Net.Data

<|ll

Administration and Programming Guide
for OS/2, Windows N'T, and UNIX

Version 6 Release 1

Net.Data

<|ll

Administration and Programming Guide
for OS/2, Windows N'T, and UNIX

Version 6 Release 1

Note
Be sure to read the information in LAppendix G _Natices” on page 211 before using this information and the product it

supports.

Sixth Edition (May 1999)

© Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface
About Net.Data
What's New? .
What's New in VerS|on 2 0 7 lepack’>
What's New in Version 6 Release 1?
About This Book .
Who Should Read Th|s Book
About Examples in This Book .

Chapter 1. Introduction
What is Net.Data?
Why Use Net.Data?.

Chapter 2. Configuring Net.Data
About the Net.Data Initialization File. .
About the Net.Data Configuration Files for Optlonal Components .
The Live Connection Configuration File
The Cache Manager Configuration File

Common Sections of the Net.Data Initialization, Control and Macro Flles .

Customizing the Net.Data Initialization File
Configuration Variable Statements
Path Configuration Statements.

Environment Configuration Statements.

Setting Up the Language Environments .
Setting up the IMS Web Language EnV|ronment .
Setting up the Java Language Environment .

Setting up the Oracle Language Environment .
Setting up the Sybase Language Environment .

Configuring Live Connection

Configuring the Web Server for Use W|th CGI

Configuring Net.Data for FastCGl. .

Configuring Net.Data for use with Java Servlets and Java Beans .

Configuring Net.Data for Use with the Web Server APls

Configuring Net.Data with the Net.Data Administration Tool
Before You Begin
Starting the Adm|n|strat|on TooI
Configuring Path Statements
Configuring Ports.

Configuring Cliettes .
Configuring Language Enwronments
Defining Configuration Variables .
Granting Access Rights to Files Accessed by Net Data

Chapter 3. Keeping Your Assets Secure
Using Firewalls . .
Encrypting Your Data on the Network .
Using Authentication
Using Authorization .
Using Net.Data Mechanlsms
Net.Data Configuration Variables .
Macro Development Techniques .

Chapter 4. Invoking Net.Data

© Copyright IBM Corp. 1997, 1999

53
53
55
55
56
56
56
57

61

Types of Invocation Requests .
Invoking Net.Data with a Macro (Macro Request)
Invoking Net.Data without a Macro (Direct Request) .
Invoking Net.Data through the Web Server APIs .
Invoking Net.Data with Java Servlets and JavaBeans
Net.Data Servlets
Net.Data JavaBeans

Chapter 5. Developing Net.Data Macros
Anatomy of a Net.Data Macro .
The DEFINE Block .
The FUNCTION Block .
HTML Blocks .
Net.Data Macro Variables
Identifier Scope
Defining Variables
Referencing Variables .
Variable Types.
Net.Data Functions .
Defining Functions .
Calling Functions.
Calling Net.Data Built-in Functlons
Generating Web Pages in a Macro .
HTML Blocks .
Report Blocks .
Conditional Logic and Looplng in a Macro
Conditional Logic: IF Blocks. .
Looping Constructs: WHILE Blocks .

Chapter 6. Using Language Environments .

Overview of Net.Data-Supplied Language Envwonments
Calling a Language Environment .

Handling Error Conditions
Security . . .

Data Language Enwronments . .
Relational Database Language Enwronments .
Flat File Interface Language Environment.

Web Registry Language Environment .
IMS Web Language Environment.

Programming Language Environments .
Java Applet Language Environment .
Java Application Language Environment .
Perl Language Environment.

REXX Language Environment .
System Language Environment

Chapter 7. Improving Performance
Using the Web Server APIs .
Using FastCGl.
Managing Connections
About Live Connection.
Live Connection Advantages
Should | Use Live Connection?
Starting the Connection Manager .
Net.Data and Live Connection Process Flow
Net.Data Caching

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

61
63
65
70
72
72
77

81
82
83
84
84
86
87
87
89
90
97
98

. 102
. 103
. 106
. 106
. 107
. 112
. 113
. 115

. 117
. 118
. 119
. 119
. 119
. 119
. 120
. 134
. 135
. 137
. 138
. 139
. 145
. 147
. 150
. 153

. 157
. 157
. 157
. 158
. 158
. 159
. 160
. 160
. 161
. 161

About Web Caching.

About Net.Data Caching .
Net.Data Caching Restrictions .
Net.Data Caching Interfaces
Planning for the Cache Manager .

Configuring the Cache Manager and Net. Data Caches .

Starting and Stopping the Cache Manager
Caching Web Pages . .
The CACHEADM Command
The Cache Log .
Setting the Error Log Level -
Optimizing the Language Environments
REXX Language Environment .
SQL Language Environment .
System and Perl Language Envwonments

Chapter 8. Net.Data Logging

Logging Net.Data Error Messages
Planning for the Net.Data Error Log .
Controlling the Net.Data Logging Level. .
Types of Net.Data Error Messages Not Logged
Net.Data Error Log File Size and Rotation
Net.Data Error Log Format .

Logging Live Connection Cliette and Error Messages

Planning for the Live Connection Log

Controlling the Live Connection Logging Level .

Types of Live Connection Messages Not Logged .

Live Connection Log File Names .

Live Connection Log File Size and Rotatlon

Live Connection Log Format

Appendix A. Bibliography
Net.Data Technical Library .

Appendix B. Net.Data for AIX

Loading Shared Libraries for Language Envwonments .

Improving Performance in the REXX Environment
NLS Considerations.

Appendix C. Net.Data SmartGuides
Before You Begin .
Running the SmartGuides

Appendix D. Building SQL Statements with Net.Data SQL Assist

Before You Begin .
Running Net.Data SQL ASSIS'[.

Appendix E. Using NetObjects Fusion NOF Plug-ins with Net.Data

Servlets
About the NetObjects Fu5|on Plug in
Installing the NetObjects Fusion Plug-in
Setting Up the Net.Data Plug-in for NetObJects Fusmn
Modifying the Plug-in Properties . e
Publishing Servlets with the NOF Plug-in .

Appendix F. Net.Data Sample Macro

. 162
. 162
. 164
. 165
. 165
. 166
. 173
. 174
. 176
. 178
. 180
. 181
. 181
. 181
. 182

. 183
. 183
. 184
. 184
. 184
. 184
. 185
. 185
. 186
. 186
. 186
. 187
. 188
. 188

. 191
. 191

. 193
. 193
. 193
. 194

. 195
. 195
. 196

. 199
. 199
. 199

. 201
. 201
. 202
. 202
. 203
. 205

. 207

\Y

Vi

Appendix G. Notices
Trademarks.

Glossary

Index .

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

. 211
. 212

. 215

. 217

Preface

Thank you for selecting Net.Data® Version 6.1, the IBM™ development tool for
creating dynamic Web pages! With Net.Data, you can rapidly develop Web pages
with dynamic content by incorporating data from a variety of data sources and by
using the power of programming languages you already know.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data from
both relational and non-relational database management systems (DBMSSs),
including DB2, IMS, and ODBC-enabled databases, and using applications written
in programming languages such as Java, JavaScript, Perl, C, C++, and REXX.

Net.Data is a macro processor that executes as middleware on a Web server
machine. You can write Net.Data application programs, called macros, that Net.Data
interprets to create dynamic Web pages with customized content based on input
from the user, the current state of your databases, other data sources, existing
business logic, and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape Navigator or Internet Explorer, to a Web server that forwards the
request to Net.Data for execution. Net.Data locates and executes the macro and
builds a Web page that it customizes based on functions that you write. These
functions can:

» Encapsulate business logic within Perl scripts, C and C++ applications, or REXX
programs.

* Access databases such as DB2
e Access other data sources such as flat files.

Net.Data passes this Web page to the Web server, which in turn forwards the page
over the network for display at the browser.

Net.Data can be used in server environments that are configured to use interfaces
such as HyperText Transfer Protocol (HTTP) and Common Gateway Interface
(CGI). HTTP is an industry-standard interface for interaction between a browser and
Web server, and CGl is an industry-standard interface for Web server invocation of
gateway applications like Net.Data. These interfaces allow you to select your
favorite browser or Web server for use with Net.Data. Net.Data also supports a
variety of Web server Application Programming Interfaces (APIs) for improved
performance. The Net.Data family of products provide similar capablities on the
0S/400, 0OS/390, Windows NT, AlX, OS/2, HP-UX, Sun Solaris, Linux, and Santa
Cruz Operating System (SCO) operating systems. Net.Data also supports FastCGl
and the major Web server Application Programming Interfaces (APIs) on multiple
operating systems.

A graphical administration tool helps you administer Net.Data configuration settings
for the AIX, Windows NT, and OS/2 operating systems. The administration tool also
assists you in specifying security for your connections to databases that use Live
Connection.

To help you easily access data from your database, Net.Data provides a variety of
tools, including NetObjects Fusion plug-ins and smartguides for Java-based
development. These tools work with the Net.Data Java servlets in the Java

© Copyright IBM Corp. 1997, 1999 Vii

environment, allowing you to create applications that are portable across operating
systems. NetObjects Fusion plug-ins allow you to use the NetObjects Fusion Web
development tool to build sophisticated applications with dynamic data from
relational data sources. Net.Data smartguides provide a graphical tool to guide you
through creating basic Net.Data macros.

What's New?

The following sections describe the new enhancements for Net.Data.

What's New in Version 2.0.7 Fixpack?

Net.Data Version 2.0.7 provides the following enchancements:

Ability to use DB2 File Manager and the DATALINK data type
Support for new Net.Data table processing functions

Configuration variables for security: DTW_DIRECT_REQUEST and
DTW_SHOWSQL and new guidelines for improving the security of your
applications

| What's New in Version 6 Release 17

Net.Data for OS/2, Windows NT, and UNIX provides the following features in
Version 6 Release 1:

Performance enhancements include:
— Support for FastCGI on the Solaris operating system
Language environment enhancements include:

— Support for the Datalink data type in the SQL language environment on
Windows NT

— Support for the IMS Web language environment on the Solaris operating
system

— Support for large objects (LOBS) in the ODBC language environment

— Support for new LOB types: Musical Instruments Digital Interface audio file
(-mid), Audio Interchange File Format audio file (.aif), Basic Audio files (.au),
Real Audio files (.ra), Portable Document Format files (.pdf), and Windows
Audio Video files (.wav)

— Simplified maintenance of the temporary large objects directory (tmplobs) with
the cleanup daemon

Macro language enhancements include:
— Support for milliseconds in the DTW_TIME function.
— Support for REPORT blocks in MACRO_FUNCTION blocks

— Support for multiple REPORT blocks in FUNCTION and MACRO_FUNCTION
blocks

— Support for dynamically building variable references

— Ability to set the VALUE attribute in the OPTION element of DTW_SELECT()
— Support for the hash (#) character in variable names.

Ability to log Live Connection errors and activities

Support Net.Data on the Linux operating system

Support for Unicode characters in macro files and DB2 databases with the
DTW_UNICODE configuration variable

viii Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

About This Book

This book discusses administration and programming concepts for Net.Data, as well
as how to configure Net.Data and its components, plan for security, and improve
performance.

Building on your knowledge of programming languages and database, you learn
how to use the Net.Data macro language or Java servlets to develop macros. You
learn how to use Net.Data-provided language environments that access DB2
databases, and IMS transactions using IMS Web, as well as use Java, REXX, Perl,
and other programming languages to access your data.

This book may refer to products or features that are announced, but not yet
available.

More information including sample Net.Data macros, demos, and the latest copy of
this book, is available from the following World Wide Web site:

http://www.software.ibm.com/data/net.data
Who Should Read This Book

This book is intended for people involved in planning and writing Net.Data
applications. To understand the concepts discussed in this book, you should be
familiar with how a Web server works, understand simple SQL statements, and
know HTML tags, including HTML form tags.

The Net.Data macro language, variables, and built-in functions, as well as operating
system differences are described in Net.Data Reference.

About Examples in This Book

Examples used in this book are kept simple to illustrate specific concepts and do
not show every way Net.Data constructs can be used. Some examples are
fragments that require additional code to work.

Preface IX

X Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Chapter 1. Introduction

Most Web pages on the Internet are static Web pages; in other words, pages that
do not change unless you edit them. To put “live” data and applications on the Web
(such as current sales statistics), Web site developers usually write programs that
execute as middleware at the Web server to dynamically build Web pages. Writing
these types of programs is not easy.

Net.Data simplifies the writing of interactive Web applications through macros.

This chapter describes Net.Data and the reasons why you might want to use it for

your Web applications.

° 0 m

What is Net.Data?

Using Net.Data macros, you can execute programming logic, access and
manipulate variables, call functions, and use report-generating tools. A macro is a
text file containing Net.Data macro language constructs, HTML tags, Javascript, and
language environment statements, such as SQL and Perl. Net.Data processes the
macro to produce output that can be displayed by a Web browser. Macros combine
the simplicity of HTML with the dynamic functionality of Web server programs,
making it easy to add live data to static Web pages. The live data can be extracted
from local or remote databases and from flat files, or be generated by applications
and system services.

Eigure 1 on page 2 illustrates the relationship between Net.Data, the Web server,
and supported data and programming language environments.

© Copyright IBM Corp. 1997, 1999 1

cal E Net.Data-Supplied JAav?_ ’
:FastCGl: Language Environments |/| Applications
: : J
e Jave /) e
ICAPI ‘ Java Applet V/ Commands
(ISAPI Net.Data Macro File | 2}I/Es>t((>a(m q aRnEdXI:‘(rograms
Web | : Serviets: %Definel...%) \ oy REXX
: . g
Server | : %HTML (Initial-Page) Perl | _
{ 'saL k\ Perl Scripts
‘ ek k\ DB2 Data
%} | Sybase K\ Oracle Data
Initial EA’HTML(RGPOH) {ODBC \\ Sybase Data
Page — |Web Registry | ODBC-
7 [Flat File Interface | \e/\;‘at:"ed data
e
Report \—I Registries
IMS/TM
Page > :
‘g : 1 User-written
f : Net.Data Language
Environments
Java Applet

Net.Data on
AlX, HP-UX, Linux, OS/2, SCO, Solaris, and Windows NT

Figure 1. The Relationship between Net.Data, the Web Server, and Supported Data and
Program Sources

The Web server invokes Net.Data as a CGl, FastCGl, or Web server application
programming interface (API) by calling Net.Data as a DLL or shared library when it
receives a URL that requests Net.Data services. The URL includes
Net.Data-specific information, including either the macro that is to be processed or
the SQL statement or program that is to be directly invoked. When Net.Data
finishes processing the request, it sends the resulting Web page to the Web server.
The server passes it on to the Web client, where it is displayed by the browser.

Why Use Net.Data?

Net.Data is a good choice for creating dynamic Web pages because using the
macro language is simpler than writing your own Web server applications and
because Net.Data lets you use languages that you already know, such as HTML,
SQL, Perl, REXX, and JavaScript. Net.Data also provides language environments
that access DB2 databases, execute IMS transactions using IMS Web, or use
REXX, Perl, and other languages for your applications. In addition, changes to a
macro can be seen instantaneously on a browser.

Net.Data complements data management capabilities that already exist on your
operating system by enabling both data and related business logic for the Web.
More specifically, Net.Data:

* Provides a simple, yet powerful macro language that allows for rapid

development of Internet and Intranet applications. The Net.Data Web application
environment provides the following features:

» Permits the separation of data generation logic from presentation logic within
your Web applications. Net.Data does not impose any restrictions on the method

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

with which the data is presented (such as HTML or Javascript). This separation
allows users to easily change the presentation of data using the latest
presentation techniques.

» Allows you to use existing skills and business logic to generate Web pages by
providing the ability to interface with programs written in C, C++, REXX, Java or
other languages.

* Provides the ability to develop complex Internet applications quickly, using a
simple macro language.

» Provides high-performance access to data that is stored in DB2 and in any
remote DRDA-enabled database.

* Provides easy migration of macros between all operating systems supported by
the Net.Data family of products.

Interpreted Macro Language

The Net.Data macro language is an interpreted language. When Net.Data is
invoked to process a macro, Net.Data directly interprets each language
statement in a sequential fashion, starting from the top of the file. Using this
approach, any changes you make to a macro can be immediately seen
when you next specify the URL that executes the macro. No recompilation
is required.

Direct Requests
Simple requests that require the execution of a single SQL statement, DB2
stored procedure, REXX program, C or C++ program, or Perl script do not
require the creation of a macro. These requests can be specified directly
within the URL that flows from the browser to the Web server.

Free Format

The Net.Data macro language has only a few rules about programming
format. This simplicity provides programmers with freedom and flexibility. A
single instruction can span many lines, or multiple instructions can be
entered on a single line. Instructions can begin in any column. Spaces or
entire lines can be skipped. Comments can be used anywhere.

Variables Without Type

Net.Data regards all data as character strings. Net.Data uses built-in
functions to perform arithmetic operations on a string that represents a valid
number, including those in exponential formats. Macro language variables

are discussed in detail in ENet Data Macra Variables” on page 86.

Built-in Functions

Net.Data supplies built-in functions that perform various processing,
searching, and comparison operations for both text and numbers. Other
built-in functions provide formatting capabilities and arithmetic calculations.

Error Handling

When Net.Data detects an error, messages with explanations are returned
to the client. You can customize the error messages before they are
returned to a user at a browser. See Net.Data Reference for more
information.

Chapter 1. Introduction 3

4 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Chapter 2. Configuring Net.Data

You can install Net.Data for your operating system by using the instructions in the
README file that accompanied the product. Most configuration steps are
completed during installation; this varies by operating system.

After installing Net.Data for your operating system, you must configure Net.Data
and modify your configuration for the Web server. Configuration tasks include:

» Customizing the Net.Data initialization (INI) file

» Configuring Net.Data for use with FastCGI or one of the support Web server
APIs (optional)

» Customizing the Web server configuration and environment variable files
» Configuring the Cache Manager (optional)

» Configuring Live Connection (optional)

» Setting up the Net.Data language environments

» Specifying access rights

You use the following tools to configure Net.Data:
* Atext editor

Use a text editor to edit the initialization file and the Live Connection
configuration file on all operating systems. You also use a text editor to update
any Web server configuration files. It is a good idea to back up the files before
you make changes.

e The Net.Data administration tool

The administration tool provides a graphical interface for customizing the
initialization file and the Live Connection configuration file. You can use the
administration tool to configure Net.Data on the OS/2, Windows NT, and AIX
operating systems.

The method you use depends on which components need to be configured and the
operating system Net.Data is running on, as described in [fanle 1. If you start using
one particular method for a configuration task, you should continue to use that
method for the best results.

Table 1. Comparison of configuration methods with tasks and operating systems. A -
Can be configured with the administration tool or manually. M - Can be configured
manually, only.

Task Operating Systems:
AIX NT 0Ss/2 HP|SUN|SCO
Configure the Net.Data INI file A A A M
Define cliettes ports A A A M
Define cliettes A A A M
Turn on cliette password encryption A N/A N/A N/A
Turn on error logging A A A M
Configure Web Server for FastCGl, M M M M
CGl, and APIs*
Define Cache Manager Ports M M N/A N/A
Configure Cache Manager M M N/A N/A

© Copyright IBM Corp. 1997, 1999 5

Table 1. Comparison of configuration methods with tasks and operating systems. A -
Can be configured with the administration tool or manually. M - Can be configured
manually, only. (continued)

Task Operating Systems:

AlX NT 0s/2 HP|SUN|SCO
*Tip: Many Web servers have administration tools that you can use to configure the
Web server.

This chapter describes how to configure Net.Data and how to modify your
configuration of the Web server for use with Net.Data. Additionally, it describes how
to configure optional components.

About the Net.Data Initialization File

Net.Data uses its initialization file to establish the settings of various configuration
variables and to configure language environments and search paths. The settings of
configuration variables control various aspects of Net.Data operation, such as the
following:

* The encoding of character data as Unicode
* Whether string and word functions are DBCS enabled
* The name of the DB2 instance for access to database data

* How Net.Data connects and communicates with the language environments,
databases, connection management, and caching

» Whether error logging is activated

The language environment statements define the Net.Data language environments
that are available and identify special input and output parameter values that flow to
and from the language environments. The language environments enable Net.Data
to access different data sources, such as DB2 databases and system services. The
path statements specify the directory paths to files that Net.Data uses, such as
macros, REXX programs, and Perl scripts.

The Net.Data initialization file, db2www.ini, is located in the Web server's document
directory. See the README file for you operating system for more information.

Authorization Tip: Ensure that the Web server has access rights to this file. See
[i i i Y for more
information.

6 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

About the Net.Data Configuration Files for Optional Components

The following sections discuss the configuration files for optional components of
Net.Data.

The Live Connection Configuration File

Live Connection provides connection management on Windows NT, OS/2, AlX, and
Sun Solaris operating systems to improve performance by eliminating start-up
overhead. The Net.Data Live Connection configuration file contains information
about one or more named cliettes. A cliette is a long-running process that maintains
a connection to a database or a Java application that endures over Net.Data macro
invocations from multiple users. After a cliette is started, it continues to exist until
Net.Data Live Connection terminates. Multiple cliettes can connect to a single
database.

As part of the cliette information in the configuration file, you specify a cliette name,
unigue ports, and the minimum and maximum number of processes. For database
cliettes, you can also specify the database name, login, and password for each
cliette entry. On AlX, you can encrypt the password.

Authorization Tip: Ensure that the user ID that starts Connection Manager has

access rights to this file. See LGranting Access Rights to Files Accessed hy
Net Data” an page 51l for more information.

The Cache Manager Configuration File

The Cache Manager configuration file contains the definitions for the Cache
Manager and each of the caches. Net.Data caching is described in
Eaching” an page 161. Configuring the Cache Manager is described in ECanfiguring
the Cache Manager and Net Data Caches” on page 166. The structure of the file is

a series of sections, or stanzas:

Cache Manager stanza
This stanza defines the parameters of the Cache Manager itself and
includes network information, logging status, and tracing status. The stanza
is required and must be labeled cache-manager.

Cache definition stanzas
These stanzas define the parameters for each cache; one cache definition
stanza in the configuration file exists for each cache that is managed by the
Cache Manager; this section contains network information, memory and
space requirements, logging status, and statistics status. The cache
definition stanza is required for each cache that is managed by the Cache
Manager.

The Cache Manager configuration file is not managed by the administration tool and

can be updated with any text editor. See ENet Data Caching” on page 161 to learn

how to define this file.

Chapter 2. Configuring Net.Data 7

Authorization Tip: Ensure that the user ID that starts the Cache Manager has

access rights to this file. See [Granting Access Rights to Files Accessed hyl
Net.Data” on page 51| for more information.

Common Sections of the Net.Data Initialization, Control, and Macro
Files

Certain portions of the Net.Data initialization, configuration and macro files must be
consistent for all components of Net.Data to work as a whole. The following table
summarizes the areas of each of these files that must match.

Table 2. Consistency Requirements for the Net.Data Configuration Files and the Macro

File Common Sections Notes

Net.Data INI File Environment Statement The language environments that use
Live Connection must specify the
database cliette name in their
environment statement

Live Connection When using Net.Data Live Connection,

configuration variables specify the Live Connection port,
DTW_CM_PORT. This variable value
must match the MAIN_PORT value in
the Live Connection configuration file.

Cache configuration When using Net.Data caching, optionally

variables include port number and machine name
variables. These values must match
those used in the Cache Manager
configuration file, if used.

Live Connection Cliette Definitions Each cliette definition must match a

Configuration File corresponding definition in the INI file.
Additionally, the MAIN_PORT value
must match the DTW_CM_PORT
variable value in the INI file.

Cache Manager Cache Manager When using Net.Data caching, you can

Configuration File Configuration Variables optionally include port number and
machine name variables. These values
must match those used in the INI file, if
used.

The following fragments illustrate the relationship between a macro, a Net.Data
initialization file, and a Live Connection configuration file. Two cliettes are used by
the macro (DTW_SQL:SAMPLE, DTW_SQL:CELDIAL) and access two DB2 databases,
called SAMPLE and CELDIAL. The Live Connection configuration file contains the
cliette names and definitions. The ENVIRONMENT statement in the Net.Data
initialization file refers to the cliette name. The LOGIN and PASSWORD values are
specified in the Live Connection configuration file.

Eigure 2 an page d shows a fragment of the macro that contains the
@DTW_ASSIGN statement that defines which cliette is to be used to access a

database.

8 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

<3%* *ks

<3** This is an HTML comment *x>
<3** Access the SAMPLE database using *r>
<3** cliette DTW_SQL:SAMPLE **>

< BEFEFKAKAKK FAFAFAFEFEFEFEFRARAIAIATATATATAFTE S

@DTW_ASSIGN (DATABASE, " SAMPLE ")

@insert_customer

(customer_name, customer_street, customer_city, customer_state,
customer_country, customer_zip, customer_credit, customer_expiry)

<3 >
<3** This is an HTML comment *r>
<3** Process the CELDIAL database using *r>

<3** the cliette DTW_SQL:CELDIAL **>

< 3 ***>

@DTW_ASSIGN (DATABASE, " CELDIAL ")

@insert_customer

(customer_name, customer_street, customer_city, customer_state,
customer_country, customer_zip, customer_credit, customer_expiry)

Figure 2. Net.Data Macro Fragment

Note that the DATABASE configuration variable will substituted into the
ENVIRONMENT statement of the initialization file to generate the cliette name. This
allows you to access multiple databases from the same macro.

Eigure 3 shows a fragment of the Net.Data initialization file that contains the
ENVIRONMENT statement and the associated cliette type. There is one
ENVIRONMENT statement for each cliette type in the initialization file. For each
database cliette type, the ENVIRONMENT statement specifies a cliette name. The
name is made up of the cliette type and a variable reference, $(DATABASE), which
is resolved at run time. Each language environment that uses Live Connection must
have a cliette definition in the ENVIRONMENT statement.

ENVIRONMENT (DTW_SQL)
(IN DATABASE, LOGIN, PASSWORD, TRANSACTION_SCOPE, SHOWSQL,
ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)
CLIETTE "DTW_SQL:$(DATABASE) "

Figure 3. Net.Data Initialization File Fragment

Eigure 4 on page 10 shows a fragment of the Live Connection configuration file,
which contains the cliette definitions for DTW_SQL:SAMPLE and
DTW_SQL:CELDIAL.

Chapter 2. Configuring Net.Data 9

CONNECTION_MANAGER({
MAIN_PORT=7128
ADMIN_PORT1=7131
ADMIN_PORT2=7133
ENCRYPTION=OFF

}

P
This is a comment in a Live Connection configuration file.
Comments start with a pound (hash) character.

Comments terminate at the end of the line and do not continue to
the next line unless another pound (hash) character is specified.
You can include comments at the end of lines containing Live
Connection keywords except on password lines.

You cannot include comments anywhere on lines containing the
password keyword.

You cannot include spaces and pound (hash) characters within any
name, such as cliette name or in database cliette passwords.
B
CLIETTE DTW_SQL:SAMPLE {

MIN_PROCESS=1

MAX_PROCESS=3

START_PRIVATE_PORT=7100

START_PUBLIC_PORT=7300

EXEC_NAME=dtwcdb2.exe

DATABASE=SAMPLE

LOGIN=USER1

PASSWORD=HAMLET

}

CLIETTE DTW_SQL:CELDIAL {
MIN_PROCESS=1
MAX_PROCESS=5
START_PRIVATE_PORT=7500
START_PUBLIC_PORT=7700
EXEC_NAME=dtwcdb2.exe
DATABASE=CELDIAL
LOGIN=USER2
PASSWORD=0OPHELIA

}

HoHH KR HHHHH

Figure 4. Live Connection configuration file fragment

Customizing the Net.Data Initialization File

The information contained in the initialization file is specified using three types of
configuration statements, described in the following sections:

The sample initialization file shown in Eigure 5 an page 11l contains examples of
these statements and is valid for for OS/2 and Windows NT.

10 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

OOoONOOT P~ WN =

The text of each individual configuration statement must all be on one line. (An
ENVIRONMENT statement is shown on several lines for readability.) Ensure that
the initialization file contains an ENVIRONMENT statement for each language
environment that you call from your macros. If you fully qualify all references to files
within the macro, you do not need to specify any of the path configuration

statements.

DTW_CM_PORT 7128
DTW_INST DIR c:\db2www

DTW_LOG_DIR c:\db2www\1ogs

DB2INSTANCE DB2
DTW_DIRECT_REQUEST NO
DTW_SHOWSQL NO

MACRO_PATH c:\DB2WWW\Macro
_ c:\www\html
INCLUDE_PATH c:\db2www\Macro
EXEC_PATH c:\db2www\Macro

HTML_PATH

FFI_PATH c:\pub\ffi;pub\ffi\data

ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT
ENVIRONMENT

(DTW_SQL)
(DTW_SYB)
(DTW_ORA)
(DTW_ODBC)
(DTW_DEFAULT)
(DTW_APPLET)
(DTW_REXX)
(DTW_PERL)
(DTW_SYSTEM)
(DTW_FILE)
(DTW_WEBREG)
(DTW_JAVAPPS)
(HWS_LE)

[DLL
[DLL
[DLL
[DLL
[DLL
[DLL
[DLL
[DLL
[DLL
[DLL
[DLL
[DLL
[DLL

Figure 5. The Net.Data initialization file

path]
path]
path]
path]
path]
path]
path]
path]
path]
path]
path]
PATH]
path]

[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter
[Parameter

Tist]
Tist]
Tist]
Tist]
Tist]
Tist]
Tist]
Tist]
Tist]
Tist]
Tist]
Tist]
Tist]

Lines 1 - 6 define
configuration
variables

Lines 7 - 11 define
paths to files
required to process
the macro

Lines 12 - 24 define
the environment
statements that are
available.

The following sections describe how to customize the configuration statements in
the initialization file.

Configuration Variable Statements

Net.Data configuration variable statements set the values of configuration variables.
Configuration variables are used for various purposes. Some variables are required
by a language environment to work properly or to operate in an alternate mode.
Other variables control the character encoding or content of the Web page being
constructed. Additionally, you can use configuration variable statements to define
application-specific variables.

The configuration variables you use depend on the language environments, and
databases, you are using, as well as other factors that are specific to the

application.

To update the configuration variable statements:

Customize the initialization file with the configuration variables that are required for
your application. A configuration variable has the following syntax:

NAME[=]value-string

The equal sign is optional, as denoted by the brackets.

Chapter 2. Configuring Net.Data 11

The following sub-sections describe the configuration variables statements that you
can specify in the initialization file:

. [Cace M ConfAion Varanes]

o EDTW._CM PORT Live Connection Port Number Variable” on page 13

q . H . ”

bage 19

. I‘DT\/\I_QI\/ITD_QFR\/FIQ' E-mail SMTP Server Variahle” an page 18

+ IDTW_VARIARIE_SCOPE: Variahle Scope Variahle” an page 17

Cache Manager Configuration Variables

Two optional configuration variables are used if the Cache Manager runs on a

machine other than where the Net.Data macro runs:

« DTW_CACHE_PORT specifies which port number Net.Data uses to connect to
the Cache Manager.

» DTW_CACHE_HOST specifies the TCP/IP host name of the local or remote
machine.

If the Cache Manager runs on the local machine, UNIX-domain sockets or named
pipes are used for communication and no configuration is necessary.

The Cache Manager runs on AIX and Windows NT machines, only. See [Net Datd
Caching” on page 161 to learn about Net.Data caching.

DTW_CACHE_PORT: Cache Manager Port Variable
Specifies the TCP/IP port the Cache Manager is listening on. This port
number must match the port number specified in the Cache Manager
configuration file, so Net.Data can communicate with the Cache Manager. If
not specified, Cache Manager uses the default port 7175.

Syntax:
DTW_CACHE_PORT=port_number

Parameter:

port_number
A unique port number assigned to the Cache Manager to service
cache requests. The default value is 7175.

frable 3 describes the options for specifying machine IDs and port numbers
for these variables.

Table 3. Cache Manager Configuration Variables: Configuration Options

Default Connection Manager If the cache machine is If the cache machine is not
Values specified ... specified ...

12 NetData: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Table 3. Cache Manager Configuration Variables: Configuration Options (continued)

If the cache port is Net.Data connects to the Net.Data connects to the

specified ... Cache Manager on the Cache Manager on the local
specified machine using the machine using the specified
specified port. port.

If the cache port is not Net.Data connects to the Net.Data connects to the

specified ... Cache Manager on the Cache Manager on the local
specified machine using the machine using the default
default port of 7175. port of 7175.

DTW_CACHE_HOST: Cache Manager Machine ID Variable
Specifies the machine where the Cache Manager resides. If not specified,
Net.Data assumes the correct machine is the local machine.

Syntax:
DTW_CACHE_HOST=host_name

Parameter:

host_name
The qualified TCP/IP host name of the local or remote machine
where the Cache Manager runs. The default value is the local
machine’s host name.

DB2INSTANCE: DB2 Instance Variable

Specifies the instance of DB2 used by the SQL language environment. This variable
value is required when Net.Data connects to DB2 running on the Windows NT,
0S/2, and UNIX operating systems.

DB2 on the OS/2, Windows NT, and UNIX operating systems needs DB2INSTANCE
to be defined as an environment variable. If Net.Data detects that DB2INSTANCE is
not defined as an environment variable, it will set the DB2INSTANCE environment
variable to the value of DB2INSTANCE found in the initialization file before
attempting to connect to DB2.

Syntax:
DB2INSTANCE instance_name

DTW_CM_PORT: Live Connection Port Number Variable

Specifies a unique port number that Net.Data uses for Live Connection.

Syntax:
DTW_CM_PORT port_number

Where port_number specifies the unique port number used for Live Connection.
DTW_DIRECT_REQUEST: Enable Direct Request Variable

Enables or disables Net.Data direct request invocation. By default, direct request is
disabled.

The direct request method of invoking Net.Data allows a user to specify the
execution of an SQL statement or Perl, REXX, or C program directly within a URL.
When direct request is disabled, the user must invoke Net.Data using the macro
request method, allows users to execute only those SQL statements and functions

Chapter 2. Configuring Net.Data 13

defined or called in a macro. See tUsing Net Data Mechanisms” on page 56 for

security-related recommendations when using DTW_DIRECT_REQUEST.

Syntax:
DTW_DIRECT REQUEST YES|NO

Where:
YES Enables Net.Data direct request.
NO Disables Net.Data direct request. NO is the default.

DTW_INST_DIR: Net.Data Installation Directory Variable

Locates certain files during Net.Data execution. You set this variable at installation
time to specify the home directory, <inst dir>, where Net.Data is installed. Do not
change this value after installation.

DTW_LOG_DIR: Error Log Location Variable

Specifies the directory where the error logs are stored. When logging is enabled
with the DTW_LOG_LEVEL variable in the macro, the log files are stored in the
directory specified in the path statement of the DTW LOG DIR variable. The
default is \inst_dir\logs\netdata.logs. See lLagging Net Data Error Messagesl|
m to learn about logging error messages with Net.Data and about the
DTW_LOG_LEVEL variable.

Requirement: The DTW_LOG_DIR variable must be defined for Net.Data to log
files. If not defined, logging does not occur even if DTW_LOG_LEVEL is set to
ERROR or WARNING in the macro.

Syntax:
DTW_LOG_DIR \inst_dir\path

Example: Initialization file configuration
DTW_LOG_DIR \inst_dir\mylogfiles\

DTW_MBMODE: Native Language Support Variable

Activates national language support for word and string functions. When the value
of this variable is YES, all string and word functions correctly process DBCS
characters within strings by treating strings as mixed data (that is, as strings that
potentially contain characters from both single-byte character sets and double byte
character sets). The default value is NO. You can override the value set in the
initialization file by setting the DTW_MBMODE variable in a Net.Data macro.

This configuration variable works with the DTW_UNICODE configuration variable. If
DTW_UNICODE uses the default value of NO, the value of DTW_MBMODE is
used. If DTW_UNICODE is set to a value other than NO, its value is used.
illustrates how the settings of these two variables determine how built-in functions
process strings:

Table 4. Relationship Between the Settings of DTW_UNICODE and DTW_MBMODE

If DTW_UNICODE is set to If DTW_MBMODE=YES If DTW_MBMODE=NO
NO Supports DBCS mixed with Supports SBCS only
SBCS

14 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Table 4. Relationship Between the Settings of DTW_UNICODE and
DTW_MBMODE (continued)

If DTW_UNICODE is set to If DTW_MBMODE=YES If DTW_MBMODE=NO
UTF8 Supports UTF-8 Supports UTF-8
Syntax:

DTW_MBMODE [=] NO|YES

DTW_SHOWSQL: Enable or Disable SHOWSQL Configuration
Variable

Overrides the effect of setting SHOWSQL within your Net.Data macros.

Syntax:
DTW_SHOWSQL YES|NO

Where:

YES Enables SHOWSQL in any macro that sets the value of SHOWSQL to YES.

NO Disables SHOWSQL in your macros, even if the variable SHOWSQL is set
to YES. NO is the default.

[fable 3 describes how the settings in the Net.Data initialization file and the macro
determine whether the SHOWSQL variable is enabled or disabled for a particular
macro.

Table 5. The Relationship Between Settings in the Net.Data Initialization File and
the Macro for SHOWSQL

Setting of Setting SHOWSQL SQL statement is
DTW_SHOWSQL displayed
NO NO NO
NO YES NO
YES NO NO
YES YES YES

DTW_SMTP_SERVER: E-mail SMTP Server Variable

Specifies the SMTP server to use for sending out e-mail messages using the
DTW_SENDMAIL built-in function. The value of this variable can either be a host
name or an IP address. If this variable is not set, Net.Data uses the local host as
the SMTP server.

Syntax:
DTW_SMTP_SERVER server_name

Where server_name is the host name or IP address of the the SMTP server that is
to be used for sending e-mail messages.

Performance tip: Specify an IP address for this value to prevent Net.Data from
connecting to a domain name server when retrieving the IP address of the specified
SMTP server.

Example:

Chapter 2. Configuring Net.Data 15

16

DTW_SMTP_SERVER us.1ibm.com
DTW_UNICODE: Unicode Variable

Specifies whether Net.Data supports Unicode in:

* Macros

* Form data

» Data retrieved from a DB2 database

» Strings processed by Net.Data built-in functions

Net.Data supports UTF-8 Unicode format in macros, form data, and built-in
functions and the output is always in UTF-8. Net.Data can access a database that
contains UTF-16 data and converts it to UTF-8.

When set to UTF8, DTW_UNICODE tells Net.Data to run in a Unicode environment,
which means that it expects the macro file data, the form data input from the
browser, and the data coming from the DB2 database to be in UTF-8. Setting this
variable tells Net.Data that macro input and output are in UTF-8; as a result,
Net.Data generates Web pages in UTF-8.

The DTW_UNICODE configuration variable works with the DTW_MBMODE
configuration variable. The value of the DTW_UNICODE configuration variable
overrides the setting of the DTW_MBMODE variable, when processing word and
string built-in functions. If DTW_UNICODE uses the default value of NO, the value
of DTW_MBMODE is used. If DTW_UNICODE is set to a value other than NO, its
value is used. anle 4 illustrates how the settings of these two variables determine
how built-in functions process strings:

Table 6. Relationship Between the Settings of DTW_UNICODE and DTW_MBMODE

If DTW_UNICODE is set to If DTW_MBMODE=YES If DTW_MBMODE=NO
NO Supports DBCS mixed with Supports SBCS only
SBCS
UTF8 Supports UTF-8 Supports UTF-8
Syntax:

DTW_UNICODE NO|UTF8|UTF16

Where:

NO Specifies to defer to the value of the DTW_MBMODE variable. [lahle 6
describes Net.Data support based on the value of DTW_MBMODE.

UTF-8 Specifies to support UTF-8 code page and ignore the value of the
DTW_MBMODE configuration variable. UTF-8 represents characters by a
variable number of bytes and is ASCII safe.

Required DB2 environment variable: In addition to the DTW_UNICODE flag, a
DB2-specific environment variable must be set before Net.Data can connect to a
DB2 Unicode database. The DB2CODEPAGE environment variable must be set to
1208 in the environment in which Net.Data runs. For example, for the Apache Web
server, add the following line to the HTTPD.CONF file:

SetEnv DB2CODEPAGE 1208

See your Web server documentation to determine how to set environment variables
for CGlI scripts, Web server APIs, Fast-CGI programs, or servlets. Net.Data uses
the English message catalogue when running in a Unicode environment.

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

DTW_VARIABLE_SCOPE: Variable Scope Variable

Specifies how Net.Data treats local variable scope: whether local variables remain
local or whether local variables can be used outside the function block in which they
were created. This variable is provided for backward compatibility with previous
versions of Net.Data.

Syntax:
DTW_VARIABLE_SCOPE = LOCAL|GLOBAL

Where:

LOCAL
Specifies that local variables remain local. This behavior was introduced
with Net.Data Version 2.0 and is the default.

GLOBAL
Specifies that local variables can be used outside the function block they
were created in. This behavior was the default prior to Net.Data Version 2
and specifying this value prevents you from having to change macro files.

| Path Configuration Statements

Net.Data determines the location of files and executable programs used by
Net.Data macros from the settings of path configuration statements. The path
statements are:

+ HNCIUDE_PATH” on page 19

These path statements identify one or more directories that Net.Data searches
when attempting to locate macros, executable files, text files, LOB files, and include
files. The path statements that you need depend on the Net.Data capabilities that
your macros use.

Update guidelines:

Several general guidelines apply to the path statements. Exceptions are noted in
the description of each path statement.

» Each specified directory ends with a semicolon (;).
» Forward slashes (/) and back slashes (\) are treated the same.

» Each path statement can specify multiple paths, except for the HTML_PATH,
which can have only one path statement. Paths are searched from left to right in
the order specified. This multiple-path capability lets you organize your files
within multiple directories. For example, you can place each of your Web
applications in its own directory.

* It is recommended to use absolute path statements.
The following sections describe the purpose and syntax of each path statement and

provide examples of valid path statements. The examples can differ from your
application, depending on your operating system and configuration.

Chapter 2. Configuring Net.Data 17

MACRO_PATH

The MACRO_PATH configuration statement identifies the directories that Net.Data
searches for Net.Data macros. For example, specifying the following URL requests
the Net.Data macro with the path and file name /macro/sqlm.d2w:

http://server/cgi-bin/db2www/macro/sqlm.d2w/report

Syntax:
MACRO_PATH [=] pathl;path2;...;pathn

The equal sign (=) is optional, as indicated by brackets.

Net.Data appends the path /macro/sqlm.d2w to the paths in the MACRO_PATH
configuration statement, from left to right until Net.Data finds the macro or searches

all paths. See EChapter 4_Invaking Net Data” on page 61 for information on invoking

Net.Data macros.

Example: The following example shows the MACRO PATH statement in the
initialization file and the related link that invokes Net.Data.

Net.Data initialization file:
MACRO_PATH /u/userl/macros;/usr/1pp/netdata/macros;

HTML link:
Submit another query.

If the file query.d2w is found in the directory /u/userl/macros, then the
fully-qualified path is /u/userl/macros/query.d2w.

If the file is not found in the directories specified in the MACRO_PATH statement:

» If the specified path is absolute, Net.Data searches for the file in the specified
path. For example, if the following URL is submitted:

http://server/cgi-bin/db2www/u/userl/macros/myfile.txt/report

Net.Data searches for the file in the /u/userl/macros/myfile.txt directory path.
 If the specified path is relative, Net.Data searches for the file in all directories,

starting with the root (/) directory. For example, if the following URL is submitted:

http://server/cgi-bin/db2www/myfile.txt/report

and the file myfile.txt was not found in any of the directories specified in
MACRO_PATH, then Net.Data attempts to find the file in the root (/) directory:
/myfile.txt

EXEC_PATH

The EXEC_PATH configuration statement identifies one or more directories that
Net.Data searches for an external program that is invoked by the EXEC statement
or an executable variable. The order of the directories in the path statement
determines the order Net.Data searches for the directories. If the program is found,
the external program name is appended to the path specification, resulting in a fully
qualified file name that is passed to the language environment for execution.

Syntax:
EXEC_PATH [=] pathl;path2;...;pathn

18 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Example: The following example shows the EXEC PATH statement in the
initialization file and the EXEC statement in the macro that invokes an external
program.

Net.Data initialization file:
EXEC_PATH /u/userl/prgms;/usr/1pp/netdata/prgms;

Net.Data macro:

%FUNCTION(DTW_REXX) myFunction() f
%EXEC{ myFunction.cmd %}

0,
%}

If the file myFunction.cmd is found in the /usr/1pp/netdata/prgms directory, the
qualified name of the program is /usr/1pp/netdata/prgms/myFunction.cmd.

If the file is not found in the directories specified in the EXEC _PATH statement:

» If the specified path is absolute, Net.Data searches for the file in the specified
path. For example, if the following URL is submitted:
http://myserver/cgi-bin/db2www/usr/userl/prgms/myFunction.cmd

Net.Data searches for the file in the /u/userl/prgms/myFunction.cmd directory
path.

» If the specified path is relative, Net.Data searches the current working directory.
For example, if the following URL is submitted:
http://myserver/cgi-bin/db2www/myFunction.cmd/report

and the file myFunction.cmd was not found in any of the directories specified in
EXEC_PATH, then Net.Data attempts to find the file in the current working
directory.

INCLUDE_PATH

The INCLUDE_PATH configuration statement identifies one or more directories that
Net.Data searches, in the order in which they are specified, to find a file specified
on an INCLUDE statement in a Net.Data macro. When it finds the file, Net.Data
appends the include file name to the path specification to produce the qualified
include file name.

Syntax:
INCLUDE_PATH [=] pathl;path2;...;pathn

Tip: If you are including HTML files from a local Web server, use the
INCLUDE_URL construct as shown in the local Web server example for
INCLUDE_URL in Net.Data Reference. By using the demonstrated syntax, you do
not need to update the INCLUDE_PATH to specify directories that are already
known to the Web server.

Example 1: The following example shows both the INCLUDE_PATH statement in
the initialization file and the INCLUDE statement that specifies the include file.

Net.Data initialization file:
INCLUDE_PATH /u/userl/includes;/usr/1pp/netdata/includes;

Net.Data macro:

Chapter 2. Configuring Net.Data 19

%INCLUDE "myInclude.txt"

If the file mylinclude.txt is found in the /u/userl/includes directory, the
fully-qualified name of the include file is /u/userl/includes/myInclude.txt.

Example 2: The following example shows the INCLUDE_PATH statement and an
INCLUDE file with a subdirectory name.

Net.Data initialization file:
INCLUDE_PATH /u/userl/includes;/usr/1pp/netdata/includes;

Net.Data macro:
%INCLUDE "OE/oeheader.inc"

The include file is searched for in the directories /u/userl/includes/0E and
/usr/Tpp/netdata/includes/OE. If the file is found in
/usr/1pp/netdata/includes/OE, the fully qualified name of the include file is
/usr/1pp/netdata/includes/OE/oeheader.inc.

If the file is not found in the directories specified in the INCLUDE_PATH statement:

 If the specified path is absolute, Net.Data searches for the file in the specified
path. For example, if the following URL is submitted:

http://myserver/cgi-bin/db2www/u/userl/includes/oeheader.inc

Net.Data searches for the file in the /u/userl/includes/oeheader.inc directory
path.

 If the specified path is relative, Net.Data searches the current working directory.
For example, if the following URL is submitted:

http://myserver/cgi-bin/db2www/my.cmd/report

and the file myFunction.cmd was not found in any of the directories specified in
INCLUDE_PATH, then Net.Data attempts to find the file in the current working
directory.

FFI_PATH

The FFI_PATH configuration statement identifies one or more directories that
Net.Data searches, in the order in which they are specified, for a flat file that is
referenced by a flat file interface (FFI) function.

Syntax:
FFI_PATH [=] pathl;path2;...;pathn

Example: The following example shows an FFI_PATH statement in the initialization
file.

Net.Data initialization file:
FFI_PATH /u/userl/ffi;/usr/1 pp/netdata/fﬁ' ;

When the FFI language environment is called, Net.Data looks in the path specified
in the FFI_PATH statement.

Because the FFI_PATH statement is used to provide security to those files not in
directories in the path statement, there are special provisions for FFI files that are
not found. See the FFI built-in functions section in Net.Data Reference.

20 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

HTML_PATH

The HTML_PATH configuration statement specifies into which directory Net.Data
writes large objects (LOBs). This path statement accepts only one directory path.

During installation, Net.Data creates a directory called tmplobs, under the directory
specified in the HTML_PATH path configuration variable. Net.Data stores all LOB
files in this directory. If you change the value of HTML_PATH, create a new
subdirectory under the new directory.

Syntax:
HTML_PATH [=] path

Example: The following example shows the HTML PATH statement in the
initialization file.

Net.Data initialization file:

HTML_PATH /db2/1obs

When a query returns a LOB, Net.Data saves it in the directory specified in the
HTML_PATH configuration statement.

Performance tip: Consider system limitations when using LOBs because they can

quickly consume resources. See tlUsing | arge Qhjects” on page 123 for more

information.

Environment Configuration Statements

An ENVIRONMENT statement configures a language environment. A language
environment is a component of Net.Data that Net.Data uses to access a data
source such as a DB2 database or to execute a program written in a language such
as REXX. Net.Data provides a set of language environments, as well as an
interface that allows you to create your own language environments. These
language environments are described in [Chapter 6 Using | anguage Environments’]

and the language environment interface is described in Net.Data
Language Environment Interface Reference.

Net.Data requires that an ENVIRONMENT statement for a particular language
environment exist before you can invoke that language environment.

You can associate variables with a language environment by specifying the
variables as parameters in the ENVIRONMENT statement. Net.Data implicitly
passes the parameters that are specified on an ENVIRONMENT statement to the
language environment as macro variables. To change the value of a parameter that
is specified on an ENVIRONMENT statement in the macro, either assign a value to
the variable using the DTW_ASSIGN() function or define the variable in a DEFINE
section. Important: If a macro variable is defined in a macro but is not specified on
the ENVIRONMENT statement, the macro variable will not be passed to the
language environment.

For example, a macro can define a DATABASE variable to specify the name of a
database at which an SQL statement within a DTW_SQL function is to be executed.
The value of DATABASE must be passed to the SQL language environment
(DTW_SQL) so that the SQL language environment can connect to the designated

Chapter 2. Configuring Net.Data 21

database. To pass the variable to the language environment, you must add the
DATABASE variable to the parameter list of the environment statement for
DTW_SQL.

The sample Net.Data initialization file makes several assumptions about
customizing the setting of Net.Data environment configuration statements. These
assumptions may not be correct for your environment. Modify the statements
appropriately for your environment.

To add or update an ENVIRONMENT statement:

ENVIRONMENT statements have the following syntax:
ENVIRONMENT (type) library name (parameter list, ...) [CLIETTE "cliette_name"]

Parameters:

. type
The name by which Net.Data associates this language environment with a
FUNCTION block that is defined in a Net.Data macro. You must specify the type
of the language environment on a FUNCTION block definition to identify the
language environment that Net.Data should use to execute the function.

* library_name
The name of the DLL or shared library containing the language environment
interfaces that Net.Data calls.
In AIX, the name of the shared library is specified with the .o extension.
In HP-UX, the name of the shared library is specified with the .s/ extension
In SUN, SCO, and LINUX the name of the shared library is specified with the
.S0 extension
— In OS/2 and Windows NT the DLL name is specified without the .dll extension.
* parameter_list
The list of parameters that are passed to the language environment on each

function call, in addition to the parameters that are specified in the FUNCTION
block definition.

To set and pass the variables in the parameters list, define the variable in the
macro.

You must define these parameters as configuration variables or as variables in
your macro before executing a function that will be processed by the language
environment. If a function modifies any of its output parameters, the parameters
keep their modified value after the function completes. The following list specifies
which variables the ENVIRONMENT statements can pass:

DTW_SQL: TRANSACTION_SCOPE, LOCATION, DB2SSID, DB2PLAN

DTW_ODBC: TRANSACTION_SCOPE, LOCATION
* cliette_name

The name of the cliette. The cliette_ name can refer to the Java Application
language environment cliette, or it can be a database cliette. The cliette_name
parameter is used with the CLIETTE keyword, both of which are only used with
Live Connection. CLIETTE and cliette _name are optional and can be specified
only for database and Java application language environments, and for
user-defined language environments that have cliettes written for them.

Java Application cliette
This cliette name specifies the Java Application language environment.

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Syntax:
CLIETTE "DTW_JAVAPPS"

Database cliette
This cliette name specifies a cliette that is associated with a database.

Syntax:
CLIETTE "type:db_name"

Parameters:

type The database language environment associated with the cliette.
See page kd for a list of valid types.

db_name
The database cliette name. This name is often the same as the
database with which the cliette is associated, such as
MYDBASE, but can also be another name. db_name is optional
when using the Oracle language environment.

When Net.Data processes the initialization file, it does not load the language
environment DLLs or shared libraries. Net.Data loads a language environment DLL
or shared library when it first executes a function that identifies that language
environment. The DLL or shared library then remains loaded for as long as
Net.Data is loaded.

Example: ENVIRONMENT statements for Net.Data-provided language
environments

When customizing the ENVIRONMENT statements for your application, add the
variables on the ENVIRONMENT statements that need to be passed from your
initialization file to a language environment or that Net.Data macro writers need to
set or override in their macros.

ENVIRONMENT (DTW_SQL) DTWSQL (IN DATABASE, LOGIN, PASSWORD,

TRANSACTION_SCOPE, SHOWSQL, ALIGN, START ROW_NUM, DTW_SET TOTAL_ROWS)
CLIETTE "DTW_SQL:MYDBASE"

ENVIRONMENT (DTW_SYB) DTWSYB (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, SHOWSQL, ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)
ENVIRONMENT (DTW_ORA) DTWORA (IN DATABASE, LOGIN, PASSWORD,

TRANSACTION_SCOPE, SHOWSQL, ALIGN, START_ROW_NUM, DTW_SET_TOTAL_ROWS)
ENVIRONMENT (DTW_ODBC) DTWODBC ~ (IN DATABASE, LOGIN, PASSWORD,
TRANSACTION_SCOPE, SHOWSQL, ALIGN, DTW_SET_TOTAL_ROWS)
ENVIRONMENT (DTW_APPLET) DTWJAVA ()
ENVIRONMENT (DTW_JAVAPPS) DTWJAVAPPS (OUT RETURN_CODE) CLIETTE "DTW_JAVAPPS"
ENVIRONMENT (DTW_PERL) DTWPERL (OUT RETURN_CODE)
ENVIRONMENT (DTW_REXX) DTWREXX (OUT RETURN_CODE)
ENVIRONMENT (DTW_SYSTEM) DTWSYS (OUT RETURN_CODE)
ENVIRONMENT (HWS_LE) DTWHWS ~ (OUT RETURN_CODE)

Required: Each ENVIRONMENT statement must be on a single line.

Setting Up the Language Environments

After you modify configuration variables and ENVIRONMENT configuration
statements for the Net.Data language environments, some additional setup is
required before the following language environments can function properly. The
following sections describe the steps necessary to set up the language
environments:

Chapter 2. Configuring Net.Data 23

| Setting up the IMS Web Language Environment

To use the IMS Web language environment, you must complete the following steps:

1.

Install the IMS Web Runtime component on the Web server running Net.Data.
For information about installing and using the IMS Web Runtime component,
see IMS Web User’s Guide:

http://www.software.ibm.com/data/ims/about/imsweb/document/
Create the transaction DLL.

a. Generate the C++ code, makefile (DTWproj.mak), and Net.Data macros
(DTWproj.d2w) files for your transaction with the IMS Web Studio tool.

b. If you are running Net.Data on an operating system that is different than the
operating system on which the IMS Web Studio tool is run, move the DLL
source files to an IMS Web development machine for the target operating
system. For example, if you run the IMS Web Studio tool on Windows NT
and the target platform is AIX or OS/390, move the source for the
transaction DLL to an IMS Web development machine running under AIX or
0S/390, respectively.

c. Build the executable form of the transaction DLL using the generated make
file.

Copy the transaction DLL file (DTWproj.dll) and Net.Data macro file
(DTWproj.d2w) to your Web server.

a. Place the macro in a directory from which Net.Data retrieves macros. (See
IMACRQ PATH" an page 18 for more information.)

b. Place the transaction DLL or shared library in a directory from which the
Web server retrieves DLLs or shared libraries.

Use the link in the sample file that is generated by the IMS Web Studio tool,
DTWproj.htm, to modify an HTML file in your Web server’'s HTML tree. You can
then use the link to invoke Net.Data and display the input HTML form to invoke
the IMS Web language environment. The IMS Web language environment then
calls the IMS transaction DLL, which uses the services proved by the IMS Web
Runtime DLLs to run the transaction and return its output to the Web browser.

The IMS Web Runtime DLLs formulate and send a request message through
IMS TOC to OTMA, which in turn causes the appropriate transaction to be
gueued. The output of the transaction is then returned by OTMA through IMS
TOC to IMS Web. The transaction os then passed back through the IMS Web
language environment to Net.Data for display on the Web browser.

Setting up the Java Language Environment

24

The Java language environment requires some additional set up before you can call
functions from a macro:

1.

Create a batch file to launch the Java application because Net.Data cannot
directly start a Java application. Net.Data uses this file to launch the Java
Virtual Machine, which runs your Java function. The batch file must include the
java-classpath statement to ensure the required Java packages (the standard

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

and application-specific packages) can be found. For example, the batch file,
launchjv.bat, contains the following java-classpath:

java -classpath %CLASSPATH%;C:\DB2WWW\Javaclas dtw_samp %1 %2 %3 %4 %5 %6
Define a cliette to work with the Java language environment in the Live
Connection configuration file, dtwcm.cnf. Specify unique port numbers for the
cliette and the related batch file name with the EXEC_NAME configuration
variable. In the following example, the Java cliette name is defined as
DTW_JAVAPPS and the EXEC_NAME configuration variable is set to the name
of the batch file, Taunchjv.bat:

CLIETTE DTW_JAVAPPS({

MIN_PROCESS=1 <= Required: this value must be 1 because

the JAVAPPS cliette is multi-threaded.
MAX_PROCESS=1 <= Required: this value must be 1 because

the JAVAPPS cliette is multi-threaded.
START_PRIVATE_PORT=5100 <= Must be a unique port number
START_PUBLIC_PORT=5300 <= Must be a unique port number
EXEC_NAME=launchjv.bat <= The name of the batch file that includes the

classpath statements

}

When you start the Net.Data Connection Manager, Net.Data starts the Java
cliette specified in the configuration file. The cliette becomes available to
process Java language environment requests from your Net.Data macro
applications.

Update the DTW_JAVAPPS ENVIRONMENT path statement in the Net.Data
initialization file, db2www.ini, by adding each

cliette name to the statement. For example:

ENVIRONMENT DTW_JAVAPPS (OUT RETURN_CODE) CLIETTE "DTW_JAVAPPS"

Setting up the Oracle Language Environment

Use the following steps to access Oracle databases from a Net.Data macro:
1. Ensure the appropriate components of Oracle are installed and working as

follows:

a. Install SQL*Net on the machine where Net.Data is installed, if it is not
already installed. For more information, see the following URL:
http://www.oracle.com/products/networking/html/stnd_sqlnet.html

b. Verify that the Oracle tnsping function can be used with the same security

authorization that your Web server uses. To verify, log on with your Web
server's user ID and type:

tnsping oracle-instance-name

Where oracle-instance-name is the name of the Oracle system that your
Net.Data macros access.

You might not be able to verify the tnsping function on Windows NT if your
Web server runs under system authority. If so, skip this step.

c. Verify that the Oracle tables can be accessed with the same security
authorization that your Web server uses. To verify, enter an SQL SELECT
statement, using the SQL*Plus line command tool, to access an Oracle table
with an SQL SELECT statement with the authority of your Web server. For
example:

SELECT * FROM tablename

Chapter 2. Configuring Net.Data 25

You might not be able to verify table access on Windows NT if your Web
server runs under system authority. If so, skip this step.

Troubleshooting: Do not proceed if the above steps fail. If any of the steps fail,
check your Oracle configuration.

Ensure that the Oracle environment variables are set correctly in your Web
server process.

* For AIX, put the following lines in the /etc/environment file:

ORACLE_SID=oracle-instance-name
ORACLE_HOME=oracle-runtime-library-directory

* For Windows NT, use the System Properties Control panel to add the
following environment variables:

ORACLE_SID=oracle-instance-name
ORACLE_HOME=oracle-runtime-library-directory

Hint: You might require additional lines for other Oracle environment variables,
depending on the Oracle facilities you plan to use, such as national language
support and two phase commit. Consult the Oracle administration
documentation for more information on these environment variables.

Test the connection to Oracle from Net.Data. In your Net.Data macro, specify
the appropriate values in the LOGIN and PASSWORD variables. Do not define
the Net.Data DATABASE variable when accessing Oracle databases. The
following is an example of connect statement in a macro:

%DEFINE LOGIN=user_ID@remote-oracle-instance-name
%DEFINE PASSWORD=password

Local Oracle instances:

If you access the local Oracle instance only, do not specify the
remote-oracle-instance name as part of the login user ID, as in the following
example:

%DEFINE LOGIN=user_ID
%DEFINE PASSWORD=password

Live Connection:

If you use Live Connection, then you can specify the LOGIN and PASSWORD
in the Live Connection configuration file, although it is not recommended for
security purposes. For example:

LOGIN=user_ID
PASSWORD=password

Hint: Do not specify the DATABASE variable for Oracle.

Test your configuration by running a CGI shell script to ensure that the Oracle
instance can be accessed from your Web server, as in the following example:

#! /bin/sh

echo "content-type; text/html
echo

echo "< html>< pre>"

set

echo "</pre>< p>< pre>"
tnsping oracle-instance-name
echo

Alternatively, you can execute tnsping directly from a Net.Data macro, as in the
following example:

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

%DEFINE testora = %exec "tnsping oracle-instance-name
%HTML (report) {

< P>About to test Oracle access with tnsping.

< hr>

$(testora)

< hr>

< P>The Oracle test is complete.

%}
Troubleshooting:

If the verification step fails, check that all the preceding steps were successful

by verifying the following items:

* Check your Oracle configuration.

» \Verify that the Oracle environment variable syntax is correct and that no
variables are missing.

* Check the Oracle connection, ensuring that you have entered the correct
user ID and password.

If the verification step still fails, contact IBM Service.
Example:

After you have completed the accessing verification steps, you can make calls to
the Oracle language environment with functions in the macro, as in the following
example:

%FUNCTION(DTW_ORA) STL1() {
insert into $(tablename) (intl,int2) values (111,NULL)

[)
%}

Setting up the Sybase Language Environment

To access Sybase from Net.Data

1. Ensure the appropriate components of Sybase are installed and working as
follows:

a. Install Sybase’s Open Client on the machine where Net.Data is installed, if it
is not already installed. For more information, see the Sybase Open Client
documentation for more information.

b. Verify that the Sybase ping function can be used with the same security
authorization that your Web server uses. To verify, log on with your Web
server’s user ID and type:

ping sybase-instance-name

Where sybase-instance-name is the name of the Sybase system that your
Net.Data macros access.

You might not be able to verify the ping function on Windows NT if your
Web server runs as an Windows NT service. If so, skip this step.

c. Verify that the Sybase tables can be accessed with the same security
authorization that your Web server uses. To verify, enter an SQL SELECT
statement, using the ISQL line command tool, to access an Sybase table
with the authority of your Web server. For example:

SELECT * FROM tablename

Chapter 2. Configuring Net.Data 27

You might not be able to verify table access on Windows NT if your Web
server runs as a Windows NT service. If so, skip this step.

Troubleshooting: Do not proceed if the above steps fail. If any of the steps fail,
check your Sybase configuration.

Ensure that the Sybase environment variables are set correctly in your Web
server process.

* For AlX, put the following lines in the /etc/environment file:
DSQUERY=sybase-instance-name
SYBASE=sybase-runtime-library-directory

* For Windows NT, use the System Properties Control panel to add the
following environment variables:

DSQUERY=sybase-instance-name
SYBASE=sybase-runtime-library-directory

Hint: You might require additional lines for other Sybase environment variables,
depending on the Sybase facilities you plan to use, such as national language
support and two-phase commit. Consult the Sybase administration
documentation for more information on these environment variables.

Test the connection to Sybase from Net.Data. In your Net.Data macro, specify
the appropriate values in the LOGIN, PASSWORD, and DATABASE variables.
The following is an example of connect statement in a macro:

%DEFINE DATABASE=database-name

%DEFINE LOGIN=user_ID@remote-sybase-instance-name
%DEFINE PASSWORD=password

Live Connection: If you use Live Connection, then you can specify the LOGIN
and PASSWORD in the Live Connection configuration file, although it is not
recommend for security purposes. For example:

DATABASE=database-name

LOGIN=user_ID

PASSWORD=password

Test your configuration by running a CGI shell script to ensure that the Sybase
instance can be accessed from your Web server, as in the following example:
#! /bin/sh

echo "content-type; text/html

echo

echo "< html>< pre>"

set

echo "</pre>< p>< pre>"

isql -u user_ID -p password << EOFF

SELECT * FROM tablename

EOFF

echo

Troubleshooting:

If the verification step fails, check that all the preceding steps were successful
by verifying the following items:

* Check your Sybase configuration.

= Verify that the Sybase environment variable syntax is correct and that no
variables are missing.

* Check the Sybase connection, ensuring that you have entered the correct
user ID and password.

If the verification step still fails, contact IBM Service.

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Example:

Once you have completed the accessing verification steps, you can make calls to
the Sybase language environment with functions in the macro, as in the following
example:

%function(DTW_SYB) STL1() {

insert into $(tablename) (intl,int2) values (111,NULL)

0,
%}

Configuring Live Connection

Live Connection manages database and Java application connections to improve
performance for Net.Data on the Windows NT, OS/2, AlX, and Sun Solaris
operating systems. Through the use of a Connection Manager and cliettes,
processes that maintain open connections, Live Connection eliminates the start up
overhead of connecting to a database or starting a Java Virtual Machine.

Live Connection uses a configuration file, dtwcm.cnf, to determine what cliettes
need to be started. It contains administration information and definitions for each of

the cliettes used with Live Connection. See EManaging Caonnections” on page 158 to

learn more about Live Connection.

The sample configuration file shown in m contains the following types of
information:

» Connection Manager port information
* SQL cliette information for a DB2 connection
» Java application cliette information

1 CONNECTION_MANAGER{ * Lines 1 - 5 are required for the

2 MAIN_PORT=7100 configuration file and define unique
3 ADMIN_PORT1=7101 port numbers used with Live

4 ADMIN_PORT2=7102 Connection.

2 } * Lines 7 - 16 define all database

7 CLIETTE DTW_SQL:CELDIAL{ cliettes, identifying the cliette name,
8 MIN PROCESS=1 the number of processes to be run,
9 MAXZPROCESS=5 database name, port numbers, and
10 START_PRIVATE_PORT=7200 the cliette exec file. You can include
11 START_PUBLIC_PORT=7210 additional information, such as a user
12 EXEC_NAME=./dtwcdb2 ID and password for connecting to a
13 DATABASE=CELDIAL DB2 database. These additional

14 LOGIN=marshall

15 PASSWORD=st1pwd values are shown in lines 13 - 15.

16 } * Lines 19 - 25 define all cliettes for
17 Java applications, identifying the
18 CLIETTE DTW_JAVAPPS{ cliette name, the number of

19 MIN_PROCESS=1 processes to be run, unique port
20 MAX_PROCESS=5 numbers, and the cliette exec file.

21 START_PRIVATE_PORT=7300
22 START_PUBLIC_PORT=7310
23 EXEC_NAME=./javaapp
24}

Figure 6. The Live Connection configuration file

Before you begin: Read the hints and tips section following these steps before
customizing the Live Connection configuration file.

Chapter 2. Configuring Net.Data 29

To configure Live Connection ports:
1. Open the configuration file, dtwcm.cnf, with an editor.
2. Configure the three Live Connection port numbers:
* MAIN_PORT
*« ADMIN_PORT1
e ADMIN_PORT2
Eigure 6 on page 29 displays the default port numbers. If these numbers are not
unique, you must change them to unique port numbers.

3. Important: Ensure that the value of MAIN_PORT matches the value of
DTW_CM_PORT in the Net.Data initialization file.

To configure the database cliettes:
1. Type the cliette environment statement.
CLIETTE type:db_name

Parameters:

type The name that associates a language environment with a cliette. See
for a list of valid types.

db_name
The database cliette name, which is often the same as the database
with which the cliette is associated, such as MYDBASE; however the
db_name can also be another name. db_name is optional when using
the Oracle language environment.

2. Determine values for MIN_PROCESS and MAX_PROCESS. MIN_PROCESS
specifies the number of processes to be started when the Connection Manager
is started. Afterwards, if additional simultaneous requests arrive, the Connection
Manager starts more cliettes, adding one as needed, until the value specified for
MAX_PROCESS is reached. The values you use can affect performance, but
you can change them later.

Type the MIN_PROCESS and MAX_PROCESS statements:

MIN_PROCESS=min_num
MAX_PROCESS=max_num

Parameters:

min_num
The number of cliette processes to be started when the Connection
Manager is started. You must have enough available unique port
numbers for this number of cliettes.

max_num
The maximum number of cliettes that can be run simultaneously. You
must have enough available unique port numbers for this number of
cliettes.

3. Determine which port numbers to use on your system for the database cliette.
These numbers must be unique to avoid conflicting with port numbers used for
the Cache Manager or other applications. Each cliette uses two ports. When
you specify a set of ports, you must specify the range of port numbers to be
used. The first two values are START_PUBLIC_PORT and
START_PRIVATE_PORT. The other is MAX_PROCESS, indicating the
maximum number of cliettes. The following example shows which port numbers
are to be used.

30 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

START_PUBLIC_PORT=1000
START_PRIVATE_PORT=1010
MAX_PROCESS=5

The example uses the following ports:

1000 1010
1001 1011
1002 1012
1003 1013
1004 1014

A common error is to have two sets of cliettes overlap the port numbers they
use, or overlap with the Cache Manager port numbers. Check with your system
administrator to ensure that the port numbers you plan to use are available. The
README file for your operating system has general guidelines on what port
numbers are valid for your operating system.

Specify the name of the cliette executable file. This file name is specified as:
EXEC_NAME=./dtwcxxx

Where xxx is the database type identifier. Refer to [fable 7 for valid executable
file names:

Table 7. Cliette exec file names

Cliette

Description Type

Cliette Names Platform Availability

NT or OS/2

UNIX Windows AIX NT OS/2 HP SUN SCO

DB2
process
cliette

DTW_SQL dtwcdb2 dtwcdb2.exe Y

Y

Y

ODBC
process
cliette

DTW_ODBC dtwcodbc dtwcodbc.exeY

Sybase
process
cliette

DTW_SYB dtwcsyb dtwcsyb.exe Y

Oracle
process
cliette

DTW_ORA dtwcora dtwcora.exe Y

5. Specify the name of the database with which the cliette is associated:

DATABASE=db_name

Where db_name is the name of the database with which the cliette is
associated; for example, MYDBASE.

Optional: Change the default values for the LOGIN and PASSWORD variables
so that Net.Data uses the same user ID that started the Connection Manager to
connect to the DB2 database. By specifying these default values, you avoid
placing this information in the configuration file. For example, replace lines 14

and 15, in the sample configuration file in Eigure 6 on page 29 with these lines:

LOGIN=+USE_DEFAULT
PASSWORD=+USE_DEFAULT

Tip: If you define multiple cliette entries in the configuration file, you can specify
various database login and passwords for a particular database.

Chapter 2. Configuring Net.Data 31

To configure the Java application cliettes:
1. Type the cliette environment statement:
CLIETTE DTW_JAVAPPS

2. Determine values for MIN_PROCESS and MAX PROCESS. MIN_PROCESS
specifies the number of processes that are to be started when the Connection
Manager is started. Afterwards, if simultaneous processes arrive, the
Connection Manager starts more cliettes, adding one as needed, until the value
specified for MAX_PROCESS is reached. The values you use can affect
performance, but you can change them later.

Type the MIN_PROCESS and MAX_PROCESS statements.

MIN_PROCESS=min_num
MAX_PROCESS=max_num

Parameters:

min_num
The number of cliette processes started when the Connection Manager
is started. You must have enough available unique port numbers for this
number of cliettes.

max_num
The maximum number of additional cliettes that can be run
simultaneously. You must have enough available unique port numbers
for this number of cliettes.

3. Determine which port numbers to use on your system for the database cliette.
These numbers must be unique to avoid conflicting with port numbers used for
the Cache Manager or other applications. Each cliette uses two ports. When
you specify a set of ports, you must specify the range of port numbers to be
used. The first two values are START_PUBLIC_PORT and
START_PRIVATE_PORT. The other is MAX_PROCESS, indicating the
maximum number of cliettes. The following example shows which port numbers
are to be used.

START_PUBLIC_PORT=1000

START_PRIVATE_PORT=1010
MAX_PROCESS=5

The example uses the following ports:

1000 1010
1001 1011
1002 1012
1003 1013
1004 1014

A common error is to have two sets of cliettes overlap the port numbers they
use, or overlap with the Cache Manager port numbers. Check with your system
administrator to ensure that the port numbers you plan to use are available. The
README file for your operating system has general guidelines on what port
numbers are valid for your operating system.

Hints and tips for configuring Live Connection:

» Cliette names are used by the Connection Manager to uniquely identify a set of
cliettes.

* For database cliettes, you must have one named set of cliettes for each
database you plan to access. For databases that are rarely accessed, you can

32 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

set the MIN and MAX number of cliettes to 1. Alternatively, you can also set MIN
to 0, which means processes are not started until a Net.Data request is made for
the cliette.

* The NAME of the cliette must be consistent with the cliette name referenced in
the ENVIRONMENT statement for the cliettes type in initialization file. The cliette
name can contain variables, and in the case of DB2 cliettes, it should include the
variable reference $(DATABASE). The default value for the cliette name in the
ENVIRONMENT statement is DTW_SQL:$(DATABASE). You can use a variable
reference in the initialization file, but not the Live Connection configuration file.

The DATABASE variable is defined in the Net.Data macro. When an SQL
statement in the macro is encountered, the $(DATABASE) variable reference in
the Net.Data initialization file is replaced with the current value of DATABASE.

You can use this method to access multiple databases. If you have three
databases that you wanted to access in your Net.Data macro (for example, D1,
D2, and D3), and your initialization file has the standard CLIETTE
"DTW_SQL:$(DATABASE)" line, then you need three sections in the
configuration file such as:

CLIETTE DTW_SQL:D1{ ...}

CLIETTE DTW_SQL:D2{....}

CLIETTE DTW_SQL:D3{....}

* Processes are started but not stopped. If you set the maximum number of
processes to M and at any time M processes are used simultaneously, they stay
active until you shut down the Connection Manager, therefore you do not want
the value of MAX_PROCESS to be so high that you use up all of your system
resources starting processes that are rarely used.

Recommendation: Try using different values for MIN_PROCESS and
MAX_PROCESS to see what works best for your system. If the Connection
Manager receives more requests than the specified maximum value, the last
request is queued until a cliette finishes processing. When a cliette becomes
available, the queued request is then processed. This process of queuing
requests is transparent to the application user.

* You can use the same type of cliette for different named sections. For example,
all DB2 database sections of the configuration file use the same cliette type. You
cannot have two sections with the same name.

If you are using CGl, and want only some databases to use Live Connection,
simply list the databases you want in the configuration file. When Net.Data is
processing a Net.Data macro and encounters an SQL section, it asks the
Connection Manager for a specific cliette. If the Connection Manager does not have
that type of cliette, it responds with a NO_CLIETTE_AVAIL message. Net.Data
processes the request with a DLL version instead.

To automatically start Connection Manager as a Windows NT service:

On Windows NT, you can specify to have Connection Manager start as an Windows
NT service, instead of from the command line. Running Connection Manager as an
Windows NT service allows Connection Manager to be automatically started each
time the machine is started.

Tip: Start Connection Manager from the command line before setting it up to start
automatically to insure that the Live Connection configuration file is correct.

* From the Windows NT task bar, select Start->Settings->Control Panel
->Services .

» Select Net.Data Connection Manager , then click the Startup button.

Chapter 2. Configuring Net.Data 33

* Select Automatic startup type , then click on OK.

Configuring the Web Server for Use with CGI

The Common Gateway Interface (CGI) is an industry-standard interface that
enables a Web server to invoke an application program such as Net.Data.
Net.Data’s support for CGlI lets you use Net.Data with your favorite Web server.

Configure the Web server to invoke Net.Data by adding Map, Exec, and Pass
directives to the HTTP configuration file so that Net.Data gets invoked.

Recommendation: Organize the directives in the following order within the HTTP
configuration file to prevent directives from being ignored: Map, Exec, Pass. For
example, if the following Pass directive precedes a Map or Exec directive, the Map
and Exec directives are ignored:

Pass /=

Map directives
The Map directives map entries using the format /cgi-bin/db2www/* to the
library where the Net.Data program resides on your system. (The asterisk
(*) at the end of the string refers to anything that follows the string.) Both
upper- and lower-case map statements are included, because the directives
are case sensitive.

Exec directives
The Exec directive enables the Web server to execute any CGI programs in
the CGl library. Specify the library where the program resides (not the
program itself) on the directive.

Pass directives

Pass directives are not used by Net.Data. If you want to simplify your URL,
then use the MACRO_PATH statement in a Net.Data initialization file,

discussed in EIMACRQ_PATH” on page 14.

Configuring Net.Data for FastCGl

Net.Data can execute as a FastCGl process on Apache Web Server and Domino
Go Webserver. FastCGlI provides similar performance to the other Web API
programs with the reliability of CGIl. FastCGl is supported on the AlIX and Sun
Solaris operating systems.

Before You Begin:

Before you use FastCGl, ensure that you have installed the prerequisite products:
* For Apache: Download and install the Apache Web Server 1.2.0 or higher.

¢ For Domino Go Webserver: Download and install the Domino Go Webserver for
AlIX or Sun from:

http://www.ics.raleigh.ibm.com/dominowebserver

To configure Net.Data for FastCGl:

1. Configure the Web server and FastCGlI configuration file for your operating
system:

34 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

For Apache Web server:
Update the http.conf file.

* Declare the new application:

AppClass inst_dir

-processes proc_num

-initial-env LIBPATH=Ilibpath

-initial-env ORACLE_HOME=oracle_path
-initial-env ORACLE_SID=oracle_instance
-initial-env SYBASE=sybase_path

-initial-env DSQUERY=sybase_instance
-initial-env DB2INSTANCE=dbZ_instance
-initial-env RXQUEUE_OWNER_PID=REXX perf var
-initial-env LANG=locale

¢ Declare the FastCG| module:

<location /fcgi-bin>
SetHandler fastcgi-script
</location>

For Domino Go Webserver:

Update the httpd.conf and fcgi.conf files:

* In the httpd.conf file, declare the service section:
ServerInit /u/mydir/http/fcgi-bin/fcgi.o:FCGIInit
Ju/mydir/http/fcgi.conf service/fcgi-bin/*
Ju/mydir/http/fcgi-bin/fcgi.o:FCGIDispatcher*ServerTerm
Ju/mydir/http/fcgi-bin/fcgi.o:FCGIStop

* In the fcgi.conf file, declare the application:

Local {

Exec inst _dir

Role Responder

URL /fcgi-bin/db2www

BindPath /tmp/db2www.ibm
NumProcesses proc_num

Environ LIBPATH=Ilibpath

Environ ORACLE_HOME=oracle_path
Environ ORACLE_SID=oracle_instance
Environ SYBASE=sybase path

Environ DSQUERY=sybase_instance
Environ DB2INSTANCE=db2_instance
Environ RXQUEUE_OWNER_PID=REXX_perf var
Environ LANG=locale

}

Parameters:

inst_dir
The path and directory name for Net.Data’s executable files.

For Apache:
AppClass /u/mydir/apache/fcgi-bin/db2www

For Domino Go Webserver:
Exec /u/mydir/http/fcgi-bin/db2www

Role Responder
Required keyword for Domino Go Webserver, only.

URL Required keyword and URL address for Domino Go Webserver, only.
The URL points to the path specified for the EXEC_PATH statement.

Chapter 2. Configuring Net.Data 35

BindPath
Required keyword and path statement for Domino Go Webserver on
AIX only. The path of the uniqgue UNIX socket used by Net.Data and
FastCGl.

proc_num
The number of requests that can be handled simultaneously. The
default is 1, but should be increased to improved performance, based
on your application requirements. See llsing FastCGI” on page 157 for
tuning information.

For Apache:

-processes 7

For ICS or Domino Go Webserver:
NumProcesses 7

libpath The LIBPATH (shared library or DLL) statements declared in each
ENVIRONMENT statement in the Net.Data initialization file. When

accessing DB2, the LIBPATH statement should contain the path to the
DB2 UDB library directory. For example:

Jusr/1pp/db2_05_00/1ib

For Apache:
-initial-env LIBPATH=/u/mydir/apache/1ib:/u/mydir/apache:/usr/1ib

For Domino Go Webserver:

Environ LIBPATH=/u/mydir/http/1ib:/u/mydir/http:/usr/1ib
oracle_path

Required when using Oracle. The path and directory of the Oracle

database executable files.

For Apache:

-initial-env ORACLE_HOME=/home.native/oracle/product/7.2

For Domino Go Webserver:
Environ ORACLE_HOME=/home.native/oracle/product/7.2
oracle_instance
Required when using Oracle. The instance of the Oracle database. You
must use Live Connection for Oracle.
For Apache:
-initial-env ORACLE_SID=mvpdb2

For Domino Go Webserver:
Environ ORACLE_SID=mvpdb2

sybase path
Required when using Sybase. The path and directory of the Sybase
database executable files.

For Apache:
-initial-env SYBASE=/home.native/sybase/product

For Domino Go Webserver:
Environ SYBASE=/home.native/sybase/product

36 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

sybase_instance
Required when using Sybase. The instance of the Sybase database.
You must use Live Connection for Sybase

For Apache:
-initial-env DSQUERY=SybaseAIX

For Domino Go Webserver:
Environ DSQUERY=SybaseAIX
db2_instance
Required when using DB2. The instance of the DB2 database.

For Apache:
-initial-env DB2INSTANCE=wwwinst

For Domino Go Webserver:
Environ DB2INSTANCE=wwwinst

REXX_perf_var
Required when using REXX on AlX. The performance variable is used
with FastCGIl and REXX on the AIX operating system. The default is 0.
For other products and operating systems, declare this variable in the
Net.Data macro. See L i ” for
more information about this variable.

For Apache:
-initial-env RXQUEUE_OWNER PID=0

For Domino Go Webserver:
Environ RXQUEUE_OWNER _PID=0

locale The UNIX locale variable. Use En_US for U.S. English.

For Apache:
-initial-env LANG=En_US

For Domino Go Webserver:
Environ LANG=En_US
2. For Apache: Add the fgi-bin directory as a new script alias in the srm.conf file:
ScripAlias /fcgi-bin/ /u/mydir/apache/fci-bin
3. Migrate any hyperlinks in static or dynamically generated Web pages from
CGI-BIN to FCGI-BIN. For example:

<A HREF="http://server/fcgi-bin/db2www/filename.ext/block/
[?name=val&...]">any text

4. Modify end-user documentation for URL invocations of Net.Data with FCGI-BIN
instead of CGI-BIN. For example:

http://server/fcgi-bin/db2www/filename.ext/block/[?name=vald...]

Configuring Net.Data for use with Java Servlets and Java Beans

See your Web server documentation for instructions on registering and using
servlets. The Net.Data servlets are contained in the NetDataServlets.jar file. Your
Web server will require that you add inst_dir/servliet-1ib/NetDataServiets.jar
and inst_dir/serviet-1ib to your CLASSPATH.

Chapter 2. Configuring Net.Data 37

For more information on installing the Web server and on Web server configuration
file directives, refer to your Web server documentation.

Configuring Net.Data for Use with the Web Server APIs

Using a Web server application programming interface (API) rather than CGI can
improve the performance of Net.Data considerably. Net.Data supports the following
server APIs:

* IBM Internet Connection Server API (ICAPI)
* Lotus Domino Go Webserver APl (GWAPI)
* Microsoft Internet Server API (ISAPI)

* Netscape API (NSAPI)

For more information about each API, see L Ising the Web Server APIS” od
and the README file for your version of Net.Data.

Requirement: To run Net.Data in ICAPI, GWAPI, ISAPI, or NSAPI mode, you must
reconfigure your Web server to use Net.Data DLLs or shared libraries as its service
directives. After reconfiguring, you must restart your Web server so that any
changes you make to the Net.Data initialization file take effect. By default, Net.Data
runs in CGI mode.

The following sections describe how to configure Net.Data and the Web server to
run Web server APl mode. General steps and examples are provided, but they
might differ for your operating system. Refer to the Net.Data README file for your
operating system for specific instructions.

To configure ICAPI and GWAPI:

The Domino Go Webserver is the follow-on product to IBM Internet Connection
Secure Server. If you are upgrading, you might wish to use the new Domino Go
Webserver. Note that GWAPI and ICAPI are the same product, just renamed to
identify which Web server is being used.

1. Stop the Web server.

2. Ensure that the ICAPI or GWAPI DLL or shared library is in the server’'s CGI-BIN
or ICAPI-LIB directory.

See the Net.Data README file or program directory for your operating system
for specific file and directory names.

3. Add a service statement to your Web server’s configuration file (httpd.conf or
httpd.cnf) to call the API.

For example:
Service /cgi-bin/db2wwwx /usr/1pp/internet/server_root/cgi-bin/dtwicapi.o:dtw_icapi*

See the Net.Data README file for your operating system for specific file and
directory names.

4. Restart the Web server.

ICAPI and GWAPI have the full compatibility to support the existing applications.
Use the same methods as you use for CGI to invoke a URL, form, or link with
ICAPI or GWAPI. Any macro that executes successfully using CGI will execute
successfully using ICAPI or and GWAPI. No modifications need to be made to
these macros.

38 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

To configure ISAPI:

1.
2.

5.

Stop the Web server.

Copy the DLL for ISAPI that comes with Net.Data into the server’s subdirectory.
For example:

/inetsrv/scripts/dtwisapi.filetype

Where filetype is .d11 for Window NT and OS/2 and .o for UNIX operating
systems.

See the Net.Data README file for your operating system for specific file and
directory names.

Because ISAPI bypasses CGI processing, you do not need to have the
cgi-bin/db2www/ part of the URL in forms and links. Instead, use
dtwisapi.filetype. For example, if the following URL invokes Net.Data as the
CGl program:

http://serverl.stl.ibm.com/cgi-bin/db2www/testl.d2w/report

Then you should invoke Net.Data as the ISAPI plug-in with the following URL:
http://serverl.stl.ibm.com/scripts/dtwisapi.d11/testl.d2w/report

If you stored your macro testl.d2w in the subdirectory /order/ under one of the
directories specified in MACRO_PATH or current directory of the Web server,
invoke Net.Data in CGI mode using the following URL:

http://serverl.st1.ibm.com/cgi-bin/db2www/orders/testl.d2w/report

Then the equivalent URL to invoke Net.Data in ISAPI mode is:
http://serverl.stl.ibm.com/scripts/dtwisapi.d11/orders/testl.d2w/report
Restart the Web server.

To configure NSAPI:

1. Stop the Web server.

2. Copy the DLL for NSAPI that comes with Net.Data into the server directory. For
example:

/netscape/server/bin/httpd/dtwnsapi.filetype

Where filetype is .d11 for Window NT and OS/2 and .o for UNIX operating
systems.

See the Net.Data README file for your operating system for specific file and
directory names.

3. Modify your server configuration file with the changes listed below. See the
Net.Data README file or program directory for your operating system for
operating system differences.

obj.conf Add to the top of the file:

Init fn="Toad-modules" shlib="<path>dtwnsapi.d11" funcs=dtw_nsapi
obj.conf Add to the Services directive:
Service fn="dtw nsapi" method=(GET|HEAD|POST)
type="magnus-internal/d2w"
mime.types Add this type, where d2w is the default extension of the macro. You can

specify any three-character combination.
type=magnum-internal/d2w exts=d2w

Chapter 2. Configuring Net.Data 39

4. Move the Net.Data macro files from the netdata/macro directory to the server's
root document directory:

/netscape/server/docs/

5. Add the server’s root document directory to the MACRO_PATH statement, in the
initialization file. This change tells Net.Data where to look for the macro files.

6. Because NSAPI bypasses CGI processing, you do not need to have the
cgi-bin/db2www/ part of the URL in forms and links. The server knows files with
a d2w file type are Net.Data macros because you defined it when you changed
the Netscape configuration files. For example, the following URL invokes
Net.Data as the CGI program:

http://serverl.st1.ibm.com/cgi-bin/db2www/testl.d2w/report

While the following URL invokes Net.Data as the NSAPI plug-in:
http://serverl.stl.ibm.com/testl.d2w/report
7. Restart the Web server.
If you keep your Net.Data macros in several directories, the last three steps
change:

1. Move the directories with the Net.Data macros they contain to the server’s root
document directory.

2. Update the MACRO_PATH variable in the initialization file to include all of the
directories and subdirectories where you macro files are located.

3. Modify the links and forms that point to these Net.Data macros, keeping their
directory names. For example, when running in CGI mode, the following URL
calls a Net.Data macro that is stored in the /orders/ directory:

http://serverl.stl.ibm.com/cgi-bin/db2www/orders/testl.d2w/report

The updated URL used to invoke Net.Data in NSAPI mode is shorter, but keeps
the directory name:

http://serverl.stl.ibm.com/orders/testl.d2w/report

Configuring Net.Data with the Net.Data Administration Tool

The Net.Data administration tool helps you to configure and manage the Net.Data
initialization file (DB2WWW.INI) and the configuration file for Live Connection
(dtwem.cnf) on the Windows NT, AlX, and OS/2 operating systems. Using this tool,
you can complete the following tasks:

See [Befare Yau Begin to learn about setting up the administration tool and
ensuring your have the correct software prerequisites.

Before You Begin

1. Plan the configuration of Net.Data language environments, databases, cliettes,
ports, and configuration variables.

2. Install Net.Data from CD-ROM.

40 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

3.

Install the Java run-time libraries (JDK 1.1 and subsequent versions for each
operating systems). Check the Net.Data README file for your operating system
for more information.

Make sure you have classes.zip in your CLASSPATH after installing JDK.

If you have installed the IBM JDBC driver that is packaged with DB2 Universal
Database, add the driver directory to your Java CLASSPATH statement to
enable the DB2 login test.

Change to the directory where the Net.Data administration tool program is
stored:

For OS/2 and Windows NT:
The inst_dir\connect\admin_directory, where inst_dir is the directory
you specified for Net.Data during installation and admin_directory is the
directory where the administration tool files exist.

For AIX:
The /usr/1pp/internet/db2www/db2.v2/admin directory, where
admin_directory is the directory where the administration tool files exist

Starting the Administration Tool

The operating system that you use determines how you start the administration tool.

For OS/2 and Windows NT:

From the IBM Net.Data Version 2 folder, select the Net.Data Admin Tool icon.

For AIX:

Change to the Net.Data installation directory (inst_dir). From the command line,
enter ndadmin to start the tool.

The administration tool is launched and the Net.Data Administration notebook is
displayed.

Configuring Path Statements

Use the Path page to add, modify, or delete the path statements for locating the
files the Net.Data needs to process Net.Data macros. These statements are

described in EPath Configuration Statements” on page 17. Eigure 7 on page 42

shows the Path page.

Chapter 2. Configuring Net.Data 41

:: et Lints Sdminisirahos

FH = e '.“,
Paih Park Cletas Lenpuege Ernionmen Vorlsbkis
Flli ks DA e oy 5 il et e
IE-‘&.‘r] bdemvedmarin
Flad FilesiFFR
HTHAL

|I||.h.||ﬂ

Eil el iy

| eorrmacra

Sai| woiw]| Dous

To modety the selecbed path, type in the Edit directony field

Figure 7. The Path Page of the Net.Data Administration Tool. Use this page to add, modify or
delete path statements.

Configuration tip: The HTML file type can have one path, only.

To add a path statement:
1. Start the administration tool.

2. From the Path page, select a file type from the File type , for example, select
Exec.

3. In the Edit directory field, type the new path and click on the Add button.

If the path you specified does not exist, a warning window opens. If no directory
is selected, the new directory is added as the last item in the list.

4. Close the administration tool, or click on another tab to complete additional
configuration tasks.

To modify a path statement:
1. Start the administration tool.

2. From the Path page, select the file type you want to change from the File type
list.

3. Select the path you want to modify in the Directory selection list. The selected
path opens in the Edit directory field.

4. Modify the path in the Edit directory field and click on the Modify button. If the
path you entered does not exist, a warning window opens.

5. Close the administration tool, or click on another tab to complete additional
configuration tasks.

To delete a path statement:
1. Start the administration tool.

42 NetData: Administration and Programming Guide for OS/2, Windows NT, and UNIX

2. From the Path page, select the file type that you want to delete from the File
type list.

3. In the Directory selection field, select the path you want to delete. The
selected path opens in the Edit directory field.

4. Click on the Delete button.

5. Close the administration tool, or click on another tab to complete additional
configuration tasks.

Configuring Ports

Use the Port page to specify the TCP/IP port numbers used by Net.Data. w
shows the Port page.

[M D it B et & A v
Fin riv Halp
Fah Porte Cliskes Larquaps Emdmonmeant varisbies

Live Conreclion Manager pars

]
Wiin gt P1E

P — 11

Eadtvin gt s

Uit thae port nusbars uesd by Live Confectian Maniges

Figure 8. The Port Page of the Net.Data Administration Tool. Use this page to specify ports.

To specify TCP/IP port numbers:
1. Start the administration tool.

2. From the Port page, type a unique port nhumber in each of the port fields. The
administration tool verifies the port number you type in each field when you tab
to the next field.

3. Close the administration tool, or click on another tab to complete additional
configuration tasks.

Configuring Cliettes

Use the Cliette page to add, modify, or delete Live Connection database cliettes,

and you can also manage database and administrator user IDs and passwords for
database cliettes. More information about cliettes is provided in m

Connections” on page 158. [Eigure 9 on page 44 shows the Cliette page.

Chapter 2. Configuring Net.Data 43

Figure 9. The Cliette Page of the Net.Data Administration Tool. Use this page to add, modify,
and delete cliettes.

To add a cliette:

1. Start the administration tool.

2. From the Cliette page, select <NEW...> from the Cliette name list. The Add a
cliette window opens.

Figure 10. The Add a Cliette Window of the Net.Data Administration Tool. Use this page to
add cliettes.

If you have enabled encryption, you are prompted for the encryption password
the first time you create or modify a cliette. This password is saved and you will
not ever have to enter it again.

3. Select a cliette type from the Type list.

4. Type a name for the new cliette in the Name field. The name can be the name
of the database or another unique cliette name. For example: MYCLIETTE.

44 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

5.

Type the encryption password if the Encryption password field is enabled. You
will not need to type the password again, as the administration tool saves the
password for you.

Click on the Add button.

The new cliette is created and is added to the bottom of the cliette list.
Additionally, the new name is highlighted and the default properties for the
cliette are displayed in the Properties group box. You can change these values
to fit your configuration.

Close the administration tool, or click on another tab to complete additional
configuration tasks.

To modify a cliette:

1.
2.

Start the administration tool.

From the Cliette page, select the name of the cliette that you want to change
from the Cliette name list. The properties of the cliette are displayed in the
Properties group box.

Modify the properties from the Properties group box, as needed.

a. The Type field displays the type of cliette that is being defined and
corresponds to a language environment type name. Net.Data populates this
field when you add a new cliette, and the choices are defined in the Cliette
type list in the Add a Cliette window.

b. The Name field displays the name of the cliette, which is usually the name
of the database. Net.Data populates this field when you add a new cliette.

c. Type the number of cliette process that can be started when Connection
Manager is started in the Min process field. You need one unigue port

address for each process. See [‘Canfiguring | ive Connection” on page 29 for

more information about MIN Process values.

d. In the Max process field, type the number of cliette processes that can be
run at the same time, in addition to the processes started when Connection
Manager is started. You need one unique port address for each process.

See [Configuring | ive Connection” on page 29 for more information about

MAX Process values.

e. Type a unique port number in the Private port field to specify the starting
port number for use with the cliette processes that are started with the
Connection Manager. An additional port number is used for each of the
processes specified by the Min Process value. For example, if you specify
the port number 7012 for Private port and the value 5 for Min process ,
port numbers 7012-7016 are used and must not conflict with other port
assignments in the system.

f. Type a unique port number in the Public port field to specify the starting
port number used with the cliette processes that are started when additional
processes are started, up to the number specified in the Max process field.
An additional port number is used for each of the processes For example, if
you specify the port number 7020 for Public port and the value 5 for Max
process , port numbers 7020-7024 are used and must not conflict with other
port assignments in the system.

g. The Exec name field displays the name of the cliette executable file.

If the cliette is being used with a database, modify the values for the Database
group box, as needed:

a. Specify the database name of the database with which the cliette is
associated Database name field, for example, MYDBASE.

Chapter 2. Configuring Net.Data 45

b. The Bind file field contains the name and path of the bind file for the type of
cliette that you are using.

c. The Login field specifies the login user ID used to connect to the database.

The Change password push button opens the Change Database Password
window. Type the encryption password and the new password, twice. You
can encrypt the database password by using the encryption functions
specified in the Security pull-down menu.

5. Select File and then Save to save your changes.

6. Close the administration tool, or click on another tab to complete additional
configuration tasks.

To test the DB2 database logon and connection:

1. From the Cliette page of the administration tool, click on the DB2 test logon
push button. When the test is complete a confirmation window opens, displaying
the status of the connection test.

2. Close the window to continue configuring or close the administration tool.

To delete a cliette:
1. Start the administration tool.

2. From the Cliette page, select the name of the cliette that you want to delete
from the Cliette name list.

3. Click on the Delete button.

4. Close the administration tool, or click on another tab to complete additional
configuration tasks.

To turn on encryption of cliette user IDs and passwords:

Encryption provides security for database connections with cliettes. When
encryption is turned on, all database passwords in the Live Connection
configuration file are encrypted and require an encryption password for access and
decryption.

Requirement: You must use a Net.Data Version 2 Live Connection configuration
file to use encryption.

1. Important: Back up a copy of your Live Connection configuration file,
<path>dtwcm.cnf. You need this file if you lose the encryption password, or want
to decrypt database passwords and need to restore the passwords.

2. From the Cliette page of the administration tool, select the Security -> Turn
encryption on pull-down menu option. The Turn Encryption On confirmation
window opens.

3. Click on Yes to continue. The Encryption Password window opens.

4. Type the password twice for authorization to work with cliettes that have
encrypted passwords.

5. Click on OK to define the new password and encrypt all of the database
passwords for your cliettes.

To turn off encryption of cliette user IDs and passwords:

1. From the Cliette page of the administration tool, select the Security -> Turn
encryption off pull-down menu option. The Turn Encryption Off confirmation
window opens.

46 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

2. Click on Yes to continue. All passwords are set to *USE_DEFAULT for security
reasons. You can restore your passwords from the backup copy of the Live
Connection file, <path>dtwcm.cnf.

To change the password for encryption:

1. From the Cliette page of the administration tool, select the Security -> Change
Encryption Password pull-down menu option. The Change Encryption
Password confirmation window opens.

2. Click on Yes to continue. The Change Encryption Password window opens.
3. Type the old encryption password once, and the new password twice.
4. Click on OK to change the encryption password.

To change the database password:

1. From the Cliette page of the administration tool, click on the Change
Password push button. The Change Database Password window opens.

2. Type the encryption password once and the new database password twice.

3. Click on OK to change the password and close the window. The changed
database password is encrypted if you have turned encryption on.

Configuring Language Environments

Use the Language Environment page to add, modify, or delete Net.Data language

environments. Language environments are discussed in lEnvironment Configuration
Btatements” on page 21l Eigure 11 shows the Language Environment page.

t=i Ml Daie Sdminisivation

Fia Zucwrdy Halp

Path Fars Clindes Language Emarpnmn] Wariables
Lanpusge srdmonme Progestias

|~HE'|r.l . Mama: | o _seL

g'l.l:::-ﬁ::llgﬂl.' Sharesd ligraey g 4 name |l\."'l'|".1"\.r-l-l3|-ﬁi”]h:T'l".'EGL|'.'l. e infomstian
LiTWi_DEFAULT Fraram gt =
CTe_SFFLET DATABSSE LOS, PASSAORD, TRAMSRCTION 52 0PE, SHOWSGL,
LiTwd_ R

[T#_PERL I
DT#i_EvSTEM

DT#_FILE

LTwi_WESREG
DT#_INOAFFS

HWE_LE

OT#_DLDFE QT
I

IHOLT:

e Cormescfign chedges
[s Live Canmedtion chads Clielia | DTA_S0L § DA TABAZES

Helect a languiege efvirenment 1o be updated,

Figure 11. The Language Environment Page of the Net.Data Administration Tool. Use this
page to specify language environments.

To add a language environment:

Chapter 2. Configuring Net.Data 47

1. Start the administration tool.

2. From the Language Environment page, select <NEW...> from the Language
environment list. The Add a new language environment window opens.

3. Type a name of the language environment in the field and click on the Add
button. The Add a Language Environment window opens.

::-_-:-'-llJ B MaNea s sl Tl

E i & rmad rl Tod e il i SHER an
Bdd o add He nesw armiranmeni

I?_TEET
S| cancal]

Figure 12. The Add a Language Environment window of the Net.Data Administration Tool.
Use this page to specify a new language environment.

The new language environment is created and its name is added to the bottom
of the language environment list. Additionally, the new name is highlighted, and
the default properties for the language environment are displayed in the
Properties group box. You can change these values to fit your configuration.

4. Close the administration tool, or click on another tab to complete additional
configuration tasks.

To modify a language environment:
1. Start the administration tool.
2. From the Language Environment page, select the name of the language

environment that you want to change from the Language environment list. The
properties of the cliette are displayed in the Properties group box.

3. Modify the properties in the Properties group box, shown in m as
needed:
a. Specify the name of the language environment in the Name field; this name
corresponds to the language environment type used to define a cliette. To
change this value, double click on a different name from the Language

environment list. See LEmumn.menLC.anﬂgmaﬂanslalemen.ts_an_page_Zﬂ

for more information about language environment types.

b. Specify the shared library or DLL program name and path for the language
environment in the Shared library or dll name field.

c. Select the DB2 information push button to display the DB2 Information
window as shown in Ei

48 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

DB Infomatian

B b g R R hees ol Bired
Bind ika: =
D inctarea: oAz
D& Fal: L LI

L

Figure 13. The DB2 Information window of the Net.Data Administration Tool. Use this page to
specify information specifically for DB2 databases.

Specify the values for the DB2 environment variables:

1)
2)

3)

4)

Type the path and file name of the bind file in the Bind file field.

Specify the DB2INSTANCE value for the database associated when you
use the SQL language environment in the DB2 Instance field.

Specify the path directory name for the DB2 product executable files,
usually \SQLLIB, in the DB2 Path field.

Click on OK to save your changes and close the window.

d. Specify the input and output parameters that are passed to or from a
language environment each time the language environment is called in the
Parameters group box.

Tip: Do not update these fields unless you are defining your own language
environment.

e. Specify whether to use cliettes and which cliette should be associated with
the language environment in the Live Connection cliettes group box.

1)

2)

Specify whether the cliette for the language environment is active by
checking the Use Live Connection cliette check box. Select this check
box if you want to use the cliette specified in the Cliette field when
calling the language environment.

Specify the name of the cliette that is to be run with the language
environment being defined in the Cliette field. The syntax of the name
depends on whether you are configuring a database or the Java
Application language environment. The default is DTW_SQL:$ (DATABASE).
Syntax for Databases:

type:name

Where:

type The language environment type for the cliette. It can be one of
the following values:

For Windows NT:
DTW_ODBC, DTW_ORA, DTW_SYB, DTW_SQL,
DTW_JAVAPPS

For OS/2:
DTW_SQL, DTW_JAVAPPS

For AIX:
DTW_ODBC, DTW_ORA, DTW_SYB, DTW_SQL,
DTW_JAVAPPS

Chapter 2. Configuring Net.Data 49

name The name of the cliette as defined on the Cliette page. The
default is $(DATABASE).

Syntax for Java Applications:
DTW_JAVAPPS
4. Select File and then Save to save your changes

5. Close the administration tool, or click on another tab to complete additional
configuration tasks.

To delete a language environment:

Restriction: You can delete only the language environments created by users, not
the default language environments that come with Net.Data.

1. Start the administration tool.

2. From the Language Environment page, select the name of the language
environment that you want to delete from the Language environment list.

3. Click on the Delete button.
4. Close the administration tool, or click on another tab to complete additional
configuration tasks.

Defining Configuration Variables

Use the Variables page to speciE the home directory for Net.Data and to select the
level of error messages logging. shows the Variables page.

tot Mt Daia Adminisinalios
Fla Seoofy Halp

Path Fuars ClinHer Language E |
Symiem Conedanis

Irvstalmtion oireciony [0 [e

Emariogming | oY o oy [tafh wamings ard amoes

Met. Dath dees ot writs ta the errer bog # all,

Figure 14. The Variables Page the Net.Data Administration Tool. Use this page to specify
initialization variables.

To specify the home directory for Net.Data:

50 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

This variable is also known as the installation directory variable.
1. Start the administration tool.
2. From the Variables page, type the path for the directory where the log file is to

be stored in the Installation directory field. The default is \inst_dir\logs\.
For example: e:\db2www.

3. Close the administration tool, or click on another tab to complete additional

configuration tasks.

To specify the error message logging level for Net.Data:
1. Start the administration tool.
2. From the Variables page, select a level of error logging from the Error logging

group box:

e off

« errors only

* both warnings and errors

3. Close the administration tool, or click on another tab to complete additional

configuration tasks.

Granting Access Rights to Files Accessed by Net.Data

Before using Net.Data, you need to ensure that the user IDs under which Net.Data
executes have the appropriate access rights to files that are referenced in a
Net.Data macro and to the macro that a URL references. This means that these
files must be in directories or libraries to which the Web server can connect, or to
which these user IDs have explicit access rights.

More specifically, ensure that the user IDs under which Net.Data executes have the
following authorizations:

To read the Net.Data initialization file, db2www. ini

To execute the Net.Data executable files and DLLs, and to search the directories
in the paths to the executable files and DLLs

To read the appropriate Net.Data macro files and search the appropriate
directories identified by the MACRO_PATH path configuration statement

To execute the appropriate files and to search the appropriate directories
identified by the EXEC_PATH path configuration statement

To read the appropriate files and to search the appropriate directories identified
by the INCLUDE_PATH path configuration statement

To read and write the appropriate files, and to search the appropriate directories
identified by the FFI_PATH path configuration statement

To read the Live Connection configuration file, dtwcm.cnf
To read the Cache Manager configuration file, CACHEMGR.CNF

To read external Perl and REXX executable files referenced by the language
environments

The methods for granting access to these files depend on the operating system on
which Net.Data is running.

Chapter 2. Configuring Net.Data 51

52 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Chapter 3. Keeping Your Assets Secure

Internet security is provided through a combination of firewall technology, operating
systems features, Web server features, Net.Data mechanisms, and the access
control mechanisms that are part of your data sources.

You must decide on what level of security is appropriate for your assets. This
chapter describes methods you can use for keeping your assets secure and also
provides references to additional resources you can use to plan for the security of
your Web site.

The following sections contain guidelines for protecting your assets. The security
mechanisms described include:

Additionally, Net.Data provides database cliette password encryption; see

[Canfiguring Cliettes” on page 43 for more information.

Using Firewalls

Firewalls are collections of hardware, software, and policies that are designed to
limit access to resources in a networked environment.

Firewalls:
¢ Protect the internal network from infiltration or intrusion

* Protect the internal network from data and programs that are brought in by
internal users

» Limit internal user access to external data
» Limit the damage that can be done if the firewall is breached

Net.Data can be used with firewall products that execute in your environment.

The following possible configurations provide recommendations for managing the
security of your Net.Data application. These configurations provide high-level
information and assume that you have configured a firewall that isolates your
secure intranet from the public Internet. Carefully consider these configurations with
your organization’s security policies:
» High security configuration
This configuration creates a subnetwork that isolates Net.Data and the Web
server from both the secure intranet and the public Internet. The firewall software

is used to create a firewall between the Web server and the public Internet, and
another firewall between the Web server and the secured intranet, which

contains DB2 Server. This configuration is shown by [Eigure 15 on page 54.

© Copyright IBM Corp. 1997, 1999 53

Secure Public
Intranet Internet
HTTP
-
DB2
Serve

Net.Data
(DB2
Client)

Figure 15. High Security Configuration

To set up this configuration:

— Install Net.Data on the Web server machine and ensure that Net.Data can
access DB2 Server inside the intranet by:

- Installing Client Application Enabler (CAE) on the Web server machine.

- Configuring the firewall to allow DB2 traffic through the firewall. One
method is to add a packet filtering rule to allow DB2 client requests from
Net.Data and acknowledge packets from DB2 Server to Net.Data.

— Allow FTP and Telnet access between the Web server and the secure
intranet. One method is to install a socks server on the Web server machine.

— In the packet filtering configuration file of the firewall software, specify that
incoming TCP packets from the standard HTTP port can access the Web
server. Also, specify that outgoing TCP acknowledge packets can go to any
hosts on the public Internet from the Web server.

* Intermediate security configuration

In this configuration, firewall software isolates the secured intranet with DB2
server from the public Internet. Net.Data and the Web server are outside the
firewall on a workstation platform. This configuration is simpler than the first, but
still offers database protection. Eigure 16 shows this configuration.

Public
Internet

Secure

Intran
tranet Web

Server HTTP

DB2 C/S
Packets

Net.Data
(DB2
Client)

Figure 16. Intermediate Security Configuration:

You must install CAE on the Web server to allow Net.Data to communicate with
DB2 server.The firewall must be configured to allow DB2 client requests to flow
from Net.Data to DB2 and to allow acknowledge packets to flow from DB2 to
Net.Data.

* Low security configuration

54 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

In this configuration, DB2 server and Net.Data are installed outside of the firewall
and the secured intranet. They are not protected from external attacks. The
firewall needs no packet filtering rules for this configuration. Eigure 17 shows this

configuration.
— |HTTP | :
Secure Web Server > Public
Intranet A Internet
< > Y

Net.Data
(DB2 Client)

Figure 17. Low Security Configuration:

Encrypting Your Data on the Network

You can encrypt all data that is sent between a client system and your Web server
when you use a Web server that supports Secured Sockets Layer (SSL). This
security measure supports the encryption of login IDs, passwords, and all data that
is transmitted through HTML forms from the client system to the Web server and all
data that is sent from the Web server to the client system. Most Web servers
support SSL, such as Internet Connection Secure Server, Version 2 Release 2 or
higher and Lotus Domino Go Webserver, 4.6.1 or higher.

Using Authentication

Authentication is used to ensure that a user ID making a Net.Data request is
authorized to access and update data within the application. Authentication is the
process of matching the user ID with a password to validate that the request comes
from a valid user ID. The Web server associates a user ID with each Net.Data
request that it processes. The process or thread that is handling the request can
then access any resource to which that user ID is authorized.

You can use two types of authentication: one protecting certain directories on your
server and one protecting your database.

* Most Web servers allow you to specify directories on the server to protect. You
can also have your system require a user ID and password for people accessing
files in directories you specify. See the Administrator’s Guide for your Web server
to determine your system'’s capabilities.

» DB2 has an authentication system for database access that can restrict access
to tables and columns to certain users. You can use Net.Data’s special variables,
such as LOGIN and PASSWORD, to link to the DB2 authentication routine.

Tip: To protect Net.Data macros do the following:

1. Add protection directives in the Web server configuration file for the
Net.Data program object.

Chapter 3. Keeping Your Assets Secure 55

2. Ensure the user ID that Net.Data will be running under has access rights
to the macro files. For more information on granting access rights, see

Gt - . | -]

Using Authorization

Authorization provides a user with complete or restricted access to an object,
resource, or function. Data sources such as DB2 provide their own authorization
mechanisms to protect the information that they manage. These authorization
mechanisms assume that the user ID associated with the process that is executing
the Net. Data request has been properly authenticated, as explained in

! . The existing access control mechanisms for these data
sources then either permit or deny access based on the authorizations that are held
by the authenticated user ID.

Using Net.Data Mechanisms

In addition to the methods described above, you can use Net.Data configuration
variables or macro development techniques to limit the activities of end users, to
conceal corporate assets such as the design of your database, and to validate
user-provided input values within production environments.

Net.Data Configuration Variables

Net.Data provides several configuration variables that can be used to limit the
activities of end users or conceal the design of your database.

Control file access with path statements
Net.Data evaluates the settings of path configuration statements to
determine the location of files and executable programs that are used by
Net.Data macros. These path statements identify one or more directories
that Net.Data searches when attempting to locate macro files, executable
files, include files, or other flat files. By selectively including directories on
these path statements, you can explicitly control the files that are accessible

by users at browsers. Refer to [Chapter 2. Configuring Net Data” on page 8

for additional detail about path statements.

You should also use authorization checking as described in FUsingd
and verify that file names cannot be changed in INCLUDE

statements as described in EMacro Development Techniques” on page 57.

Disable SHOWSQL for production systems
The SHOWSQL variable allows the user to specify that Net.Data displays
the SQL statements specified within Net.Data functions at a Web browser.
This variable is used primarily for developing and testing the SQL within an
application and is not intended for use in production systems.

You can disable the display of SQL statements in production environments

using one of the following methods:

* When using Net.Data Version 2.0.7 or higher, use the DTW_SHOWSQL
configuration variable in the Net.Data initialization file to override the
effect of setting SHOWSQL within your Net.Data macros. See

m for syntax and additional information.

56 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

» Users of Net.Data Version 2.0.5 and earlier can use the DTW_ASSIGN()
function as described in [IMacro Development Techniques’].

See SHOWSQL in the variables chapter of Net.Data Reference for syntax
and examples for the SHOWSQL Net.Data variable.

Consider whether it is appropriate to enable direct request for production
environments
The direct request method of invoking Net.Data allows a user to specify the
execution of an SQL statement or Perl, REXX, or C program directly from a
URL. The macro request method allows users to execute only those SQL
statements and functions defined or called in a macro.

You should carefully consider whether to allow the use of direct request
because it might give your users the ability to execute a very broad set of
functions. When enabling this method of invocation, ensure that user ID
under which the Net.Data request is processed has the appropriate level of
authorization.

You can use the DTW DIRECT REQUEST configuration variable to disable

direct request. See IDTW_DIRECT REQUEST: Enahle Direct Request
Variahle” an page 13 for syntax and additional information.

Macro Development Techniques

Net.Data provides several mechanisms that allow users to assign values to input
variables. To ensure that macros execute in the manner intended, these input
variables should be validated by the macro. Your database and application should
also be designed to limit a user’s access to the data that the user is authorized to
see.

Use the following development techniques when writing your Net.Data macros.
These techniques will help you ensure that your applications execute as intended
and that access to data is limited to properly authorized users.

Ensure that Net.Data variables cannot be overridden in a URL
The setting of Net.Data variables by a user within a URL overrides the
effect of DEFINE statements used to initialize variables in a macro. This
might alter the manner in which your macro executes. To safeguard against
this possibility, initialize your Net.Data variables using the DTW_ASSIGN()
function.

Example: Instead of using DEFINE SHOWSQL="NO" to set the Net.Data
SHOWSQL variable, use @DTW_ASSIGN(SHOWSQL, "NO"). Then, a query string
assignment such as SHOWSQL=YES does not override the macro setting.

You can disable the display of SQL statements in production environments

using one of the following methods:

* When using versions of Net.Data that support the DTW_SHOWSQL
configuration variable, use this variable in the Net.Data initialization file to

override the effect of settlng SHOWSQL within your Net. Data macros.
See L

Mariahle” an page 15 for syntax and additional information.

* Use the DTW_ASSIGN() function as described in the above example, to
assign the value of SHOWSQL to prevent it from being overridden.

See SHOWSAQL in the variables chapter of Net.Data Reference for syntax
and examples for the SHOWSQL Net.Data variable.

Chapter 3. Keeping Your Assets Secure 57

You can also use DTW_ASSIGN to ensure that other Net.Data variables,
such as RPT_MAX ROWS or START_ROW_NUM, are not overridden. See
the variables chapter of Net.Data Reference for more information about
these variables.

Validate that your SQL statements cannot be modified in ways that alter the
intended behavior of your application

Adding a Net.Data variable to an SQL statement within a macro allows
users to dynamically alter the SQL statement before executing it. It is the
responsibility of the macro writer to validate user-provided input values and
ensure that an SQL statement containing a variable reference is not being
modified in an unexpected manner. Your Net.Data application should
validate user-provided input values from the URL so the Net.Data
application can reject invalid input. Your validation design process should
include for the following steps:

1. Identify the syntax of valid input; for example, a customer ID must start
with a letter and can contain only alphanumeric characters.

2. Determine what potential harm can be caused by allowing incorrect
input, intentionally harmful input, or input entered to gain access to
internal assets of the Net.Data application.

3. Include input verification statements in the macro that meet the needs of
the application. Such verification depends on the syntax of the input and
how it is used. In simpler cases it can be enough to check for invalid
content in the input or to invoke Net.Data to verify the type of the input.
If the syntax of the input is more complex, the macro developer might
have to parse the input partially or completely to verify whether it is
valid.

Example 1: Using the DTW_POS() string function to verify SQL statements

%FUNCTION(DTW_SQL) queryl() {
select * from shopper where shlogid = '$(shlogid)"’

0,
%}

The value of the shlogid variable is intended to be a shopper ID. Its
purpose is to limit the rows returned by the SELECT statement to rows that
contain information about the shopper identified by the shopper ID.
However, if the string “smith' or shlogid<>'smith” is passed as the value
of the variable shlogid, the query becomes:

select * from shopper where shlogid = 'smith' or shlogid<>'smith'

This user-modified version of the original SQL SELECT statement returns
the entire shopper table.

The Net.Data string functions can be used to verify that the SQL statement
is not modified by the user in inappropriate ways. For example, the
following logic can be used to ensure that the input value associated with
the shlogid variable consists of a single shopper ID:

@DTW_POS(" ", $(shlogid), result)
%IF (result == "0")

@queryl()
%ELSE

%{ perform some sort of error processing %}
%ENDIF

Example 2: Using DTW_TRANSLATE()

58 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

Suppose that your application needs to validate that the value provided in

the input variable number_of orders is an integer. One way of

accomplishing this is to create a translation table input_translation_table
that contains all keyboard characters except the numeric characters 0-9 and

to use the DTW_TRANSLATE and DTW_POS string functions to validate

the input:

@DTW_TRANSLATE (number_of_orders, "x", input_translation_table, "x", string_out)

@DTW_POS("x", string out, result)
%IF (result = "0")
%{ continue with normal processing %}
%ELSE
%{ perform some sort of error processing %}

%ENDIF

Note that SQL statements within stored procedures cannot be modified by
users at Web browsers and that user-provided input parameter values are
constrained by the SQL data types associated with the input parameters. In
situations where it is impractical to validate user input values using the
Net.Data string functions, you can use stored procedures.

Ensure that a file name in an INCLUDE statement is not modified in ways that

alter the intended behavior of your application
If you specify the value for the file name with an INCLUDE statement using
a Net.Data variable, then the file to be included is not determined until the
INCLUDE file is executed. If your intent is to set the value of this variable
within your macro, but to not allow a user at the browser to override the
macro-provided value, then you should set the value of the variable using
DTW_ASSIGN instead of DEFINE. If you do intend to permit the user at a
browser to provide a value for the file name, then your macro should
validate the value provided.

Example: A query string assignment such as filename="../../x" can
result in the inclusion of a file from a directory not normally specified in the
INCLUDE_PATH configuration statement. Suppose that your Net.Data
initialization file contains the following path configuration statement:

INCLUDE_PATH /usr/1pp/netdata/include

and that your Net.Data macro contains the following INCLUDE statement:
%INCLUDE "$(filename)"

A query string assignment of filename="../../x" would include the file
/usr/1pp/x , which was not intended by the INCLUDE_PATH configuration
statement specification.

The Net.Data string functions can be used to verify that the file name
provided is appropriate for the application. For example, the following logic
can be used to ensure that the input value associated with the file name
variable does not contain the string "..":

Chapter 3. Keeping Your Assets Secure 59

@DTW_POS("..", $(filename), result)
%IF (result > "0")

0

%{ perform some sort of error processing %}

%ELSE
%{ continue with normal processing %}
%ENDIF

Design your database and queries so that user requests do not have access

to sensitive data about other users
Some database designs collect sensitive user data in a single table. Unless
SQL SELECT requests are qualified in some fashion, this approach may
make all of the sensitive data available to any user at a web browser.

Example: The following SQL statement returns order information for an
order identified by the variable order_rn:

select setsstatcode, setsfailtype, mestname

from merchant, setstatus

where merfnbr = setsmenbr
and setsornbr = §(order_rn)

This method permits users at a browser to specify random order numbers
and possibly obtain sensitive information about the orders of other
customers. One way to safeguard against this type of exposure is to make
the following changes:

* Add a column to the order information table that identifies the customer
associated with the order information within a specific row.

* Modify the SQL SELECT statement to ensure that the SELECT is
qualified by an authenticated customer ID provided by the user at the
browser.

For example, if shTogid is the column containing the customer ID
associated with the order, and SESSION_ID is a Net.Data variable that
contains the authenticated ID of the user at the browser, then you can
replace the previous SELECT statement with the following statement:
select setsstatcode, setsfailtype, mestname

from merchant, setstatus

where merfnbr = setsmenbr

and setsornbr = $(order_rn)
and shlogid = $(SESSION_ID)
Use Net.Data hidden variables
You can use Net.Data hidden variables to conceal various characteristics of
your Net.Data macro from users that view your HTML source with their Web
browser. For example, you can hide the internal structure of your database.

See [Hidden Variables” on page 93 for more information about hidden

variables.

Request validation information from a user
You can create your own protection scheme based on user-provided input.
For example, you can request validation information from a user through an
HTML form and validate it using data that your Net.Data macro retrieves
from a database or by calling an external program from a function defined
in your Net.Data macro.

For more information on protecting your assets, see the Internet security list of
frequently asked questions (FAQ) at this Web site:

http://www.w3.0rg/Security/Faq

60 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

Chapter 4. Invoking Net.Data

This chapter describes how you invoke Net.Data using the various Web server
interfaces. Before you can use one of the methods of invocation, Net.Data must first
be configured for the specified interface. You can configure Net.Data to use the
following Web server interfaces:

* Common Gateway Interface (CGlI)

* FastCGl

* Lotus Domino Go Web server (GWAPI)
* Internet Connection Server (ICAPI)

* Netscape Server (NSAPI)

* Microsoft Internet Server (ISAPI)

» Java Servlets

See lChapter 2_Configuring Net Data” on page 5 to learn more about configuring

Net.Data for these interfaces. By default, the Web server invokes Net.Data as a
CGI program, with each Net.Data request running in a new and separate process.
You determine how Net.Data is invoked when you configure the Web server.

The following sections describe the types of requests Net.Data accepts and the
methods you can use to invoke Net.Data using the various APIs and Servlets.

Types of Invocation Requests

Regardless of the method with which you invoke Net.Data, there are two types of
requests that can be specified, depending on whether you want to execute a macro,
or whether you want to execute a single SQL statement, stored procedure, or
function.

Macro Request
Specifies that Net.Data execute the macro specified.

Direct Request
Specifies that Net.Data execute an SQL statement, stored procedure, or
function. The request specifies:

* The name of a language environment

* An SQL statement or the name of a function, along with any parameter
values that are required for the invocation of the function

* Form data that is required for invocation of the SQL statement or function

Web developers who want to write a single SQL query or call a single function such
as a DB2 stored procedure, REXX program, or Perl function can issue a direct
request to the database. A direct request does not have any complex Net.Data
application logic that requires a Net.Data macro, and therefore bypasses the
Net.Data macro processor. Direct request parameters are passed to the appropriate
language environment for processing for improved performance.

Eigure 18 on page 67 illustrates the differences between a macro request and a
direct request. A macro request always specifies a macro within the URL for the

© Copyright IBM Corp. 1997, 1999 61

request and can also use form data. A direct request never specifies a macro within
the URL, but can still use form data.

Macro Request

Web Net.Data Language
Server Environment

URL & Form data

Web Page

A

Direct Request

Web Net.Data Language
Server Environment

URL & Form data

Web Page

A

Figure 18. Macro Request Versus Direct Request

The syntax for invoking Net.Data depends on how Net.Data is configured and the
type of request that you make. For both macro and direct requests, Net.Data is
invoked using a URL. The URL can be entered directly by the user, or it can be
coded into the HTML page as an HTML link or an HTML form. The Web server
invokes Net.Data using CGlI, FastCGl, or one of the Web server APIs. Additionally,
you can invoke Net.Data using Net.Data servlets.

For macro requests, specify within the URL the name of the Net.Data macro and
the name of the HTML block that is to be executed within the Net.Data macro. For
direct requests, specify within the URL the name of the Net.Data language
environment, the SQL statement or the name of the function, and any additional
required parameter values. You specify these values using a syntax defined by
Net.Data.

The following sections describe these invocation requests in more detail:

Although the examples specify the syntax to use when invoking Net.Data using
CGl, the concepts apply to all interfaces that are used to invoke Net.Data. For the
exact syntax required for each type of interface, refer to the section specific to
each.

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

| Invoking Net.Data with a Macro (Macro Request)
This section shows you how to invoke Net.Data by specifying a macro.

The following syntax statements show how to invoke Net.Data.
* URL:
http://server/Net.Data_invocation_path/filename/block[?name=val&...]

Parameters:

server Specifies the name and pathof the Web server. If the server is the local
server, you can omit the server name and use a relative URL.

Net.Data_invocation_path
The path and filename of the Net.Data executable file, servlet class, DLL, or
shared library. For example, /cgi-bin/db2www/.

filename
Specifies the name of the Net.Data macro file. Net.Data searches for and
tries to match this file name with the path statements defined in the

MACRO_PATH initialization path variable. See EMACRQ PATH” on page 14

for more information.

block Specifies the name of the HTML block in the referenced Net.Data macro.

method
Specifies the HTML method used with the form.

?name=val&...
Specifies one or more optional parameters passed to Net.Data.

[You can then specify the URL directly in your browser, or you can use it in an
[HTML link or form as follows:

e HTML link:

[any text
e HTML form:

[<FORM METHOD=method ACTION="URL">any text</FORM>
Parameters:

method
Specifies the HTML method used with the form.

| URL Specifies the URL used to run the Net.Data macro, the parameters of which
[are described above.

Examples
The following examples demonstrate the different methods of invoking Net.Data.

Example 1: Invoking Net.Data using an HTML link:

;/A>

Example 2: Invoking Net.Data using a form

Chapter 4. Invoking Net.Data 63

<FORM METHOD=POST
ACTION="http://server/cgi-bin/db2www/myMacro.d2w/report">

</FORM>

The following sections describe HTML links and forms and more about how to
invoke Net.Data with them:

. M Eomd]

HTML Links

If you are authoring a Web page, you can create an HTML link that results in the
execution of an HTML block. When a user at a browser clicks on a text or image
that is defined as an HTML link, Net.Data executes the HTML block within the
macro.

To create an HTML link, use the HTML <a> tag. Decide which text or graphic you
want to use as your hyperlink to the Net.Data macro, then surround it by the <a>
and tags. In the HREF attribute of the <a> tag, specify the macro and the
HTML block.

The following example shows a link that results in the execution of an SQL query
when a user selects the text "List all monitors” on a Web page.

List all monitors

Clicking on the link calls a macro named listA.d2w, which has an HTML block
named "report”, as in the following example:

%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery(){
SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='MONITOR'

0,
%}

%HTML (report) {
@myQuery ()

0,
%}

The query returns a table that contains model number, cost, and description
information for each monitor that is described within the EQPTABLE table. This
example d|splays the results of the query by generating a default report. See

for information on how you can customize your reports

using a REPORT block.

HTML Forms

You can dynamically customize the execution of your Net.Data macros using HTML
forms. Forms allow users to provide input values that can affect the execution of the
macro and the contents of the Web page that Net.Data builds.

64 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

The following example builds on the monitor list example in FHTML | inks” onl
hage 64 by letting users at a browser use a simple HTML form to select the type of
product for which information will be displayed.

<H1>Hardware Query Form</H1>

<HR>

<FORM METHOD=POST ACTION="/cgi-bin/db2www/equiplst.d2w/report">
<P>What type of hardware do you want to see?

<MENU>

<INPUT TYPE="RADIO" NAME="hdware" VALUE="MON" checked> Monitors
<INPUT TYPE="RADIO" NAME="hdware" VALUE="PNT"> Pointing devices
<INPUT TYPE="RADIO" NAME="hdware" VALUE="PRT"> Printers
<INPUT TYPE="RADIO" NAME="hdware" VALUE="SCN"> Scanners

</MENU>

<INPUT TYPE="SUBMIT" VALUE="Submit">
</FORM>

After the user at the browser makes a selection and clicks on the Submit button,
the Web server processes the ACTION parameter of the FORM tag, which invokes
Net.Data. Net.Data then executes the HTML report block in the equiplst.d2w
macro:

%DEFINE DATABASE="MNS97"

%FUNCTION(DTW_SQL) myQuery () {

SELECT MODNO, COST, DESCRIP FROM EQPTABLE
WHERE TYPE='$(hdware)'

%REPORT {

<H3>Here is the list you requested</H3>
%ROW {

<HR>

$(N1): $(v1), $(N2): $(v2)

<P>$(N3): $(V3)

[
%}

%HTML (report) {
@myQuery ()

%}
In the above example, the value of TYPE=§ (hdware) in the SQL statement is taken
from the HTML form input.

See Net.Data Reference for a detailed description of the variables that are used in
the ROW block.

Invoking Net.Data without a Macro (Direct Request)

This section shows you how to invoke Net.Data using direct request. When you use
direct request, you do not specify the name of a macro in the URL. Instead, you
specify the Net.Data language environment, the SQL statement or a program to be
executed, and any additional required parameter values within the URL, using a
syntax defined by Net.Data. See EDTW_DIRECT REQUEST: Enable Direct Request

Mariahle” on page 13 to learn how to enable and d|sable direct request.

The SQL statement or program and any other specified parameters are passed
directly to the designated language environment for processing. Direct request
improves performance because Net.Data does not need to read and process a
macro. The SQL, ODBC, Oracle, Sybase, Java, System, Perl, and REXX

Chapter 4. Invoking Net.Data 65

66

Net.Data-supplied language environments support direct request, and you can call
Net.Data using a URL, an HTML form, or a link.

A direct request invokes Net.Data by passing parameters in the query string of the
URL or the form data. The following example illustrates the context in which you
specify a direct request.

any text

Where direct_request represents the direct request syntax. For example, the
following HTML link contains the direct request:

any text

Direct Request Syntax

The syntax for invoking Net.Data with direct request can contain a call to either a
database or a non-database language environment.

Syntax

»>—7 Database language environment call i >«
Non-database Tanguage environment call ’J

Database language environment call:

v
L‘ Form data entry |—&J

v

LANGENV =—dblangenv—&

L‘ Form data entry '—&J

\/

>—|:SQL=—$ql_stmt J
FUNC=—stored_proc_name—(—| Parameter Tist |—)

|—&—| Form data entry ’—/

Form data entry:

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

|—DATABASE =—VALUE |

—DB_CASE
—DTW_HTML_TABLE
—LOGIN
—PASSWORD

—RPT_MAX_ROWS

—SHOWSQL

—user_defined variable—

Parameter list:

Y 1

OUT—parm_typ e—[parrn_nameJ

I

N—parm_t ype—Eparm_vaZue
" —parm_value—”J I

parm_name
NOUT—parm_type parm_name parm_value—_l—
parm_name "—parm_value—"

Non-database language environment call:

|—LANGENV=—Zang_env—&—FUNC—=—program_name >

-

v

>—(

) |
|—"—parm_value—"J

Parameters

Database language environment call
Specifies a direct request to Net.Data that invokes a database language
environment.

Form data entry

Parameters that allow you to specify the settings of SQL variables or to
request simple HTML formatting. See the variables chapter of Net.Data
Reference to learn more about these variables.

DATABASE
Specifies the database to which Net.Data should pass the SQL request.
This parameter is required.

DB_CASE
Specifies the case (upper or lower) for SQL statements.

DTW_HTML_TABLE
Specifies whether Net.Data should return an HTML table or a
pre-formatted text table.

LOGIN
Specifies the database user ID.

Chapter 4. Invoking Net.Data 67

PASSWORD
Specifies the database password.

RPT_MAX_ROWS
Specifies the maximum number of rows within a table that a function
will return in a report.

SHOWSQL
Specifies whether Net.Data should hide or display the SQL statement
being executed.

START_ROW_NUM
Specifies the row number in a table for a function to use as the start of
its report.

user_defined_variable
Variables that are passed to Net.Data and provide required information
or effect Net.Data behavior. User-defined variables are variables that
you define for your application.

VALUE
Specifies the value of the Net.Data variable.

LANGENV
Specifies the target language environment for the SQL statement or stored
procedure call. If the language environment is one of the database
language environments, the database name must also be specified.

dblangenv
The name of the database language environment:
« DTW_SQL
+ DTW_ODBC
« DTW_ORA
« DTW_SYB
SQL
Indicates that the direct request specifies the execution of an in-line SQL
statement.

sql_stmt
Specifies a string that contains any valid SQL statement that can be
executed using dynamic SQL.

FUNC
Indicates that the direct request specifies the execution of a stored
procedure.

stored_proc_name
Specifies any valid DB2 stored procedure name.

parm_type
Specifies any valid parameter type for a DB2 stored procedure.

parm_name
Specifies any valid parameter name.

parm_value
Specifies any valid parameter value for a DB2 stored procedure.

IN Specifies that Net.Data should use the parameter to pass input data to the
stored procedure.

68 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

INOUT
Specifies that Net.Data should use the parameter to both pass input data to
the stored procedure and return output data from the language
environment.

ouT
Specifies that the language environment should use the parameter to return
output data from the stored procedure.

Non-database language environment call
Specifies a direct request to Net.Data that invokes a non-database language
environment.

LANGENV
Specifies the target language environment for the execution of the function.

lang_env
Specifies the name of the non-database language environment:

« DTW_PERL
e DTW_REXX
e DTW_SYSTEM

FUNC
Indicates that the direct request specifies the execution of a program.

program_name
Specifies the program containing the function to be executed.

parm_value
Specifies any valid parameter value for the function.

Direct Request Examples

The following examples show the different ways you can invoke Net.Data while
using the direct request method.

HTML Links: The following examples use direct request to invoke Net.Data
through links.

Example 1: A link that invokes the Perl language environment and calls a Perl
script that is in the EXEC path statement of the Net.Data initialization file

any text

Example 2: A link that invokes the Perl language environment, as in the previous
example, but passes a string with URL-encoded values for the double quote and
the space characters

<A HREF="http://server/cgi-bin/db2www/?LANGENV=DTW_PERL&FUNC=my_per]
(%22He11o+Wor1d%22) ">any text

Tip: You must encode certain characters, such as spaces and double quotes,
within URLSs. In this example, the double quotes characters and spaces within
the parameter value must be encoded as %22 or the + character, respectively.
You can use the built-in function DTW_URLESCSEQ to encode any text that
must be encoded witin a URL. For more information on the
DTW_URLESCSEQ function, see its description in Net.Data Reference.

HTML Forms: The following examples use direct request to invoke Net.Data
through forms.

Chapter 4. Invoking Net.Data 69

Example 1: An HTML form that results in the execution of an SQL query using the
SQL language environment, connects to the CELDIAL database, and queries a
table

<FORM METHOD="POST"

ACTION="http://server/cgi-bin/db2www/">

<INPUT TYPE=hidden NAME="LANGENV" VALUE="DTW_SQL">

<INPUT TYPE=hidden NAME="DATABASE" VALUE="CELDIAL"

<INPUT TYPE=hidden NAME="SQL" VALUE="select * from Tablel where col1=§(InputName)">
Enter Customer name:

<INPUT TYPE=text NAME="InputName" VALUE="John">

<INPUT TYPE=SUBMIT>

</FORM>

This example contains a variable substitution in the SQL statement to make the
WHERE clause dynamic.

URL: The following examples use direct request to invoke Net.Data through URLSs.

Example 1: A URL that results in the execution of an SQL query using the SQL
language environment

http://server/cgi-bin/db2www/?LANGENV=DTW_SQL&DATABASE=CELDIAL
&SQL=select+x+from+customer

Example 2: A URL that invokes the Perl language environment and calls an
executable file that is not in the EXEC path statement of the Net.Data initialization
file

http://server/cgi-bin/db2www/? LANGENV=DTW_PERL&FUNC=/u/MYDIR/macros/myexec.pl

Example 3: A URL that invokes the System language environment and calls an
external Perl script

http://server/cgi-bin/db2www/? LANGENV=DTW_SYSTEM&FUNC=perl+/u/MYDIR/macros/myexec.p]l

Example 4: A URL that invokes the REXX language environment, calls a REXX
program, and passes parameters to the program

http://server/cgi-bin/db2www/? LANGENV=DTW_REXX&FUNC=myexec.cmd (parml,parm2)

Example 5: A URL that calls a stored procedure and passes parameters to the SQL
language environment

http://server/cgi-bin/db2www/?LANGENV=DTW_SQL&FUNC=MY_STORED_PROC
(IN+CHAR(30)+Salaries)&DATABASE=CELDIAL

Invoking Net.Data through the Web Server APIs

Net.Data supports the Web APIs in the following list, depending on your operating
system:

GWAPI plug-in and ICAPI plug-in
The Lotus Domino Go Webserver API plug-in as the follow-on to the IBM
Internet Connection Secure Sever plug-in

ISAPI plug-in
Microsoft Internet Server API plug-in
NSAPI plug-in

Netscape Server API plug-in

See the operating system reference appendix in Net.Data Reference to determine
which Web server APIs are supported for your operating system. See “Configuring

70 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Net.Data for Use with the Web Server APIS” on page 39 to learn how to configure

Net.Data and the Web server for use with APIs.

Requirements:

If running Net.Data in GWAPI, ICAPI, ISAPI or NSAPI mode, restart your Web
server so that the Web server can reload Net.Data and run it as a process.

If you make changes to the initialization file after the Web server invokes
Net.Data in APl mode, you must restart the Web server. Any changes to the
Net.Data initialization file (db2www.ini) have no effect. In APl mode, Net.Data
reads the initialization file only once to reduce the performance overhead.

When running in APl mode, the Oracle and Sybase language environments
require Live Connection.

To invoke the Web server APIs:
For ICAPI and GWAPI:

Syntax:
http://server_name/CGI-BIN/db2www/macro_name/html_block

Parameters:

server_name
The name of the server.

macro_name
The relative path name of your macro under the directory specified by
MACRO_PATH.

html_block
The name of the HTML block in the macro to be processed.

Example:
http://myserver/CGI-BIN/db2www/mymacro.d2w/report

For ISAPI:

Syntax:

http://server_name/server_HTML_root_directory/dll_name/macro_name/
html_block

Parameters:

server_name
The name of the server.

server_HTML_root_directory
The Web server HTML root directory name.

dil_name
Net.Data’s ISAPI .dll file name, dtwisapi.dll.

macro_name
The relative path name of your macro under the directory specified by
MACRO_PATH.

html_block
The name of the HTML block in the macro to be processed.

Example:
http://myserver/scripts/dtwisapi.d11/mymacro.d2w/report

Chapter 4. Invoking Net.Data 71

For NSAPI:

Syntax:
http://server_name/macro_name/html_block

Parameters:

server_name
The name of the server.

macro_name
The relative path name of your macro under the directory specified by
MACRO_PATH. The extension of the macro file, for example, .d2w,
must be defined in the Web server configuration file. See m
i “ for more

information.

html_block
The name of the HTML block in the macro to be processed.

Example:
http://myserver/mymacro.d2w/report

Invoking Net.Data with Java Servlets and JavaBeans

Servlets are Java classes that perform a role similar to that of CGI programs or
Web server API plug-ins. A Web server can use servlets to dynamically build HTML
pages. Servlets do not have their own graphical user interface, but their classes can
be dynamically loaded locally or from across the network. They can be called using
a URL address (remotely) or by a class name (locally).

Net.Data provides servlets that you can use to invoke Net.Data macros, run
Net.Data functions, or execute SQL statements through Net.Data within any
Java-enabled operating system supported by Net.Data.

This chapter describes the concepts and tasks for:

tNet Data Servlets’]

Net.Data Servlets

Net.Data provides servlets and NetObjects Fusion plug-ins with Net.Data functions
that can be used in a Java environment. With servlets and plug-ins you can:

* Run Net.Data macros from both a URL and as a Server-Side-Include (SSI)
* Run Net.Data functions from both a URL and as an SSI

* Use NetObjects Fusion (NOF) to manage your macros, providing better
integration with your Web site management and an easy-to-use graphical user
interface to develop simple macros. See L i i j i

- i u to learn how to use NOF

plug-ins.

This section describes the following servlet topics:

72 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

About Net.Data Servlets

Net.Data provides servlets to help you develop and manage macros using the Java
environment. Servlets are Java classes that perform a role similar to that of CGI
programs or Web server API plug-ins. Servlets are used by a Java servlet-enabled
Web server to build HTML pages. Servlets do not have their own graphical user
interface, but their classes can be dynamically loaded locally, or from across the
network, and can be called using a URL address (remotely) or by a class name
(locally). Servlets are available for Windows NT and AIX operating systems.

The Net.Data servlets are a Java-based wrapper that run a Net.Data Version 2
macro or direct request using a native DLL file. These servlets allow you to run an
existing macro (MacroServlet) or a single function (FunctionServlet). Net.Data
Version 2 is required to use these servlets. Net.Data servlets can run the database
or non-database language environments and can run with Live Connection.

The servlets come with an API for use with your applications. The servlet APIs are
documented with Net.Data. See the <inst_dir>/servlets/NetDataServlets.jar file for
API documentation.

Net.Data provides two servlets:

Macro Servlet (com.ibm.netdata.servlets.MacroServlet)
Executes an existing Net.Data macro.

Using the macro servlet is similar to running a Net.Data macro through the
CGI-BIN interface, except you run the macro through a Java servlet. The
macro servlet requires that Net.Data Version 2 or higher be installed.

The advantages of using the macro servlet include:

* SQL queries are run through ODBC using Live Connection Manager for
increased performance.

* You can run macros through Server-Side-Includes (SSI) to embed
multiple macros in your HTML file.

The macro servlet also allows native access to heterogeneous databases,
such as DB2, Oracle, and Sybase, as well as various language
environments, such as Perl, REXX, and Java.

Function Servlet (com.ibm.netdata.servlets.FunctionServlet)
Executes the Net.Data function or SQL statement through a servlet
interface, such as %FUNCTION DTW_SQL(). See [lnvoking Net Datd

lithout a Macro (Direct Request)” on page 65 for more information.

The function servlet requires that Net.Data Version 2 be installed.

Running Net.Data Servlets

The Net.Data servlets can be run either from a URL or as an SSI within an HTML
file. You can use the NetObjects Fusion plug-ins to incorporate the Net.Data
servlets into your NOF site. The following sections discuss how to modlfy and run
the servlets by typlng in the syntax for the servlet. See L

= to learn how
to modify and run the servlets with NetObjects Fusion.

Chapter 4. Invoking Net.Data 73

Running the Macro Servilet: ~ From within an HTML file, enter the servlet
parameters using one of the following syntax options:
1. URL:

http://myserver/servlet/com.ibm.netdata.serviets.MacroServiet
?MACRO=macro_value&BLOCK=block value&parmnn=valuenn

For example:
http://myserver/serviet/com.ibm.netdata.serviets.MacroServlet?MACRO=my macro
&BLOCK=my_bTock&fieldl=custno
2. SSI:

<servlet code="com.ibm.netdata.servlets.MacroServiet">
<param name="MACRO" value="macro_value">
<param name="BLOCK" value="block_value">
<param name="parmnn" value="valuenn">

</serviet>

For example:

<servlet code="com.ibm.netdata.servlets.MacroServiet">
<param name="MACRO" value="my _macro.d2w">
<param name="BLOCK" value="report">
<param name="fieldl" value="custno">

</servlet>

Parameters:

macro_value
The fully qualified path to an existing Net.Data macro

block value
The name of the HTML block in the specified Net.Data macro to execute;
the default is report (optional).

parmnn
Any additional parameters that your macro requires, such as

<param name="fieldl" ...

valuenn
Any additional values that your macro requires, such as

. value="custnum"

HTMLPATH parameter: If you get an error message referring to a missing
HTMLPATH parameter, add the HTMLPATH parameter to your servlet invocation
command:

* URL:

http://myserver/serviet/com.ibm.netdata.serviets.MacroServiet
?MACRO=macro_name&BLOCK=block_value&htmlpath=html_path&parmnn=valuenn

For example:

http://myserver/servliet/com.ibm.netdata.serviets.MacroServlet?MACRO=my_macro
&BLOCK=my_blockhtmlpath=e:\htm1&fieldl=custno

» SSI:

<servlet code="com.ibm.netdata.servlets.MacroServiet">
<param name="MACRO" value="macro_value">
<param name="BLOCK" value="block_value">
<param name="htmlpath" value="html_path">
<param name="parmnn" value="valuenn">
</serviet>

74 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

For example:

<servlet code="com.ibm.netdata.servlets.MacroServiet">
<param name="MACRO" value="my_macro">

<param name="BLOCK" value="my_bTock">

<param name="htmlpath" value="e:\htm1">

<param name="fieldl" value="custno">

</servlet>

OUTBUFLEN parameter: If your macro results are larger than 32 KB, specify the
OUTBUFLEN parameter. Failure to specify these parameters when required can
result in unpredictable results.

URL:

http://myserver/serviet/com.ibm.netdata.serviets.MacroServiet
?MACRO=macro_name&BLOCK=block_value
&OUTBUFLEN=output_buffer_size&parmnn=valuenn

For example:

http://myserver/serviet/com.ibm.netdata.serviets.MacroServlet?MACRO=my_macro
&BLOCK=my b1ock&OUTBUFLEN=48&fieldl=custno

SSl:

<servlet code="com.ibm.netdata.servlets.MacroServiet">
<param name="MACRO" value="macro_value'">
<param name="BLOCK" value="block_value">
<param name="OUTBUFLEN" value="output_buffer_size">
<param name="parmnn" value="valuenn">
</servlet>

For example:

<servlet code="com.ibm.netdata.servlets.MacroServiet">
<param name="MACRO" value="my macro">

<param name="BLOCK" value="my_bTock">

<param name="QUTBUFLEN" value="48">

<param name="fieldl" value="custno">

</servlet>

Running the Function Servlet: The function servlet can invoke Net.Data using
direct request to execute either a function (such as a REXX function) or an SQL
statement. The parameters you specify for the servlet depend on whether you are
executing a function or an SQL statement. From within an HTML file, enter the
servlet parameters using one of the following syntax options:

1.

For a URL.:
« To invoke a function:

http://myserver/serviet/com.ibm.netdata.serviets.FunctionServiet
?LANGENV=Lang_env_name&FUNC=program_name&parmnn=valuenn

For example:

http://myserver/servliet/com.ibm.netdata.serviets.FunctionServiet
?LANGENV=DTW_REXX&FUNC=my_rexx&fieldl=custno

e To invoke an SQL statement:

http://myserver/servlet/com.ibm.netdata.serviets.FunctionServiet
?LANGENV=database_lang_env_name&SQL=SQL_statement
&DATABASE=database_name&parmnn=valuenn

For example:

http://myserver/serviet/com.ibm.netdata.servlets.FunctionServiet
?LANGENV=DTW_SQL&SQL=select+*+from+myTab1e&DATABASE=CELDIAL

SSI:

Chapter 4. Invoking Net.Data

75

e To invoke a function:

<servlet code="com.ibm.netdata.servlets.FunctionServlet">
<param name="LANGENV" value="lang_env_name">
<param name="FUNC" value="program_name">
<param name="parmnn" value="valuenn">

</serviet>

For example:

<servlet code="com.ibm.netdata.servlets.FunctionServiet">
<param name="LANGENV" value="DTW_REXX">

<param name="FUNC" value="myREXX">

<param name="fieldl" value="custno">

</servlet>

* To invoke an SQL statement:

<servlet code="com.ibm.netdata.servlets.FunctionServlet">
<param name="LANGENV" value="lang env_name">
<param name="SQL" value="SQL_stmt_name">
<param name="DATABASE" value="database name">
<param name="parmnn" value="valuenn">

</servlet>

For example:

<servlet code="com.ibm.netdata.servlets.FunctionServlet">
<param name="LANGENV" value="DTW_SQL">

<param name="SQL" value="select * from employee">

<param name="DATABASE" value="CELDIAL">

</servlet>

Parameters:

lang_env_name
The Net.Data language environment (such as DTW_SQL, DTW_REXX)
being called to process the function, SQL statement, or stored procedure.
This parameter requires that FUNC or SQL be used.

program_name
The name of the program which contains the function to be executed. For
example, my_rexx, where my_rexx is the name of a REXX executable.
Specify input parameters for the function with the parmnn and valuenn
parameters.

database name
The name of the database associated with the DATABASE parameter. The
specified

SQL_stmt_name
An SQL statement or stored procedure name that accesses a database. For
example, "select * from employee". Specify input parameters for the SQL
statement or stored procedure with the parmnn and valuenn parameters.

parmnn
Any additional parameters that your macro requires, such as <param
name="fieldl" ...

valuenn
Any additional values that your macro requires, such as ...
value="custnum".

HTMLPATH parameter: If you get an error message referring to a missing
HTMLPATH parameter, add the HTMLPATH parameter to your servlet invocation
command:

76 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

e URL:
http://myserver/serviet/com.ibm.netdata.serviets.FunctionServiet

?LANGENV=Lang_env_name&FUNC=program_name&htmlpath=html_path
&armnn=valuenn

For example:

http://myserver/servlet/com.ibm.netdata.serviets.FunctionServiet
?LANGENV=DTW_REXX&FUNC=my_rexx&htmlpath=e:\html&fieldl=custno

» SSI:

<servlet code="com.ibm.netdata.servlets.FunctionServiet">
<param name="LANGENV" value="lang env_name">
<param name="SQL" value="SQL_stmt_name">
<param name="htmlpath" value="html_path">
<param name="parmnn" value="valuenn">
</servlet>

For example:

<servlet code="com.ibm.netdata.servlets.FunctionServiet">
<param name="LANGENV" value="DTW_SQL">

<param name="SQL" value="select * from employee">

<param name="htmlpath" value="e:\html">

<param name="fieldl" value="custno">

<param name="DATABASE" value="SAMPLE">

</serviet>

Where html_path specifies the path to the Web server root HTML directory; for
example: htmlpath=e:\html.

OUTBUFLEN parameters: If your macro results are larger than 32 KB, you must
specify the OUTBUFLEN parameter. Failure to specify these parameters when
required can result in unpredictable results.

* URL:

http://myserver/servlet/com.ibm.netdata.serviets.FunctionServiet
?LANGENV=1ang_env_name&FUNC=program_name&OUTBUFLEN=output_buffer_size&parmnn=valuenn

For example:

http://myserver/serviet/com.ibm.netdata.servlets.FunctionServlet?LANGENV=DTW_REXX
&FUNC=my_rexx&0UTBUFLEN=48K&fieldl=custno

e SSI:

<servlet code="com.ibm.netdata.servlets.FunctionServiet">
<param name="LANGENV" value="lang_env_name">
<param name="FUNC" value="program_name">
<param name="OUTBUFLEN" value="output buffer size">
<param name="parmnn" value="valuenn">
</servlet>

For example:

<servlet code="com.ibm.netdata.servlets.FunctionServiet">
<param name="LANGENV" value="DTW_REXX">

<param name="FUNC" value="my_rexx">

<param name="QUTBUFLEN" value="48K">

<param name="fieldl" value="custno">

</servlet>

Net.Data JavaBeans

Net.Data provides JavaBeans that can be used in a Java environment without
having a Web server running. A JavaBean is an object-oriented programming

Chapter 4. Invoking Net.Data 77

interface that lets you build reusable applications or program building blocks. These
objects can be used in a network on Java-enabled operating system.

Using a native Net.Data DLL, the JavaBean invokes Net.Data, populating the return
code and a string containing the Net.Data output (results). Because JavaBeans use
a native DLL, you do not have to have a Web server running to use Net.Data
functions.

Design tip: The results returned by the Net.Data JavaBeans are whatever your
macro or function returns; in general, this is HTML. Consider passing the results to
an HTML-like JavaBean which understands HTML and displays the results.

With JavaBeans you can:
* Run Net.Data macros
* Run SQL statements through Net.Data

This section describes the following JavaBean topics:

About Net.Data JavaBeans

Net.Data provides JavaBeans to help you develop and manage macros using the
Java environment. JavaBeans are Java objects that provide the following interface:

* When used in a JavaBean development environment (such as Lotus
BeanMachine), you use the provided customizer to hook together the desired
components to process and display the results of a macro or SQL statement and
produce a Java applet.

* When using the API, you can use the JavaBeans to provide Net.Data
functionality to your own Java applet or application. The APl documentation is in
<inst_dir>/beans/NetDataBeans.jar.

Net.Data provides two types of JavaBeans:

Net.Data Macro JavaBean
Provides a Java-based interface for executing an existing Net.Data macro
through Net.Data.

Net.Data SQL JavaBean
Provides a Java based interface for executing an SQL statement through
Net.Data.

The Net.Data JavaBeans are Java-based wrappers that run through Net.Data using
a native DLL file. Both require Net.Data Version 2 or higher and JDK Version 1.1 or
higher to be installed.

Setting Up and Running the Net.Data JavaBeans

This section describes how to set up and run Net.Data JavaBeans using a
JavaBean development tool, such as Bean Machine. Steps for using development
tools are generic so that you can use the tool of your choice.

0 ”
.

78 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

The Macro Bean: The Net.Data Macro bean,
com.ibm.netdata.beans.NetDataMacro, lets you use Java to run an existing macro.
To use this bean, you need to specify Net.Data properties for the bean so that it
can work with the macro.

To set up the Net.Data macro JavaBean with a JavaBean development tool:

1. Add or import the <inst_dir>/beans/NetDataBeans.jar file into your JavaBean
development tool.

2. Using the development tool's customizer interface, set the following input
properties:

Macro Specifies the name of the existing macro to execute. For example:
MyMacro.mac

Block Specifies the name of the HTML block section to execute; the default is
report.

HTML path
Specifies the path to the Net.Data db2www.ini file.

Parameters
Specifies the parameter name and values to use when running macro.
Syntax:
namel=valuel&nameN=valueN

To run the Net.Data macro JavaBean with a JavaBean development tool:

1. Select the run or execute action provided by your JavaBean development tool to
run the macro.

2. After the macro has run, you can reference the following output properties:
RC Specifies the return code returned from Net.Data.

Results
Specifies the data returned from the execution of the Net.Data macro.

The SQL Bean: The Net.Data SQL bean, com.ibm.netdata.beans.NetDataSQL,
lets you use Java to run an SQL statement through Net.Data. To use this bean, you
need to specify Net.Data properties for the bean so that it can work with the macro.

To set up the Net.Data SQL JavaBean with a JavaBean development tool:

1. Add or import the NetDataBeans.jar file into your JavaBean development tool.

2. Using the development tool's customizer interface, set the following input
properties:

Language environment
Specifies the language environment to use; the default is DTW_SQL.

SQL Specifies the SQL statement to run; the default is select * from
employee.

DATABASE
Specifies the database to use; the default is SAMPLE.

HTML path
Specifies the path to the Net.Data db2www.ini file.

Parameters
Specifies the parameter name and values to use when running the SQL
statement.

Chapter 4. Invoking Net.Data 79

Syntax:
namel=valuel&nameN=valueN

To run the Net.Data SQL JavaBean with a JavaBean development tool:

1. Select the run or execute action provided by your JavaBean development tool to
run the macro.

2. After the SQL statement has run, you can reference the following output
properties:

RC Specifies the return code returned from Net.Data.

Results
Specifies the data returned from the SQL statement.

80 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

Chapter 5. Developing Net.Data Macros

A Net.Data macro is a text file consisting of a series of Net.Data macro language

constructs that:
» Specify the layout of Web pages
e Define variables and functions

» Call functions that are built-in to Net.Data or defined in the macro
» Format the processing output and return it to the Web browser for display

The Net.Data macro contains two organizational parts: the declaration part and the

presentation part, as shown in

Net.Data Macro File Structure

%{Comment %} ‘

%Define... ‘

%lInclude... ‘ —Declaration Part

%Message... ‘

%Function... ‘

%HTML(Input)

—Presentation Part

%HTML(Output)

Figure 19. Macro Structure

* The declaration part contains the definitions of variables and functions in the

macro.

* The presentation part contains HTML blocks that specify the layout of the Web
page. The HTML blocks are made up of text presentation statements that are
supported by your Web browser, such as HTML and JavaScript.

You can use these parts multiple times and in any order. See Net.Data Reference

for syntax of the macro parts and constructs.

Authorization Tip: Ensure that the Web server has access rights to this file. See

[Granting Access Rights to Files Accessed by Net Data” on page 51 for more

information.

This chapter examines the different blocks that make up a Net.Data macro and
methods you can use for writing the macro.

© Copyright IBM Corp. 1997, 1999

81

Anatomy of a Net.Data Macro

The macro consists of two parts:

* The declaration part, that contains definitions used in the presentation part. The
declaration part uses two major optional blocks:

— DEFINE block
— FUNCTION block

The declaration part can also contain other language constructs and statements,
such as EXEC statements, IF blocks, INCLUDE statements, and MESSAGE
blocks. For more information about the language constructs, see the chapter
about language constructs in Net.Data Reference.

Authorization Tip: Ensure that the Web server has access rights to files

referenced by the EXEC and INCLUDE statements. See LGranting Access Rightd
to Eiles Accessed hy Net Data” on page 51| for more information.

* The presentation part defines the layout of the Web page, references variables,
and calls functions using HTML blocks that are used as entry and exit points
from the macro. When you invoke Net.Data, you specify an HTML block name as
an entry point for processing the macro. The HTML blocks are described in

In this section, a simple Net.Data macro illustrates the elements of the macro
language. This example macro presents a form that prompts for information to pass
to a REXX program. The macro passes this information to an external REXX
program called ompsamp.cmd, which echoes the data that the user enters. The
results are then displayed on a second HTML page.

First, look at the entire macro, and then each block in detail:

%{ *hkkkkkkkhkkkhkhkkkhhrkrk DEFINE block ************************%}

%DEFINE {
page title="Net.Data Macro Template"
}

oN°

kkkkkkkhkxkrkkkxkxkkkkx* FUNCTION Definition block ************************%}

{
FUNCTION(DTW_REXX) rexxl (IN input) returns(result)

— o o°

%EXEC{ompsamp.cmd %}

o

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

)
%}

result = date()

%{ *hhkkkhhkkkhhrkrhhkkhhkrk HTML Block: Input ************************%}
SHTML (INPUT) {

<html>

<head>

<title>§(page_title)</title>

</head><body>

<h1>Input Form</h1>

Today is @today()

<FORM METHOD="post" ACTION="QUTPUT">

82 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Type some data to pass to a REXX program:

<INPUT NAME="input_data" TYPE="text" SIZE="30">
<p>
<INPUT TYPE="submit" VALUE="Enter">

</form>

<hr>
<p>[Home page]
</body></htm1>

[)
%}

%{ ER HTML Block: Qutput ************************%}
%HTML (OUTPUT) {

<htm1>

<head>
<title>$(page_title)</title>
</head><body>

<h1>Qutput Page</hl>
<p>@rexx1(input_data)

<p><hr>

<p>[Home page |

Previous page]
</body></htm1>

[
%}

The sample macro consists of four major blocks: the DEFINE, the FUNCTION, and
the two HTML blocks. You can have multiple DEFINE, FUNCTION, and HTML
blocks in one Net.Data macro.

The two HTML blocks contain text presentation statements such as HTML, which
make writing Web macros easy. If you are familiar with HTML, building a macro
simply involves adding macro statements to be processed dynamically at the server
and SQL statements to send to the database.

Although the macro looks similar to an HTML document, the Web server accesses
it through Net.Data using CGI, a Web server API, or a Java Servlet. To invoke a
macro, Net.Data requires two parameters: the name of the macro to process, and
the HTML block in that macro to display.

When the macro is invoked, Net.Data processes it from the beginning. The
following sections look at what happens as Net.Data processes the file.

The DEFINE Block

The DEFINE block contains the DEFINE language construct and variable definitions
used later in the HTML blocks. The following example shows a DEFINE block with
one variable definition;
%{ R T T T Ty DEFINE Block ************************%}
%DEFINE {

page_title="Net.Data Macro Template"

0,
%}

The first line is a comment. A comment is any text inside %{ and %}. Comments can
be anywhere in the macro. The next statement starts a DEFINE block. You can
define multiple variables in one define block. In this example, only one variable,
page_title, is defined. After it is defined, this variable can be referenced anywhere
in the macro using the syntax, $(page_title). Using variables makes it easy to
make global changes to your macro later. The last line of this block, %}, identifies
the end of the DEFINE block.

Chapter 5. Developing Net.Data Macros 83

The FUNCTION Block

The FUNCTION block contains declarations for functions invoked by the HTML
blocks. Functions are processed by language environments and can execute
programs, SQL queries, or stored procedures.

The following example shows two FUNCTION blocks. One defines a call to an
external REXX program and the other contains inline REXX statements.
°/0{ kkkkkkkkxkrkkkxkxkkkkx* FUNCTION Block **********************************0/0}
%FUNCTION(DTW_REXX) rexxl (IN input) returns(result) { <-- This function accepts
one parameter and returns the
variable 'result', which is
assigned by the external REXX
program
%EXEC{ompsamp.cmd %} <-- The function executes an external REXX program
called "ompsamp.cmd"

0,
%}

%FUNCTION(DTW_REXX) today () RETURNS(result) {
result = date() <-- The single source statement for this function is
contained inline.

0,
%}

The first function block, rexxl, is a REXX function declaration that in turn, runs an
external REXX program called ompsamp.cmd. One input variable, input, is accepted
by this function and automatically passed to the external REXX command. The
REXX command also returns one variable called result. The contents of the
result variable in the REXX command replaces the invoking @rexx1() function call
contained in the OUTPUT block. The variables input and result are directly
accessible by the REXX program, as shown in the source code for ompsamp.cmd:
/% REXX =/

result = 'The REXX program received "'input'" from the macro.'

The code in this function echoes the data that was passed to it. You can format the
resulting text any way you want by enclosing the requesting @rexx1() function call
in normal mark-up style tags (like or). Rather than using the result
variable, the REXX program could have written HTML tags to standard output using
REXX SAY statements.

The second function block, also refers to a REXX program, today. However, the
entire REXX program in this case is contained in the function declaration itself. An
external program is not needed. Inline programs are allowed for both REXX and
Perl functions because they are interpreted languages that can be parsed and
executed dynamically. Inline programs have the advantage of simplicity by not
requiring a separate program file to manage. The first REXX function could also
have been handled inline.

HTML Blocks

HTML blocks define the layout of the Web page, reference variables, and call
functions. HTML blocks are used as entry and exit points from the macro. An HTML
block is always specified in the Net.Data macro request and every macro must
have at least one HTML block.

The first HTML block in the example macro is named INPUT. The HTML(INPUT)
contains the HTML for a simple form with one input field.

84 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

%{ *hkkkkkkhkkkkhhkkkhhrrk HTML Block: Input ************************%}

ZHTML (INPUT) { <--- Identifies the name of this HTML block.
<html>

<head>

<title>§(page_title)</title> <--- Note the variable substitution.
</head><body>

<h1>Input Form</hl>

Today is @today() <--- This line contains a call to a function.

<FORM METHOD="post" ACTION="OUTPUT"> <--- When this form is submitted,
the "OUTPUT" HTML block is called.
Type some data to pass to a REXX program:
<INPUT NAME="input_data" <--- "input_data" is defined when the form
TYPE="text" SIZE="30"> is submitted and can be referenced elsewhere in
this macro. It is initialized to whatever the

user types into the input field.
<p>
<INPUT TYPE="submit" VALUE="Enter">

<hr>
<p>
[
Home page]
</body><htm1>
%} <--- Closes the HTML block.

The entire block is surrounded by the HTML block identifier, SHTML (INPUT) {...%}.
INPUT identifies the name of this block. The name can contain any alphanumeric
character, underscores, or periods. The HTML <title> tag contains an example of
variable substitution. The value of the variable page title is substituted into the title
of the form.

This block also has a function call. The expression @today() is a call to the function
today. This function is defined in the FUNCTION block that is described above.
Net.Data inserts the result of the today function, the current date, into the HTML
text in the same location that the @today() expression is located.

The ACTION parameter of the FORM statement provides an example of navigation

between HTML blocks or between macros. Referencing the name of another block

in an ACTION parameter accesses that block when the form is submitted. Any input
data from an HTML form is passed to the block as implicit variables. This is true of

the single input field defined on this form. When the form is submitted, data entered
in this form is passed to the HTML(OUTPUT) block in the variable input_data.

You can access HTML blocks in other macros with a relative reference if the
macros are on the same Web server. For example, the ACTION parameter
ACTION="../othermacro.d2w/main" accesses the HTML block called main in the
macro othermacro.d2w. Again, any data entered into the form is passed to this
macro in the variable input_data.

When you invoke Net.Data, you pass the variable as part of the URL. For example:
Next macro

You can access or manipulate form data in the macro by referencing the variable
name specified in the form.

The next HTML block in the example is the HTML(OUTPUT) block. It contains the

HTML tagging and Net.Data macro statements that define the output processed
from the HTML(INPUT) request.

Chapter 5. Developing Net.Data Macros 85

"/O{ KAKRKRKKRKRK IR KRR IR AR K*H HTML Block: Output ************************%}

%HTML (OUTPUT) {

<html>

<head>

<title>§(page_title)</title> <--- More substitution.

</head><body>

<h1>Qutput Page</hl>

<p>@rexx1(input_data) <--- This line contains a call to function rexxl
passing the argument "input_data".

<p>

<hr>

<p>

Home page |
Previous page]

0,
%}

Like the HTML(INPUT) block, this block is standard HTML with Net.Data macro
statements to substitute variables and a function call. Again the page_title variable
is substituted into the title statement. And, as before, this block contains a function
call. In this case, it calls the function rexx1 and passes to it the contents of the
variable input_data, which it received from the form defined in the Input block. You
can pass any number of variables to and from a function. The function definition
specifies the number and the usage of variables that are passed.

Net.Data Macro Variables

Net.Data lets you define and reference variables in a Net.Data macro. In addition,
you can pass these variables from the macro to language environments and back.

Net.Data variables can be defined depending on the type of variable and whether it
has a predefined value. These variables can be categorized into the following types,
based on how they are defined:
« Explicitly defined variables using the DEFINE statement in the DEFINE block
» Predefined variables, which are variables that are made available by Net.Data
and are set to a value. This value usually cannot be changed.
* Implicitly defined variables, which are of four types:
— Variables that are not explicitly defined but are instantiated when first
assigned a value.
— Parameter variables that are part of a FUNCTION block definition and that
can only be referenced within a FUNCTION block.
— Variables that are instantiated by Net.Data and correspond to form data or
query string data.

— Variables that are associated with a Net.Data table and that can only be
referenced within a ROW block or REPORT block.

The following sections describe:

86 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

Identifier Scope

An identifier, which is a variable or a function call, becomes visible, meaning that it
can be referenced when it is declared or instantiated. The region where an identifier
is visible is called its scope. The five types of scope are:

Global

An identifier has global scope if you can reference it anywhere within a macro.
Identifiers that have global scope are:

Net.Data built-in functions

Form data

Query string data

Variables instantiated from within an HTML block

Macro

An identifier has this scope if its declaration appears outside of any block. A
block starts with an opening bracket ({) and ends with a percent sign and bracket
(%}). (Note that DEFINE blocks are excluded from this definition and should be
treated as separate DEFINE statements.) Unlike an identifier with global scope,
one with macro scope can only be referred to by items in the macro that follow
the idenfier's declaration.

FUNCTION block or MACRO_FUNCTION block
An identifier has function block scope if:
— The identifier is declared in the parameter list of the function definition.

If an identifier with the same name already exists outside the function
definition, then Net.Data uses the identifier from the function parameter list
within the function block.

— The identifier is instantiated in the function block and is not declared or
instantiated prior to the function call.

An identifier does not have function block scope if it has been declared or
initialized outside of the function and is not declared in the function parameter
list. The value of the identifier within the function block remains unchanged
unless updated by the function.

REPORT block

An identifier has report block scope if it can be referenced only from within a
REPORT block (for example, table column names N1, N2, ..., Nn). Only those
variables that Net.Data implicitly defines as part of its table processing can have
a report block scope. Any other variables that are instantiated have function block
scope.

ROW block

An identifier has row block scope if it can only be referenced from within a ROW
block (for example, table value names V1, V2, ..., Vn). Only those variables that
Net.Data implicitly defines as part of its table processing can have a row block
scope. Any other variables that are instantiated have function block scope.

Defining Variables

There are three ways to define variables in a Net.Data macro:

Define statement or block

* HTML form tags
* Query string data

Chapter 5. Developing Net.Data Macros 87

A variable value received from form or query string data overrides a variable value
set by a DEFINE statement in a Net.Data macro.

* DEFINE statement or block

The simplest way to define a variable for use in a Net.Data macro is to use the
DEFINE statement. The syntax is as follows:

%DEFINE variable_name="variable value"

%DEFINE variable name={ variable value on multiple
lines of text %}

%DEFINE {
variable_namel="variable value 1"
variable_name2="variable value 2"

o

}

The variable_name is the name you give the variable. Variable names must
begin with a letter or underscore and can contain any alphanumeric character, an
underscore, a period, or a hash (#). All variable names are case-sensitive, except
N_columnName and V_columnName, which are table variables.

For example:
%DEFINE reply="hello"

The variable reply has the value hello.

Two consecutive quotes alone is equal to an empty string. For example:
%DEFINE empty=""

The variable empty has an empty string.

If your variable contains special characters, such as an end-of-line, use block
braces around the value:

%DEFINE introduction={
Hello,
My name is John.

0,
%}

To include quotes in a string, you can use two quotes consecutively.
%DEFINE HI="say ""hello"""

You can also use block braces to escape the quotes:
%DEFINE HI={ say "hello" %}

To define several variables with one DEFINE statement, use a DEFINE block:

%DEFINE {
variablel="valuel"
variable2="value2"
variable3="value3"
variable4="value4"

%}
* HTML form tags: SELECT, INPUT, and TEXTAREA

You can use HTML FORM tags to assign values to variables, namely the
SELECT, INPUT, and TEXTAREA tags. The following example uses standard
HTML form tags to define Net.Data variables:

<INPUT NAME="variable name" TYPE=...>

or

88 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

<SELECT NAME="variable_name">
<OPTION>value one
<OPTION>value two

</SELECT>

To assign a variable that spans multiple lines or contains special characters, such
as quotes, the TEXTAREA tag can be used:

<TEXTAREA NAME="variable_name" ROWS="4">

Please type the multi-line value

of your variable here.
</TEXTAREA>

The variable_name is the name you give the variable, and the value of the
variable is determined from the input received in the form. See L

for an example of how this type of variable definition is used in a
Net.Data macro.

* Query string data
You can pass variables to Net.Data through the query string. For example:
http://www.ibm.com/cgi-bin/db2www/stdqryl.d2w/input?field=custno

In the above example, the variable name, field, and the variable value, custno,
specify additional data that Net.Data receives from the query string. Net.Data
receives and processes the data as it would from form data.

Referencing Variables

You can reference a previously defined variable to return its value. To reference a
variable in Net.Data macros, specify the variable name inside $(and). For
example:

$(variableName)
$ (homeURL)

When Net.Data finds a variable reference, it substitutes the variable reference with
the value of the variable. Variable references can contain strings, variable
references, and function calls.

You can dynamically generate variable names. With this technique, you can use
loops to process variably-sized tables or input data for lists that are built at run time,
when the number in the list cannot be determined in advanced. For example, you
can generate lists of HTML form elements that are generated based on records
returned from an SQL query.

To use variables as part of your text presentation statements, reference them in the
HTML blocks of your macro.

Invalid variable references: Invalid variable references are resolved to the empty
string. For example, if a variable reference contains invalid characters such as an
exclamation point (!), the reference is resolved to the empty string.

Valid variable names must begin with an alphanumeric character or an underscore,
and they can consist of alphanumeric characters, including a period, underscore,
and hash mark.

Example 1: Variable reference in a link

If you have defined the variable homeURL.:

Chapter 5. Developing Net.Data Macros 89

Variable Types

%DEFINE homeURL="http://www.ibm.com/"

You can refer to the home page as § (homeURL) and create a link:
Home page

You can reference variables in many parts of the Net.Data macro; check the
language constructs in this chapter to determine in which parts of the macro
variable references are allowed. If the variable has not yet been defined at the time
it is referenced, Net.Data returns an empty string. A variable reference alone does
not define the variable.

Example 2: Dynamically generated variable references

Assume that you run an SQL SELECT statement with any number of elements. You
can create an HTML form with input fields using the following ROW blocks:

SROW {

<input type=text name=@dtw_rconcat("I", ROW_NUM) size=10 maxlength=10>

0,
%}

Because you created INPUT fields, you would probably want to access the values
that the user entered when the form is submitted to your macro for processing. You
can code a loop to retrieve the values in a variable length list:

<PRE>

@dtw_assign(rowIndex, "1")

%while (rowIndex <= rowCount) {

The value entered for row $(rowIndex) is: $(I$(rowIndex))
@dtw_add(rowIndex, "1", rowIndex) %}

</PRE>

Net.Data first generates the variable name using the I$(rowindex) reference. For
example, the first variable name would be I1. Net.Data then uses that value and
resolves to the value of the variable.

Example 3: A variable reference with nested variable references and a function call

%define my = "my"
%define u = "lower"
%define myLOWERvar = "hey"

$($(my)@dtw_ruppercase(u)var)

The variable reference returns the value of hey.

You can use the following types of variable in your macros.

90 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

If you assign strings to variables that are defined a certain way by Net.Data, such
as ENVVAR, LIST, condition list variables, the variable no longer behaves in the
defined way. In other words, the variable becomes a simple variable, containing a
string.

See Net.Data Reference for syntax and examples of each variable.

Conditional Variables

Conditional variables let you define a conditional value for a variable by using a
method similar to an IF, THEN construct. When defining the conditional variable,
you can specify two possible variable values. If the first variable you reference
exists, the conditional variable gets the first value; otherwise the conditional variable
gets the second value. The syntax for a conditional variable is:

varA = varB ? "value_1" : "value 2"

If varB is defined, varA="value_1", otherwise varA="value_2". This is equivalent to
using an IF block, as in the following example:
%IF ($(varB))
varA = "value_1"
%ELSE

varA = "value_2"
%ENDIF

See [List Variahles” on page 94 for an example of using conditional variables with

list variables.

Environment Variables

You can reference environment variables that the Web server makes available to
the process or thread that is processing your Net.Data request. When the ENVVAR
variable is referenced, Net.Data returns the current value of the environment
variable by the same name.

The syntax for defining environment variables is:
%DEFINE var=%ENVVAR

Where var is the name of the environment variable being defined.

For example, the variable SERVER_NAME can be defined as environment variable:
%DEFINE SERVER_NAME=%ENVVAR

And then referenced:
The server is $(SERVER_NAME)

The output looks like this:
The server is www.software.ibm.com

See Net.Data Reference for more information about the ENVVAR statement.

Chapter 5. Developing Net.Data Macros 91

Executable Variables

You can invoke other programs from a variable reference using executable
variables.

Define executable variables in a Net.Data macro using the EXEC language
construct in the DEFINE block. For more information about the EXEC language
element, see the language constructs chapter in the Net.Data Reference. In the
following example, the variable runit is defined to execute the executable program
testProg:

%DEFINE runit=%EXEC "testProg"
runit becomes an executable variable.

Net.Data runs the executable program when it encounters a valid variable reference
in a Net.Data macro. For example, the program testProg is executed when a valid
variable reference is made to the variable runit in a Net.Data macro.

A simple method is to reference an executable variable from another variable
definition. The following example demonstrates this method. The variable date is
defined as an executable variable and dateRpt contains a reference to the
executable variable.

%DEFINE date=%EXEC "date"
%DEFINE dateRpt="Today is $(date)"

Wherever $ (dateRpt) appears in the Net.Data macro, Net.Data searches for the
executable program date, and when it locates it, returns:

Today is Tue 11-07-1999

When Net.Data encounters an executable variable in a macro, it looks for the
referenced executable program using the following method:

1. It searches the directories specified by the EXEC_PATH in the Net.Data
initialization file. See LEXEC_PATH” on page 18 for details.

2. If Net.Data does not locate the program, the system searches the directories
defined by the system PATH environment variable or the library list. If it locates
the executable program, Net.Data runs the program.

Restriction: Do not set an executable variable to the value of the output of the
executable program it calls. In the previous example, the value of the variable date
is NULL. If you use this variable in a DTW_ASSIGN function call to assign its value
to another variable, the value of the new variable after the assignment is NULL
also. The only purpose of an executable variable is to invoke the program it defines.

You can also pass parameters to the program to be executed by specifying them
with the program name on the variable definition. In this example, the values of
distance and time are passed to the program calcMPH.

%DEFINE mph=%EXEC "calcMPH $(distance) $(time)"

This next example returns the system date as part of the report:

%DEFINE database="celdial"
%DEFINE tstamp=%EXEC "date"

%FUNCTION(DTW_SQL) myQuery() f{

SELECT CUSTNO, CUSTNAME from distl.customer
%REPORT{

%ROW{

92 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

HREF="/cgi-bin/db2www/exmp.d2w/report?valuel=$(V1)&value2=§(v2)">
V1) $(v2)

N N N A

A
(
}
}
}

%HTML (report) {
<H1>Report made: $(tstamp) </H1>
@myQuery ()

0,
%}

Each report displays the date for easy tracking. This example also puts the
customer number and name in a link for another Net.Data macro. Clicking on any
customer in the report calls the exmp.d2w Net.Data macro, passing the customer
number and name to the Net.Data macro.

Hidden Variables

You can use hidden variables to conceal the actual name of a variable from
application users who view your Web page source with their Web browser. To
define a hidden variable:

1. Define a variable for each string you want to hide, after the variable’s last
reference in the HTML block. Variables are always defined with the DEFINE
language construct after they are used in the HTML block, as in the following
example. The $$(variable) variables are referenced and then defined.

2. In the HTML block where the variables are referenced, use double dollar signs
instead of a single dollar sign to reference the variables. For example, $$(X)
instead of §(X).

SHTML (INPUT) {

<FORM ...>

<P>Select fields to view:
shanghai<SELECT NAME="Field">

<OPTION VALUE="$$(name)"> Name
<OPTION VALUE="$$(addr)"> Address

</FORM>
%}

%DEFINE {
name="customer.name"
addr="customer.address"

0
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

0
%}

When a Web browser displays the HTML form, $$(name) and $$ (addr) are
replaced with §$(name) and $ (addr) respectively, so the actual table and column
names never appear on the HTML form. Application users cannot tell that the
true variable names are hidden. When the user submits the form, the
HTML(REPORT) block is called. When @mySelect() calls the FUNCTION block,
$(Field) is substituted in the SQL statement with customer.name or
customer.addr in the SQL query.

Chapter 5. Developing Net.Data Macros 93

List Variables

Use list variables to build a delimited string of values. They are particularly useful in
helping you construct an SQL query with multiple items like those found in some
WHERE or HAVING clauses. The syntax for a list variable is:

%LIST " value_separator " variable_name

Recommendation: The blanks are significant. Insert a space before and after the
value separator for most cases. Most queries use Boolean or mathematical
operators (for example, AND, OR, or >) for the value separator. The following
example illustrates the use of conditional, hidden, and list variables:

SHTML (INPUT) {

<FORM METHOD="POST" ACTION="/cgi-bin/db2www/example2.d2w/report">

<H2>Select one or more cities:</H2>

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(condl)">Sao Paolo

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond2)">Seattle

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond3)">Shanghai

<INPUT TYPE="submit" VALUE="Submit Query">

</FORM>

[}
%}

%DEFINE{
DATABASE="custcity"

%LIST " OR " conditions
condl="condl="'Sao Paolo"'"
cond2="cond2="'Seattle"'"
cond3="cond3="'Shanghai'"
whereClause= ? "WHERE $(conditions)" : ""

0,
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist
$ (whereClause)

0,
%}

%HTML (REPORT) {
GmySelect ()

%}

In the HTML form, if no boxes are checked, conditions is NULL, so whereClause is
also NULL in the query. Otherwise, whereClause has the selected values separated
by OR. For example, if all three cities are selected, the SQL query is:

SELECT name, city FROM citylist
WHERE condl='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

This example shows that Seattle is selected, which results in this SQL query:

SELECT name, city FROM citylist
WHERE condl='Seattle'

Table Variables

The table variable defines a collection of related data. It contains a set of rows and
columns including a row of column headers. A table is defined in the Net.Data
macro as in the following statement:

%DEFINE myTable=%TABLE(30)
The number following %TABLE is the limit on the number of rows that this table

variable can contain. To specify a table with no limit on the number of rows, use the
default or specify ALL, as shown in these examples:

94 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

%DEFINE myTable2=%TABLE
%DEFINE myTable3=%TABLE (ALL)

When you define a table, it has zero rows and zero columns. The only way you can
populate a table with values is by passing it as an OUT or INOUT parameter to a
function or by using the built-in table functions provided by Net.Data. The
DTW_SQL language environment automatically puts the results of a SELECT
statement into a table.

For non-database language environments, such as DTW_REXX or DTW_PERL, the

language environment is also responsible for setting table values. However, the

Ianguage envwonment script or program defmes the table values cell-by-cell. See
for more information about

how language environments use table variables.

You can pass a table between functions by referring to the table variable name. The
individual elements of the table can be referred to in a REPORT block of a function
or by using the Net.Data table functions. See [Tahle Processing Variahles” orl
for accessing individual elements in a table within a REPORT block, and

e [Table Functions” on page 101 for accessing individual elements of a table
using a table function. Table variables are usually populated with values in an SQL
function, and then used as input to a report, either in the SQL function or in another
function after being passed to that function as a parameter. You can pass table
variables as IN, OUT, or INOUT parameters to any non-SQL function. Tables can be
passed to SQL functions only as OUT parameters.

If you reference a table variable, the contents of the table are displayed and
formatted based on the setting of the DTW_HTML_TABLE variable. In the following
example, the contents of myTable would be displayed:

%HTML (output) {
$(myTable)

The column names and field values in a table are addressed as array elements with
an origin of 1.

Miscellaneous Variables

These variables are Net.Data-defined variables that you can use to:
» Affect Net.Data processing

* Find out the status of a function call

* Obtain information about the result set of a database query

» Determine information about file locations and dates

Miscellaneous variables can either have a predefined value that Net.Data
determines or have values that you set. For example, Net.Data determines the
DTW_CURRENT_FILENAME variable value based on the current file that it is
processing, whereas you can specify whether Net.Data removes extra white space
caused by tabulators and new-line characters.

Predefined variables are used as variable references within the macro and provide

information about the current status of files, dates, or the status of a function call.
For example, to retrieve the name of the current file, you could use:

Chapter 5. Developing Net.Data Macros 95

%REPORT {
<p>This file is <i>$(DTW_CURRENT FILENAME)</i>.</P>
}

Modifiable variable values are generally set using a DEFINE statement or with the
@DTW_ASSIGN() function and let you affect how Net.Data processes the macro.
For example, to specify whether white space is removed, you could use the
following DEFINE statement:

%DEFINE DTW_REMOVE_WS="YES"
Table Processing Variables

Net.Data defines table processing variables for use in the REPORT and ROW
blocks. Use these variables to reference values from SQL queries and function
calls.

Table processing variables have a predefined value that Net.Data determines.
These variables allow you to reference values from the result sets of SQL queries
or function calls by the column, row, or field that is being processed. You can also
access information about the number of rows being processed or a list of all the
column names.

For example, as Net.Data processes a result set from an SQL query, it assigns the
value of the variable Nn for each current column name, such that N1 is assigned to
the first column, N2 is assigned to the second column, and so on. You can
reference the current column name for your Web page output.

Use table processing variables as variable references within the macro. For
example, to retrieve the name of the current column being processed, you could
use:

%REPORT {

<p>Column 1 is <i>§(N1)</i>.</P>
1

Table processing variables also provide information about the results of a query.
You can reference the variable TOTAL_ROWS in the macro to show how many
rows are returned from an SQL query, as in the following example:

Names found: $(TOTAL_ROWS)

Some of the table processing variables are affected by other variables or built-in
functions. For example, TOTAL_ROWS requires that the DTW_SET_TOTAL_ROWS
SQL language environment variable be activated so that Net.Data assigns the value
of TOTAL_ROWS when processing the results from a SQL query or function call as
in the following example:

%DEFINE DTW_SET_TOTAL_ROWS="YES"
Names found: $(TOTAL_ROWS)

Report Variables

Net.Data displays Web page output generated from the macro in a default report
format. The default report format displays in a table format using <PRE> </PRE>
tags. You can override the default report by defining a REPORT block with
instructions for displaying the output or by using one of the report variables to
prevent the default report from being generated.

96 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

Report variables help you customize how your Web page output is displayed and
used with default reports and Net.Data tables. You must define these variables
before using them with a DEFINE statement or with the @DTW_ASSIGN() function.

The report variables specify spacing, override default report formats, specify HTML
table output versus default table output, and specify other display features. For
example, you can use the ALIGN variable to control leading and trailing spaces for
table processing variables. The following example uses the ALIGN variable to
separate by a space each column name in a list that is returned by a query.

%DEFINE ALIGN="YES"

<p>Your query was on these columns: $(NLIST)

The START_ROW_NUM report variable lets you determine at which row to begin
displaying the results of a query. For example, the following variable value specifies
that Net.Data will begin displaying the results of a query at the third row.

%DEFINE START_ROW_NUM = "3"

You can also determine whether Net.Data uses HTML tags for default formatting.
With DTW_HTML_TABLE set to YES, an HTML table is generated rather than a
text-formatted table.

%DEFINE DTW_HTML_TABLE="YES"

%FUNCTION (DTW_SQL) {
SELECT NAME, ADDRESS FROM $(qTable)

0,
%}

Language Environment Variables

These variables are used with language environments and affect how the language
environment processes a request.

With these variables, you can perform tasks such as establishing connections to
databases,supplying alternate text for Java applets,enabling NLS support, and
determining whether the execution of an SQL statement is successful.

For example, you can use the SQL_STATE variable to access or display the SQL
state value returned from the database.
%FUNCTION (DTW_SQL) vall() {

select * from customer
%REPORT {

%ROW - {
%}

SQLSTATE=$(SQL_STATE)
}

N

This next example shows how to define which database is to accessed.
%DEFINE DATABASE="CELDIAL"

Net.Data Functions

Net.Data provides built-in functions for use in your applications, such as word and
string manipulation functions or functions that retrieve and set table variable
functions. You can also define functions for use with your application, for example to
call an external program or a stored procedure.

Chapter 5. Developing Net.Data Macros 97

User-defined functions
Those functions that you define for use with your application, for example to
call an external program or a stored procedure.

Net.Data built-in functions
Those functions that Net.Data provides for use in your applications, such as
functions for manipulating words and strings and functions that get and set
table variables.

These sections describe the following topics:

Defining Functions

To define your own functions in the macro, use a FUNCTION block or
MACRO_FUNCTION block:

FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by a language environment. FUNCTION blocks must contain
language statements or calls to an external program.

MACRO_FUNCTION block
Defines a subroutine that is invoked from a Net.Data macro and is
processed by Net.Data rather than a language environment.
MACRO_FUNCTION blocks can contain any statement that is allowed in an
HTML block.

Syntax: Use the following syntax to define functions:

FUNCTION block:

%FUNCTION(type) function-name([usage] [datatype] parameter, ...) [RETURNS(return-var)] {
executable-statements
[report-block]

[report-block]
[message-block]

0,
%}

MACRO_ FUNCTION block:

%MACRO_FUNCTION function-name([usage] parameter, ...) {
executable-statements
report-block

report-block

0
%}

Where:

type Identifies a language environment that is configured in the initialization file.
The language environment invokes a specific language processor (which
processes the executable statements) and provides a standard interface
between Net.Data and the language processor.

function-name
Specifies the name of the FUNCTION or MACRO_FUNCTION block. A

98 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

function call specifies the function-name, preceded by an at (@) sign. See

[Calling Functions” on page 102 for details.

You can define multiple FUNCTION or MACRO_FUNCTION blocks with the
same name so that they are processed at the same time. Each of the
blocks must all have identical parameter lists. When Net.Data calls the
function, all FUNCTION blocks with the same name or
MACRO_FUNCTION blocks with the same name are executed in the order
they are defined in the Net.Data macro.

usage Specifies whether a parameter is an input (IN) parameter, an output (OUT)
parameter, or both types (INOUT). This designation indicates whether the
parameter is passed into or received back from the FUNCTION block,
MACRO_FUNCTION block, or both. The usage type applies to all of the
subsequent parameters in the parameter list until changed by another
usage type. The default type is IN.

datatype
The data type of the parameter. Some language environments expect data
types for the parameters that are passed. For example, the SQL language
environment expects them when calling stored procedures. See |£Jh;p1—e(|"__ﬁ.|

Using | anguage Environments” an page 117 to learn more about the

supported data types for the language environment you are using.

parameter
The name of a variable with local scope that is replaced with the value of a
corresponding argument specified on a function call. Parameter references,
for example $(parml), in the executable statements or REPORT block are
replaced with the actual value of the parameter. In addition, parameters are
passed to the language environment and are accessible to the executable
statements using the natural syntax of that language or as environment
variables. Parameter variable references are not valid outside the
FUNCTION or MACRO_FUNCTION blocks.

return-var
Specify this parameter after the RETURNS keyword to identify a special
OUT parameter. The value of the return variable is assigned in the function
block, and its value is returned to the place in the macro from which the
function was called. For example, in the following sentence, <p>My name is
@my _name() ., @Gmy_name() gets replaced by the value of the return variable. If
you do not specify the RETURNS clause, the value of the function call is:

* NULL if the return code from the call to the language environment is zero
* The value of the return code, when the return code is non-zero.

executable-statements
The set of language statements that is passed to the specified language
environment for processing after the variables are substituted and the
functions are processed. executable-statements can contain Net.Data
variable references and Net.Data function calls. executable-statements
includes those executable statements that are allowed in an HTML block.

For FUNCTION blocks, Net.Data replaces all variable references with the
variable values, executes all function calls, and replaces the function calls
with their resulting values before the executable statements are passed to
the language environment. Each language environment processes the
statements differently. For more information about specifying executable
statements or calling executable programs, see z

Chapter 5. Developing Net.Data Macros 99

For MACRO_FUNCTION blocks, the executable statements are a
combination of text and Net.Data macro language constructs. In this case,
no language environment is involved because Net.Data acts as the
language processor and processes the executable statements.

report-block
Defines one or more REPORT blocks for handling the output of the
FUNCTION or MACRO_FUNCTION block. See LRepart Blocks” an

message-block
Defines the MESSAGE block, which handles any messages returned by the

FUNCTION block. See Message Blocks” on page 101,

Define functions outside of any other block and before they are called in the
Net.Data macro.

Using Special Characters in Functions

When characters that match Net.Data language constructs syntax are used in the
language statements section of a function block as part of syntactically valid
embedded program code (such as REXX or Perl), they can be misinterpreted as
Net.Data language constructs, causing errors or unpredictable results in a macro.

For example, a Perl function might use the COMMENT block delimiter characters,
%{. When the macro is run, the %{ characters are interpreted as the beginning of a
COMMENT block. Net.Data then looks for the end of the COMMENT block, which it
thinks it finds when it reads the end of the function block. Net.Data then proceeds
to look for the end of the function block, and when it can’t be found, issues an error.

Use one of the following methods to use COMMENT block delimiter characters, or
any other Net.Data special characters as part of your embedded program code,
without having them interpreted by Net.Data as special characters:

* Use the EXEC statement to call the program code, rather than putting the code
inline.
» Use a variable reference to specify the special characters.

For example, the following Perl function contains characters representing a
COMMENT block delimiter, %{, as part of its Perl language statements:

%FUNCTION(DTW_PERL) func() {
for $num_words (sort bynumber keys %{ $Rtitles{$num} }) {
&make_Tinks($Rtitles{$num}{$num words});
}
%}

To ensure that Net.Data interprets the %{ characters as Perl source code rather
than as a Net.Data COMMENT block delimiter, rewrite the function in either of the
following ways:

e Use the %EXEC statement:

%FUNCTION(DTW_PERL) func() {
%EXEC{ func.prl %}

0,
%}

» Use a variable reference to specify the %{ characters:

100 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

%define percent_openbrace = "%{"
%FUNCTION(DTW_PERL) func() {

%6; $num_words (sort by number keys $(percent_openbrace) $Rtitles{$num} } {
&make_Tinks($Rtitles{$num}{$num words});
1
%}

Message Blocks

The MESSAGE block lets you determine how to proceed after a function call, based
on the success or failure of the function call, and lets you display information to the
caller of the function. When processing a message, Net.Data sets the language
environment variable RETURN_CODE for each function call to a FUNCTION block.
RETURN_CODE is not set on a function call to a MACRO_FUNCTION block.

A MESSAGE block consists of a series of message statements, each of which
specifies a return code value, message text, and an action to take. The syntax of a
MESSAGE block is shown in the language constructs chapter of Net.Data
Reference.

A MESSAGE block can have a global or a local scope. If the MESSAGE block is
defined in a FUNCTION block, its scope is local to that FUNCTION block. If it is
specified at the outermost macro layer, the MESSAGE block has global scope and
is active for all function calls executed in the Net.Data macro. If you define more
than one global MESSAGE block, the last one defined is active.

Net.Data uses these rules to process the value of the RETURN_CODE variable
from a function call:
1. Check local MESSAGE block for an exact match; exit or continue as specified.

2. If RETURN_CODE is not 0, check local MESSAGE block for +default or
-default; depending on the sign of RETURN_CODE, exit or continue as
specified.

3. If RETURN_CODE is not 0, check local MESSAGE block for default; exit or
continue as specified.

4. Check global MESSAGE block for an exact match; exit or continue as specified.

5. If RETURN_CODE is not 0, check global MESSAGE block for +default or
-default; depending on the sign of RETURN_CODE, exit or continue as
specified.

6. If RETURN_CODE is not 0, check global MESSAGE block for default; exit or
continue as specified.

7. If RETURN_CODE is not 0, issue Net.Data internal default message and exit.

The following example shows part of a Net.Data macro with a global MESSAGE
block and a MESSAGE block for a function.

%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more
than one line. You can use HTML tags, including
links and forms, in this message. %} : continue

[}
%}

Chapter 5. Developing Net.Data Macros 101

{ Tocal message block inside a FUNCTION block %}
FUNCTION(DTW_REXX) my function() {

%EXEC { my command.cmd %}

%MESSAGE {

)
%
)

%

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one Tine. You can use HTML tags, including

0

links and forms, in this message. %} :oexit

%}

If my_function() returns with a RETURN_CODE value of 50, Net.Data processes
the error in this order:

1. Check for an exact match in the local MESSAGE block.
Check for +default in the local MESSAGE block.

Check for default in the local MESSAGE block.

Check for an exact match in the global MESSAGE block.
Check for +default in the global MESSAGE block.

a s~ DN

When Net.Data finds a match, it sends the message text to the Web browser and
checks the requested action.

When you specify continue, Net.Data continues to process the Net.Data macro
after printing the message text. For example, if a macro calls my_functions() five
times and error 100 is found during processing with the MESSAGE block in the
example, output from a program can look like this:

11 May 1997 $245.45
13 May 1997 $623.23
19 May 1997 $ 83.02
return code 100 message

22 May 1997 $ 42.67
Total: $994.37

Calling Functions

Use a Net.Data function call statement to call both user-defined functions and
built-in functions. Use the at (@) character followed by a function name or a macro
function name:

@function_name([argument,...])

function_name
This is the name of the function or macro function to invoke. The function
must already be defined in the Net.Data macro, unless this is a built-in
function.

argument
This is the name of a variable, a quoted string, a variable reference, or a
function call. Arguments on a function call are matched up with the
parameters on a function or macro function parameter list. And, each
parameter is assigned the value of its corresponding argument while the
function or macro function is being processed. The arguments must be the
same number and type as the corresponding parameters.

102 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Quoted strings as arguments can contain variable references and functions
calls.

Example 1: Function call with a text string argument
@myFunction("abc")

Example 2: Function call with a variable and a function call arguments
@myFunction(myvar, @DTW_rADD("2","3"))

Example 3: Function call with a text string argument that contains a variable
reference and a function call

@myFunction("abc$ (myvar)def@DTW_rADD("2","3")ghi")

| Calling Net.Data Built-in Functions

Web
Browser

—

Net.Data provides a large set of built-in functions to simplify Web page
development. These functions are already defined by Net.Data, so you do not need
to define them. You can call these functions as you would call other functions.

m shows how the Net.Data built-in functions and the macro interact.

cal
: FastCGl :
Web : . Net.Data Macro File
S “ NSAPI
EIVEr - GWAPI %Define{...%}
"ICAPI %HTML(Initial-Page) Net.Data Built-in
ISAPI { Functions
" ' Servlets]
Initial - . » General
Page < 2 - Math
HTTP “{%HTML(Report) : \%2?3
* Table
Report - Flat File
age |« » Web Registry
Net.Data

Operating System
AlX, HP-UX, Linux, OS/2, SCO, Solaris, Windows NT

Figure 20. Net.Data Built-in Functions

Built-in functions can return their results in three ways, depending on its prefix:

* DTW_, DTWF_, and DTWR_: The results of the call are returned in an output
parameter or no result is returned. (DTWF _ is the prefix for flat file functions.
DTWR_ is the prefix for Web registry functions.)

* DTW_r, DTWF_r, and DTWR_r: The results of the function call replace the
function call in the macro, in the same way the value of the RETURNS keyword
replaces the function call for a user-defined function which has specified a
RETURNS keyword.

« DTW_m: Multiple results are returned in each of the parameters passed to the
function.

Chapter 5. Developing Net.Data Macros 103

Some built-in functions do not have each type. To determine which type a particular
built-in function has, see the Net.Data built-in functions chapter in Net.Data
Reference.

The following sections provide a high-level overview of the Net.Data built-in
functions. Use these functions to perform general purpose, math, string, word, or
table manipulation functions. See Net.Data Reference for descriptions of each
function with syntax and examples. Some of these functions required variables to
be set prior to their use, or must be used in a specific context. Not all operating
systems support each built-in function. See Net.Data Reference to determine which
functions are supported for your operating system.

General Purpose Functions

This set of functions help you develop Web pages by altering data or accessing
system services. You can use them to send mail, process HTTP cookies, generate
HTML escape codes, and get other useful information from the system.

For example, to specify that Net.Data should exit a macro if a specific condition
occurs, without processing the rest of the macro, you use the DTW_EXIT function:

%HTML (cache_example) {

<htm1>

<head>

<title>This is the page title</title>
</head>

<body>

<center>

<h3>This is the Main Heading</h3>

%IF (customer == "Joe Smith")
</body>
</html>

@DTW_EXIT()

%ENDIF

</body>
</html>

%}
Another useful function is the DTW_URLESCSEQ function, which replaces
characters that are not allowed in a URL with their escape values. For example, if

the input variable stringl equals "Guys & Dolls", DTW_URLESCSEQ assigns the
output variable to the value "Guys%20%26%20Do11s".

104 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Math Functions

These functions perform mathematical operations, letting you calculate or alter
numeric data. Besides standard mathematical operations, you can also perform
modulus division, specify a result precision, and use scientific notation.

For example, the function DTW_POWER raises the value of its first parameter to
the power of its second parameter and returns the result, as shown in the following
example:

@DTW_POWER("2", "-3", result)
DTW_POWER returns ".125" in the variable result
String Functions

These functions let you manipulate characters within strings. You can change a
string’s case, insert or delete characters, assign a string value to another variable,
plus other useful functions.

For example, you can use DTW_ASSIGN to assign the value of an input variable to
an output variable. You can also use this function to change a variable in a macro.
In the following example, the variable RC is assigned to zero.

@DTW_ASSIGN(RC, "0")

Other string functions include DTW_CONCAT, which concatenates strings, and
DTW_INSERT, which inserts strings at a specific position, as well many other string
manipulations functions.

Word Functions

These functions let you manipulate words in character strings. Most of these
functions work similar to string functions, but on entire words. For example, they let
you count the number of words in a string, remove words, search a string for a
word.

For example, use DTW_DELWORD to delete a specified number of words from a
string:
@DTW_DELWORD("Now is the time", "2", "2", result)

DTW_DELWORD returns the string "Now time".

Other word functions include DTW_WORDLENGTH, which returns the number of
characters in a word, and DTW_WORDPOS, which returns the position of a word
within a string.

Table Functions

You can use these functions to generate reports or forms using the data in a
Net.Data table variable. You can also use these functions to create Net.Data tables,
and to manipulate and retrieve values in those tables. Table variables contain a set
of values and their associated column names. They provide a convenient way to
pass groups of values to a function.

For example, DTW_TB_APPENDROW appends a row to the table. In the following
example, Net.Data appends ten rows to the table, myTable:

@DTW_TB_APPENDROW(myTable, "10")

Chapter 5. Developing Net.Data Macros 105

Additionally, DTW_TB_DUMPH, returns the contents of a macro table variable,
enclosed in <PRE></PRE> tags, with each row of the table is displayed on a
different line. And DTW_TB_CHECKBOX returns one or more HTML check box
input tags from a macro table variable.

Flat File Functions

Use the flat file interface (FFI) functions to open, read, and manipulate data from
flat file sources (text files), as well as store data in flat files.

For example, DTWF_APPEND, writes the contents of a table variable to the end of
a file, and DTWF_DELETE deletes records from a file.

Additionally, the FFI functions allow file locking with DTWF_CLOSE and
DTWF_OPEN. DTWF_OPEN locks a file that so that another request cannot read
or update the file. DTWF_CLOSE releases the file when Net.Data is done with i,
allowing other requests to access the file.

Web Registry Functions

Use the Web registry functions to maintain registries and the entries they contain. A
Web registry is a file with a key maintained by Net.Data to allow you to add,
retrieve, and delete entries easily.

For example, DTWR_ADDENTRY adds entries, while DTWR_DELENTRY deletes
entries. DTWR_LISTSUB returns information about the registry entries in an OUT
table parameter, and DTWR_UPDATEENTRY replaces the existing values for a
specified registry entry with a new value.

Generating Web Pages in a Macro

HTML Blocks

Net.Data lets you easily present standard Web pages on the application user’s
browser. The following sections describe the HTML and REPORT blocks of the
macro and show you how to format Web pages in Net.Data macros. See the
language constructs chapter in Net.Data Reference for syntax information for these
blocks.

A Net.Data macro contains HTML blocks that generate text presentation statements,
such as HTML, to a Web browser. In a macro, you must specify at least one HTML
block, but can specify as many as you want. Each HTML block generates a single
Web page at the browser. Net.Data processes only one HTML block each time it is
invoked. To create an application consisting of many Web pages, you can invoke
Net.Data multiple times to process HTML blocks using standard navigation
techniques, such as links and forms.

Any valid text presentation statements, such as HTML or JavaScript, can appear in
an HTML block. In addition, you can use INCLUDE statements, function calls, and
variable references in an HTML block. The following example shows a common use
of HTML blocks in a Net.Data macro:

%DEFINE DATABASE="MNS96"

SHTML (INPUT) {
<H1>Hardware Query Form</H1>
<HR>

106 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

Report Blocks

<FORM METHOD="POST" ACTION="/cgi-bin/db2www/equiplst.d2w/report">
<d1>

<dt>What hardware do you want to Tist?

<dd><input type="radio" name="hdware" value="MON" checked>Monitors
<dd><input type="radio" name="hdware" value="PNT">Pointing devices
<dd><input type="radio" name="hdware" value="PRT">Printers
<dd><input type="radio" name="hdware" value="SCN">Scanners

</d1>

<HR>

<input type="submit" value="Submit">

</FORM>

9

%}

%FUNCTION(DTW_SQL) myQuery() {

SELECT MODNO, COST, DESCRIP FROM EQPTABLE WHERE TYPE=§(hdware)
%REPORT{

Here is the list you requested:

%ROMW{

<HR>

$(N1): $(v1) $(N2): $(v2)

<p>

$(v3)

%HTML (REPORT) {
@myQuery ()

°

You can invoke the Net.Data macro from an HTML link like the one in the following
example:

List of hardware

When the application user clicks on this link, the Web browser invokes Net.Data,
and Net.Data parses the macro. When Net.Data begins processing the HTML block
specified on the invocation, in this case the HTML(INPUT) block, it begins to
process the text inside the block. Anything that Net.Data does not recognize as a
Net.Data macro language construct, it sends to the browser for display.

After the user makes a selection and presses the Submit button, Net.Data runs the
ACTION part of the HTML FORM element, which specifies a call to the Net.Data
macro’'s HTML(OUTPUT) block. Net.Data then processes the HTML(OUTPUT)
block just as the HTML(INPUT) block was.

Net.Data then processes the myQuery () function call, which in turn invokes the SQL
FUNCTION block. After replacing the $(hdware) variable reference in the SQL
statement with the value returned from the input form, Net.Data runs the query. At
this point, Net.Data resumes processing the report, displaying the results of the
query according to the text presentation statements specified in the REPORT block.

After Net.Data completes the REPORT block processing, it returns to the
HTML(OUTPUT) block, and finishes processing.

Use the REPORT block language construct to format and display data output from
a FUNCTION block. This output is typically table data, although any valid
combination of text, macro variable references, and function calls can be specified.

Chapter 5. Developing Net.Data Macros 107

A table name can optionally be specified on the REPORT block. Except for SQL
and ODBC language environments, if you do not specify a table name, Net.Data
uses the table data from the first output table in the FUNCTION parameter list.

The REPORT block has three parts, each of which is optional:

» Header information, which contains text that is displayed once before the table
row data.

* A ROW block, which contains text and table variables that are displayed once for
each row of the result table.

» Footer information, which contains text that is displayed once after the table row
data.

Example:

%REPORT{
<H2>Query Results</H2>
<P>Select a name for details.
<TABLE BORDER=1>
<TR>
<TD>Name</TD>
<TD>Location</TD></TR>
%ROW{
<TR>
<TD>
$(V1)
</TD>
<TD>$(V2)</TD>
</TR>
%}
</TABLE>

9

%}
REPORT Block Guidelines

Use the following guidelines when creating REPORT blocks:

» To avoid displaying any table output from the ROW block, leave the ROW block
empty or omit it entirely.

* Use Net.Data-provided variables inside the REPORT block to access the data in
the Net.Data macro results table. These variables are described in

Pracessing Variables” on page 96. For additional detail, see the Report Variables

section in the Net.Data Reference.

» To provide header and footer information, provide the text before and after the
ROW block. Net.Data processes everything it finds before a ROW block as
header information. Net.Data processes everything it finds after the ROW block
as footer information. As with the HTML block, Net.Data treats everything in the
header, ROW, and footer blocks that is not recognized as macro language
constructs as text presentation statements and sends these statements to the
browser.

¢ You can call functions and reference variables in a REPORT block.

* To have Net.Data print a default report using pre-formatted text, do not include
the REPORT block in the macro. The following example shows the default report
format:

SHIPDATE | RECDATE | SHIPNO |

108 Net.Data: Administration and Programming Guide for 0S/2, Windows NT, and UNIX

* To use the HTML tags instead of the pre-formatted text, set DTW_HTML_TABLE
to YES.

* To disable the printing of the a default report, set DTW_DEFAULT_REPORT to
NO or by specifying an empty REPORT block. For example:

%REPORT{%}
Example: Customizing a Report

The following example shows how you can customize report formats using special
variables and HTML tags. It displays the names, phone numbers, and FAX numbers
from the table CustomerThl:

%DEFINE SET_TOTAL_ROWS="YES"

%FUNCTION(DTW_SQL) custlist() {
SELECT Name, Phone, Fax FROM CustomerTbl
%REPORT{
<I>Phone Query Results:</I>

%ROW{
Name: $(V1)

Phone: $(v2)

Fax: $(v3)

The resulting report looks like this in the Web browser:
Phone Query Results:

Name: Doen, David
Phone: 422-245-1293
Fax: 422-245-7383

Name: Ramirez, Paolo
Phone: 955-768-3489
Fax: 955-768-3974

Name: Wu, Jianli
Phone: 525-472-1234
Fax: 525-472-1234

Total records retrieved: 3

Net.Data generated the report by:

1. Printing Phone Query Results: once at the beginning of the report. This text,
along with the separator line, is the header part of the REPORT block.

2. Replacing the variables V1, V2, and V3 with their values for Name, Phone, and
Fax respectively for each row as it is retrieved.

3. Printing the string Total records retrieved: and the value for TOTAL_ROWS once at
the end of the report. (This text is the footer part of the REPORT block.)

Chapter 5. Developing Net.Data Macros 109

Multiple REPORT Blocks

You can specify multiple REPORT blocks within a single FUNCTION or MACRO
FUNCTION block to generate multiple reports with one function call.

Typically, you would use multiple REPORT blocks with the DTW_SQL language
environment with a function that calls a stored procedure, which returns multiple

result sets (see LStared Procedures” on page 125). However, multiple REPORT

blocks can be used with any language environment to generate multiple reports.

To use multiple REPORT blocks, place a result set name on the stored procedure
CALL for each result set. If more result sets are returned from the stored procedure
than the number of REPORT blocks you have specified, and if the Net.Data built-in
function DTW_DEFAULT_REPORT = "MULTIPLE", then default reports are
generated for each table that is not associated with a report block. If no report
blocks are specified, and if DTW_DEFAULT_REPORT = "YES", then only one
default report will be generated. Note that for the SQL language environment only, a
DTW_DEFAULT_REPORT value of "YES” is equivalent to a value of "MULTIPLE".

Examples: The following examples demonstrate ways in which you can use
multiple report blocks.

To display multiple reports using default report formatting:

Example 1: DTW_SQL language environment

%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%FUNCTION (dtw_sql) myStoredProc () {
CALL myproc (tablel, table2) %}

In this example, the stored procedure myproc returns two result sets, which are
placed in tablel and table2. Because no REPORT blocks are specified, default
reports are displayed for both tables, tablel first, then table2.

Example 2: MACRO_FUNCTION block. In this example, two tables are passed into
the MACRO_FUNCTION block. When DTW_DEFAULT _REPORT="MULTIPLE" is
specified, Net.Data generates reports for both tables.

%DEFINE DTW_DEFAULT REPORT = "MULTIPLE"

%MACRO_FUNCTION multReport (INOUT tablenamel, tablename2) f{

0,
%}

In this example, two tables are passed into the MACRO_FUNCTION multReport.
Again, Net.Data displays default reports for the two tables in the order in which they
appear in the MACRO FUNCTION block parameter list, tablel first, then table2.

Example 3: DTW_REXX language environment

%DEFINE DTW_DEFAULT_REPORT = "YES"
%FUNCTION (dtw_rexx) multReport (INOUT tablel, table2) {
SAY 'Generating multiple default reports...
'

0,
%}

In this example, two tables are passed into the REXX function multReport. Because
DTW_DEFAULT_REPORT="YES" is specified, Net.Data displays a default report
for the first table only.

To display multiple reports by specifying REPORT blocks for display
processing:

Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Example 1: Named REPORT blocks

%FUNCTION(dtw_sql) myStoredProc () {
CALL myproc (tablel, table2)

%REPORT (table2) {
SROW { ... %)
}

%REPORT (tablel) {

N

o
—

srow {

o

o

0,
%}

In this example, REPORT blocks have been specified for both of the tables passed
in the FUNCTION block parameter list. The tables are displayed in the order they
are specified on the REPORT blocks, table? first, then tablel. By specifying a
table name on the REPORT block, you can control the order in which the reports
are displayed.

Example 2: Unnamed REPORT blocks

%FUNCTION(dtw_sql) myStoredProc () {
CALL myproc

%REPORT {

ARON {

o
—

N° o

}
REPORT {
%ROW {

o

N
—

N

0,
%}

In this example, REPORT blocks have been specified for both of the tables passed
in the FUNCTION block parameter list. Because there are no table names specified
on the REPORT blocks, reports are displayed for the two tables in the order in
which they are returned from the stored procedure.

To display multiple reports using a combination of default reports and
REPORT blocks:

Example: A combination of default reports and REPORT blocks

%DEFINE DTW_DEFAULT_REPORT = "MULTIPLE"
%FUNCTION(dtw_system) editTables (INOUT tablel, table2, table3) {
%REPORT (table2) {

SROW { %)

%}

0,
%}

In this example, only one REPORT block is specified. Because the block specifies
table2, and table? is the second result set listed on the CALL statement, the
second result set is used to display the report. Because there are fewer REPORT
blocks specified than the number of result sets returned from the stored procedure,

Chapter 5. Developing Net.Data Macros 111

default reports are then displayed for the remaining result sets: first, a default report
for the first result set, tablel; then a default report for the third result set, table3.
One output table is specified, tablel, which can be used for processing later in the
macro file.

Guidelines and Restrictions for Multiple REPORT Blocks: Use the following
guidelines and restrictions when specifying multiple REPORT blocks in a
FUNCTION or MACRO_FUNCTION block.

Guidelines:

* You can specify one or more REPORT block per result set or table name. The
name specified for the REPORT block must match a corresponding result set
name or table name parameter in the CALL statement or the FUNCTION block
parameter list.

» Specify REPORT blocks for multiple tables in the order in which you want them
to be processed.

» To specify default processing when there is not a REPORT block specified for a
table, define DTW_DEFAULT_REPORT = "MULTIPLE". When Net.Data builds
the Web page, it displays default reports for tables after it displays the reports for
tables having REPORT blocks.

* To prevent Net.Data from displaying tables that do not have REPORT blocks, set
DTW_DEFAULT_REPORT = "NO".

* When using the DTW_SAVE_TABLE_IN variable with a function that returns
more than one table, the first table returned from the function is assigned to the
DTW_SAVE_TABLE_IN table.

» Multiple report blocks can be used with any language environment.

Restrictions:

* The values of all report variables in a function apply to all the REPORT blocks in
that function. You cannot modify the value of a report variable for individual
REPORT blocks.

 The MESSAGE block must be located either before or after a list of REPORT
blocks, and not between REPORT blocks.

» Table variables must be defined within the TABLE statement before being passed
to the function.

« If the first report block specifies a table name, then all report blocks must specify
table names.

 If the first report block does not specify a table name, then none of the report
blocks can specify table names.

* The maximum number of tables for a single stored procedure is 32.

Conditional Logic and Looping in a Macro

Net.Data lets you incorporate conditional logic and looping in your Net.Data macros
using the IF and WHILE blocks.

IF and WHILE blocks use a condition list that helps you test one or more
conditions, and then to perform a block of statements based on the outcome of the
condition test. The condition list contains logical operators, such as = and <+, and
terms, which are made up of quoted strings, variables, variable references, and
function calls. Quoted strings can contain variable references and functions calls, as
well. You can nest the condition list.

112 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

The following sections describe conditional logic and looping:

Conditional Logic: IF Blocks

Use the IF block for conditional processing in a Net.Data macro. The IF block is
similar to IF statements in most high-level languages because it provides the ability
to test one or more conditions, and then to perform a block of statements based on
the outcome of the condition test.

You can specify IF blocks almost anywhere in a macro and can nest them. The
syntax of an IF block is shown in the language constructs chapter in Net.Data
Reference.

IF Block Rules: The rules for IF block syntax are determined by the block’s
position in the macro. The elements allowed in the executable block of statements
of an IF block depend on the location of the IF block itself.

* Any element that is valid in the block containing the IF block is valid within that IF
block. For example, if you specify an IF block inside an HTML block, any element
that is allowed in the HTML block is allowed in the IF block, such as INCLUDE
statements and WHILE blocks.

%HTML block
. -%IF block
B %INCLUDE
o SWHILE

%ENDIF

%}

« Similarly, if you specify the IF block outside of any other block in the declaration
part of the Net.Data macro, only those elements allowed outside of any other
block (such as a DEFINE block or FUNCTION block) are allowed in the IF block.

%IF
" SDEFINE
"%FUNCTION
%ENDIF
* When a IF block is nested within an IF block that is outside of any other block in
the declaration part, it can use any element that the outside block can use. When

an IF block is nested within another block that is in an IF block, it takes on the
syntax rules for the block it is inside.

For example, a nested IF block must follow the rules used when it is inside an
HTML block.

5IF
SHTML {
%IF

%SENDIF

N

}
%ENDIF

Chapter 5. Developing Net.Data Macros 113

Exception: Do not specify a ROW block in an IF block.
IF Block String Comparison

Net.Data processes the IF block condition list in one of two ways based on the
contents of the terms making up the conditions. The default action is to treat all
terms as strings, and to perform string comparisons as specified in the conditions.
However, if the comparison is between two strings representing integers, then the
comparison is numeric. Net.Data assumes a string is numeric if it contains only
digits, optionally preceded by a '+’ or -’ character. The string cannot contain any
non-digit characters other than the '+’ or ’-’. Net.Data does not support numerical
comparison of non-integer numbers.

Examples of valid integer strings:

+1234567890
-47
000812
92000
Examples of invalid integer strings:
- 20 (contains blank characters)
234,000 (contains a comma)
57.987 (contains a decimal point)

Net.Data evaluates the IF condition at the time it executes the block, which can be
different than the time it is originally read by Net.Data. For example, if you specify
an IF block in a REPORT block, Net.Data does not evaluate the condition list
associated with the IF block when it reads the FUNCTION block definition
containing the REPORT block, but rather when it calls the function and executes it.
This is true for both the condition list part of the IF block and the block of
statements to be executed.

IF Block Example: A macro containing IF blocks inside other blocks

%{ This macro is called from another macro, passing the operating system
and version variables in the form data.
}

%IF (platform == "AS400")
%IF (version == "V3R2")
%INCLUDE "as400v3r2_def.hti"
%ELIF (version == "V3R7")
%INCLUDE "as400v3r7_def.hti"
%ELIF (version == "V4R1")
%INCLUDE "as400v4rl_def.hti"
%ENDIF
%ELSE
%INCLUDE "default_def.hti"
%ENDIF

N

%MACRO_FUNCTION numericCompare(IN terml, term2, OUT result) {
%IF (terml < term2)
@dtw_assign(result, "-1")
%ELIF (terml > term2)
@dtw_assign(result, "1")
%ELSE
@dtw_assign(result, "0")
%ENDIF

%}
%HTML (report) {

SWHILE (a < "10") {
outer while Toop #$(a)

114 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

%IF (@dtw_rdivrem(a,"2") == "0")
this is an even number loop

%ENDIF

@DTW_ADD(a, "1", a)

o

}

%)
Looping Constructs: WHILE Blocks

Use the WHILE block to perform looping in a Net.Data macro. Like the IF block, the
WHILE block provides the ability to test one or more conditions, and then to
perform a block of statements based on the outcome of the condition test. Unlike
the IF block, the block of statements can be executed any number of times based
on the outcome of the condition test.

You can specify WHILE blocks inside HTML blocks, REPORT blocks, ROW blocks,
MACRO_FUNCTION blocks, and IF blocks, and you can nest them. The syntax of
a WHILE block is shown in the language constructs chapter of Net.Data Reference.

Net.Data processes the WHILE block exactly the same way it processes the IF
block, but re-evaluates the condition after each execution of the block. And, like any
conditional looping construct, it is possible for processing to go into an infinite loop
if the condition is coded incorrectly.

Example: A macro with a WHILE block
%DEFINE ToopCounter = "1"

%HTML (build_table) {
%WHILE (ToopCounter <= "100") {

%{ generate table tag and column headings %}

%IF (loopCounter == "1")
<TABLE BORDER>
<TR>
<TH>Item #
<TH>Description

%ENDIF

%{ generate individual rows %}
<TR>

<TD>$(1oopCounter)
<TD>@getDescription(loopCounter)
%{ generate end table tag %}
%IF (loopCounter == "100")
%ENDIF

%{ increment loop counter %}
@DTW_ADD(1oopCounter, "1", ToopCounter)

o
R

N
—

Chapter 5. Developing Net.Data Macros 115

116 Net.Data: Administration and Programming Guide for OS/2, Windows NT, and UNIX

Chapter 6. Using Language Environments

Net.Data supplies language environments that you use to access data sources and
to execute application programs containing business logic. For example, the SQL
language environment lets you pass SQL statements to a DB2 database, and the
REXX language environment lets you invoke REXX programs. You can also use the
SYSTEM language environment to execute a program or issue a command.

With Net.Data, you can add user-written language environments in a pluggable
fashion. Each user-written language environment must support a standard set of
interfaces that are defined by Net.Data and must be implemented as a dynamic link
library (DLL) or a shared library. For complete details on Net.Data-supplied
language environments and on how to create a user-written language environment,
see the Net.Data Language Environment Interface Reference.

m shows the relationship between the Web server, Net.Data, and the
Net.Data language environments.

CGl
FastCGl
NSAPI
GWAPI
ICAPI
Web |:
Server |
Initial
Page
Report
Page
Java Applét """""

Net.Data Macro File

%Define{...%}

Yo}
%HTML(Report)
{

%HTML(Initial-Page)
{

4—
4—

Net.Data

Net.Data-Supplied | | Java
Language Environments || Applications
Java
‘ Java // Applets
| Java Applet / G
| System +| and Programs;
REXX L REXX
‘ Perl K Programs
‘ SaL K\ Perl Scripts
‘ e &\ DB2 Data
| Sybase k\ Oracle Data
\ ODBC \\ Sybase Data
Web Registry AN ODIED;IC-d]
\ Flat File Interface{\ \i\z]ab ed data
e
IMS/TM Registries
(i
User-written
Language
Environments

Net.Data on
AlX, HP-UX, Linux, OS/2, SCO, Solaris, and Windows NT

Figure 21. The Net.Data Language Environments

The following sections describe the Net.Data language environments and how to

use them in your macros:

For configuration information about the Net.Data-provided language environments,

see L'Setting Up the Language Environments” on page 23.

© Copyright IBM Corp. 1997, 1999

117

For information about improving performance when using the language
environments, see LOptimizi i !

Overview of Net.Data-Supplied Language Environments

Net.Data provides language environments that let you access data and
programming resources for your application.

Net.Data provides two types of language environments:

frable 4 provides a brief description of each language environment. See the
operating system appendix of Net.Data Reference to learn which language
environments are support on what operating system.

Table 8. Net.Data Language Environments

Language

Envi