Net.Data

Reference

<|ll

Net.Data

Reference

<|ll

Note
Be sure to read the information in LAppendix D Natices” an page 321 before using this information and the product it

supports.

Sixth Edition (May 1999)

© Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface

About Net.Data

About This Book . .
Who Should Read Th|s Book .
About Examples in This Book .
How to Read the Syntax Diagrams .

Chapter 1. Net.Data Macro Language Constructs
Net.Data Macro Syntax
Common Syntax Elements .
Variable Name.
Variable Reference .
Strings
Macro Language Constructs
Comment Block .
DEFINE Block or Statement
ENVVAR Statement.
EXEC Block or Statement
FUNCTION Block
Function Call (@)
HTML Block
IF Block .
INCLUDE Statement
INCLUDE_URL Statement
LIST Statement
MACRO_FUNCTION Block
MESSAGE Block.
REPORT Block
ROW Block .
TABLE Statement
WHILE Block .

Chapter 2. Variables

User-defined Variables.
Conditional Variables
Environment Variables .
Executable Variables
Hidden Variables .
List Variables .
Table Variables

Net.Data Table Processing Vanables
Nn . .
NLIST. .
NUM_COLUMNS
NUM_ROWS .
ROW_NUM. .
TOTAL_ROWS
V_columnName .
VLIST .
Vn

Net.Data Report Vanables
ALIGN. . .
DTW_DEFAULT _| REPORT .

© Copyright IBM Corp. 1997, 1999

Vii
Vii
Vii
viii
viii
viii

DTW_HTML_TABLE
RPT_MAX_ROWS .
START_ROW_NUM.

Net.Data Language Environment Varlables .

DATABASE .

DB_CASE .

DB2PLAN

DB2SSID

DTW_APPLET . ALTTEXT

DTW_EDIT_CODES

DTW_PAD_PGM_PARMS

DTW_SAVE _TABLE_IN . .

DTW_SET TOTAL _ROWS .

LOCATION .

LOGIN . . .

NULL _RPT | FIELD

PASSWORD

SHOWSQL .

SQL_STATE .

TRANSACTION SCOPE
Net.Data Miscellaneous Variables

DTW_CURRENT_FILENAME .

DTW_CURRENT_LAST_MODIFIED.

DTW_DEFAULT MESSAGE

DTW_LOG_LEVEL .

DTW_MACRO_FILENAME . .

DTW_MACRO_LAST_MODIFIED

DTW_MBMODE .

DTW_MP_PATH .

DTW_MP_VERSION

DTW_PRINT_HEADER

DTW_REMOVE_WS

RETURN_CODE.

Chapter 3. Net.Data Built-in Functions
Function Names . .
Input and Output Parameters .
Function Result Formatting .
Function Parameter Rules
General Functions . .
DTW_ADDQUOTE .
DTW_CACHE_PAGE .
DTW_DATE
DTW_EXIT .
DTW_GETCOOKIE .
DTW_GETENV
DTW_GETINIDATA .
DTW_HTMLENCODE .
DTW_QHTMLENCODE
DTW_SENDMAIL .
DTW_SETCOOKIE .
DTW_SETENV
DTW_TIME. . . .
DTW_URLESCSEQ.
Math Functions
DTW_ADD .

iV NetData: Reference

82
83
85
88
89
91
92
93
94
95
96
97
98
99

. 100
. 101
. 102
. 103
. 104
. 105
. 106
. 107
. 108
. 109
. 110
111
. 112
. 113
. 114
. 115
. 116
. 117
. 118

. 119
. 119
. 119
. 120
. 120
. 120
. 122
. 124
. 128
. 130
. 131
. 133
. 135
. 136
. 138
. 139
. 144
. 148
. 150
. 152
. 154
. 155

DTW DIVIDE .157
DTW _DIVREM .159
DTW_FORMAT1e1
DTW_INTDIV164
DTW_MULTIPLY. .166
DTW POWER. .168
DTW_SUBTRACT .170
String Functions 172
DTW_ASSIGN. .173
DTW_CHARTOHEX .174
DTW_CONCAT « «175
DTW_DELSTR .176
DTW_HEXTOCHAR .478
DTW_INSERT. ..171
DTW_LASTPOS18
DTW_LENGTH .183
DTW_ LOWERCASE .18
DTWPOS.186
DTW REPLACE. .188
DTW_REVERSE. .19
DTW_STRIP 19
DTW _SUBSTR .193
DTW _TRANSLATE .19%
DTW_UPPERCASE. .19
Word Functions .o..019
DTW DELWORD .200
DTW_SUBWORD .202
DTW WORD204
DTW_WORDINDEX .205
DTW_WORDLENGTH. .206
DTW_WORDPOS20
DTW WORDS20
Table Functions .. .21
DTW_TB _APPENDROW.21
DTW._TB COLS. .213
DTW_TB DELETECOL .214
DTW_TB DELETEROW .215
DTW TB DLIST.217
DTW_TB.DUMPH ...219
DTW_TB. DUMPV22
DTW_TB GETN.222
DTW_TB GETV22
DTW_TB HTMLENCODE226
DTW_TB_INPUT CHECKBOX228
DTW_TB_INPUT RADIO.23
DTW_TB_INPUT TEXT .23
DTW _TB_INSERTCOL .23
DTW_TB_INSERTROW .23
DTW_TB_LIST .. .237
DTW_TB QUERYCOLNONJ23
DTW_TB ROWS.21
DTW_TB SELECT .242
DTW_TB SETCOLS .24
DTW_TB SETN .245
DTW_TB SETV« . . s 247
DTW TB TABLE. .. .24

Contents V

Vi

Net.Data: Reference

DTW_TB_TEXTAREA .

Flat File Interface Functions. .
Access to Flat File Data Sources .
Flat File Interface Delimiters.
Locking Files .
DTWF_APPEND .
DTWF_CLOSE
DTWF_DELETE .
DTWF_INSERT .
DTWF_OPEN .
DTWF_READ .
DTWF_REMOVE.
DTWF_SEARCH.
DTWF_UPDATE .
DTWF_WRITE

Web Registry Functions .
DTWR_ADDENTRY
DTWR_CLEARREG
DTWR_CLOSEREG
DTWR_CREATEREG .
DTWR_DELENTRY .
DTWR_DELREG.
DTWR_LISTREG
DTWR_LISTSUB.
DTWR_OPENREG .
DTWR_RTVENTRY. .
DTWR_UPDATEENTRY .

Persistent Macro Functions .
DTW_ACCEPT
DTW_COMMIT
DTW_ROLLBACK
DTW_RTVHANDLE.
DTW_STATIC .
DTW_TERMINATE .

Appendix A. Net.Data Technical Library

Appendix B. DB2 WWW Connection
EXEC_SQL. oo
HTML_INPUT . .
HTML_REPORT .

sQL
SQL_MESSAGE .

SQL_REPORT

SQL_CODE

Appendix C. Net.Data Operating System Reference

Appendix D. Notices
Trademarks.

Glossary

Index .

. 251
. 253
. 253
. 255
. 256
. 257
. 260
. 261
. 263
. 266
. 268
. 271
. 273
. 276
. 279
. 282
. 283
. 285
. 286
. 287
. 289
. 201
. 292
. 294
. 296
. 297
. 299
. 301
. 302
. 304
. 305
. 306
. 307
. 309

. 311

. 313
. 313
. 313
. 313
. 313
. 314
. 314
. 314

. 315

. 321
. 322

. 325

. 327

Preface

Thank you for selecting Net.Data®, the IBM® development tools for creating
dynamic Web pages! With Net.Data you can rapidly develop Web pages with a
dynamic content by incorporating data from a variety of data sources and by using
the power of programming languages you already know.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data from
both relational and non-relational database management systems (DBMSSs),
including DB2, IMS, ODBC-enabled databases, and databases that can be
accessed through DRDA, and using applications written in programming languages
such as Java, JavaScript, Perl, C, C++, and REXX. The Net.Data family of products
provides similar capabilities on machines executing the Windows NT, AlX, OS/2,
0S/390, 0OS/400, HP-UX, Sun Solaris, Santa Cruz Operating System (SCO), and
Linux operating systems.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that Net.Data
interprets to create dynamic Web pages with customized content based on input
from the user, the current state of your databases, other data sources, existing
business logic, and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape Navigator or Internet Explorer, to a Web server that forwards the
request to Net.Data for execution. Net.Data locates and executes the macro, and
builds a Web page that it customizes based on functions that you write. These
functions can:

» Encapsulate business logic within applications written in, but not limited to, C,
C++, RPG, COBOL, JAVA, Perl, or REXX programming languages

* Access databases such as DB2
* Access other data sources such as flat files

Net.Data passes this Web page to the Web server, which in turn forwards the page
over the network for display at the browser.

Net.Data can be used in server environments that are configured to use interfaces
such as HyperText Transfer Protocol (HTTP) and Common Gateway Interface
(CGI). HTTP is an industry-standard interface for interaction between a browser and
Web server, and CGl is an industry-standard interface for Web server invocation of
gateway applications like Net.Data. These interfaces allow you to select your
favorite browser or Web server for use with Net.Data.

For improved performance, Net.Data supports a variety of Web server Application
Programming Interfaces (APIs). In addition, Net.Data can be lauched as a Java
servlet.

About This Book

This book explains the syntax and usage of Net.Data language constructs,
variables, and functions.

© Copyright IBM Corp. 1997, 1999 Vii

This book might refer to products or features that are announced, but not yet
available.

More information, sample Net.Data macros, demos, and the latest copy of this
book, is available from the following World Wide Web sites:

 http://www.software.ibm.com/data/net.data
* http://www.as400.ibm.com/netdata

Who Should Read This Book

People involved in planning and writing Net.Data applications can use the
information in this book to understand what language constructs, variables, and
functions Net.Data provides.

To understand the concepts discussed in this book, you should be familiar with Web
servers, simple SQL statements, and HTML (including using HTML forms), and the
information in Net.Data Administration and Programming Guide.

About Examples in This Book

Examples used in this book are kept simple to illustrate specific concepts. The
examples are not intended to show all of the ways in which Net.Data constructs can
be used. Likewise, some of the examples are fragments of code that cannot be
executed by themselves.

How to Read the Syntax Diagrams

viii

The following rules apply to the syntax diagrams used in this book:

* Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the —> symbol.

* Required items appear on the horizontal line (the main path).

v
A

»>—required_item

» Optional items appear below the main path.

v
A

»>—required_item
l—optional_i tem—l

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

Net.Data: Reference

optional_ite
»>—required_item |_ m—l »<

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

A\
A

»—required i tern—Erequ ired choicel
requi red_choiceZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

A\
A

»>—required_item
i:optional_choicel:‘
optional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

default_choice
»>—required_item |_ _| <
i:optiona l_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item——repeatable item ><

If the repeat arrow contains punctuation, you must separate repeated items with
the specified punctuation.

s

A\
A

»—required_item——repeatable item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Keywords appear in uppercase (for example, FROM). In Net.Data, keywords can
be in any case. Terms that are not keywords appear in lowercase letters (for
example, column-name). They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Preface IX

X Net.Data: Reference

Chapter 1. Net.Data Macro Language Constructs

This chapter describes the Net.Data macro syntax and the language constructs
used in the Net.Data macro. The language constructs consist of a keyword and a
statement or block in the Net.Data macro, specify different variable types, and
perform other special tasks such as including files.

This chapter describes:

Net.Data Macro Syntax

A Net.Data macro is a text file consisting of a series of Net.Data macro language
constructs that:

» Specify the layout of Web pages
¢ Define variables and functions

» Call functions that are defined in the macro or that Net.Data passes to language
environments for processing

Each statement is composed of one or more language constructs, which in turn are
composed of keywords, special characters, strings, names, and variables. The
following diagram depicts the global structure of a syntactically valid Net.Data
macro. See FMacro | anguage Constructs” on page 6 for detailed syntax of each
element in the global structure.

y
Y

4 html block >
—comment block
—define statement
—define block
—function block
—macro if block
—macro_function block—
—include statement
—include _url statement—
—message block

—comment block——— |—hth bZock—|
—define statement
—define block
—function block
—macro if block
—macro_function block—
—include statement
—include_url statement—
message block

© Copyright IBM Corp. 1997, 1999 1

2

Net.Data: Reference

The Net.Data macro contains two parts: the declaration part and the presentation
part. You can use these parts multiple times and in any order.

» Declaration part contains the definitions of variables and functions in the macro.

» Presentation part contains HTML blocks that contain HTML statements that
specify the layout of the Web page. This part includes the report section.

m shows the declaration and presentation parts of the macro.

Net.Data Macro File Structure

%{Comment %} ‘

%Define... ‘

%lInclude... ‘ —Declaration Part

%Message... ‘

%Function... ‘

%HTML(Input)

—~Presentation Part
%HTML(Output)

Figure 1. Macro Structure

Variables and functions that are used in the declaration or presentation part must
be defined before being used by a variable reference or a function call.

Eigure 2 on page 3 demonstrates the parts of a macro. The declaration part
contains the DEFINE and FUNCTION definition blocks. The HTML blocks act as
input and output blocks.

kkkkkkkhkhhkkhkhkkhkhrk Define block ************************%}

{
DEFINE {

page _title="Net.Data macro Template"
}

)
%
)

%

N

{ kxkkkkkkxkkkkxkxkkxxx*% Function Definition block ************************%}
FUNCTION(DTW_REXX) rexxl (IN input) returns(result)

{ %EXEC{ompsamp.cmd %}
}

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

0,
%}

N o

N

result = date()

%{ B HTML Block: Input ************************%}
SHTML (INPUT) {

<htm1>

<head>

<title>$(page_title)<title>

</head><body>

<h1>Input Form</hl>

Today is @today()

<FORM METHOD="post" ACTION="output">

Type some data to pass to a REXX program:
<INPUT NAME="input_data" TYPE="text" SIZE="30">
<p>

<INPUT TYPE="submit" VALUE="Enter">

<hr>
<p>[Home page]
</body></htm1>

1)
%}

%{ *hkhkkkkhkkkkhhkkkhhrrk HTML Block: Output ************************%}
SHTML (OUTPUT) {

<htm1>

<head>
<title>§(page_title)</title>
</head><body>

<h1>Qutput Page</hl>
<p>@rexx1(input_data)

<p><hr>

<p>[Home page |

Previous page]
</body></htm1>

0,
%}

Figure 2. The Macro Template Format

The Net.Data macro language is a free-form language, giving you flexibility for
writing your macros. Unless specifically noted, extra white space characters are
ignored. Each of the Net.Data macro language constructs is described in the
following section, along with several other elements that are used to define the
constructs. The Net.Data macro language supports DB2 WWW Connection
language elements for backward compatibility. Although these language elements
are described in L i ion” , itis
recommended that you use the Net.Data language constructs.

The examples show some of the ways you can use the language constructs,
variables, functions, and other elements in your macros. You can download the
samples and demos from the Net.Data Web pages for more extensive examples:

Chapter 1. Net.Data Macro Language Constructs

3

 http://www.software.ibm.com/data/net.data
* http://www.as400.ibm.com/netdata

Common Syntax Elements

Variable Name

The following syntax elements are used frequently in the language construct
descriptions:

Purpose:

Identifies a variable. A variable is an object whose value can change during the
execution of a macro.

Variable names must begin with a letter or underscore (_) and contain any
alphanumeric characters, underscores, hash marks (#), or periods (.). All variable
names are case sensitive except N _columnName and V_columnName (See

[Net Data Table Processing Variahles” an page 69 for more information about these

two exceptions.).

Variable Reference

4

Net.Data: Reference

Purpose:

Returns the value of a variable and is specified with $ and (). For example: if VAR =
'abc’, $(VAR) returns the value "abc’. Variable references are evaluated during run
time. When a variable is defined for an EXEC statement or block, Net.Data runs the
specified action when it reads the variable reference.

You can dynamically generate a variable name by including variable references,
strings, and function calls within a variable reference. If you reference a
dynamcially-generated variable that does not follow the variable name rules,
Net.Data resolves the reference to an empty string.

In variable references, leading and trailing whitespace is ignored and whitespace
between function calls, strings, and variable references is not allowed. If a newline
character is encountered between function calls, strings, and variable references,
an error message is issued. A variable reference with any other white space returns
an empty string.

Syntax:

»—5—(function call <
(1)
string———
variable_reference—

Strings

Notes:

1 String can contain only the characters that are allowed in variable names:
alphanumeric characters, underscores (_), hash marks (#), or periods (.).

Example 1: Variable reference

If you have defined a variable homeURL:
%DEFINE homeURL="http://www.ibm.com/"

You can refer to the homepage as $(homeURL) and create a link:
Home page

Example 2: Dynamically-generated variable reference

You can dynamically generate variable references to dynamically reference a field
value in a row:
SWHILE (INDEX < NUM_COLS) {

$ (V$ (INDEX))

@DTW_ADD(INDEX, "1", INDEX)

0,
%}

Example 3: A dynamic variable reference with nested variable references and a
function call

%define my = "my"

%define u = "lTower"

%define myLOWERvar = "hey"

$($(my)@dtw_ruppercase(u)var)

The variable reference returns the value of hey.

Any sequence of alphabetic and numeric characters and punctuation. If the string
appears within double quotes, the new-line character is not allowed. See the string
parameter description in each language construct for restrictions when used with
the language construct.

Strings in quotes ("), can contain any character except the new-line character. If
the string is in brackets, ({ %}), it can contain any character including the new-line
character. For example,

%define multiline = {

first line

second Tine

%}
To specify double quotes inside a quoted string, use two pairs of double quotes. A

string used as function argument or as term in a comparison expression can
contain double quotes. For example, if you define a string value as:

%DEFINE result = " ""Hello world!"" "

The value of result is:
"Hello world!"

An HTML statement is a string.

Chapter 1. Net.Data Macro Language Constructs

5

Strings used as function arguments, terms, and variable values can contain variable
references and function calls. In the following example, the function call myfunc?
has a string parameter that contains a variable reference and a function call.
%html (report) {

@myfunc2("abc$ (varl)@myfunc()")

[J
%}

Net.Data resolves the variable reference $(varl) and the function call @myfunc(),
rather than interpreting them literally as part of the string, before passing the string
to the function myfunc2.

Macro Language Constructs

6

Net.Data: Reference

This section describes the language constructs used in the Net.Data macro.

Each language construct description can contain the following information:

Purpose
Defines why you use the language construct in the Net.Data macro.

Syntax
Provides a diagram of the language construct’s logical structure.

Parameters
Defines all the elements in the syntax diagram and provides cross
references to other language constructs’ syntax and examples.

Context
Explains where in the Net.Data macro structure the language construct can
be used.

Restrictions
Defines which elements it can contain and specifies any usage restrictions.

Examples
Provides simple examples and explanations for using the keyword
statement or block within the Net.Data macro.

The following constructs are used in the macro; please refer to each constructs
description for syntax and examples.

Chapter 1. Net.Data Macro Language Constructs

7

Comment Block
Purpose

Documents the functions of the Net.Data macro. Because the COMMENT block can
be used anywhere in the macro, it is not documented in the other syntax diagrams.

The COMMENT block can also be used in the Net.Data initialization file.
Syntax

»—%{—text—%} ><

Values

text Any string on one or more lines. Net.Data ignores the contents of all
comments.

Context

Comments can be placed anywhere between Net.Data language constructs in a
Net.Data macro or the Net.Data initialization file

Restrictions
Any text or characters are allowed; however, comment blocks cannot be nested.
Examples

Example 1: A basic comment block

0
%{

This is a comment block. It can contain any number of lines
and contain any characters. Its contents are ignored by Net.Data.

[
%}

Example 2: Comments in a FUNCTION block

%function(DTW_REXX) getAddress(IN name, %{ customer name %}
IN phone, %{ customer phone number %}
OUT address %{ customer address %}
)
{

%}
Example 3: Comments in an HTML block
%html (report) {

%{ run the query and save results in a table %}
@myQuery (resultTable)

%{ build a form to display a page of data %}
<form method="POST" action="report">

9

%{ send the table to a REXX function to send the data output %}
@displayRows (START_ROW_NUM, submit, resultTable, RPT_MAX_ ROWS)

%{ pass START_ROW_NUM as a hidden variable to the next invocation %}
<input name="START_ROW_NUM" type="hidden" value="$§(START_ROW_NUM)">

8 NetData: Reference

%{ build the next and previous buttons %}

%if (submit == "both" || submit == "next_only")
<input name="submit" type="submit" value="next">
%endif

%if (submit == "both" || submit == "prev_only")
<input name="submit" type="submit" value="previous">
%endif

</form>

0,
%}

Example 4: Comments in a DEFINE block
%define {

START _ROW_NUM = "1" %{ starting row number for output table %}
RPT_MAX_ROWS = "25" %{ maximum number of rows in the table %}
resultTable = %table %{ table to hold query results %}

[)
%}

Example 5: Comments in the Net.Data initialization file

%{ changes: removed RETURN_CODE parm and DTW_DEFAULT ENVIRONMENT statement %}

ENVIRONMENT (DTW_SQL) dtwsql (IN LOCATION, DB2SSID, DB2PLAN, TRANSACTION_SCOPE)

ENVIRONMENT (DTW_ODBC) odbcd1l (IN LOCATION, TRANSACTION SCOPE)
ENVIRONMENT (DTW_PERL) perld1l ()

ENVIRONMENT (DTW_REXX) rexxdll ()

ENVIRONMENT (DTW_FILE) filed11 ()

ENVIRONMENT (DTW_APPLET) appldll ()

ENVIRONMENT (DTW_SYSTEM) sysdll ()

Chapter 1. Net.Data Macro Language Constructs

9

DEFINE Block or Statement

10

Net.Data: Reference

Purpose

The DEFINE section defines variables names in the declaration part of the macro
and can be either a statement or a block.

* Use statements to define one variable at a time
¢ Use blocks to define several variables

The variable definition can be on a single line, using double quotes (""), or can
span multiple lines, using brackets and a percent sign ({ %}). After the variable is
defined, you can reference it anywhere in the macro.

Syntax

»>—%DEFINE >
I o]
(—STATIC)

L (1)
TRANSIENT

»ﬂ define entry i J ><
%}

A\

—Edefine entry _|
include statement

define entry:

|—variable name—= (-4 |E |

string
variable reference—
function call

string
variable reference—|
function call
new_line
—exec Statement
—table statement
—envvar statement
conditional variable
abbreviated conditional variable |—

—list statement

conditional variable:

F—variable name—?——"— 4 >
—string
—variable reference—
—function call

—string
—variable reference—
—function call

—string
—variable reference—
—function call

—string
—variable reference—
—function call

abbreviated conditional variable:

—string
—variable reference—
—function call

—string
—variable reference—
function call

Notes:

1 STATIC and TRANSIENT are keywords for persistent macros, which are
currently available on the OS/400 operating system, only.

Values

%DEFINE
A keyword that defines variables.

STATIC
A keyword that specifies that the variable retains its value across macro
invocations within a persistent transaction. This is the default for persistent
macros.

Chapter 1. Net.Data Macro Language Constructs 11

12

TRANSIENT
A keyword that specifies that this variable does not retain its value across
macro invocations. This is the default for non-persistent macros.

define entry:

variable name

A name that identifies a variable. See I\ariable Name” on page 4 for syntax

information.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

variable reference
Returns the value of a variable and is specified with $ and () For example:
if VAR="abc', then §(VAR) returns the value 'abc'. See L
for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See EEunction Call (@)1
for syntax and examples.

exec statement
The EXEC statement. The name of an external program that executes
when a variable is referenced or a function is called. See

Btatement” on page 19 for syntax and examples.

table statement
The TABLE statement. Defines a collection of related data containing an
array of identical records, or rows, and an array of column names

describing the fields in each row. See LTABLE Statement” on page 56 for

syntax and examples.

envvar statement
The ENVVAR statement. Refers to environment variables. See EENVVAR

Btatement” on page 14| for syntax and examples.

conditional variable
Sets the value of a variable based on the value of another variable or
string.

abbreviated conditional variable
Sets the value of a variable based on the value of another variable or
string. A shorter form of the conditional variable.

list statement
The LIST statement. Defines variables that are used to build a delimited list

of values. See ELIST Statement” on page 4d for syntax and examples.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See HINCLIDE Statement” an page 34 for syntax and examples.

Context

The DEFINE block or statement must be in an IF block or outside all other blocks in
the declaration part of the Net.Data macro.

Net.Data: Reference

Restrictions

» Can contain the following elements:
— Comment block
— Conditional variables
— LIST statement
— TABLE statement
— Variable references
— INCLUDE statement
— EXEC statement
— Function calls
— ENVVAR statement

* You cannot use a variable in its own definition. For example, the following
variable definition is not allowed:

%DEFINE var = "The value is $(var)."
Examples

Example 1: Simple variable definitions

%DEFINE varl
%DEFINE var2

"orders"
"$(varl).html"

During run time, the variable reference $(var2) is evaluated as orders.html.

Example 2 : Quotes inside a string

%DEFINE hi = "say ""hello"""
%DEFINE empty = "*

When displayed, the variable hi has the value say "hello”. The variable empty is
null.

Example 3 : Definition of multiple variables

%DEFINE{ DATABASE = "testdb"
home = "http://www.software.ibm.com"
SHOWSQL = "YES"
PI = "3.14150"

0,
%}

Example 4 : Multiple-line definition of a variable

%DEFINE text = {This variable definition
spans two Tines

0,
%}

Example 5: This example of a conditional variable demonstrates how the variable

var takes the resulting value inside the quotations marks (
does not contain any NULL values.

%DEFINE var = ? "Hello! $(V)@MyFunc()"

0,
%}

) if the resulting value

Chapter 1. Net.Data Macro Language Constructs

13

ENVVAR Statement

14

Net.Data: Reference

Purpose

Defines a variable as an environment variable in the DEFINE block. When the
ENVVAR variable is referenced, Net.Data returns the current value of the
environment variable by the same name.

Syntax

»»—%ENVVAR ><

Context
The ENVVAR statement can be in the DEFINE block or statement.

Values

%ENVVAR
The keyword for defining a variable as an environment variable in a DEFINE
block. This variable gets the value of an environment variable anywhere in the
macro.

Restrictions
The ENVVAR statement can contain no other elements.
Examples

Example 1 : In this example, ENVVAR defines a variable, which when referenced,
returns the current value for the environment variable SERVER_SOFTWARE, the
name of the Web server.

%DEFINE SERVER_SOFTWARE = %ENVVAR

%HTML (REPORT) {
The server is $(SERVER_SOFTWARE) .

0,
%}

EXEC Block or Statement
Purpose

Specifies an external program to execute when a variable is referenced or a
function is called.

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:

1. It searches the EXEC_PATH in the Net.Data initialization file. See the
configuration chapter in Net.Data Administration and Programming Guide for
your operating system for more information about EXEC_PATH.

2. If Net.Data does not locate the program, it searches the directories defined by
the system. If it locates the executable program, Net.Data runs the program.

Authorization Tip: Ensure that the user ID under which Net.Data executes has
access rights to any files referenced by the EXEC statement or block. See the
section on specifying Web server access rights to Net.Data files in the configuration
chapter of Net.Data Administration and Programming Guide for your operating
system for more information.

The EXEC statement and block are used in two different contexts and have
different syntax, depending where they are used. Use the EXEC statement in the
DEFINE block, and use the EXEC block in the FUNCTION block.

Syntax

The EXEC statement syntax when used in the DEFINE block:

v "

»»>—%EXEC—"
|Estring

v
A

variable reference—
function call

The EXEC block syntax when used in the FUNCTION block:

ea

=2
v
A

»>—%EXEC—{—Y——string
i:variable reference—
-function call

Values

%EXEC
The keyword that specifies the name of an external program to be executed
when a variable is referenced or when a function is called. When Net.Data
encounters a variable reference that is defined in an EXEC statement, it
processes what the EXEC statement declares for the variable.

Chapter 1. Net.Data Macro Language Constructs 15

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

variable reference
Returns the value of a variable and is specified with $ and (). For example: if
VAR="abc', then $(VAR) returns the value 'abc'. See F\Variable Reference” on
for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a Net.Data

built-in function with specified arguments. See [Eunction Call (@) on page 23

for syntax and examples.

Context

The EXEC block or statement can be found in these contexts:
* DEFINE block
* FUNCTION block

Restrictions

The EXEC block or statement can contain these elements:
« Comment block

* String

* Variable references

* Function call

The following Net.Data-provided language environments support the EXEC
statement:

* REXX
e System
* Perl

Examples

Example 1: Executable file referenced by a variable
%DEFINE mycall = %EXEC "MYEXEC.EXE $(empno)"

%HTML (report) {

<P>Here is the report you requested:

<HR>$ (mycall)

%}
This example executes MYEXEC.EXE on every reference to the variable, mycall.
Example 2 : Executable file referenced by a function

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, INOUT d){
%EXEC{ mypgm.cmd this is a test %}

0,
%}

This example executes mypgm.cmd when the function my _rexx_pgm is called.

16 NetData: Reference

FUNCTION Block
Purpose

Defines a subroutine that Net.Data invokes from the macro. The executable
statements in a FUNCTION block can be inline statements directly interpreted by a
language environment, or they can be a call to an external program.

EXEC Blocks in Function Blocks: If you use the EXEC block within the
FUNCTION block, it must be the only executable statement in the FUNCTION
block. Before passing the executable statement to the language environment,
Net.Data appends the file name of the program in the EXEC block to a path name
determined by the EXEC_PATH configuration statement in the initialization file. The
resulting string is passed to the language environment to be executed.

The method that the language environment uses to process the EXEC block
depends on the particular language environment; the REXX, System, and Perl
Net.Data-provided language environments support the EXEC block.

Using Special Characters in Language Statements: When characters that
match Net.Data language constructs syntax are used in the language statements
section of a function block as part of syntactically valid embedded program code
(such as REXX or Perl), they can be misinterpreted as Net.Data language
constructs, causing errors or unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter characters,
%{. When the macro is run, the %{ characters are interpreted as the beginning of a
COMMENT block. Net.Data then looks for the end of the COMMENT block, which it
thinks it finds when it reads the end of the function block. Net.Data then proceeds
to look for the end of the function block, and when it can’t be found, issues an error.

Use one of the following methods to use Net.Data special characters as part of your
embedded program code, without having them interpreted by Net.Data as special
characters:

» Use the EXEC statement to call the program code, rather than putting the code
inline.
* Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:

%function(DTW_PERL) func() {

for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {
&make_Tlinks($Rtitles{$num}{$num words});
}

0,
%}

To ensure that Net.Data interprets the %{ characters as Perl source code rather
than as a Net.Data COMMENT block delimiter, rewrite the function in either of the
following ways:

* Use the %EXEC statement:

%function(DTW_PERL) func() {
%EXEC{ func.prl %}

0
%}

* Use a variable reference to specify the %{ characters:

Chapter 1. Net.Data Macro Language Constructs 17

18

Net.Data: Reference

%define percent_openbrace = "%{"

%function(DTW_PERL) func() {

for $num_words (sort bynumber keys $(percent_openbrace) $Rtitles{$num} }) {
}&make_11'nks($Rt1't1es{$num}{$num_words});

}..

Syntax

o

v

»—%FUNCTION—(—Zang_env—)—function_name—| parm passing spec i

>L‘ returns spec |—{—| function body i %}

parm passing spec:

—)

BEY
|—IN—

name
i:OUT |—datatypeJ
INOUT——

returns spec:

I—RETURNS—(—name—)J

function body:

v

inline statement block
—exec block

\

(2)

report block
l—message blockJ

v

A,

—message block

(2)

Lr'eport block

Notes:

1 The default parameter type of IN applies when no parameter type is specified
at the beginning of the parameter list. A parameter without a parameter type
uses the type most recently specified in the parameter list, or type IN if no
type has been specified. For example, in the parameter list -(-parml -,
INOUT -parm2 -, -parm3 -, OUT -parm4 -, -parm5 -), parameters -parmli,
-parm3, and -parm5 do not have parameter types. The parameter -parml has
a type of IN because no initial parameter type has been specified. The
parameter -parm3 has a type of INOUT because it is the most
recently specified parameter type. Similarly, the parameter -parm5 has a
type of OUT because it is the most recently specified type in the parameter
list.

2 The repeated report block is valid for:

* -SQL and ODBC language environments when processing stored
procedures that return multiple result sets for the OS/390
operating systems.

* -Functions calling any language environment for the 0S/400, OS/2,
Windows NT, and UNIX operating systems.

Values

%FUNCTION
The keyword that specifies a subroutine that Net.Data invokes from the macro.

lang_env
The language environment that processes the function body. See the Net.Data
Administration and Programming Guide for more information.

function_name
The name of the function being defined that can be an alphabetic or numeric
string that begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

parm passing spec:

IN Specifies that Net.Data passes input data to the language environment. IN
is the default.

ouT
Specifies that the language environment returns output data to Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment and
the language environment returns output data to Net.Data.

datatype
Specifies the datatype of the paramater. The data type of the parameter.

Chapter 1. Net.Data Macro Language Constructs 19

20

Net.Data: Reference

For a list of supported data types for stored prodedures, see the operating
system appendix of Net.Data Reference.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

returns spec:

RETURNS
Declares the variable that contains the function value assigned by the
language environment, after the function completes.

function body:

inline statement block
Syntactically valid statements from the language environment specified in
the function definition, for example; REXX, SQL, or Perl. See Net.Data
Administration and Programming Guide for a description of the language
environment you are using. See the programming language’s programming
reference for syntax and usage. The string representing the inline statement
block can contain Net.Data variable references and function calls, which get
evaluated before execution of the inline statement block (program).

exec block
The EXEC block. The name of an external program that executes when a
variable is referenced or a function is called. See

Btatement” on page 15 for syntax and examples.

report block
The REPORT block. Formatting instructions for the output of a function call.
You can use header and footer information for the report. See

Block” on page 51 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages, and
the actions Net.Data takes when a function call is returned. See

[IMESSAGE Black” on page 48 for syntax and examples.

Context

The FUNCTION block can be found in these contexts:
* |IF block
» Outside of any block or statement in the declaration part of the Net.Data macro.

Restrictions

* The FUNCTION block can contain these elements:
— Comment block

EXEC block

MESSAGE block

REPORT block

Inline statement blocks

* The longest consecutive inline statement block string without any Net.Data
variable reference or function call is limited to the following lengths:

— For 0S/2 and Windows NT, or UNIX: no limit
— For OS/390: 256KB
— For OS/400: 256KB

* SQL statements in the inline statement block can have the following lengths. Your
database might have different restrictions; refer to your database documentation
to determine if your database has a smaller restriction. IBM DB2 database
restrictions are listed below, if they are different from the Net.Data limits:

— For 0OS/2, Windows NT, and UNIX: 64 KB
DB2 has the following restrictions:
- DB2 Universal Database V6 or higher: 64 KB
- DB2 Universal Database V5.2 or lower: 32 KB
— For OS/390: 32 KB
— For OS/400: 32 KB

Examples

The following examples are general and do not cover all language environments.
See Net.Data Language Environment Reference for more information about using
FUNCTION blocks with a specific language environment.

Example 1 : A REXX substring function

%DEFINE Tstring = "longstring"
%FUNCTION(DTW_REXX) substring(IN x, y, z) RETURNS(s) {
s = substr("$(x)", $(y), $(z));

N P

1
DEFINE a = {@substring(1string, "1", "4")%} %{ assigns "long" to a %}

When a is evaluated, the @substring function call is found and the substring
FUNCTION block is executed. Variables are substituted in the executable
statements in the FUNCTION block, then the text string s = substr("longstring",
1, 4) is passed to the REXX interpreter to execute. Because the RETURNS clause
is specified, the value of the @substring function call in the evaluation of a is
replaced with “long”, the value of s.

Example 2 : Invoking an external REXX program
* Net.Data macro:

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}
%}
SHTML (INPUT) {
<P> Original variable values: $(w) $(x) $(z)
<P> @my_rexx_pgm(w, X, y, z)
<P> Modified variable values: $(w) $(x) $(z)

%}

Variables w and x correspond to the INOUT parameters a and b in the function.
Their values and the value of y, which corresponds to the IN parameter ¢, should
already be defined from HTML form input or from a DEFINE statement. Variables
a and b are assigned new values when parameters a and b return values. The
variable z is defined when the OUT parameter d returns a value.

* REXX program mypgm.cmd:

/* Sample REXX Program for Example 2 */
/* Test arguments =/
num_args = arg();
say 'There are' num_args 'arguments';
do i =1 to num_args;
say Ial"gl '| I'iS "'ar‘g(i)'"'
end;
/* Set variables passed from Net.Data */

Chapter 1. Net.Data Macro Language Constructs 21

22

Net.Data: Reference

d=a || b|] c; /* concatenate a, b, and ¢ forming d */
a="'" /* reset a to null string */

b="" /* reset b to null string */

return;

e Output from mypgm. cmd:

There are 1 arguments
arg 1 is "this is a test"

The EXEC statement tells the REXX language environment to tell the REXX
interpreter to execute the external REXX program mypgm.cmd. Because the REXX
language environment can directly share Net.Data variables with the REXX
program, it assigns the REXX variables a, b, and c the values of the Net.Data
variables w, x and y before executing mypgm.cmd. mypgm.cmd can directly use the
variables a, b, and ¢ in REXX statements. When the program ends, the REXX
variables a, b, and d are retrieved from the REXX program, and their values are
assigned to the Net.Data variables w, x, and z. Because the RETURNS clause is
not used in the definition of the my_rexx_pgm FUNCTION block, the value of the
@my_rexx_pgm function call is the null string, *, (if the return code is 0) or the value
of the REXX program return code (if the return code is nonzero).

Example 3: An SQL query and report

%FUNCTION(DTW_SQL) query 1(IN x, IN y) {
SELECT customer.num, order.num, part.num, status
FROM customer, order, shippingpart
WHERE customer.num = '$(x)"'

AND customer.ordernumber = order.num
AND order.num = '$(y)"
AND order.partnumber = part.num
%REPORT {
<P>Here is the status of your order:
<P>$ (NLIST)

%ROW{
$(v1) $(v2) $(v3) $(v4)
%}

%}

%}

%DEFINE customer_name="IBM"

%DEFINE customer_order="12345"

%HTML (REPORT) {

@query_1(customer_name, customer_order)

0,
%}

The @query_1 function call substitutes IBM for $(x) and 12345 for $(y) in the SELECT
statement. Because the definition of the SQL function query 1 does not identify an
output table variable, the default table is used (see the TABLE variables block for
details). The NLIST and Vi variables referenced in the REPORT block are defined
by the default table definition. The report produced by the REPORT block is placed
in the output HTML where the query_1 function is invoked.

Example 4 : A system call to execute a Perl script
* Net.Data macro:
%FUNCTION(DTW_SYSTEM) today() RETURNS(result) {
%exec{ perl "today.prl" %}

}
HTML (INPUT) {
@today()

0,
%}

* Perl program today.prl:

S° o°

fdate = 'date’;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"§date\"\n";

The System language environment interprets the executable statements in a
FUNCTION block by passing them to the operating system through the C language
system() function call. This method does not allow Net.Data variables to be directly
passed or retrieved to the executable statements, as the REXX language
environment does, so the System language environment passes and retrieves
variables as described here:

* Input parameters are passed as system environment variables through the
putenv() function and can be retrieved by the executing program. Different
languages reference the variables differently. A UNIX cshell script refers to
environment variables by preceding the environment variable name with a '$’,
such as $x. A Perl language script refers to them by referencing the associative
array %ENV, such as %ENV{'x'}. A DOS batch (.BAT) file refers to the variable
name enclosed in percent signs, such as %x%.

* Output parameters are passed back to the language environment by writing to a
pipe whose name is passed in the environment variable DTWPIPE, except on
the OS/400 platform, where output parameters are passed back to the language
environment as system environment variables. The data that is written to the
named pipe has the form name="value", just as with DEFINE statements. If a
variable name corresponding to an output parameter is written this way, the new
value replaces the current value. If a variable name is written that does not
correspond to an output parameter, it is ignored.

When the @today function call is encountered, Net.Data performs variable
substitution on the executable statements. In this example, there are no Net.Data
variables in the executable statements, so no variable substitution is performed.
The executable statements and parameters are passed to the System language
environment, which creates a named pipe and sets the environment variable
DTWPIPE to the name of the pipe.

Then the external program is called with the C system() function call. The external
program opens the pipe as write-only and writes the values of output parameters to
the pipe as if it were a standard stream file. The external program generates HTML
output by writing to STDOUT. In this example, the output of the system date
program is assigned to the variable result, which is the variable identified in the
RETURNS clause of the FUNCTION block. This value of the result variable
replaces the @today () function call in the HTML block.

Example 5: Perl language environment

%FUNCTION(DTW_PERL) today() RETURNS(result) {
$date = 'date’;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

1
HTML(INPUT) {
@today()

N o°

N
—

Compare this example with Example 4 to see how the EXEC block is used. In
Example 4, the System language environment does not understand how to interpret
Perl programs, but the language environment does know how to call external
programs. The EXEC block tells it to call a program called perl as an external
program. The actual Perl language statements are interpreted by the external Perl

Chapter 1. Net.Data Macro Language Constructs 23

program. Example 5 has no EXEC block, because the Perl language environment is
able to directly interpret Perl language statements.

24 Net.Data: Reference

Function Call (@)

Purpose

Invokes a FUNCTION block, MACRO_FUNCTION block, or built-in function with
specified arguments. If the function is not a built-in function, you must define it in
the Net.Data macro before you specify a function call.

Syntax
»>—@function_name—()——><
Y ——variable_name

variable reference

function call

" v otrlng n___|

i:variable reference—|
-function call

Values

@function_name
The name of any existing function. An alphabetic or numeric string that begins
with an alphabetic character or underscore and contains any combination of
alphabetic, numeric, or underscore characters.

variable name

A name that identifies a variable. See ['Variahle Name” an page 4 for syntax

information.

string
Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For example if
VAR="abc', then $(VAR) returns the value 'abc'. See b
hage 4 for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a Net.Data
built-in function with specified arguments.

Context

Function calls can be found in these contexts:
 HTML block

* REPORT block

« ROW block

* DEFINE block

* |IF block

* MACRO_FUNCTION block

* MESSAGE block

¢ WHILE block

e Function call statement

Chapter 1. Net.Data Macro Language Constructs 25

26

Net.Data: Reference

* OQutside of any block in the declaration part of the Net.Data macro

Restrictions

* Function calls can contain these elements:
Comment block

Strings

Function calls

— Variable References

* OUT or INOUT parameter values cannot contain variable references, function
calls, or literal strings.

Examples

Example 1 : A call to the SQL function formQuery

%FUNCTION(DTW_SQL) formQuery () {
SELECT $(queryVal) from $(tableName)

%}

%HTML (input){

<P>Which columns of $(tableName) do you want to see?
<FORM METHOD="POST" ACTION="report">

<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="NAME">Name
<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="MAIL">E-mail
<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="FAX">FAX
<INPUT TYPE="SUBMIT" VALUE="Submit request">

0,
%}

%HTML (report) {
<P>Here are the columns you selected:
<HR>@formQuery ()

0,
%}

Example 2: A call to a REXX function with input and output parameters

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}
%}
SHTML (INPUT) {
<P> Original variable values: $(w) $(x) $(z)
<P> @my_rexx_pgm(w, X, y, z)
<P> Modified variable values: $(w) $(x) $(z)

0,
%}

Example 3: A call to a REXX function, with input parameters, that uses variable
references and function calls

%FUNCTION(DTW_REXX) my_rexx_pgm(IN a, b, ¢, d, OUT e) {

}...
SHTML (INPUT) {
<p> @my_rexx_pgm($(myA), @getB(), @retrieveC(), $(myD), myE)

0
%}

N o

Example 4 : A macro that illustrates the use of the INOUT parameter.
%DEFINE a = "initial value of a"

%FUNCTION(DTW_REXX) funcl(INOUT x) {
Say 'value at start of function:

Say 'x =' x
Say '<p>'

x = "new value of a"
%REPORT {

<p>value at start of report block:

x = $(x)

@dtw_assign(x, "newest value of a")

value at end of report block:

x = $(x)

%}

0,
%}

%HTML (report) {
initial values:

a = $(a)

@funcl(a)
value after function call:

a = $(a)

0,
%}

Resulting output:
initial values:
a = initial value of a

value at start of function:
x = initial value of a

value at start of report block:
x = new value of a

value at end of report block:
x = newest value of a

value after function call:
a = newest value of a

Chapter 1. Net.Data Macro Language Constructs

27

HTML Block

28

Net.Data: Reference

Purpose

Defines how a Web page is to be presented. The name of the HTML block to be
executed is specified on the URL when Net.Data is invoked. The HTML block can
contain most Net.Data macro language statements and any valid presentation
statements, such as HTML and Javascript.

Syntax

»>—%HTML— (—name—) —{— %} ><
—exec_sql statement
—variable reference
—if block
—function call
—HTML statement
—include statement
—include _url statement—
“while block

Values

%HTML

The keyword that specifies the block that contains HTML tags and text to be
displayed on the client’s browser.

name
An alphabetic or numeric string that begins with an alphabetic character or
underscore and contains any combination of alphabetic, numeric, or underscore
characters, including periods.

exec_sql statement
A DB2WWW Release 1 language element that is supported for compatibility.

See [Appendix B. DB2 WWW Connection” on page 313 or DB2 World Wide

Web Release 1 documentation.

variable reference
Returns the value of a variable and is specified with $ and (). For example if
VAR="'abc', then $(VAR) returns the value 'abc'. See L
for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can have a

single leading plus (+) or minus (-) sign. See LE Block” on page 3d for syntax

and examples.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a Net.Data

built-in function with specified arguments. See LEunc.n.an_CalL(.@.)_an_page_ZEl

for syntax and examples.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See [INCI UDE Statement” on page 36 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the

Net.Data Web macro where the statement is specified. The specified file can

exist on a local or remote server. See EINCLUDE IR Statement” on page 38

for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHILE Black” on page 54 for syntax and examples.

Context

The HTML block can be found in these contexts:
* |IF block
» OQutside of any block in the declaration part of the Net.Data macro

Restrictions

The HTML block can contain these elements:
« Comment block

» EXEC_SQL statement

* |IF block

e HTML statements

* INCLUDE statement

* INCLUDE_URL statement

* WHILE block

* Variable references

e Function calls

Examples

Example 1 : HTML block with include files for headings and footings

%HTML (examplel) {

%INCLUDE"header.html"

<P>You can put any HTML in an HTML block.
An SQL function call is made Tike this:

@xmp1()

%INCLUDE"footer.html"

0,
%}

Example 2 : HTML block with a name that contains a period

%HTML (my . report) {

%INCLUDE"header.html"

<P>You can put any HTML in an HTML block.
An SQL function call is made Tike this:

@xmp1()

%INCLUDE"footer.html"

0,
%}

Chapter 1. Net.Data Macro Language Constructs

29

IF Block

30 Net.Data: Reference

Purpose

Performs conditional string processing. The IF block provides the ability to test one
or more conditions, and then to perform a block of statements based on the
outcome of the condition test. You can use the IF block in the declaration part of a
Net.Data macro, the HTML block, the MACRO_FUNCTION block, the REPORT
block, the WHILE block, and the ROW block, as well as nest it inside another IF
block.

String values in the condition list are treated as numeric for comparisons if they are
strings that represent integers and have no leading or trailing white space. They
can have a single leading plus (+) or minus (-) sign.

Restriction: Net.Data does not support numerical comparison of non-integer
numbers; for example, floating point numbers.

Nested IF blocks: The rules for IF block syntax are determined by the block’s
position in the macro. If an IF block is nested within an IF block that is outside of
any other block in the declaration part, it can use any element that the outside block
can use. If an IF block is nested within another block that is in an IF block, it takes
on the syntax rules for the block it is inside.

In the following example, the nested IF block must follow the rules used when it is
inside an HTML block.

%IF block
%HTML block

%IF block
You can nest up to 1024 IF blocks.
Syntax

»—%IF—I condition list |-—-| statement_block |—| else_if spec |—"/0ENDIF—><

condition list:

—((—condition list—)) |
condition list—&&—condition list—
condition list—||—condition list—
l—condition list

condition
term i

statement_block:

(1)
—define block
(1)
—define statement
(2)

—exec_sql statement
(1)
—function block
—function call
(1)
—HTML block

(2)
—HTML statement

—if block
—include statement
—include_url statement
(1)
—macro_function block
(1)
—message block
(2)

—string

(2)
—variable reference
(2)
“while block

condition:

term

—term

term:

variable_name
variable reference

function call

string
i:variable reference—
function call

else_if spec:

Chapter 1. Net.Data Macro Language Constructs

31

32

Net.Data: Reference

%SELIF—(—condition_ Zzst—)—| statement_block i |
%EL SE—| statement_bTlock i

Notes:

1

This language construct is valid when the IF block is located outside of any
other block in the declaration part of the macro.

2 This language construct is valid when the IF block is located in an HTML
block, MACRO_FUNCTION block, REPORT block, ROW block, or WHILE
block.

Values

%IF

The keyword that specifies conditional string processing.
condition list

Compares the values of conditions and terms. Condition lists can be connected
using Boolean operators. A condition list can be nested inside another condition
list.

statement_block

The following valid Net.Data macro constructs. Please see diagram notes and
restrictions to determine the context in which the macro constructs are valid.

define statement
The DEFINE block or statement. Defines variables and sets configuration
variables. Variable names must begin with a letter or underscore () and
contain any alphanumeric characters or underscore. See lDEEINE Rlack or

Btatement” on page 10 for syntax and examples.

exec_sql statement
A DB2WWW Release 1 language element that is supported for

compatibility. See [Appendix B DR2 WWW Connection” on page 313 or

DB2 World Wide Web Release 1 documentation.

function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a FUNCTION block can
contain language statements that are directly interpreted by a language
environment, or they can indicate a call to an external program. See

EEUNCTION Block” on page 17 for syntax and examples.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See LELanﬂan_Ca.I.L(@.)J
for syntax and examples.

HTML block
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

HTML statement
Includes any alphabetic or numeric characters, and HTML tags to be
formatted for the client’'s browser.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can
have a single leading plus (+) or minus (-) sign.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See L " for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data Web macro where the statement is specified. The specified file
can exist on a local or remote server. See L z
for syntax and examples.

macro_function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a MACRO_FUNCTION block
can contain Net.Data macro language source statements. See

EMACRQ _EUNCTION Block” on page 43 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages, and
the actions Net.Data takes when a function call is returned. See

IMESSAGE Black” an page 48 for syntax and examples.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string is in the term of the condition list, it can contain any character except
the new-line character. If the string is in the executable block of code, it can
contain any character, including the new-line character.

variable reference
Returns the value of a variable and is specified with $ and () For example
if VAR="abc', then §(VAR) returns the value 'abc'. See [
for syntax information.

while block
The WHILE block. Performs looping with conditional string processing. See

[WHILE Block” on page 58 for syntax and examples

condition
A comparison between two terms using comparison operators. An IF condition
is treated as a numeric comparison if both of the following conditions are true:

* The condition operator is one of the following operators: <,<=,>>===1=

» Both terms are strings representing valid integers, where a valid integer is a
string of digits, optionally preceded by a plus (+) or minus (-) sign, and no
other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, or function call.

%ELIF
A keyword that starts the alternative processing path and can contain condition
lists and most Net.Data macro statements.

%ENDIF
A keyword that closes the %IF block.

Chapter 1. Net.Data Macro Language Constructs 33

34

Net.Data: Reference

%ELSE
A keyword that executes associated statements if all other condition lists are not
satisfied.

Context

The IF block can be found in these contexts:

« Outside of any other block in the declaration part of a Net.Data macro
e HTML block

* IF block

« MACRO_FUNCTION block

* REPORT block

* ROW block

* WHILE block

Restrictions

The IF block can contain these elements when located outside of any other block in
the declaration part of the Net.Data macro:
* Comment block

* DEFINE block

* DEFINE statement

* FUNCTION block

* Function call

* HTML block

* IF block

* INCLUDE statement

* INCLUDE_URL statement

* MACRO_FUNCTION block

* MESSAGE block

* Variable reference

The IF block can contain these elements when located in the HTML block,
MACRO_FUNCTION block, REPORT block, ROW block, or WHILE block of the
Net.Data macro:

e Comment block

« EXEC_SQL statement

* Function calls

* |F block

* INCLUDE statement

* INCLUDE_URL statement

* HTML statement

» String

e Variable reference

* WHILE block

You can nest up to 1024 IF blocks.
Examples

Example 1: An IF block in the declaration part of a Net.Data macro

%DEFINE a = "1"
%DEFINE b = "2"

%IF ($(DTW_HTML_TABLE) == "YES")
%define OUT_FORMAT = "HTML"
%ELSE
%define OUT_FORMAT = "CHARACTER"

%ENDIF
%HTML (REPORT) {

0,
%}

Example 2 : An IF block inside an HTML block

%HTML (REPORT) {
@myFunctionCall()
%IF ($RETURN_CODE) == $(fa1"|ur‘e_r‘c))

<P> The function call failed with failure code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(warning rc))

<P> The function call succeeded with warning code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(success_rc))

<P>The function call was successful.
%ELSE

P>The function call returned with unknown return code $(RETURN CODE).

ENDIF
}

N o°

Example 3: A numeric comparison

%IF (ROW_NUM < "100")

<p>The table is not full yet...
%ELIF (ROW_NUM == "100")

<p>The table is now full...
%ELSE

<p>The table has overflowed...
%ENDIF

A numeric comparison is done because the implicit table variable ROW_NUM
always returns an integer value, and the value that is being compared is also an
integer.

Example 4: Nested IF blocks

%IF (MONTH == "January")
%IF (DATE = "1")
HAPPY NEW YEAR!
%ELSE
Ho hum, just another day.
%ENDIF
%ENDIF

Chapter 1. Net.Data Macro Language Constructs

35

INCLUDE Statement

36

Net.Data: Reference

Purpose

Reads and incorporates a file into the Net.Data macro in which the statement is
specified.

Net.Data searches the directories specified in the INCLUDE_PATH statement in the
initialization file to find the include file.

You can use include files the same way you can in most high-level languages. They
can insert common headings and footings, define common sets of variables, or
incorporate a common subroutine library of FUNCTION block definitions into a
Net.Data macro.

Net.Data executes an INCLUDE statement only once when processing the macro
and inserts the content of the included file at the location of the INCLUDE
statement in the macro. Any variable references in the name of the included file are
resolved at the time the INCLUDE statement is first executed, not when the content
of the included file is to be executed.

When an INCLUDE statement is in a ROW or WHILE block, Net.Data does not
repeatedly execute the INCLUDE statement. Net.Data executes the INCLUDE
statement the first time it executes the ROW or WHILE block, incorporates the
content of the included file into the block, and then repeatedly executes the ROW or
WHILE block with the content of the included file.

Authorization Tip: Ensure that the user ID under which Net.Data executes has
access rights to any files referenced by the INCLUDE statement. See the section
on specifying Web server access rights to Net.Data files in the configuration chapter
of Net.Data Administration and Programming Guide for more information.

Tip: If you want to include an HTML file from a local Web server, use the
INCLUDE_URL construct as shown in Example 3 for INCLUDE_URL. By using the
demonstrated syntax, you do not have to update the INCLUDE_PATH in the
Net.Data initialization file to specify directories that are already known to the Web
server.

Syntax

»»—%INCLUDE—"—Y——string " >
l—variable reference—l

Values

%INCLUDE

The keyword that indicates a file is to be read and incorporated into the
Net.Data macro.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

string
Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For example: if
VAR="abc', then $(VAR) returns the value 'abc'. See F\Variable Reference” on
for syntax information.

Context

The INCLUDE statement can be found in these contexts:

* DEFINE block

* HTML block

* REPORT block

* ROW block

* |IF block

* MESSAGE block

* MACRO_FUNCTION block

e WHILE block

» Qutside of any block in the declaration part of the Net.Data macro

Restrictions

The INCLUDE statement can contain these elements:
e Comment block

* Strings

* Variable references

Function calls in the string are not allowed.

You can nest up to ten INCLUDE statements.
Examples

Example 1 : An INCLUDE statement in an HTML block
SHTML (start) {
%INCLUDE "header.hti"

0,
%}

Example 2 : An INCLUDE statement in a REPORT block

%REPORT {
%INCLUDE "report_header.txt"

SROW {
%INCLUDE "row_include.txt"

S ¢

}
INCLUDE "report_footer.txt"

0,
%}

Example 3: Variable references in an INCLUDE statement

%define Tibrary = "/qsys.lib/mylib.1ib/"
%define filename = "macros.file/incfile.mbr"

%include "$(1ibrary)$(filename)"

Chapter 1. Net.Data Macro Language Constructs

INCLUDE_URL Statement

38

Net.Data: Reference

Purpose

Reads and incorporates another file into the Net.Data generated output in which the
statement is specified. The specified file can exist on a local or remote server.

Using the INCLUDE_URL statement, you can invoke one macro from another
macro without requiring the application user to select a Submit button.

Net.Data executes an INCLUDE_URL statement only once when processing the
macro and inserts the content of the included file at the location of the
INCLUDE_URL statement in the macro. Any variable references in the name of the
included file are resolved at the time the INCLUDE_URL statement is first executed,
not when the content of the included file is to be executed.

When an INCLUDE_URL statement is in a ROW or WHILE block, Net.Data does
not repeatedly execute the INCLUDE_URL statement. Net.Data executes the
INCLUDE_URL statement the first time it executes the ROW or WHILE block,
incorporates the content of the included file into the block, and then repeatedly
executes the ROW or WHILE block with the content of the included file.

Syntax

»»—%INCLUDE_URL—"—" Lstring] " ><
variable reference

Values

%INCLUDE_URL
The keyword that indicates that a file is to be read and incorporated into the
Net.Data macro from the local or a remote server.

string
Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For example: if
VAR="abc', then $(VAR) returns the value 'abc'. See ['Variable Reference” an

for syntax information.

Context

INCLUDE_URL statements can be found in these contexts:

* DEFINE block

e HTML block

* IF block

*+ MACRO_FUNCTION block

* MESSAGE block

* REPORT block

* ROW block

* WHILE block

* OQutside of any block in the declaration part of the Net.Data macro

Restrictions

INCLUDE_URL statements can contain these elements:
» Comment block

* Strings

* Variable references

On 0S/390, the INCLUDE_URL file can be up to 256 KB. Other operating systems
do not have a limit.

When using the INCLUDE_URL statement, do not start an infinite sequence of
macro requests by invoking the current macro file recursively.

INCLUDE_URL is not supported in the OS/400 environment.
Examples

Example 1: Including an HTML file from another server
%include_url "http://www.ibm.com/path/myfile.html"

Example 2: Including an HTML file from a remote server by calling the server name
%include_url "myserver/path/myfile.html"

Where myserver is the server name.

Example 3: Including an HTML file from the local Web server
%include_url "/path/myfile.html"

Tip: By using this method, you do not have to update the INCLUDE_URL path in
the Net.Data configuration file to specify directories that are already known to the
Web server. If the string does not begin with a slash, Net.Data assumes the string
is a server name and attempts to retrieve the file from the server with the
corresponding name.

Example 4 : Including other Net.Data macros from a remote server

%REPORT{
<P>Current hot pick as of @DTW_rTIME():
%include_url "http://www.ibm.com/cgi-bin/db2www/hotpic.mac/report?custno=$(custno)"

In this example, the macro hotpic.mac is called and custno is sent as a variable. If

the string begins with a slash, Net.Data retrieves the INCLUDE file from the local
Web server.

Chapter 1. Net.Data Macro Language Constructs 39

LIST Statement

40

Net.Data: Reference

Purpose

Builds a delimited list of values. You can use the LIST statement when you
construct SQL queries with multiple items like those found in some WHERE or
HAVING clauses.

Syntax
5L IST—"—Y " variable name ><
string
variable reference—
function call
Values
%LIST
The keyword that specifies that variables are to be used to build a delimited list
of values.
string

Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a variable and is specified with $ and (). For example: if
VAR="abc', then $(VAR) returns the value 'abc'. See \ariable Reference” an
for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a Net.Data

built-in function with specified arguments. See [Eunction Call (@)” on page 24

for syntax and examples.

variable name

A name that identifies a variable. See l'Variable Name” on page 4 for syntax

information.

Context

The LIST statement can be found in these contexts:
* DEFINE statement

Restrictions

The LIST statement can contain these elements:
e Comment block

e Variable references

e Function calls

e Strings

Examples

Example 1: A list of variables

%DEFINE{

DATABASE="custcity"

%LIST " OR " conditions

conditions="condl="'Sao Paolo""
conditions="cond2="'Seattle""
conditions="cond3="'Shanghai'"
whereClause=conditions ? "WHERE $(conditions)" :

.
%}

Chapter 1. Net.Data Macro Language Constructs 41

MACRO_FUNCTION Block

42

Purpose

Defines a subroutine that can be invoked from the Net.Data macro. The executable

statements in a MACRO_FUNCTION block must be Net.Data macro language

source statements.
Syntax

»—%MACRO_FUNCTION—function_name—| parm passing spec

(4)

v

v

>—| returns spec |7{—| function body i %}

(3)

Lr'epor't block

parm passing spec:

—()
F (1)

IN
v [name

i:OUT
INOUT——

returns spec:

(4)

|—RETURNS—(—name—)J

Net.Data: Reference

function body:

—exec_sql statement
—variable reference
—if block
—function call
—HTML statement
—include statement

(2)

—include_url statement
—while block

Notes:

1 The default parameter type of IN applies when no parameter type is specified
at the beginning of the parameter list. A parameter without a parameter type
uses the type most recently specified in the parameter list, or type IN if no
type has been specified. For example, in the parameter list -(-parml -,
INOUT -parm2 -, -parm3 -, OUT -parm4 -, -parm5 -), parameters -parml,
-parm3, and -parm5 do not have parameter types. The parameter -parml has
a type of IN because no initial parameter type has been specified.

The parameter -parm3 has a type of INOUT because it is the most
recently specified parameter type. Similarly, the parameter -parm5 has a
type of OUT because it is the most recently specified type in the parameter
list.

2 The INCLUDE_URL statement is not supported by OS/400.

3 REPORT blocks in the MACRO_FUNCTION block are supported by OS/400,
0S/2, Windows NT and UNIX.

4 The RETURNS statement is supported on OS/400 only.

Values

%MACRO_FUNCTION
The keyword that specifies a subroutine that can be invoked from the Net.Data
macro. The executable statements in a MACRO_FUNCTION block must contain
language statements that Net.Data directly interprets.

function_name
The name of the function being defined. An alphabetic or numeric string that
begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

parm passing spec:

IN Specifies that Net.Data passes input data to the language environment. IN
is the default.

ouT
Specifies that the language environment returns output data to Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment and
the language environment returns output data to Net.Data.

Chapter 1. Net.Data Macro Language Constructs 43

44

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters. name can represent a Net.Data table or a result set.

returns spec:

RETURNS
Declares the variable that contains the function value after the function
completes.

function body:

exec_sql
A DB2WWW Release 1 language element that is supported for

compatibility. See LAppendix B_DR2 W\ Connection” an page 313 or

DB2 World Wide Web Release 1 documentation.

variable reference
Returns the value of a variable and is specified with $ and () For example
if VAR="'abc', then §(VAR) returns the value 'abc'. See L
for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent
integers and have no leading or trailing white space. They might have one
leading plus (+) or minus (-) sign.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See tEunction Call (@)1
for syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See EINCI UDF Statement” on page 36 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data macro in which the statement is specified. The specified file can
exist on a local or remote server. See 'INCI UDF_URI Statement” on

for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHILE Black” an page 54 for syntax and examples.

report block
The REPORT block. Formatting instructions for the output of a function call. You
can use header and footer information for the report. See LRERQRT Black” an
for syntax and examples.

Context

The MACRO_FUNCTION block can be found in these contexts:

* IF block

* Outside of any block in the declaration part of the Net.Data macro

Net.Data: Reference

Restrictions

The MACRO_FUNCTION block can contain these elements:
» Comment block

« EXEC_SQL statement

e HTML statements

* IF block

* INCLUDE statement

* INCLUDE_URL statement

Not supported for OS/400
* REPORT block
e WHILE block
* Variable references
* Function calls

Examples

Example 1: A macro function that specifies message handling

%MACRO_FUNCTION setMessage(IN rc, OUT message) {
%IF (rc == "0")

@dtw_assign(message, "Function call was successful.")
%ELIF (rc == "-1")

@dtw_assign(message, "Function failed, out of memory.")
%ELIF (rc == "-2")

@dtw_assign(message, "Function failed, invalid parameter.")
%ENDIF

0,
%}

Example 2: A macro function that specifies header information

%MACRO_FUNCTION setup(IN browserType) {
%{ call this function at the top of each HTML block in the macro %}
%INCLUDE "header_info.html"
@dtw_rdate()
%IF (browserType == "IBM")

@setupIBM()
%ELIF (browserType == "MS")

@setupMS ()
%ELIF (browserType == "NS")

@setupNS()
%ELSE

@setupDefault()
%ENDIF

0,
%}

Chapter 1. Net.Data Macro Language Constructs

45

MESSAGE Block

46

Net.Data: Reference

Purpose

Specifies messages to display and actions to take based on the return code from a
function.

Define the set of return codes, along with their corresponding messages and
actions in the MESSAGE block. When a function call completes, Net.Data
compares its return code with return codes defined in the MESSAGE block. If the
function’s return code matches one in the MESSAGE block, Net.Data displays the
message and evaluates the action to determine whether to continue processing or
exit the Net.Data macro.

A MESSAGE block can be global in scope, or local to a single FUNCTION block. If
the MESSAGE block is defined at the outermost macro layer, it is considered global
in scope. When multiple global MESSAGE blocks are defined, only the last block
processed is considered active. If the MESSAGE block is defined inside a
FUNCTION block, the block is local in scope to the FUNCTION block where it is
defined. See the MESSAGE block section in the Net.Data Administration and
Programming Guide for return code processing rules.

Syntax

»>—%MESSAGE—(>

return code spec :—| message text spec i
SQLSTATE |—| action spec '—I

»—%—} »><

return code spec:

—-DEFAULT |
—+DEFAULT
— -DEFAULT———————

msg_code
-

—include statement
—include_url statement—

SQLSTATE:

—SQLSTATE—:—state_id I

message text spec:

string

function call
(new_Tine)

variable reference—

function call

L {—
string——
variable reference—

—include statement
—include_url statement

action spec:

EXIT——
|_

include statement

| .
I .
\: L continue

include_url statement—

Values
%MESSAGE

A keyword for the block that defines a set of return codes, the associated
messages, and the actions Net.Data takes when a function call is returned.

return code spec

A positive or negative integer. If the value of the Net.Data RETURN_CODE
variable matches the return code spec value, the remaining information in the
message statement is used to process the function call. You can also specify
messages for return codes not specifically entered in the MESSAGE block.

+DEFAULT
A keyword used to specify a default positive message code. Net.Data uses
the information in this message statement to process the function call if
RETURN_CODE is greater than zero (0) and an exact match is not
specified.

-DEFAULT
A keyword to specify a default negative message code. Net.Data uses the
information in this message statement to process the function call if
RETURN_CODE is less than zero (0) and an exact match is not specified.

DEFAULT
A keyword to specify the default message code. Net.Data uses the
information in this message statement to process the function call, if all of
the following conditions are met:

* If RETURN_CODE is greater or less than zero, but not zero
» If no exact match for the return code is specified

Chapter 1. Net.Data Macro Language Constructs 47

48

» If the +DEFAULT or -DEFAULT values are not specified for when
RETURN_CODE is greater or less than zero

msg_code
The message code that specifies errors and warnings that can occur during
processing. A string of numeric digits with values from 0 to 9.

SQLSTATE
A keyword that provides application programs with common codes for common
error conditions.The SQLSTATE values are based on the SQLSTATE
specification contained in the SQL standard and the coding scheme is the same
on all IBM implementations of SQL.

state id
The SQLSTATE. An alphamumeric string of five characters (bytes) with a
format of ccsss, where cc indicates class and sss indicates subclass.

message text spec
A string that is sent to the Web browser if the RETURN_CODE matches the
return_code value in the current message statement.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

variable reference
Returns the value of a variable and is specified with $ and () For example
if VAR="abc', then $(VAR) returns the value 'abc'. See L
for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a
Net.Data built-in function with specified arguments. See tEunction Call (@)1
for syntax and examples.

action spec
Determines what action Net.Data takes if the RETURN_CODE matches the
return_code value in the current message statement.

EXIT
A keyword that specifies to exit the macro immediately when the error or
warning corresponding to the specified message code occurs. This value is
the default.

CONTINUE
A keyword that specifies to continue processing when the error or warning
corresponding to the specified message code occurs.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. The INCLUDE statement can appear anywhere in the MESSAGE.
See UNCLUDE Statement” an page 36 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data macro in which the statement is specified. The specified file can
exist on a local or remote server. See L "
for syntax and examples.

Net.Data: Reference

Context

The MESSAGE block can be found in these contexts:

* FUNCTION block

* IF block

» Outside of all blocks or statements in the declaration part of the Net.Data macro

Restrictions

The MESSAGE block can contain these elements:
« Comment block

e Function calls

* Variable references

* HTML statements

* Strings

* INCLUDE statement

* INCLUDE_URL statements

For OS/390, OS/2, Windows NT, and UNIX operating systems: SQL functions
cannot be called from inside SQL functions.

Examples

Example 1 : A local MESSAGE block

%{ Tocal message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my_function() {
%EXEC { my_command.cmd %}
%MESSAGE {
-601: {<H3>The table has already been created, please go back and enter your name.</H3>
<P>Return
%}
default: "<H3>Can't continue because of error $(RETURN_CODE)</H3>"%} :oexit

0
%}

Example 2 : A global MESSAGE block

%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more

than one line. You can use HTML tags, including
links and forms, in this message. %} : continue
%}

%{ Tocal message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my function() {

%EXEC { my_command.cmd %}

%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one Tine. You can use HTML tags, including
links and forms, in this message. %} :exit

0,
%}

Example 3 : A MESSAGE block containing INCLUDE statements.

Chapter 1. Net.Data Macro Language Constructs 49

smessage {
%include "rcl1000.msg"
%include "rc2000.msg"
%include "defaults.msg"

N

}

50 Net.Data: Reference

REPORT Block
Purpose

Formats output from a function call. You can enter a table name parameter to
specify that the report is to use the data in the named table. Otherwise, the report is
generated with the first output table found in the function parameter list, or with the
default table data if no table name is in the list.

Syntax
»»>—%REPORT {(— >
I—(—name—)J —string
—if block
—variable reference
—function call
—HTML statements————
—include statement
—include _url statement—
—while block
v °
"T] . K
row block —string
—if block
—variable reference
—function call
—HTML statements————
—include statement
—include_url statement—
—while block
Values
%REPORT

The keyword for specifying formatting instructions for the output of a function
call. You can use header and footer information for the report.

name
This value represents a Net.Data table or result set. See the Report Block
section in the Net.Data Administration & Programming Guide for more
information.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent integers
and have no leading or trailing white space. They can have one leading plus (+)

or minus (-) sign. See EIE Black” on page 3d for syntax and examples.

Chapter 1. Net.Data Macro Language Constructs 51

52

Net.Data: Reference

variable reference
Returns the value of a variable and is specified with $ and (). For example: if
VAR="abc', then $(VAR) returns the value 'abc'. See ['Variable Reference” on

for syntax information.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or a Net.Data

built-in function with specified arguments. See LEunLunn_Ca.LL(@.)_an_page_El

for syntax and examples.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See KINCI UDE Statement” on page 36 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data macro in which the statement is specified. The specified file can exist

on a local or remote server. See UNCIUDE_URI Statement” on page 34 for

syntax and examples.

row block
The ROW block. Displays HTML formatted data once for each row of data that

is returned from a function call. See ERQW Black” on page 54 for syntax and

examples.

while block
The WHILE block. Performs looping with conditional string processing. See

[wHIIL E Block” an page 58 for syntax and examples.

Context

The REPORT block can be found in these contexts:
e FUNCTION statement or block

Restrictions

The REPORT block can contain these elements:
¢ Comment block

* |F block

* INCLUDE statements

* INCLUDE_URL statements

* ROW blocks

e WHILE blocks

* Function calls

For OS/390, 0OS/2, Windows NT, and UNIX operating systems: SQL functions
cannot be called from inside SQL functions.

* HTML statements

* Strings

» Variable references

For OS/390: REPORT blocks are not allowed in MACRO_FUNCTION blocks.
Examples

Example 1: A two-column HTML table showing a list of names and locations

%FUNCTION(DTW_SQL) mytable() {
%REPORT{

<H2>Query Results</H2>

<P>Select a name for details.
<TABLE BORDER=1>
<TR><TD>Name</TD><TD>Location</TD>
%SROW{

<TR>

<TD>

$(V1)</TD>
<TD>$(v2)</TD>

%}

</TABLE>

%}
Selecting a name in the table calls the details HTML block of the name.mac

Net.Data macro and sends it the two values as part of the URL. In this example,
the values can be used in name.mac to look up additional details about the name.

Chapter 1. Net.Data Macro Language Constructs 53

ROW Block

54

Net.Data: Reference

Purpose

Processes each table row returned from a function call. Net.Data processes the
statements within the ROW block once for each row.

Syntax

»>—%ROW—{— %} >
—string
—if block
—variable reference
—function call
—HTML statements
—include statement
—include_url statement—
“while block

Values

%ROW

The keyword that specifies that HTML formatted data is to be displayed, once
for each row of data returned from a function call.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can have a

single leading plus (+) or minus (-) sign. See LIE Block” an page 3d for syntax

and examples.

variable reference
Returns the value of a variable and is specified with $ and (). For example if
VAR="'abc', then §(VAR) returns the value 'abc'. See I
hage 4 for syntax information.

function call
Invokes one or more FUNCTION or MACRO FUNCTION blocks, or built-in
functions with specified arguments. See L z for
syntax and examples.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See L ’ for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the

Net.Data macro in which the statement is specified. The specified file can exist

on a local or remote server. See [INCI UDE_URI Statement” on page 34 for

syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwWHILE Block” on page 54 for syntax and examples.

Context

The ROW block can be found in these contexts:
« REPORT block

Restrictions

The ROW block can contain these elements:
e Comment block

* |F blocks

* INCLUDE statements

* INCLUDE_URL statements

* WHILE blocks

e Function calls

For OS/390, OS/2, Windows NT, and UNIX operating systems: SQL functions
cannot be called from inside SQL functions.

» Variable references

* HTML statements

» Strings

Examples

Example 1: A two-column HTML table showing a list of names and locations

%REPORT{

<H2>Query Results</H2>

<P>Select a name for details.
<TABLE BORDER=1>
<TR><TD>Name</TD><TD>Location</TD>

%ROMW{

<TR>

<TD>

$(V1)</TD>
<TD>$(v2)</TD>

%}

</TABLE>

[}
%}

Selecting a name in the table calls the details HTML block of the name.mac
Net.Data macro and sends it the two values as part of the URL. In this example,
the values can be used in name.mac to look up additional details about the name.

Chapter 1. Net.Data Macro Language Constructs 55

TABLE Statement

56

Net.Data: Reference

Purpose

Defines a variable which is a collection of related data. The variable contains a set
of rows and columns including a row of column headers describing the fields in
each row. A table statement can only be in a DEFINE statement or block.

When a TABLE variable is referenced, Net.Data displays the content of the table as
either a plain character table, or as an HTML table if the DTW_HTML_TABLE
variable is set to YES.

Syntax

»—%TABLE—' upper Timit i ><

upper limit;

-+ pmter—)— |

Values

%TABLE
A keyword that specifies the definition of a collection of related data containing
an array of identical records, or rows, and an array of column names describing
the fields in each row.

upper limit
The number of rows that can be contained in the table. If the upper limit value
is not specified, the table can contain an unlimited number of rows.

number
A string of digits with values from 0 to 9. A value of 0 allows for unlimited
number of rows in the table.

ALL
A keyword that allows for an unlimited number of rows in the table.

Context

The TABLE statement can be found in these contexts:
* DEFINE statement

Restrictions

The TABLE statement can contain these elements:
¢« Comment block
¢« Numbers

Examples

Example 1: A Net.Data table with an upper limit of 30 rows
%DEFINE myTablel=%TABLE (30)

Example 2: A Net.Data table that uses the default of all rows
%DEFINE myTable2=%TABLE

Example 3: A Net.Data table that specifies all rows
%DEFINE myTable3=%TABLE (ALL)

Chapter 1. Net.Data Macro Language Constructs 57

WHILE Block

58

Net.Data: Reference

Purpose

Provides a looping construct based on conditional string processing. You can use
the WHILE block in the HTML block, the REPORT block, the ROW block, the IF
block, and the MACRO_FUNCTION block. String values in the condition list are
treated as numeric for comparisons if they are strings that represent integers and
have no leading or trailing white space. They can have a single leading plus (+) or

minus (-) sign.

Syntax

>>—%WHILE—| condition 1ist |—{ \

condition list:

—((—condition list—)
condition list—&&—condition list—
condition list—||—condition list—

l—condition list

—exec_sql statement
—function call
—HTML statement
—if block
—include statement
—include _url statement—
—while block
—variable reference

—string

condition i

term i

condition:

term

—term

term:

variable_name I
variable reference
function call

string
i:variable reference—
function call

Values

%WHILE
The keyword that specifies loop processing.

condition list
Compares the values of conditions and terms. Condition lists can be connected
using Boolean operators. A condition list can be nested inside another condition
list.

condition
A comparison between two terms using comparison operators. An IF condition
is treated as a numeric comparison if both of the following conditions are true:

* The condition operator is one of the following operators: <,<=,>>= ===

* Both terms are strings representing valid integers, where a valid integer is a
string of digits, optionally proceeded by a plus (+) or minus (-) sign, and no
other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, for function call.

exec_sql statement
A DB2WWW Release 1 language element that is supported for compatibility.
See [Appendix B. DB2 WWW Connection” an page 313 or DB2 World Wide
Web Release 1 documentation.

function call
Invokes one or more FUNCTION or MACRO_FUNCTION blocks, or built-in

functions with specified arguments. See LEuthLQn_Caﬂ_(_@_)_an_pageﬂ for

syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’s browser.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent integers
and have no leading or trailing white space. They can have one leading plus (+)

or minus (-) sign. See EE Black” on page 3d for syntax and examples.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See KINCLUDE Statement” on page 34 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the

Chapter 1. Net.Data Macro Language Constructs 59

Net.Data Web macro where the statement is specified. The specified file can

exist on a local or remote server. See 'INCIL UDE_URI Statement” on page 38

for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

LwWHILE Block” on page 54 for syntax and examples.

variable reference
Returns the value of a variable and is specified with $ and (). For example: if
VAR="'abc', then $(VAR) returns the value 'abc'. See E\ari z
for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation. A string in
the term of the condition list can contain any character except the new-line
character.

variable name

A name that identifies a variable. See I\ariahle Name” on page 4 for syntax

information.

Context

The WHILE block can be found in these contexts:
e HTML block

 REPORT block

« ROW block

* MACRO_FUNCTION block

* |F block

e WHILE block

Restrictions

The WHILE block can contain these elements:
e Comment block

« EXEC_SQL statement

* |F block

* WHILE block

» Strings

 HTML statements

e Function calls

e Variable references

* INCLUDE statements

* INCLUDE_URL statements

Examples

Example 1: A WHILE block that generates rows in a table
%DEFINE ToopCounter = "1"

SHTML (build_table) {
%WHILE (ToopCounter <= "100") {
%{ generate table tag and column headings %}
%IF (loopCounter == "1")
<TABLE BORDER>
<TR>
<TH>Item #
<TH>Description
</TR>

60 Net.Data: Reference

N o

%ENDIF
%{ generate individual rows %}
<TR>

<TD>

<TD>$ (1oopCounter)
<TD>@getDescription(loopCounter)
</TR>

{ generate end table tag %}

IF (loopCounter == "100")
</TABLE>

%ENDIF

)
%
o

%

%{ increment loop counter %}
@dtw_add(loopCounter, "1", TloopCounter)

Chapter 1. Net.Data Macro Language Constructs

61

62 Net.Data: Reference

Chapter 2. Variables

Net.Data provides two types of variables: user-defined variables and Net.Data

variables.

”

Variables that you define for your application. You can define the variables
that perform the following tasks:

Assign a variable value based on the value of another variable or string.

Use the ENVVAR language construct to reference environment variables.

Use the EXEC language construct to invoke other programs from a
variable reference.

Hide variable reference from HTML source.

Build a delimited string of values using the LIST language construct.

Pass an array of values to and from a function. Can be used for report
output.

Net.Data Variables

Variables that are for miscellaneous processing and file manipulation, table
processing, report formatting, and language environments.

Some variables have values that you can define or modify, others are
defined by Net.Data. The description for the variable specifies whether you
define a value or not. See the description of a variable to determine how
the value is defined.

The following variable types are provided by Net.Data:

© Copyright IBM Corp. 1997, 1999

et DAt Tahe B Varahes 3]

Defined by Net.Data to let you process Net.Data tables. Use these
variables to access data from SQL queries and function calls. They are
only recognized inside REPORT or ROW blocks, unless otherwise
specified.

Help you customize reports from a function. You can define or reference
report variables in any Net.Data macro block.

Help you customize the way FUNCTION blocks are processed, using
language environments.

Defined by Net.Data to affect Net.Data processing, find out the status of
a function call, and obtain information about the result set of a database
query. Some miscellaneous variables are set by Net.Data and cannot be
changed.

63

The output for many Net.Data variables varies depending on the operating
system on which it runs.

Constants can be up to 256KB in a Net.Data macro. Thus, you cannot initialize a
variable or set a default value whose length is greater than 256 KB in a macro.

In this chapter, operating system support for each variable is specified. The
following list defines operating system abbreviations:

HP-UX Hewlett Packard UNIX operating system
SCO Santa Cruz Operation OpenServer

SUN Solaris Operating System

Win NT Microsoft Windows NT operating system

User-defined Variables

This section describes the user-defined variables. You define these variables within
the macro.

Conditional Variables

64

Net.Data: Reference

AIX HP-UX | Linux 0s/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

The value of a conditional variable is conditionally set based on the value of
another variable or string. This is also called a ternary operation.

The syntax of conditional variable is:
test ? trueValue : falseValue

Where:
test Is a condition to test.

trueValue
Is the value to use if the test is true.

falseValue
Is the value to use if the test is false.

Example 1: A conditional variable defined with two possible values
varA = varB ? "value_1" : "value_2"

If varB exists, varA=value_1, otherwise varA=value_ 2.

Example 2 : A conditional variable defined with a variable reference
varname = ? "§(value_1)"

In this case, varname is null if value 1 is null, otherwise varname is set to value 1.

Example 3: A conditional variable used with a LIST statement and WHERE clause

%DEFINE{

%list " AND " where_list

where Tist ? "custid = $(cust_inp)"

where_Tist ? "product_name LIKE '$(prod_inp)%""
where_clause ? "WHERE $(where 1ist)"

0,
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT * FROM prodtable $(where_clause)

0,
%}

Conditional and LIST variables are most effective when used together. The above
example shows how to set up a WHERE clause in the DEFINE block. The variables
cust_inp and prod_inp are HTML input variables passed from the Web browser,
usually from an HTML form. The variable where_list is a LIST variable made of two
conditional statements, each statement containing a variable from the Web browser.

If the Web browser returns values for both variables cust _inp and prod_inp, for
example, IBM and 755C, the where_clause is:

WHERE custid = IBM AND product_name LIKE '755C%'

If either variable cust _inp or prod_inp is null or not defined, the WHERE clause
changes to omit the null value. For example, if prod_inp is null, the WHERE clause
is:

WHERE custid = IBM

If both values are null or undefined, the variable where_clause is null and no
WHERE clause appears in SQL queries containing $(where_clause).

Environment Variables

AIX HP-UX Linux 0S/2 0OS/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Environment variables let you use the Net.Data ENVVAR language construct to
reference environment variables that exist in the process under which Net.Data is
running.

Example 1: A variable is assigned the value of an environment variable
%define SERVER_NAME=%ENVVAR

The server is $(SERVER_NAME)

The environment variable SERVER _NAME has the value of the current server
name, which, in this example, is www.software.ibm.com.

The server is www.software.ibm.com

See [ENVVAR Statement” an page 14l for more information about the ENVVAR

statement.

Executable Variables

AIX HP-UX Linux 0S/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Chapter 2. Variables 65

Executable variables allow you to invoke other programs from a variable reference
using the executable variable feature. An executable variable is defined in a
Net.Data macro using the EXEC language element. For more information about the

EXEC language element, see FEXEC Block or Statement” on page 185.

When Net.Data encounters an executable variable in a macro, it looks for the

referenced executable program using the following method:

1. It searches the EXEC_PATH in the Net.Data initialization file. See the
configuration chapter in Net.Data Administration and Programming Guide for
more information about EXEC_PATH.

2. If Net.Data does not locate the program, it searches the directories defined by
the system. If it locates the executable program, Net.Data runs the program.

Example 1: An executable variable definition
%DEFINE runit=%exec "testProg"

The variable runit is defined to execute the executable program testProg; runit
becomes an executable variable.

Net.Data runs the executable program when it encounters a executable variable
reference in a Net.Data macro. For example, the program testProg is executed
when a executable variable reference is made to the variable runitin a Net.Data
macro.

A simple method is to reference an executable variable from another variable
definition. Example 2 demonstrates this method. The variable date is defined as an
executable variable and dateRpt is then defined as a variable reference, that
contains the executable variable.

Example 2: An executable variable as a variable reference

%DEFINE date=%exec "date"
%DEFINE dateRpt="Today is $(date)"

When Net.Data resolves the variable reference $(dateRpt), Net.Data searches for
the executable date, runs the program, and returns:

Today is Tue 11-07-1995

An executable variable is never set to the value of the output of the executable
program it calls. Using the previous example, the value of date is null. If you use it
in a DTW_ASSIGN function call to assign its value to another variable, the value of
the new variable after the assignment is null also. The only purpose of an
executable variable is to invoke the program it defines.

You can also pass parameters to the program to be executed by specifying them
with the program name on the variable definition.

Example 3: Executable variables with parameters
%DEFINE mph=%exec "calcMPH $(distance) $(time)"

The values of distance and time are passed to the program calcMPH.

Hidden Variables

66

Net.Data: Reference

| AlX HP-UX | Linux| 0S/2 | 0s/390 | 0s/400 | sco SUN | win NT

List Variables

xx|x|x X X X | x | x

With hidden variables, you can reference variables while hiding the actual variable
value in your HTML source. To use hidden variables:

1. Define a variable for each string you want to hide.

2. In the HTML block where the variables are referenced, use double dollar signs
instead of a single dollar sign to reference the variables. For example, $$(X)
instead of $(X).

Do not reference hidden variables with dynamically constructed variable names.

Example 1 : Hidden variables in a HTML form

SHTML (INPUT) {

<FORM ...>

<P>Select fields to view:
<SELECT NAME="Field">

<OPTION VALUE="$$(name)"> Name
<OPTION VALUE="$$(addr)"> Address

</FORM>

0,
%}

%DEFINE{
name="customer.name"
addr="customer.address"

0,
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

0,
%}

When the HTML form is displayed on a Web browser, $$(name) and $$ (addr)are
replaced with $ (name) and $(addr) respectively, so the actual table and column
names never appear on the HTML form and no one can tell that the true variable
names are hidden. When the customer submits the form, the HTML(REPORT)
block is called. When @mySelect() calls the FUNCTION block, $(Field) is
substituted in the SQL statement with customer.name or customer.addr in the SQL

query.

AlX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

You can use list variables to build a delimited string of values. They are particularly
useful in helping you construct an SQL query with multiple items like those found in
some WHERE or HAVING clauses.

The blanks are significant. Usually you want to have a blank space on both sides of
the value. Most queries use Boolean or mathematical operators (for example, AND,

OR, and >). See LLIST Statement” on page 40 for syntax and more information.

Example 1: Use of conditional, hidden, and list variables

Chapter 2. Variables 67

Table Variables

68

Net.Data: Reference

SHTML (INPUT) {

<FORM METHOD="POST" ACTION="/cgi-bin/db2www/example2.max/report">

Select one or more cities:

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(condl)">Sao Paulo

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond2)">Seattle

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond3)">Shanghai

<INPUT TYPE="submit" VALUE="Submit Query">

</FORM>

0,
%}

%DEFINE{

DATABASE="custcity"

%LIST " OR " conditions

condl="condl='Sao Paolo"'"
cond2="cond2="'Seattle"'"
cond3="cond3="Shanghai'"

whereClause= ? "WHERE $(conditions)" : ""

0,
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist
$ (whereClause)

0,
%}

%HTML (REPORT) {
emySelect()

%}

If no boxes are checked in the HTML form, conditions is null, so whereClause is also
null in the query. Otherwise, whereClause has the selected values separated by the
Boolean operator OR. For example, if all three cities are selected, the SQL query is:

SELECT name, city FROM citylist
WHERE condl='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

Example 2 : Value separators

%DEFINE %LIST " | " VLIST
%REPORT{

%ROW{

$ (ROW_NUM) : $ (VLIST)
%}

[}
%}

The table processing variable VLIST uses two quotes and an OR bar, (|), as a
value separator in this example. The string of values are separated by the value in
quotes.

AlX HP-UX | Linux 0S/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

The table variable defines a collection of related data. It contains a set of rows and
columns including a row of column headers. Use table variables to pass groups of
values to a function. You can refer to the individual elements of a table (the rows) in
a REPORT block of a function or by using table built-in functions. Table variables
are often used for output from an SQL function and input to a report, but you can
also pass them as IN, OUT, or INOUT parameters to any non-SQL function. Tables
can onlé be passed to SQL functions as OUT parameters. See LTABLE Statement!

for syntax and more information.

When a TABLE variable is referenced, Net.Data displays the content of the table as
either a plain character table, or as an HTML table if the DTW_HTML_TABLE
variable is set to YES.

Example 1: A SQL result set that is passed to a REXX program

%DEFINE({

DATABASE = "iddata"
MyTable = %TABLE(ALL)
DTW_DEFAULT_REPORT = "NO"

0,
%}

%FUNCTION(DTW_SQL) Query(OUT table) {
select * from survey

9

%}

%FUNCTION(DTW_REXX) showTable(INOUT table) {
Say 'Number of Rows: 'table ROWS
Say 'Number of Columns: 'table_COLS
do j=1 to table_COLS
Say "Here are all of the values for column " table N.j ":"
do i =1 to table_ROWS
Say ""i": " table V.i.j
end
end

[)
%}

%HTML (report) {
<HTML>

<PRE>
@Query(MyTable)

<p>
@showTable(MyTable)
</PRE>

</HTML>

0,
%}

The HTML REPORT block calls an SQL query, saves the result in a table variable
and then passes the variable to a REXX function.

Net.Data Table Processing Variables

Net.Data defines these variables for use in the REPORT and ROW blocks, unless
noted otherwise. Use these variables to reference values that your queries return.

Chapter 2. Variables 69

Nn

70

Net.Data: Reference

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose
The column name returned by a function call or query for column n.

You can reference Nn in REPORT and ROW blocks.
Examples

Example 1 : A variable reference for a column name
The name of column 2 is $(N2).

Example 2 : Saves the value of a column name for use outside a REPORT block
using DTW_ASSIGN

%define coll=""

%function (DTW_SQL) myfunc() {
select * from atable
%report {

@dtw_assign(coll, N1)
Srow{ %}
%}

0,
%}

%htm1 (report) {
@myfunc ()
The column name for the first column is $(coll)

0,
%}

This example shows how you can use this variable outside the REPORT block by

using DTW_ASSIGN. For more information, see EDTW_ASSIGN” an page 173.

Example 3: Nn within an HTML table to define column names

%REPORT{

<H2>Product directory</H2>

<TABLE BORDER=1 CELLPADDING=3>

<TR><TD>$ (N1)</TD><TD>$ (N2) </TD><TD>$ (N3) </TD>
%ROW{

<TR><TD>$ (V1) </TD><TD>$ (V2)</TD><TD>$ (V3)</TD>
%}

</TABLE>

0,
%}

NLIST

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose

Contains a list of all the column names from the result of a function call or query.
The default separator is a space.

You can reference NLIST in REPORT and ROW blocks.
Examples

Example 1: A list of column names with ALIGN
%DEFINE ALIGN="YES"

%FUNCTION (DTW_SQL) myfunc() {

select * from MyTable

%report {

Your query was on these columns: $(NLIST).
%row {

!
}
1

N A O e

The list of column names uses a space between column names with ALIGN set to
YES.

Example 2 : A %LIST variable to change the separator to " | ”
%DEFINE %LIST " | " NLIST

%FUNCTION (DTW_SQL) myfunc() {

select * from MyTable

%report {

Your query was on these columns: $(NLIST).
srow {

}
}
}

N A ° .

Chapter 2. Variables 71

NUM_COLUMNS

72

Net.Data: Reference

AIX HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X X
Purpose

The number of table columns that Net.Data is processing in the report block; the
columns are returned by a function call or query.

You can reference NUM_COLUMNS in REPORT and ROW blocks.

Examples

Example 1: NUM_COLUMNS used as a variable reference with NLIST

%REPORT{

Your query result has $(NUM_COLUMNS) columns: $(NLIST).

0,
%}

NUM_ROWS

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X

Purpose

The number of rows in the table that Net.Data is processing in the REPORT block.
The number of rows is affected by the value of the upper limit parameter defined for
the Net.Data table holding the data. For example, if upper limit is set to 30, but the
SELECT statement returns 1000 rows, the value of NUM_ROWS is 30. Additionally,
if upper limitis set to 30 and the SELECT statement returns 20 rows, NUM_ROWS

equals 20. See LTABLE Statement” on page 56 for more information about the

TABLE statement and the upper limit parameter.

NUM_ROWS is not affected by the value of START_ROW_NUM as long as
START_ROW_NUM is not passed to the language environment. For example, if
START_ROW_NUM is set to 5 (specifying that the table displayed on the Web page
should be populated starting with row 5) and the SELECT statement returns 25
rows, NUM_ROWS is set to 25, not 21. The first four rows are discarded from the
table, but are included in the value of NUM_ROWS. However, if
START_ROW_NUM is passed to the language environment, then NUM_ROWS wiill
only contain the number of rows starting at the row specified by
START_ROW_NUM. In the example above, NUM_ROWS will be set to 21.

You can reference NUM_ROWS in REPORT and ROW blocks.

Examples

Example 1: Displays the number of hames being processed in the REPORT block
%DEFINE DTW_SET_TOTAL_ROWS="YES"

%REPORT{

<H2>E-mail directory</H2>

%ROMW{

Name: $(V2)

Location: $(V3)

%}

Names displayed: $(NUM_ROWS)

Names found: $(TOTAL_ROWS)

0,
%}

Chapter 2. Variables 73

ROW_NUM

74

Net.Data: Reference

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

A table variable whose value Net.Data increments each time a row is processed in
a Net.Data table. The variable acts as a counter and its value is the number of the
current row being processed.

RPT_MAX_ROWS can affect the value of ROW_NUM. For example, if 100 rows
are in a table, and you have set RPT_MAX_ ROWS to 20, the final value of
ROW_NUM is 20, because row 20 was the last row processed.

You can reference ROW_NUM only from within a ROW block.
Examples

Example 1 : Populates a column in the HTML output by using ROW_NUM to label
each row in the table

%REPORT{

<TABLE BORDER=1>

<TR><TD> Row Number </TD> <TD> Customer </TD>
%ROW{

<TR><TD> $(ROW_NUM) </TD> <TD> §$(V_custname) </TD>
%}
</TABLE>

0,
%}

The REPORT block produces a table like the one shown below.

Row Number Customer

1 Jane Smith

2 Jon Chiu

3 Frank Nguyen
4 Mary Nichols

TOTAL_ROWS

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

The total number of rows a query returns, no matter what the value of upper_limit

for the TABLE language construct. For example, if RPT_MAX_ROWS is set to

display a maximum of 20 rows, but the query returns 100 rows, this variable is set

to 100 after ROW processing.

Operating system differences:

* On the OS/400 operating system, this variable can be referenced anywhere in a

REPORT or ROW block.

* On the 0S/390, 0OS/2, Windows NT, and UNIX operating systems, this variable

can be referenced in the REPORT footer, only.

Language Environment Restriction: Use this variable only with the following
database language environments:

* SQL

- ODBC
* Oracle
* Sybase

Required: You must set DTW SET TOTAL ROWS to YES to use this variable.

See [DTW_SET _TOTAlL _ROWS” an page 98 for more information.

Examples

Example 1: Displays the total number of names found
%DEFINE DTW_SET_TOTAL_ROWS="YES"

%REPORT{

<H2>E-mail directory</H2>

<yL>

ZROW{

Name: $(V2)

Location: $(V3)

%}

Names found: $(TOTAL_ROWS)

[)
%}

Chapter 2. Variables

75

V_columnName

AIX HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X X
Purpose

The value for the specified column name for the current row. The variable is not set
for undefined column names. A query containing two column names with the same
name gives unpredictable results. Consider using an AS clause in your SQL to

rename duplicate column names.
You can reference V_columnName only within a ROW block.

Values
V_columnName

Table 1. V_columnName Values

Values Description
columnName The column name in current row of the database table.
Examples

Example 1: Using V_columnName as a variable reference

%FUNCTION(DTW_SQL) myQuery() f
SELECT NAME, ADDRESS from $(qtable)
%REPORT{

%ROW{

Value of NAME column in row $(ROW_NUM) is $(V_NAME).

%}

76 Net.Data: Reference

VLIST

AIX | HP-UX | Linux | OS/2 | OS/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X X
Purpose

A list of all the field values for the current row being processed in a ROW block.

You can reference VLIST only within a ROW block. The default separator is a

space.
Examples

Example 1: Using list tags to display query results
%DEFINE ALIGN="YES"

%REPORT {

Here are the results of your query:
<0L>

%ROW {

$(VLIST)

%}
</0L>

[)
%}

Example 2 : Using a list variable to change the separator to <P>
%DEFINE %LIST "<P>" VLIST

%REPORT{

Here are the results of your query:
%ROMW{

<HR>$ (VLIST)

%}

0,
%}

Chapter 2. Variables 77

Vn

78

Net.Data: Reference

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

The value for the specified column number n for the current row.
You can reference Vn only within a ROW block.

Net.Data assigns the variable for each field the table; use the variable in a variable
reference, specifying the number of the field you want to reference. To use this
variable outside the block, assign the value of Vn to a previously defined global
variable or an OUT or INOUT function parameter variable.

Examples

Example 1 : Report displaying an HTML table

%REPORT{

<H2>E-mail directory</H2>

<TABLE BORDER=1 CELLPADDING=3>
<TR><TD>Name</TD><TD>E-mail address</TD><TD>Location</TD>
ZROW{

<TR><TD>$(V1)</TD>

<TD>$(v2)</TD>

<TD>$(V3)</TD>

%}

</TABLE>

0,
%}

The second column shows the e-mail address. You can send the person a message
by clicking on the link.

Net.Data Report Variables

These variables help you customize your reports. Each variable has a default value.
You can override the default value by assigning a new value to the variable.

« IDTW _DEFAULT REPQRT” on page a1

. [START ROW NI =

Chapter 2. Variables 79

ALIGN

80

AIX HP-UX | Linux

0s/2 0S/390 | OS/400 SCO SUN Win NT

X X

X X X X X X

Net.Data: Reference

Purpose

Controls leading and trailing spaces used with the table processing variables NLIST

and VLIST.

Performance Tip: Use ALIGN only when necessary as it requires that Net.Data
determine the maximum column length for all columns in the table to calculate
padding requirements. This process can impact performance.

When set to YES, ALIGN provides padding to align table processing variables for
display. If you want to embed query results in HTML links or form actions, use the
default value of NO to prevent Net.Data from surrounding report variables with
leading and trailing spaces.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
ALIGN="YES"|"NO"

Table 2. ALIGN Values

Values Description

YES Net.Data adds leading and trailing spaces to report variables
with spaces to align them for display.

NO Net.Data does not add leading or trailing spaces. NO is the
default.

Examples

Example 1 : Using the ALIGN variable to separate each column by a space

%DEFINE ALIGN="YES"

<P>Your query was on these columns: $(NLIST)

DTW_DEFAULT_REPORT

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose

Determines whether Net.Data generates a default report for functions that have no
REPORT block. When this variable is set to YES, Net.Data generates the default
report. When set to NO, Net.Data suppresses default report generation.
Suppressing the default report is useful, for example, if you receive the results of a
function call in a table variable and want to pass the results to a different function to
process.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_DEFAULT_REPORT="YES"|"NO"|"MULTIPLE"

Table 3. DTW_DEFAULT_REPORT Values

Values Description

YES Net.Data generates the default report for functions without
REPORT blocks and displays the results at the browser. YES is
the default.

NO Net.Data discards the default report for functions without
REPORT blocks.

MULTIPLE Net.Data generates default reports for result sets or output
tables that are not assigned to a REPORT block, in functions
with multiple REPORT blocks

Examples

Example 1 : Overriding the default report generated by Net.Data
%DEFINE DTW_DEFAULT_REPORT="NO"

Chapter 2. Variables 81

DTW_HTML_TABLE

82

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

Displays results in an HTML table instead of displaying the table in a text-type
format (that is, using the TABLE tags rather than the PRE tags).

The generated TABLE tag includes a border and cell-padding specification:
<TABLE BORDER CELLPADDING=2>

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_HTML_TABLE="YES"|"NO"

Table 4. DTW_HTML_TABLE Values

Values Description

YES Displays table data using HTML table tags.

NO Displays table data in a text format, using PRE tags. NO is the
default.

Examples

Example 1: Displays results from an SQL function with HTML tags
%DEFINE DTW_HTML TABLE="YES"

%FUNCTION (DTW_SQL) {

SELECT NAME, ADDRESS FROM $(qTable)

0,
%}

Net.Data: Reference

RPT_MAX_ROWS

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose

Specifies the number of rows in a table that are processed in a function REPORT
block or during the generation of a default report if a REPORT block is not
specified.

The database language environments use this variable to limit the number of rows
returned, which can subtantially improve performance for large result sets. Use this
variable with START_ROW_NUM to break queries with large result sets into smaller
tables, each on its own HTML page.

0S/400, Windows NT, OS/2, and UNIX users: To pass this variable to the
language environment, include it as an IN parameter in the database language
environment's ENVIRONMENT statement in the Net.Data initialization file. To learn
more about the database language environment statement, see the configuration
chapter of the Net.Data Administration and Programming Guide for your operating
system.

0S/390 users: RPT_MAX_ROWS is implicitly passed to the database language
environments when it is defined in the macro.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
RPT_MAX_ROWS="ALL"|"0" |"number"

Table 5. RPT_MAX_ROWS Values

Values Description

ALL Indicates that there is no limit on the number of rows to be
displayed in a table generated by a function call. All rows will be
displayed.

0 Specifies that all rows in the table will be displayed. This value

is the same as specifying ALL.

number A positive integer indicating the maximum number of rows to be
displayed in a table generated by a function call.

If the FUNCTION block contains a REPORT and ROW block,
this number specifies the number of times the ROW block is
executed.

Examples

Example 1 : Defines RPT_MAX_ROWS in a DEFINE statement
%DEFINE RPT_MAX_ROWS="20"

The above method limits the number of rows any function returns to 20 rows.
Example 2 : Uses HTML input to define the variable with an HTML form
Maximum rows to return (0 for no limit):

<INPUT TYPE="text" NAME="RPT_MAX_ROWS" SIZE=3>

Chapter 2. Variables 83

The lines in the above example can be placed in a FORM tag to let the application
users set the number of rows they want returned from a query.

84 Net.Data: Reference

START _ROW_NUM

AIX HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies the starting row number in a table that will get processed in a function
REPORT block or during the generation of a default report if a REPORT block is

not specified.

The database language environments use this variable to determine the starting
row in the result set to begin processing. To subtantially improve performance for
large result sets, use this variable with RPT_MAX_ROWS to break queries with
large result sets into smaller tables.

0S/400, Windows NT, OS/2, and UNIX users:

more about the database language environment statement, see the configuration

To pass this variable to the
language environment, include it as an IN parameter in the database language
environment's ENVIRONMENT statement in the Net.Data initialization file. To learn

chapter of the Net.Data Administration and Programming Guide for your operating

system.

0S/390 users: START_ROW_NUM is implicitly passed to the database language

environments when it is defined in the macro.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
START_ROW_NUM="number"

Table 6. START_ROW_NUM Values

Values

Description

number

A positive integer indicating the row number with which to begin
displaying a report. The default value is 1.

If START_ROW_NUM is specified in a database language
environment’s environment statement in the initialization file, this
number specifies the row number of the result set processed by
the database language environment.

If START_ROW_NUM is not passed to the language
environment, this number specifies the row number of the
Net.Data table used to display a report.

Examples

Example 1: Scrolling with HTML form Next and Previous buttons

%define {
DTW_HTML_TABLE
START_ROW_NUM
RPT_MAX_ROWS
totalSize
incTudeNext
includePrev
includelast
includeFirst

"YES"
||1||
"10"
"YES"
"YES"
"YES"
"YES"

Chapter 2. Variables

85

0,
%}

%function(DTW_SQL) myQuery(){
select * from NETDATADEV.CUSTOMER

0,
%}

%function(DTW_SQL) count (OUT size){
select count(*) from NETDATADEV.CUSTOMER
%report{
Srow{
@DTW_ASSIGN(size,V1)
%}
%}

0,
%}

%htm1 (report) {
%{ get the total number of records if we haven't already %}
%if (totalSize == "")
@count(totalSize)
%endif

%{ set START_ROW_NUM based on the button user clicked %}
%if (totalSize <= RPT_MAX_ROWS)
%{ there's only one page of data %}
@DTW_ASSIGN(START_ROW_NUM, "1")
@DTW_ASSIGN(includeFirst, "NO")
@DTW_ASSIGN(includelLast, "NO")
@DTW_ASSIGN(includeNext, "NO")
@DTW_ASSIGN(includePrev, "NO")
%elif (submit == "First Page" || submit == "")
%{ first time through or user selected "First Page" button %}
@DTW_ASSIGN(START_ROW_NUM, "1")
@DTW_ASSIGN(includePrev, "NO")
@DTW_ASSIGN(includeFirst, "NO")
%elif (submit == "Last Page")
%{ user selected "Last Page" button %}
@DTW_SUBTRACT (totalSize, RPT_MAX_ROWS, START_ROW_NUM)
@DTW_ADD(START ROW_NUM, "1",” START ROW_NUM)
@DTW_ASSIGN(includelast, "NO")
@DTW_ASSIGN(includeNext, "NO")
%elif (submit == "Next")
%{ user selected "Next" button %}
@DTW_ADD(START_ROW_NUM, RPT_MAX_ROWS, START_ROW_NUM)
%if (@DTW_rADD(START ROW_NUM, RPT MAX ROWS) > totalSize)
@DTW_ASSIGN(includeNext,"NO")
@DTW_ASSIGN(includeLast, "NO")
%endif
%elif (submit == "Previous")
%{ user selected "Previous" button %}
@DTW_SUBTRACT (START_ROW_NUM, RPT_MAX_ROWS, START_ROW_NUM)
%if (START_ROW_NUM <= "1")
@DTW_ASSIGN(START ROW_NUM,"1")
@DTW_ASSIGN(includePrev,"NO")
@DTW_ASSIGN(includeFirst,"NO")
%endif
%endif

%{ run the query to get the data %}
@myQuery ()

%{ output the correct buttons at the bottom of the report %}
<center>

<form method="POST" action="report">

<input name="START ROW_NUM" type="hidden" value="$(START_ROW_NUM)">
<input name="totalSize" type="hidden" value="$(totalSize)">

%if (includeFirst == "YES")

<input name="submit" type="submit" value="First Page">

86 Net.Data: Reference

N

%endif

%if (includePrev == "YES")

<input name="submit" type="submit" value="Previous">
%endif

%if (includeNext == "YES")

<input name="submit" type="submit" value="Next">
%endif

%if (includelLast == "YES")

<input name="submit" type="submit" value="Last Page">
%endif

</form>

</center>

Chapter 2. Variables

87

Net.Data Language Environment Variables

Use these variables with functions to help you customize the way FUNCTION
blocks are processed by language environments. Each variable has a default value.
You can override the default value by assigning a new value to the variable.

. FDATARASE" ad

- DB _CASE” on page a1l

+ DBR2SSID” an page 93

« IDTW_APPLET AITTEXT” an page 94

« IDTW_EDIT CODES” an page 93

« IDTW_SAVE TARIE IN" on page 97

« IDTW _SET TQTAL_ROWS” on page 94

« ENULL _RPT EIFID” on page 101

+ 'TRANSACTION SCOPFE” an page 105

88 Net.Data: Reference

DATABASE

AIX HP-UX Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X

Purpose

Specifies the database or ODBC data source to access when calling a database
function. This variable can be changed multiple times within a macro to access
multiple databases or ODBC data sources.

0OS/400 operating system: This variable is optional. Net.Data, by default, specifies
DATABASE="*LOCAL"; the DTW_SQL language environment uses the local
relational database directory entry.

Windows NT, OS/2, and UNIX operating systems: Define this variable before
calling any database function, except when using the DTW_ORA (Oracle) language
environment. Additionally, you must use Live Connection when accessing multiple
databases from the same HTML block and through the same language
environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DATABASE="dbname"

Table 7. DATABASE Values

Values Description
dbname The name of the database Net.Data connects to.
Examples

Example 1 : Specifies to connect to the CELDIAL database for any SQL operations
%DEFINE DATABASE="CELDIAL"

%FUNCTION (DTW_SQL) getRpt() {
SELECT * FROM customer

0,
%}

%HTML (report) {
%INCLUDE "rpthead.htm"
@getRpt()

%INCLUDE "rptfoot.htm"

%}
The database CELDIAL is accessed when the function getRpt is called.

Example 2: Overrides previous DATABASE definitions with DTW_ASSIGN
%DEFINE DATABASE="DB2C1"

%HTML (monthRpt) {
@DTW_ASSIGN(DATABASE, "DB2D1")
%INCLUDE "rpthead.htm"
@getRpt()

%INCLUDE "rptfoot.htm"

[

%}

Chapter 2. Variables 89

The HTML block queries the database DB2D1, regardless of what the previous
value for DATABASE was.

90 Net.Data: Reference

DB_CASE

AIX | HP-UX | Linux | OS/2 | OS/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X X
Purpose

Specifies which case to use for SQL commands and converts all characters to
either upper or lower case. If this variable is not defined, the default action is to not

convert the SQL command characters.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DB_CASE="UPPER" | "LOWER"

Table 8. DB_CASE Values

Values Description

UPPER Converts all SQL command characters to upper case.
LOWER Converts all SQL command characters to lower case.
Examples

Example 1 : Specifies upper case for all SQL commands
%DEFINE DB_CASE="UPPER"

Chapter 2. Variables 91

DB2PLAN

92

AIX HP-UX | Linux

0s/2 0S/390 | OS/400 SCO SUN Win NT

X

Purpose

Allocates a plan for a connection to a local DB2 subsystem. The variable specifies
the name of a plan for the Net.Data SQL language environment at the local DB2
subsystem that Net.Data will access.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Requirement: For the value of this variable in the macro to take effect, it must be
listed on the ENVIRONMENT statement for the SQL language environment.

Values
DB2PLAN="plan_name"

Table 9. DB2PLAN Values

Values Description

plan_name The name of the DB2 plan. The name can be eight characters
or less.

Examples

Example 1: Specifies the plan in the DEFINE statement
%DEFINE DB2PLAN="DTWGAV22"

Net.Data: Reference

DB2SSID

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X

Purpose

Establishes a connection to a local DB2 subsystem. The variable specifies the
subsystem ID of the local DB2 subsystem that Net.Data will access. Only one local

database connection is allowed for each macro.

Requirement: For the value of this variable in the macro to take effect, it must be
listed on the ENVIRONMENT statement for the SQL language environment.

Values
DB2PLAN="subsytem_id"

Table 10. DB2SSID Values

Values Description
subsystem_id The name of the DB2 subsytem. The name can be eight
characters or less.

Examples

Example 1: Specifies a subsystem ID in the DEFINE statement
%DEFINE DB2SSID="DBNC"

Chapter 2. Variables

93

DTW_APPLET_ALTTEXT

94

AIX HP-UX

Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X

X X X X X X X

Purpose

Displays HTML tags
and is used with the

Specify the value of

and text to browsers that do not recognize the APPLET tag
the Applet language environment.

this variable using a DEFINE statement or with the

@DTW_ASSIGN() function.

Values

DTW_APPLET ALTTEXT="HTML_text_and_tags"

Table 11. DTW_APPLET_ALTTEXT Values

Values

Description

HTML_text_and_tags

HTML tags and text for browsers that do not recognize the
APPLET tag.

Examples

Example 1 : Alternate text that indicates a Web browser restriction
%DEFINE DTW_APPLET_ALTTEXT="<P>Sorry, your browser is not java-enabled."

Net.Data: Reference

DTW_EDIT_CODES

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X

Purpose

Converts NUMERIC, DECIMAL, INTEGER and SMALLINT data types that are
returned as a result of an SQL operation for the DTW_SQL language environment.
The variable DTW_EDIT_CODES is a string of characters that correspond to the
resulting columns of the table that DTW_SQL LE will build; for example, the fifth
character in DTW_EDIT_CODES will be applied to the fifth column of the result set
if that column is one of the supported types. This single character can be any of the
supported system supplied edit codes that are defined in Data Description
Specification Reference.

For example, a DECIMAL(6,0) field would normally be displayed as the character
string '112698’. By specifying an edit code of 'Y’ for that column in the variable
DTW_EDIT_CODES, the corresponding column in the resulting table is displayed
as a character string that represents the date of '11/26/98'.

Tip: Applying a user-supplied edit code to a column that results in a character string
with non-numeric characters (such as commas or currency symbols) can cause
syntax errors if the character string is sent back to the server for subsequent
processing within a Net.Data macro. For example, the non-numeric column value
might be used for numeric comparisons in subsequent DTW_SQL functions calls,
causing syntax errors.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_EDIT_CODES="edit_code"

Table 12. DTW_EDIT_CODES Values

Values Description

edit_code Specifies a string of characters that correspond to the resulting
columns of the table that the SQL language environment builds.

Examples

Example 1:
@DTW_ASSIGN(DTW_EDIT_CODES "JJLJJ##*kxxxY")

Chapter 2. Variables 95

| DTW_PAD_PGM_PARMS

: AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X

| Purpose

| Indicates to a language environment whether character parameters (data type of
| CHAR or CHARACTER) are to be padded with blanks when they are being passed
| to a program or stored procedure.

| For IN or INOUT parameters, if the length of parameter value is less than the
[precision that is specified, blanks are inserted to the right of the parameter value
| until the length of the parameter value is the same as the precision.

| For OUT parameters, the parameter value is set to precision blanks.

| After the call to the program or stored procedure, all trailing blanks are removed
| from OUT and INOUT parameter values.

| Set this variable in the Net.Data initialization file to specify a value for all of your
[macros. You can override the value by defining it in the macro. If

| DTW_PAD_PGM_PARMS is not defined in the macro, it uses the value in the

| Net.Data initialization file.

| DTW_PAD_PGM_PARMS is supported by the Direct Call and SQL language
| environments.

| Values
| DTW_PAD_PGM_PARMS="YES" | "NO"

Table 13. DTW_PAD_PGM_PARMS Values

Values Description

YES All IN and INOUT character parameter values are left justified
and padded with blanks for the defined precision of the

stored procedure. Trailing blanks are removed after the call to a
program or stored procedure.

NO No padding is added to character parameter values (values are
NULL-terminated) when passing parameters to programs or
stored procedures. Trailing blanks are not removed after calling

I

I

I

I

| parameter, before the parameters are passed to a program or
I

I

I

I

I

| a program or stored procedure.

| Examples

| Example 1: Pads parameters with blanks
| DTW_PAD_PGM_PARMS="YES"

96 Net.Data: Reference

DTW_SAVE_TABLE_IN

AIX HP-UX

Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X

X

X X X X X X X

Purpose

Identifies a table variable that the SQL language environment uses to store table
data from a query. This table can then be used later, for example, in a REXX
program that analyzes table data.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values

DTW_SAVE_TABLE_IN="table_name_var"

Table 14. DTW_SAVE_TABLE_IN Values

Values

Description

table_name_var

The name of a table for the SQL language environment to store
table data from a query.

Examples

Example 1: A previously-defined table variable used in a REXX call

%DEFINE theTable =
%DEFINE DTW_SAVE_TABLE_IN = "theTable"

%TABLE (2)

%FUNCTION(DTW_SQL) doQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE

WHERE TYPE='MONITOR'

0,
%}

%FUNCTION(DTW_REXX) analyze table(myTable) {
%EXEC{ anzTbl.cmd %}

0
%}

%HTML (doTable) {

@doQuery ()

%}

Banalyze_table(theTable)

A REXX FUNCTION block calls the REXX program anzTb1.cmd, which uses the
table variable theTable to analyze data in the table. The variable theTable was
returned from a previous SQL function call.

Chapter 2. Variables 97

DTW_SET_TOTAL_ROWS

98

Net.Data: Reference

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

Specifies to a database language environment that the total number of rows in the
result set for a query should be assigned to TOTAL_ROWS.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

0S/400, 0S/2, Windows NT, and UNIX users: To pass this variable to the
language environment, include it as an IN variable in the database language
environment's ENVIRONMENT statement in the Net.Data initialization file. See the
configuration chapter of Net.Data Administration and Programming Guide to learn
more about the database language environment statement.

0S/390 users: DTW_SET_TOTAL_ROWS is implicitly passed to the database
language environments when it is defined in the macro.

Performance tip: Setting DTW_SET_TOTAL_ROWS to YES affects performance
because to determine the total rows, the database language environment requires
that all rows be retrieved.

Values
DTW_SET_TOTAL_ROWS="YES" | "NO"

Table 15. DTW_SET_TOTAL_ROWS Values

Values Description

YES Assigns the value of the total number of rows to the
TOTAL_ROWS variable. Important: You must set this value if
you want to reference the variable TOTAL_ROWS to determine
the number of rows returned from a query.

NO Net.Data does not set the TOTAL_ROWS variable and
TOTAL_ROWS cannot be referenced in a macro. NO is the
default.

Examples

Example 1: Defines DTW_SET_TOTAL_ROWS for using TOTAL_ROWS
%DEFINE DTW_SET _TOTAL_ROWS="YES"

%FUNCTION (DTW_SQL) myfunc() {
select * from MyTable
%report {

%row
%}
<P>Your query is limited to $(TOTAL_ROWS) rows. The query returned too many rows.

0,
%}

0,
%}

LOCATION

AIX HP-UX

Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X

Purpose

Establishes a connection to a remote database server. The variable specifies the
name by which the remote server is known to the local DB2 subsystem. The value
of LOCATION must be defined in the SYSIBM.SYSLOCATIONS table of the
Communications Database (CDB). If this variable is not defined within a macro, any
SQL requests made by the macro are executed at the local DB2 subsystem.

Requirement: For the value of this variable in the macro to take effect, it must be
listed on the ENVIRONMENT statement for the SQL language environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values

LOCATION="remote_dbase _name"

Table 16. LOCATION Values

Values

Description

remote_dbase_name

The name of a valid remote database server that is defined in
the SYSIBM.SYSLOCATIONS table of the CDB. The name can
be eight characters or less.

Examples

Example 1 : Defines the remote database location in the DEFINE statement
%DEFINE LOCATION="QMFDJ0O"

Chapter 2. Variables 99

LOGIN

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X

Purpose

Provides access to protected data by passing a user ID to the database language
environment. Use this variable with PASSWORD to incorporate the security
algorithms of DB2.

0OS/400 Users: 0OS/400 ignores both LOGIN and PASSWORD if the DATABASE
variable is not defined or if it is set to a value of "*LOCAL". Database access is
routed through the user profile under which Net.Data is running.

Security tip: While you can code this value in the Net.Data macro, it is preferable
to have the application user enter user IDs in an HTML form. Additionally, using the
default value of the Web server ID provides a level of access that might not meet
your security needs.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
LOGIN="database_user_id"

Table 17. LOGIN Values

Values Description

database user_id A valid database user ID. The default is to use the user ID that
started the Web server.

Examples

Example 1 : Restricting access to the user ID, DB2USER
%DEFINE LOGIN="DB2USER"

Example 2 : Using an HTML form input line
USERID: <INPUT TYPE="text" NAME="LOGIN" SIZE=6>

This example shows a line you can include as part of an HTML form for application
users to enter their user IDs.

100 Net.Data: Reference

NULL_RPT_FIELD

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X

Purpose

Specifies a string the user can provide to the DTW_SQL language environment to
represent NULL values that are returned in an SQL result set.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
NULL_RPT_FIELD="null_char"
Table 18. NULL_RPT _FIELD Values

Values Description

null_char Specifies a string to represent NULL values that are returned in
an SQL result set. The default is an empty string.

Examples

Example 1 : Specifies a string representing NULL values in the SQL language
environment

%DEFINE NULL_RPT_FIELD = "++++"

Chapter 2. Variables 101

PASSWORD

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X

Purpose

Provides access to protected data by passing a password to the database language
environment. Use this variable with LOGIN to incorporate the security algorithms of
DB2.

0OS/400 Users: 0OS/400 ignores both LOGIN and PASSWORD if the DATABASE
variable is not defined or if it is set to a value of "*LOCAL". Database access is
routed through the user profile under which Net.Data is running.

Security tip: While you can code this value in the Net.Data macro, it is preferable
to have application users enter passwords in an HTML form.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
PASSWORD="password"

Table 19. PASSWORD Values

Values Description

password Specifies a valid password to provide automatic access to the
database language environment.

Examples

Example 1 : Restricting access to application users with the password NETDATA
%DEFINE PASSWORD="NETDATA"

Example 2 : HTML form input line
PASSWORD: <INPUT TYPE="password" NAME="PASSWORD" SIZE=8>

This example shows a line you can include as part of an HTML form for application
users to input their own passwords.

102 Net.Data: Reference

SHOWSQL

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

Hides or displays the SQL of the query used on the Web browser. Displaying the

SQL during testing is especially helpful when you are debugging your Net.Data
macros. SHOWSQL can only be used if DTW_SHOWSQL is set to YES in the
Net.Data configuration file. For more information about the DTW_SHOWSQL

configuration variable, see the configuration chapter in Net.Data Administration and

Programming Guide for your operating system.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
SHOWSQL="YES" | "NO"

Table 20. SHOW _SQL Values

Values Description

YES Displays the SQL of the query sent to the database.

NO Hides the SQL of the query sent to the database. NO is the
default.

Examples

Example 1 : Displays all SQL queries

In the configuration file:
DTW_SHOWSQL YES

In the macro:
%DEFINE SHOWSQL="YES"

Example 2 : Specifying whether to display SQL using HTML form input.

In the configuration file:
DTW_SHOWSQL YES

In the macro:

SHOWSQL: <INPUT TYPE="radio" NAME="SHOWSQL" VALUE="YES"> Yes
<INPUT TYPE="radio" NAME="SHOWSQL" VALUE="" CHECKED> No

Chapter 2. Variables

103

SQL_STATE

AIX HP-UX Linux 0S/2 | 0OS/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

Accesses or displays the SQL state value returned from the database.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

Example 1: Displays the SQL state in the REPORT block

%FUNCTION (DTW_SQL) vall() {
select * from customer
%REPORT {

%ROW {

o
—_— .

SQLSTATE=$(SQL_STATE)

N
—

104 Net.Data: Reference

TRANSACTION_SCOPE

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose

Specifies the transaction scope for SQL commands, determining whether Net.Data
issues a COMMIT after each SQL command or after all SQL commands in an
HTML block complete successfully. When you specify that all SQL commands must
complete successfully before a commit, an unsuccessful SQL command causes all
previously executed SQL to the same database in that block to be rolled back.

For the TRANSACTION_SCOPE variable to take effect, include it in the
ENVIRONMENT statement in the Net.Data configuration file. You can then specify
the value of this variable using a DEFINE statement or with the @DTW_ASSIGN()
function.

Consistency considerations: On operating systems other than OS/400 and
0S/390, updates to the database receiving unsuccessful responses might be rolled
back while the updates to the other databases accessed in the same HTML block
might be committed when all of the following conditions are true:

e TRANSACTION_SCOPE = "MULTIPLE" is specified

* Multiple databases are accessed in one HTML block (which is possible when
using Live Connection)

* An unsuccessful response is returned from an SQL request

If you access multiple databases from Net.Data on OS/400 or using IBM’s
DataJoiner, you can achieve multiple database update coordination and consistency
when updating from Net.Data.

On OS/400 and OS/390, TRANSACTION_SCOPE = "MULTIPLE" causes all IBM database
updates issued from a single HTML block to be committed or rolled back together.

On operating systems other than 0S/400, the REXX, Perl, and Java language
environments run in their own separate operating system processes. Thus, any
database updates you issue from these language environments are committed or
rolled back separately from database updates issued from a Net.Data macro,
regardless of the Net.Data TRANSACTION_SCOPE value.

Values
TRANSACTION_SCOPE="SINGLE"|"MULTIPLE"

Table 21. TRANSACTION_SCOPE Values

Values Description

SINGLE Net.Data issues a COMMIT after each SQL command in an
HTML block successfully completes.

MULTIPLE Specifies the Net.Data issues a COMMIT only after all SQL
commands in an HTML block complete successfully. MULTIPLE
is the default.

Examples

Example 1: Specifies to issue a COMMIT after each transaction
%DEFINE TRANSACTION_SCOPE="SINGLE"

Chapter 2. Variables 105

Net.Data Miscellaneous Variables

106

These variables are Net.Data-defined variables that you can use to affect Net.Data
processing, find out the status of a function call, and obtain information about the
result set of a database query, as well as determine information about file locations
and dates. You might find these variables useful in functions you write or use them
when testing your Net.Data macros.

Net.Data: Reference

‘ ”

I‘I')T\/\I_(‘I JIRRENT | AST MODIFIED" an page 104

EDTW 1 QG _LEVEL” on page 11d

EDTW_PRINT HEADER” on page 116

‘ ”

FRETURN_CODE” on page 118

DTW_CURRENT_FILENAME

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

The name and extension of the current input file. The input file is either a Net.Data
macro or a file specified in an INCLUDE statement.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

<P>This file is <I>$(DTW_CURRENT_FILENAME)</I>,
and was updated on $(DTW_CURRENT_LAST_MODIFIED).

Chapter 2. Variables 107

DTW_CURRENT_LAST_MODIFIED

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

The date and time the current file was last modified. The current file can be a
Net.Data macro or a file specified in an INCLUDE statement. The output format is
determined by the system on which Net.Data runs.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

<P>This file is <I>$(DTW_CURRENT_FILENAME)</I>,
and was updated on $(DTW_CURRENT LAST MODIFIED).

108 Net.Data: Reference

DTW_DEFAULT_MESSAGE

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X

Purpose

Contains the message text returned from a call to a built-in function or to language
environment when an error occurs.

You can use the DTW_DEFAULT _MESSAGE variable in any part of the Net.Data
macro.

This variable is a predefined variable, it is not recommended to modify its value.
Use the variable as a variable reference.

Examples

Example 1: A message stating whether the function completed successfully

@functionl()

%IF ("$(RETURN_CODE)" == "0")

The function completed successfully.
%ELSE

The function failed with the return code $(RETURN_CODE). The error message
returned is "$(DTW_DEFAULT MESSAGE)".
%ENDIF

Example 2: The default text for when a function returns a non-zero return code

%MESSAGE {
default: {<h2>Net.Data received return code: $(RETURN CODE).
Error message is $(DTW_DEFAULT MESSAGE)</h2> %} : continue

0,
%}

The user sees the default error message, if a function returns a return code other
than 0.

Chapter 2. Variables 109

DTW_LOG_LEVEL

AIX HP-UX | Linux 0S/2 | OS/390 | OS/400 SCO SUN Win NT

X X X X X X X

Purpose
The level of messages that Net.Data writes to the log file.

You can specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Requirement: Define DTW_LOG_DIR in the Net.Data initialization file to initiate
logging; otherwise Net.Data does not log messages when you specify the
DTW_LOG_LEVEL variable in the macro.

Values
DTW_LOG_LEVEL="OFF|ERROR |WARNING"

Table 22. DTW_LOG_LEVEL Values

Values Description

OFF Net.Data does not log errors. OFF is the default.
ERROR Net.Data logs error messages.

WARNING Net.Data logs warnings, as well as error messages.
Examples

%DEFINE DTW_LOG_LEVEL="ERROR"

110 NetData: Reference

DTW_MACRO_FILENAME

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose
The name and extension of the current Net.Data macro file.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

<P>This Net.Data macro is <I>$(DTW_MACRO_FILENAME)</I>,
and was updated on $(DTW_MACRO_LAST_MODIFIED).

Chapter 2. Variables 111

DTW_MACRO_LAST MODIFIED

112

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

The date and time the Net.Data macro was last modified. The output format
depends on the system on which Net.Data runs.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

<P>This Net.Data macro is <I>$(DTW_MACRO_FILENAME)</I>,
and was updated on $(DTW_MACRO_LAST_MODIFIED).

Net.Data: Reference

DTW_MBMODE

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X

Purpose

Provides multiple-byte character set (MBCS) support for string and word functions
used by the Default language environment. You can set this variable in the Net.Data
initialization file, but you can use it in the macro to set or override the current
setting.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

You can set this variable in the Net.Data initialization file, but you can use it in the
macro to set or override the current setting.

0OS/400 users: Net.Data for OS/400 automatically enables functions for MBCS
support and does not need this variable. Net.Data for OS/400 ignores this variable
in macros that are migrated to the OS/400 operating system.

This configuration variable works with the DTW_UNICODE configuration variable. If
DTW_UNICODE uses the default value of NO, the value of DTW_MBMODE is
used. If DTW_UNICODE is set to a value other than NO, its value is used.
illustrates how the settings of these two variables determine how built-in functions
process strings:

Table 23. Relationship Between the Settings of DTW_UNICODE and DTW_MBMODE

If DTW_UNICODE is set to If DTW_MBMODE=YES If DTW_MBMODE=NO
NO Supports DBCS mixed with Supports SBCS only
SBCS
UTF8 Supports UTF-8 Supports UTF-8
Values

DTW_MBMODE="YES" | "NO"
Table 24. DTW_MBMODE Values

Values Description

YES Specifies MBCS support for string and word functions.

NO Specifies that string and word functions do not have MBCS
support. NO is the default.

Examples
Example 1: Overrides the value in the INI file

INI file:
DTW_MBMODE NO

Macro:
%DEFINE DTW_MBMODE = "YES"

Chapter 2. Variables 113

DTW_MP_PATH

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

The path and name of the Net.Data executable file. Depending on your system, the
output looks like the following sample path and name:

/usr/1pp/internet/server_root/cgi-bin/db2www

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples
The Net.Data executable file is $(DTW_MP_PATH).

114 Net.Data: Reference

DTW_MP_VERSION

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose

The version and release number of Net.Data running on the server.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples
This Web application uses $(DTW_MP_VERSION).

Chapter 2. Variables 115

DTW_PRINT_HEADER

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose
Specifies text for the HTTP header.

You must have this variable set before Net.Data processes any text sent to the Web
browser, because Net.Data reads this variable once before displaying text and does
not look at it again. Any changes to the DTW_PRINT_HEADER variable are ignored
after Net.Data has sent text to the browser.

If you are using DTW_PRINT_HEADER to generate your own headers
(DTW_PRINT_HEADER = "NO"), you must set DTW_REMOVE_WS to "NO".

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_PRINT_HEADER="YES"|"NO"

Table 25. DTW_PRINT_HEADER Values

Values Description

YES Net.Data prints out the text Content-type: text/html for the
HTTP header. YES is the default.

NO Net.Data does not print out an HTTP header. You can generate
custom HTTP header information.

Examples

One of the most common uses of this variable is to enable Net.Data macros to
send cookies. To set a cookie, the DTW_PRINT_HEADER variable must be set to
NO, and the first three lines must be the Content-type header, the Set-Cookie
statement, and a blank line.

Example 1: Enabling Net.Data to send a cookie
%DEFINE DTW_PRINT_HEADER="NO"
%HTML (cookiel) {

Content-type: text/html
Set-Cookie: UsrId=56, expires=Friday, 12-Dec-99, 12:00:00 GMT; path=/

<p>

Any text

0,
%}

116 NetData: Reference

DTW_REMOVE_WS

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose

Reduces the size of a dynamically generated Web page by compressing extra
space caused by tabulators, white space, and new-line characters.

Specify the value of this variable in the DEFINE block.

Using <PRE></PRE> tags: Defining this variable to YES affects the amount and
type of white space that is printed. If the variable is set to YES, portions of HTML
pages that use <PRE></PRE> tags might not display as intended.

If you are using DTW_PRINT_HEADER to generate your own headers
(DTW_PRINT_HEADER="NO"), you must set DTW_REMOVE_WS to "NO".

0S/390 users: Set this variable in the Net.Data initialization file to specify a value
for all of your macros. You can override the value by defining it in the macro. If
DTW_REMOVE_WS is not defined in the macro, it uses the value in the
initialization file.

Values
DTW_REMOVE_WS="YES"|"NO"

Table 26. DTW_REMOVE_WS Values

Values Description

YES Net.Data compresses a sequence of two or more white spaces
to one new-line character, generating shorter HTML result
pages.

NO Net.Data does not compress white spaces. NO is the default.

Examples

Example 1 : Compressing white space
DTW_REMOVE_WS="YES"

Chapter 2. Variables 117

RETURN_CODE

AIX HP-UX Linux 0S/2 | 0OS/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose

The return code returned by a call to a built-in function or a call to a language
environment. Net.Data uses this value to process MESSAGE blocks. You can use
this variable to determine whether a function call succeeded or failed. A value of
zero indicates successful completion of a function call.

You can reference the RETURN_CODE variable in any part of the Net.Data macro.

This value is predefined; it is not recommended to modify the value. Use it as a
variable reference.

Examples

Example 1: A message stating whether the function completed successfully

@functionl()

%IF ("$(RETURN_CODE)" == "0")

The function completed successfully.

%ELSE

The function failed with the return code $(RETURN_CODE).
%ENDIF

Example 2 : A default message when a return code is not O

%MESSAGE {
default: "<h2>Net.Data received return code: $(RETURN_CODE)</h2>" : continue

[

%}

If a function returns a return code other than 0, the default message is displayed.

118 NetData: Reference

Chapter 3. Net.Data Built-in Functions

Net.Data provides a wide variety of functions that you can use without creating your

own FUNCTION blocks. Net.Data built-in functions are divided into the following

categories:

* General-purpose functions help you develop Web pages with Net.Data and do
not fit in the other categories. See L

* Math functions perform mathematical operations. See LMth_ELLD.CtIQDS_O.d

« String-manipulation functions modify strings and characters. See [String

« Word-manipulation functions modify words or sets of words. See Eard

* Table-manipulation functlons help you generate forms and reports from your
table data. See L 2 .

* Flat-file mterface functions perform file input and output. See [Elat Fild

* Web-registry functions perform operations on a Web registry. See fwed

» Persistent macro functions support transaction processing in Net.Data. See

Although some function parameters are described as having typeinteger or float, the
terms are used to denote a string that represents an integer or float value,
respectively.

Function Names

Net.Data built-in functions begin with DTW, which is a reserved prefix. User-defined
functions should not use this prefix.

Using the DTW prefix for functions that are not Net.Data built-in functions may result
in unpredictable behavior.

Built-in function names are not case sensitive.

Input and Output Parameters

Functions can have parameter passing specifications that determine whether
Net.Data uses the parameter for input, output, or both input and output. These
parameter passing specifications are specified by the following keywords:

IN Specifies that the parameter passes input data to the language environment
from Net.Data.

OUT Specifies that the parameter returns output data from the language
environment to Net.Data.

INOUT
Specifies that the parameter passes input data to the language environment
and returns output data from the language environment to Net.Data.

© Copyright IBM Corp. 1997, 1999 119

Function Result Formatting

Many functions have one or more of the following forms:

» Functions beginning with DTW_r, DTWF_r, and DTWR_r return their results to
the function call, so they do not have an output parameter. This example shows
the server time:

Current local time is @DTW_rTIME().

* Functions beginning with DTW_m perform the function on multiple parameters.
Each parameter behaves as both an input parameter and an output parameter.
The function is performed on the parameter and the results are returned in the
parameter. This example converts the three input parameters to all capital letters
for a consistent look in the display:

@DTW_mUPPERCASE (model, style, shipNo)
Shipment $(shipNo) contains $(quantity) of model $(model) $(style).

» Other functions beginning with DTW_, DTWF_, and DTWR__ return their results in
an output parameter. You must specify the output parameter. This example
shows the server time:

@DTW_TIME (nowTime)
Current local time is $(nowTime).

Function Parameter Rules

Place function parameters in the correct order. You must specify all input
parameters before the last input parameter can be specified, or specify a null (*) to
accept the default. For example, you can call DTW_TB_INPUT_TEXT as in the
following example:

@DTW_TB_INPUT_TEXT(myTable, "1", "2", "*, ", "32")

In the above example the fourth and fifth parameters use default values. Include
them as nulls to indicate that “32” is the value for MAXLENGTH in the generated
HTML. The final parameter is not specified, so the default value is used. If you
choose to accept the default value for MAXLENGTH and the two previous
parameters, omit them, as shown below:

@DTW_TB_INPUT TEXT(myTable, "1", "2")

You must specify intermediate null values in the parameter lists for input parameters
when subsequent non-null input parameters exist. You do not need to specify
intermediate null input parameters before specifying your final output parameter.

General Functions

General functions help you develop Web pages with Net.Data and do not fit in the
other categories. The following functions are general-purpose functions:

« IDTW_CACHE PAGE” on page 124

+ IDTW_DATE” on page 128

« IDTW_EXIT” an page 13d

+ IDTW_GETCQQKIE” on page 131

« IDTW_GETENV” on page 133

120 Net.Data: Reference

Chapter 3. Net.Data Built-in Functions

121

DTW_ADDQUOTE

AIX HP-UX | Linux 0S/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose
Replaces single quotes in an input string with two single quotes.

Format
@DTW_ADDQUOTE(stringln, stringOut)
@DTW_rADDQUOTE(stringIn)
@DTW_mADDQUOTE(stringMult, stringMult2, ..., stringMultn)

Parameters
Table 27. DTW_ADDQUOTE Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string.
DTW_mADDQUOTE can have multiple
input strings.
string stringOut ouT A variable that contains the modified form
of stringin.
string stringMult INOUT . On input: A variable that contains a
string.
= On output: A variable containing the
input string with each single quote (')
character replaced by two single-quote
characters.
Return Codes
Table 28. DTW_ADDQUOTE Return Codes
Return Code Explanation
-1001 The server could not process a Net.Data request to allocate
memory.
1003 The number of parameters passed on a function call either

exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

Usage Notes

Consider using this function for all SQL INPUT statements where input is obtained
from a Web browser. For example, if you enter 0'Brien as a last name, as in the
following example, the single quote might give you an error:

INSERT INTO USER1.CUSTABLE (LNAME, FNAME)
VALUES ('0'Brien', 'Patrick"')

Using the DTW_ADDQUOTE function changes the SQL statement and prevents the
error:

122 Net.Data: Reference

INSERT INTO USER1.CUSTABLE (LNAME, FNAME)
VALUES ('0''Brien', 'Patrick')

Examples

Example 1: Adds an extra single quote on the OUT parameter
@DTW_ADDQUOTE(stringl,string?2)

e Input: stringl="John's Web page"

* Returns: string2="John''s Web page"

Example 2: Adds an extra single quote on the returned value of the function call

@DTW_rADDQUOTE("The title of the article is 'Once upon a time'")
* Returns: "The title of the article is ''Once upon a time''"

Example 3: Adds extra single quotation marks on each of the INOUT parameters of
the function call

@DTW_mADDQUOTE(stringl,string2)

* Input: stringl="Joe's bag", string2=""'to be or not to be
e Returns: stringl="Joe''s bag", string2="''to be or not to be''"

Example 4: Inserts extra single quotation marks into data being inserted in a DB2
table

%FUNCTION(DTW_SQL) insertName() {

INSERT INTO USER1.CUSTABLE (LNAME,FNAME)

VALUES ('@DTW_rADDQUOTE(Tastname)', '@DTW_rADDQUOTE(firstname)")

%}

* Input: Tastname="0'Brien", firstname="Patrick"

* Returns: "0' 'Brien", "Patrick"

Chapter 3. Net.Data Built-in Functions 123

DTW_CACHE_PAGE

124

AIX HP-UX

Linux

0s/2 0S/390 | OS/400 SCO SUN Win NT

X

Purpose

Caches partial or complete Web pages that are generated as a result of the
processing of macros.

Format

@DTW_CACHE_PAGE(cacheid, url, age, status)

Parameters

Table 29. DTW_CACHE _PAGE Parameters

Parameter

Use

Description

cache id

IN

A string variable identifying the cache where the page
will be placed.

cached_page_ID

A string variable containing an identifier used to locate
the cached page in a subsequent DTW_CACHE_PAGE
cache request. The string can be a URL.

age

A string variable containing a length of time in seconds.
This parameter determines whether a page has expired.
If the page is older than age, the page is not sent to the
browser.

If age is specified as -1, and the page exists in the
cache, Net.Data sends it to the Web browser regardless
of its age directly from the cache. Net.Data does not
replace the page in the cache.

status

ouT

A string variable indicating the state of the cached
page. Possible values are in lowercase:

* ok: The output page will be cached when the macro
execution terminates.

* new: The page is not in the cache.

* renew: The page is in the cache, but has expired.

* no_cache: The cache identifier specified does not
exist. It must be defined in the cache configuration
files. Your macro can continue executing without
page caching.

* inactive: The cache you specified has been marked
inactive. Your macro can continue executing without
page caching.

e busy: Your macro has issued the
DTW_CACHE_PAGE built-in function before in this
execution. Your macro can continue executing.

« error: An error occurred while trying to communicate
with the cache.

Net.Data: Reference

Return Codes

Table 30. DTW_CACHE_PAGE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the
null-terminating character.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Usage Notes

1. When invoked, DTW_CACHE_PAGE() attempts to retrieve the specified page

from the cache and to send it to the Web browser as if it were the output page
generated from the macro. If the page is found and it has not expired, Net.Data
stops processing the macro, exits from the macro, and sends the cached page
to the Web browser.

If the requested page is not in the cache or the existing cached page is older
than the value of age, Net.Data generates a new output page. When the macro
successfully completes, Net.Data sends the new page to the browser and
caches the page.

For most caching applications, specify DTW_CACHE_PAGE() at the top of the
macro to cache all of the Web page that is generated when the macro
executes. This technique makes it asier to maintain the macro when the macro
is updated. For example, when the function is in the middle of the macro, it
might not be noticed when a HTML report section is added earlier in the macro.
Net.Data would not cache the new report output. Additionally, this method
improves performance as Net.Data stops all further processing when it
determines that the page is cached.

For advanced caching applications, you can place the function in specific
locations of the macro when you need to make the decision to cache at a
specific point during processing, rather than at the beginning of the macro. For
example, you might need to make the caching decision based on how many
rows are returned from a query or function call.

Examples

Example 1: Places the DTW_CACHE_PAGE() function at the beginning of the
macro to capture all HTML output

%IF (customer_status == "Classic")
@DTW_CACHE_PAGE ("mymacro.mac", "http://www.mypage.org", "-1", status)
%ENDIF

% DEFINE { ...%}

%HTML (OUTPUT) {

<title>This is the page title

Chapter 3. Net.Data Built-in Functions 125

</head>

<body>

<center>

This is the Main Heading

<p>It is $(time). Have a nice day!
</body>

</html>

0,
%}

Example 2: Places the function in the HTML block because the decision to cache
depends on the expected size of the HTML output

%DEFINE { ...%}

%FUNCTION(DTW_SQL) count_rows () {
select count(*) from customer
%REPORT{
%ROW{
@DTW_ASSIGN(ALL_ROWS, V1)

N O° o

}
}
}

%FUNCTION(DTW_SQL) all_customers () {
select * from customer

0,
%}

SHTML (OUTPUT) {

<html1>

<head>

<title>This is the customer list
</head>

<body>

@count_rows ()

%IF ($(ALL_ROWS) > "100")
@DTW_CACHE_PAGE ("mymacro.mac", "http://www.mypage.org", "-1", status)
%ENDIF

@all_customers()

</body>
</html>

%}

In this example, the page is cached or retrieved based on the expected size of the
HTML output. HTML output pages are considered cache-worthy only when the
database table contains more than 100 rows. Net.Data always sends the text in the
OUTPUT block, This is the customer Tist, to the browser after executing the
macro; the text is never cached. The lines following the function call,
@count_rows (), are cached or retrieved when the conditions of the IF block are
satisfied. Together, both parts form a complete Net.Data output page.

Example 3: Dynamically retrieves the cache ID and the cached page ID

ZHTML (OUTPUT) {
%IF (customer == "Joe Smith")

@DTW_CACHE_PAGE (@DTW_rGETENV ("DTW_MACRO_FILENAME"), @DTW_rGETENV("URL"),"-1", status)

%ENDIF

126 Net.Data: Reference

<html>

<head>

<title>This is the page title</title>
</head>

<body>

<center>

<h3>This is the Main Heading</h3>
<p>It is @DTW_rDATE(). Have a nice day!
</body>

</html>

.
%}

Chapter 3. Net.Data Built-in Functions 127

DTW_DATE

128

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X X
Purpose

Returns the current system date in the specified format.

Format

@DTW_DATE(format, stringOut)
@DTW_DATE(stringOut)
@DTW_rDATE(format)

@DTW_rDATE()

Parameters

Table 31. DTW_DATE Parameters

Data Type

Parameter Use

Description

string

format IN

A variable or literal string specifying the
data format. Valid formats include:

D - Day of the year (001-366)

E - European date format (dd/mmlyy)
N - Normal date format (dd mon yyyy)
O - Ordered date format (yy/mm/dd)
S - Standard date format (yyyymmdd)
U - USA date format (mm/dd/yy)

The default is N.

string

stringOut

A variable that contains the date in the
specified format.

ouT

Return Codes

Table 32. DTW_DATE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

1007 A parameter contains a value which is not valid.

Examples

Example 1: Normal date format

@DTW_DATE(results)

* Returns: results = "25 Apr 1997"

Net.Data: Reference

Example 2: European date format

@DTW_DATE("E", results)
* Returns: results="25/04/97"

Example 3: US date format
%HTML (report) {

<P>This report created on @DTW_rDATE("U").

e Returns: 04/25/97

Chapter 3. Net.Data Built-in Functions

129

DTW_EXIT

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies to leave the macro immediately. Net.Data sends any Web pages that are

generated prior to DTW_EXIT() being called to the Web browser .

Format
@DTW_EXIT()

Return Codes
Table 33. DTW_EXIT Return Codes

Return Code Explanation

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

Usage Notes

1. Use DTW_EXIT() to immediately stop the processing of a macro. Using this

technique saves the time Net.Data would use to process the entire file.
2. Ensure that the entire macro is syntactically correct before adding the

DTW_EXIT() function. Using DTW_EXIT() causes Net.Data to stop processing
the macro when it encounters the call to this function, which can prevent you

from catching errors that occur after the DTW_EXIT() function has been

processed.
Examples

Example 1 : Exiting a macro
%HTML (cache_example) {

<html>

<head>

<title>This is the page title</title>
</head>

<body>

<center>

<h3>This is the Main Heading</h3>
R A A O A A O A A A O O

<! Joe Smith sees a very short page 1>
<ULLLLE L e >

%IF (customer == "Joe Smith")
@DTW_EXIT()

%ENDIF

</body>
</html>

0
%}

130 Net.Data: Reference

DTW_GETCOOKIE

AIX HP-UX Linux 0Ss/2

0S/390

0S/400 SCO SUN Win NT

X X X X

X X X X

Purpose

Returns the value of the specified cookie.

Format

@DTW_GETCOOKIE(IN cookie_name, OUT cookie_value)
@DTW_rGETCOOKIE(IN cookie_name)

Parameters

Table 34. DTW_GETCOOKIE Parameters

Data Type Parameter Use Description

string cookie_name IN A variable or literal string that specifies the
name of the cookie.

string cookie_value ouT A variable containing the value of the

cookie retrieved by the function, such as
user state information.

0S/400 and OS/390 users: If the cookie
value has URL style encodings (for
example "%20"), the cookie value is
decoded before the value is returned.

Workstation users: If the cookie value has
URL style encodings (for example "%20"),
the cookie value is not decoded before the
value is returned.

Return Codes

Table 35. DTW_GETCOOKIE Return Codes

Return Code

Explanation

-1001

The server could not process a Net.Data request to allocate
memory.

1001

An input parameter contained a NULL value.

1002

An input parameter contained a string value which consisted of the
null-terminating character.

1003

The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005

A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006

A literal string was passed on a function call for a parameter which
was required to be an output parameter.

8000

The cookie cannot be found.

Chapter 3. Net.Data Built-in Functions 131

132

Usage Notes

Define and retrieve a cookie in two separate HTTP requests. Because a cookie is
visible only after it has been sent to the client, if a macro tries to get a cookie that
was defined in the same HTTP request, you might receive unexpected results.

Examples

Example 1: Retrieves cookies that contain user ID and password information

@DTW_GETCOOKIE("mycookie_name_for_userID", userID)
@DTW_GETCOOKIE("mycookie_name_for_password", password)

Example 2: Determines if a cookie for a user exists before gathering user
information

%MESSAGE {
8000 : "" : continue

0,
%}

%HTML (welcome) {
<html>
<body>
<h1>Net.Data Club</h1>
@DTW_GETCOOKIE("NDC_name", name)
%IF ($(RETURN_CODE) == "8000") %{ The cookie is not found.
<form method="post" action="remember">
<p>Welcome to the club. Please enter your name.

<input name="name">
<input type="submit" value="submit">

</form>
%ELSE
<p>Hi, $(name). Welcome back.
%ENDIF
</body>
</html>

0,
%}

o°
—

The HTML welcome section checks whether the cookie NDC_name exists. If the
cookie exists, the browser displays a personalized greeting. If the cookie does not
exist, the form prompts for the user’'s name, and posts it to the HTML remember
section, which sets the user’'s name into the cookie NDC_name as shown below:

%HTML (remember) {
<html>
<body>
<H1>Net.Data Club</H1>
@DTW_SETCOOKIE("NDC_name", name, "expires=Wednesday, 01-Dec-2010 00:00:00;path=/")
<p>Thank you.
<p>Come back
</body>
</html>

%}

Net.Data: Reference

DTW_GETENV

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X

Purpose
Returns the value of the specified environment variable.

Format
@DTW_GETENV(envVarName, envVarValue)
@DTW_rGETENV(envVarName)

Parameters

Table 36. DTW_GETENV Parameters

Data Type Parameter Use Description

string envVarName IN A variable or literal string.

string envVarValue ouT The value of the environment variable

specified in envVarName. A null string is
returned if the value is not found.

Return Codes
Table 37. DTW_GETENV Return Codes

Return Code Explanation
-1001 The server could not process a Net.Data request to allocate
memory.
1003 The number of parameters passed on a function call either

exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

Usage Notes

You can also use the ENVVAR statement to reference the values of environment

variables. For more information, see [ENVVAR Statement” on page 14.

Examples

Example 1: Returns the value for the PATH statement on the OUT parameter

@DTW_GETENV (myEnvVarName, myEnvVarValue)
e Input: myEnvVarName = "PATH"
e Returns: myEnvVarValue = "/usr/bin"

Example 2: Returns the value for the PATH statement

@DTW_rGETENV (myPath)
e Input: myPath = "PATH"
e Returns: "/usr/bin"

Example 3: Returns the value for the protocol of the server

Chapter 3. Net.Data Built-in Functions 133

The server is @DTW_Y‘GETENV("SERVER_PROTOCOL").
e Returns: "HTTP/1.0"

134 Net.Data: Reference

DTW_GETINIDATA

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the value of the specified configuration variable.

Format

@DTW_GETINIDATA(iniVarName, iniVarValue)
@DTW_rGETINIDATA(iniVarName)

Parameters

Table 38. DTW_GETINIDATA Parameters

Data Type Parameter Use Description

string iniVarName IN A variable or literal string.

string iniVarValue ouT The value of the configuration variable
specified in iniVarName.

Return Codes

Table 39. DTW_GETINIDATA Return Codes

Return Code

Explanation

-1001

The server could not process a Net.Data request to allocate
memory.

1003

The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005

A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006

A literal string was passed on a function call for a parameter which
was required to be an output parameter.

Usage Notes

1. If a configuration variable is specified that is not the configuration file, Net.Data
returns an empty string.

2. For OS/390, 0OS/2, Windows NT, and UNIX users: configuration path variables
(MACRO_PATH, EXEC_PATH, and INCLUDE_PATH), as well as
ENVIRONMENT statements, cannot be retrieved with this call.

3. For OS/400 users: ENVIRONMENT statements cannot be retrieved with this

call.

Examples

Example 1 : Returns the Net.Data path variable value
@DTW_GETINIDATA(myEnvVarName, myEnvVarValue)

e Input: myEnvVarName = "FFI_PATH"
* Returns: myEnvVarValue = "D:\FFI"

Chapter 3. Net.Data Built-in Functions 135

DTW_HTMLENCODE

136

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X X
Purpose

Encodes selected characters using HTML character escape codes.

Format

@DTW_HTMLENCODE(stringIn, stringOut)

@DTW_rHTMLENCODE(stringIn)

Parameters

Table 40. DTW_HTMLENCODE Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

string stringOut ouT A variable containing the modified input

string in which certain characters have
been replaced by the HTML character
escape codes.

Return Codes

Table 41. DTW_HTMLENCODE Return Codes

Return Code

Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which

was required to be an output parameter.

Usage Notes

1. Use this function to encode character data that you do not want the Web
browser to interpret as HTML. For example, by using the appropriate escape
code, you can display characters such as less-than (<) and greater-than (>)
within a Web page, which would otherwise be interpreted by the browser as
components of HTML tags.

2. [Table 43 shows the characters that are encoded by the DTW_HTMLENCODE

function.

Table 42. Character Escape Codes for HTML

Character Name Code
SPACE Space
Double quote "
Number sign
% Percent %,;
& Ampersand &

Net.Data: Reference

Table 42. Character Escape Codes for HTML (continued)

[Left bracket (
] Right bracket &#A41,;
+ Plus +
\ Slash &HAT;

Colon :

Semicolon ;
< Less than <
= Equals =:
> Greater than >:
? Question mark ?:
@ At sign @
/ Backslash \
’ Carat ^
{ Left brace {
| Straight line |
} Right brace }
i Tilde ~
Examples

Example 1 : Encodes the space character
@DTW_HTMLENCODE(stringl,string2)

* Input: stringl = "Jim's dog"

e Returns: string2 = "Jim's dog"

Example 2 : Encodes spaces, the less-than sign, and the equal sign

@DTW_rHTMLENCODE("X <= 10")
* Returns: "X <= 10"

Chapter 3. Net.Data Built-in Functions

137

DTW_QHTMLENCODE

138

AIX HP-UX

Linux 0S/2 0S/390 | OS/400 SCO SUN Win NT

X X

X X X X X X X

Purpose

Performs the same function as @DTW_HTMLENCODE but also encodes the
single-quote character (') as '. The HTML character escape codes that

DTW_QHTMLENCODE uses are shown in Tahle 42 on page 138.

Format

@DTW_QHTMLENCODE(stringln, stringOut)
@DTW_rQHTMLENCODE(stringIn)

Parameters

Table 43. DTW_QHTMLENCODE Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

string stringOut ouT A variable that contains the modified form

of stringln in which certain characters are
replaced by the HTML character escape
codes.

Return Codes

Table 44. DTW_QHTMLENCODE Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

Examples

Example 1: Encodes an apostrophe and a space
@DTW_QHTMLENCODE (stringl,string2)

* Input: stringl

= "Jim's dog"

* Returns: string2 = "Jim's dog"

Example 2 : Encodes apostrophes, spaces, and an ampersand

@DTW_rQHTMLENCODE

("John's & Jane's")

* Returns: "John's8 8& Jane's"

Net.Data: Reference

DTW_SENDMAIL

AIX HP-UX | Linux 0Ss/2 0S/390 | OS/400 SCO SUN Win NT
X X X X X X X X X

Purpose
Dynamically builds and transmits electronic mail (e-mail) messages.

Format
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy, IN ReplyTo, IN Organization)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy, IN ReplyTo)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject)

@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message)

Parameters

Table 45. DTW_SENDMAIL Parameters

Data Type Parameter Use Description

string sender IN A variable or literal string that specifies the

author’s address. This parameter is
required. Valid formats are:

* Name <user@domain>
* <user@domain>
e user@domain

string recipient IN A variable or literal string that specifies the
e-mail addresses to which this message
will be sent. This value can contain multiple
recipients, separated by a comma (,). This
parameter is required. Valid recipient
formats are:

¢ Name <user@domain>
e <user@domain>
e user@domain

string message IN A variable or literal string that contains the
text of the e-mail message. This parameter
is required.

string subject IN A variable or literal string that contains the

text of subject line. This is an optional
parameter. You must specify a null string
("") to specify additional parameters.

Chapter 3. Net.Data Built-in Functions 139

140

Table 45. DTW_SENDMAIL Parameters (continued)

Data Type

Parameter

Use

Description

string

CarbonCopy

IN

A variable or literal string that contains the
e-mail addresses, or names and e-mail
addresses of additional recipients. This
value can contain multiple additional
recipients separated by a comma (,). See
the Recipient parameter for valid recipient
formats. This is an optional parameter. You
must specify a null string ("") to specify
additional parameters.

string

BlindCarbonCopy

N

A variable or literal string that contains the
e-mail addresses, or names and e-mail
addresses of additional recipients, but the
recipients do not appear in the e-mail
header. This value can contain multiple
additional recipients separated by a comma
(,)- See the Recipient parameter for valid
recipient formats. This is an optional
parameter. You must specify a null string
(" to specify additional parameters.

string

ReplyTo

A variable or literal string that contains the
e-mail address to which replies to this
message should be sent. This is an
optional parameter. You must specify a null
string ("") to specify additional parameters.
Valid ReplyTo formats are:

¢ Name <user@domain>
e <user@domain>
e user@domain

string

Organization

A variable or literal string that contains the
organization name of the sender. This is an
optional parameter.

Return Codes

Table 46. DTW_SENDMAIL Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the
null-terminating character.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

7000 Net.Data is unable to connect to the specified SMTP server.

7001 An SMTP error occurred while Net.Data tried to relay the e-mail
message to the specified SMTP server.

7002 The specified SMTP server does not support the Extended Simple
Mail Transfer Protocol (ESMTP).

Net.Data: Reference

Usage Notes

1. You can use the optional configuration variable, DTW_SMTP_SERVER, to
specify the SMTP server to use for transmitting e-mail messages. The value of
this parameter can either be a host name, an IP address, or a node and name.
When this variable is not defined, Net.Data uses the local host as the SMTP
server. See the configuration chapter in the Net.Data Administration and
Programming Guide for your operating system to learn more about this variable.

2. 0S/400, OS/2, Windows NT, and UNIX users: Standard Simple Mail Transfer
Protocol (SMTP) servers accept only 7-bit data, such as U.S. ASCII characters.
If your message has 8-bit characters, it is recommended that you specify an
Extended Simple Mail Transfer Protocol (ESMTP) server; ESMTP servers
accept 8-bit characters. Net.Data does not encode your 8-bit data into 7-bit
data. If you do not have access to an ESMTP server, remove all 8-bit
characters from the e-mail message.

Net.Data for OS/390 users do not need to modify e-mail messages for SMTP
servers.

3. Character set support:

* 0OS/400 users: You can use the optional configuration variable,
DTW_SMTP_CHARSET to specified which ASCII character to use when
converting the message from EBCDIC to ASCII. If DTW_SMTP_CHARSET is
not specifcied, the default character set is is0-8859—1. See the configuration
chapter in Net.Data Administration and Programming Guide for OS/400 to
learn more about this variable and the supported character sets.

« 0S/2, Windows NT, and UNIX users: [[able 47 describes the supported
character sets:

Table 47. Character sets supported by Net.Data

Locale Character set 0OS/2 or UNIX Windows NT
codepage codepage

U.S, Western Europe "is0-8859-1" 819 1252

Japan "x-gjis” 943 932

Chinese (simplified) "gb2312" 1381 936

Korea "euc-kr” 970 949

Chinese (traditional) "big5” 950 950

4. The following list describes conditions under which Net.Data does not send an
e-mail message:

* The specified SMTP server cannot be reached.

* The specified SMTP server does not support the Extended Simple Mail
Transfer Protocol (ESMTP), but the specified e-mail message contains
non-U.S. ASCII characters.

Examples

Example 1: Function call that builds and sends a simple e-mail message

@DTW_SENDMAIL ("<ibmuserl@ibm.com>", "<ibmuser2@ibm.com>", "There is a meeting at 9:30.",
"Status meeting")

The DTW_SENDMAIL function sends an e-mail message with the following
information:
Date: Mon, 3 Apr 1998 09:54:33 PST

To: <ibmuser2@ibm.com>
From: <ibmuserl@ibm.com>

Chapter 3. Net.Data Built-in Functions 141

Subject: Status meeting

There is a meeting at 9:30.

The information for Date is constructed by using the system date and time functions
and is formatted in a SMTP-specific data format.

Example 2: Function call that builds and sends an e-mail message with multiple
recipients, carbon copy and blind carbon copy recipients, and the company name

@DTW_SENDMAIL("IBM User 1 <ibmuserl@ibm.com>", "IBM User 2 <ibmuser2@ibm.com>,

IBM User 3 <ibmuser3@ibm.com>, IBM User 4 <ibmuser4@ibm.com>", "There is a meeting at 9:30.",
"Status meeting", "IBM User 5 <ibmuser5@ibm.com>", "IBM User 6 <ibmuser6@ibm.com",
"meeting@ibm.com", "IBM")

The DTW_SENDMAIL function sends an e-mail message with the following
information:

Date: Mon, 3 Apr 1998 09:54:33 PST

To: IBM User 2 <ibmuser2@ibm.com>, IBM User 3 <ibmuser3@ibm.com>, IBM User 4 <ibmuser4@ibm.com>
CC: IBM User 5 <ibmuser5@ibm.com>

BCC: IBM User 6 <ibmuser6@ibm.com>

From: IBM User 1 <ibmuserl@®ibm.com>

ReplyTo: meeting@ibm.com

Organzation: IBM

Subject: Status meeting

There is a meeting at 9:30.

Example 3: Macro that builds and sends e-mail through a Web form interface

SHTML (start) {

<html>

<body>

<hl>Net.Data E-Mail Example</hl>

<form method="post" action="sendemail">
<p>To:
<input name="recipient"><p>
Subject:
<input name="subject"><p>
Message:
<textarea name=message rows=20 cols=40>
</textarea><p>

<input type="submit" value="Send E-mail">

</form>

</body>

</html>

0
%}

%HTML (sendemail) {

<html>

<body>

<h1>Net.Data E-Mail Example</hl>

@DTW_SENDMAIL("Net.Data E-mail Service <netdata@us.ibm.com>", recipient, message, subject)
<p>E-mail has been sent out.

</body>

</html>

0,
%}

This macro sends e-mail through a Web form interface. The HTML start section
displays a form into which the recipient’'s e-mail address, a subject, and a message
can be typed. When the user clicks on the Send E-mail button, the message is
sent out to the recipients specified in the HTML(sendemail) section. This section
calls DTW_SENDMAIL and uses the parameters obtained from the Web form to
determine the content of the e-mail message, as well as the sender and recipients.
Once the e-mail messages have been sent, a confirmation notice is displayed.

142 Net.Data: Reference

Example 4: A macro that uses an SQL query to determine the list of recipients

%Function(DTW_SQL) mailing_Tist(IN message) {
SELECT EMAIL_ADDRESS FROM CUSTOMERS WHERE ZIPCODE='CA'
%REPORT {
Sending out product information to all customers who Tive in California...<P>
%ROW {
@DTW_SENDMAIL("John Doe Corp. <John.Doe@doe.com>", V1, message, "New Product Release")
E-mail sent out to customer §$(V1).

%}

0,
%}

N

}

This macro sends out an automated e-mail message to a specified group of
customers determined by the results of a SQL query from the customer database.
The SQL query also retrieves the e-mail addresses of the customers. The e-malil
contents are determined by the value of message and can be static or dynamic (for
example, you could use another SQL query to dynamically specify the version
number of the product or the prices of various offerings).

Chapter 3. Net.Data Built-in Functions 143

DTW_SETCOOKIE

144

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X X
Purpose

Generates JavaScript code that sets a cookie on the client system.

Format

@DTW_SETCOOKIE(IN cookie_name, IN cookie_value, IN advanced_options)
@DTW_SETCOOKIE(IN cookie_name, IN cookie_value)

Parameters

Table 48. DTW_SETCOOKIE Parameters

Data Type Parameter Use Description

string cookie_name IN A variable or literal string that specifies the name of the
cookie

string cookie_value IN A variable or literal string the specifies the value of the

cookie.

Avoid using semicolons, commas, and spaces as a part
of cookie_value. When they are required, use the
Net.Data function DTW_rURLESCSEQ to process the
string that contains the special characters before
passing it to DTW_SETCOOKIE. For example,
@DTW_SETCOOKIE("my cookie _name",
@DTW_rURLESCSEQ("my cookie value"))

Net.Data: Reference

Table 48. DTW_SETCOOKIE Parameters (continued)

Data Type

Parameter Use Description

string

advanced_options |IN A string that contains optional attributes, separated by
semicolons, that are used to define the cookie. These

attributes can be:

expires = date
Specifies a date string that defines the valid
lifetime of the cookie. After the date expires,
the cookie is not longer stored or retrieved.
Syntax:

weekday, DD-month-YYYY HH:MM:SS GMT

Where:

weekday
Specifies the full name of the weekday.

DD
Specifies the numerical date of the month.

month
Specifies the three-character abbreviation
of the month.

YYYY
Specifies the four-character number of the
year.

HH:MM:SS
Specifies the timestamp with hours,
minutes, and seconds.

domain = domain_name
Specifies the domain attributes of the cookie,
for use in domain attribute matching.

path = path
Specifies the subset of URLs in a domain for
which the cookie is valid.

secure Specifies that the cookie is transmitted only
over secured channels to HTTPS servers.

When the secure option is not specified, the
cookie can be sent over unsecured channels.
The secure option does not require that the
browser encrypt the cookie, nor does it ensure
that the page containing the
DTW_SETCOOKIE statement is transmitted
over SSL.

For additional information about the advanced options,
see the Netscape cookie specification at
http://home.netscape.com

Return Codes
Table 49. DTW_SETCOOKIE Return Codes

Return Code

Explanation

-1001

The server could not process a Net.Data request to allocate
memory.

1001

An input parameter contained a NULL value.

Chapter 3. Net.Data Built-in Functions 145

146

Table 49. DTW_SETCOOKIE Return Codes (continued)

Return Code Explanation

1002 An input parameter contained a string value which consisted of the

null-terminating character.

1003 The number of parameters passed on a function call either

exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string

variable, was of a different variable type.

Usage Notes

1. If the client Web browser does not support Java Script, the browser does not
set the cookie.

2. Because DTW_SETCOOKIE generates Java Script code, do not call
DTW_SETCOOKIE inside a <SCRIPT> or <NOSCRIPT> HTML element.

3. To retrieve a cookie, use the DTW_GETCOOKIE() function. See
EDTW_GETCOOKIE” on page 131 to learn how to define a cookie.

4. Define and retrieve a cookie in two separate HTTP requests. Because a cookie
is visible only after it has been sent to the client, if a macro tries to get a cookie
that was defined in the same HTTP request, you might receive unexpected
results.

Examples

Example 1: Defines cookies that contain user ID and password information with the
Secure advanced option

@DTW_SETCOOKIE("mycookie_name_for_userID", "Userl")
@DTW_SETCOOKIE("mycookie name_for password", "sd3dT", "secure")

Example 2: Defines cookies that contain the expiration date advanced option
@DTW_SETCOOKIE("mycookie name_for userID", "Userl",

"expires=Wednesday 01-Dec-2010 00:00:00")

@DTW_SETCOOKIE("mycookie name_for password", "sd3dT",

"expires=Wednesday, 01-Dec-2010 00:00:00;secure")

Function calls should be on one line; the lines are split in this example for
formatting purposes.

Example 3: Determines if a cookie for a user exists before gathering user
information

%HTML (welcome) {

Net.Data: Reference

<html>

<body>

<hl>Net.Data Club</hl>

@DTW_GETCOOKIE("NDC_name", name)

%IF ($(RETURN_CODE) == "8000") %{ The cookie is not found. %}
<form method="post" action="remember">

<p>Welcome to the club. Please enter your name.

<input name="name">

<input type="submit" value="submit">

</form>

%ELSE

<p>Hi, $(name). Welcome back.

%ENDIF

</body>

</htm1>

0
%}

The HTML(welcome) section checks whether the cookie NDC_name exists. If the
cookie exists, the browser displays a personalized greeting. If the cookie does not
exist, the browser prompts for the user’'s name, and posts it to the
HTML(remember) section. This section records the user’'s name into the cookie
NDC_name as shown below:

%HTML (remember) {
<html1>
<body>
<H1>Net.Data Club>
@DTW_SETCOOKIE("NDC name", name, "expires=Wednesday, 01-Dec-2010 00:00:00;path=/")
<p>Thank you.
<p>Come back
</body>
</html>

0,
%}

Chapter 3. Net.Data Built-in Functions 147

DTW_SETENV

AIX HP-UX | Linux 0S/2 0S/390 | OS/400 SCO SUN Win NT

X X X X X X X X X
Purpose
Assigns an environment variable with a specified value and returns the previous
value.
Format

@DTW_SETENV(envVarName, envVarValue, prevValue)
@DTW_rSETENV(envVarName, envVarValue)

Parameters

Table 50. DTW_SETENV Parameters

Data Type Parameter Use Description

string envVarName IN A variable or literal string representing the
environment variable.

string envVarValue IN A variable or literal string with the value to
which the environment variable is assigned.

string prevValue ouT A variable that contains the previous value
of the environment variable.

Return Codes
Table 51. DTW_SETENV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 The number of parameters passed on a function call either

exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

Usage Notes

If no previous value for the environment variable is found, an empty string is
returned.

Examples

Example 1 : Returns the value for the previous path

@DTW_SETENV("PATH", "myPath", prevValue)
* Input: envVarName = "PATH", envVarValue = "myPath"
e Returns: prevValue = "myPreviousPath"

Example 2 : Returns the value for the previous path and assigns the value for PATH
value

148 Net.Data: Reference

@DTW_rSETENV ("PATH", "myPath")
* Input: envVarName = "PATH", envVarValue = "myPath"
* Returns: "myPreviousPath", PATH = "myPath"

Chapter 3. Net.Data Built-in Functions 149

DTW_TIME

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the current system time in the specified format.

Format

@DTW_TIME(stringIn, stringOut)
@DTW_TIME(stringOut)
@DTW_rTIME(stringln)
@DTW_rTIME()

Parameters

Table 52. DTW_TIME Parameters

Data Type

Parameter

Use

Description

string

stringln

A variable or literal string specifying the
time format. Valid formats are:

C - Civil time (hh:mmAM/PM using a
12-hour clock)

L - Local time (hh:mm:ss)

N - Normal time (hh:mm:ss using a
24-hour clock); default

X - Extended time (hh:mm:ss.ccc, using
a 24-hour clock and where ccc is the
number of milliseconds)

H - Number of hours since midnight
M - Number of minutes since midnight
S - Number of seconds since midnight

string

stringOut

ouT

A variable that contains the time in the

specified format.

Return Codes

Table 53. DTW_TIME Return Codes

Return Code

Explanation

-1001

memory.

The server could not process a Net.Data request to allocate

1003

The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005

A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006

A literal string was passed on a function call for a parameter which
was required to be an output parameter.

1007

A parameter contains a value which is not valid.

150 Net.Data: Reference

Examples

Example 1: Twenty-four hour clock format

@DTW_TIME(results)
* Returns: results = "10:30:53"

Example 2 : Civil time format

@DTW_TIME("C", results)
* Returns: results = "10:30AM"

Example 3 : Returns the number of minutes since midnight with the function call

@DTW_rTIME("M")
* Returns: "630"

Example 4 : Returns the default time and data formats with the function call

%REPORT{
<P>This report was created at @DTW_rTIME(), @DTW_rDATE().
%}

* Returns: This report was created 15:04:39, 01 May 1997.

Chapter 3. Net.Data Built-in Functions 151

DTW_URLESCSEQ

AIX HP-UX

Linux 0S/2 0S/390 | OS/400 SCO SUN Win NT

X X

X X X X X X X

Purpose

Replaces selected characters not allowed in a URL with their escape values, known

as URL-encoded

Format

codes.

@DTW_URLESCSEQ(stringIn, stringOut)
@DTW_rURLESCSEQ(stringIn)

Parameters

Table 54. DTW_URLESCSEQ Parameters

Data Type Parameter Use Description
string stringln IN A variable or literal string.
string stringOut ouT A variable containing the input string with

characters that are not allowed in URLs
that are replaced with their hexadecimal
escape values.

Return Codes

Table 55. DTW_URLESCSEQ Return Codes

Return Code

Explanation

-1001

The server could not process a Net.Data request to allocate
memory.

1003

The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005

A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006

A literal string was passed on a function call for a parameter which
was required to be an output parameter.

Usage Notes

Use this function to pass any of the characters listed in fable 56 to another macro

or HTML block.

Table 56. Character Escape Values for URLs

Character Name Code
SPACE Space %20

Double quote %22
Number sign %23
% Percent %25
& Ampersand %26
+ Plus %2B
\ Backslash %2F

152 Net.Data: Reference

Table 56. Character Escape Values for URLs (continued)

Colon %3A

Semicolon %3B
< Less than %3C
= Equals %3D
> Greater than %3E
? Question mark %3F
@ At sign %40
[Left bracket %5B
/ Slash %5C
] Right bracket %5D
’ Carat %5E
{ Left brace %7B
| Straight line %7C
} Right brace %7D
i Tilde %7E
Examples

Example 1 : Replaces the space and an ampersand characters in string1 with their
escape values and assigns the result to string2

@DTW_URLESCSEQ(stringl,string2)

e Input: stringl = "Guys & Dolls"

* Returns: string2 = "Guys%20%26%20Do11s"

Example 2 : Replaces space and ampersand characters with their escape codes.

@DTW_rURLESCSEQ("Guys & Dolls")
* Returns: "Guys%20%26%20Do11s"

Example 3: Uses DTW_rURLESCSEQ in a ROW block, and replaces space and
'at’ characters with their escape codes.

ZROW{
<P>
$(Vl)

* Input: V1="Patrick O’'Brien”, V2="obrien@ibm.com”

* Returns:
<P>
Patrick 0'Brien

When the application user clicks on the name "Patrick O’'Brien,” the values
specified for the name and e-mail address flow within the query string of the URL
that causes Net.Data to execute the input section of the fullrpt.mac macro.

Chapter 3. Net.Data Built-in Functions 153

Math Functions

These functions let you do mathematical calculations.

NLS considerations for math functions: Net.Data displays decimal points in
numerical values based on regional settings specified at the Web server under
which Net.Data is running. For example, if the decimal point is specified as a
comma (,) at the Web server, Net.Data uses the comma to format decimal data.
Net.Data uses the following settings to determine which character is used to specify
a decimal point:

For OS/390, Windows NT, OS/2, and UNIX operating systems:
The LOCALE under which the Web server executes

For the OS/400 operating system:

* V4R2 or subsequent releases: specified by the user profile under which
the process is running.

* V4R1 or previous releases: retrieved from the QDECFMT system value.

The following functions are available for mathematical calculations:

‘ ”

154 Net.Data: Reference

DTW_ADD

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Adds two numbers.

Format

@DTW_ADD(numberl, number2, precision, result)
@DTW_ADD(numberl, number2, result)
@DTW_rADD(numberl, number2, precision)
@DTW_rADD(numberl, number2)

Parameters

Table 57. DTW_ADD Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the sum of

numberl and number2.

Return Codes

Table 58. DTW_ADD Return Codes

Return Code

Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the
null-terminating character.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that was

outside the supported range of -999,999,999 to +999,999,999.

Chapter 3. Net.Data Built-in Functions

155

Examples

Example 1:

@DTW_ADD(NUM1, NUM2, "2", result)
e Input: NUM1 = "105", NUM2 = "3"
* Returns: result = "1.1E+2"

Example 2 :

@DTW_rADD("12", NUM2, "5")
* Input: NUM2 = "7.00"
* Returns: "19.00"

156 Net.Data: Reference

DTW_DIVIDE

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Divides one number by the other.

Format

@DTW_DIVIDE(numberl, number2, precision, result)
@DTW_DIVIDE(numberl, number2, result)
@DTW_rDIVIDE(numberl, number2, precision)

@DTW_rDIVIDE(numberl, number2)

Parameters

Table 59. DTW_DIVIDE Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number that is to be divided.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the result of

numberl divided by number2.

Return Codes

Table 60. DTW_DIVIDE Return Codes

Return Code

Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the
null-terminating character.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that was

outside the supported range of -999,999,999 to +999,999,999.

Chapter 3. Net.Data Built-in Functions

157

158

Examples

Example 1:

@DTW_DIVIDE("8.0", NUM2, result)
* Input: NUM2 = "2"

* Returns: result = "4"

Example 2 :
@DTW_r‘DIVIDE("l", NUM2, "5")
* Input: "1", NUM2 = "3"

* Returns: "0.33333"

Example 3:
@DTW_rDIVIDE(NUM1, "2", "5")
* Input: NUM1 = "5"

* Returns: "2.5"

Net.Data: Reference

DTW_DIVREM

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Divides one number by the other and returns the remainder.

Format

@DTW_DIVREM(numberl, number2, precision, result)
@DTW_DIVREM(numberl, number2, result)
@DTW_rDIVREM(numberl, number2, precision)

@DTW_rDIVREM(numberl, number2)

Parameters

Table 61. DTW_DIVREM Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number that is to be divided.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the remainder of
numberl divided by number2.

Return Codes

Table 62. DTW_DIVIDEREM Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the
null-terminating character.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that was
outside the supported range of -999,999,999 to +999,999,999.

Usage Notes

The sign of the remainder, if nonzero, is the same as that of the first parameter.

Chapter 3. Net.Data Built-in Functions 159

Examples

Example 1:

@DTW_DIVREM(NUM1, NUM2, result)
e Input: NUM1 = "2.1", NUM2 = "3"
* Returns: result = "2.1"

Example 2 :

@DTW_rDIVREM("10", NUM2)
* Input: NUM2 = "0.3"
* Returns: "0.1"

Example 3:

@DTW_rDIVREM("3.6", "1.3")
* Returns: "1.0"

Example 4 :

@DTW_rDIVREM("-10", "3")
* Returns: "-1"

160 Net.Data: Reference

DTW_FORMAT

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Customizes the formatting for a number.

Format

@DTW_FORMAT (number, before,
@DTW_FORMAT (number, before,
@DTW_FORMAT (number, before,
@DTW_FORMAT(number, before,
@DTW_FORMAT (number, before,

@DTW_FORMAT (number, result)
@DTW_rFORMAT (number, before, after, expp, expt, precision)
@DTW_rFORMAT (number, before, after, expp, expt)
@DTW_rFORMAT (number, before, after, expp)
@DTW_rFORMAT (number, before, after)
@DTW_rFORMAT(number, before)
@DTW_rFORMAT (number)

Parameters
Table 63. DTW_FORMAT Parameters

after,
after,
after,
after,
result)

expp, expt, precision, result)
expp, expt, result)

expp, result)

result)

Data Type

Parameter

Use

Description

float

number

A variable or literal string representing a
number.

integer

before

A variable or literal string representing a
positive whole number. This is an optional
parameter. You must enter a null string (")
to have additional parameters.

integer

after

A variable or literal string representing a
positive whole number. This is an optional
parameter. You must enter a null string (")
to specify additional parameters.

integer

expp

A variable or literal string representing a
positive whole number. You must specify a
null string (") to specify additional
parameters.

integer

expt

A variable or literal string representing a
positive whole number. You must enter a
null string (") to specify additional
parameters.

integer

precision

A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float

result

ouT

A variable that contains the number with

the specified rounding and formatting.

Chapter 3. Net.Data Built-in Functions 161

162

Return Codes
Table 64. DTW_FORMAT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the

null-terminating character.

1003 The number of parameters passed on a function call either

exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

Usage Notes

1.

If number is the only parameter is specified, the result is formatted as if
@DTW_rADD(number,“0”) was executed.

The before and after parameters describe how many characters are used for
the integer and decimal parts of the result parameter, respectively. If you omit
either or both of these parameters, the number of characters used for that part
is as many as is needed.

If the before parameter is not large enough to contain the integer part of the
number (plus the sign for a negative number), an error results. If the before
parameter is larger than needed for that part, the number parameter value is
padded on the left with blanks. If the after parameter is not the same size as the
decimal part of the number parameter, the number is rounded (or extended with
zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

The expp and expt parameters control the exponent part of the result. The expp
parameter sets the number of places for the exponent part; the default is to use
as many as is needed (which may be zero). The expt parameter sets the trigger
point for use of exponential notation. The default is the default value of the
precision parameter.

If expp is 0, no exponent is supplied and the number is expressed in simple
form with added zeros as necessary. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, use the exponential notation. If exptis 0, exponential
notation is always used unless the exponent is 0. (If expp is 0, this overrides a
0 value of expt.) If the exponent is 0 when a nonzero expp is specified, then
expp+2 blanks are supplied for the exponent part of the result. If the exponent
is 0 and expp is not specified, the simple form is used.

Examples

Example 1:
@DTW_FORMAT (NUM, BEFORE, result)

Net.Data: Reference

Input NUM = "3", BEFORE - II4||
Returns: result= " 3"

Example 2 :
@DTW_FORMAT("1.73", "4", "0", result)

* Returns: result = " 2"

Example 3:

@DTW_FORMAT("1.73", "4", "3", result)
* Returns: result =" 1.730"
Example 4:

@DTW_FORMAT(" - 12.73", "", "4", result)
* Returns: result = "-12.7300"

Example 5:

@DTW_FORMAT("12345.73", e onn e omgn D result)
* Returns: result = "1.234573E+04"

Example 6 :

@DTW_FORMAT("1.234573", e oongunownongh D opesult)
* Returns: result = "1.235"

Example 7 :
@DTW_rFORMAT(" - 12.73")
* Returns: " - 12.73"
Example 8:

@DTW_rFORMAT("0.000")
* Returns: "0"

Example 9:

@DTW_rFORMAT("12345.73", "", "", "3", "6")
* Returns: "12345.73"

Example 10:

@DTW_rFORMAT("1234567e5", "", "3", "0")
* Returns: "123456700000.000"

Example 11:

@DTW_rFORMAT("12345.73", "", "3", "", "0")
¢ Returns: "1.235E+4"

Chapter 3. Net.Data Built-in Functions

163

DTW_INTDIV

164

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Divides one number by the other and returns the integer part of the result.

Format

@DTW_INTDIV(numberl, number2, precision, result)
@DTW_INTDIV(numberl, number2, result)
@DTW_rINTDIV(numberl, number2, precision)

@DTW_rINTDIV(numberl, number2)

Parameters

Table 65. DTW_INTDIV Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number a number that is to be divided.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains integer part of
numberl divided by number2.

Return Codes

Table 66. DTW_INTDIV Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that was
outside the supported range of -999,999,999 to +999,999,999.

Examples

Example 1:

@DTW_INTDIV(NUM1, NUM2, result)

Net.Data: Reference

* Input: NUM1 = "10", NUM2 = "3"
* Returns: result = "3"

Example 2:

@DTW_rINTDIV("2", NUM2)
e Input: NUM2 = "3"
* Returns: "0"

Chapter 3. Net.Data Built-in Functions 165

DTW_MULTIPLY

166

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Multiplies two numbers.

Format

@DTW_MULTIPLY (numberl, number2, precision, result)
@DTW_MULTIPLY (numberl, number2, result)
@DTW_rMULTIPLY(numberl, number2, precision)
@DTW_rMULTIPLY(numberl, number2)

Parameters

Table 67. DTW_MULTIPLY Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the product of
numberl and number2.

Return Codes

Table 68. DTW_MULTIPLY Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the
null-terminating character.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that was
outside the supported range of -999,999,999 to +999,999,999.

Net.Data: Reference

Examples

Example 1:

@DTW_MULTIPLY(NUML, NUM2, result)
* Input: NUML = "4, NUM2 = "5"
* Returns: result = "20"

Example 2 :
@DTW_rMULTIPLY("0.9", NUM2)
* Input: NUM2 = "0.8"

* Returns: "0.72"

Chapter 3. Net.Data Built-in Functions

167

DTW_POWER

168

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Raises a whole number to a whole number power.

Format

@DTW_POWER(numberl, number2, precision, result)
@DTW_POWER(numberl, number2, result)
@DTW_rPOWER(numberl, number2, precision)

@DTW_rPOWER(numberl, number2)

Parameters

Table 69. DTW_POWER Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number that is to be raised to a power.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the result of
number1 raised to the power of number2.

Return Codes

Table 70. DTW_POWER Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

4001 A parameter contains an invalid number value.

4002 The result of an arithmetic operation had an exponent that was
outside the supported range of -999,999,999 to +999,999,999.

Examples

Example 1:

@DTW_POWER(NUMI, NUM2, result)
« Input: NUML = "2", NUM2 = "-3"

Net.Data: Reference

* Returns: result = "0.125"

Example 2:

@DTW_rPOWER("1.7", NUM2, precision)
* Input: NUM2 = "8", precision = "5"
* Returns: "69.758"

Chapter 3. Net.Data Built-in Functions 169

DTW_SUBTRACT

170

AIX | HP-UX | Linux | OS/2 | OS/390 | OS/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Subtracts one number from the other number.

Format

@DTW_SUBTRACT(numberl, number2, precision, result)
@DTW_SUBTRACT (numberl, number2, result)
@DTW_rSUBTRACT(numberl, number2, precision)
@DTW_rSUBTRACT(numberl, number2)

Parameters

Table 71. DTW_SUBTRACT Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number from which another number is to
be subtracted.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the difference of
numberl and number2.

Return Codes

Table 72. DTW_SUBTRACT Return Codes

Return Code Explanation

-1001 The server could not process a Net.Data request to allocate
memory.

1001 An input parameter contained a NULL value.

1002 An input parameter contained a string value which consisted of the
null-terminating character.

1003 The number of parameters passed on a function call either
exceeded the maximum number allowed, or was less than the
minimum number required by the function.

1005 A parameter passed on a function call, required to be a string
variable, was of a different variable type.

1006 A literal string was passed on a function call for a parameter which
was required to be an output parameter.

4000 A parameter contains an invalid whole number value.

400