

%ROW{
@DTW_rHTMLENCODE(V1)

%}
%}
%MESSAGE{

default: "" : continue
%}

%}

%HTML(input){
<form enctype="multipart/form-data" method="post" action="report">

<p>File to upload:</p>
<p><input type="file" name="dad_file" /></p>
<p><input type=submit /></p>

</form>
%}

%XML(report){
@DTWF_READFILE(DAD_file, DAD)

<xml version="1.0" ?>
<xml-stylesheet type="text/xsl" href="ndTable.xsl" ?>

<XMLBlock>
@dxx_GenXML(DAD, "result_tab", "0", "" , "1", numRows, dxxRC, dxxMSG)
</XMLBlock>

%}

322 IBM
®

Net.Data: Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

DTWF_REMOVE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Deletes an entire file.

Format
@DTWF_REMOVE(filename, retry)
@DTWF_REMOVE(filename)

Parameters

Table 182. DTWF_REMOVE Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file to delete. On
successful completion of the call, this
parameter returns the fully qualified file
name.

integer retry IN The number of times to retry if the file
cannot be deleted immediately. The
default is not to retry.

Return Codes

Table 183. DTWF_REMOVE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

2000 A flat file interface built-in function could not find the
specified file.

Chapter 3. Net.Data Built-in Functions 323

Table 183. DTWF_REMOVE Return Codes (continued)

Return Code Explanation

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Examples
Example 1:
%DEFINE myFile = "c:/private/myfile"
@DTWF_REMOVE(myFile)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myWait = "2000"

%}
@DTWF_REMOVE(myFile, myWait)

324 IBM
®

Net.Data: Reference

DTWF_SEARCH

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Searches a text file for a string, returning the results into a Net.Data table.

Format
@DTWF_SEARCH(filename, transform, delimiter, table, searchFor, retry,
linesToSearch, startline)
@DTWF_SEARCH(filename, transform, delimiter, table, searchFor, retry,
linesToSearch)
@DTWF_SEARCH(filename, transform, delimiter, table, searchFor, retry)
@DTWF_SEARCH(filename, transform, delimiter, table, searchFor)

Parameters

Table 184. DTWF_SEARCH Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file to search. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string transform IN The format of the file:

v ASCIITEXT - writes the table to the
file with a new-line character between
column values and ignores the
delimiter parameter.

v DELIMITED - writes the table to the
file with the delimiter specified in the
delimiter parameter.

A new-line character in a file indicates
the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED
transforms.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

Chapter 3. Net.Data Built-in Functions 325

|
|

|
|

Table 184. DTWF_SEARCH Parameters (continued)

Data Type Parameter Use Description

table table OUT The table variable into which the search
results are placed. Three columns are
returned:

v The line in which the match was
found

v The field in which the match was
found (for ASCIITEXT transform, this
is always 1)

v The value of the field that contained
the search string

For non-OS/400 users: The maximum
length of a row in an FFI table is 16383
characters. This limit includes a null
character for each column in the
Net.Data macro table.

string searchFor IN The string of characters to search for.

integer retry IN The number of times to retry if the file
cannot be searched immediately. The
default is not to retry.

integer linesToSearch INOUT The number of lines in the file to search.
A value of 0 means all the lines in the
file are searched or until the table is full;
this is the default. Upon successful
completion, the number of rows in the
resulting table is returned by this
parameter.

integer startline IN The line in the file to start searching
from. The default is 1, which begins the
search at the first record.

Return Codes

Table 185. DTWF_SEARCH Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

326 IBM
®

Net.Data: Reference

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

Table 185. DTWF_SEARCH Return Codes (continued)

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

1010 Data was written to the table until it was full, and the
remainder of the data was discarded.

2000 A flat file interface built-in function could not find the
specified file.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Usage Notes
1. The table that is returned for DTWF_SEARCH has three columns. The first

two columns contain the row and the column number where the match is
found; the last column contains the column value that contains the
characters that are specified in the SearchFor parameter. For example, if the
fourth row of the file contains matching characters in column three, the
returned table has a row with the number 4 in the first column to indicate
the row of the file that it came from; it has a number 3 in the second
column to indicate which column of the file contains a match; and it has
the complete column value in the third column.

2. The SearchFor parameter cannot include the contents of the delimiter
parameter.

Chapter 3. Net.Data Built-in Functions 327

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "1000"
mySearch = "0123456789abcdef"

@DTWF_SEARCH(myFile, "DELIMITED", ";",
myTable, mySearch, myWait)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
mySearch = "answer:"
myWait = "0"
myRows = "0"
myStartrow = "1"

%}
@DTWF_SEARCH(myFile, "DELIMITED", ";", myTable,

mySearch, myWait, myRows, myStartrow)

328 IBM
®

Net.Data: Reference

DTWF_UPDATE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Update lines in a text file with data from a Net.Data table.

Format
@DTWF_UPDATE(filename, transform, delimiter, table, retry, rows,
startline)
@DTWF_UPDATE(filename, transform, delimiter, table, retry, rows)
@DTWF_UPDATE(filename, transform, delimiter, table, retry)
@DTWF_UPDATE(filename, transform, delimiter, table)

Parameters

Table 186. DTWF_UPDATE Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file whose records are
updated from a table variable. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string transform IN The format of the file:

v ASCIITEXT - writes the table to the
file with a new-line character between
column values and ignores the
delimiter parameter.

v DELIMITED - writes the table to the
file with the delimiter specified in the
delimiter parameter.

A new-line character in a file indicates
the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED
transforms.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

Chapter 3. Net.Data Built-in Functions 329

|
|

Table 186. DTWF_UPDATE Parameters (continued)

Data Type Parameter Use Description

table table IN The table variable from which the file
records are updated.

For non-OS/400 users: The maximum
length of a row in an FFI table is 16383
characters. This limit includes a null
character for each column in the
Net.Data macro table.

integer retry IN The number of times to retry if the file
cannot be written to immediately. The
default is not to retry.

integer rows IN The number of rows in the table to use
when updating the file. A value of 0
means to use all the rows when
updating the file; this is the default.
Note that only existing lines in the file
are updated, no lines are added.

integer startline INOUT The first file record to update. The
default is 1, which means to start
updating at the beginning of the file. If
the value is greater than the number of
lines in a file, the value is changed to
indicate the number of the last line in
the file and an error is returned.

Return Codes

Table 187. DTWF_UPDATE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

330 IBM
®

Net.Data: Reference

|
|
|
|
|
|

|
|
|
|
|
|
|

Table 187. DTWF_UPDATE Return Codes (continued)

Return Code Explanation

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

2000 A flat file interface built-in function could not find the
specified file.

2001 A flat file interface built-in function could not open the
specified file because it was in use by this or another process,
and could not be shared in the specified mode.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Usage Notes
If the file does not exist, an absolute path for the filename should be specified,
and the directory where the file is to be created must match a directory
specified in FFI_PATH. If an absolute path is not used, the file will be opened
in the current working directory.

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "1500"
myRows = "2"

%}
@DTWF_UPDATE(myFile, "Delimited", "|", myTable, myWait, myRows)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE
myStart = "1"

Chapter 3. Net.Data Built-in Functions 331

myRows = "2"
%}
@DTWF_UPDATE(myFile, "Asciitext", "|", myTable, "0", myRows, myStart)

332 IBM
®

Net.Data: Reference

DTWF_WRITE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X X X X X X

Purpose
Writes the contents of a Net.Data table to a text file.

Format
@DTWF_WRITE(filename, transform, delimiter, table, retry, rows, startline)
@DTWF_WRITE(filename, transform, delimiter, table, retry, rows)
@DTWF_WRITE(filename, transform, delimiter, table, retry)
@DTWF_WRITE(filename, transform, delimiter, table)

Parameters

Table 188. DTWF_WRITE Parameters

Data Type Parameter Use Description

string filename INOUT The name of the file the records of the
table variable are written to. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string transform IN The format of the file:

v ASCIITEXT - writes the table to the
file with a new-line character between
column values and ignores the
delimiter parameter.

v DELIMITED - writes the table to the
file with the delimiter specified in the
delimiter parameter.

A new-line character in a file indicates
the end of a row of a Net.Data macro
table for ASCIITEXT and DELIMITED
transforms.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

Chapter 3. Net.Data Built-in Functions 333

|

Table 188. DTWF_WRITE Parameters (continued)

Data Type Parameter Use Description

table table IN The table variable used to export rows
to the file.

For non-OS/400 users: The maximum
length of a row in an FFI table is 16383
characters. This limit includes a null
character for each column in the
Net.Data macro table.

integer retry IN The number of times to retry if the file
cannot be written to immediately. The
default is to not retry.

integer rows IN The number of rows in table to write
into the file. A value of 0 means that all
rows in table are written into the file;
this is the default.

integer startline INOUT The line number in the file from which
to begin writing. A value of 1 means to
start at the first line in the file; this is
the default. If a value beyond the end of
the file is specified, an error is returned
and this parameter is set to the number
of lines in the file.

Return Codes

Table 189. DTWF_WRITE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

334 IBM
®

Net.Data: Reference

|
|
|
|

|
|
|
|
|
|
|

Table 189. DTWF_WRITE Return Codes (continued)

Return Code Explanation

1007 A parameter contains a value which is not valid.

2000 A flat file interface built-in function could not find the
specified file.

2003 A flat file interface built-in function could not read a row of
data into a table variable because the number of bytes in the
row exceeded the maximum supported number of bytes.

2004 A flat file interface built-in function was attempting to find a
file, but encountered a path in the FFI_PATH configuration
file variable that was longer than the maximum supported
number of bytes, which is 4095.

2005 A call to a system function failed.

2006 A flat file interface built-in function could not access the
specified file because it was in use by this or another process
and could not be shared in the specified mode.

Usage Notes
v If the file does not exist, an absolute path for the filename should be

specified, and the directory where the file is to be created must match a
directory specified in FFI_PATH.

v If an absolute path is not used, the file will be opened in the current
working directory.

v If a file has not been previously opened, DTW_WRITE() will clear the file of
all of its contents before writing the data from the passed-in table to the
file.

Examples
Example 1:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE

%}
@DTWF_WRITE(myFile, "DELIMITED", ";", myTable)

Example 2:
%DEFINE {

myFile = "c:/private/myfile"
myTable = %TABLE

%}
@DTWF_WRITE(myFile, "ASCIITEXT", ";", myTable, "5000")

Example 3:

Chapter 3. Net.Data Built-in Functions 335

|
|
|

|
|

|
|
|

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

%}
@DTWF_WRITE(myFile, "ASCIITEXT", ";", myTable, "5000", "10", "50")

336 IBM
®

Net.Data: Reference

Web Registry Functions

A Web registry is a file with a key maintained by Net.Data to allow you to
add, retrieve, and delete entries easily. You can create multiple Net.Data Web
registries on a single system. Each registry has a name and can contain
multiple entries. Net.Data provides functions to maintain registries and the
entries they contain.
v “DTWR_ADDENTRY” on page 338
v “DTWR_CLEARREG” on page 340
v “DTWR_CLOSEREG” on page 342
v “DTWR_CREATEREG” on page 343
v “DTWR_DELENTRY” on page 345
v “DTWR_DELREG” on page 347
v “DTWR_LISTREG” on page 348
v “DTWR_LISTSUB” on page 350
v “DTWR_OPENREG” on page 352
v “DTWR_RTVENTRY” on page 354
v “DTWR_UPDATEENTRY” on page 356

Restrictions:

v Do not use asterisks (*) for the registry, registryVariable, and registryData
parameters when using OS/2.

v Each parameter passed to a Web Registry function is limited to a maximum
of 2048 characters.

Chapter 3. Net.Data Built-in Functions 337

DTWR_ADDENTRY

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Adds an entry to a Web registry.

Format
@DTWR_ADDENTRY(registry, registryVariable, registryData, index)
@DTWR_ADDENTRY(registry, registryVariable, registryData)

Parameters

Table 190. DTWR_ADDENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to which the
entry is added.

string registryVariable IN The value of the registryVariable string
portion of the registry entry to add.

string registryData IN The value of the registryData string
portion of the registry entry to add.

string index IN The value of the index portion of the
registryVariable string in an indexed
entry to add. This parameter is optional.
If specified, an indexed entry is added
to the specified registry.

Return Codes

Table 191. DTWR_ADDENTRY Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

338 IBM
®

Net.Data: Reference

Table 191. DTWR_ADDENTRY Return Codes (continued)

Return Code Explanation

3003 A Web registry built-in function could not add an entry to the
specified registry because the specified entry already exists.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3006 A Web registry built-in function could not create the specified
registry because a path in the registry name does not exist.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Examples
Example 1:
@DTWR_ADDENTRY("Myregistry", "Jones", "http://Advantis.com/xJones/webproj")

Example 2:
@DTWR_ADDENTRY("URLLIST", "SMITH", "http://www.ibm.com/software/",

"WORK_URL,")

Chapter 3. Net.Data Built-in Functions 339

DTWR_CLEARREG

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Clears entries from a Web registry.

Format
@DTWR_CLEARREG(registry)

Parameters

Table 192. DTWR_CLEARREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to clear.

Return Codes

Table 193. DTWR_CLEARREG Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3006 A Web registry built-in function could not create the specified
registry because a path in the registry name does not exist.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Examples
Example 1:

340 IBM
®

Net.Data: Reference

@DTWR_CLEARREG("Myregistry")

Chapter 3. Net.Data Built-in Functions 341

DTWR_CLOSEREG

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Closes a Web registry

Format
@DTWR_CLOSEREG(registry)

Parameters

Table 194. DTWR_CLOSEREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to close.

Restriction: Do not use special
characters such as the asterisk (*) and
the backslash (\) in Web registry names.

Return Codes

Table 195. DTWR_CLOSEREG Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

Examples
Example 1: Close a registry
@DTWR_CLOSEREG("/qsys.lib/mylib.lib/myreg.file")

342 IBM
®

Net.Data: Reference

DTWR_CREATEREG

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Creates a new Web registry.

Format
@DTWR_CREATEREG(registry, security)
@DTWR_CREATEREG(registry)

Parameters

Table 196. DTWR_CREATEREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to create.

Restriction: Do not use special
characters such as the asterisk (*) and
the backslash (\) in Web registry names.

string security IN The type of security with which to
create registry. On UNIX operating
systems, the default security is the same
as the directory where the registry is
created. Specify security for the three
security groups: user, group, and public.
R gives read permission, W gives write
permission, and X give execute
permission. For example, to give all
three groups full authority, specify *RWX,
*RWX, *RWX for this parameter. This
parameter it optional.

Return Codes

Table 197. DTWR_CREATEREG Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

Chapter 3. Net.Data Built-in Functions 343

Table 197. DTWR_CREATEREG Return Codes (continued)

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

3002 A Web registry built-in function could not delete the specified
registry.

3006 A Web registry built-in function could not create the specified
registry because a path in the registry name does not exist.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

3008 A Web registry built-in function could not create the specified
registry for unknown reasons.

Examples
Example 1:
@DTWR_CREATEREG("myRegistry")

Example 2:
@DTWR_CREATEREG("URLLIST", "*RWX, *RWX, *R")

344 IBM
®

Net.Data: Reference

DTWR_DELENTRY

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Deletes an entry from a Web registry.

Format
@DTWR_DELENTRY(registry, registryVariable, index)
@DTWR_DELENTRY(registry, registryVariable)

Parameters

Table 198. DTWR_DELENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry from which the
entry is removed.

string registryVariable IN The value of the registryVariable string
portion of the entry to remove.

string index IN The value of the index portion of the
registryVariable string in an indexed
entry. This is an optional parameter. If
specified, the indexed entry is removed
from the registry.

Return Codes

Table 199. DTWF_DELENTRY Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

Chapter 3. Net.Data Built-in Functions 345

Table 199. DTWF_DELENTRY Return Codes (continued)

Return Code Explanation

3004 A Web registry built-in function could not remove or retrieve
an entry from the specified registry because the specified
entry does not exist.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Examples
Example 1:
@DTWR_DELENTRY("Myregistry", "Jones")

Example 2:
@DTWR_DELENTRY("URLLIST", "SMITH", "WORK_URL")

346 IBM
®

Net.Data: Reference

DTWR_DELREG

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Deletes a Web registry

Format
@DTWR_DELREG(registry)

Parameters

Table 200. DTWR_DELREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to delete.

Return Codes

Table 201. DTWR_DELREG Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Examples
Example 1:
@DTWR_DELREG("Myregistry")

Chapter 3. Net.Data Built-in Functions 347

DTWR_LISTREG

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Lists the contents of a Web registry.

Format
@DTWR_LISTREG(registry, registryTable)

Parameters

Table 202. DTWR_LISTREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to list.

table registryTable OUT The name of the table variable in which
the registry entries are placed.

Return Codes

Table 203. DTWR_LISTREG Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1004 A parameter passed on a function call, required to be a
Net.Data macro table variable, was of a different variable
type.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

348 IBM
®

Net.Data: Reference

Table 203. DTWR_LISTREG Return Codes (continued)

Return Code Explanation

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Usage Notes
DTWR_LISTREG returns information about the registry entries in an OUT
table variable passed by the user. The table variable is defined in the user
macro before being passed as a parameter to the FUNCTION block for the
LISTREG registry operation.

If the user defined the table variable using the ALL option for the maximum
number of rows for the table, this operation lists all available registry entries
in the table, one for each table row. On the other hand if the user specified a
value X for the maximum number of table rows, then if there are more then X
entries in the specified registry only the first X entries are listed and an error
code is sent back to indicate that only a partial listing could be done because
not enough table rows were available to list additional entries. All registry
entries are listed if the value X exceeds the number of available entries in the
specified registry.

There are always 2 columns in the table. The Column headers for the table are
set to REGISTRY_VARIABLE and REGISTRY_DATA.

Examples
Example 1:
%DEFINE RegistryTable = %TABLE(ALL)

@DTWR_LISTREG("URLLIST", RegistryTable)

Chapter 3. Net.Data Built-in Functions 349

DTWR_LISTSUB

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X

Purpose
Lists immediate subkey entries in a Web registry.

Format
@DTWR_LISTSUB(registry, registryTable)

Parameters

Table 204. DTWR_LISTSUB Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to list.

table registryTable OUT The name of the table variable in which
the registry entries are placed.

Return Codes

Table 205. DTWR_LISTSUB Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

350 IBM
®

Net.Data: Reference

Usage Notes
1. DTWR_LISTSUB returns information about the registry entries in an OUT

table parameter passed by the user. The table variable is defined in the
macro before being passed as a parameter to the LISTSUB registry
operation.
If the user has defined the table variable using the ALL option for the
maximum number of rows for the table, this operation lists all available
registry entries in the table, one for each table row. On the other hand, if
the user specified a value X for the maximum number of table rows then
if there are more then X entries in the specified registry only the first X
entries are listed and an error code is sent back to indicate that only a
partial listing could be done because not enough table rows are available
to list additional entries. All registry entries are listed if the value X
exceeds the number of available entries in the specified registry. The
number of columns in the table is always one.
The column header for the table is set to ″REGISTRY_SUBKEY″.

2. This function is only valid on operating system that are compatible
Windows 95 System Registries.

Examples
Example 1:
%DEFINE RegistryTable = %TABLE(ALL)

@DTWR_LISTSUB("URLLIST", RegistryTable)

Chapter 3. Net.Data Built-in Functions 351

DTWR_OPENREG

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Opens a Web registry.

Format
@DTWR_OPENREG(registry, commit)
@DTWR_OPENREG(registry)

Parameters

Table 206. DTWR_OPENREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to open.

string commit IN A single symbol or literal string
specifying whether the registry is
opened under commitment control or
not. The possible values are:

Y Open the registry under
commitment control.

N Do not open the registry under
commitment control.

The default is N

Return Codes

Table 207. DTWR_OPENREG Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

352 IBM
®

Net.Data: Reference

Table 207. DTWR_OPENREG Return Codes (continued)

Return Code Explanation

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Examples
Example 1: Open the registry under commitment control
@DTWR_OPENREG("/qsys.lib/mylib.lib/myreg.file", "Y")

Chapter 3. Net.Data Built-in Functions 353

DTWR_RTVENTRY

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Retrieves a registry string value from a Web registry.

Format
@DTWR_RTVENTRY(registry, registryVariable, registryData, index)
@DTWR_RTVENTRY(registry, registryVariable, registryData)
@DTWR_rRTVENTRY(registry, registryVariable, index)
@DTWR_rRTVENTRY(registry, registryVariable)

Parameters

Table 208. DTWR_RTVENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry with entries to
retrieve.

string registryVariable IN The value of the registryVariable string
portion of the registry entry whose
registryData string is retrieved.

string registryData OUT Returns the value of the registryData
string portion of the registry entry that
matches the registryVariable.

string index IN The value of the index portion of the
registryVariable string in an indexed
entry whose registryData string is
returned. This is an optional parameter.
If specified, the registryData string of the
indexed entry is returned.

Return Codes

Table 209. DTWR_RTVENTRY Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

354 IBM
®

Net.Data: Reference

Table 209. DTWR_RTVENTRY Return Codes (continued)

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

1007 A parameter contains a value which is not valid.

3004 A Web registry built-in function could not remove or retrieve
an entry from the specified registry because the specified
entry does not exist.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Examples
Example 1:
%DEFINE RegistryData = ""
@DTWR_RTVENTRY("Myregistry", "Jones", RegistryData)

Example 2:
@DTWR_RTVENTRY("URLLIST", "SMITH", RegistryData, "WORK_URL")

Example 3:
@DTWR_rRTVENTRY("Myregistry", "Jones")

Example 4:
@DTWR_rRTVENTRY("URLLIST", "SMITH", "WORK_URL")

Chapter 3. Net.Data Built-in Functions 355

DTWR_UPDATEENTRY

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X X X X

Purpose
Updates a registry string value in the Web registry.

Format
@DTWR_UPDATEENTRY(registry, registryVariable, newData, index)
@DTWR_UPDATEENTRY(registry, registryVariable, newData)

Parameters

Table 210. DTWR_UPDATEENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry with the entry
to update.

string registryVariable IN The value of the registryVariable string
portion of the registry entry to update.

string newData IN The new value for the registryData string
portion of the registry entry to update.

string index IN The value of the index portion of the
registryVariable string in an indexed
entry to update. This is an optional
parameter. If specified, the indexed
entry is updated.

Return Codes

Table 211. DTWR_UPDATEENTRY Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted
of the null-terminating character.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

356 IBM
®

Net.Data: Reference

Table 211. DTWR_UPDATEENTRY Return Codes (continued)

Return Code Explanation

3003 A Web registry built-in function could not add an entry to the
specified registry because the specified entry already exists.

3004 A Web registry built-in function could not remove or retrieve
an entry from the specified registry because the specified
entry does not exist.

3005 A Web registry built-in function could not use the specified
registry because it cannot be found.

3007 A Web registry built-in function could not complete the
specified operation because the requestor does not have the
proper authority to the specified registry.

Usage Notes
The registry entry name corresponding to the value cannot be changed.

Examples
Example 1:
@DTWR_UPDATEENTRY("Myregistry", "Jones", "http://advantis.com/xJones/personal")

Example 2:
@DTWR_UPDATEENTRY("URLLIST", "SMITH", "http://www.ibm.com/software/personal",
"WORK_URL")

Chapter 3. Net.Data Built-in Functions 357

Persistent Macro Functions

The persistent macro functions support transaction processing in Net.Data by
helping you define which macro blocks are persistent within a single
transaction. Use these functions to define the start and end of a transaction,
which HTML blocks are persistent throughout the transaction, the scope of the
variables within the transaction, and whether to commit or rollback changes
within the transaction.
v “DTW_ACCEPT” on page 359
v “DTW_COMMIT” on page 361
v “DTW_ROLLBACK” on page 362
v “DTW_RTVHANDLE” on page 363
v “DTW_STATIC” on page 364
v “DTW_TERMINATE” on page 366

358 IBM
®

Net.Data: Reference

DTW_ACCEPT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Defines the transaction handle used to invoke a persistent macro.

Format
@DTW_ACCEPT(handle, timeout)
@DTW_ACCEPT(handle)

Parameters

Table 212. DTW_ACCEPT Parameters

Data Type Parameter Use Description

string handle IN A variable or literal string specifying a
transaction handle to be used in URLs
for subsequent macro invocations in this
persistent transaction.

integer timeout IN A variable or literal string specifying an
amount of time in seconds for the job
servicing this port to wait for a
response. This value overrides any
timeout value specified on the
DTW_STATIC() function.

Return Codes

Table 213. DTW_ACCEPT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

8200 Macro persistence is not enabled.

8201 A persistent built-in function was called out of sequence.

Chapter 3. Net.Data Built-in Functions 359

Usage Notes
1. Net.Data requires that the transaction handle be included in the URL that

invokes the macro as a response from the Web browser. When a request
comes in to the Web server, the server uses the transaction handle to route
the request to the CGI process that is processing the transaction.
The transaction handle must be called at the start of each HTML block in
the macro until the last logical block, which contains a call to
DTW_TERMINATE(). If either a call to DTW_ACCEPT() or
DTW_TERMINATE() is not found before any text is output to the browser,
a Net.Data error occurs.

2. You can specify a timeout value for this page that overrides the timeout
value specified on the @DTW_STATIC() function. The Web server waits for
specified amount of time (in seconds) for the user to respond to this
request.

3. If this function is called when the macro is not in a persistent state, a
Net.Data error occurs.

4. The URLs containing the transaction handle can be coded as actions on
form push buttons or as hypertext links on the page presented to the
browser.

Examples
Example 1:
%DEFINE handle = ""
@DTW_RTVHANLDE(handle)

%HTML(REPORT){
@DTW_ACCEPT(handle)
...
%}

360 IBM
®

Net.Data: Reference

DTW_COMMIT

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Makes permanent any pending changes made to resources under commitment
control since the last commitment boundary and establishes a new
commitment boundary.

Format
@DTW_COMMIT()

Parameters
None.

Return Codes

Table 214. DTW_COMMIT Return Codes

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

Examples
Example 1: Specifies a commit
@DTW_COMMIT()
%HTML(report){
%}

Chapter 3. Net.Data Built-in Functions 361

DTW_ROLLBACK

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Reestablishes the last commitment boundary as the current commitment
boundary. All changes to resources under commitment control for the process
that Net.Data is running under made since the last commitment boundary are
backed out.

Format
@DTW_ROLLBACK()

Parameters
None.

Return Codes

Table 215. DTW_ROLLBACK Return Codes

Return Code Explanation

1003 An incorrect number of parameters were passed on a function
call.

Examples
Example 1: Specifies a rollback
@DTW_ROLLBACK()
%HTML(report){
%}

362 IBM
®

Net.Data: Reference

DTW_RTVHANDLE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Generates and returns a transaction handle that is unique to this macro across
separate invocations and is calculated based on a combination of thread
information, timestamp, and current user.

Format
@DTW_RTVHANDLE(handle)

Parameters

Table 216. DTW_RTVHANDLE Parameters

Data Type Parameter Use Description

string handle OUT A variable that contains a unique
transaction handle for the current
persistent macro.

Return Codes

Table 217. DTW_RTVHANDLE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter
which was required to be an output parameter.

Usage Notes
The transaction handle can be used to ensure that URLs specified as part of a
persistent transaction are unique to the HTTP server and can be securely
identified as valid requests.

Examples
Example 1: Defines the handle variable used to retrieve the transaction handle
%DEFINE handle = ""
@DTW_RTVHANLDE(handle)

Chapter 3. Net.Data Built-in Functions 363

DTW_STATIC

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Indicates that the entire macro is persistent.

Format
@DTW_STATIC(timeout)
@DTW_STATIC()

Parameters

Table 218. DTW_STATIC Parameters

Data Type Parameter Use Description

integer timeout IN A variable or literal string that specifies
an amount of time, in seconds, that the
process handling this transaction should
wait for a response.

Return Codes

Table 219. DTW_STATIC Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 An incorrect number of parameters were passed on a function
call.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1007 A parameter contains a value which is not valid.

8202 Persistence could not be enabled.

Usage Notes
1. DTW_STATIC should be the first statement in the macro. All variables

defined in the macro after this function call will be persistent across
multiple macro invocations unless specified otherwise and until
DTW_TERMINATE() is called or the process is ended.

364 IBM
®

Net.Data: Reference

2. A timeout value, in seconds, can be specified on the function call to
indicate the amount of time the process Net.Data is running under waits
for a response from the browser. If the timeout value expires, the process
ends, and all changes to resources under commitment control since the last
commitment boundary are rolled back.

3. If a timeout value is specified on a subsequent @DTW_ACCEPT() call,
Net.Data overrides this value with the value in the subsequent call. If a
timeout value is not specified on this call or a subsequent
@DTW_ACCEPT() call, the Web server default timeout value is used.

Examples
Example 1: A call to DTW_STATIC() specifying a timeout value of 60 seconds.
@DTW_STATIC("60")

Chapter 3. Net.Data Built-in Functions 365

DTW_TERMINATE

AIX HP-UX Linux OS/2 OS/390 OS/400 PTX SUN Win NT

X

Purpose
Ends a persistent transaction. All changes to resources under commitment
control since the last commitment boundary are made permanent.

Format
@DTW_TERMINATE()

Parameters
None

Return Codes

Table 220. DTW_TERMINATE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 An incorrect number of parameters were passed on a function
call.

8200 Macro persistence is not enabled.

8201 A persistent built-in function was called out of sequence.

Usage Notes
1. The DTW_TERMINATE function is called at the start of the logical last

HTML block of the persistent transaction before any text is output to the
browser. If any text output appears before the function, within the block, a
Net.Data error will occur. Note that there could be more than one logical
last HTML block depending on how the application is written.

2. If this function is called when the macro is not in a persistent state, a
Net.Data error will occur.

Examples
Example 1: Terminates the persistent transaction
%HTML(QUIT){
@DTW_TERMINATE()
...
%}

366 IBM
®

Net.Data: Reference

Appendix A. Net.Data Technical Library

The Net.Data Technical Library is available from the Net.Data Web site at
http://www.ibm.com/software/data/net.data/library.html

Document Description

v Net.Data Administration
and Programming Guide
for OS/390

v Net.Data Administration
and Programming Guide
for OS/2, Windows NT,
and UNIX

v Net.Data Administration
and Programming Guide
for OS/400

Contains conceptual and task information about
installing, configuring, and invoking Net.Data. Also
describes how to write Net.Data macros, use Net.Data
performance techniques, use Net.Data language
environments, manage connections, and use Net.Data
logging and traces for trouble shooting and performance
tuning.

Net.Data Reference Describes the Net.Data macro language, variables, and
built-in functions.

Net.Data Language
Environment Interface
Reference

Describes the Net.Data language environment interface.

Net.Data Messages and
Codes Reference

Lists Net.Data error messages and return codes.

© Copyright IBM Corp. 1997, 2000 367

368 IBM
®

Net.Data: Reference

Appendix B. Deprecated Features

The following features are still supported, but not recommended. If you have
macros that contain these language constructs, it is recommended that you use
the suggested alternatives.

EXEC_SQL

A DB2 WWW Connection language construct that calls an SQL block. We
recommend calling SQL statements as functions instead. See “FUNCTION
Block” on page 21 for more information.

HTML_INPUT

A DB2 WWW Connection language construct that is the same as an HTML
block named INPUT. See “HTML Block” on page 33 for more information.

HTML_REPORT

A DB2 WWW Connection language construct that is the same as an HTML
block named REPORT. See “HTML Block” on page 33 for more information.

INCLUDE_URL

A statement used to read and incorporate another file into the Net.Data
generated output. Upon execution, the entire contents of the included file will
replace the INCLUDE_URL statement. The specified file can exist on a local or
remote server.

Though there is no recommended alternative to including the contents of a
remote URL, you can use the INCLUDE statement to include local files,
including macros. Including remote URLs is not recommended because there
is no way to trap any of the many errors that might occur when accessing a
remote site.

SQL

A DB2 WWW Connection language construct that is equivalent to a function
called with FUNCTION(DTW_SQL) in Net.Data.

It can contain SQL_REPORT and SQL_MESSAGE statements, which are also
from DB2 WWW Connection. DB2 WWW Connection does not support
named %SQL blocks.

© Copyright IBM Corp. 1997, 2000 369

Examples:

Example 1: A DB2 WWW Connection macro
%SQL{
UPDATE $(dbtbl) SET URL='$(URL)' WHERE ID=$(ID)
%SQL_MESSAGE{
100: "The selected URL no longer exists in the table." : continue
%}
%}

%HTML_INPUT{
<html>
...
%EXEC_SQL
</html>
%}

%HTML_REPORT{
<html>
...
</html>
%}

Example 1: An equivalent Net.Data macro
%FUNCTION(DTW_SQL) URLquery(){
UPDATE $(dbtbl) SET URL='$(URL)' WHERE ID=$(ID)
%MESSAGE{
100: "The selected URL no longer exists in the table." : continue
%}
%}

%HTML(INPUT){
<html>
...
@URLquery
</html>
%}

%HTML(REPORT){
<html>
...
</html>
%}

SQL_MESSAGE

A DB2 WWW Connection language construct that is equivalent to the
Net.Data MESSAGE statement. See “MESSAGE Block” on page 51 for an
example.

370 IBM
®

Net.Data: Reference

SQL_REPORT

A DB2 WWW Connection language construct that is equivalent to the
Net.Data REPORT statement. See “REPORT Block” on page 56for an example.

SQL_CODE

A DB2 WWW Connection language construct that is equivalent to
“RETURN_CODE” on page 135.

Appendix B. Deprecated Features 371

372 IBM
®

Net.Data: Reference

Appendix C. Net.Data Operating System Reference

Not all Net.Data features are supported on each operating system. This
section shows which features are supported for your operating system. An X
indicates the feature is supported.

© Copyright IBM Corp. 1997, 2000 373

Table 221. Net.Data Language Environments

Language Environment AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

Direct Call X

Flat File Interface X X X X X X X X X

IMS Web X X X X

Java Applets X X X X X X X X X

Java Applications X X X X X

ODBC X X X X X X

Oracle X X

Perl X X X X X X X X

REXX X X X X X X X

SQL X X X X X X X X X

System X X X X X X X X X

Web Registry X X X X

374
IB

M
®

N
et.D

ata:
R

eference

Table 222. Net.Data Configuration Variables

Configuration Variable AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

DB2INSTANCE X X X X X X X

DB2MSGS X

DB2PLAN X

DB2SSID X

DefaultDBCp X

DSNAOINI X

DTW_CACHE_HOST X X

DTW_CACHE_MACRO X

DTW_CACHE_MANAGEMENT_INTERVAL X

DTW_CACHE_PAGE X

DTW_CACHE_PORT X X

DTW_CM_PORT X X X X

DTW_DEFAULT_ERROR_MESSAGE X X X X X X X X X

DTW_DEFAULT_MACRO X

DTW_DIRECT_REQUEST X X X X X X

DTW_DO_NOT_CACHE_MACRO X

DTW_ERROR_LOG_DIR X

DTW_ERROR_LOG_LEVEL X

DTW_INST_DIR X X X X X X

DTW_LOB_LIFETIME X

DTW_LOG_DIR X X X X X X X

DTW_LOG_LEVEL X X X X X X X

DTW_MBMODE X X X X X X X X

DTW_REMOVE_WS X X X X X X X X X

A
ppend

ix
C

.N
et.D

ata
O

perating
System

R
eference

375

Table 222. Net.Data Configuration Variables (continued)

Configuration Variable AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

DTW_SHOWSQL X X X X X X X X X

DTW_SMTP_CHARSET X

DTW_SMTP_SERVER X X X X X X X X

DTW_SQL_ISOLATION X

DTW_SQL_NAMING_MODE X

DTW_TRACE_LOG_DIR X

DTW_TRACE_LOG_LEVEL X

DTW_UNICODE X X X X X X X

DTW_VARIABLE_SCOPE X X X X X X X

376
IB

M
®

N
et.D

ata:
R

eference

Table 223. Net.Data Variables

Variable AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

ALIGN X X X X X X X X X

DATABASE X X X X X X X X

DB_CASE X X X X X X X X X

DB2PLAN X

DB2SSID X

DTW_APPLET_ALTTEXT X X X X X X X X X

DTW_CURRENT_FILENAME X X X X X X X X X

DTW_CURRENT_LAST_MODIFIED X X X X X X X X X

DTW_DEFAULT_MESSAGE X X X X X X X X X

DTW_DEFAULT_REPORT X X X X X X X X X

DTW_EDIT_CODES X

DTW_HTML_TABLE X X X X X X X X X

DTW_LOG_LEVEL X X X X X X X

DTW_MACRO_FILENAME X X X X X X X X X

DTW_MACRO_LAST_MODIFIED X X X X X X X X X

DTW_MBMODE X X X X X X X X

DTW_MP_PATH X X X X X X X X X

DTW_MP_VERSION X X X X X X X X X

DTW_PAD_PGM_PARMS X

DTW_PRINT_HEADER X X X X X X X X X

DTW_REMOVE_WS X X X X X X X X X

DTW_SAVE_TABLE_IN X X X X X X X X X

DTW_SET_TOTAL_ROWS X X X X X X X X X

LOCATION X

A
ppend

ix
C

.N
et.D

ata
O

perating
System

R
eference

377

Table 223. Net.Data Variables (continued)

Variable AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

LOGIN X X X X X X X X

Nn X X X X X X X X X

NLIST X X X X X X X X X

NULL_RPT_FIELD X

NUM_COLUMNS X X X X X X X X X

NUM_ROWS X

PASSWORD X X X X X X X X

RETURN_CODE X X X X X X X X X

ROW_NUM X X X X X X X X X

RPT_MAX_ROWS X X X X X X X X X

SHOWSQL X X X X X X X X X

SQL_CODE X X X X X X X X X

SQL_STATE X X X X X X X X X

START_ROW_NUM X X X X X X X X X

TOTAL_ROWS X X X X X X X X X

TRANSACTION_SCOPE X X X X X X X X X

V_columnName X X X X X X X X X

VLIST X X X X X X X X X

Vn X X X X X X X X X

378
IB

M
®

N
et.D

ata:
R

eference

Table 224. Net.Data Functions

Function AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

DTW_ACCEPT X

DTW_ADD X X X X X X X X X

DTW_ADDQUOTE X X X X X X X X X

DTW_ASSIGN X X X X X X X X X

DTW_CACHE_PAGE X X

DTW_CHARTOHEX X X X X X X X X X

DTW_COMMIT X

DTW_CONCAT X X X X X X X X X

DTW_DATE X X X X X X X X X

DTW_DELSTR X X X X X X X X X

DTW_DELWORD X X X X X X X X X

DTW_DIVIDE X X X X X X X X X

DTW_DIVREM X X X X X X X X X

DTW_EXIT X X X X X X X X X

DTW_FORMAT X X X X X X X X X

DTW_GETCOOKIE X X X X X X X X X

DTW_GETENV X X X X X X X X X

DTW_GETINIDATA X X X X X X X X X

DTW_HEXTOCHAR X X X X X X X X X

DTW_HTMLENCODE X X X X X X X X X

DTW_INSERT X X X X X X X X X

DTW_INTDIV X X X X X X X X X

DTW_LASTPOS X X X X X X X X X

DTW_LENGTH X X X X X X X X X

A
ppend

ix
C

.N
et.D

ata
O

perating
System

R
eference

379

Table 224. Net.Data Functions (continued)

Function AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

DTW_LOWERCASE X X X X X X X X X

DTW_MULTIPLY X X X X X X X X X

DTW_POS X X X X X X X X X

DTW_POWER X X X X X X X X X

DTW_QHTMLENCODE X X X X X X X X X

DTW_READFILE X X X X X X X

DTW_REPLACE X X X X X X X X X

DTW_REVERSE X X X X X X X X X

DTW_ROLLBACK X

DTW_RVTHANDLE X

DTW_SENDMAIL X X X X X X X X X

DTW_SETCOOKIE X X X X X X X X X

DTW_SETENV X X X X X X X X X

DTW_STATIC X

DTW_STRIP X X X X X X X X X

DTW_SUBSTR X X X X X X X X X

DTW_SUBTRACT X X X X X X X X X

DTW_SUBWORD X X X X X X X X X

DTW_TB_APPENDROW X X X X X X X X

DTW_TB_COLS X X X X X X X X X

DTW_TB_DELETECOL X X X X X X X X

DTW_TB_DELETEROW X X X X X X X X

DTW_TB_DLIST X X X X X X X X X

DTW_TB_DUMPH X X X X X X X X X

380
IB

M
®

N
et.D

ata:
R

eference

Table 224. Net.Data Functions (continued)

Function AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

DTW_TB_DUMPV X X X X X X X X X

DTW_TB_GETN X X X X X X X X X

DTW_TB_GETV X X X X X X X X X

DTW_TB_HTMLENCODE X X X X X X X X X

DTW_TB_INPUT_CHECKBOX X X X X X X X X X

DTW_TB_INPUT_RADIO X X X X X X X X X

DTW_TB_INPUT_TEXT X X X X X X X X X

DTW_TB_INSERTCOL X X X X X X X

DTW_TB_INSERTROW X X X X X X X

DTW_TB_LIST X X X X X X X X X

DTW_TB_MAXROWS X

DTW_TB_QUERYCOLNONJ X X X X X X X

DTW_TB_ROWS X X X X X X X X X

DTW_TB_SELECT X X X X X X X X X

DTW_TB_SETCOLS X X X X X X X

DTW_TB_SETN X X X X X X X

DTW_TB_SETV X X X X X X X

DTW_TB_TABLE X X X X X X X X X

DTW_TB_TEXTAREA X X X X X X X X X

DTW_TERMINATE X

DTW_TIME X X X X X X X X X

DTW_TRANSLATE X X X X X X X X X

DTW_UPPERCASE X X X X X X X X X

DTW_URLESCSEQ X X X X X X X X X

A
ppend

ix
C

.N
et.D

ata
O

perating
System

R
eference

381

Table 224. Net.Data Functions (continued)

Function AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

DTW_USE_DB2_PREPARE_CACHE X X X X X X X

DTW_WORD X X X X X X X X X

DTW_WORDINDEX X X X X X X X X X

DTW_WORDLENGTH X X X X X X X X X

DTW_WORDPOS X X X X X X X X X

DTW_WORDS X X X X X X X X X

DTWF_APPEND X X X X X X X X X

DTWF_CLOSE X X X X X X X X X

DTWF_DELETE X X X X X X X X X

DTWF_INSERT X X X X X X X X X

DTWF_OPEN X X X X X X X X X

DTWF_READ X X X X X X X X X

DTWF_REMOVE X X X X X X X X X

DTWF_SEARCH X X X X X X X X X

DTWF_UPDATE X X X X X X X X X

DTWF_WRITE X X X X X X X X X

DTWR_ADDENTRY X X X X

DTWR_CLEARREG X X X X

DTWR_CLOSEREG X

DTWR_CREATEREG X X X X

DTWR_DELENTRY X X X X

DTWR_DELREG X X X X

DTWR_LISTREG X X X X

DTWR_LISTSUB X X X

382
IB

M
®

N
et.D

ata:
R

eference

Table 224. Net.Data Functions (continued)

Function AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

DTWR_OPENREG X

DTWR_RTVENTRY X X X X

DTWR_UPDATEENTRY X X X X

A
ppend

ix
C

.N
et.D

ata
O

perating
System

R
eference

383

Table 225. Net.Data Interfaces

Interface Type AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

FastCGI X X

CGI X X X X X X X X X

Java Beans X

Internet Connection API (ICAPI) X X X X

Internet Server API (ISAPI) X

Live Connection X X X X

Lotus Domino Go Web Server (GWAPI) X X X X

Netscape API (NSAPI) X X

Servlets X X X X

384
IB

M
®

N
et.D

ata:
R

eference

Table 226. Net.Data Tools

Tool AIX HP LINUX OS/2 OS/390 OS/400 PTX SUN Win NT

Administration Tool X X X

NetObjects Fusion Plug-ins X

Wizards X X X X

A
ppend

ix
C

.N
et.D

ata
O

perating
System

R
eference

385

386 IBM
®

Net.Data: Reference

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1997, 2000 387

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

388 IBM
®

Net.Data: Reference

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Notices 389

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

390 IBM
®

Net.Data: Reference

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Notices 391

392 IBM
®

Net.Data: Reference

Glossary

absolute path. The full path name of an object.
Absolute path names begins at the highest level,
or ″root″ directory (which is identified by the
forward slash (/) or back slash (\) character).

API. See .

applet. A Java program included in an HTML
page. Applets work with Java-enabled browsers,
such as Netscape Navigator, and are loaded
when the HTML page is processed.

application programming interface. A
functional interface supplied by the operating
system or by a separately orderable licensed
program that allows an application program
written in a high-level language to use specific
data or functions of the operating system or
licensed program. Net.Data supports the
following proprietary Web server APIsfor
improved performance over CGI processes:
GWAPI, ISAPI, and NSAPI.

BLOB. Binary large object.

cache. A part of memory or disk space that
contains recently accessed data, designed to
speed up subsequent access to the same data.
The cache is often used to hold a local copy of
frequently used data that is accessible over a
network.

caching. The processes of storing
frequently-used results from a request to the Web
server locally for quick retrieval, until it is time
to refresh the information.

Cache Manager. The program that manages a
cache for one machine. It can manage multiple
caches.

CGI. Common Gateway Interface.

cliette. A long-running process in Net.Data Live
Connection that serves requests from the Web
server. The Connection Manager schedules cliette
processes to serve these requests.

CLOB. Character large object.

commitment control. The establishment of a
boundary within the process that Net.Data is
running under where operations on resources are
part of a unit of work.

Common Gateway Interface (CGI). A
standardized way for a Web server to pass
control to an application program and receive
data back.

Connection Manager. An executable file, dtwcm,
in Net.Data that is needed to support Live
Connection.

cookie. A packet of information sent by an
HTTP server to a Web browser and then sent
back by the browser each time it accesses that
server. Cookies can contain any arbitrary
information the server chooses and are used to
maintain state between otherwise stateless HTTP
transactions. Free Online Dictionary of Computing

current working directory. The default directory
of a process from which all relative path names
are resolved.

database. A collection of tables, or a collection
of table spaces and index spaces.

database management system (DBMS). A
software system that controls the creation,
organization, and modification of a database and
access to the data stored within it.

DATALINK. A DB2 data type that enables
logical references from the database to a file
stored outside the database.

data type. An attribute of columns and literals.

DBCLOB. Double-byte character large object.

DBMS. Database management system.

© Copyright IBM Corp. 1997, 2000 393

Domino Go Web server. The Web server offered
by Lotus Corp. and IBM, that offers both regular
and secure connections. GWAPI is the interface
provided with this server.

firewall. A computer with software that guards
an internal network from unauthorized external
access.

flat file interface. A set of Net.Data built-in
functions that let you read and write data from
plain-text files.

GWAPI. Go Web server API.

HTML. Hypertext markup language.

HTTP. Hypertext transfer protocol.

hypertext markup language. A tag language
used to write Web documents.

hypertext transfer protocol. The communication
protocol used between a Web server and
browser.

Internet. An international public TCP/IP
computer network.

Intranet. A TCP/IP network inside a company
firewall.

ISAPI. Microsoft’s Internet Server API.

Java. An operating system-independent
object-oriented programming language especially
useful for Internet applications.

language environment. A module that provides
access from a Net.Data macro to an external data
source such as DB2 or a programming language
such as Perl.

Live Connection. A Net.Data component that
consists of a Connection Manager and multiple
cliettes. Live Connection manages the reuse of
database and Java virtual machine connections.

LOB. Large object.

middleware. Software that mediates between an
application program and a network. It manages

the interaction between a client application
program and a server through the network.

NSAPI. Netscape API.

null. A special value that indicates the absence
of information.

path. A search route used to locate files.

path name. Tells the system how to locate an
object. The path name is expressed as a sequence
of directory names followed by the name of the
object. Individual directories and the object name
are separated by a forward slash (/) or back
slash (\) character.

Perl. An interpreted programming language.

persistence. The state of keeping an assigned
value for an entire transaction, where a
transaction spans multiple Net.Data invocations.
Only variables can be persistent. In addition,
operations on resources affected by commitment
control are kept active until an explicit commit or
rollback is done, or when the transaction
completes.

port. A 16-bit number used to communicate
between TCP/IP and a higher level protocol or
application.

registry. A repository where strings can be
stored and retrieved.

relative path name. A path name that does not
begin at the highest level, or ″root″ directory. The
system assumes that the path name begins at the
process’s current working directory.

TCP/IP. Transmission Control Protocol /
Internet Protocol.

transaction. One Net.Data invocation. If
persistent Net.Data is used, then a transaction
can span multiple Net.Data invocations.

Transmission Control Protocol / Internet
Protocol. A set of communication protocols that
support peer-to-peer connectivity functions for
both local and wide-area networks.

URL. Uniform resource locator.

394 IBM
®

Net.Data: Reference

uniform resource locator. An address that
names a HTTP server and optionally a directory
and file name, for example:
http://www.ibm.com/software/data/net.data/index.html.

unit of work. A recoverable sequence of
operations that are treated as one atomic
operation. All operations within the unit of work
can be completed (commited) or undone (rolled
back) as if the operations are a single operation.
Only operations on resources that are affected by
commitment control can be committed or rolled
back.

Web server. A computer running HTTP server
software, such as Internet Connection.

Glossary 395

396 IBM
®

Net.Data: Reference

Index

A
absolute paths, for flat files 299
accessing flat files 298
ALIGN 90
alternate text, Web browsers 104
APPLET tag, alternate text 104
authorization requirement,

FFI_PATH 301

B
built-in functions 137

C
calling

external programs 18
functions 30

calling FFI language
environment 298

case, specifying for SQL
commands 101

COMMENT block
description 10
syntax 10

conditional string processing 35, 63
conditional variables

description 72
example 77
with LIST statements 73
with variable references 73

configuring the FFI language
environment 300

connecting to a database,
DATABASE variable 99

connecting to DB2 subsystem
DB2 plan 102
location 113
subsystem ID 103

cookies
DTW_GETCOOKIE 151
DTW_PRINT_HEADER 133
DTW_SETCOOKIE 169
sending 133

current directory, determining for
flat files 299

D
DATABASE 99
database consistency, transaction

scope 120
date formats, UTF-8 147

date variables 122
DB_CASE 101
DB2PLAN 102
DB2SSID 103
declaration part, macro 2
DEFINE block

description 12
syntax 12

DEFINE statement
description 12
syntax 12

delimited string of values 76
delimiters, FFI language

environment
ASCIITEXT 301
DELIMITED 301

DTW_ACCEPT 359
DTW_ADD 180
DTW_ADDQUOTE 140
DTW_APPLET_ALTTEXT 104
DTW_ASSIGN 80, 199, 200
DTW_CACHE_PAGE 142
DTW_CHARTOHEX 201
DTW_COMMIT 361
DTW_CONCAT 203
DTW_CURRENT_FILENAME 123
DTW_CURRENT_LAST_MODIFIED 124
DTW_DATE 147
DTW_DEFAULT_MESSAGE 125
DTW_DEFAULT_REPORT 91
DTW_DELSTR 205
DTW_DELWORD 230
DTW_DIVIDE 183
DTW_DIVREM 185
DTW_EDIT_CODES 105
DTW_FORMAT 187
DTW_GETCOOKIE 151
DTW_GETENV 154
DTW_GETINIDATA 156
DTW_HEXTOCHAR 207
DTW_HTML_TABLE 92
DTW_HTMLENCODE 158
DTW_INSERT 209
DTW_INTDIV 191
DTW_LASTPOS 211
DTW_LENGTH 213
DTW_LOG_LEVEL 126
DTW_LOWERCASE 214
DTW_MACRO_FILENAME 127

DTW_MACRO_LAST_MODIFIED 128
DTW_MBMODE 129
DTW_MP_PATH 131
DTW_MP_VERSION 132
DTW_MULTIPLY 193
DTW_PAD_PGM_PARMS 106
DTW_POS 216
DTW_POWER 195
DTW_PRINT_HEADER 133
DTW_QHTMLENCODE 160
DTW_REMOVE_WS 134
DTW_REPLACE 218
DTW_REVERSE 220
DTW_ROLLBACK 362
DTW_RTVHANDLE 363
DTW_SAVE_TABLE_IN 108
DTW_SENDMAIL 162
DTW_SET_TOTAL_ROWS 109
DTW_SETCOOKIE 169
DTW_SETENV 173
DTW_STATIC 364
DTW_STRIP 222
DTW_SUBSTR 224
DTW_SUBTRACT 197
DTW_SUBWORD 233
DTW_TB_APPENDROW 246
DTW_TB_COLS 248
DTW_TB_deleteCOL 250
DTW_TB_DELETEROW 252
DTW_TB_DLIST 254
DTW_TB_DUMPH 257
DTW_TB_DUMPV 259
DTW_TB_GETN 261
DTW_TB_GETV 263
DTW_TB_HTMLENCODE 265
DTW_TB_INPUT_CHECKBOX 267
DTW_TB_INPUT_RADIO 269
DTW_TB_INPUT_TEXT 271
DTW_TB_INSERTCOL 273
DTW_TB_INSERTROW 275
DTW_TB_LIST 273
DTW_TB_QUERYCOLNONJ 280
DTW_TB_ROWS 282
DTW_TB_SELECT 284
DTW_TB_SETCOLS 287
DTW_TB_SETN 289
DTW_TB_SETV 291
DTW_TB_TABLE 293
DTW_TB_TEXTAREA 296

© Copyright IBM Corp. 1997, 2000 397

DTW_TERMINATE 366
DTW_TIME 175
DTW_TRANSLATE 226
DTW_UPPERCASE 228
DTW_URLESCSEQ 177
DTW_USE_DB2_PREPARE_CACHE 111
DTW_WORD 235
DTW_WORDINDEX 237
DTW_WORDLENGTH 239
DTW_WORDPOS 241
DTW_WORDS 243
DTWF_APPEND 302
DTWF_CLOSE 302, 306
DTWF_DELETE 308
DTWF_INSERT 311
DTWF_OPEN 302, 314
DTWF_READ 316
DTWF_READFILE 320
DTWF_REMOVE 323
DTWF_SEARCH 325
DTWF_UPDATE 329
DTWF_WRITE 333
DTWR_ADDENTRY 337
DTWR_CLEARREG 340
DTWR_CLOSEREG 342
DTWR_CREATEREG 343
DTWR_DELENTRY 345
DTWR_DELREG 347
DTWR_LISTREG 348
DTWR_LISTSUB 350
DTWR_OPENREG 352
DTWR_RTVENTRY 354
DTWR_UPDATEENTRY 356

E
environment variables

description 73
ENVVAR statement 17
example 74

ENVVAR statement 73
description 17
syntax 17

error handling 51
EXEC block

description 18
syntax 18

EXEC_PATH 18
EXEC_SQL 369
EXEC statement 74

description 18
syntax 18

executable variables
as a variable reference 75
description 74
example 74
with parameters 75

F
FFI functions

DTWF_APPEND 303
DTWF_CLOSE 306
DTWF_DELETE 308
DTWF_INSERT 311
DTWF_OPEN 314
DTWF_READ 316
DTWF_READFILE 320
DTWF_REMOVE 323
DTWF_SEARCH 325
DTWF_UPDATE 329
DTWF_WRITE 333
freeing files 302
locking files 302

FFI language environment
accessing files 298
authorization requirement 301
configuration rules 300
current directory 299
delimiters 301
file location 299
security recommendations 300

FFI_PATH
accessing flat files 298
configuration rules 300
flat file location 299
matching paths with filename

parameter 299
security recommendations 300
syntax 298

file location variables 122
flat files

absolute paths 299
accessing 298
authorization requirement 301
configuration rules 300
creating in current directory 299
data sources 298
definition 298
delimiters 301
location

current directory 299
FFI_PATH 299

locking files 302
matching the FFI_PATH 299
recommendations for access 299
security recommendations 300

footers 42
freeing files, FFI functions 302
FUNCTION block

description 21
syntax 22

function calls
description 30

function calls (continued)
formatting output 56
processing table rows 59
syntax 30
use of INOUT variables 32

functions
description 137
flat file interface (FFI) 298
general 139
math 180
naming conventions 137
passing groups of values 78
persistent 358
string 199
table 245
Web registry 337
word 230

G
general functions 139

DTW_ADDQUOTE 140
DTW_CACHE_PAGE 142
DTW_DATE 147
DTW_EXIT 149
DTW_GETCOOKIE 151
DTW_GETENV 154
DTW_GETINIDATA 156
DTW_HTMLENCODE 158
DTW_QHTMLENCODE 160
DTW_SENDMAIL 162
DTW_SETCOOKIE 169
DTW_SETENV 173
DTW_TIME 175
DTW_URLESCSEQ 177

glossary 391

H
headers 42
hidden variables

description 75
example, in an HTML form 76
steps 75

hiding variable names 75
HTML

displaying table results in 92
form, entering passwords 116
form, entering user IDs 114
hiding variable names 75

HTML block
description 33
syntax 33

HTML_INPUT block 369
HTML_REPORT block 369

398 IBM
®

Net.Data: Reference

I
IF block

description 35
syntax 35

IN keyword 24, 48, 138
include files 42
INCLUDE_PATH 42
INCLUDE statement

description 42
syntax 42

INCLUDE_URL 369
INOUT keyword 24, 48, 138
INOUT variable

example 32

L
language constructs

COMMENT block 10
common syntax elements 5
DEFINE block or statement 12
ENVVAR statement 17
EXEC block or statement 18
FUNCTION block 21
function calls 30
HTML block 33
IF block 35
INCLUDE statement 42
LIST statement 45
macro

description 8
syntax 1

MACRO_FUNCTION block 47
MESSAGE block 51
REPORT block 56
ROW block 59
strings 7
TABLE statement 61
variable name 5
variable reference 5
WHILE block 63
XML block 67

language environment variables
DATABASE 99
DB_CASE 101
DB2PLAN 102
DB2SSID 103
description 98
DTW_APPLET_ALTTEXT 104
DTW_EDIT_CODES 105
DTW_MBMODE 129
DTW_PAD_PGM_PARMS 106
DTW_SAVE_TABLE_IN 108
DTW_SET_TOTAL_ROWS 109
DTW_USE_DB2_PREPARE_CACHE 111
LOCATION 113

language environment variables
(continued)

LOGIN 114
NULL_RPT_FIELD 115
PASSWORD 116
SHOWSQL 117
SQL_STATE 119
TRANSACTION_SCOPE 120

line length limits, macros 4
LIST statement

description 45
syntax 45

list variables
description 76
example 77
value separators 77

listing delimited strings 76
local DB2 subsystem, ID 103
LOCATION 113
location, connecting to DB2

subsystem 113
location, flat files 299
locking files, FFI functions 302
LOGIN 114
looping 63
lower case, specifying 101

M
MACRO_FUNCTION block

description 47
syntax 47

macros
common syntax elements 5
declaration part 2
format 3
global syntax 1
language constructs 1
line length limits 4
presentation part 2
sample 3
stop processing 149

math functions
DTW_ADD 181
DTW_DIVIDE 183
DTW_DIVREM 185
DTW_FORMAT 187
DTW_INTDIV 191
DTW_MULTIPLY 193
DTW_POWER 195
DTW_SUBTRACT 197

MBCS support for functions
string functions 199
word functions 230

MESSAGE block
description 51
syntax 51

messages, default text 125
miscellaneous variables

description 122
DTW_CURRENT_FILENAME 123
DTW_CURRENT_LAST_MODIFIED 124
DTW_DEFAULT_MESSAGE 125
DTW_MACRO_LAST_MODIFIED 128
DTW_MP_PATH 131
DTW_MP_VERSION 132
DTW_PRINT_HEADER 133
DTW_REMOVE_WS 134
RETURN_CODE 135

N
Nn 80
Net.Data tables

defining 61
upper limit 61

Next button, RPT_MAX_ROWS 96
NLIST 81
NULL_RPT_FIELD 115
NUM_COLUMNS 82
NUM_ROWS 83
numeric comparison of strings 35,

63

O
operating system reference 371
OUT keyword 24, 48, 138

P
parameters, passing 28
passing groups of values 78
passing parameters, System

language environment 28
PASSWORD 116
performance, DTW_EXIT 149
Persistent macro functions

DTW_ACCEPT 359
DTW_COMMIT 361
DTW_ROLLBACK 362
DTW_RTVHANDLE 363
DTW_STATIC 364
DTW_TERMINATE 366

plan, connecting to DB2
subsystem 102

platform support reference 371
presentation part, macro 2
Previous button,

RPT_MAX_ROWS 96

R
remote DB2 subsystem,

location 113
REPORT block

ALIGN 90
description 56

Index 399

REPORT block (continued)
DTW_DEFAULT_REPORT 91
DTW_HTML_TABLE 92
Nn 80
NLIST 81
NUM_COLUMNS 82
NUM_ROWS 83
RPT_MAX_ROWS 93
START_ROW_NUM 95
syntax 56
table variables 78
TOTAL_ROWS 85

report variables
ALIGN 90
description 89
DTW_DEFAULT_REPORT 91
DTW_HTML_TABLE 92
RPT_MAX_ROWS 93
START_ROW_NUM 95

reports
formatting 56
overriding Net.Data default 91

restricting database access 114, 116
RETURN_CODE 135
RETURNS keyword 24, 48
ROW block

description 59
Nn 80
NLIST 81
NUM_COLUMNS 82
NUM_ROWS 83
ROW_NUM 84
syntax 59
TOTAL_ROWS 85
V_columnName 86
Vn 87, 88

ROW_NUM 84
RPT_MAX_ROWS 93

S
scrolling, with Next and Previous

buttons 96
security

login ID 114
passwords 116

security recommendations,
FFI_PATH 300

sending e-mail from the macro 162
SHOWSQL 117
SQL

commands, specifying case 101
hiding or displaying 117

SQL block 369
SQL_CODE 371
SQL_MESSAGE block 370
SQL_REPORT block 371

SQL_STATE 119
SQL state, displaying 119
START_ROW_NUM 95
string functions

DTW_ASSIGN 200
DTW_CHARTOHEX 201
DTW_CONCAT 203
DTW_DELSTR 205
DTW_HEXTOCHAR

DTW_HEXTOCHAR 207
DTW_INSERT

DTW_INSERT 209
DTW_LASTPOS 211
DTW_LENGTH 213
DTW_LOWERCASE 214
DTW_POS 216
DTW_REPLACE 218
DTW_REVERSE 220
DTW_STRIP 222
DTW_SUBSTR 224
DTW_TRANSLATE 226
DTW_UPPERCASE 228
MBCS support 199

strings
conditional processing 35, 63
description 7
numeric comparisons 35, 63
of values, delimited 76

subsytem ID, connecting to DB2
subsystem 103

supported features table 371
System language environment,

passing parameters 28

T
table functions

DTW_TB_APPENDROW 246
DTW_TB_COLS 248
DTW_TB_DELETECOL 250
DTW_TB_DELETEROW 252
DTW_TB_DLIST 254
DTW_TB_DUMPH 257
DTW_TB_DUMPV 259
DTW_TB_GETN 261
DTW_TB_GETV 263
DTW_TB_HTMLENCODE 265
DTW_TB_INPUT_CHECKBOX 267
DTW_TB_INPUT_RADIO 269
DTW_TB_INPUT_TEXT 271
DTW_TB_INSERTCOL 273
DTW_TB_INSERTROW 275
DTW_TB_LIST 277
DTW_TB_QUERYCOLNONJ 280
DTW_TB_ROWS 282
DTW_TB_SELECT 284
DTW_TB_SETCOLS 287

table functions (continued)
DTW_TB_SETN 289
DTW_TB_SETV 291
DTW_TB_TABLE 293
DTW_TB_TEXTAREA 296

table processing variables
description 79
Nn 80
NLIST 81
NUM_COLUMNS 82
NUM_ROWS 83
ROW_NUM 84
specifying for SQL language

environment 108
TOTAL_ROWS 85
V_columnName 86
Vn 88
VLIST 87

TABLE statement 78
description 61
syntax 61

table variables
description 78
example 78

tables
Net.Data, specifying number of

rows 93
results in HTML 92

TOTAL_ROWS 85
TRANSACTION_SCOPE 120

U
upper case, specifying 101
upper limit 61
UTF-8 format

date 147

V
V_columnName 86
variable name 5
variable reference 5
variables

conditional 72
environment 73
executable 74
hidden 75
language environment 98
list 76
miscellaneous 122
Net.Data, overview 71
report 89
table 78, 79

VLIST 87
Vn 88

400 IBM
®

Net.Data: Reference

W
Web registry functions

DTWR_ADDENTRY 338
DTWR_CLEARREG 340
DTWR_CLOSEREG 342
DTWR_CREATEREG 343
DTWR_DELENTRY 345
DTWR_DELREG 347
DTWR_LISTREG 348
DTWR_LISTSUB 350
DTWR_OPENREG 352
DTWR_RTVENTRY 354
DTWR_UPDATEENTRY 356

WHILE block

description 63
syntax 63

word functions

DTW_DELWORD 231
DTW_SUBWORD 233
DTW_WORD 235
DTW_WORDINDEX 237
DTW_WORDLENGTH 239
DTW_WORDPOS 241
DTW_WORDS 243
MBCS support 230

X
XML block

description 67
syntax 67

Index 401

402 IBM
®

Net.Data: Reference

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1997, 2000 403

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

404 IBM
®

Net.Data: Reference

Contacting IBM 405

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Preface
	About Net.Data
	About This Book
	Who Should Read This Book
	About Examples in This Book
	How to Read the Syntax Diagrams

	Chapter 1. Net.Data Macro Language Constructs
	Net.Data Macro Syntax
	Common Syntax Elements
	Variable Name
	Variable Reference
	Strings

	Macro Language Constructs
	Comment Block
	DEFINE Block or Statement
	ENVVAR Statement
	EXEC Block or Statement
	FUNCTION Block
	Function Call (@)
	HTML Block
	IF Block
	INCLUDE Statement
	LIST Statement
	MACRO_FUNCTION Block
	MESSAGE Block
	REPORT Block
	ROW Block
	TABLE Statement
	WHILE Block
	XML Block

	Chapter 2. Variables
	User-defined Variables
	Conditional Variables
	Environment Variables
	Executable Variables
	Hidden Variables
	List Variables
	Table Variables

	Net.Data Table Processing Variables
	Nn
	NLIST
	NUM_COLUMNS
	NUM_ROWS
	ROW_NUM
	TOTAL_ROWS
	V_columnName
	VLIST
	Vn

	Net.Data Report Variables
	ALIGN
	DTW_DEFAULT_REPORT
	DTW_HTML_TABLE
	RPT_MAX_ROWS
	START_ROW_NUM

	Net.Data Language Environment Variables
	DATABASE
	DB_CASE
	DB2PLAN
	DB2SSID
	DTW_APPLET_ALTTEXT
	DTW_EDIT_CODES
	DTW_PAD_PGM_PARMS
	DTW_SAVE_TABLE_IN
	DTW_SET_TOTAL_ROWS
	DTW_USE_DB2_PREPARE_CACHE
	LOCATION
	LOGIN
	NULL_RPT_FIELD
	PASSWORD
	SHOWSQL
	SQL_STATE
	TRANSACTION_SCOPE

	Net.Data Miscellaneous Variables
	DTW_CURRENT_FILENAME
	DTW_CURRENT_LAST_MODIFIED
	DTW_DEFAULT_MESSAGE
	DTW_LOG_LEVEL
	DTW_MACRO_FILENAME
	DTW_MACRO_LAST_MODIFIED
	DTW_MBMODE
	DTW_MP_PATH
	DTW_MP_VERSION
	DTW_PRINT_HEADER
	DTW_REMOVE_WS
	RETURN_CODE

	Chapter 3. Net.Data Built-in Functions
	Function Names
	Input and Output Parameters
	Function Result Formatting
	Function Parameter Rules
	General Functions
	DTW_ADDQUOTE
	DTW_CACHE_PAGE
	DTW_DATE
	DTW_EXIT
	DTW_GETCOOKIE
	DTW_GETENV
	DTW_GETINIDATA
	DTW_HTMLENCODE
	DTW_QHTMLENCODE
	DTW_SENDMAIL
	DTW_SETCOOKIE
	DTW_SETENV
	DTW_TIME
	DTW_URLESCSEQ

	Math Functions
	DTW_ADD
	DTW_DIVIDE
	DTW_DIVREM
	DTW_FORMAT
	DTW_INTDIV
	DTW_MULTIPLY
	DTW_POWER
	DTW_SUBTRACT

	String Functions
	DTW_ASSIGN
	DTW_CHARTOHEX
	DTW_CONCAT
	DTW_DELSTR
	DTW_HEXTOCHAR
	DTW_INSERT
	DTW_LASTPOS
	DTW_LENGTH
	DTW_LOWERCASE
	DTW_POS
	DTW_REPLACE
	DTW_REVERSE
	DTW_STRIP
	DTW_SUBSTR
	DTW_TRANSLATE
	DTW_UPPERCASE

	Word Functions
	DTW_DELWORD
	DTW_SUBWORD
	DTW_WORD
	DTW_WORDINDEX
	DTW_WORDLENGTH
	DTW_WORDPOS
	DTW_WORDS

	Table Functions
	DTW_TB_APPENDROW
	DTW_TB_COLS
	DTW_TB_DELETECOL
	DTW_TB_DELETEROW
	DTW_TB_DLIST
	DTW_TB_DUMPH
	DTW_TB_DUMPV
	DTW_TB_GETN
	DTW_TB_GETV
	DTW_TB_HTMLENCODE
	DTW_TB_INPUT_CHECKBOX
	DTW_TB_INPUT_RADIO
	DTW_TB_INPUT_TEXT
	DTW_TB_INSERTCOL
	DTW_TB_INSERTROW
	DTW_TB_LIST
	DTW_TB_QUERYCOLNONJ
	DTW_TB_ROWS
	DTW_TB_SELECT
	DTW_TB_SETCOLS
	DTW_TB_SETN
	DTW_TB_SETV
	DTW_TB_TABLE
	DTW_TB_TEXTAREA

	Flat File Interface Functions
	Access to Flat File Data Sources
	How Net.Data Determines the Flat File Location
	Flat File Configuration Rules
	Security Recommendations
	Authorization Requirement

	Flat File Interface Delimiters
	Locking Files
	FFI Built-in Functions
	DTWF_APPEND
	DTWF_CLOSE
	DTWF_DELETE
	DTWF_INSERT
	DTWF_OPEN
	DTWF_READ
	DTWF_READFILE
	DTWF_REMOVE
	DTWF_SEARCH
	DTWF_UPDATE
	DTWF_WRITE

	Web Registry Functions
	DTWR_ADDENTRY
	DTWR_CLEARREG
	DTWR_CLOSEREG
	DTWR_CREATEREG
	DTWR_DELENTRY
	DTWR_DELREG
	DTWR_LISTREG
	DTWR_LISTSUB
	DTWR_OPENREG
	DTWR_RTVENTRY
	DTWR_UPDATEENTRY

	Persistent Macro Functions
	DTW_ACCEPT
	DTW_COMMIT
	DTW_ROLLBACK
	DTW_RTVHANDLE
	DTW_STATIC
	DTW_TERMINATE

	Appendix A. Net.Data Technical Library
	Appendix B. Deprecated Features
	EXEC_SQL
	HTML_INPUT
	HTML_REPORT
	INCLUDE_URL
	SQL
	SQL_MESSAGE
	SQL_REPORT
	SQL_CODE

	Appendix C. Net.Data Operating System Reference
	Notices
	Trademarks

	Glossary
	Index
	Contacting IBM
	Product Information

