

MQSeries for OS/390 IBM

System Management Guide
Version 2 Release 1

 SC34-5374-00

MQSeries for OS/390 IBM

System Management Guide
Version 2 Release 1

 SC34-5374-00

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix E, “Notices”
on page 485.

First edition (January 1999)

This edition applies to MQSeries for OS/390 Version 2 Release 1 and to any subsequent releases and modifications until otherwise
indicated in new editions.

This book is based on the System Management Guide for MQSeries for MVS/ESA 1.2, SC33-0806-06.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993,1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . xv
Who this book is for . xv
How to use this book . xv

Conventions used in this book . xv
What you need to know to understand this book xvi
MQSeries publications . xvi

MQSeries cross-platform publications . xvi
MQSeries platform-specific publications . xix
MQSeries Level 1 product publications . xxi
Softcopy books . xxi

MQSeries information available on the Internet xxii
Related publications . xxiii

OS/390 . xxiii
CICS Transaction Server for OS/390 . xxiii
CICS for MVS/ESA Version 4 . xxiii
IMS . xxiv
DFSMS/MVS . xxiv
Security Server . xxiv
Other products . xxiv

What is new for this version . xxv

Part 1. Introduction . 1

Chapter 1. Introduction to MQSeries for OS/390 3
MQSeries and message queuing . 3
Messages and queues . 4
Objects and commands . 7
An overview of storage management . 15
Logs and recovery . 17
Events . 18
Managing MQSeries with commands and utilities 18
MQSeries and other products . 22
Making MQSeries available . 26
CSA storage requirement . 28

 Copyright IBM Corp. 1993,1999 iii

 Contents

Part 2. Customizing MQSeries after installation . 31

Chapter 2. Preparing for customization . 33
Installable features . 33
Libraries that exist after installation . 34

Chapter 3. Customizing the queue managers 37
Introducing the customization tasks . 37
Task 1: Choose which language you want to use 39
Task 2: Choose the distributed queuing facility 40
Task 3: Define the MQSeries subsystem to OS/390 41
Task 4: Update the OS/390 link list . 46
Task 5: APF authorize the MQSeries load libraries 47
Task 6: Update the OS/390 program properties table 48
Task 7: Create procedures for the MQSeries subsystem 49
Task 8: Create procedures for the channel initiator 50
Task 9: Implement your ESM security controls 51
Task 10: Customize the initialization input data sets 52
Task 11: Create the bootstrap and log data sets 61
Task 12: Define your page sets . 62
Task 13: Tailor your system parameter module 67
Task 14: Tailor the channel initiator parameter module 82
Task 15: Set up Batch, TSO, and RRS adapters 87
Task 16: Set up the operations and control panels 88
Task 17: Include the MQSeries dump formatting member 90
Task 18: Suppress information messages . 91

Chapter 4. Migrating from previous versions of MQSeries for MVS/ESA . 93
Migrating from Version 1.2 to Version 2.1 . 93
Migrating from Version 1.1.4 to Version 2.1 . 96
Migrating from Version 1.1.3 to Version 2.1 . 96
Migrating from Version 1.1.2 or earlier to Version 2.1 97
Coexistence with earlier versions of MQSeries for MVS/ESA 98

Chapter 5. Testing your queue manager . 99
Basic function testing . 99
Testing for C, C++, COBOL, PL/I, and CICS 102
Testing for distributed queuing . 102

Part 3. MQSeries and CICS . 107

Chapter 6. The MQSeries-CICS adapter . 109
CICS adapter overview . 109
Adapter components . 111
Other adapter features . 112
CICS adapter performance considerations . 115
CICS adapter conventions . 117
Setting up the CICS adapter . 118
Customizing the CICS adapter . 122

Chapter 7. Operating the CICS adapter . 123
Invoking the adapter’s control functions . 123

iv System Management Guide

 Contents

Preparing to use the CICS adapter . 125
Accessing the CICS adapter control panels 126
Starting a connection . 127
Stopping a connection . 130
Modifying a connection . 132
Displaying details of connections and CICS tasks 135
Starting an instance of the task initiator CKTI 136
Stopping an instance of CKTI . 138
Displaying the current instances of CKTI . 140
Displaying CICS task information . 141
Purging tasks that are using the CICS adapter 143
Shutting down a connection between MQSeries and the CICS adapter . . . 144

Chapter 8. The MQSeries-CICS bridge . 147
Introduction to the CICS bridge . 147
Customizing the CICS bridge . 152
Starting the CICS bridge . 154
Shutting down the CICS bridge . 155

Part 4. MQSeries and IMS . 157

Chapter 9. The MQSeries-IMS adapter . 159
Introduction to the IMS adapter . 159
Setting up the IMS adapter . 161

Chapter 10. Operating the IMS adapter . 169
Controlling IMS connections . 169
Connecting from the IMS control region . 170
Displaying in-doubt units of recovery . 172
Controlling IMS dependent region connections 174
Disconnecting from IMS . 176
Controlling the IMS trigger monitor . 177

Chapter 11. The MQSeries-IMS bridge . 179
Introduction to the IMS bridge . 179
Customizing the IMS bridge . 181
Controlling the IMS bridge . 182
Security . 185

Part 5. Operating and administering MQSeries . 187

Chapter 12. Operating MQSeries for OS/390 189
Issuing commands . 189
Starting and stopping MQSeries . 191
Using the operations and control panels . 197

Chapter 13. Writing programs to administer MQSeries 211
Before you begin . 211
Understanding how it all works . 212
Using the command server . 213
Preparing queues for administration programs 214
Sending commands to the command server 216

 Contents v

 Contents

Putting messages on the system-command input queue 217
Retrieving replies to your commands . 218
Interpreting the replies . 220
If you do not receive a reply . 226
Passing commands using MGCR or MGCRE 226

Chapter 14. Using the MQSeries utilities 227
How to read syntax diagrams . 228
MQSeries utility program (CSQUTIL) . 229
Page set management functions . 231
MQSeries command management functions 238
Queue management functions . 245
The change log inventory utility (CSQJU003) 256
The print log map utility (CSQJU004) . 265
The log print utility (CSQ1LOGP) . 266

Part 6. Backup, recovery, and restart . 269

Chapter 15. Introducing some recovery concepts 273
How changes are made to data . 273
How consistency is maintained . 275

Chapter 16. Understanding termination and restart 279
What happens during termination . 279
Connections and threads . 280
What happens during restart and recovery . 281
How in-doubt units of recovery are resolved 283
Recovering CICS units of recovery manually 286
Recovering IMS units of recovery manually . 288
Recovering RRS units of recovery manually 290
What happens when the CICS adapter restarts 291
What happens when the IMS adapter restarts 293
Using the OS/390 Automatic Restart Manager (ARM) 294

Chapter 17. Understanding the log and the bootstrap data set 299
What logs are . 299
How the log is structured . 301
How the logs are written . 302
What the bootstrap data set is for . 305
Managing the logs and BSDS . 306

Chapter 18. Planning for backup and recovery 307
Introduction . 307
General tips for backup and recovery . 307
Planning your logging environment . 309
Planning your archive storage . 310
Other recovery considerations . 311

Chapter 19. Managing the logs and the bootstrap data set 315
Archiving logs with the ARCHIVE LOG command 315
Discarding archive log data sets . 317
Printing log records . 319
Finding out what the BSDS contains . 319

vi System Management Guide

 Contents

Changing the BSDS . 321
Recovering logs . 323

Chapter 20. Managing page sets . 325
Adding a page set to a queue manager . 325
When one of your page sets becomes full . 325
How to balance loads on page sets . 327
How to reduce a page set . 330
Backing up and recovering page sets . 331
Backing up and restoring queues using CSQUTIL 335

Chapter 21. Example recovery scenarios 337
Dealing with active log problems . 338
Dealing with archive log problems . 343
Dealing with BSDS errors . 346
BSDS recovery . 350
Dealing with page set problems . 353
Restarting if you have lost your log data sets 355
Performing a cold start of MQSeries . 356
Dealing with IMS-related problems . 357
Dealing with hardware errors . 359

Part 7. Monitoring performance and resource usage 361

Chapter 22. Monitoring performance and resource usage 363
Getting snapshots of MQSeries . 364
Using CICS adapter statistics . 364
Investigating performance problems . 364
Using System Management Facility . 366
Using other products with MQSeries . 367
Using MQSeries trace . 368
Using MQSeries events . 370

Chapter 23. Interpreting MQSeries performance statistics 371
SMF type 115 record layout . 371
Message manager statistics . 374
Data manager statistics . 375
Buffer manager statistics . 376
Log manager statistics . 380
Sample SMF statistics records . 382

Chapter 24. Interpreting MQSeries accounting data 385
SMF type 116 record layout . 385
Message manager accounting . 388
Sample SMF accounting record . 390

Part 8. Security . 391

Chapter 25. Introduction to MQSeries security 393
Why you need to protect MQSeries resources 393
Implementing MQSeries security . 394
Resources you can protect . 395

 Contents vii

 Contents

Chapter 26. Using RACF classes and profiles 399
Using RACF security classes . 400
RACF profiles . 401
Switch profiles . 401
Profiles used to protect MQSeries resources 404
Profiles for command security . 421
Profiles for command resource security . 422
Using the RESLEVEL security profile . 425
User IDs for security checking . 430
Auditing considerations . 437

Chapter 27. MQSeries security implementation 439
Security implementation checklist . 439
MQSeries security management . 441
Customizing security . 444
Security considerations for using MQSeries with CICS 445
Security considerations for using MQSeries with IMS 449
Security considerations for distributed queuing 453
Security considerations for cluster support . 455
Security installation tasks . 456
Example security scenario . 458
Security problem determination . 464

Part 9. Appendixes . 467

Appendix A. Macros intended for customer use 469
General-use programming interface macros 469
General-use programming interface copy files 470
Product-sensitive programming interface macros 471
General-use programming interface include files 471

Appendix B. Using OTMA exits in IMS . 473
Exit names . 473
A sample scenario . 473

Appendix C. Upgrading and applying service to TCP/IP, Language
Environment, or OS/390 Callable Services 477

Appendix D. Enabling distributed queuing using CICS ISC 479
Defining MQSeries programs and data sets as CICS resources 479
Defining the channel definitions . 480
Defining the CKMQ transient data queue . 481
Defining MQSeries queues, triggers, and processes 481
Defining CICS resources used by distributed queuing 481
Defining access security . 482
Setting up communications . 482
Security considerations for distributed queuing (using CICS ISC) 482

Appendix E. Notices . 485
Programming interface information . 487
Trademarks . 488

viii System Management Guide

 Contents

Part 10. Glossary and index . 489

Glossary of terms and abbreviations . 491

Index . 501

 Contents ix

 Figures

 Figures

1. Representation of an MQSeries message 5
2. MQSeries for OS/390 overview . 9
3. Mapping queues to page sets through storage classes 16
4. Buffers, buffer pools, and page sets . 18
5. Sample IEFSSNss statements for defining subsystems 41
6. PPT additional entries needed for MQSeries 48
7. Example job for migrating queue objects 95
8. RACF commands for CSQ4IVP1 . 100
9. RACF commands for CSQ4IVPX . 104

10. Example output from CSQ4IVPX . 105
11. How CICS, the CICS adapter, and an MQSeries subsystem are related 111
12. JCL fragment for upgrading the CICS CSD 119
13. Sample PLT for use with the CICS adapter 120
14. Sample INITPARM statement to set the default connection values for

CICS . 120
15. Linking to the adapter connect program, CSQCQCON, from a PLT

program . 122
16. Padding adapter commands . 124
17. Starting a queue manager that is identified by the CPF '+cpf' 125
18. The CICS adapter control initial panel 126
19. Starting a connection . 127
20. Starting a connection from the command line 128
21. Starting a connection from the command line specifying parameters . . 128
22. Specifying lowercase queue names . 128
23. Linking to the adapter connect program, CSQCQCON, from a CICS

program . 129
24. Stopping a connection from the CKQC initial panel 130
25. Stopping a connection from the command line—a quiesced shutdown 130
26. Stopping a connection from the command line—a forced shutdown . . 131
27. Stopping a connection from a CICS application program—a quiesced

shutdown . 131
28. Stopping a connection from a CICS application program—a forced

shutdown . 131
29. Modifying a connection . 132
30. Format of command to modify connection parameters from the command

line . 133
31. Resetting connection statistics from the command line 133
32. Changing the adapter’s trace number and disabling the API-crossing exit

from the command line . 133
33. Format of the MODIFY command issued from a CICS adapter

application program . 133
34. Resetting connection statistics from a CICS program 134
35. Linking to the adapter reset program, CSQCRST, from a CICS program 134
36. The display connection panel . 135
37. Starting an instance of CKTI . 136
38. Starting an instance of CKTI—for the default initiation queue 137
39. Starting an instance of CKTI—for a specified initiation queue 137
40. Linking to the adapter task-initiator program CSQCSSQ from CICS . . 137
41. Linking to the adapter task-initiator program CSQCSSQ from CICS . . 137
42. Stopping an instance of the task initiator CKTI 138

x System Management Guide

 Figures

43. Stopping an instance of CKTI from the command line—for the default
initiation queue . 138

44. Stopping an instance of CKTI from the command line—for a specified
initiation queue . 139

45. Stopping an instance of CKTI from a program—for the default initiation
queue from CICS . 139

46. Stopping an instance of CKTI from a program—for a specified initiation
queue from CICS . 139

47. The CKQC Display CKTI panel . 140
48. The CKQC Display Task panel . 141
49. Message showing the status of a connection 142
50. Displaying the status of a connection . 142
51. Linking to the adapter program CSQCDSPL from a CICS program . . 142
52. Components and data flow to run a CICS DPL program 148
53. Components and data flow to run a CICS 3270 transaction 150
54. Sample JCL to link-edit the dynamic call stub 162
55. CSQQDEFX macro syntax . 165
56. Layout of a subsystem definition table 166
57. Example CSQQTAPL transaction definition for CSQQTRMN 167
58. Example CSQQTPSB PSB definition for CSQQTRMN 167
59. The MQSeries-IMS bridge . 180
60. Issuing a DISPLAY command from the OS/390 console 190
61. Starting the MQSeries subsystem from an OS/390 console 192
62. MQSeries startup messages for subsystem CSQ1 193
63. Stopping MQSeries . 195
64. The MQSeries operations and control initial panel 202
65. Listing queues . 203
66. Defining a local queue - first panel . 204
67. Defining a local queue - second panel 205
68. Defining a local queue - trigger conditions 205
69. Defining a local queue - event control 206
70. Defining a local queue - backout reporting 206
71. Specifying the queue manager that a utility is to work with 229
72. Sample JCL for the FORMAT function of CSQUTIL 232
73. Sample JCL showing the use of the COPYPAGE function 234
74. Sample JCL showing the use of the RESETPAGE function 236
75. Sample JCL for issuing MQSeries commands using CSQUTIL 240
76. Sample JCL for using the MAKEDEF option of the COMMAND function 240
77. Sample JCL for using the MAKECLNT option of the COMMAND function 241
78. Sample JCL for the SDEFS function of CSQUTIL 243
79. Sample JCL for the CSQUTIL COPY functions 247
80. Sample JCL for the CSQUTIL SCOPY functions 250
81. Sample JCL for the CSQUTIL EMPTY function 252
82. Sample JCL for the CSQUTIL LOAD function 254
83. Sample JCL to invoke the CSQJU003 utility 256
84. Sample JCL to invoke the CSQJU004 utility 265
85. Sample JCL to invoke the CSQ1LOGP utility using a BSDS 266
86. Sample JCL to invoke the CSQ1LOGP utility using active log data sets 267
87. Sample JCL to invoke the CSQ1LOGP utility using archive logs 267
88. A unit of recovery within an application program 273
89. A unit of recovery showing back out . 274
90. The two-phase commit process . 276
91. Example restart messages . 292
92. Sample ARM policy . 295

 Figures xi

 Figures

93. The logging process . 302
94. The off-loading process . 303
95. Sample input statements for CSQJU003 314
96. Extract from a load balancing job . 329
97. Part of an SMF record showing the header and self-defining sections . 372
98. SMF record 115, subtype 1 . 383
99. SMF record 115, subtype 2 . 384
100. Part of an SMF record showing the header and self-defining sections . 386
101. SMF record 116 . 390
102. Sample output from RACFRW showing RESLEVEL general audit

records . 438
103. Typical output from the MQSeries command DISPLAY SECURITY . . 444
104. Example security scenario . 458
105. OTMA pre-routing exit assembler sample 474
106. Sample assembler DRU exit . 476
107. Adding the distributed queuing definitions to the CICS CSD 480
108. Adding a DD statement to the CICS startup procedure 480

xii System Management Guide

 Tables

 Tables

1. Summary of MQSeries administrator commands 19
2. System control commands . 20
3. MQSeries libraries that exist after installation 34
4. National language feature libraries . 39
5. Subsystem name to CPF associations . 42
6. Example of CPF subset and superset rules 43
7. Valid character set for CPF strings . 43
8. Default values of CSQ6SYSP parameters 68
9. Default values of CSQ6LOGP parameters 74

10. Default values of CSQ6ARVP parameters 76
11. Default values of CSQ6CHIP parameters 83
12. TCP/IP settings . 86
13. Shutting down a CICS adapter connection 144
14. SSM specifications options . 165
15. Valid operations and control panels actions for MQSeries objects . . . 199
16. A summary of MQSeries utilities . 227
17. How to read syntax diagrams . 228
18. Termination using QUIESCE, FORCE, and RESTART 279
19. SMF record header description . 371
20. Offsets to self-defining sections . 373
21. Structure of the message manager statistics record QMST 374
22. Structure of the data manager statistics record QIST 375
23. Structure of the buffer manager statistics record QPST 376
24. Structure of the log manager statistics record QJST 380
25. Problem symptoms that can be examined using log manager statistics 381
26. SMF record header description . 385
27. Offsets to self-defining sections . 387
28. Structure of the message manager accounting record QWHS 388
29. Structure of the message manager accounting record QMAC 388
30. Structure of the thread cross reference record for a CICS system . . . 389
31. Structure of the thread cross reference record for an IMS system . . . 390
32. RACF classes used by MQSeries . 400
33. Switch profiles . 402
34. Access levels for queue security . 406
35. Access levels for close options on permanent dynamic queues 410
36. RACF authority to the dead-letter queue and its alias 412
37. Access levels for process security . 414
38. Access levels for namelist security . 414
39. Access levels for alternate user security 415
40. Access levels for context security . 417
41. MQOPEN, MQPUT1, and MQCLOSE options and the security

authorization required . 419
42. Commands, profiles, and their access levels 423
43. Checks made at different RACF access levels for the Batch/TSO adapter 428
44. Checks made at different RACF access levels for the CICS adapter . . 428
45. Checks made at different RACF access levels for the IMS adapter . . 429
46. Checks made at different RACF access levels for channel initiator

connections . 429
47. User ID checking for Batch/TSO-type user IDs 431
48. User ID checking for CICS-type user IDs 432

 Figures xiii

 Tables

49. User ID checking for IMS-type user IDs 432
50. How the second user ID is determined for the IMS adapter 432
51. User IDs checked for TCP/IP channels 433
52. User IDs checked for LU 6.2 channels 434
53. User IDs checked for LU 6.2 and TCP/IP server-connection channels . 435
54. CICS bridge monitor security . 447
55. CICS bridge task security . 448
56. RACF access to data sets associated with a queue manager 457
57. RACF access to data sets associated with distributed queuing 457
58. Security profiles for the example scenario 460
59. Sample security profiles for the batch application on queue manager

QM1 . 461
60. Sample security profiles for queue manager QM2 using TCP 462
61. Sample security profiles for queue manager QM2 using LU 6.2 462
62. Sample security profiles for the CICS application on queue manager

QM1 . 463
63. Service has been applied or the product has been upgraded to a new

release . 477
64. One of the products has been updated to a new release in a new SMP/E

environment and libraries . 477

xiv System Management Guide

 About this book

About this book

MQSeries for OS/390 (referred to in this book as MQSeries) is part of the IBM
MQSeries family of products. It provides application programming services that
allow a new style of programming. This style enables you to code indirect
program-to-program communication using message queues. MQSeries is an
OS/390 message-queue manager.

MQSeries is an independent OS/390 subsystem using OS/390 cross-memory
services, the CICS task-related user exit product interface, and the IMS
External Subsystem Attach Facility (ESAF). MQSeries supports application
programs that can be run in:

 � CICS
 � MVS batch
 � MVS/TSO
 � IMS

Who this book is for
This book is intended for system programmers, system administrators, and system
operators. It explains how to customize, operate, administer, and monitor
MQSeries.

How to use this book
This book takes you through the steps required to make MQSeries available to
application programmers. Read those sections that relate to your task, whether it
be installing adapters, tuning, or communication.

The latter part of the book deals with termination, recovery, and restart. Read
these sections when you need to perform such tasks.

Conventions used in this book
� Throughout this book, the term object refers to any MQSeries queue manager,

queue, namelist, channel, storage class, or process.

� In the examples in this book, the string +cpf has been used to show the
command prefix (CPF), and the commands are shown in UPPERCASE.

� CICS means both CICS Transaction Server for OS/390 and CICS for MVS/ESA
unless otherwise stated. IMS means IMS/ESA unless otherwise stated.

� Throughout this book, the default value thlqual is used to indicate the target
library high-level qualifier for MQSeries data sets in your installation.

� Throughout this book, the term distributed queuing refers to the distributed
queuing feature (also known as the “non-CICS mover”). The term distributed
queuing using CICS ISC is used to refer to the optional CICS distributed
queuing feature (also known as the “CICS mover”).

 Copyright IBM Corp. 1993,1999 xv

 MQSeries publications

What you need to know to understand this book
This book assumes you are familiar with the basic concepts of:

 � CICS
 � IMS
� OS/390 job control language (JCL)
� OS/390 Time Sharing Option (TSO)

If you want to write programs to administer MQSeries, this book assumes that you
can write programs in one of the supported languages:

 � COBOL
 � C
 � C++
 � Assembler
 � PL/I

You do not need to have written message-queuing programs previously.

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2M1
� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for Sun Solaris V5.1
� MQSeries for Tandem NonStop Kernel V2.2
� MQSeries for VSE/ESA V2.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xxi. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

xvi System Management Guide

 MQSeries publications

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

 About this book xvii

 MQSeries publications

� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2M1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
� Windows 95 and Windows 98

MQSeries Using Java 
MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries Java is supported by these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference
The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a

xviii System Management Guide

 MQSeries publications

programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a number of examples of
tasks you can perform to set up and maintain clusters of queue managers.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX Version 5 Release 1 Quick Beginnings, GC33-1867

MQSeries for AS/400 

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX 

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869

 About this book xix

 MQSeries publications

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA 

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389

MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387

MQSeries LotusScript Extension, SC34-5404

xx System Management Guide

 MQSeries publications

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager  format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1 (compiled HTML)
� MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

 http://www.software.ibm.com/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

 http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1

 About this book xxi

 MQSeries on the Internet

� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1
� MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

 http://www.software.ibm.com/ts/mqseries/

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available on the Internet
MQSeries Web site

The MQSeries product family Web site is at:

 http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:

� Obtain latest information about the MQSeries product family.

� Access the MQSeries books in HTML and PDF formats.

� Download MQSeries SupportPacs.

xxii System Management Guide

 Related publications

 Related publications
For information about other products that are referred to in this book, see the
following books:

 OS/390
� MVS IPCS Customization, GC28-1755
� MVS Initialization and Tuning Reference, SC28-1752
� MVS Planning: Workload Management, GC28-1761
� MVS Programming: Callable Services for High Level Languages, GC28-1768
� MVS Routing and Descriptor Codes, GC28-1778
� MVS Setting up a Sysplex GC28-1779
� MVS System Management Facilities (SMF), GC28-1783
� MVS Diagnosis: Tools and Service Aids, LY28-1085
� OpenEdition Planning, SC28-1890
� MVS Resource Measurement Facility User’s Guide, SC28-1916
� MVS Planning: APPC/MVS Management, GC28-1807

CICS Transaction Server for OS/390
� XRF Guide, SC33-0661
� Migration Guide, GC33-1571
� System Definition Guide, SC33-1682
� Customization Guide, SC33-1683
� Resource Definition Guide, SC33-1684
� Operations and Utilities Guide, SC33-1685
� CICS-Supplied Transactions, SC33-1686
� Application Programming Guide, SC33-1687
� Messages and Codes, GC33-1694
� Intercommunication Guide, SC33-1695
� Recovery and Restart Guide, SC33-1698
� Performance Guide, SC33-1699
� RACF Security Guide, SC33-1701
� Internet and External Interfaces Guide, SC33-1944

CICS for MVS/ESA Version 4
� XRF Guide, SC33-0661
� Migration Guide, GC33-1162
� System Definition Guide, SC33-1164
� Customization Guide, SC33-1165
� Resource Definition Guide, SC33-1166
� Operations and Utilities Guide, SC33-1167
� CICS-Supplied Transactions, SC33-1168
� Application Programming Guide, SC33-1169
� Messages and Codes, SC33-1177
� Intercommunication Guide, SC33-1181
� Recovery and Restart Guide, SC33-1182
� Performance Guide, SC33-1183
� CICS-RACF Security Guide, SC33-1185

 About this book xxiii

 Related publications

 IMS
� Customization Guide, SC26-8020
� Operator’s Reference, SC26-8030
� Administration Guide: System, SC26-8013
� Open Transaction Manager Access Guide, SC26-8026
� Messages and Codes, SC26-8028
� Failure Analysis Structure Tables (FAST) for Dump Analysis, LY27-9621

 DFSMS/MVS
� Access Method Services for VTAM, SC26-4905
� Access Method Services for the Integrated Catalog Facility, SC26-4906
� Macro Instructions for Data Sets, SC26-4913

 Security Server
� Security Server (RACF) Security Administrator’s Guide, SC28-1915
� Security Server (RACF) Auditor’s Guide, SC28-1916
� Security Server (RACF) System Programmer’s Guide, SC28-1913
� Security Server (RACF) External Security Interface (RACROUTE) Macro

Reference, GC28-1922

 Other products
� DFP Storage Administration Reference, SC26-4566
� ISPF Dialog Developer’s Guide and Reference, SC28-1273
� TCP/IP OpenEdition: Planning and Release Guide, SC31-8303
� MQSeries Workflow for OS/390: Customization and Administration, SC33-7030
� MQSeries Workflow: Concepts and Architecture, GH12-6285
� Performance Reporter for OS/390 Administration Guide, SH19-6816-03
� Data Facility Hierarchical Storage Manager User’s Guide, SH35-0093
� APPC Security: MVS/ESA, CICS/ESA, and OS/2, GG24-3960 (redbook)

xxiv System Management Guide

 What is new

What is new for this version

� The minimum levels for many of the items of software required to use
MQSeries for OS/390 have changed. These are described in the MQSeries
Planning Guide.

� There are several changes to the installation process, and some new libraries.
These are described in the MQSeries for OS/390 Program Directory.

� The OS/390 Automatic Restart Manager (ARM) is now supported. This is
described in “Using the OS/390 Automatic Restart Manager (ARM)” on
page 294.

� MQSeries now supports clustering. This is described in the MQSeries Queue
Manager Clusters manual.

� MQSeries now supports C++. This is described in the MQSeries Using C++
manual.

� MQSeries Batch and TSO applications can now participate in 2-phase commit
protocols with other RRS-enabled products, coordinated by OS/390 Resource
Recovery Services (RRS). This is described in “Task 15: Set up Batch, TSO,
and RRS adapters” on page 87.

� There are new system parameters in CSQZPARM (EXITLIM, EXITTCB, and
WLMTIME) and channel initiator parameters in CSQXPARM (TCPTYPE,
LU62ARM, and LSTRTMR). If you do not use the supplied default parameter
modules, consider whether you need to use these new parameters, and
change and link-edit your parameter modules again accordingly.

� If you are using TCP/IP for distributed queuing, you can now use the
OpenEdition sockets interface. This is described “Task 2: Choose the
distributed queuing facility” on page 40.

� The CICS bridge is now incorporated into MQSeries for OS/390. This is
described in “Introduction to the CICS bridge” on page 147.

� MQSeries can now be used in conjunction with the OS/390 Workload Manager.
This is described in “MQSeries, the Workload Manager, and Workflow” on
page 26.

� The operations and control panels have been extended and reorganized to
accommodate the new clustering function. The panels can now also be used
for the security commands. A number of actions have been consolidated into a
new PERFORM action. This is described in “Using the operations and control
panels” on page 197.

� The supplied default for storage class SYSTEM has been changed to page set
01, so that messages are not put on page set 00. This is described in
“Migrating from Version 1.2 to Version 2.1” on page 93.

� The supplied sample input initialization data sets have been reorganized and
renamed. This is described in “Task 10: Customize the initialization input data
sets” on page 52.

� New code pages are supported for data conversion, including those with the
Euro currency symbol. These are described in the MQSeries Application
Programming Reference manual.

 Copyright IBM Corp. 1993,1999 xxv

 What is new

xxvi System Management Guide

 Part 1. Introduction

Chapter 1. Introduction to MQSeries for OS/390 3
MQSeries and message queuing . 3

Time-independent applications . 3
Event-driven processing . 4
Data integrity and resource protection . 4
Application environments . 4

Messages and queues . 4
What messages are . 4
What queues are . 5

Objects and commands . 7
Object names . 7
MQSeries queue managers . 8
MQSeries queues . 9
Specific local queues used by MQSeries . 10
Namelists . 13
Channels . 13
Process definitions . 14
Storage classes . 14

An overview of storage management . 15
Page sets . 15
Storage classes - mapping queues to page sets 15
Page set zero . 16
Buffers and buffer pools . 17

Logs and recovery . 17
Bootstrap data set (BSDS) . 17

Events . 18
Managing MQSeries with commands and utilities 18

Issuing commands . 19
Administrator commands . 19
System control commands . 20
Utilities . 21
Operations and control panels . 21

MQSeries and other products . 22
Address spaces . 22
MQSeries and OS/390 Batch and TSO . 22
MQSeries and CICS . 23
MQSeries and IMS . 25
MQSeries and security . 25
MQSeries and SMS . 26
MQSeries and ARM . 26
MQSeries, the Workload Manager, and Workflow 26

Making MQSeries available . 26
Customizing MQSeries and its adapters . 27
Operating MQSeries . 27
Administering MQSeries . 27
Tuning MQSeries . 27
Preparing for recovery . 28

CSA storage requirement . 28
Private region storage usage . 28

 Copyright IBM Corp. 1993,1999 1

2 System Management Guide

 Introduction

Chapter 1. Introduction to MQSeries for OS/390

This chapter introduces IBM MQSeries for OS/3901 from an administrator’s
perspective and describes:

� The basic concepts of MQSeries and messaging.

� The system-specific things you need to know.

� An outline of the facilities MQSeries for OS/390 provides for system
management and administration.

� The relationship between MQSeries and other products.

It contains these sections:

� “MQSeries and message queuing”
� “Messages and queues” on page 4
� “Objects and commands” on page 7
� “An overview of storage management” on page 15
� “Logs and recovery” on page 17
� “Events” on page 18
� “Managing MQSeries with commands and utilities” on page 18
� “MQSeries and other products” on page 22
� “Making MQSeries available” on page 26
� “CSA storage requirement” on page 28

MQSeries and message queuing
MQSeries for OS/390 lets OS/390 applications use message queuing to participate
in message-driven processing. With message-driven processing, applications can
communicate across different platforms by using the appropriate message queuing
software products. For example, OS/390 and OS/400 applications can
communicate through MQSeries for OS/390 and MQSeries for AS/400 respectively.

MQSeries products implement a common application programming interface
(Message Queue Interface or MQI) whatever platform the applications run on. The
calls made by the applications and the messages they exchange are common.

 Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is time independent. This means that the sending and
receiving applications are decoupled so that the sender can continue processing
without having to wait for the receiver to acknowledge the receipt of the message.

1 In the rest of this book, where the context allows, this is referred to simply as MQSeries.

 Copyright IBM Corp. 1993,1999 3

 Messages and queues

 Event-driven processing
Applications can be started by messages arriving on a queue and, if necessary,
terminated when the message or messages have been processed.

Data integrity and resource protection
MQSeries applications can transfer data with an extremely high degree of
confidence. Message delivery can involve a syncpoint mechanism. This allows for
the recovery of important data—using MQSeries logs—if the system fails.

All MQSeries resources, including MQSeries commands, messages, and queues,
can be protected using an external security manager such as Resource Access
Control Facility (RACF) (also known as the OS/390 Security Server).

 Application environments
With MQSeries for OS/390 you can create applications in these environments:

� An OS/390 Batch and TSO environment
� A CICS transaction environment
� An IMS transaction environment

Applications (or transactions) connect to MQSeries through an adapter. There are
three types of adapter; one for each of these environments.

Messages and queues
Messages and queues are the basic components of any queuing system.

What messages are
A message is a string of bytes that has meaning to the applications that use the
message. Messages are used for transferring information from one application to
another (or different parts of the same application). The applications can be
running in the same environment, or in a different environment. They can be
running on the same platform, or on a different platform.

In MQSeries, messages have two parts; the application data and a message
descriptor. The content and structure of the application data is defined by the
application programs that use them. The message descriptor identifies the
message and contains other control information, such as the message length, the
type of message, and the priority assigned to the message by the sending
application.

The format of the message descriptor is defined by MQSeries. For a complete
description of the message descriptor, see the MQSeries Application Programming
Reference manual. Figure 1 on page 5 represents an MQSeries message that is
logically divided into message descriptor and application data.

4 System Management Guide

 Messages and queues

│%────────Message descriptor──────────5│%──────────────Application data─────────────5│
┌┬─┬ ┬─┐
│ │ │ │ │ │
│<Message ID> <Control information...> │ <Name> <Account name> <Amount requested>...│
│ │ │ │ │ │
└┴─┴ ┴─┘

Figure 1. Representation of an MQSeries message. The message descriptor and
application data are shown as separate parts. Information that is specific to the application,
such as the Account name in this example, is in the application data part of the message.

All applications that participate in message queuing use messages that conform to
this common specification. In MQSeries, there are four types of message:

Datagram A simple message for which no reply is expected.

Request A message for which a reply is expected.

Reply A reply to a request message.

Report A message that describes an event, such as the occurrence of an
error.

The message type is part of the message descriptor. For more information, see
the MQSeries Application Programming Reference manual.

 Message lengths
In MQSeries for OS/390, the maximum message length is 4 MB (megabytes). In
practice, the message length might be limited by:

� The maximum message length defined for the receiving queue.

� The maximum message length defined for the queue manager.

� The maximum message length defined by the applications, when one of the
applications is operating in a non-OS/390 platform.

� The amount of storage available for the message.

It might take several messages to send all the information that an application
requires.

What queues are
A queue is a data structure that is used to store messages until they are retrieved
by an application.

In MQSeries there are three types of queues that hold messages, as defined by the
DEFTYPE attribute in the queue definition. These are:

 � Predefined
 � Permanent dynamic
 � Temporary dynamic

Predefined queues are created by the MQSeries command DEFINE QLOCAL.
Dynamic queues are created by applications making an MQOPEN call against a
model queue. (Model queues are described “Using queue objects” on page 10.)
Permanent queues, that is, predefined queues and permanent dynamic queues,
exist independently of the applications that use them and survive MQSeries

 Chapter 1. Introduction to MQSeries for OS/390 5

 Messages and queues

restarts. Temporary dynamic queues are deleted when the application that created
them is stopped, or if MQSeries is stopped.

Queues can exist in main storage, but might be paged out to DASD depending on
the usage of that queue. If a queue must be kept for recovery purposes, it is
written to DASD. This means that if it needs to be recovered it can be retrieved
from DASD.

Each queue belongs to a queue manager, which is responsible for maintaining it.
The queue manager puts the messages it receives on the appropriate queues.

Applications send and receive messages using MQI calls. For example, to put a
message on a queue, the queue is opened for ‘puts’ by the sending application
making an MQOPEN call. Then, the application issues an MQPUT call to put the
message onto that queue. The receiving application must open the same queue
for ‘gets’. It then issues an MQGET to retrieve a message from the queue.

In MQSeries, messages can be retrieved from a queue by suitably authorized
applications according to these retrieval algorithms:

 � First-in-first-out (FIFO).

� Message priority, as defined in the message descriptor. Messages having the
same priority are retrieved on a FIFO basis.

� A program request for a specific message.

Queues can be local or remote. MQSeries for OS/390 can send your messages to
queues on another queue manager using its distributed queuing facility. Distributed
queuing involves communications links called channels between the queue
manager systems; communications can be handled by any of the following:

 � TCP/IP
� APPC/MVS (LU 6.2)

 � CICS
 � SNS/TCPaccess

You can group queue managers in a cluster. Queue managers within the cluster
can make the queues that they host available to the whole cluster. Using clusters
enables you to:

� Simplify your system administration
� Increase the availability of your queues
� Distribute workload among your queue managers

This is described in the MQSeries Queue Manager Clusters manual.

6 System Management Guide

 Objects and commands

Objects and commands
Many of the tasks described in this book involve manipulating MQSeries objects.
These objects are common across the different platforms, although some
implementations might support a subset of the types listed here.

In MQSeries for OS/390, there are six different types of object:

 1. Channels

(Note that if you are using CICS for distributed queuing, channels are not
objects, and cannot be manipulated using MQSeries commands.)

2. Queues, subdivided into:

 � Local queues
 � Remote queues
 � Alias queues
 � Model queues
 � Cluster queues

 3. Queue managers

 4. Namelists

 5. Process definitions

 6. Storage classes

These objects can be manipulated by the MQSeries commands described in the
MQSeries Command Reference manual. For example, the MQSeries command
DEFINE QLOCAL, with the appropriate attributes, defines a local queue object.
This means that if you issue this command, and the command is successful, you
create a new queue. Depending on the attributes provided on the queue definition,
applications can then open this queue for putting and getting messages.

 Object names
Each queue manager is identified by a unique subsystem name. This name is
associated with a command prefix string (CPF). See “Using command prefix
strings” on page 42. Depending on the task you are performing, a queue manager
might be identified by its subsystem name or by its CPF. (For example, you use
the CPF if you are entering commands at the OS/390 console, and you use the
subsystem name when you are using the operations and control panels.)

For the other types of objects, each object has a name associated with it and can
be referenced in MQSeries commands by that name. In general, names must be
unique within each of these object types. For example, you can have a queue and
a process with the same name, but you cannot have two queues with the same
name. This means that you cannot have a local queue with the same name as a
model queue, a remote queue, or an alias queue. There are a few exceptions to
this rule; these are described where they arise.

 Chapter 1. Introduction to MQSeries for OS/390 7

 Objects and commands

MQSeries queue managers
Each MQSeries instance is a queue manager. It is the queue manager that
provides queuing services to applications that are connected to it through an
adapter. For example, the application can be a CICS transaction, which is
connected to the MQSeries queue manager by the CICS adapter.

Figure 2 on page 9 shows two queue managers with applications connected
through adapters. The queue manager manages the queues that are local to it,
and ensures that outgoing messages are routed correctly. Distributed queuing is
the part of MQSeries that handles communications with other queue managers.
(MQSeries applications can also access CICS and IMS applications directly through
bridges; these are introduced in “MQSeries and other products” on page 22.)

A queue is a local queue if it is managed by the same queue manager that is
connected to the application. If the queue is managed by a different queue
manager, it is called a remote queue. In Figure 2 on page 9 queues A1 and A2
are local queues for applications 1, 2, and 3. However, for applications 4, 5, and 6,
they are remote queues.

Queue manager objects
A queue manager provides queuing services to applications and commands to
administrators, but it is also an MQSeries object in its own right. Because it is an
object, a queue manager can be used in both MQI calls and MQSeries commands.

MQI calls: A queue manager object can be used in some MQI calls. For
example, you can inquire about the attributes of the queue manager object using
the MQI call MQINQ. However, you cannot put messages on a queue manager
object using an MQPUT call. Messages are always put to queue objects, not to
queue manager objects. See the MQSeries Application Programming Reference
manual for further details of the MQI calls that can be used with a queue manager
object.

MQSeries commands: The queue manager object has attributes, which can be
displayed using the MQSeries command DISPLAY QMGR. Some of these
attributes can be changed using the ALTER QMGR command. However, unlike the
other MQSeries objects, there are no commands to define or delete the queue
manager object. Once a queue manager is installed and customized, it is always in
existence.

For more information, see Chapter 3, “Customizing the queue managers” on
page 37 and “Managing MQSeries with commands and utilities” on page 18.

8 System Management Guide

 Objects and commands

OS/390

Communication links

A1 A2
Queues

CICS
Appl

3

Batch
Appl

2

Adapter Adapter

IMS
Appl

1

Adapter

CICSIMS

OS/390

B1 B2
Queues

CICS
Appl

6

Batch
Appl

5

Adapter Adapter

IMS
Appl

4

Adapter

CICSIMS

to other
MQSeries systems

to other
MQSeries systems

Queue
Manager A

Queue
Manager B

DQM DQM

Figure 2. MQSeries for OS/390 overview

 MQSeries queues
Queues are defined to MQSeries using the appropriate DEFINE commands for
queues. For example, you use the DEFINE QLOCAL command to define a local
queue. These commands specify the attributes of the queue being defined. For
example, a local queue object has attributes that specify what happens when
applications reference that queue in MQI calls. Some of the things that the
attributes of a queue determine are:

� Whether applications can retrieve messages from the queue (get enabled).

� Whether applications can put messages on the queue (put enabled).

� Whether access to the queue is exclusive to one application or shared between
applications.

� The maximum number of messages that can be stored on the queue at the
same time (maximum queue depth).

� The maximum length of messages that can be put on the queue.

This list is only a subset; for full details about queue attributes and the commands
for defining and manipulating queue objects, see the MQSeries Command
Reference manual.

 Chapter 1. Introduction to MQSeries for OS/390 9

 Objects and commands

Using queue objects
In MQSeries, there are five types of queue object. Each type of object can be
manipulated by MQSeries commands and is associated with real queues in
different ways:

1. A local queue object identifies a local queue belonging to the queue manager
to which the application is connected. Messages always end up on a queue
that is a local queue on the destination queue manager.

2. A remote queue object identifies a queue belonging to another queue manager.
This queue, therefore, must be defined as a local queue to the remote queue
manager. The information you specify when you define a remote queue object
allows the queue manager to find the remote queue manager, so that any
messages destined for the remote queue go to the correct queue manager.

3. An alias queue object lets applications access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This lets you to change the queues that applications use without changing the
application in any way—you merely change the alias queue definition to reflect
the name of the new queue that the alias resolves to.

4. A model queue object defines a set of queue attributes that are used as a
template for creating a dynamic queue. Dynamic queues are created by the
queue manager when an application makes an MQOPEN request specifying a
queue name that is the name of a model queue. The dynamic queue that is
created in this way is a local queue whose attributes are taken from the model
queue definition. The dynamic queue name can be specified by the application
or, if the application does not specify one, the queue manager generates a
unique name, starting “CSQ.” and returns it to the application.

Dynamic queues defined in this way can be temporary queues, which do not
survive MQSeries restarts, or permanent queues, which do.

5. A cluster queue object represents a queue, defined on this queue manager or
elsewhere in the network, that is in a cluster. MQSeries clusters are described
in the MQSeries Queue Manager Clusters manual.

Use the appropriate DEFINE command to create one of these types of queue
objects. These commands are described in the MQSeries Command Reference
manual. You can also use the default queue objects supplied with MQSeries as
the basis of your definitions. These defaults are described in “CSQ4INSG system
object sample” on page 55.

Specific local queues used by MQSeries
MQSeries uses some local queues for specific purposes related to its operation.
These queues must be defined before MQSeries can use them.

The MQSeries administrator is responsible for defining and maintaining all queues
using the information in this book and the MQSeries Command Reference manual.

10 System Management Guide

 Objects and commands

 Initiation queues
An initiation queue receives trigger messages; these show that trigger events have
occurred. Typically, a trigger event occurs when a message is put on a queue so
that the trigger conditions for that queue are met. For example, the trigger
conditions could be that a trigger event occurs when the number of messages on
the queue reaches a predefined depth. The trigger event causes the queue
manager to put a trigger message onto the initiation queue for that queue. This
trigger message is retrieved from the initiation queue by a trigger monitor
application. The trigger monitor then starts up the application program that was
specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

 Transmission queues
A transmission queue temporarily stores messages that are destined for a remote
queue manager. You must define at least one transmission queue for each remote
queue manager to which the local queue manager is to send messages directly,
unless you are using queue manager clusters. In this case, you only need to
define one transmission queue to handle messages for all destinations. For details
about the use of transmission queues in distributed queuing, see the MQSeries
Intercommunication manual.

 Channel queues
Channels are objects used in distributed queuing to define how communication
between queue managers takes place. The following local queues are required to
support channels for distributed queuing:

� A channel initiation queue is needed to send commands to channels. This
queue must be called SYSTEM.CHANNEL.INITQ.

� A channel synchronization queue is used for sequential message numbering for
handling unit of work information when MQSeries subsystems are
communicating. Each queue manager needs the channel synchronization
queue if it is to receive or send messages to another queue manager
(regardless of the number of other queue managers involved). This queue
must be called SYSTEM.CHANNEL.SYNCQ.

� A channel reply information queue is needed to handle replies from channel
commands. This queue must be called SYSTEM.CHANNEL.REPLY.INFO.

Different local queues are required if you are using CICS ISC for distributed
queuing. These are described in Appendix D, “Enabling distributed queuing using
CICS ISC” on page 479.

Cluster support queues
The following local queues are required to support clustering:

� A local queue is needed to hold a persistent copy of the repository. (The
repository is a collection of information about the queue managers that are
members of the cluster, held on some of the queue managers in the cluster
and replicated on the other queue managers.) This queue is called
SYSTEM.CLUSTER.REPOSITORY.QUEUE.

� A local queue is needed to communicate repository changes between queue
managers. This queue is used for information about updates to the repository

 Chapter 1. Introduction to MQSeries for OS/390 11

 Objects and commands

data to be applied to the local repository, or requests for repository data. This
queue is called SYSTEM.CLUSTER.COMMAND.QUEUE.

� A local queue is needed as the transmission queue for all destinations in the
cluster. This queue is called SYSTEM.CLUSTER.TRANSMIT.QUEUE.

For information about MQSeries clusters, see the MQSeries Queue Manager
Clusters manual.

 Dead-letter queue
A dead-letter queue receives messages that cannot be routed to their correct
destinations. This occurs when, for example:

� The destination queue is full
� Message puts have been inhibited on the destination queue
� The sender is not authorized to use the destination queue
� The destination queue does not exist

For distributed queuing, it is strongly recommended that you define a dead-letter
queue for each queue manager involved. If you do not do this, a channel will close
if MQSeries is unable to deliver a message, and distributed queuing will stop.

System-command input queue
The system-command input queue (SYSTEM.COMMAND.INPUT) is a local queue to
which suitably authorized applications can send MQSeries commands. These
commands are then retrieved by an MQSeries component called the command
server. The command server validates the commands and passes the valid ones
on for processing by the MQSeries command processor. See also “Using the
command server” on page 213.

A system-command input queue must be defined for each queue manager.

The supplied default model queue SYSTEM.COMMAND.REPLY.MODEL is used by the
CSQUTIL utility, the distributed queuing features, and the MQSeries operations and
control panels. The operations and control panels use dynamic queues generated
from this model queue to receive replies to MQSeries commands. These replies
can then be viewed by users from the operations and control panels. The dynamic
queue names are of the form SYSTEM.CSQUTIL.ñ, SYSTEM.CSQXCMD.ñ, and
SYSTEM.CSQOREXX.ñ respectively.

 Event queues
An event queue is a local or remote queue used to hold event messages. Event
messages are generated by the queue manager to help you monitor your system.

The following event queues are required:

� SYSTEM.ADMIN.QMGR to hold messages about queue manager events
� SYSTEM.ADMIN.PERFM.EVENT to hold messages about performance events
� SYSTEM.ADMIN.CHANNEL.EVENT to hold messages about channel events

For information about MQSeries events, see “Events” on page 18.

12 System Management Guide

 Objects and commands

System default queues
The system default queues are a set of queue definitions supplied with MQSeries.
You can copy and rename any of these queue definitions for use in applications at
your installation.

For example, to define a local queue, you can copy the supplied default
SYSTEM.DEFAULT.LOCAL.QUEUE, change its name, and then alter any of its other
attributes, as required.

 Namelists
A namelist is an MQSeries object that contains a list of other MQSeries objects.
Namelists are maintained independently of applications, that is, they can be
updated without stopping any of the applications that use them.

Use the DEFINE NAMELIST command to create a new namelist. You can also
use the default namelist object, SYSTEM.DEFAULT.NAMELIST (supplied with MQSeries)
as the basis of your own definitions. System default objects are described in
“CSQ4INSG system object sample” on page 55.

 Channels
A channel provides a communication path. There are two types of channel,
message channels and MQI channels.

A message channel provides a communication path between two queue managers.
The message channel is used for the transmission of messages from one queue
manager to another, and shields the application programs from the complexities of
the underlying networking protocols.

A message channel can transmit messages in one direction only. If two-way
communication is required between two queue managers, two message channels
are required.

In order to set up a channel, you usually define one channel definition for each end
of the channel. There are six types of message channel: Sender, Server, Receiver,
Requester, Cluster-sender and Cluster-receiver.

An MQI channel connects an MQSeries client to a queue manager on a server
machine. It is for the transfer of MQI calls and responses only and is bidirectional.
A channel definition exists for each end of the link. There are two types of MQI
channel: Server-connection and Client-connection.

For distributed queuing (without CICS ISC), channels are MQSeries objects. Use
the DEFINE CHANNEL command to create a new channel. You can also use the
default channel objects (supplied with MQSeries for OS/390) as the basis of your
own definitions. This is described in “CSQ4INSX system object sample” on
page 56. If you are using clustering, most channels are created automatically.

For distributed queuing using CICS ISC, channels are maintained by a CICS
transaction called CKMC.

 Chapter 1. Introduction to MQSeries for OS/390 13

 Objects and commands

 Process definitions
A process definition object defines an application that is to be started in response
to a trigger event on an MQSeries queue manager. In MQSeries, an application
retrieves messages from one or more specified queues and processes them. An
application can be any of the following types:

 � CICS transactions
 � IMS transactions
� TSO or batch programs

This definition includes the application ID, the application type, and data specific to
the application.

Use the DEFINE PROCESS command to create a process definition. You can also
use the default process definition object, SYSTEM.DEFAULT.PROCESS (supplied with
MQSeries) as the basis of your own definitions. System default objects are
described in “CSQ4INSG system object sample” on page 55.

Trigger monitors and task initiators
A trigger monitor is an application that monitors an initiation queue associated with
a queue manager (see “Initiation queues” on page 11). When a trigger message
arrives on the initiation queue, it is retrieved by the trigger monitor. Typically, the
trigger monitor then starts an application that is specified in the message on the
initiation queue.

MQSeries supplies trigger monitors for use in the following environments:

CICS This is referred to in this book as the CICS task initiator transaction, CKTI.
See “Task initiator” on page 113 for a description of this transaction and
Chapter 7, “Operating the CICS adapter” on page 123 for how to use it.

IMS This is referred to in this book as the IMS transaction CSQQTRMN. See
“The IMS trigger monitor” on page 160 for a description of this transaction
and Chapter 10, “Operating the IMS adapter” on page 169 for how to use
it.

 Storage classes
See “Storage classes - mapping queues to page sets” on page 15 for information
about storage classes.

14 System Management Guide

 Storage management overview

An overview of storage management
In MQSeries for OS/390, storage management involves using these entities:

 � Page sets
 � Storage classes
 � Buffer pools

 Page sets
A page set is a linear VSAM data set that has been specially formatted to be used
in MQSeries. Page sets are used to store messages and object definitions. Each
page set is identified by a page set identifier (PSID), an integer in the range 00
through 99. MQSeries uses page set zero (PSID=00) to store object definitions
and other important information relevant to the queue manager subsystem.

Each queue manager must have its own page sets including a page set zero.

Page sets must be formatted and so MQSeries provides a FORMAT utility for this,
see “Formatting page sets (FORMAT)” on page 231. Page sets must also be
defined to the MQSeries subsystem, see “Task 12: Define your page sets” on
page 62.

If you define secondary extents for your page sets, MQSeries for OS/390 expands
a page set dynamically if it becomes full. MQSeries continues to expand the page
set if required until 123 logical extents exist, provided that there is sufficient disk
storage space available.

Note: You cannot use page sets from one MQSeries subsystem on a different
MQSeries subsystem, or change the subsystem name. If you want to
transfer the data from one subsystem to another, you must unload all the
objects and messages from the first subsystem and reload them onto
another.

Storage classes - mapping queues to page sets
Storage classes allow you to control where message data is stored for
administrative, data set space and load management, or application isolation
purposes.

A storage class maps one or more queues to a page set. This means that
messages for that queue are stored (subject to buffering) on that page set. This is
how it works:

� You define a storage class, using the DEFINE STGCLASS command,
specifying a page set identifier (PSID).

� When you define a queue, you can specify a storage class in the STGCLASS
attribute.

In the following example, the local queue QE5 is mapped to page set 21 through
storage class ARC2.

DEFINE STGCLASS(ARC2) PSID(21)
DEFINE QLOCAL(QE5) STGCLASS(ARC2)

 Chapter 1. Introduction to MQSeries for OS/390 15

 Storage management overview

This means that messages that are put on the queue QE5 are stored on page set
21 (if they stay on the queue long enough to be written to DASD).

ARC1 ARC1 MAXI

QE1 QE2 QE3

Page set 05

ARC2 ARC2

QE4 QE5

Page set 21

Queue

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

Storage
Class

Figure 3. Mapping queues to page sets through storage classes

More than one queue can use the same storage class and you can define as many
storage classes as you like. For example, you can extend the previous example to
include more storage class and queue definitions, as follows:

DEFINE STGCLASS(ARC1) PSID(ð5)
DEFINE STGCLASS(ARC2) PSID(21)
DEFINE STGCLASS(MAXI) PSID(ð5)
DEFINE QLOCAL(QE1) STGCLASS(ARC1) ...
DEFINE QLOCAL(QE2) STGCLASS(ARC1) ...
DEFINE QLOCAL(QE3) STGCLASS(MAXI) ...
DEFINE QLOCAL(QE4) STGCLASS(ARC2) ...
DEFINE QLOCAL(QE5) STGCLASS(ARC2) ...

In Figure 3, both storage classes ARC1 and MAXI are associated with page set 05.
Therefore, the queues QE1, QE2, and QE3 are mapped to page set 05. Similarly,
storage class ARC2 associates queues QE4 and QE5 with page set 21.

If you define a queue without specifying a storage class, MQSeries uses the default
storage class.

Page set zero
Page set zero is used to store all the object definitions required by the queue
manager. For normal operation of MQSeries, it is essential that page set zero does
not become full. For performance reasons, it is best not to have object definitions
and messages on the same page set. Therefore, we recommend that you do not
define storage classes that map to page set zero. If you do, you run the risk of
filling page set zero if too many messages accumulate there. This would mean that
any MQSeries facility that uses the system-command input queue, for example, the
operations and control panels, would fail. Also, applications would be unable to
create permanent dynamic queues.

16 System Management Guide

 Logs and recovery

Buffers and buffer pools
For efficiency, MQSeries uses a form of caching whereby messages (and object
definitions) are stored temporarily in buffers before being stored in page sets on
DASD. Short-lived messages, that is, messages that are retrieved from a queue
shortly after they are received, might only ever be stored in the buffers. However,
this is all transparent to the user because the buffers are controlled by a buffer
manager, which is a component of MQSeries.

The buffers are organized into buffer pools. You can define up to four buffer pools
(0 through 3) for each MQSeries subsystem; you are recommended to use four
buffer pools. Each buffer is 4 KB long. The maximum number of buffers is
determined by the amount of storage available in the MQSeries address space,
although you should not use more than about 70% of the space for buffers.
Usually, the more buffers you have, the more efficient the buffering and the better
the performance of the MQSeries subsystem.

Figure 4 on page 18 shows the relationship between messages, buffers, buffer
pools, and page sets. A buffer pool is associated with one or more page sets;
each page set is associated with a single buffer pool.

You specify the number of buffers in a pool with the DEFINE BUFFPOOL
command. For details of this command, see the MQSeries Command Reference
manual.

For performance reasons, messages and object definitions should not be in the
same buffer pool. You are recommended therefore to use one buffer pool (say
number zero) exclusively for page set zero, where the object definitions are kept.
Similarly, short-lived messages and long-lived messages should be kept in different
buffer pools and therefore on different page sets, and in different queues.

Logs and recovery
MQSeries records all persistent messages, object definitions, and significant events
as they occur in one of a cycle of log data sets. When this active log is full,
MQSeries switches the active log to the next data set, and copies the contents of
the full log to an archive log, which can be a data set on a direct access storage
device (DASD) or magnetic tape. If there is a subsystem problem, MQSeries uses
these log entries to restore itself to a consistent state. In particular, persistent
messages can be recovered over MQSeries subsystem restarts. For greater
assurance against, for example, DASD failure, MQSeries supports dual logging for
both the active and the archive logs.

For a complete description of logs, their contents, and archiving, see Chapter 17,
“Understanding the log and the bootstrap data set” on page 299.

Bootstrap data set (BSDS)
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS) that
holds information required by MQSeries for recovery. It contains an inventory of all
active and archived log data sets known to MQSeries and a wrap-around inventory
of all recent MQSeries activity, which is needed if MQSeries has to be restarted.
MQSeries also supports dual BSDSs.

 Chapter 1. Introduction to MQSeries for OS/390 17

 Commands and utilities

<descriptor> <application data>

Buffers

MQM message

Physically, messages
are stored
temporarily in
buffers before
they are stored in
page sets on DASD.

Each 4KB buffer
belongs to a buffer
pool.

A page set is a
specially formatted
VSAM data set.

Each page set is
associated with a
buffer pool.

Page set X

message 1...
message 2...
and so on...

Page set Y

message 3...
message 4...
and so on...

Buffer
pool

Figure 4. Buffers, buffer pools, and page sets

For a complete description of the functions and uses of the BSDS, see “What the
bootstrap data set is for” on page 305.

 Events
MQSeries events provide information about errors, warnings, and other significant
occurrences in a queue manager. By incorporating these events into your own
system management application, you can monitor the activities across many queue
managers, for multiple MQSeries applications. In particular, you can monitor all the
queue managers in your system from a single queue manager.

Events can be reported through a user-written reporting mechanism to an
administration application that supports the presentation of the events to an
operator. Events also enable applications acting as agents for other administration
networks, for example NetView, to monitor reports and create the appropriate
alerts.

For more information about using events, see the MQSeries Programmable System
Management manual.

Managing MQSeries with commands and utilities
MQSeries provides a set of commands and a set of utilities to help you to manage
MQSeries at your installation.

This section gives an overview of the following:

 � Issuing commands
 � Administrator commands

18 System Management Guide

 Commands and utilities

� System control commands
 � Utilities
� Operations and control panels

For more information on all MQSeries commands, including the command syntax,
see the MQSeries Command Reference manual.

 Issuing commands
The commands can be issued from:

� The initialization input data sets (see page 52)
� The OS/390 console (see page 190)
� The system-command input queue (see page 211)
� The COMMAND function of the CSQUTIL utility (see page 229)
� The operations and control panels (see page 197)

For more information, see “Issuing commands” on page 189.

 Administrator commands
You use the administrator commands to manage these MQSeries objects:

� Channels (for distributed queuing without CICS ISC)
 � Namelists
 � Processes
 � Queues
 � Queue managers
 � Storage classes

For each of these types of objects you can use these types of commands:

Command type Purpose

ALTER Changes an existing object definition

DEFINE Defines the attributes of an object and creates the object (not
the queue manager)

DISPLAY Displays the attributes of an object

DELETE Deletes an object definition (not the queue manager)

Table 1 shows the administrator commands that are available.

Table 1 (Page 1 of 2). Summary of MQSeries administrator commands

 ALTER DEFINE DISPLAY DELETE

CHANNEL √ √ √ √

NAMELIST √ √ √ √

PROCESS √ √ √ √

QALIAS √ √ √ √

QCLUSTER √

QLOCAL √ √ √ √

QMGR √ √

QMODEL √ √ √ √

QREMOTE √ √ √ √

 Chapter 1. Introduction to MQSeries for OS/390 19

 Commands and utilities

Table 1 (Page 2 of 2). Summary of MQSeries administrator commands

 ALTER DEFINE DISPLAY DELETE

QUEUE √

STGCLASS √ √ √ √

System control commands
You can use the system control commands to manage entities specific to MQSeries
for OS/390, such as page sets and buffer pools. Table 2 summarizes the
MQSeries system control commands.

Table 2 (Page 1 of 2). System control commands

This command... Deals with... For these tasks...

ARCHIVE LOG Logs Copying the current active log to an
archive log.

DEFINE BUFFPOOL Buffer pools Defining a buffer pool and the number of
4 KB buffers it contains.

DEFINE MAXSMSGS
DISPLAY MAXSMSGS

Messages Defining the maximum number of
messages that a task can get or put
within a single unit of recovery.

DEFINE PSID Page sets Defining a page set and an associated
buffer pool.

DISPLAY THREAD Threads Displaying information about a thread.

DISPLAY USAGE Page sets Displaying the current state of a page set.

RECOVER BSDS BSDS Re-establishing a dual bootstrap data set
that had a data set error.

REFRESH SECURITY
RVERIFY SECURITY
ALTER SECURITY
DISPLAY SECURITY

Security Performing tasks associated with security,
for example, refresh security if you
change security profiles; changing and
displaying security options.

RESOLVE INDOUBT Threads Resolving in-doubt threads.

START CMDSERV
STOP CMDSERV
DISPLAY CMDSERV

Command
server

Starting or stopping the command server,
displaying command server attributes.

START TRACE
STOP TRACE
ALTER TRACE
DISPLAY TRACE

Traces Starting or stopping MQSeries traces,
changing and displaying trace
parameters.

START QMGR
STOP QMGR
SUSPEND QMGR
RESUME QMGR

Queue
managers

Starting and stopping queue managers,
joining and leaving clusters.

START CHANNEL
STOP CHANNEL
PING CHANNEL
RESET CHANNEL
RESOLVE CHANNEL
DISPLAY CHSTATUS

Channels Starting and stopping channels, testing a
channel, resetting channel sequence
numbers, resolving in-doubt messages,
and displaying channel status.

20 System Management Guide

 Commands and utilities

Table 2 (Page 2 of 2). System control commands

This command... Deals with... For these tasks...

START CHINIT
STOP CHINIT
DISPLAY DQM

Channel
initiators

Starting and stopping channel initiators,
display information about channel
initiators.

START LISTENER
STOP LISTENER

Channel
listeners

Starting and stopping channel listeners.

RESET TPIPE IMS
transaction
pipes (Tpipe)

Resetting sequence numbers for an IMS
Tpipe.

DISPLAY CLUSQMGR Queue
managers

Displaying cluster information about
queue managers in a cluster.

REFRESH CLUSTER
RESET CLUSTER

Clusters Refreshing locally-held cluster information,
performing special cluster operations.

 Utilities
MQSeries also provides the following utilities to help you perform other
administrative and management tasks:

� MQSeries utility program, CSQUTIL; you can use this utility for:

– Managing page sets

– Issuing system administrator and system control commands from an
OS/390 batch program

 – Managing queues

� Data conversion exit utility program, CSQUCVX

� Change log inventory program, CSQJU003, for modifying the bootstrap data set

� Print log map utility, CSQJU004, for listing information about the log

� Log print utility, CSQ1LOGP, for printing the log

The MQSeries utilities are described in Chapter 14, “Using the MQSeries utilities”
on page 227.

Operations and control panels
MQSeries provides a set of operations and control panels that enable you to
manage MQSeries objects interactively. The panels use the Interactive System
Productivity Facility (ISPF).

The operations and control panels are available in the following national languages:

� US English (mixed case)
� US English (uppercase)

 � Japanese
 � Simplified Chinese

depending on which language feature you have installed.

Both the Time Sharing Option/Extensions (TSO/E) and the Interactive Systems
Productivity Facility (ISPF) are required if you want to use the operations and
control panels supplied with MQSeries.

 Chapter 1. Introduction to MQSeries for OS/390 21

 MQSeries and other products

For more details about the operations and control panels and how they are used,
see “Using the operations and control panels” on page 197.

MQSeries and other products
This section describes some of the other products you can use with MQSeries and
how these products are used.

MQSeries operates as a formal subsystem of OS/390. MQSeries connects to the
application environments through adapters. Adapters are provided for each of
these environments:

� Batch and TSO
 � CICS
 � IMS

 Address spaces
There is one MQSeries address space and there are allied address spaces for
each environment in which the applications run.

Each TSO user, each batch program, and each IMS program has its own allied
address space. For the CICS adapter, there is one CICS address space and that
is for the CICS region (not for individual CICS programs).

MQSeries and OS/390 Batch and TSO
The Batch/TSO adapters are the interface between OS/390 application programs
running under JES, TSO, or OS/390 OpenEdition and an MQSeries subsystem.
They enable OS/390 application programs to use the MQI.

The adapters provide access to MQSeries resources for programs running in:

� Task (TCB) mode
� Problem or supervisor state

 � Non-cross-memory mode
� Non-access register mode

Connections between application programs and MQSeries are at the task level.
The adapters provide a connection thread from an application task control block
(TCB) to MQSeries.

The Batch/TSO adapter supports a single-phase commit protocol for changes made
to resources owned by MQSeries. It does not support multi-phase commit
protocols. The RRS adapter enables MQSeries applications to participate in
two-phase commit protocols with other RRS-enabled products, coordinated by
OS/390 Resource Recovery Services (RRS).

The adapters use the OS/390 STIMERM service to schedule an asynchronous
event every second. This event runs an interrupt request block (IRB) that does not
involve any waiting by the batch application’s task. This IRB checks to see if the
MQSeries termination ECB has been posted. If the termination ECB has been
posted, the IRB posts any application ECBs that are waiting on an event in the
MQSeries subsystem (for example, a signal or a wait).

22 System Management Guide

 MQSeries and other products

The MQSeries-Batch/TSO adapter
The MQSeries Batch/TSO adapter provides MQSeries support for OS/390 Batch
and TSO applications. All application programs that run under OS/390 Batch or
TSO must have the stub CSQBSTUB link-edited with them. The stub provides the
application with access to all MQI calls. You use single-phase commit and backout
for applications by issuing the MQI calls MQCMIT and MQBACK .

For information about building application programs that use the Batch/TSO
adapter, see the MQSeries Application Programming Reference manual.

The MQSeries-Batch/TSO RRS adapter
Resource Recovery Services (RRS) is a subcomponent of OS/390 that provides a
system-wide service for coordinating two-phase commit across OS/390 products.
The MQSeries Batch/TSO RRS adapter (the RRS adapter) provides MQSeries
support for OS/390 Batch and TSO applications that want to use these services.
The RRS adapter enables MQSeries to become a full participant in RRS
coordination. Applications can participate in two-phase commit processing with
other products that support RRS (for example, DB2).

The RRS adapter provides two stubs; application programs that want to use RRS
must be link-edited with one of these stubs.

� CSQBRSTB allows you to use two-phase commit and backout for applications
by using the RRS callable resource recovery services instead of the MQI calls
MQCMIT and MQBACK . The callable resource recovery services of RRS are
described in the MVS Programming: Callable Services for High Level
Languages manual. You must also link-edit module ATRSCSS from library
SYS1.CSSLIB with your application. If you use the MQI calls MQCMIT and
MQBACK , you will receive return code MQRC_ENVIRONMENT_ERROR.

� CSQBRSSI allows you to use MQI calls MQCMIT and MQBACK ; MQSeries
actually implements these calls as the SRRCMIT and SRRBACK RRS calls.

For information about building application programs that use the RRS adapter, see
the MQSeries Application Programming Reference manual.

MQSeries and CICS
The MQSeries-supplied CICS adapter gives you access to MQSeries from CICS.
You can start and stop CICS and MQSeries independently, and you can establish
or terminate a connection between them at any time. You can also allow CICS to
connect to MQSeries automatically.

The CICS adapters use the CICS task-related user exit (TRUE) facility. This facility
is described in the CICS Customization Guide.

In a CICS multiregion operation or intersystem communication (ISC) environment,
each CICS address space can have its own attachment to the queue manager
subsystem. A single CICS address space can be connected to only one queue
manager at a time. However, multiple CICS address spaces can connect to the
same MQSeries subsystem.

The CICS adapter also lets you use distributed queuing to send messages to and
receive messages from other queue managers using CICS communication facilities.
For more information, see the MQSeries Intercommunication manual.

 Chapter 1. Introduction to MQSeries for OS/390 23

 MQSeries and other products

The CICS adapter provides CICS applications with access to MQSeries data while
operating in the CICS environment. Therefore, CICS applications connected to
MQSeries can access both MQSeries data and CICS data.

Usually, if CICS or MQSeries terminate or if the application terminates, CICS
coordinates the recovery of both MQSeries data and CICS data. However, if
messages are being sent from one queue manager to another using distributed
queuing, recovery is coordinated by the sender Message Channel Agent (MCA).
For more information about distributed queuing, see the MQSeries
Intercommunication manual.

You can use MQSeries with the CICS Extended Recovery Facility (XRF) to aid
recovery from a CICS error. For more information about XRF, see “Using
Extended Recovery Facility” on page 312 and the CICS/ESA Version 3.3 XRF
Guide.

The CICS adapter uses standard CICS command-level services where required, for
example, EXEC CICS WAIT and EXEC CICS ABEND. A portion of the CICS
adapter runs under the control of the transaction issuing the messaging requests.
Therefore, these calls for CICS services appear to be issued by the transaction.
For more information, see Chapter 6, “The MQSeries-CICS adapter” on page 109.

Application programming with CICS
The CICS adapter provides MQSeries support for CICS applications. All
application programs that run under CICS must have the stub CSQCSTUB
link-edited with them if they are to access MQSeries, unless the program is using
dynamic calls. (For information about calling the CICS stub dynamically, see the
MQSeries Application Programming Guide.) This stub provides the application with
access to all MQI calls. For two-phase commit and backout, applications must use
the appropriate EXEC CICS commands.

For information about building application programs that use the CICS adapter, see
the MQSeries Application Programming Guide.

System administration and operation with CICS
An authorized CICS terminal operator can issue CICS commands to control and
monitor the CICS adapter. However, the CICS terminal operator has no control
over the MQSeries address space. For example, the operator cannot shut down
MQSeries from the CICS address space.

The MQSeries-CICS bridge
The MQSeries-CICS bridge enables an application, not running in a CICS
environment, to run a program or transaction on CICS and get a response back.
This non-CICS application can be run from any environment that has access to an
MQSeries network that encompasses MQSeries for OS/390.

A program is a CICS program that can be invoked using the EXEC CICS LINK
command. It must conform to the DPL subset of the CICS API, that is, it must not
use CICS terminal or syncpoint facilities. A transaction is a CICS transaction
designed to run on a 3270 terminal. This transaction can use BMS or TC
commands. It can be conversational or part of a pseudoconversation. It is
permitted to issue syncpoints.

For more information, see “Introduction to the CICS bridge” on page 147.

24 System Management Guide

 MQSeries and other products

MQSeries and IMS
The IMS adapter provided with MQSeries gives access to MQSeries from IMS.
The IMS adapter receives and interprets requests for access to MQSeries using the
External Subsystem Attach Facility (ESAF) provided by IMS. This facility is
described in the IMS Customization Guide. Usually, IMS connects to MQSeries
automatically without operator intervention. (For more information see Chapter 9,
“The MQSeries-IMS adapter” on page 159.)

You can use MQSeries with the IMS Extended Recovery Facility (XRF) to aid
recovery from a IMS error. For more information about XRF, see “Using Extended
Recovery Facility” on page 312, and the IMS Administration Guide: System
manual.

Application programming with IMS
With the IMS adapter, MQSeries provides message queuing services for
IMS-dependent regions. All application programs that run under IMS must have the
stub CSQQSTUB and the IMS language interface module link-edited with them if
they need to access MQSeries. This stub provides the application with access to
all MQI calls. To use two-phase commit and backout, your application should use
the appropriate IMS calls. Batch DL/I programs must use the batch adapter stub,
CSQBSTUB (see “The MQSeries-Batch/TSO adapter” on page 23).

For information about building application programs that use the IMS adapter, see
the MQSeries Application Programming Guide.

The MQSeries-IMS bridge
The MQSeries-IMS bridge is the component of MQSeries for OS/390 that allows
direct access from MQSeries applications to applications on your IMS system. The
bridge enables implicit MQSeries API support. This means that you can
re-engineer legacy applications that were controlled by 3270-connected terminals to
be controlled by MQSeries messages, without having to rewrite, recompile, or
re-link them.

The bridge is an IMS Open Transaction Manager Access (OTMA) client. For more
information, see “Introduction to the IMS bridge” on page 179.

System administration and operation with IMS
An authorized IMS terminal operator can issue IMS commands to control and
monitor the connection to MQSeries. However, the IMS terminal operator has no
control over the MQSeries address space. For example, the operator cannot shut
down MQSeries from an IMS address space.

MQSeries and security
MQSeries uses the OS/390 System Authorization Facility (SAF) to route
authorization requests to an external security manager, for example, the Resource
Access Control Facility (RACF). MQSeries does no security verification of its own.

For details of how security is carried out in MQSeries, see Part 8, “Security” on
page 391.

 Chapter 1. Introduction to MQSeries for OS/390 25

 Making MQSeries available

MQSeries and SMS
MQSeries parameters enable you to specify Storage Management Subsystem
(MVS/DFP SMS) storage classes when dynamically allocating MQSeries archive
data sets. MQSeries initiates the archiving of log data sets, but SMS can be used
to perform allocation of the archive data set.

MQSeries and ARM
The OS/390 Automatic Restart Manager (ARM) is an OS/390 recovery function.
You can use it to improve the availability of your MQSeries subsystems.

When a job or task fails, or the system on which it is running fails, ARM can restart
the job or task without operator intervention. This means that, for MQSeries, you
do not have to wait for operations staff to notice that a queue manager has failed,
and to take corrective action. Instead, OS/390 notices if either a queue manager or
a channel initiator has failed, or if an OS/390 system has failed. This results in a
faster resumption of productive work, and hence in improved system availability.

Using ARM with MQSeries is described in “Using the OS/390 Automatic Restart
Manager (ARM)” on page 294.

MQSeries, the Workload Manager, and Workflow
The OS/390 Workload Manager (WLM) provides a solution for managing workload
distribution, workload balancing, and distributing resources to competing workloads.
You can set service classes for each different type of work performed by your
system, and then set service goals for each class of service. The WLM allocates
system resources to achieve these goals.

To use the queuing services of the workload manager with MQSeries, you need to
use Workflow. You need to set up OS/390 WLM class qualifiers for MQSeries, and
use the WLM to define different classes of service for your MQSeries messages.
When you have done this, if you put messages on a special queue called a
WLM-managed queue, Workflow passes information taken from the message
descriptor and a work information header in the message to the WLM, and so
determine which class of service to use for the message.

For a general explanation of the basic concepts of MQSeries Workflow, see the
MQSeries Workflow: Concepts and Architecture manual, and for information about
planning to use it on OS/390, see the MQSeries Workflow for OS/390:
Customization and Administration manual. For information about the Workload
Manager, see the MVS Planning: Workload Management manual.

Making MQSeries available
Installing MQSeries consists of three stages: receiving, applying, and accepting.
See the MQSeries for OS/390 Program Directory for instructions on how to do this.

After installation, there are five main tasks to perform to make MQSeries available
to application programmers developing MQSeries applications and to applications in
production:

� Customizing MQSeries and its adapters
 � Operating MQSeries
 � Administering MQSeries

26 System Management Guide

 Making MQSeries available

 � Tuning MQSeries
� Preparing for recovery

Customizing MQSeries and its adapters
When you have installed MQSeries, you must customize it to suit the requirements
of your installation. To find out more about customization, read the following
chapters:

� Chapter 2, “Preparing for customization” on page 33
� Chapter 3, “Customizing the queue managers” on page 37
� Chapter 5, “Testing your queue manager” on page 99

If you are migrating from a previous version of MQSeries, read Chapter 4,
“Migrating from previous versions of MQSeries for MVS/ESA” on page 93. This
chapter discusses which customization tasks you need to perform again.

 Operating MQSeries
Operating MQSeries involves starting and stopping MQSeries, connecting and
disconnecting CICS and IMS regions, using MQSeries commands to manage
message queues, and using the MQSeries utilities.

You can find details of these and related tasks in Part 5, “Operating and
administering MQSeries” on page 187. Some of these tasks overlap with those of
the administrator, so you might also find this Chapter 13, “Writing programs to
administer MQSeries” on page 211 useful.

The commands are described in the MQSeries Command Reference manual. For
details of the MQSeries utilities, see Chapter 14, “Using the MQSeries utilities” on
page 227.

 Administering MQSeries
MQSeries administration can be performed by a system administrator, system
programmer, or computer operator. You can find details of these tasks in
Chapter 13, “Writing programs to administer MQSeries” on page 211. The person
who undertakes this task has to define and manage resources, and be responsible
for managing security and monitoring performance.

 Tuning MQSeries
The tuning of MQSeries can be performed by a system programmer or capacity
planner. The person who undertakes this task must be able to monitor the
operation of MQSeries, and then use the statistics produced to improve its
performance.

You can find details of these tasks in Chapter 22, “Monitoring performance and
resource usage” on page 363. For information about dealing with performance
problems, see the MQSeries for OS/390 Problem Determination Guide.

 Chapter 1. Introduction to MQSeries for OS/390 27

 CSA storage

Preparing for recovery
Preparing for recovery underlies all other tasks, and is performed by system
programmers. To understand the background to MQSeries recovery, read these
chapters:

� Chapter 16, “Understanding termination and restart” on page 279
� Chapter 17, “Understanding the log and the bootstrap data set” on page 299

If you plan the data that must be recovered after an error and how the recovery can
be done, you can handle any type of error efficiently. For details on preparing
recovery plans and help on recovering from specific failures, see these chapters:

� Chapter 18, “Planning for backup and recovery” on page 307
� Chapter 21, “Example recovery scenarios” on page 337

CSA storage requirement
Each MQSeries for OS/390 subsystem (including the channel initiator) has the
following storage requirements:

CSA 4 KB
ECSA 5 MB

In addition, each concurrent MQSeries task requires about 1500 bytes of ECSA.
When a task ends, this storage can be reused by other MQSeries tasks. MQSeries
does not release the storage until the queue manager is shut down, so the
maximum amount of ECSA required can be calculated by multiplying the maximum
number of concurrent tasks by 1500 bytes.

Concurrent tasks consist of the following:

� The number of Batch, TSO, or IMS regions that have connected to MQSeries,
but not disconnected

� The number of CICS transactions that have issued an MQSeries request, but
have not terminated

The trace table also resides in the ECSA; you should use the TRACTBL parameter
of the CSQ6SYSP macro to determine the size of the resident trace table. This
macro is described in “Using CSQ6SYSP” on page 68.

Private region storage usage
Every channel uses the following private region virtual storage below the 16 MB
line in the channel initiator address space:

� 1200 bytes if LE/370 APAR PQ03507 has been applied
� None if LE/370 APAR PQ06157 has also been applied
� 8 KB otherwise

Every channel uses approximately 160 KB of extended private region in the
channel initiator address space. Storage is increased if messages larger than
32 KB are transmitted. This increased storage is freed when:

� A sending or client channel requires less than half the current buffer size for 10
consecutive sends

� A heartbeat is sent or received

28 System Management Guide

 CSA storage

The storage is freed for re-use within the LE environment but is not seen as free by
the OS/390 virtual storage manager.

This means that the upper limit for the number of channels is dependent on
message size and arrival patterns as well as individual user system limitations on
extended private region size. The limit is likely to be approximately 9000 channels
on many systems.

 Chapter 1. Introduction to MQSeries for OS/390 29

 CSA storage

30 System Management Guide

Part 2. Customizing MQSeries after installation

Chapter 2. Preparing for customization . 33
Installable features . 33
Libraries that exist after installation . 34

Chapter 3. Customizing the queue managers 37
Introducing the customization tasks . 37
Task 1: Choose which language you want to use 39
Task 2: Choose the distributed queuing facility 40
Task 3: Define the MQSeries subsystem to OS/390 41

Updating the subsystem name table . 41
Using command prefix strings . 42
Running in a sysplex environment . 44
Reviewing the number of system LXs . 45

Task 4: Update the OS/390 link list . 46
Task 5: APF authorize the MQSeries load libraries 47
Task 6: Update the OS/390 program properties table 48
Task 7: Create procedures for the MQSeries subsystem 49
Task 8: Create procedures for the channel initiator 50
Task 9: Implement your ESM security controls 51
Task 10: Customize the initialization input data sets 52

Initialization commands . 52
Initialization data set formats . 53
Initialization data set samples . 54
Using the CSQINP1 sample . 54
Using the CSQINP2 samples . 55
Using the other samples . 59

Task 11: Create the bootstrap and log data sets 61
Task 12: Define your page sets . 62

Calculating the storage requirement for messages 63
Enabling dynamic page set expansion . 65

Task 13: Tailor your system parameter module 67
Creating your own system parameter module 67
Fine tuning a system parameter module . 68
Using CSQ6SYSP . 68
Using CSQ6LOGP . 74
Using CSQ6ARVP . 76

Task 14: Tailor the channel initiator parameter module 82
Creating your own channel initiator parameter module 82
Using CSQ6CHIP . 83

Task 15: Set up Batch, TSO, and RRS adapters 87
Task 16: Set up the operations and control panels 88

Setting up the libraries . 88
Updating the ISPF menu . 89
Updating the function keys and command settings 89

Task 17: Include the MQSeries dump formatting member 90
Task 18: Suppress information messages . 91

Chapter 4. Migrating from previous versions of MQSeries for MVS/ESA . 93
Migrating from Version 1.2 to Version 2.1 . 93
Migrating from Version 1.1.4 to Version 2.1 . 96

 Copyright IBM Corp. 1993,1999 31

Migrating from Version 1.1.3 to Version 2.1 . 96
Migrating from Version 1.1.2 or earlier to Version 2.1 97
Coexistence with earlier versions of MQSeries for MVS/ESA 98

Multiple queue manager versions . 98
Operations and control panels . 98
Application stubs . 98

Chapter 5. Testing your queue manager . 99
Basic function testing . 99

Running the installation verification program CSQ4IVP1 99
Checking the results of CSQ4IVP1 . 101

Testing for C, C++, COBOL, PL/I, and CICS 102
Testing for distributed queuing . 102

Overview of CSQ4IVPX job . 102
Preparing to run CSQ4IVPX . 102
Running CSQ4IVPX . 104
Checking the results of CSQ4IVPX . 104

32 System Management Guide

 Preparing for customization

Chapter 2. Preparing for customization

The MQSeries for OS/390 Program Directory lists the contents of the MQSeries
installation tape, the program and service level information for MQSeries, and
describes how to install MQSeries under OS/390 using the System Modification
Program Extended (SMP/E).

When you have installed MQSeries, you must carry out a number of tasks before
you can make it available to users. Refer to the following chapters for a description
of these tasks:

� Chapter 3, “Customizing the queue managers” on page 37
� Chapter 5, “Testing your queue manager” on page 99
� Part 8, “Security” on page 391

If you have migrated from a previous version of MQSeries for OS/390, you don’t
need to perform most of the customization tasks. Refer to Chapter 4, “Migrating
from previous versions of MQSeries for MVS/ESA” on page 93 for information
about the tasks you have to perform.

 Installable features
MQSeries for OS/390 comprises the following features:

Base
This is required; it comprises all the main functions, and includes the
MQSeries-CICS bridge and the distributed queuing facility (supporting both
TCP/IP and APPC communications).

Note: This distributed queuing facility is known as the “non-CICS mover”
because you do not need to have CICS installed to use it.

National language features
These contain error messages and panels in all the supported national
languages. Each language has a language letter associated with it. The
languages and letters are:

C Simplified Chinese
E U.S. English (mixed case)
K Japanese
U U.S. English (uppercase)

You must install at least one of these (you can install more than one).

Distributed queuing with CICS feature
This is optional; it is required only if you are using CICS ISC for distributed
queuing.

Note: This feature is known as the “CICS mover.”

Client attachment feature
This is optional; it is only required if you are going to attach clients to your
MQSeries for OS/390 subsystem. When you have installed this feature, there
are no configuration parameters to set before you can attach clients to
MQSeries for OS/390. Administration for clients is available even if you don’t
install this feature.

 Copyright IBM Corp. 1993,1999 33

 Preparing for customization

Internet Gateway feature
This is optional; it is only required if you want to use the MQSeries Internet
Gateway. This is described in the MQSeries Internet Gateway User’s Guide.
(This online book is supplied with the Internet Gateway.)

Libraries that exist after installation
MQSeries is supplied with a number of separate load libraries. Table 3 shows the
libraries that might exist after you have installed MQSeries.

 thlqual

Throughout this book, the default value thlqual is used to indicate the target
library high-level qualifier for MQSeries data sets in your installation.

For more information, see the MQSeries for OS/390 Program Directory.

Table 3 (Page 1 of 3). MQSeries libraries that exist after installation

Name Description

thlqual.SCSQANLC Contains the load modules for the Simplified Chinese version of
MQSeries.

thlqual.SCSQANLE Contains the load modules for the U.S. English (mixed case)
version of MQSeries.

thlqual.SCSQANLK Contains the load modules for the Japanese version of
MQSeries.

thlqual.SCSQANLU Contains the load modules for the U.S. English (uppercase)
version of MQSeries.

thlqual.SCSQASMS Contains source for assembler sample programs.

thlqual.SCSQAUTH The main repository for all MQSeries product load modules; it
also contains the default parameter modules, CSQZPARM and
CSQXPARM. This library must be APF-authorized.

thlqual.SCSQCICS Contains the load modules that must be included in the CICS
DFHRPL concatenation. These are separated from the main
MQSeries load library so that the number of modules in the
concatenation search is kept to a minimum to improve
performance and to avoid the need for APF authorization.

thlqual.SCSQCLST Contains CLISTs used by the mail manager sample program.

thlqual.SCSQCOBC Contains COBOL copybooks, including copybooks required for
the sample programs.

thlqual.SCSQCOBS Contains source for COBOL sample programs.

thlqual.SCSQCPPS Contains C source for C++.

thlqual.SCSQC37S Contains source for C/370 sample programs.

thlqual.SCSQC370 Contains C/370 headers, including headers required for the
sample programs.

thlqual.SCSQDEFS Contains side definitions for C++.

thlqual.SCSQEXEC Contains REXX execs to be included in the SYSEXEC or
SYSPROC concatenation if you are using the MQSeries
operations and control panels.

34 System Management Guide

 Preparing for customization

Table 3 (Page 2 of 3). MQSeries libraries that exist after installation

Name Description

thlqual.SCSQHPPS Contains header files for C++.

thlqual.SCSQINST Contains JCL for installation jobs.

thlqual.SCSQLINK Early code library. Contains the load modules that must be in
the link list because they are loaded at system initial program
load (IPL). The library must be APF-authorized and must be in
the link list.

thlqual.SCSQLOAD Load library. Contains load modules for non-APF code, user
exits, utilities, samples, installation verification programs, and
adapter stubs. The library does not need to be APF-authorized
and does not need to be in the link list.

thlqual.SCSQMACS Contains Assembler macros including: sample macros, product
macros, and system parameter macros.

thlqual.SCSQMAPS Contains CICS mapsets used by sample programs.

thlqual.SCSQMSGC Contains ISPF messages to be included in the ISPMLIB
concatenation if you are using the Simplified Chinese language
feature for the MQSeries operations and control panels.

thlqual.SCSQMSGE Contains ISPF messages to be included in the ISPMLIB
concatenation if you are using the U.S. English (mixed case)
language feature for the MQSeries operations and control
panels.

thlqual.SCSQMSGK Contains ISPF messages to be included in the ISPMLIB
concatenation if you are using the Japanese language feature
for the MQSeries operations and control panels.

thlqual.SCSQMSGU Contains ISPF messages to be included in the ISPMLIB
concatenation if you are using the U.S. English (uppercase)
language feature for the MQSeries operations and control
panels.

thlqual.SCSQMVR1 Contains the load modules for distributed queuing when using
TCP/IP with the OpenEdition sockets or IUCV interface, or
LU 6.2. This library must be APF-authorized.

thlqual.SCSQMVR2 Contains the load modules for distributed queuing when using
TCP/IP with the TCPaccess interface, or LU 6.2. This library
must be APF-authorized.

thlqual.SCSQPLIC Contains PL/I headers.

thlqual.SCSQPLIS Contains source for PL/I sample programs.

thlqual.SCSQPNLA Contains IPCS panels, for the dump formatter, to be included in
the ISPPLIB concatenation. Also contains panels for MQSeries
sample programs.

thlqual.SCSQPNLC Contains ISPF panels to be included in the ISPPLIB
concatenation if you are using the Simplified Chinese language
feature for the MQSeries operations and control panels.

thlqual.SCSQPNLE Contains ISPF panels to be included in the ISPPLIB
concatenation if you are using the U.S. English (mixed case)
language feature for the MQSeries operations and control
panels.

thlqual.SCSQPNLK Contains ISPF panels to be included in the ISPPLIB
concatenation if you are using the Japanese language feature
for the MQSeries operations and control panels.

 Chapter 2. Preparing for customization 35

 Preparing for customization

Table 3 (Page 3 of 3). MQSeries libraries that exist after installation

Name Description

thlqual.SCSQPNLU Contains ISPF panels to be included in the ISPPLIB
concatenation if you are using the U.S. English (uppercase)
language feature for the MQSeries operations and control
panels.

thlqual.SCSQPROC Contains sample JCL and default system initialization data sets.

thlqual.SCSQSKL Contains ISPF skeletons to be included in the ISPSLIB
concatenation if you are using the MQSeries operations and
control panels.

thlqual.SCSQSNLC Contains the load modules for the Simplified Chinese versions
of the MQSeries modules that are required for special purpose
function (for example the early code).

thlqual.SCSQSNLE Contains the load modules for the U.S. English (mixed case)
versions of the modules that are required for special purpose
function (for example the early code).

thlqual.SCSQSNLK Contains the load modules for the Japanese versions of the
MQSeries modules that are required for special purpose
function (for example the early code).

thlqual.SCSQSNLU Contains the load modules for the U.S. English (uppercase)
versions of the MQSeries modules that are required for special
purpose function (for example the early code).

thlqual.SCSQTBLC Contains ISPF tables to be included in the ISPTLIB
concatenation if you are using the Simplified Chinese language
feature for the MQSeries operations and control panels.

thlqual.SCSQTBLE Contains ISPF tables to be included in the ISPTLIB
concatenation if you are using the U.S. English (mixed case)
language feature for the MQSeries operations and control
panels.

thlqual.SCSQTBLK Contains ISPF tables to be included in the ISPTLIB
concatenation if you are using the Japanese language feature
for the MQSeries operations and control panels.

thlqual.SCSQTBLU Contains ISPF tables to be included in the ISPTLIB
concatenation if you are using the U.S. English (uppercase)
language feature for the MQSeries operations and control
panels.

Attention : Do not modify or customize any of these libraries. If you want to make
changes, copy the libraries, and make your changes to the copies.

36 System Management Guide

 Customizing queue managers

Chapter 3. Customizing the queue managers

This chapter leads you through the various stages of customizing MQSeries after
you have successfully installed it. The installation process is described in the
MQSeries for OS/390 Program Directory.

If you are migrating from a previous version of MQSeries for OS/390, you might not
need to perform these tasks. See Chapter 4, “Migrating from previous versions of
MQSeries for MVS/ESA” on page 93 for information about what you need to do.

Note: The sample data set members supplied with MQSeries have names
beginning with the four characters CSQ4 and are in the library
thlqual.SCSQPROC.

Introducing the customization tasks
To customize MQSeries for your installation, you must perform the tasks listed
here. However, before you begin customization, read this notice:

Read this notice before you do anything

For each task you must consider:

1. Whether the task must be repeated for each MQSeries subsystem.

Some of these tasks you need only do once, regardless of the number of
MQSeries subsystems, while others must be repeated for each MQSeries
subsystem. Each task description tells you which category that task
belongs to.

2. Whether the task requires an IPL.

Some tasks might only take effect following an OS/390 system initial
program load (IPL). For example, an IPL might be required by:

� Any task that changes certain OS/390 system parameters

� Task 7, when you change certain tables used by an external security
manager, such as RACF

Therefore, make sure you have completed all the necessary tasks before
you IPL the system. Each task description tells you whether an IPL is
required. In general, an IPL is needed when you install and customize
MQSeries, but not when you add a new MQSeries subsystem.

If you already have a previous version of MQSeries for OS/390, read
Chapter 4, “Migrating from previous versions of MQSeries for MVS/ESA” on
page 93 first. Except for the changes noted in Chapter 4, the installation and
customization tasks described in Chapter 3 are unnecessary.

 Copyright IBM Corp. 1993,1999 37

 Customizing queue managers

Work through the following tasks, checking each one off as you complete it:

Ø Task 1: Choose which language you want to use

Ø Task 2: Choose the distributed queuing facility

Ø Task 3: Define the MQSeries subsystem to OS/390

Ø Task 4: Update the OS/390 link list

Ø Task 5: APF authorize the MQSeries load libraries

Ø Task 6: Update the OS/390 program properties table

Ø Task 7: Create procedures for the MQSeries subsystem

Ø Task 8: Create procedures for the channel initiator

Ø Task 9: Implement your ESM security controls

Ø Task 10: Customize the initialization input data sets

Ø Task 11: Create the bootstrap and log data sets

Ø Task 12: Define your page sets

Ø Task 13: Tailor your system parameter module

Ø Task 14: Tailor the channel initiator parameter module

Ø Task 15: Set up Batch, TSO, and RRS adapters

Ø Task 16: Set up the operations and control panels

Ø Task 17: Include the MQSeries dump formatting member

Ø Task 18: Suppress information messages

Tasks 3 through 6 involve updating the OS/390 system parameters. You need to
know which ones were specified when the system IPL was performed.
SYS1.PARMLIB(IEASYSpp) contains a list of parameters that point to other
members of SYS1.PARMLIB (where pp represents the OS/390 system parameter
list that was used to IPL the system).

The entries you need to find are:

For Task 3:

SSN=ss Points to the defined subsystem list (member IEFSSNss)

NSYSLX=nn
The number of linkage indexes reserved for system LXs (member
IEASYSxx)

For Task 4:

LNK=kk Points to the link list (member LNKLSTkk)

For Task 5:

PROG=xx or APF=aa
Points to the Authorized Program Facility (APF) authorized library
list (member PROGxx or IEFAPFaa)

For Task 6:

SCH=xx Points to the Program Properties Table (PPT) (member SCHEDxx)

When you have completed all the customization tasks required, refer to Part 3,
“MQSeries and CICS” on page 107 if you are using CICS, and Part 4, “MQSeries
and IMS” on page 157 if you are using IMS.

38 System Management Guide

 Choose which language

Task 1: Choose which language you want to use

� Repeat this task for each MQSeries subsystem.

You can choose one of the following national languages for the MQSeries operator
messages and the MQSeries operations and control panels (including the character
sets used). Each language is identified by a language letter:

C Simplified Chinese
E U.S. English (mixed case)
K Japanese
U U.S. English (uppercase)

The samples, MQSeries commands, and utility control statements are available
only in mixed case U.S. English.

You must specify the appropriate libraries in the JCL that you will use for running
MQSeries (as described in the following sections). Table 4 shows the names of
the libraries for the language features; the language letter is the last letter of the
library names.

Table 4. National language feature libraries

Description Japanese Simplified
Chinese

U.S. English
(mixed case)

U.S. English
(uppercase)

Load modules thlqual.SCSQANLK thlqual.SCSQANLC thlqual.SCSQANLE thlqual.SCSQANLU

ISPF messages thlqual.SCSQMSGK thlqual.SCSQMSGC thlqual.SCSQMSGE thlqual.SCSQMSGU

ISPF panels thlqual.SCSQPNLK thlqual.SCSQPNLC thlqual.SCSQPNLE thlqual.SCSQPNLU

Special purpose
function (for
example, early
code)

thlqual.SCSQSNLK thlqual.SCSQSNLC thlqual.SCSQSNLE thlqual.SCSQSNLU

ISPF tables thlqual.SCSQTBLK thlqual.SCSQTBLC thlqual.SCSQTBLE thlqual.SCSQTBLU

More details are given in the following sections.

 Chapter 3. Customizing the queue managers 39

 Choose distributed queuing

Task 2: Choose the distributed queuing facility

� Repeat this task for each MQSeries subsystem.

The distributed queuing facility provided with the base product feature of MQSeries
uses native OS/390 communications (APPC or TCP/IP). It can either use APPC
(LU 6.2), TCP/IP from IBM, or TCPaccess from Interlink Computer Sciences, Inc.
This facility is also known as the non-CICS mover because it does not use CICS
intersystem communication (ISC) for communications, and so you do not need to
have CICS installed to use it. (However, even if you do use CICS, you can still use
this mover.) You are recommended to use the non-CICS mover.

Alternatively, you can use CICS ISC for distributed queuing; this facility is also
known as the CICS mover. You must have installed the CICS mover feature to use
this.

You can enable both facilities and use them simultaneously on the same MQSeries
instance. However, the two types will have no knowledge of each other or each
other’s channels, and you must ensure that the channel names they use are
distinct.

If you want to use clustering, you must use the non-CICS mover. See the
MQSeries Queue Manager Clusters manual for information about using clusters. If
you want to use clients, you must also use the non-CICS mover; the client
attachment feature is needed as well (but you can administer clients without it).

Whichever mover you choose, you must perform the following three tasks to enable
distributed queuing:

� Customize the distributed queuing facility and define the MQSeries objects
required.

� Define access security; this is described in “Security considerations for
distributed queuing” on page 453.

� Set up your communications; this is described in the MQSeries
Intercommunication manual. Amongst other things, you must set up your
TCPIP.DATA data set if you are using TCP/IP, LU names and side information
if you are using APPC, and CICS definitions if you are using CICS.

If you choose the non-CICS mover, customization instructions are described in this
chapter. You also need to choose which communications interface to use. This
can be:

� APPC (LU 6.2)
� IBM TCP/IP IUCV (OS/390 Version 2.4 only)
� IBM TCP/IP OpenEdition sockets

 � TCPaccess (native)
 � TCPaccess IUCV
� TCPaccess OpenEdition sockets

Note: OpenEdition is also known as UNIX System Services.

If you choose the CICS mover, customization instructions are described in
Appendix D, “Enabling distributed queuing using CICS ISC” on page 479.

40 System Management Guide

 Define the subsystem

Task 3: Define the MQSeries subsystem to OS/390

� Repeat this task for each MQSeries subsystem.

� You might need to IPL the system before these changes take effect.

Updating the subsystem name table
The subsystem name table of OS/390, which is taken initially from the
SYS1.PARMLIB member IEFSSNss, contains the definitions of formally defined
OS/390 subsystems. To define each MQSeries subsystem, you must add an entry
to this table, either by changing the IEFSSNss member of SYS1.PARMLIB, or by
using the SETSSI OS/390 command if it is available.

If you use the SETSSI command, the change takes effect immediately, otherwise
you must IPL your system. Even if you use the SETSSI OS/390 command so that
changes take effect immediately, you should add the entries to the IEFSSNss
member of SYS1.PARMLIB as well, so that they will remain in effect after
subsequent IPLs.

The format of a definition for an MQSeries subsystem in IEFSSNss is:

ssid,CSQ3INI,'CSQ3EPX,cpf,scope'

and the corresponding SETSSI command is:

SETSSI ADD,S=ssid,I=CSQ3INI,P='CSQ3EPX,cpf,scope'

where:

ssid The subsystem identifier.

cpf The command prefix string (see “Using command prefix strings” on page 42
for information about the rules for defining CPFs).

scope The system scope, used if you are running in an OS/390 sysplex (see
“Defining the scope for sysplex operation” on page 44). If you are not
running in a sysplex, use M for this value.

Figure 5 shows several examples.

CSQ1,CSQ3INI,'CSQ3EPX,+mqs1cpf,M'
CSQ2,CSQ3INI,'CSQ3EPX,+mqs2cpf,M'
CSQ3,CSQ3INI,'CSQ3EPX,++,M'

Figure 5. Sample IEFSSNss statements for defining subsystems

Note: Once you have created objects in a subsystem, you cannot change the
subsystem name or use the page sets from one subsystem in another
subsystem. To do either of these, you must unload all the objects and
messages from one subsystem and reload them into another.

Table 5 gives a number of examples showing the associations of subsystem
names and CPFs, as defined by the statements in Figure 5.

 Chapter 3. Customizing the queue managers 41

 Define the subsystem

Note: The ACTIVATE and DEACTIVATE functions of the SETSSI OS/390 command
are not supported by MQSeries.

Table 5. Subsystem name to CPF associations

MQSeries subsystem name CPF

CSQ1 +mqs1cpf

CSQ2 +mqs2cpf

CSQ3 ++

Using command prefix strings
Each instance of MQSeries that you install must have its own command prefix
string (CPF). You use the CPF to identify the OS/390 subsystem that commands
are intended for. It also identifies the OS/390 subsystem from which messages
sent to the console originate.

You can issue all MQSeries commands from an authorized console by inserting the
CPF before the command. If you enter commands via the system command input
queue (for example, using CSQUTIL), or use the MQSeries operations and control
panels, you do not use the CPF.

To start a subsystem called CSQ1 whose CPF is ‘+cpf’, issue the command
+cpf START QMGR from the operator console (the space between the CPF and the
command is optional).

The CPF also identifies the subsystem that is returning operator messages. The
following example shows +cpf as the CPF between the message number and the
message text.

CSQ9ð22I +cpf CSQNCDSP ' DISPLAY CMDSERV' NORMAL COMPLETION

Defining command prefix strings
You should adopt a system-wide convention for your CPFs for all subsystems to
avoid conflicts. You should adhere to the following guidelines:

� Define a CPF as a one- to eight-character string.

� Do not use a CPF that is already in use by any other subsystem, and avoid
using the JES backspace character defined on your system as the first
character of your string.

� Define your CPF using characters from the set of valid characters listed in
Table 7 on page 43.

� Do not use a CPF that is an abbreviation for an already defined process or that
might be confused with command syntax. For example, a CPF such as ‘D’
conflicts with OS/390 commands such as DISPLAY. To avoid this happening,
you should use one of the special characters (shown in Table 7 on page 43)
as the first or only character in your CPF string.

42 System Management Guide

 Define the subsystem

� Do not define a CPF that is either a subset or a superset of an existing CPF.
For an example, see Table 6:

Commands intended for subsystem MQB1 (using CPF !B1) are routed to
subsystem MQB because the CPF for this subsystem is !B, a subset of !B1.
For example, if you entered the command !B1 START QMGR, subsystem MQB
will receive the command 1 START QMGR (which, in this case, it will be unable to
deal with).

You can see which prefixes already exist by issuing the OS/390 command
DISPLAY OPDATA.

If you are running in a sysplex, OS/390 will diagnose any conflicts of this type
at the time of CPF registration (see “Running in a sysplex environment” on
page 44 for information about CPF registration).

Table 7 shows the characters that you can use when defining your command prefix
(CPF) strings:

Table 6. Example of CPF subset and superset rules

Subsystem name CPF defined Commands routed to...

MQA !A MQA

MQB !B MQB

MQC1 !C1 MQC1

MQC2 !C2 MQC2

MQB1 !B1 MQB

Table 7 (Page 1 of 2). Valid character set for CPF strings

Character set Contents

Alphanumeric Alphabetic
 Numeric

Uppercase A through Z,
lowercase a through z,
0 through 9

National (see note) “At” sign
 Dollar sign
 Pound sign

 @
 $
 #

(Characters that can be
represented as hexadecimal
values X'7C', X'5B', and
X'7B')

 Chapter 3. Customizing the queue managers 43

 Define the subsystem

Table 7 (Page 2 of 2). Valid character set for CPF strings

Character set Contents

Special period
 slash
 left parenthesis
 right parenthesis
 asterisk
 ampersand
 plus sign
 hyphen
 equal sign
 cent sign

less than sign
 vertical bar
 exclamation point
 semi-colon
 percent sign
 underscore
 question mark
 colon

 .
 /
 (
)
 *
 &
 +
 -
 =
 ¢
 <
 |
 !
 ;
 %
 _
 ?
 :

Note: The system recognizes the following hexadecimal representations of the national
characters: @ as X'7C', $ as X'5B', and # as X'7B'. In countries other than the U.S.,
the U.S. national characters represented on terminal keyboards might generate a
different hexadecimal representation and cause an error. For example, in some
countries the $ character might generate an X'4A'.

Running in a sysplex environment
If you are in a sysplex environment, MQSeries registers your CPFs to enable you
to enter a command from any console in the sysplex and route that command to
the appropriate system for execution. The command responses are returned to the
originating console.

Defining the scope for sysplex operation
Scope is used to determine the type of CPF registration performed by the
MQSeries subsystem when you are running MQSeries in a sysplex environment.

Possible values for scope are as follows:

M System scope.

The CPF is registered with OS/390 at system IPL time by MQSeries and
remains registered for the entire time that the OS/390 system is active.

MQSeries operator commands must be entered at a console connected to
the OS/390 image running the target subsystem, or you must use ROUTE
commands to direct the command to that image.

You should use this option if you are not running in a sysplex.

X Sysplex IPL scope.

The CPF is registered with OS/390 at system IPL time by MQSeries and
remains registered for the entire time that the OS/390 system is active.

MQSeries operator commands can be entered at any console connected to
the sysplex, and are routed to the image that is executing the target system
automatically.

44 System Management Guide

 Define the subsystem

S Sysplex started scope.

The CPF is registered with OS/390 at the time the MQSeries subsystem is
started and remains active until the MQSeries subsystem terminates.

You must use ROUTE commands to direct the original START MQSeries
command to the target system, but all further MQSeries operator
commands can be entered at any console connected to the sysplex, and
are routed to the target system automatically.

After MQSeries termination, you must use the ROUTE commands to direct
subsequent START commands to the target MQSeries subsystem.

An MQSeries subsystem with a CPF with scope of X can only be defined on one
OS/390 image within a sysplex. If you use this option, you must define a unique
subsystem name table for each OS/390 image requiring MQSeries subsystems with
CPFs of scope X.

An MQSeries subsystem with a CPF with scope of S can be defined on one or
more OS/390 images within a sysplex, so these images can share a single
subsystem name table. However you must ensure that the initial START command
is issued on (or routed to) the OS/390 image on which you want the MQSeries
subsystem to run. If you use this option, you can stop the MQSeries subsystem
and restart it on a different OS/390 image within the sysplex without having to
change the subsystem name table or re-IPL an OS/390 system.

If you want to use ARM to restart queue managers in different OS/390 images
automatically, every queue manager must be defined in each OS/390 image on
which that queue manager might be restarted, with a sysplex-wide, unique
4-character subsystem name with a CPF scope of S. See “Using the OS/390
Automatic Restart Manager (ARM)” on page 294 for more information about
automatic restart.

Reviewing the number of system LXs
Each MQSeries subsystem defined in the subsystem name table reserves one
system linkage index at IPL time. This system linkage index is reused if the
MQSeries subsystem is stopped and restarted. The NSYSLX parameter in
IEASYSxx defines the number of linkage indexes (in addition to those in the system
function table) to be reserved as system linkages. The default number is 55.

If your environment has a number of subsystems defined that use system linkage
indexes (for example, DB2, IRLM, and IMS V5), you might need to increase the
value of NSYSLX when you define MQSeries subsystems. Each MQSeries
subsystem reserves one system linkage index, and each instance of the distributed
queuing feature reserves one non-system linkage index.

You must IPL your system before changes to NSYSLX take effect.

 Chapter 3. Customizing the queue managers 45

 Update the link list

Task 4: Update the OS/390 link list

� You need only perform this task once.

� You must IPL the system before these changes take effect.

You must add the MQSeries early code library, thlqual.SCSQLINK, to the link list,
SYS1.PARMLIB(LNKLSTkk), and put thlqual.SCSQLINK in the master catalog.

If you want to minimize the number of libraries in the link list, copy the load
modules from thlqual.SCSQLINK into an existing library that is in the link list and in
the master catalog. The library you copy the members into must also be
APF-authorized. However, if you do this, the installation program (SMP/E) cannot
apply service to these modules, so you must recopy the load modules if service is
to be applied to them.

You also need the associated early error message module, CSQ3ECMX. Either
add the library containing the language you want to the link list, or copy this module
from that library to an existing library in the link list. The libraries are called
thlqual.SCSQSNLx, where x is the language letter.

The distributed queuing facility, CICS bridge, and Internet Gateway need access to
the LE run-time library SCEERUN. You might want to include it in the link list.
(This is not required for the CICS mover.)

46 System Management Guide

 APF authorize the libraries

Task 5: APF authorize the MQSeries load libraries

� You need only perform this task once.

� You might need to IPL the system before these changes take effect.

The MQSeries load libraries thlqual.SCSQAUTH and thlqual.SCSQLINK must be
APF-authorized. You must also APF-authorize the libraries for your national
language feature (thlqual.SCSQANLx and thlqual.SCSQSNLx) and for the
non-CICS mover (thlqual.SCSQMVR1 or thlqual.SCSQMVR2).

All members of the link list are APF-authorized if the SYS1.PARMLIB member
IEASYSpp contains the statement:

LNKAUTH=LNKLST

LNKAUTH=LNKLST is the default if LNKAUTH is not specified.

Because thlqual.SCSQLINK must be included in the link list, if IEASYSpp contains
this LNKAUTH statement or if you allow it to default, you do not need to put
thlqual.SCSQLINK in the APF list as well.

Note: You must APF-authorize all the libraries that you include in the MQSeries
STEPLIB. If you put a library that is not APF-authorized in the STEPLIB,
the whole library concatenation loses its APF authorization.

The APF lists are in the SYS1.PARMLIB member PROGxx or IEAAPFaa. The lists
contain the names of APF authorized OS/390 libraries. The order of the entries in
the lists is not significant. See the MVS Initialization and Tuning Reference manual
for information about APF lists.

If you use PROGxx members with dynamic format, you need only issue the
SET PROG= OS/390 command for the changes to take effect. Otherwise, if you use
static format or IEAAPFaa members, you must IPL your system.

 Chapter 3. Customizing the queue managers 47

 Update the PPT

Task 6: Update the OS/390 program properties table

� You need only perform this task once.

� You must IPL the system before these changes take effect.

You must add the following entry to the program properties table (PPT) which you
can find in SYS1.PARMLIB(SCHEDxx).

PPT PGMNAME(CSQYASCP) /\ CSQ - THIS IS REQUIRED FOR MQSERIES \/
CANCEL /\ CAN BE CANCELED \/
KEY(7) /\ STORAGE PROTECTION KEY \/
SWAP /\ PROGRAM IS SWAPPABLE \/
NOPRIV /\ NOT PRIVILEGED \/
DSI /\ REQUIRES DATA SET INTEGRITY \/
PASS /\ NOT ALLOWED TO BYPASS PASS PROT \/
SYST /\ SYSTEM TASK SO NOT TIMED \/
AFF(NONE) /\ NO PROCESSOR AFFINITY \/
NOPREF /\ NO PREFERRED STORAGE FRAMES \/

Figure 6. PPT additional entries needed for MQSeries

48 System Management Guide

 Create procedures

Task 7: Create procedures for the MQSeries subsystem

� Repeat this task for each MQSeries subsystem.

For each MQSeries subsystem defined in the subsystem name table, create a
cataloged procedure in a procedure library. The IBM-supplied procedure library is
called SYS1.PROCLIB, but your installation might use its own naming convention.

The name of the MQSeries started task procedure is formed by concatenating the
subsystem name with the characters MSTR. For example, subsystem CSQ1 has
the procedure name CSQ1MSTR. You need one procedure for each of the
subsystems you define.

We recommend that a subsystem called CSQ1MSTR is created initially for
installation verification and testing purposes.

Copy the sample started task procedure thlqual.SCSQPROC(CSQ4MSTR) to
member CSQ1MSTR (or a name of your choice) of your SYS1.PROCLIB or, if you
are not using SYS1.PROCLIB, your procedure library. Copy CSQ4MSTR to a
member in your procedure library for each of the MQSeries subsystems that you
define.

When you have copied the members, you can tailor them to the requirements of
each subsystem, using the instructions in member CSQ4MSTR. You can also use
symbolic parameters in the JCL to allow the procedure to be modified when it is
started. See “Start options” on page 194 for an example of this.

You must concatenate thlqual.SCSQANLx (where x is the language letter for your
national language) before thlqual.SCSQAUTH in the STEPLIB DD statement.

Before you start MQSeries, you should set up MQSeries data set and system
security by:

� Authorizing the queue manager started task procedure to run under your
external security manager.

� Authorizing access to the queue manager data sets.

For details about how to do this, see “Security installation tasks” on page 456.

The exit library (CSQXLIB) can be added to this procedure later if you want to use
queue manager exits. In this case, you also need access to the LE run-time library
SCEERUN; if it is not in your link list (SYS1.PARMLIB(LNKLSTkk)), concatenate it
in the STEPLIB DD statement. You need to stop and restart your queue manager
to do this.

 Chapter 3. Customizing the queue managers 49

 Create channel initiator procedures

Task 8: Create procedures for the channel initiator

� Repeat this task for each MQSeries subsystem.

� Omit this task if you are using the CICS mover.

You need to create a channel-initiator started task procedure for each MQSeries
subsystem that is going to use distributed queuing. To do this, you need to:

1. Copy the sample started task procedure thlqual.SCSQPROC(CSQ4CHIN) to
your procedure library. Name the procedure xxxxCHIN, where xxxx is the
name of your MQSeries subsystem (for example, CSQ1CHIN would be the
channel initiator started task procedure for queue manager CSQ1).

2. Make a copy for each MQSeries subsystem that you are going to use.

3. Tailor the procedures to your requirements using the instructions in the sample
procedure CSQ4CHIN. You can also use symbolic parameters in the JCL to
allow the procedure to be modified when it is started. See “Start options” on
page 194 for an example of this.

Concatenate the library containing your national language feature
(thlqual.SCSQANLx where x is the letter for your language) before
thlqual.SCSQAUTH in the STEPLIB DD statement.

Choose the appropriate distributed queuing library: thlqual.SCSQMVR1 if you
are using the OpenEdition sockets or IUCV TCP/IP interface, or
thlqual.SCSQMVR2 if you are using the TCPaccess interface. For LU 6.2 you
can use either library.

Access to the LE run-time library SCEERUN is required; if it is not in your link
list (SYS1.PARMLIB(LNKLSTkk)), concatenate it in the STEPLIB DD statement.

4. Authorize the procedures to run under your external security manager.

The exit library (CSQXLIB) can be added to this procedure later if you want to use
channel exits. You will need to stop and restart your channel initiator to do this.

If you are using TCP/IP, the channel initiator address space must be able to access
the TCPIP.DATA data set that contains TCP/IP system parameters. There are
various ways that this has to be set up, depending on which TCP/IP product and
interface you are using. They include:

� Environment variable, RESOLVER_CONFIG
� HFS file, /etc/resolv.conf
� //SYSTCPD DD statement
� //SYSTCPDD DD statement

 � jobname/userid.TCPIP.DATA
 � SYS1.TCPPARMS(TCPDATA)
 � zapname.TCPIP.DATA

Some of these will affect your started-task procedure JCL. For more information,
see the following:

� TCP/IP OpenEdition: Planning and Release Guide
� OS/390 OpenEdition: Planning
� Your TCPaccess documentation

50 System Management Guide

 Implement security

Task 9: Implement your ESM security controls

� Repeat this task for each MQSeries subsystem.

� You might have to IPL the system before these changes take effect.

You must now consider how you are going to implement any security controls for
MQSeries.

If you use RACF as your external security manager, see Part 8, “Security” on
page 391, which describes how to implement these security controls. If you are
using RACF, you might need to IPL the system if you change the started-task
procedures table, depending on how you choose to associate user IDs with the
started tasks.

If you are using the non-CICS mover, you must also do the following tasks:

1. If your subsystem has connection security active, define a connection security
profile ssid.CHIN to your external security manager (see “Connection security
profiles for distributed queuing” on page 405 for information about this).

2. If you are using a sockets interface, ensure that the user ID under whose
authority the channel initiator is running is configured to use OpenEdition, as
described in the OS/390 OpenEdition Planning manual.

 Chapter 3. Customizing the queue managers 51

 Customize initialization data sets

Task 10: Customize the initialization input data sets

� Repeat this task for each MQSeries subsystem.

Each MQSeries instance gets its initial definitions from a series of commands
contained in the MQSeries initialization input data sets. These data sets are
referenced by the DDnames CSQINP1 and CSQINP2 defined in the MQSeries
subsystem started task procedure.

Responses to these commands are written to the initialization output data sets
referenced by the DDnames CSQOUT1 and CSQOUT2.

 Initialization commands
Commands in the initialization input data sets are processed when MQSeries is
initialized on MQSeries startup. Three types of command can be issued from the
initialization input data sets:

� Commands to define MQSeries entities that cannot be recovered. For
example:

DEFINE BUFFPOOL
DEFINE PSID

Note: This set of DEFINE commands specifically excludes MQSeries objects.

These commands must reside in the data set identified by the DDname
CSQINP1. They are processed before the restart phase of initialization. They
cannot be issued through the console, operations and control panels, or an
application program. The responses to these commands are written to the
sequential data set that you refer to in the CSQOUT1 statement of the started
task procedure.

� Commands to define MQSeries objects that are recoverable after restart.
These objects are listed in “Objects and commands” on page 7. These
definitions must be specified in the data set identified by the DDname
CSQINP2. They are stored in page set zero. CSQINP2 is processed after the
restart phase of initialization. The responses to these commands are written to
the sequential data set that you refer to in the CSQOUT2 statement of the
started task procedure.

� Commands to manipulate MQSeries objects. These commands must also be
specified in the data set identified by the DDname CSQINP2. For example, the
MQSeries-supplied data set CSQ4INP2 contains an ALTER QMGR command
to specify a dead-letter queue for the subsystem. The response to these
commands is written to the CSQOUT2 output data set.

Commands are restricted to a maximum of 32 762 characters.

If MQSeries objects are defined in CSQINP2, MQSeries attempts to redefine them
each time the MQSeries subsystem is started. If the queues already exist, the
attempt to define them fails. You can avoid this problem by using the REPLACE
parameter of the DEFINE commands as described in the MQSeries Command
Reference manual.

52 System Management Guide

 Customize initialization data sets

Initialization commands for distributed queuing
You can also use the CSQINP2 initialization data set for the START CHINIT
command, and follow it with a series of other commands to define your distributed
queuing environment (for example, defining your channels). If you stop and restart
the channel initiator however, CSQINP2 is not reprocessed, so MQSeries provides
a third initialization input data set, called CSQINPX, that you can choose to process
as part of the channel initiator started task procedure.

The MQSC commands contained in the data set are executed at the end of
channel initiator initialization, and output is written to the data set specified by the
CSQOUTX DD statement. The output is similar to that produced by the
COMMAND function of the MQSeries utility program (CSQUTIL). See “MQSeries
utility program (CSQUTIL)” on page 229 for information about the MQSeries utility
program.

You can specify any of the MQSC commands that can be issued from CSQUTIL,
not only the channel commands. You can enter commands from other sources
while CSQINPX is being processed. All commands are issued in sequence,
regardless of the success of the previous command.

To specify a command response time, you can use the pseudo-command
COMMAND as the first command in the data set. This takes a single optional
keyword RESPTIME(nnn), where nnn is the time, in seconds, to wait for a response
to each of the commands. This is in the range 5 through 999; the default is 30. If
MQSeries detects that the responses to four commands have taken too long,
processing of CSQINPX is stopped and no further commands are issued. The
channel initiator is not stopped, but message CSQU052E is written to the
CSQOUTX data set, and message CSQU013E is sent to the console. When
MQSeries has completed processing of CSQINPX successfully, message
CSQU012I is sent to the console.

Initialization data set formats
The initialization input data sets can be partitioned data set (PDS) members or
sequential data sets. They can be a concatenated series of data sets. Define
them with a record length of 80 bytes, where:

� Only columns 1 through 72 are significant. Columns 73 through 80 are
ignored.

� Records with an asterisk (ñ) in column 1 are interpreted as comments and are
ignored.

� Blank records are ignored.

� Each command must start on a new record.

� A trailing − means continue from column 1 of the next record.

� A trailing + means continue from the first non-blank column of the next record.

� The maximum number of characters permitted in a command is 32 762.

If you use a sequential data set for CSQINP1 or CSQINP2, the data set remains
allocated to the queue manager started task while the queue manager is active.
During this time, it is not available for editing; if you want to change the data set,
you must first stop the queue manager. The same applies to CSQINPX for the
duration of the channel initiator started task.

 Chapter 3. Customizing the queue managers 53

 Customize initialization data sets

The initialization output data sets are sequential data sets, with a record length of
125, a record format of VBA, and a block size of 629.

Initialization data set samples
The following sample initialization data set members are supplied with MQSeries:

For CSQINP1

 thlqual.SCSQPROC(CSQ4INP1)

For CSQINP2

 thlqual.SCSQPROC(CSQ4INSG)
 thlqual.SCSQPROC(CSQ4INSX)
 thlqual.SCSQPROC(CSQ4INYG)
 thlqual.SCSQPROC(CSQ4INYD)
 thlqual.SCSQPROC(CSQ4INYC)

Other

 thlqual.SCSQPROC(CSQ4DISP)
 thlqual.SCSQPROC(CSQ4DISQ)
 thlqual.SCSQPROC(CSQ4IVP)
 thlqual.SCSQPROC(CSQ4INPX)

To preserve the originals, you should make working copies of each sample. Then
you can tailor the commands in these working copies to suit your system
requirements.

If you intend to define more than one MQSeries subsystem, you are recommended
to include the subsystem name in the high-level qualifier of the initialization input
data set name. This allows you to identify more easily the MQSeries subsystem
associated with each data set.

Using the CSQINP1 sample
The sample CSQINP1 data set thlqual.SCSQPROC(CSQ4INP1) contains
definitions of buffer pools, page set to buffer pool associations, MAXSMSGS, and
an ALTER SECURITY command. The sample should be included in the CSQINP1
concatenation of your MQSeries started task procedure.

Notes:

1. MQSeries supports up to four buffer pools (0 through 3). The DEFINE
BUFFPOOL command can only be issued from a CSQINP1 initialization data
set. The definitions in the sample specify four buffer pools.

2. Each page set used by the subsystem must be defined in the CSQINP1
initialization data set by using the DEFINE PSID command. The page set
definition associates a buffer pool ID with a page set. If no buffer pool is
specified, buffer pool 0 is used by default.

Page set zero (00) must be defined. It contains all the object definitions. You
can define up to 100 page sets for each MQSeries subsystem.

3. The DEFINE MAXSMSGS command defines the maximum number of MQGET
and MQPUT calls that can be made within an MQSeries unit of recovery. In
CSQ4INP1, the default value for MAXSMSGS is defined as 10 000.

54 System Management Guide

 Customize initialization data sets

4. The ALTER SECURITY command can be used to alter the security attributes
TIMEOUT and INTERVAL. In CSQ4INP1, the default values are defined as 54
and 12 respectively.

See “An overview of storage management” on page 15 for information about
organizing buffer pools and page sets.

Using the CSQINP2 samples
CSQ4INSG and CSQ4INSX contain system object definitions that can be included
in the CSQINP2 concatenation of your MQSeries started task procedure.
CSQ4INYG, CSQ4INYD, and CSQ4INYC contain some definitions that you can
customize for your own objects.

CSQ4INSG system object sample
The sample CSQINP2 data set thlqual.SCSQPROC(CSQ4INSG) contains
definitions for system objects for general use, which comprise:

� System default objects
� System command objects
� Event reporting objects

You must define the objects in this sample, but you need to do it only once when
the subsystem is first started. Including the definitions in the CSQINP2 data set is
the best way to do this. They are maintained across MQSeries subsystem
shutdown and restart. You must not change the object names, but you can change
their attributes if required.

If you attempt to define objects that already exist, you get messages similar to the
following:

CSQMð95I +cpf CSQMMSGP QLOCAL(SYSTEM.DEFAULT.LOCAL.QUEUE) ALREADY EXISTS
CSQMð9ðE +cpf CSQMMSGP FAILURE REASON CODE X'ððD44ðð3'
CSQ9ð23E +cpf CSQMMSGP ' DEFINE QLOCAL' ABNORMAL COMPLETION

The objects are not damaged by this failure. If you want to leave the SYSTEM
definitions data set in the CSQINP2 concatenation, you can avoid the failure
messages by specifying the REPLACE attribute against each object.

System default objects: The names of the default system object definitions begin
with the characters “SYSTEM.DEFAULT” or “SYSTEM.DEF”. For example, the
system default local queue is named:

SYSTEM.DEFAULT.LOCAL.QUEUE

The sample describes how you can tailor these objects. These objects define the
system defaults for the attributes of these MQSeries objects:

 � Local queues
 � Model queues
 � Alias queues
 � Remote queues
 � Processes
 � Namelists
� Channels (for distributed queuing without CICS)

 � Storage classes

 Chapter 3. Customizing the queue managers 55

 Customize initialization data sets

These default objects are used by DEFINE commands if no LIKE attribute is
specified.

System command objects: The names of the system command objects begin
with the characters SYSTEM.COMMAND.

There are two system-command objects:

1. The system-command input queue is a local queue on which commands are
put before they are processed by the MQSeries command processor. It must
be called SYSTEM.COMMAND.INPUT, and for normal operation it must have
these attributes:

 � MAXSMSGL(32 762)
 � USAGE(NORMAL)
 � DEFSOPT(EXCL)
 � NOTRIGGER

You can specify any of the other local queue attributes as required.

2. SYSTEM.COMMAND.REPLY.MODEL is a model queue that defines the
system-command reply-to queue.

You must define these objects before the MQSeries operations and control panels
can be used to issue commands to an MQSeries subsystem.

Commands are normally sent using nonpersistent messages so both the
system-command objects should have the DEFPSIST(NO) attribute. However, in
case you wish an application to use persistent messages for commands, you
should set the DEFTYPE(PERMDYN) attribute for the reply-to queue.

Event reporting objects: The names of the event reporting objects begin with the
characters SYSTEM.ADMIN.

There are three system-administration objects:

� The SYSTEM.ADMIN.QMGR.EVENT queue
� The SYSTEM.ADMIN.PERFM.EVENT queue
� The SYSTEM.ADMIN.CHANNEL.EVENT queue

These queues are used for event messages; for more information about using
MQSeries events, see the MQSeries Programmable System Management manual.

CSQ4INSX system object sample
Additional system queues must be defined in order to use non-CICS distributed
queuing and clustering. The member CSQ4INSX in the thlqual.SCSQPROC library
contains the queue definitions required. You can include this member in the
CSQINP2 DD concatenation of the MQSeries startup procedure, or you can use the
COMMAND function in CSQUTIL utility to issue the required DEFINE commands.

There are two types of object definitions:

� SYSTEM.CHANNEL.xx, needed for any distributed queuing
� SYSTEM.CLUSTER.xx, needed for clustering

Channel queues: Distributed queuing requires queues for use with sequence
numbers and logical units of work identifiers (LUWID). You must ensure that a
queue is available with the name SYSTEM.CHANNEL.SYNCQ. To improve

56 System Management Guide

 Customize initialization data sets

channel performance, you should define this queue with an index type of MSGID
(as shown in the supplied sample queue definitions). Queue indexes are described
in the MQSeries Command Reference.

You need to ensure that channel command queues exist for your system with the
names SYSTEM.CHANNEL.INITQ and SYSTEM.CHANNEL.REPLY.INFO. You
also need to ensure that the channel initiator has access to the
SYSTEM.COMMAND.INPUT queue (both to get and put messages).

Cluster queues: To use MQSeries clusters, you need to define the following
objects:

� A local queue called the SYSTEM.CLUSTER.COMMAND.QUEUE, which is
used to communicate repository changes between queue managers.
Messages written to this queue contain updates to the repository data to be
applied to the local copy of the repository, or requests for repository data.

� A local queue called SYSTEM.CLUSTER.REPOSITORY.QUEUE, which is used
to hold a persistent copy of the repository.

� A local queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE, which is the
transmission queue for all destinations in the cluster. For performance reasons
you should define this queue with an index type of CORRELID (as shown in
the sample queue definitions).

These queues typically contain large numbers of messages.

Cluster queue managers and repositories are described in the MQSeries Queue
Manager Clusters manual.

CSQ4INYG object sample
The member CSQ4INYG in the thlqual.SCSQPROC library contains sample
definitions that you can use for customizing your own objects for general use. It
comprises:

 � Storage classes
 � Recommended queues
� CICS adapter objects

You cannot use this sample as is, you must customize it before use. Then you can
include this member in the CSQINP2 DD concatenation of the MQSeries startup
procedure, or you can use the COMMAND function of the CSQUTIL utility to issue
the required DEFINE commands.

In addition to the sample definitions here, you can use the system object definitions
as the basis for your own resource definitions. For example, you could make a
working copy of SYSTEM.DEFAULT.LOCAL.QUEUE and name it
MY.DEFAULT.LOCAL.QUEUE. You can then change any of the parameters in this
copy as required. You could then issue a DEFINE command by whichever method
you choose, provided you have the authority to create resources of that type.

Storage classes: Four storage classes (SYSTEM, REMOTE, DEFAULT, and
NODEFINE) are required because they are used by other object definitions. Modify
their attributes and add other storage classes as required.

 Chapter 3. Customizing the queue managers 57

 Customize initialization data sets

Notes:

1. A storage class can only be changed when:

� All queues that use this storage class are empty, and have no uncommitted
activity.

� All queues that use this storage class are closed.

2. If a message is put on a queue that names a non-existent storage class, the
calling program will receive error MQRC_STORAGE_CLASS_ERROR. Alter
the queue definition to give it an existing storage class name, or create the
storage class named by the queue.

3. If a queue is defined and no storage class is explicitly assigned, the DEFAULT
storage class is assigned automatically by MQSeries.

Recommended queues: You are recommended to have two special purpose
queues of your own; a default transmission queue and a dead-letter queue. The
default transmission queue is used when sending messages to another queue
manager and no other suitable transmission queue is available.

The dead-letter queue is used if the message destination is not valid. The queue
manager puts such messages on a local queue called the dead-letter queue.
Although having a dead-letter queue is not mandatory, it should be regarded as
essential, especially if you are using either distributed queuing or one of the
MQSeries bridges.

In addition to defining these queues you also need to tell the queue manager their
names. To do this use the ALTER QMGR command, as shown in the sample.

CICS adapter objects: The sample defines an initiation queue named
CICS01.INITQ. This queue is used by the MQSeries-supplied CKTI transaction.
You can change the name of this queue; however it must match the name specified
in the CICS system initialization table (SIT) or SYSIN override in the INITPARM
statement:

INITPARM=(CSQCPARM='IQ=CICSð1.INITQ,...')

This example shows you how to define the initiation queue name in INITPARM.
For more details, see the sample INITPARM in Figure 14 on page 120 and the
accompanying notes.

CSQ4INYD object sample
If you are using distributed queuing (non-CICS) and not clustering, you need to set
up your own queues, processes, and channels. The member CSQ4INYD in the
thlqual.SCSQPROC library contains sample definitions that you can use for
customizing your distributed queuing objects. It comprises:

� A set of definitions for the sending end
� A set of definitions for the receiving end
� A set of definitions for using clients

You cannot use this sample as is; you must customize it before use. Then you can
include this member in the CSQINP2 DD concatenation of the MQSeries startup
procedure, or you can use the COMMAND function of the CSQUTIL utility to issue
the required DEFINE commands.

58 System Management Guide

 Customize initialization data sets

CSQ4INYC object sample
If you are using clustering, definitions equivalent to the channel definitions and
remote queue definitions of distributed queuing are created automatically, when
needed. However, some manual channel definitions are needed – a
cluster-receiver channel for the cluster, and a cluster-sender definition to at least
one cluster repository queue manager.

The member CSQ4INYC in the thlqual.SCSQPROC library contains sample
definitions that you can use for customizing your clustering objects. It comprises:

� Definitions for the queue manager
� Definitions for the receiving channel
� Definitions for the sending channel
� Definitions for cluster queues
� Definitions for lists of clusters

You cannot use this sample as is; you must customize it before use. Then you can
include this member in the CSQINP2 DD concatenation of the MQSeries startup
procedure, or you can use the COMMAND function of the CSQUTIL utility to issue
the required DEFINE commands.

Using the other samples
This section describes the other sample definitions that are supplied.

CSQ4DISP display sample
The sample thlqual.SCSQPROC(CSQ4DISP) contains a set of generic DISPLAY
commands that display all the defined resources on your MQSeries subsystem.
This includes the definitions for all MQSeries objects and definitions such as
storage classes and trace. These commands can generate a large amount of
output. This sample can be used in the CSQINP2 data set or as input to the
COMMAND function of the CSQUTIL utility.

CSQ4DISQ distributed queuing using CICS sample
The sample thlqual.SCSQPROC(CSQ4DISQ) contains a set of commands that are
required to implement distributed queuing using CICS ISC. For more information
see Appendix D, “Enabling distributed queuing using CICS ISC” on page 479.

You can include this member in the CSQINP2 DD concatenation of the MQSeries
startup procedure, or you can use the COMMAND function of the CSQUTIL utility
to issue the required DEFINE commands.

 CSQ4IVP sample
The sample thlqual.SCSQPROC(CSQ4IVP) contains a set of DEFINE commands
that are required to run the installation verification program (IVP). For more
information, see “Running the installation verification program CSQ4IVP1” on
page 99.

You can include this sample in the CSQINP2 data set. Once you have successfully
run the IVP, you do not need to run it each time MQSeries is restarted. Therefore,
you do not need to keep CSQ4IVP permanently in the CSQINP2 concatenation.

 Chapter 3. Customizing the queue managers 59

 Customize initialization data sets

 CSQ4INPX sample
The sample thlqual.SCSQPROC(CSQ4INPX) contains a set of commands that you
might want to execute each time the channel initiator starts. You must customize
this sample before use; you can then include it in the CSQINPX data set for the
channel initiator.

60 System Management Guide

 Create bootstrap and log data sets

Task 11: Create the bootstrap and log data sets

� Repeat this task for each MQSeries subsystem.

Use the supplied program CSQJU003 to prepare the bootstrap data sets (BSDSs)
and log data sets. You must run this job once for each subsystem you want to
define. The sample JCL and Access Method Services (AMS) control statements to
run CSQJU003 to create a single or dual logging environment are held in
thlqual.SCSQPROC(CSQ4BSDS). Customize and run this job to create your
BSDSs and logs.

The startup procedure, CSQ4MSTR, described in “Task 7: Create procedures for
the MQSeries subsystem” on page 49, refers to BSDSs in statements of the form:

//BSDS1 DD DSN=++HLQ++.BSDSð1,DISP=SHR
//BSDS2 DD DSN=++HLQ++.BSDSð2,DISP=SHR

The log data sets are referred to by the BSDSs.

Notes:

1. The BLKSIZE must be specified on the SYSPRINT DD statement in the
CSQTLOG step. The BLKSIZE must be 629.

2. To help identify bootstrap data sets and log data sets from different MQSeries
subsystems, include the subsystem name in the high level qualifier of these
data sets.

3. Each BSDS requires 500 KB of storage.

4. The number of records to specify in the cluster for each log data set is:

Number of records = (a \ log switch interval required in seconds) / 4ð96

 where
a = (Number of MQPUTs/sec \ (Average message size + 44ð))

+ (Number of MQGETs/sec \ 72)
+ (Number of units of recovery started \ 1ðð)
+ (Number of syncpoints per second \ 196)

 and
log switch interval = time period between successive

 log switches

Each log data set should have the same number of records specified and
should not have secondary extents. Other than for a very small number of
records, AMS rounds up the number of records so that a whole number of
cylinders is allocated. The number or records actually allocated is:

c = (INT (number of log records / b) + 1) \ b

Where b is the number of 4ð96-byte blocks per cylinder (18ð for a
339ð device) and INT means round down to an integer

5. You are recommended to have at least three log data sets, and to use dual
logging and log archiving. See Chapter 17, “Understanding the log and the
bootstrap data set” on page 299 for more information.

 Chapter 3. Customizing the queue managers 61

 Define page sets

Task 12: Define your page sets

� Repeat this task for each MQSeries subsystem.

You must define separate page sets for each MQSeries subsystem.
thlqual.SCSQPROC(CSQ4PAGE) contains JCL and AMS control statements to
define and format four page sets. The JCL runs the supplied utility program
CSQUTIL.

The startup procedure CSQ4MSTR described in “Task 7: Create procedures for the
MQSeries subsystem” on page 49 refers to the page sets, in a statement of the
form:

//CSQPððnn DD DISP=OLD,DSN=xxxxxxxxx

where nn is the page set number between 00 and 99, and xxxxxxxxx is the data
set that you define.

Notes:

1. Each MQSeries subsystem must have a page set 00. This is where all the
object definitions used by the queue manager are kept. You should avoid
putting messages on page set 00 for the reasons discussed in “Page set zero”
on page 16.

2. Each MQSeries subsystem can have a maximum of 100 page sets.

3. If you intend to allow the FORCE option to be used with the FORMAT function
of the utility program CSQUTIL, you must add the REUSE attribute on the AMS
DEFINE CLUSTER statement. See page 231 for details.

4. If you intend to use the dynamic page set expansion feature, ensure that
secondary extents are defined for each page set.
thlqual.SCSQPROC(CSQ4PAGE) shows how to do this.

5. To help identify page sets from different MQSeries subsystems, include the
subsystem name in the high level qualifier of the data set associated with each
page set.

6. MQSeries attempts to keep data in virtual storage buffer pools for as long as it
can (subject to demands for buffer pool storage). This means that the page set
storage required is that to hold the maximum amount of data held in the
system. If the system is closed down (using the STOP command), all the data
held in the buffer pools is flushed out to DASD.

For queue manager object definitions (for example, queues and processes), it
is simple to calculate the storage requirement because these objects are of
fixed size and are permanent. For messages however, the calculation is more
complex for the following reasons:

� Messages vary in size.

� Messages are transitory.

� Space occupied by messages that have been retrieved is reclaimed
periodically by an asynchronous process.

62 System Management Guide

 Define page sets

“Calculating the storage requirement for messages” on page 63 describes how
to calculate the space requirement for messages.

7. For page set zero, the storage required is:

(maximum number of local queue definitions x 1ð1ð)
+ (maximum number of model queue definitions x 746)
+ (maximum number of alias queue definitions x 338)
+ (maximum number of remote queue definitions x 434)
+ (maximum number of permanent dynamic queue definitions x 1ð1ð)
+ (maximum number of process definitions x 674)
+ (maximum number of namelist definitions x 1232ð)
+ (maximum number of message channel definitions x 1ð1ð)
+ (maximum number of client-connection channel definitions x 1714)
+ (maximum number of server-connection channel definitions x 1ð1ð)
+ (maximum number of cluster-receiver channel definitions x 1ð1ð)
+ (maximum number of cluster-sender channel definitions x 1ð1ð)
+ (maximum number of storage class definitions x 266)

Divide this value by 4096 to determine the number of records to specify in the
cluster for the page set data set.

8. The total number of objects that can be created is limited by the capacity of
page set zero. There is an implementation limit on the number of local queues
that can be defined, which is 524 287.

9. For page sets 01 to 99, the storage required for each page set is determined
by the number and size of the messages stored on that page set.

“Calculating the storage requirement for messages” describes how to calculate
the space requirement for messages. Divide this value by 4096 to determine
the number of records to specify in the cluster for the page set data set.

Calculating the storage requirement for messages
This section describes how messages are stored on pages. Understanding this will
help you calculate how much page set storage you need to define for your
messages. To calculate the approximate space required for all messages on a
page set you must consider maximum queue depth of all the queues that map to
the page set and the average size of messages on those queues.

You must allow for the possibility that message “gets” might be delayed for reasons
outside the control of MQSeries (for example, because of a problem with your
communications protocol). In this case, the “put” rate of messages might far
exceed the “get” rate. This could lead to a large increase in the number of
messages stored in the page sets and a consequent increase in the storage size
demanded.

Each page in the page set is 4096 bytes long. Allowing for fixed header
information, each page has 4057 bytes of space available for storing messages.

When calculating the space required for each message, the first thing you need to
consider is whether the message will fit on one page (a short message) or whether
it needs to be split over two or more pages (a long message). When messages
are split in this way, you need to allow for additional control information in your
space calculations.

 Chapter 3. Customizing the queue managers 63

 Define page sets

For the purposes of space calculation, a message can be represented like this:

┌────────────────┬──────────────────────────────────┐
│ Message header │ Message data │
└────────────────┴──────────────────────────────────┘

The message header section contains the message descriptor (352 bytes) and
other control information, the size of which varies depending on the size of the
message. The message data section contains all the actual message data, and
any other headers (for example, the transmission header or the IMS bridge
header).

 Short messages
A short message is defined as a message that will fit on one page.

For a short message the control information is 20 bytes long. When this is added
to the length of the message header, the usable space remaining on the page is
3685 bytes. If the size of the message data is 3685 bytes or less, MQSeries stores
the messages in the next available space on the page, or if there is not enough
space available, on the next page, as shown below:

Short
Message
1

Short
Message
2

Short
Message
3

Page 1

Short
Message
4

Short
Message
n

Page 2

If there is enough space remaining on the page, the next message is also stored
on this page, if not, the remaining space on the page is left unused.

 Long messages
If the size of the message data is greater than 3685 bytes, the message is classed
as a long message. When presented with a long message, MQSeries stores the
message on a series of pages, and stores control information that points to these
pages in the same way that it would store a short message, as shown below:

Long Message segment 1

Page 3

Long Message segment 2

Page 4

Long Message segment 3

Page 5

Short
Message
1

Long
Message
1

Short
Message
2

Page 1

Short
Message
3

Short
Message
4

Page 2

64 System Management Guide

 Define page sets

Each segment of the long message is preceded by 8 bytes of control information,
and the first segment also includes the message header portion of 352 bytes. This
means that the first page contains 3697 bytes of the message data. The remaining
message data is placed on subsequent pages, in 4049-byte segments. If this does
not fill an exact number of pages, the remaining space in the last page is left
unused.

The number of pages (n) used for a long message is calculated as follows:

message data length + 352
n ═ -------------------------
 4ð49

rounded up to the nearest page

In addition to this, you need to allow space for the control information that points to
the pages. The length of this (c) depends on the length of the message, and is
calculated as follows:

c = 2ð + (3n) bytes

(where n is the number of pages calculated above)

This means that the total page set space required for a long message is:

(n \ 4ð96) + c bytes

Enabling dynamic page set expansion
Page sets can be dynamically extended while MQSeries is running. A page set
can have up to 123 secondary extents, which can exist on multiple disk volumes.

Note: The maximum number of extents for a page set cataloged in an ICF catalog
is between 119 and 123, depending upon the number of extents (1-5)
allocated by direct access storage data management (DADSM) per
allocate/extend request.

In order to use this facility, your page sets must be allocated with secondary extent
values defined. If you have existing page set definitions, they cannot be altered to
add secondary extent definitions. You will have to re-allocate each of your page
sets with secondary extents, and then use the COPYPAGE function of CSQUTIL to
copy the old versions of the page sets to the new ones.

thlqual.SCSQPROC(CSQ4PAGE) shows how to define the secondary extents, and
Chapter 14, “Using the MQSeries utilities” on page 227 gives information about
using CSQUTIL.

 Chapter 3. Customizing the queue managers 65

 Define page sets

How to determine an appropriate secondary extent value
You might decide the secondary extent value by considering how many times the
page set should exceed its original value. For instance, if your page set primary
allocation is 1000 units (records/pages, tracks, cylinders, kilobytes, megabytes),
and you want it to grow to be at most four times that size, then determine the
secondary extent size from:

(maximum size - original size)

 119

 In this case, 4ððð - 1ððð = 3ððð = 25 or 26
 ----------- ----
 119 119

However, see “Number of extents available” for a description of why you might not
be able to use this much disk space.

Note: If you define the size of your extent in records, IDCAMS rounds this up to
map onto a physical boundary. The queue manager uses all this space for
the secondary extent.

Multivolume data sets
If the definition of a page set allows it to utilize multiple volumes, the primary space
is wholly contained on the first volume, and secondary extents are first allocated on
the same volume, while space is available, and thereafter the next volume is used,
while space is available, and so on. The process stops when you have used all the
secondary extents, or no more disk space is available.

Note: This behavior differs if the page set is a data set managed by Storage
Management Subsystem (SMS), and you use a storage class that uses the
GUARANTEED SPACE attribute. Then the multivolume processing differs
in that a primary extent is allocated on each volume when the page set is
defined. Thereafter, secondary extents are allocated, as before, except that
when the services of a new volume are required, the pre-allocated
secondary extent is used.

Number of extents available
Note that the Data Facility Product (DFP) uses up to five non-contiguous areas of
disk to satisfy the total space requirements of a primary or secondary extent. This
means, in the worst case of badly fragmented disk space, that you might only get
around 22 times the secondary space allocated before you reach the maximum
extent limit.

66 System Management Guide

 Tailor system parameter module

Task 13: Tailor your system parameter module

� Repeat this task for each MQSeries subsystem, as required.

The MQSeries system parameter module controls the logging, archiving, tracing,
and connection environments that MQSeries uses in its operation. The system
parameter module has three macros as follows:

MQSeries supplies a default system parameter module, CSQZPARM, which is
invoked automatically if you issue the START QMGR command (without a PARM
parameter) to start an instance of MQSeries. CSQZPARM is in the APF-authorized
library thlqual.SCSQAUTH also supplied with MQSeries. The values of these
parameters are displayed as a series of messages when you start MQSeries.

See the MQSeries Command Reference manual for more information about the
START command and “Starting MQSeries” on page 192 for more information about
how this command is used.

Macro name Purpose

CSQ6SYSP Specifies the connection and tracing parameters, see page 68

CSQ6LOGP Controls log initialization, see page 74

CSQ6ARVP Controls archive initialization, see page 76

Creating your own system parameter module
If CSQZPARM does not contain the system parameters you want, you can create
your own system parameter module using the sample JCL provided in
thlqual.SCSQPROC(CSQ4ZPRM).

To create your own system parameter module:

1. Make a working copy of the JCL sample.

2. Edit the parameters for each macro in the copy as required. If you remove any
parameters from the macro calls, the default values are automatically picked up
at run time.

3. Replace the placeholder ++NAME++ with the name that the load module is to
take (this can be CSQZPARM).

4. If your assembler is not high level assembler, change the JCL as required by
your assembler.

5. Run the JCL to assemble and link-edit the tailored versions of the system
parameter macros to produce a load module. This is the new system
parameter module with the name that you have specified.

6. Put the load module produced in an APF-authorized user library.

7. Include this library in the MQSeries started task procedure STEPLIB. This
library name must come before the library thlqual.SCSQAUTH in STEPLIB.

 Chapter 3. Customizing the queue managers 67

 CSQ6SYSP

8. Invoke the new system parameter module when you start MQSeries. For
example, if the new module is named NEWMODS, issue the command:

START QMGR PARM(NEWMODS)

Note: If you choose to name your module CSQZPARM, you do not need to
specify the PARM parameter on the START QMGR command.

Fine tuning a system parameter module
MQSeries also supplies a set of three assembler source modules, which can be
used to fine tune an existing system parameter module. These modules are in
library thlqual.SCSQASMS. Typically, you use these modules in a test environment
to change the default parameters in the system parameter macros. Each source
module calls a different system parameter macro:

This is how you use these modules:

1. Make working copies of each assembler source module in a user assembler
library.

2. Edit your copies by adding or altering the values of any parameters as
required.

3. Assemble your copies of any edited modules to create object modules in a user
object library.

4. Link-edit these object code modules with an existing system parameter module
to produce a load module that is the new system parameter module.

5. Ensure that new system parameter module is a member of a user authorized
library.

6. Include this library in the MQSeries started task procedure STEPLIB. This
library must come before the library thlqual.SCSQAUTH in STEPLIB.

7. Invoke the new system parameter module by issuing a START QMGR
command, specifying the new module name in the PARM parameter, as before.

This assembler source module... Calls this macro...

CSQFSYSP CSQ6SYSP (connection and tracing
parameters)

CSQJLOGP CSQ6LOGP (log initialization)

CSQJARVP CSQ6ARVP (archive initialization)

 Using CSQ6SYSP
Use CSQ6SYSP to set system parameters.

The default parameters for CSQ6SYSP are shown in Table 8. If you want to
change any of these values, refer to the detailed descriptions of the parameters.

Table 8 (Page 1 of 2). Default values of CSQ6SYSP parameters

Parameter Description Default value

CMDUSER The default user ID for command security checks. CSQOPR

68 System Management Guide

 CSQ6SYSP

CMDUSER
Specifies the default user ID used for command security checks. This user ID
must be defined to the ESM (for example, RACF). Specify a name of 1
through 8 alphanumeric characters. The first character must be alphabetic.

The default is CSQOPR.

CTHREAD
Specifies the maximum number of connections from batch, CICS, IMS, TSO,
and the channel initiator to a single instance of MQSeries.

CICS connections are not limited in the same way as TSO and batch
connections. During the connection of the main CICS TCB to MQSeries, the
adapter attempts to attach up to eight OS/390 subtasks (TCBs) to be used by
this CICS system. This means each CICS system connected takes up nine of
the connections specified on CTHREAD, so you must increase CTHREAD by

Table 8 (Page 2 of 2). Default values of CSQ6SYSP parameters

Parameter Description Default value

CTHREAD Maximum number of connections from batch,
CICS, IMS, and TSO tasks to a single instance of
MQSeries.

300

EXITLIM Time (in seconds) for which queue-manager exits
can execute during each invocation.

30

EXITTCB How many started server tasks to use to run
queue manager exits.

8

IDBACK Maximum number of connections to a single
instance of MQSeries from batch or TSO
background tasks.

20

IDFORE Maximum number of connections to a single
instance of MQSeries from TSO foreground tasks.

100

LOGLOAD Number of log records written by MQSeries
between the start of one checkpoint and the next.

10 000

OTMACON OTMA connection parameters. See below

QMCCSID Coded character set identifier for the queue
manager.

0

ROUTCDE Message routing code assigned to messages not
solicited from a specific console.

1

SMFACCT Specifies whether SMF accounting data is to be
collected when MQSeries is started.

NO

SMFSTAT Specifies whether SMF statistics are to be
collected when MQSeries is started.

NO

STATIME Default time (in minutes) between each gathering
of statistics.

30

TRACSTR Specifies whether tracing is to be started
automatically.

NO

TRACTBL Size of trace table, in 4 KB blocks, to be used by
the global trace facility.

99 (396 KB)

WLMTIME Time (in minutes) between scanning the queue
index for WLM-managed queues.

30

 Chapter 3. Customizing the queue managers 69

 CSQ6SYSP

nine for each CICS system connected. You must also increase the value of
CTHREAD by one for each instance of the task initiator CKTI.

For IMS connections, the number of connections required is one for the control
region, and one for each dependant region connected to MQSeries. For each
IMS MPP or IFP region that is defined to permit MQSeries connections through
either a specific SSM= EXEC parameter or through the control region default, a
thread is created when the first application is scheduled in that region,
regardless of whether that application invokes any MQSeries calls. The value
you set for CTHREAD should take account of this.

For distributed queuing (without CICS), the number of connections required by
the channel initiator address space depends on the number of adapter
subtasks and dispatchers there will be; see “Using CSQ6CHIP” on page 83.

When the number of connections reaches the limit set by CTHREAD, any
further requests for a connection are suspended until a spare slot becomes
available. For example, an MQDISC call releases that connection. For
planning purposes, the value of CTHREAD must be greater than the maximum
of IDBACK, IDFORE, and the number of potential connections from the CICS,
IMS, and channel initiator address spaces.

Specify a number in the range 1 through 32 767.

The default is 300.

Note that this controls the number of connections; a connection might involve
more than one thread. See “Connections and threads” on page 280 for more
information.

EXITLIM
Specifies the time, in seconds, allowed for each invocation of the queue
manager exits. (This parameter has no effect on channel exits.)

Specify a value in the range 5 through 9999.

The default is 30. The queue manager polls exits that are running every 30
seconds. On each poll, any that have been running for more than the time
specified by EXITLIM are forcibly terminated.

EXITTCB
Specifies the number of started server tasks to use to run exits in the queue
manager. (This parameter has no effect on channel exits.)

Specify a value in the range 0 through 99. A value of 0 means that no exits
can be run.

The default is 8.

IDBACK
Specifies the maximum number of background batch and TSO connections to a
single instance of MQSeries. The value of IDBACK is related to those of
IDFORE and CTHREAD. See the description of the CTHREAD parameter for
more information.

Specify a number in the range 1 through 32 767.

The default is 20.

70 System Management Guide

 CSQ6SYSP

IDFORE
Specifies the maximum number of TSO foreground connections to MQSeries.

The value of IDFORE is related to those of IDBACK and CTHREAD. See the
description of the CTHREAD parameter for more information.

The number of TSO connections might be greater than the number of
concurrent TSO users if, for example, users split their ISPF screens.

Specify a number in the range 0 through 32 767.

The default is 100.

LOGLOAD
Specifies the number of log records that MQSeries writes between the start of
one checkpoint and the next. MQSeries starts a new checkpoint after the
number of records that you specify has been written.

Specify a value in the range 200 through 16 000 000.

The larger the number, the better the performance of MQSeries. However,
abnormal restart takes longer if the parameter is set to a large number.

The default is 10 000.

OTMACON
OTMA parameters. This keyword takes five positional parameters, as shown
below:

OTMACON = (Group,Member,Druexit,Age,TpipePrefix)

Group
This is the name of the XCF group to which this particular instance of
MQSeries belongs.

It can be 1 through 8 characters long and must be entered in
uppercase characters.

The default is blanks, which indicates that MQSeries should not
attempt to join an XCF group.

Member
This is the member name of this particular instance of MQSeries
within the XCF group.

It can be 1 through 16 characters long and must be entered in
uppercase characters.

The default is the 4-character queue manager name.

Druexit
This specifies the name of the OTMA destination resolution user exit
to be run by IMS.

It can be 1 through 8 characters long.

The default is DFSYDRU0.

This parameter is optional; it is required if MQSeries is to receive
messages from an IMS application that was not started by MQSeries.
The name should correspond to the destination resolution user exit
coded in the IMS system. For more information see Appendix B,
“Using OTMA exits in IMS” on page 473.

 Chapter 3. Customizing the queue managers 71

 CSQ6SYSP

Age
This represents the length of time, in seconds, that a user ID from
MQSeries is considered previously verified by IMS.

It can be in the range 0 through 2 147 483 647.

The default is 2 147 483 647.

TpipePrefix
This represents the prefix to be used for Tpipe names.

It comprises three characters; the first character is in the range A
through Z, subsequent characters are A through Z or 0 through 9.
The default is CSQ.

This is used each time MQSeries creates a Tpipe; the rest of the
name is assigned by MQSeries. You cannot set the full Tpipe name
for any Tpipe created by MQSeries.

QMCCSID
Specifies the default coded character set identifier that the queue manager
(and therefore distributed queuing) is to use.

Specify a value in the range 0 through 65 535. 0 means use the CCSID
currently set or, if none is set, use CCSID 500.

The default is 0.

ROUTCDE
Specifies the default OS/390 message routing code assigned to messages that
are not sent in direct response to an MQSeries command.

Specify one of:

1. A value in the range 1 through 16, inclusive.

2. A list of values, separated by a comma and enclosed in parentheses. Each
value must be in the range 1 through 16, inclusive.

The default is 1.

For more information about OS/390 routing codes, see the MVS Routing and
Descriptor Codes manual.

SMFACCT
Specifies whether MQSeries sends accounting data to SMF automatically when
MQSeries starts.

Specify one of:

NO Do not start gathering accounting data automatically.
YES Start gathering accounting data automatically for the default class 1.

The default is NO.

SMFSTAT
Specifies whether to gather SMF statistics automatically when MQSeries starts.

Specify one of:

NO Do not start gathering statistics automatically.
YES Start gathering statistics automatically for the default class 1.

The default is NO.

72 System Management Guide

 CSQ6SYSP

STATIME
Specifies the default time, in minutes, between each gathering of statistics.

Specify a number in the range 1 through 1440.

The default is 30.

TRACSTR
Specifies whether global tracing is to start automatically.

Specify one of:

NO Do not start global tracing automatically.

YES Start global tracing automatically for the default class, class 1.

integers A list of classes for which global tracing is to be started
automatically in the range 1 through 4.

ñ Start global trace automatically for all classes.

The default is NO if you do not specify the keyword in the macro.

Note: The supplied default system parameter load module (CSQZPARM) has
TRACSTR=YES (set in the assembler module CSQFSYSP). If you do
not want to start tracing automatically, you can change this after you
have successfully started your MQSeries subsystem. Refer to “Fine
tuning a system parameter module” on page 68 for information about
how do this.

For details about the START TRACE command, see the MQSeries Command
Reference manual.

TRACTBL
Specifies the default size, in 4 KB blocks, of trace table where the global trace
facility stores MQSeries trace records.

Specify a value in the range 1 through 999.

Note: Storage for the trace table is allocated in the ECSA above the line.
Therefore, you must select this value with care.

The default is 99. This is equivalent to 396 KB.

WLMTIME
Specifies the time (in minutes) between each scan of the indexes for
WLM-managed queues.

Specify a value in the range 1 through 9999.

The default is 30.

 Chapter 3. Customizing the queue managers 73

 CSQ6LOGP

 Using CSQ6LOGP
Use CSQ6LOGP to establish your logging options.

The default parameters for CSQ6LOGP are shown in Table 9. If you need to
change any of these values, refer to the detailed descriptions of the parameters.

INBUFF
Specifies the size, in kilobytes, of the input buffer for reading the active and
archive logs during recovery. Use a decimal number in the range 28 through
60. The value specified is rounded up to a multiple of 4.

The default is 28 KB.

MAXALLC
Specifies the maximum number of archive log volumes that can be allocated
concurrently for input mode. Archive log data sets are read when required for
recovery, system restart, or dynamic backout. Use a decimal number in the
range 1 through 99.

For information about the logs, see Chapter 17, “Understanding the log and the
bootstrap data set” on page 299.

The default is 3.

MAXARCH
Specifies the maximum number of archive log volumes that can be recorded in
the BSDS. When this number is exceeded, recording begins again at the start
of the BSDS.

Use a decimal number in the range 10 through 1000.

For information about the logs and BSDS, see Chapter 17, “Understanding the
log and the bootstrap data set” on page 299.

The default is 500.

Table 9. Default values of CSQ6LOGP parameters

Parameter Description Default value

INBUFF Active and archive logs input buffer size. 28 KB

MAXALLC Maximum number of archive log volumes that can
be allocated.

3

MAXARCH Maximum number of archive log volumes that can
be recorded.

500

OFFLOAD Archiving on or off. YES (ON)

OUTBUFF Size of output buffer storage for active and
archive log data sets.

400 KB

TWOACTV Single or dual active logging. YES (dual)

TWOARCH Single or dual archive logging. YES (dual)

TWOBSDS Single or dual BSDS. YES (dual BSDS)

WRTHRSH Number of output buffers to be filled before they
are written to the active log data sets.

20

74 System Management Guide

 CSQ6LOGP

OFFLOAD
Specifies whether archiving is on or off.

Specify either:

YES Archiving is on
NO Archiving is off

The parameter cannot be blank.

Attention: Do not switch archiving off unless you are working in a test
environment. If you do switch it off, you cannot guarantee that data will
be recovered in the event of a system or transaction failure. See the
note about archiving in “What logs are” on page 299.

The default is YES.

OUTBUFF
Specifies the total size, in kilobytes, of the storage to be used by MQSeries for
output buffers for writing the active and archive log data sets. Each output
buffer is 4 KB.

The parameter cannot be blank, and must be in the range 40 through 4000.
The value specified is rounded up to a multiple of 4.

The default is 400 KB.

TWOACTV
Specifies single or dual active logging.

Specify either:

NO Single active logs
YES Dual active logs

The parameter cannot be blank.

The default is YES.

TWOARCH
Specifies the number of archive logs that MQSeries produces when the active
log is off-loaded.

Specify either:

NO Single archive logs
YES Dual archive logs

This parameter cannot be blank even if the OFFLOAD parameter is specified
as NO.

The default is YES.

TWOBSDS
Specifies the number of bootstrap data sets.

Specify either:

NO Single BSDS
YES Dual BSDS

This parameter cannot be left blank.

The default is YES.

 Chapter 3. Customizing the queue managers 75

 CSQ6ARVP

WRTHRSH
Specifies the number of 4 KB output buffers to be filled before they are written
to the active log data sets.

The larger the number of buffers, the less often the write takes place, and this
improves the performance of MQSeries. The buffers might be written before
this number is reached if significant events, such as a commit point, occur.

Specify the number of buffers in the range 1 through 256.

The default is 20.

 Using CSQ6ARVP
Use CSQ6ARVP to establish your archiving environment.

The default parameters for CSQ6ARVP are shown in Table 10. If you need to
change any of these values, refer to the detailed descriptions of the parameters.
See “Planning your archive storage” on page 310 for more information.

Table 10. Default values of CSQ6ARVP parameters

Parameter Description Default value

ALCUNIT Units in which primary and secondary space
allocations are made.

BLK (blocks)

ARCPFX1 Prefix for first archive log data set name. CSQARC1

ARCPFX2 Prefix for second archive log data set name. CSQARC2

ARCRETN The retention period of the archive log data set in
days.

9999

ARCWRTC List of route codes for messages to the operator
about archive log data sets.

1,3,4

ARCWTOR Whether to send message to operator and wait
for reply before trying to mount an archive log
data set.

YES

BLKSIZE Block size of archive log data set. 20 480

CATALOG Whether archive log data sets are cataloged in
the ICF.

NO

COMPACT Whether archive log data sets should be
compacted.

NO

PRIQTY Primary space allocation for DASD data sets. 4 320

PROTECT Whether archive log data sets are protected by
ESM profiles when the data sets are created.

NO

QUIESCE Maximum time, in seconds, allowed for quiesce
when ARCHIVE LOG with MODE(QUIESCE)
specified.

5

SECQTY Secondary space allocation for DASD data sets.
See the ALCUNIT parameter for the units to be
used.

540

TSTAMP Whether the archive data set name should
include a time stamp.

NO

UNIT Device type or unit name on which archive log
data sets are stored.

TAPE

76 System Management Guide

 CSQ6ARVP

ALCUNIT
Specifies the unit in which primary and secondary space allocations are made.

Specify one of:

CYL Cylinders
TRK Tracks
BLK Blocks

You are recommended to use BLK because it is independent of the device
type.

The default is BLK.

ARCPFX1
Specifies the prefix for the first archive log data set name.

See the TSTAMP parameter for a description of how the data sets will be
named and for restrictions on the length of ARCPFX1.

This parameter cannot be left blank.

You might need to authorize the MQSeries subsystem to create archive logs
with this prefix.

The default is CSQARC1.

ARCPFX2
Specifies the prefix for the second archive log data set name.

See the TSTAMP parameter for a description of how the data sets will be
named and for restrictions on the length of ARCPFX2.

This parameter cannot be blank even if the TWOARCH parameter is specified
as NO.

You might need to authorize the MQSeries subsystem to create archive logs
with this prefix.

The default is CSQARC2.

ARCRETN
Specifies the retention period, in days, to be used when the archive log data
set is created.

The parameter must be in the range 0 through 9999.

For more guidance, see “Automatic archive log data set deletion” on page 317.

The default is 9999.

ARCWRTC
Specifies the list of OS/390 routing codes for messages about the archive log
data sets to the operator. This field is ignored if ARCWTOR is set to NO.

Specify up to 14 routing codes, each with a value in the range 1 through 16.
You must specify at least one code. Separate codes in the list by commas, not
by blanks.

The default is the list of values: 1,3,4.

For more information about OS/390 routing codes, see the MVS Routing and
Descriptor Codes manual.

 Chapter 3. Customizing the queue managers 77

 CSQ6ARVP

ARCWTOR
Specifies whether a message is to be sent to the operator and a reply is
received before attempting to mount an archive log data set.

Other MQSeries users might be forced to wait until the data set is mounted, but
they are not affected while MQSeries is waiting for the reply to the message.

Specify either:

YES The device needs a long time to mount archive log data sets. For
example, a tape drive.

NO The device does not have long delays. For example, DASD.

The default is YES.

BLKSIZE
Specifies the block size of the archive log data set. The block size you specify
must be compatible with the device type you specify in the UNIT parameter.

The parameter must be in the range 4 097 through 28 672. The value you
specify is rounded up to a multiple of 4 096.

This parameter is ignored for data sets that are managed by the storage
management subsystem (SMS).

If the archive log data set is written to DASD, you are recommended to choose
the maximum block size that will allow 2 blocks per track. For example, for a
3390 device, you should use a block size of 24 576.

If the archive log data set is written to tape, specifying the largest possible
block size improves the speed of reading the archive log.

The default is 20 480.

CATALOG
Specifies whether archive log data sets are cataloged in the primary integrated
catalog facility (ICF) catalog.

Specify either:

NO Archive log data sets are not cataloged
YES Archive log data sets are cataloged

This parameter cannot be blank.

All archive log data sets allocated on DASD must be cataloged. If you archive
to DASD with the CATALOG parameter set to NO, message CSQJ072E is
displayed each time an archive log data set is allocated, and MQSeries
catalogs the data set.

The default is NO.

COMPACT
Specifies whether data written to archive logs is to be compacted. This option
applies only to a 3480 or 3490 device that has the improved data recording
capability (IDRC) feature. When this feature is turned on, hardware in the tape
control unit writes data at a much higher density than normal, allowing for more
data on each volume. Specify NO if you do not use a 3480 device with the
IDRC feature or a 3490 base model, with the exception of the 3490E. Specify
YES if you want the data to be compacted.

78 System Management Guide

 CSQ6ARVP

Specifying YES adversely affects performance. Also be aware that data
compressed to tape can be read only using a device that supports the IDRC
feature. This can be a concern if you have to send archive tapes to another
site for remote recovery.

Specify either:

NO Do not compact the data sets
YES Compact the data sets

The default is NO.

PRIQTY
Specifies the primary space allocation for DASD data sets in ALCUNITs.

The value must be greater than zero.

The default is 4 320.

This quantity must be sufficient for a copy of both the log data set and its
corresponding BSDS. To determine the necessary value, follow this procedure:

1. Determine the number of active log records actually allocated (c) as
explained in “Task 11: Create the bootstrap and log data sets” on page 61.

2. Determine the number of 4096-byte blocks in each archive log block:

d = BLKSIZE / 4ð96

Where BLKSIZE is the rounded up value

 3. If ALCUNIT=BLK:

PRIQTY = INT(c / d)

where INT means round down to an integer

If ALCUNIT=TRK:

PRIQTY = INT(c / (d \ INT(e/BLKSIZE))) + 1

where e is the number of bytes per track (56664 for a 339ð device)
and INT means round down to an integer

If ALCUNIT=CYL:

PRIQTY = INT(c / (d \ INT(e/BLKSIZE) \ f)) + 1

where f is the number of tracks per cylinder (5 for a 339ð device)
and INT means round down to an integer

For information about how large to make your log and archive data sets, see
“Task 11: Create the bootstrap and log data sets” on page 61 and “Task 12:
Define your page sets” on page 62.

PROTECT
Specifies whether archive log data sets are to be protected by discrete ESM
(external security manager) profiles when the data sets are created.

Specify either:

NO Profiles are not created.

 Chapter 3. Customizing the queue managers 79

 CSQ6ARVP

YES Discrete data set profiles are created when logs are offloaded. If
you specify YES:

� ESM protection must be active for MQSeries.

� The user ID associated with the MQSeries address space must
have authority to create these profiles.

� The TAPEVOL class must be active if you are archiving to tape.

Otherwise, offloads will fail.

The default is NO.

QUIESCE
Specifies the maximum time in seconds allowed for the quiesce when an
+cpf ARCHIVE LOG command is issued with MODE QUIESCE specified.

The parameter must be in the range 1 through 999.

The default is 5.

SECQTY
Specifies the secondary space allocation for DASD data sets in ALCUNITs.

The parameter must be greater than 0.

The default is 540.

TSTAMP
Specifies whether the archive log data set name has a time stamp in it.

Specify either:

NO Names do not include a time stamp. The archive log data sets will
be named:

arcpfxi.Annnnnnn

Where arcpfxi is the data set name prefix specified by ARCPFX1
or ARCPFX2. arcpfxi can have up to 35 characters.

YES Names include a time stamp. The archive log data sets will be
named:

arcpfxi.cyyddd.Thhmmsst.Annnnnnn

where c is 'D' for the years up to and including 1999 or 'E' for the
year 2000 and later, and arcpfxi is the data set name prefix
specified by ARCPFX1 or ARCPFX2. arcpfxi can have up to 19
characters.

EXT Names include a time stamp. The archive log data sets will be
named:

arcpfxi.Dyyyyddd.Thhmmsst.Annnnnnn

Where arcpfxi is the data set name prefix specified by ARCPFX1
or ARCPFX2. arcpfxi can have up to 17 characters.

The default is NO.

UNIT
Specifies the device type or unit name of the device that is used to store
archive log data sets.

80 System Management Guide

 CSQ6ARVP

Specify a device type or unit name of 1 through 8 alphanumeric characters.
The first character must be alphabetic.

This parameter cannot be blank.

If you archive to DASD, you can specify a generic device type with a limited
volume range.

If you archive to DASD:

� Make sure that the primary space allocation is large enough to contain all
the data from the active log data sets.

� Make sure that the archive log data set catalog option (CATALOG) is set to
YES.

� The archive log data sets cannot extend to another volume.

If you archive to TAPE, MQSeries can extend to a maximum of 20 volumes.

The default is TAPE.

 Chapter 3. Customizing the queue managers 81

 Tailor the channel initiator parameter module

Task 14: Tailor the channel initiator parameter module

� Repeat this task for each MQSeries subsystem, as required.

� Omit this task if you are using the CICS mover.

This process is analogous to tailoring the system parameter module (see “Task 13:
Tailor your system parameter module” on page 67).

The channel initiator parameter module controls how distributed queuing operates.
It has the single macro, CSQ6CHIP.

MQSeries supplies a default parameter module, CSQXPARM, which is invoked
automatically if you issue the START CHINIT command (without a PARM
parameter) to start a channel initiator. “Using CSQ6CHIP” on page 83 lists the
default values for the supplied CSQXPARM. CSQXPARM is in the APF-authorized
library thlqual.SCSQAUTH, also supplied with MQSeries.

The values of these parameters are displayed as a series of messages each time
you start the channel initiator.

Creating your own channel initiator parameter module
In most cases you will need to create your own parameter module. If you are using
LU 6.2 communications, you will have to do this because you will at least need to
set the outbound LU name to be used. If you are using TCP/IP, you will probably
need to set TCPTYPE and TCPNAME.

To create your own parameter module, use the sample JCL provided in
thlqual.SCSQPROC(CSQ4XPRM):

1. Make a working copy of the JCL sample.

2. Edit the parameters in the copy as required. See “Using CSQ6CHIP” on
page 83 for more information about each parameter. If you remove any
parameters from the macro call, the default values are automatically picked up
at run time.

3. Replace the placeholder ++NAME++ with the name that the load module is to
take. (This can be CSQXPARM.)

4. If your assembler is not high-level assembler, change the JCL as required by
your assembler.

5. Run the JCL to assemble and link-edit the tailored versions of the channel
initiator parameter macros to produce a load module. This is the new channel
initiator parameter module with the name that you have specified.

6. Put the load module produced in an APF-authorized user library.

7. Include this library in the channel initiator started task procedure STEPLIB.
This library name must come before the library thlqual.SCSQAUTH in
STEPLIB.

82 System Management Guide

 Tailor the channel initiator parameter module

8. Invoke the new channel initiator parameter module when you start the channel
initiator. For example, if the new module is named NEWMODS, issue the
command:

START CHINIT PARM(NEWMODS)

Note: If you choose to name your module CSQXPARM, you do not need to
specify the PARM parameter on the START CHINIT command.

 Using CSQ6CHIP
Use CSQ6CHIP to set channel initiator parameters.

The default parameters for CSQ6CHIP are shown in Table 11. If you want to
change any of these values, refer to the detailed descriptions of the parameters.

ACTCHL
Specifies the maximum number of channels that can be active.

Specify a value in the range 1 through 9999.

The default value is CURRCHL.

Table 11. Default values of CSQ6CHIP parameters

Parameter Description Default value

ACTCHL The maximum number of channels that
can be active.

CURRCHL

ADAPS The number of adapter subtasks to use
for processing MQI calls.

8

CURRCHL The maximum number of channels that
can be current.

200

DISPS The number of dispatchers to use. 5

LSTRTMR The interval, in seconds, between listener
restart attempts.

60

LUNAME The name of the LU to use for outbound
transmissions.

Blank

LU62ARM APPCPMxx SYS1.PARMLIB member
name suffix.

Blank

LU62CHL The maximum number of channels that
can be current and use the LU 6.2
transmission protocol.

CURRCHL

TCPCHL The maximum number of channels that
can be current and use the TCP/IP
transmission protocol.

CURRCHL

TCPKEEP Whether the TCP KEEPALIVE facility is to
be used or not.

NO

TCPNAME The name of the TCP/IP address space
or system that will be used.

TCPIP

TCPTYPE TCP/IP interface method. OESOCKET

TRAXSTR Whether trace should start automatically
or not.

YES

TRAXTBL The size of the trace data space in MB. 2

 Chapter 3. Customizing the queue managers 83

 Tailor the channel initiator parameter module

ADAPS
Specifies the number of adapter subtasks to use for processing MQI calls. As
a guideline, the ratio of adapters to dispatchers (the DISPS parameter) should
be about 8 to 5. However, if you have only a small number of channels, you
do not have to decrease the value of this parameter from the default value.

Specify a value in the range 0 through 9999.

The default value is 8.

CURRCHL
Specifies the maximum number of channels that can be current (including
server-connection channels with connected clients).

Specify a value in the range 1 through 9999.

The default value is 200.

DISPS
Specifies the number of dispatchers to use for the channel initiator. As a
guideline, allow one dispatcher for each 50 current channels. However, if you
have only a small number of channels, you do not have to decrease the value
of this parameter from the default value.

If you are using TCP/IP, the greatest number of dispatchers that will be used
for TCP/IP channels is 100, even if you specify a larger value here.

Specify a value in the range 1 through 9999.

The default value is 5.

LSTRTMR
Specifies the time interval (in seconds) between attempts by MQSeries to
restart the listener if there has been an APPC or TCP/IP failure.

Specify a value in the range 5 through 9999.

The default value is 60.

Note: This parameter is ignored if you are using the IUCV or TCPAccess
interfaces to TCP/IP.

LUNAME
Specifies the name of the LU to use for outbound LU 6.2 transmissions. This
must be set to the same LU that will be used for inbound transmissions by the
listener.

Specify the LU name.

The default is blank, which means that the APPC/MVS default LU should be
used; this is variable, so LUNAME should always be set if you are using LU
6.2.

LU62ARM
Specifies the suffix of the SYS1.PARMLIB member APPCPMxx, that nominates
the LUADD for this channel initiator. The channel initiator issues the OS/390
command SET APPC=xx when it starts.

Specify the two-character suffix.

The default is blank which means that no SET APPC=xx is issued.

84 System Management Guide

 Tailor the channel initiator parameter module

LU62CHL
Specifies the maximum number of channels that can be current or clients that
can be connected, that use the LU 6.2 transmission protocol. If 0, the LU 6.2
transmission protocol is not used.

Specify a value in the range 0 through 9999.

The default value is CURRCHL.

TCPCHL
Specifies the maximum number of channels that can be current or clients that
can be connected, that use the TCP/IP transmission protocol. If 0, the TCP/IP
transmission protocol is not used.

The maximum number of TCP/IP sockets used is TCPCHL+DISPS. The
OpenEdition MAXFILEPROC parameter (specified in the BPXPRMxx member
of SYS1.PARMLIB) controls how many sockets each task is allowed, and thus
how many channels each dispatcher is allowed. The number of channels using
TCP/IP in this case is limited to MAXFILEPROCñDISPS.

Specify a value in the range 0 through 9999.

Note: TCP/IP might not support as many as 9999 channels.

The default value is CURRCHL.

TCPKEEP
Specifies whether the TCP KEEPALIVE facility, as specified by the
KEEPALIVEOPTIONS statement in the TCP profile configuration data set, is to
be used or not.

Specify YES or NO.

The default is NO.

TCPNAME
Specify the name of the TCP/IP system that you are using. This depends on
the type of TCP/IP interface that you are using:

IUCV
The name of the TCP/IP address space

OpenEdition Sockets
The name of the OpenEdition stack for TCP/IP, as specified in the
SUBFILESYSTYPE NAME parameter in the BPXPRMxx member of
SYS1.PARMLIB.

TCPaccess
The name of the TCPaccess subsystem.

The default is TCPIP.

TCPTYPE
Specifies the type of TCP/IP interface to be used.

Specify one of the following:

IUCV IUCV interface
OESOCKET OpenEdition sockets interface
SNSTCPACCESS TCPaccess native interface

The default is OESOCKET.

 Chapter 3. Customizing the queue managers 85

 Tailor the channel initiator parameter module

See “Task 2: Choose the distributed queuing facility” on page 40 for
information about these interfaces, and Table 12 on page 86 for a summary of
the settings.

TRAXSTR
Specifies whether trace should start automatically or not.

Specify YES or NO.

The default is YES.

TRAXTBL
Specifies the size of the trace data space (in MB).

Specify a value in the range 0 through 2048.

The default value is 2.

Note: Whenever you use large OS/390 data spaces, you should ensure that
sufficient auxiliary storage is available on your system to support any
related OS/390 paging activity. You might also need to increase the
size of your SYS1.DUMP data sets.

Notes:

1. The channel initiator makes a number of connections to the queue manager
that must be allowed for when setting the CTHREAD system parameter (see
“Using CSQ6SYSP” on page 68). The number of connections is up to 6 plus
the value of ADAPS plus the value of DISPS.

2. Each dispatcher and each adapter subtask uses a separate OS/390 task. As a
guideline, keep the total number of dispatchers and adapter subtasks below 20.

Table 12. TCP/IP settings

Product Interface Library TCPTYPE TCPNAME

IBM TCP/IP OpenEdition
sockets

SCSQMVR1 OESOCKET OpenEdition
TCP/IP stack name

IBM TCP/IP IUCV SCSQMVR1 IUCV TCP/IP address
space name

Interlink
TCPaccess

OpenEdition
sockets

SCSQMVR1 OESOCKET OpenEdition
TCP/IP stack name

Interlink
TCPaccess

IUCV SCSQMVR1 IUCV TCP/IP address
space name

Interlink
TCPaccess

Native TCPaccess SCSQMVR2 SNSTCPACCESS TCPaccess
subsystem name

86 System Management Guide

 Batch, TSO, and RRS adapters

Task 15: Set up Batch, TSO, and RRS adapters

� Repeat this task for each MQSeries subsystem as required.

The Batch/TSO and RRS adapters are the interface between OS/390 application
programs running under JES, TSO, or OS/390 OpenEdition and an MQSeries
subsystem. They enable OS/390 application programs to use the MQI. They are
generally referred to in this book as the batch adapter and the RRS adapter.
“MQSeries and OS/390 Batch and TSO” on page 22 describes these adapters.

To make the adapters available to batch and TSO applications, add the following
MQSeries libraries to the STEPLIB concatenation for your batch application or TSO
logon procedure:

 � thlqual.SCSQANLx
 � thlqual.SCSQAUTH

where x is the language letter for your national language.

Note: If the adapter detects an unexpected MQSeries subsystem error, it issues
an OS/390 SNAP dump to DDname CSQSNAP, and issues reason code
MQRC_UNEXPECTED_ERROR to the application.

If this occurs, rerun the job with a CSQSNAP DD statement included in the
JCL, and contact your IBM support center.

The supplied program CSQBDEFV improves the portability of your application
programs. In CSQBDEFV, you can specify the name of a subsystem to be
connected to rather than specifying it in the MQCONN call in an application
program. You can create a new version of CSQBDEFV for each subsystem. To
do this, follow these steps:

1. Copy the MQSeries assembler program CSQBDEFV from thlqual.SCSQASMS
to a user library.

2. The supplied program contains the default subsystem name CSQ1. You can
retain this name for testing and installation verification. For production
subsystems, you can change the NAME=CSQ1 to your one- to four-character
subsystem name, or use CSQ1.

3. Assemble and link-edit the program to produce the CSQBDEFV load module.
For the assembly, include the library thlqual.SCSQMACS in your SYSLIB
concatenation; use the link-edit parameters RENT,AMODE=31,RMODE=ANY. This is
shown in the sample JCL in thlqual.SCSQPROC(CSQ4DEFV). Then include
the load library in the OS/390 Batch or the TSO JOBLIB or STEPLIB.

 Chapter 3. Customizing the queue managers 87

 Operations and control panels

Task 16: Set up the operations and control panels

� You need only perform this task once.

To set up the operations and control panels you must first set up the libraries that
contain the required panels, EXECs, messages, and tables. To do this, you must
take into account which national language feature is to be used for the panels.
When you have done this, you can optionally:

� Update the main ISPF menu for MQSeries operations and control panels
� Change the function key settings

Setting up the libraries
Follow these steps to install the MQSeries operations and control panels:

1. Include the library thlqual.SCSQEXEC in your SYSEXEC or SYSPROC
concatenation. This library, which is allocated with a fixed-block 80 record
format during installation, contains the required EXECs.

Notes:

a. You should put these EXECs into your SYSEXEC concatenation.
However, if you want to put them in SYSPROC, it must have a record
length of 80 bytes. If you move the EXECs from SYSPROC to SYSEXEC
and your system searches SYSPROC before SYSEXEC, you must ensure
that the EXECs are deleted from SYSPROC.

b. Ensure that all the libraries contained in your concatenations are either in
the same format (F, FB, V, VB) and have the same block size, or in the
order of decreasing block sizes. Otherwise, you might have problems
trying to use these panels.

2. Add SCSQAUTH to the TSO logon procedure STEPLIB if it is not in LINKLIB.

3. You can either install the MQSeries panel libraries permanently in your ISPF
library setup, or allow them to be set up dynamically when the panels are used.
For the former choice, you need to do the following:

a. Include the name of the library containing the operations and control panel
definitions in your ISPPLIB concatenation. The name is
thlqual.SCSQPNLx, where x is the language letter for your national
language.

b. Install the required tables in your ISPTLIB concatenation. The name is
thlqual.SCSQTBLx, where x is the language letter for your national
language.

c. Install the required messages in your ISPMLIB concatenation. The name is
thlqual.SCSQMSGx, where x is the language letter for your national
language.

d. Include the library thlqual.SCSQSKL in your ISPSLIB concatenation. This
library contains the required skeletons for data set tailoring.

e. Install the required load modules in your ISPLLIB concatenation. These
modules are in the thlqual.SCSQAUTH library with names beginning
CSQOX.

88 System Management Guide

 Operations and control panels

4. Test that you can access the MQSeries panels from the TSO Command
Processor panel. This is usually option 6 on the ISPF/PDF Primary Options
Menu. The name of the EXEC that you run is CSQOREXX. There are no
parameters to specify if you have installed the MQSeries libraries permanently
in your ISPF setup as in step 3 on page 88. If you have not, use the following:

CSQOREXX thlqual langletter

where langletter is a letter identifying the national language to be used:

C Simplified Chinese
E U.S. English (mixed case)
K Japanese
U U.S. English (uppercase)

Updating the ISPF menu
You can update the ISPF main menu to allow access to the MQSeries operations
and control panels from ISPF. The required setting for &ZSEL is:

CMD(%CSQOREXX thlqual langletter) NEWAPPL(CSQO) PASSLIB

For information about thlqual and langletter, see Step 4.

For more details, see the ISPF Dialog Developer’s Guide and Reference manual.

Updating the function keys and command settings
You can use the normal ISPF procedures for changing the function keys and
command settings used by the panels. The application identifier is CSQO.

However, this is not recommended because the help information is not updated to
reflect any changes that you have made.

 Chapter 3. Customizing the queue managers 89

 Include dump formatting member

Task 17: Include the MQSeries dump formatting member

� You need only perform this task once.

To be able to format MQSeries dumps using the Interactive Problem Control
System (IPCS), copy the data set thlqual.SCSQPROC(CSQ7IPCS) to
SYS1.PARMLIB. You should not need to edit this data set.

Edit SYS1.PARMLIB member BLSCECTX and add this statement at the end of the
member:

IMBED MEMBER(CSQ7IPCS) ENVIRONMENT(ALL)

(This member is described in the MVS Initialization and Tuning Reference manual.)

If you have customized the TSO procedure for IPCS,
thlqual.SCSQPROC(CSQ7IPCS) can be copied into any library in the IPCSPARM
definition. See the MVS IPCS Customization manual for details on IPCSPARM.

You must also include the library thlqual.SCSQPNLA in your ISPPLIB
concatenation.

To make the dump formatting programs available to your TSO session or IPCS job,
you must also include the library thlqual.SCSQAUTH in your STEPLIB
concatenation. (Alternatively SCSQAUTH can be included in the OS/390 LINKLIST
concatenation.)

90 System Management Guide

 Suppress information messages

Task 18: Suppress information messages

� You need only perform this task once.

If your MQSeries system is heavily used, with many channels stopping and starting,
a large number of information messages are sent to the OS/390 console. The
MQSeries-IMS bridge and buffer manager can also produce a large number of
information messages.

If required, you can suppress some of these messages by using the OS/390
message processing facility list, specified by the MPFLSTxx members of
SYS1.PARMLIB. The messages you specify still appear on the hard-copy log, but
not on the console.

Sample thlqual.SCSQPROC(CSQ4MPFL) shows suggested settings for MPFLSTxx.
See the MVS Initialization and Tuning Reference manual for more information
about MPFLSTxx.

 Chapter 3. Customizing the queue managers 91

 Suppress information messages

92 System Management Guide

 Migrating from previous versions

Chapter 4. Migrating from previous versions of MQSeries for
MVS/ESA

This chapter describes the things that you must consider if you are migrating from a
previous version of MQSeries for MVS/ESA. The following topics are discussed:

� “Migrating from Version 1.2 to Version 2.1”
� “Migrating from Version 1.1.4 to Version 2.1” on page 96
� “Migrating from Version 1.1.3 to Version 2.1” on page 96
� “Migrating from Version 1.1.2 or earlier to Version 2.1” on page 97
� “Coexistence with earlier versions of MQSeries for MVS/ESA” on page 98

You can continue to use your existing subsystems along with their page sets, log
data sets, object definitions, and initialization input data sets with the new version.
After installing the new version, you must IPL the system so that the new MQSeries
early code is brought into use. Once you have used the new version, it will not
be possible to revert to a previous version.

Migrating from Version 1.2 to Version 2.1
� The minimum levels for many of the items of software required to use

MQSeries for OS/390 have changed (OS/390, CICS, and IMS in particular).
Check that you have the correct levels for your prerequisite and corequisite
software from the list in the MQSeries Planning Guide.

� Relink your system parameter module if you are not using the supplied default
CSQZPARM (see “Task 13: Tailor your system parameter module” on
page 67).

There are new system parameters (EXITLIM, EXITTCB, and WLMTIME) and
channel initiator parameters (TCPTYPE, LU62ARM, and LSTRTMR). Consider
whether you need to use these new parameters, and change your parameter
modules again accordingly. See “Task 13: Tailor your system parameter
module” on page 67 and “Task 13: Tailor your system parameter module” on
page 67 for more information.

� There are several changes to the installation process, and some new libraries.
The two distributed queuing features for the non-CICS mover have been
incorporated into the base product, and the CICS mover has been made an
optional feature. The CICS bridge has also been incorporated into the base
product.

These are described in the MQSeries for OS/390 Program Directory.

� The OS/390 Automatic Restart Manager (ARM) is now supported. This support
coexists on the same OS/390 image with earlier releases that do not support
ARM. The queue managers and channel initiators in the earlier releases do
not register with ARM and so can not be restarted automatically.

If you do not want to use ARM with your Version 2.1 queue managers and
channel initiators, specify RESTART_ATTEMPTS(0) for the MQSeries element
in your ARM policy. Note that if you do not specify MQSeries elements in your
ARM policy, default ARM policies are used for MQSeries.

OS/390 ARM support is described in “Using the OS/390 Automatic Restart
Manager (ARM)” on page 294.

 Copyright IBM Corp. 1993,1999 93

 Migrating from previous versions

� MQSeries now supports clustering. Before you use clustering you must review
all of your applications to determine whether each one can operate in a
clustering environment. You might have to modify your applications to remove
or manage inter-message affinity. Applications that attempt to open
non-existent queues might experience delays, or might even successfully open
a queue somewhere in the cluster.

You also need to create the new system objects required for clustering. This is
described in “CSQ4INSX system object sample” on page 56.

There is a cluster workload user exit; if you use this you need to add a
CSQXLIB DD statement to your queue manager started task procedure,
xxxxMSTR, and ensure that you have access to the LE run-time library
SCEERUN.

Cluster support is described in the MQSeries Queue Manager Clusters manual.

� The supplied default for storage class SYSTEM (which was used by many of
the SYSTEM queues) has been changed to page set 01, so that messages are
not put on page set 00.

If you currently use the defaults supplied, this change will probably have no
effect, even if you use the DEFINE REPLACE option for your storage class
definitions in your initialization input data set. This is because some of the
queues using that storage class (like the SYSTEM.CHANNEL.SYNCQ for
example) have messages on them permanently. If you want to move the
queues to another page set, follow the procedure given in “Load balancing by
moving queues” on page 328.

� The sample input initialization data sets supplied with MQSeries have been
reorganized and renamed. This is described in “Task 10: Customize the
initialization input data sets” on page 52.

� You can migrate your existing batch/TSO MQSeries applications to exploit RRS
coordination with little or no application program change. If you link-edit your
MQSeries application with the CSQBRRSI adapter, MQCMIT and MQBACK will
synchronize your unit of work across MQSeries and all other RRS-enabled
resource managers. If you link-edit your MQSeries application with the
CSQBRSTB adapter, you must change MQCMIT and MQBACK to SRRCMIT
and SRRBACK .

Version 2.1 continues to support the non-RRS managed batch adapter in
addition to supporting the RRS managed adapter. Thus different versions of
MQSeries queue managers can coexist on the same OS/390 image.

� OpenEdition sockets are now available for use as an alternative to IUCV. If
you are using OS/390 Version 2.5 or later, and are using IBM TCP/IP for
distributed queuing, IUCV is not available. You must set the TCPTYPE
channel initiator parameter to OESOCKETS (as described in Table 11 on
page 83). Using OpenEdition sockets, you do not need to restart the channel
initiator if TCP/IP has to be restarted.

� Channel initiator user ID checking has been changed and some new facilities
added. See “User IDs used by the channel initiator” on page 433 for details,
and review your channel definitions to ensure that you are getting the security
control you want.

� The channel initiator can now record error information in a data set instead of
taking a dump. Add the CSQSNAP DD statement to your channel initiator
started task procedure to support this.

94 System Management Guide

 Migrating from previous versions

� The IMS language interface module CSQ2LI00 is no longer supported. All IMS
applications should use the IMS supplied DFSLI000 module.

� Support for the new euro currency symbol has been added to MQSeries. If
you need to modify your applications to use this symbol, ensure that they use
one of the coded character sets that include it. These are described in the
MQSeries Application Programming Reference manual. If you need to change
the coded character set used by your queue manager, use the CCSID
parameter of the system parameter module. This is described in “Using
CSQ6SYSP” on page 68.

� The size of queue objects has increased for Version 2.1 to allow for the new
cluster attributes. MQSeries automatically updates each of these queue
objects the first time that it is changed. This happens whether you are using
clustering or not. However, due to the nature of space reclamation in
MQSeries, the space used on page set zero might increase dramatically until
all these queue objects have been updated.

To avoid this, you should run a job similar to that in Figure 7 that changes all
of your queue objects, enabling MQSeries to update them all at the same time.

//STEP1 EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUT1 DD DISP=OLD,DSN=MY.MQSERIES.COMMANDS(DEFS)
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
COMMAND DDNAME(CMDINP) MAKEDEF(OUTPUT1)
/\
//CMDINP DD \
DISPLAY QUEUE(\) TYPE(QLOCAL) ALL
DISPLAY QUEUE(\) TYPE(QMODEL) ALL
/\
//\ STEP2
//\\\
//\ PERFORM A GLOBAL CHANGE ON THE OUTPUT DATA SET FROM STEP 1, THAT \
//\ IS: MY.MQSERIES.COMMANDS(DEFS). CHANGE 'NOREPLACE' TO 'REPLACE' \
//\ THE CHANGED MY.MQSERIES.COMMANDS(DEFS) WILL BE THE INPUT FOR STEP3. \
//\\\
//\
//STEP3 EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
COMMAND DDNAME(DEFINES)
/\
//DEFINES DD DISP=SHR,DSN=MY.MQSERIES.COMMANDS(DEFS)

Figure 7. Example job for migrating queue objects

� The operations and control panels have been extended and reorganized to
accommodate the new clustering function. The panels can now also be used
for the security commands. A number of actions have been consolidated into a
new PERFORM action. This is described in “Using the operations and control
panels” on page 197.

 Chapter 4. Migrating from previous versions of MQSeries for MVS/ESA 95

 Migrating from previous versions

Migrating from Version 1.1.4 to Version 2.1
If you intend to migrate from Version 1.1.4 to Version 2.1, you need to note the
following when you customize your new version in addition to the tasks in the
previous section (you don’t need to install and customize the intervening versions):

� There is a new queue attribute, INDXTYPE, that allows the queue manager to
expedite MQGET operations on the queue. To improve channel performance,
you should set INDXTYPE to MSGID for the SYSTEM.CHANNEL.SYNCQ
queue. In general, you will then need to restart the queue manager to have
this take effect. See the MQSeries Command Reference manual for more
information.

� There is a new channel attribute, NPMSPEED, that specifies a class of service
for nonpersistent messages on the channel. The class applied to existing
channel definitions is FAST, which means that nonpersistent messages
might be lost if there is a channel error. If this is not acceptable, you must
alter your channel definitions to have NPMSPEED(NORMAL).

There are also two other new channel attributes, HBINT and BATCHINT. See
the MQSeries Command Reference manual for more information.

� There are new libraries for distributed queuing: thlqual.SCSQMVR1 if you are
using the OpenEdition sockets or IUCV interface and thlqual.SCSQMVR2 if you
are using the TCPaccess interface. Add the appropriate library to the STEPLIB
DD statement of the JCL used for your channel initiator started task procedures
(xxxxCHIN) and data conversion utility (CSQUCVX).

� Use of the C/370 library product by MQSeries is no longer supported (although
MQSeries applications can still use it). You must now use LE instead. Change
your channel initiator started-task procedures (xxxxCHIN) and data conversion
utility (CSQUCVX) JCL accordingly.

� TCP/IP Version 2 is no longer supported.

Migrating from Version 1.1.3 to Version 2.1
If you intend to migrate from Version 1.1.3 to Version 2.1, you need to do the
following when you customize Version 2.1, in addition to the tasks in the previous
sections (you don’t need to install and customize the intervening versions).

Note: This information is included for your convenience, although this version of
MQSeries for MVS/ESA is no longer supported.

� The connection names for channels can be up to 48 characters long. The data
format in SYSTEM.CHANNEL.SYNCQ will be updated to accommodate this
change automatically. Create new system channel objects
SYSTEM.DEF.SVRCONN and SYSTEM.DEF.CLNTCONN as described in
“Task 10: Customize the initialization input data sets” on page 52.

� Ensure that your CSQINP2 initialization input data set has DEFINE commands
for the storage classes SYSTEMST, DEFAULT, REMOTE, SYSTEM and
NODEFINE, as in the supplied samples thlqual.SCSQPROC(CSQ4INSG) and
thlqual.SCSQPROC(CSQ4INYG); if not, you might get MQI calls failing with
MQRC_STORAGE_CLASS_ERROR. Any storage classes that were being
used by your queues will have non-empty storage class objects automatically
created for them.

96 System Management Guide

 Migrating from previous versions

The NODEFINE storage class is no longer allocated automatically. It must be
defined explicitly, as in the supplied sample thlqual.SCSQPROC(CSQ4INYG).

� Change the STEPLIB DD statements in all JCL used for started task
procedures and utility jobs to reflect the new library organization. The
MQSeries libraries required are now as follows:

Where x is the language letter of your national language, and y is 1 if you are
using the OpenEdition sockets or IUCV interface or 2 if you are using the
TCPaccess interface.

� There are new system parameters in CSQZPARM (QMCCSID, OTMACON)
and CSQXPARM (ACTCHL, TCPKEEP). If you do not use the supplied default
parameter modules, consider whether you need to use these new parameters,
and change and link-edit your parameter modules again accordingly.

� There is a new queue manager attribute, DEFXMITQ, which you might wish to
use.

� For the CICS adapter, additional programs need to be defined to CICS/ESA;
update the CSD using the supplied sample data set
thlqual.SCSQPROC(CSQ4B100).

� The channel initiator no longer uses the CSQSYNA data set; this can be
deleted and removed from the channel initiator started task procedure.

� The channel initiator can now have an initialization input data set, CSQINPX
(see “Initialization commands for distributed queuing” on page 53) and the
channel initiator started task procedure can now have symbolic parameters.

Authorized Distributed
queuing

Non-authorized CICS

SCSQANLx SCSQANLx SCSQANLx SCSQANLx
SCSQMVRy

SCSQAUTH SCSQAUTH SCSQLOAD SCSQCICS

Migrating from Version 1.1.2 or earlier to Version 2.1
If you intend to migrate from Version 1.1.2 to Version 2.1, you need to do the
following when you customize Version 2.1, in addition to the tasks in the previous
sections (you don’t need to install and customize the intervening versions).

Note: This information is included for your convenience, although this version of
MQSeries for MVS/ESA is no longer supported.

� Create new system objects and queue attributes (see “Task 10: Customize the
initialization input data sets” on page 52).

� If you want to use the dynamic page set expansion feature, re-allocate each of
your page sets with secondary extents, and then use the COPYPAGE function
of CSQUTIL to copy the old versions of the page sets to the new ones. (You
can define up to 123 secondary extents for a page set, provided that there is
sufficient disk storage space available.)

The supplied sample thlqual.SCSQPROC(CSQ4PAGE) shows how to define
the secondary extents, and Chapter 14, “Using the MQSeries utilities” on
page 227 gives information about using CSQUTIL.

 Chapter 4. Migrating from previous versions of MQSeries for MVS/ESA 97

 Migrating from previous versions

� If you want to use both command prefix strings (CPFs) and subsystem
recognition characters (SRCs) check the coexistence rules given under
“Coexistence with earlier versions of MQSeries for MVS/ESA” on page 98.

� If you have programs that send commands to the SYSTEM.COMMAND.INPUT
queue, note that command replies can be sent in several batches. (See
“Interpreting the replies” on page 220 for more information.)

Coexistence with earlier versions of MQSeries for MVS/ESA
This topic discusses coexistence issues for the following:

� “Multiple queue manager versions”
� “Operations and control panels”

 � “Application stubs”

Multiple queue manager versions
There can be several MQSeries subsystems in an OS/390 image, and they can use
different versions of MQSeries, provided the MQSeries early code modules are of
the latest version being used. (These modules are loaded at OS/390 IPL time and
are shared among all the MQSeries subsystems the OS/390 image.) This means
that you can run one queue manager with Version 2.1 and another in the same
image with Version 1.2, provided that the early code is that of Version 2.1.

As explained in “Migrating from Version 1.2 to Version 2.1” on page 93, ARM
support and RRS support allow such coexistence.

Operations and control panels
When using the operations and control panels, the MQSeries libraries you use in
ISPF must match those of the queue manager you are working with. That is, the
panels at the Version 2.1 level will work only with a Version 2.1 queue manager,
and Version 1.1.4 panels will work only with a Version 1.1.4 queue manager, and
so on.

 Application stubs
The stub modules that are link-edited with applications and exits (CSQASTUB,
CSQBRSSI, CSQBRSTB, CSQBSTUB, CSQCSTUB, CSQQSTUB, and
CSQXSTUB) might not work with earlier versions of the queue manager. For
example, stubs supplied with Version 1.2 can be used by applications running on a
Version 1.2 or 2.1 queue manager; however, if the application is run on a Version
1.1.4 queue manager, it might not work, or might end abnormally.

98 System Management Guide

 Testing customization

Chapter 5. Testing your queue manager

When you have customized or migrated your queue manager, you can test it by
running some of the sample applications shipped with MQSeries.

You can then compile and link-edit whichever of the other samples are appropriate
to your installation using the sample JCL supplied.

This chapter tells you about:

� Basic function testing using an Assembler MQSeries application program in the
OS/390 batch environment

� “Testing for C, C++, COBOL, PL/I, and CICS” on page 102
� “Testing for distributed queuing” on page 102

Basic function testing
Use the Batch Assembler installation verification program (IVP) to verify the base
MQSeries without using C, COBOL, or CICS samples.

The Batch Assembler IVP is link-edited by SMP/E and the load modules are
shipped in library thlqual.SCSQLOAD.

After you have completed both the SMP/E APPLY step and the customization
steps, run the Batch Assembler IVP.

Running the installation verification program CSQ4IVP1
After you have installed and customized MQSeries, you can use the supplied
installation verification program, CSQ4IVP1, to confirm that MQSeries is
operational.

Overview of the CSQ4IVP1 job
CSQ4IVP1 is a batch job that connects to your MQSeries subsystem and performs
these basic functions:

� Issues MQI calls
� Communicates with the command server
� Verifies triggering is active
� Generates and deletes a dynamic queue

Preparing to run CSQ4IVP1
Before you run CSQ4IVP1:

1. Check that the IVP entries are in the CSQINP2 data set concatenation in the
MQSeries startup program. The IVP entries are supplied in member
thlqual.SCSQPROC(CSQ4IVP). If not, add the definitions supplied in
thlqual.SCSQPROC(CSQ4IVP) to your CSQINP2 concatenation. If MQSeries
is currently running, you will need to restart it so that these definitions can take
effect.

2. The sample JCL, CSQ4IVPR, required to run the installation verification
program (CSQ4IVP1) is in library thlqual.SCSQPROC.

 Copyright IBM Corp. 1993,1999 99

 Testing customization

Customize the CSQ4IVPR JCL with the high-level qualifier for the MQSeries
libraries, the national language you want to use, the four-character MQSeries
subsystem name, and the destination for the job output.

3. Update RACF to allow CSQ4IVP1 to access its resources if MQSeries security
is active.

To run CSQ4IVP1 when MQSeries security is enabled, you need a RACF user
ID with authority to access the objects. For details of defining resources to
RACF, see Part 8, “Security” on page 391. The user ID that runs the IVP
must have:

� READ access to ssid.DISPLAY.PROCESS in class MQCMDS

� UPDATE access to ssid.SYSTEM.COMMAND.INPUT in class MQQUEUE

� UPDATE access ssid.SYSTEM.COMMAND.REPLY.MODEL in class
MQQUEUE

� UPDATE access to ssid.CSQ4IVP1.ññ in MQQUEUE

� READ access to ssid.BATCH in MQCONN

These requirements assume that all MQSeries security is active. The RACF
commands to activate MQSeries security are shown in Figure 8. This example
assumes that the MQSeries subsystem name is CSQ1 and that the user ID of
the person running sample CSQ4IVP1 is TS101.

RDEFINE MQCMDS CSQ1.DISPLAY.PROCESS
PERMIT CSQ1.DISPLAY.PROCESS CLASS(MQCMDS) ID(TS1ð1) ACCESS(READ)

RDEFINE MQQUEUE CSQ1.SYSTEM.COMMAND.INPUT
PERMIT CSQ1.SYSTEM.COMMAND.INPUT CLASS(MQQUEUE) ID(TS1ð1) ACCESS(UPDATE)

RDEFINE MQQUEUE CSQ1.SYSTEM.COMMAND.REPLY.MODEL
PERMIT CSQ1.SYSTEM.COMMAND.REPLY.MODEL CLASS(MQQUEUE) ID(TS1ð1) ACCESS(UPDATE)

RDEFINE MQQUEUE CSQ1.CSQ4IVP1.\\
PERMIT CSQ1.CSQ4IVP1.\\ CLASS(MQQUEUE) ID(TS1ð1) ACCESS(UPDATE)

RDEFINE MQCONN CSQ1.BATCH
PERMIT CSQ1.BATCH CLASS(MQCONN) ID(TS1ð1) ACCESS(READ)

Figure 8. RACF commands for CSQ4IVP1

 Running CSQ4IVP1
When you have completed these steps, start your MQSeries subsystem. If
MQSeries is already running and you have made changes to CSQINP2, you must
stop MQSeries and restart it.

The IVP runs as a batch job. Customize the job card to meet the submission
requirements of your installation.

100 System Management Guide

 Testing customization

Checking the results of CSQ4IVP1
The IVP is split into eight stages; each stage must complete with a zero completion
code before the next stage is run. The IVP generates a report, listing:

� The name of queue manager that is being connected to.

� A one-line message showing the completion code and the reason code
returned from each stage.

For an explanation of the completion and reason codes, see the MQSeries for
OS/390 Messages and Codes manual.

Some stages have more than one MQI call and, in the event of failure, a message
is issued indicating the specific MQI call that returned the failure. Also, for some
stages the IVP puts explanatory and diagnostic information into a comment field.

The IVP job requests exclusive control of certain queue manager objects and
therefore should be single threaded through the system. However, there is no limit
to the number of times the IVP can be run against your MQSeries subsystem.

The functions performed by each stage are:

Stage 1 Connect to the queue manager by issuing MQCONN.

Stage 2 Determine the name of the system-command input queue used by the
command server to retrieve request messages. This queue receives
display requests from Stage 5.

To do this, the sequence of calls is:

1. Issue an MQOPEN, specifying the queue manager name, to open
the queue manager object.

2. Issue an MQINQ to find out the name of the system-command
input queue.

3. Issue an MQCLOSE to close the queue manager object.

On successful completion of this stage, the name of the
system-command input queue is displayed in the comment field.

Stage 3 Open an initiation queue using MQOPEN.

This queue is opened at this stage in anticipation of a trigger message,
which arrives as a result of the command server replying to the request
from Stage 5. The queue must be opened for input to meet the
triggering criteria.

Stage 4 Create a permanent dynamic queue using the CSQ4IVP1.MODEL
queue as a model. The dynamic queue has the same attributes as the
model from which it was created. This means that when the replies
from the command server request in Stage 5 are written to this queue,
a trigger message is written to the initiation queue opened in Stage 3.

Upon successful completion of this stage, the name of the permanent
dynamic queue is indicated in the comment field.

Stage 5 Issue an MQPUT1 request to the command server command queue.

A message of MQMT_REQUEST is written to the system-command
input queue requesting a display of process CSQ4IVP1. The message
descriptor for the message specifies the permanent dynamic queue

 Chapter 5. Testing your queue manager 101

 Testing distributed queuing

created in Stage 4 as the reply-to queue for the command server’s
response.

Stage 6 Issue an MQGET request from the initiation queue. At this stage, a
GET WAIT with an interval of one minute is issued against the initiation
queue opened in Stage 3. The message returned is expected to be
the trigger message generated by the command server’s response
messages being written to the reply-to queue.

Stage 7 Delete the permanent dynamic queue created in Stage 4. As the
queue still has messages on it, the MQCO_PURGE_DELETE option is
used.

Stage 8 Disconnect from the queue manager using MQDISC.

After running the IVP, you can delete any objects that you no longer require.

If the IVP does not run successfully, try each step manually to find out which
function is failing.

Testing for C, C ++, COBOL, PL/I, and CICS
You can test for C, C++, COBOL, PL/I, or CICS, using the sample applications
supplied with MQSeries. Although the IVP (CSQ4IVP1) is supplied as a load
module, the samples are supplied as source modules.

For more information about sample applications, see the MQSeries Application
Programming Reference and MQSeries Using C++ manuals.

Testing for distributed queuing
You can use the supplied installation verification program, CSQ4IVPX, to confirm
that distributed queuing (without CICS) is operational.

Overview of CSQ4IVPX job
CSQ4IVPX is a batch job that starts the channel initiator and issues the DISPLAY
DQM MQSC command. This verifies that all major aspects of distributed queuing
are operational, while avoiding the need to set up channel and network definitions.

Preparing to run CSQ4IVPX
Before you run CSQ4IVPX:

1. The sample JCL, CSQ4IVPX, required to run the installation verification
program is in library thlqual.SCSQPROC.

Customize the CSQ4IVPX JCL with the high-level qualifier for the MQSeries
libraries, the national language you want to use, the four-character MQSeries
subsystem name, and the destination for the job output. If you have a
customized channel initiator parameter module, replace CSQXPARM with the
name of your module.

102 System Management Guide

 Testing distributed queuing

2. Update RACF to allow CSQ4IVPX to access its resources if MQSeries security
is active. To run CSQ4IVPX when MQSeries security is enabled, you need a
RACF user ID with authority to access the objects. For details of defining
resources to RACF, see Part 8, “Security” on page 391. The user ID that runs
the IVP must have:

� READ access to ssid.DISPLAY.DQM in class MQCMDS

� CONTROL access to ssid.START.CHINIT and STOP.CHINIT in class
MQCMDS

� UPDATE access to ssid.SYSTEM.COMMAND.INPUT in class MQQUEUE

� UPDATE access to ssid.SYSTEM.CSQUTIL.ñ in MQQUEUE

� READ access to ssid.BATCH in MQCONN

These requirements assume that the connection security profile ssid.CHIN has
been defined (as shown in “Connection security profiles for distributed queuing”
on page 405), and that all MQSeries security is active. The RACF commands
to do this are shown in Figure 9 on page 104. This example assumes that:

� The MQSeries subsystem name is CSQ1

� The user ID of the person running sample CSQ4IVPX is TS101

� The channel initiator address space is running under the user ID
CSQ1MSTR

3. Update RACF to allow the channel initiator address space the following RACF
access:

� READ access to ssid.CHIN in class MQCONN

� UPDATE access to ssid.SYSTEM.COMMAND.INPUT in class MQQUEUE

� UPDATE access to ssid.SYSTEM.CHANNEL.INITQ in class MQQUEUE

� UPDATE access to ssid.SYSTEM.CHANNEL.SYNCQ in class MQQUEUE

� ALTER access to ssid.SYSTEM.CLUSTER.COMMAND.QUEUE in class
MQQUEUE

� UPDATE access to ssid.SYSTEM.CLUSTER.TRANSMIT.QUEUE in class
MQQUEUE

� ALTER access to ssid.SYSTEM.CLUSTER.REPOSITORY.QUEUE in class
MQQUEUE

� CONTROL access to ssid.CONTEXT in class MQADMIN

The RACF commands to do this are also shown in Figure 9 on page 104.

 Chapter 5. Testing your queue manager 103

 Testing distributed queuing

RDEFINE MQCMDS CSQ1.DISPLAY.DQM
PERMIT CSQ1.DISPLAY.DQM CLASS(MQCMDS) ID(TS1ð1) ACCESS(READ)

RDEFINE MQCMDS CSQ1.START.CHINIT
PERMIT CSQ1.START.CHINIT CLASS(MQCMDS) ID(TS1ð1) ACCESS(CONTROL)

RDEFINE MQCMDS CSQ1.STOP.CHINIT
PERMIT CSQ1.STOP.CHINIT CLASS(MQCMDS) ID(TS1ð1) ACCESS(CONTROL)

RDEFINE MQQUEUE CSQ1.SYSTEM.COMMAND.INPUT
PERMIT CSQ1.SYSTEM.COMMAND.INPUT CLASS(MQQUEUE) ID(TS1ð1,CSQ1MSTR) ACCESS(UPDATE)

RDEFINE MQQUEUE CSQ1.SYSTEM.CSQUTIL.\
PERMIT CSQ1.SYSTEM.CSQUTIL.\ CLASS(MQQUEUE) ID(TS1ð1) ACCESS(UPDATE)

RDEFINE MQCONN CSQ1.BATCH
PERMIT CSQ1.BATCH CLASS(MQCONN) ID(TS1ð1) ACCESS(READ)

RDEFINE MQCONN CSQ1.CHIN
PERMIT CSQ1.CHIN CLASS(MQCONN) ID(CSQ1MSTR) ACCESS(READ)

RDEFINE MQQUEUE CSQ1.SYSTEM.CHANNEL.SYNCQ
PERMIT CSQ1.SYSTEM.CHANNEL.SYNCQ CLASS(MQQUEUE) ID(CSQ1MSTR) ACCESS(UPDATE)

RDEFINE MQQUEUE CSQ1.SYSTEM.CLUSTER.COMMAND.QUEUE
PERMIT CSQ1.SYSTEM.CLUSTER.COMMAND.QUEUE CLASS(MQQUEUE) ID(CSQ1MSTR) ACCESS(ALTER)

RDEFINE MQQUEUE CSQ1.SYSTEM.CLUSTER.TRANSMIT.QUEUE
PERMIT CSQ1.SYSTEM.CLUSTER.TRANSMIT.QUEUE CLASS(MQQUEUE) ID(CSQ1MSTR) ACCESS(UPDATE)

RDEFINE MQQUEUE CSQ1.SYSTEM.CLUSTER.REPOSITORY.QUEUE
PERMIT CSQ1.SYSTEM.CLUSTER.REPOSITORY.QUEUE CLASS(MQQUEUE) ID(CSQ1MSTR) ACCESS(ALTER)

RDEFINE MQQUEUE CSQ1.SYSTEM.CHANNEL.INITQ
PERMIT CSQ1.SYSTEM.CHANNEL.INITQ CLASS(MQQUEUE) ID(CSQ1MSTR) ACCESS(UPDATE)

RDEFINE MQADMIN CSQ1.CONTEXT
PERMIT CSQ1.CONTEXT CLASS(MQADMIN) ID(CSQ1MSTR) ACCESS(CONTROL)

Figure 9. RACF commands for CSQ4IVPX

 Running CSQ4IVPX
When you have completed these steps, start your MQSeries subsystem.

The IVP runs as a batch job. Customize the job card to meet the submission
requirements of your installation.

Checking the results of CSQ4IVPX
CSQ4IVPX runs the CSQUTIL MQSeries utility to issue three MQSC commands.
The SYSPRINT output data set should look like Figure 10 on page 105, although
details might differ depending on your channel initiator parameters.

� You should see the commands (1) each followed by several messages.

104 System Management Guide

 Testing distributed queuing

� The last message from each command should be “CSQ9022I ... NORMAL
COMPLETION” (2). The job as a whole should complete with return code 0
(3).

 CSQUðððI CSQUTIL IBM MQSeries for OS/39ð - V2.1
 CSQUðð1I CSQUTIL Queue Manager Utility - 1999-ð1-31 ð9:ð6:48
 COMMAND
 CSQU127I CSQUTIL Executing COMMAND using input from CSQUCMD data set
 CSQUð55I CSQUTIL Target queue manager is CSQ1
 CSQU12ðI CSQUTIL Connecting to queue manager CSQ1
 CSQU121I CSQUTIL Connected to queue manager CSQ1
START CHINIT PARM(CSQXPARM)

(1)
CSQN2ð5I COUNT= 2, RETURN=ðððððððð, REASON=ððððððð4
CSQM138I +cpf CSQMSCHI CHANNEL INITIATOR STARTING
CSQN2ð5I COUNT= 2, RETURN=ðððððððð, REASON=ðððððððð
CSQ9ð22I +cpf CSQXCRPS ' START CHINIT' NORMAL COMPLETION
(2)
 DISPLAY DQM
(1)
CSQN2ð5I COUNT= 2, RETURN=ðððððððð, REASON=ððððððð4
CSQM137I +cpf CSQMDDQM DISPLAY DQM COMMAND ACCEPTED
CSQN2ð5I COUNT= 12, RETURN=ðððððððð, REASON=ðððððððð
CSQX83ðI +cpf CSQXRDQM Channel initiator active
CSQX845I +cpf CSQXRDQM TCP/IP address space name is TCPIP
CSQX848I +cpf CSQXRDQM TCP/IP listener not started
CSQX849I +cpf CSQXRDQM LU6.2 listener not started
CSQX832I +cpf CSQXRDQM 5 dispatchers started, 5 requested
CSQX831I +cpf CSQXRDQM 8 adapter subtasks started, 8 requested
CSQX84ðI +cpf CSQXRDQM ð channel connections current, maximum 2ðð
CSQX841I +cpf CSQXRDQM ð channel connections active, maximum 2ðð
CSQX842I +cpf CSQXRDQM ð channel connections starting,
ð stopped, ð retrying
CSQ9ð22I +cpf CSQXCRPS ' DISPLAY DQM' NORMAL COMPLETION
(2)
 STOP CHINIT
(1)
CSQN2ð5I COUNT= 2, RETURN=ðððððððð, REASON=ððððððð4
CSQM137I +cpf CSQMTCHI STOP CHINIT COMMAND ACCEPTED
CSQN2ð5I COUNT= 2, RETURN=ðððððððð, REASON=ðððððððð
CSQ9ð22I +cpf CSQXCRPS ' STOP CHINIT' NORMAL COMPLETION
(2)
 CSQUð57I CSQUCMDS 3 commands read
 CSQUð58I CSQUCMDS 3 commands issued and responses received
 CSQU143I CSQUTIL 1 COMMAND statements attempted
 CSQU144I CSQUTIL 1 COMMAND statements executed successfully
 CSQU148I CSQUTIL Utility completed, return code=ð
(3)

Figure 10. Example output from CSQ4IVPX

 Chapter 5. Testing your queue manager 105

 Testing distributed queuing

106 System Management Guide

Part 3. MQSeries and CICS

Chapter 6. The MQSeries-CICS adapter . 109
CICS adapter overview . 109

Control functions . 109
MQI support . 110

Adapter components . 111
Other adapter features . 112

Alert monitor . 112
Auto-reconnect . 113
Task initiator . 113
Multi-tasking . 114
The API-crossing exit . 114

CICS adapter performance considerations . 115
CICS adapter conventions . 117

Temporary storage queue names . 117
MQGET . 117
ENQUEUE names . 117

Setting up the CICS adapter . 118
Resource definition . 118
System definition . 120
Completing the connection from CICS . 121
Controlling CICS application connections 122

Customizing the CICS adapter . 122
Writing a PLTPI program to start the connection 122

Chapter 7. Operating the CICS adapter . 123
Invoking the adapter’s control functions . 123

From the CICS adapter control panels . 123
From the CICS command line . 123
From CICS application programs . 124

Preparing to use the CICS adapter . 125
Accessing the CICS adapter control panels 126
Starting a connection . 127

Starting a connection from the CICS adapter control panels 127
Starting a connection from the CICS command line 128
Starting a connection from a CICS application program 129

Stopping a connection . 130
Stopping a connection from the CICS adapter control panels 130
Stopping a connection from the CICS command line 130
Stopping a connection from a CICS application program 131

Modifying a connection . 132
Modifying a connection from the CICS adapter control panels 132
Modifying a connection from the CICS command line 133
Modifying a connection from a CICS application program 133

Displaying details of connections and CICS tasks 135
Displaying details of a connection from the CICS adapter control panels . 135

Starting an instance of the task initiator CKTI 136
Starting CKTI from the CICS adapter control panels 136
Starting CKTI from the CICS command line 137
Starting CKTI from a CICS application program 137

Stopping an instance of CKTI . 138

 Copyright IBM Corp. 1993,1999 107

Stopping an instance of CKTI from the CICS adapter control panels . . . 138
Stopping an instance of CKTI from the command line 138
Stopping an instance of CKTI from an application program 139

Displaying the current instances of CKTI . 140
Displaying the current instances of CKTI from the CICS adapter control

panels . 140
Displaying CICS task information . 141

Displaying CICS tasks from the CICS adapter control panels 141
Displaying connection status and in-flight tasks 142

Purging tasks that are using the CICS adapter 143
Shutting down a connection between MQSeries and the CICS adapter . . . 144

Orderly shutdown . 144
Forced shutdown . 145

Chapter 8. The MQSeries-CICS bridge . 147
Introduction to the CICS bridge . 147

When to use the CICS bridge . 147
Running CICS DPL programs . 148
Running CICS 3270 transactions . 149

Customizing the CICS bridge . 152
Starting the CICS bridge . 154

Tuning considerations . 154
Shutting down the CICS bridge . 155

108 System Management Guide

 CICS adapter overview

Chapter 6. The MQSeries-CICS adapter

This chapter describes the MQSeries-CICS adapter (generally referred to as the
CICS adapter or, where the context permits, simply as the adapter). It contains
these sections:

� “CICS adapter overview”
� “Adapter components” on page 111
� “Other adapter features” on page 112
� “CICS adapter performance considerations” on page 115
� “CICS adapter conventions” on page 117
� “Setting up the CICS adapter” on page 118
� “Customizing the CICS adapter” on page 122

CICS adapter overview
The CICS adapter connects a CICS subsystem to an MQSeries subsystem,
enabling CICS application programs to use the MQI.

The CICS adapter provides two main facilities:

� A set of control functions for use by system programmers and administrators to
manage the adapter.

� MQI support for CICS applications.

The CICS adapter is supplied with MQSeries as the CICS transaction CKQC.
Through this transaction, you can control the MQSeries-supplied task initiator
transaction CKTI2, which is described on page 113.

 Control functions
The CICS adapter’s control functions let you manage the connections between
CICS and MQSeries dynamically. These functions can be invoked using the CICS
adapter panels, from the command line, or from a CICS application. You can use
the adapter’s control function to:

� Start a connection to a queue manager.

� Stop the connection.

� Modify the current connection. For example, you can reset the connection
statistics, change the adapter’s trace ID number, and enable or disable the
API-crossing exit.

� Display the current status of a connection and the statistics associated with that
connection.

� Start an instance of the task initiator transaction, CKTI.

� Stop an instance of CKTI.

� Display details of the current instances of CKTI.

2 This is CICS terminology. In MQSeries terminology, this is a trigger monitor process. It must have its own process
definition—generated by issuing the MQSeries command, DEFINE PROCESS.

 Copyright IBM Corp. 1993,1999 109

 CICS adapter overview

� Display details of the CICS tasks currently using the adapter.

These functions and the different methods of invoking them are described in
Chapter 7, “Operating the CICS adapter” on page 123.

 MQI support
The CICS adapter implements the MQI for use by CICS application programs. The
MQI calls, and how they are used, are described in the MQSeries Application
Programming Guide. The adapter also supports an API-crossing exit, see “The
API-crossing exit” on page 114, and a trace facility.

For performance, the CICS adapter can handle up to eight MQI calls concurrently.
For transaction integrity, the adapter fully supports syncpointing under the control of
the CICS syncpoint manager, so that units of work can be committed or backed out
as required. The adapter also supports security checking of MQSeries resources
when used with an appropriate security management product, such as RACF. The
adapter provides high availability with automatic reconnection after an MQSeries
termination, and automatic resource resynchronization after a restart. It also
features an alert monitor that responds to unscheduled events such as a shut down
of the MQSeries subsystem.

Note: If the CICS adapter detects an unexpected MQSeries subsystem error, it
issues an OS/390 SNAP dump to DDname CSQSNAP, and issues reason
code MQRC_UNEXPECTED_ERROR to the application.

If this occurs, rerun the application with a CSQSNAP DD statement included
in the CICS JCL, and contact your IBM support center.

110 System Management Guide

 CICS adapter components

 Adapter components
Figure 11 shows the relationship between CICS, the CICS adapter, and an
MQSeries subsystem. CICS and the adapter share the same address space; the
MQSeries for OS/390 is a separate OS/390 subsystem, executing in its own
address space.

Part of the adapter is a CICS task-related user exit that communicates with the
MQSeries message manager. CICS management modules call the exit directly;
application programs call it through a supplied API stub program called
CSQCSTUB. Task-related user exits and stub programs are described in the CICS
Customization Guide.

Each CKTI transaction is normally in an MQGET WAIT state, ready to respond to
any trigger messages that are placed on its initiation queue.

The adapter management interface provides the operation and control functions
described in Chapter 7, “Operating the CICS adapter” on page 123.

 ┌──┐
 │ │
 │ C I C S S Y S T E M │
 │ │
 ├──────────────────────────┬───────────────────────────┤
 │ ┌─────────────┐ │ ┌CKTI───────────┐ │
 │ │ Application │ │ │Task initiation│ │
 │ │ programs │ │ │ transaction │ │
 │ ├─────────────┤ │ ├───────────────┤ │
 │ │ API stub ├────┐ │ │ API stub │ │
 │ └─────────────┘ │ │ └───────────────┘ │
 │ │ │ │ │
 │ ┌─────────────┐ │ │ │ │
 │ │ CICS │ │ │ 6 │
 │ │ syncpoint ├────┤ │ ┌───────────────┐ │ ┌─────────────┐
 │ │ manager │ │ │ │ │ │ │ │
 │ └─────────────┘ │ │ │ │ │ │ MQSeries │
│ │ │ │ Task-related │ │ │ for │
 │ ┌─────────────┐ │ │ │ user exit │ │ │ OS/39ð │
 │ │ CICS │ │ │ │ │────┼───────5│ │
 │ │ task ├────┤ │ │ │ │ │ │
 │ │ manager │ │ │ │ │ │ │ │
 │ └─────────────┘ ├─────┼─────5│ │ │ │ Message │
│ │ │ │ │ │ │ manager │
 │ ┌─────────────┐ │ │ │ │%───┼────────│ │
 │ │ CICS │ │ │ │ │ │ │ │
 │ │ termination ├────┘ │ │ │ & │ │ │ │
 │ └─────────────┘ │ └────┼───┼──────┘ │ │ │
 │ │ ┌───┼───┼──────┐ │ │ │
 │ ┌─────────────┐ │ ┌─┴───6───┼────┐ │────┼───────5│ │
 │ │ PLT startup │ │ ┌─┴────────────┐ │ │%───┼────────│ │
 │ │ program │ │ │ Subtask │ ├─┘ │ ├─────────────┤
 │ └───────┬─────┘ │ │ TCB ├─┘ │ │ │
│ │ │ └──────────────┘ │ │ │
 │ CKQC │ │ │ │ Connection │
 │ │ │ ┌─────────────────────┐ │ │ manager │
 │ └────────────────┼5│ Adapter │ │ │ │
 │ │ │ management │───┼───────5│ │
 │ │ └─────────────────────┘ │ │ │
 └──────────────────────────┴───────────────────────────┘ └─────────────┘

Figure 11. How CICS, the CICS adapter, and an MQSeries subsystem are related

 Chapter 6. The MQSeries-CICS adapter 111

 CICS adapter features

Other adapter features
The CICS adapter incorporates several other features that you should be aware of:

 � Alert monitor
 � Auto-reconnect
 � Task initiator
 � Multi-tasking
 � API-crossing exit

 Alert monitor
The alert monitor transaction, CKAM, handles unscheduled events—known as
pending events—that occur as a result of connect requests to instances of
MQSeries. The alert monitor generates messages that are sent to the system
console.

There are two kinds of pending events:

1. Deferred connection
If CICS tries to connect to MQSeries before MQSeries is started, a pending event
called a deferred connection is activated. When MQSeries is started, a connection
request is issued by the CICS adapter, a connection is made, and the pending
event is canceled.

There can be multiple deferred connections, one of which will be connected when
MQSeries is started. If there is more than one instance of MQSeries, which
deferred connection is made to which instance of MQSeries is unpredictable.

2. Termination notification
When a connection is successfully made to MQSeries, a pending event called
termination notification is created. This pending event expires when:

� MQSeries shuts down normally with MODE(QUIESCE). The alert monitor
issues a quiesce request on the connection.

� MQSeries shuts down with MODE(FORCE) or terminates abnormally. After an
abnormal termination, the CICS adapter waits for ten seconds and then tries a
connect call. This enables the CICS system to be automatically reconnected to
the queue manager when the latter is restarted.

� The connection is shut down from the CKQC transaction.

The maximum number of pending events that can be handled is 99. If this limit is
reached, no more events can be created until at least one current event expires.

The alert monitor terminates itself when all pending events have expired. It is
subsequently restarted automatically by any new connect request.

If the alert monitor has been inadvertently force-purged (this is not recommended)
you must first disable the task-related user exit before attempting to start a new
connection. The command to do this is:

CECI DISABLE PROGRAM(CSQCTRUE) ENTRYNAME(MQM) EXITALL STOP

112 System Management Guide

 CICS adapter features

 Auto-reconnect
When CICS is connected to MQSeries and MQSeries terminates, the CICS adapter
tries to issue a connect request ten seconds after the stoppage has been detected.
This request uses the same connect parameters that were used in the previous
connect request. If MQSeries has not been restarted within the ten seconds, the
connect request is deferred until MQSeries is restarted later.

 Task initiator
CKTI is an MQSeries-supplied CICS transaction that starts a CICS transaction
when an MQSeries event occurs, for example when a message is put onto a
specific queue.

How it works:
When a message is put onto a message queue, a trigger is generated if the trigger
conditions are met. The queue manager then writes a message, containing
user-defined data, known as a trigger message, to the initiation queue that has
been specified for that message queue. In a CICS environment, an instance of
CKTI can be set up to monitor an initiation queue and to retrieve the trigger
messages from it as they arrive. CKTI starts another CICS transaction, (specified
using the DEFINE PROCESS command), which typically reads the message from
the message queue and then processes it. The process must be associated with
the application queue, not the initiation queue.

Each copy of CKTI services a single initiation queue. To start or stop a copy of
CKTI, you must supply the name of the queue that this CKTI is to serve, or is
serving. You cannot start more than one instance of CKTI against the same
initiation queue from a single CICS subsystem.

At CICS system initialization or at connect time, you can define a default initiation
queue. This is described in “System definition” on page 120 and “Starting a
connection” on page 127. If you issue a STARTCKTI or a STOPCKTI without
specifying an initiation queue, these commands are automatically interpreted as
referring to the default initiation queue.

Notes:

1. If you are using version 4.1 of CICS, any transaction entries processed by
CKTI, for example EXEC CICS START, are locked by the CKTI task until it
terminates. Any attempt to CEDA INSTALL such entries after altering them will
fail: CEDA rejects the install request because the transaction entry is being
used by another task.

In this situation, you must stop the CKTI task using the CICS adapter, see
“Stopping an instance of CKTI” on page 138, and restart it after the CEDA
install, see “Starting an instance of the task initiator CKTI” on page 136.

2. This restriction also applies to intersystem connection (ISC) and multi-region
operation (MRO) links. For example, if CKTI has started a remote transaction,
a connection cannot be reinstalled until CKTI has been stopped.

 Chapter 6. The MQSeries-CICS adapter 113

 CICS adapter features

 Multi-tasking
The CICS adapter optimizes the performance of a CICS to MQSeries connection by
exploiting multi-processors and by removing work from the main CICS task control
block (TCB), allowing multiple MQI calls to be handled concurrently.

The adapter enables some MQI calls to be executed under subtasks, rather than
under the main CICS TCB that runs the application code. All the CICS adapter
administration code, including connection and disconnection from MQSeries, runs
under the main CICS TCB.

The adapter tries to attach up to eight OS/390 subtasks (TCBs) to be used by this
CICS system. You cannot modify this number. Each subtask makes a connect call
to MQSeries. Each CICS system connected takes up nine of the connections
specified on CTHREAD. This means that you must increase the value specified for
CTHREAD in CSQ6SYSP by nine for each CICS system connected. For more
details, see “Using CSQ6SYSP” on page 68. MQI calls can flow over those
connections. When the main connection is terminated, the subtasks are
disconnected and terminated automatically.

The API-crossing exit
MQSeries provides an API-crossing exit for use with the CICS adapter; it runs in
the CICS address space. You can use this exit to intercept MQI calls as they are
being run, for monitoring, testing, maintenance, or security purposes.

For more information about writing API-crossing exit programs, see the MQSeries
Application Programming Guide.

Note: Using the API-crossing exit degrades MQSeries performance. You should
plan your use of it carefully.

Defining the exit program
Before the API-crossing exit can be used, an exit program load module must be
available when the CICS adapter connects to MQSeries. The exit program is a
CICS program that must be named CSQCAPX and reside in a library in the
DFHRPL concatenation. CSQCAPX must be defined in the CICS system definition
file (CSD) and must be enabled.

When CSQCAPX is loaded a confirmation message is written to the CICS adapter
control panel, CKQC, or the console. If it cannot be loaded, a diagnostic message
is displayed, but otherwise the application program runs normally.

114 System Management Guide

 CICS adapter performance

CICS adapter performance considerations
This section describes how the CICS adapter optimizes the performance of a CICS
to MQSeries connection, and how you can monitor the connection.

There are a number of factors to be taken into consideration when performance is
critical:

First MQI call
In general, the first MQI call of a task takes longer to perform than
subsequent calls. This is because the environment must be set up. For
example, the adapter must acquire storage and security information, and
control blocks must be allocated and formatted.

MQGET and the SIGNAL option
Using the SIGNAL option with an MQGET call imposes an additional
overhead. This is because the SIGNAL option can produce a CICS
GETMAIN in the adapter, which is used to record the address of the
ECB so that it can be posted if the queue manager abends.

API-crossing exit
Using the API-crossing exit also imposes a host processor overhead on
each MQI call. The overhead in handling the exit parameter block and
the invocations are minimal, but the exit can be invoked twice for each
MQI call through EXEC CICS LINK.

CICS tracing
CICS tracing in the adapter also increases the pathlength of an MQI
call. A large number of trace entries can be generated depending on
how busy the system is. There is no control over the granularity of the
trace entries produced in the adapter. Therefore, tracing should only be
switched on if necessary.

MQGET and the WAIT option
Using MQGET with the WAIT option is less efficient if the task has been
put into a wait until a message arrives. The adapter implements the
wait as a form of CICS wait. When a message arrives, the adapter
effectively re-issues the MQGET call for the application.

Therefore, use the WAIT option with care and only when the queue is
known to be not very busy.

MQCLOSE
Issuing an MQCLOSE call is not always necessary because MQSeries
automatically closes any unclosed handles when the task ends.

MQPUT1
If there is only one MQPUT, it is more efficient than an
MQOPEN-MQPUT-MQCLOSE sequence because only one flow is
generated between the MQSeries and the adapter, instead of three.

If there are multiple messages to be put,
MQOPEN-MQPUT...MQPUT-MQCLOSE should be used.

EXEC CICS RETURN
Implicit syncpointing generated by EXEC CICS RETURN is more
efficient than issuing the explicit syncpoint call EXEC CICS SYNCPOINT
followed by EXEC CICS RETURN.

 Chapter 6. The MQSeries-CICS adapter 115

 CICS adapter performance

The EXEC CICS RETURN call accommodates all the work needed for
syncpointing and task termination into one flow to MQSeries instead of
the two separate flows used when explicit syncpointing is used.

Two-phase commit
A two-phase commit consumes more resources than a single-phase
commit, both in host processor cost and response time. This is because
a two-phase commit involves one more flow to MQSeries and more
physical logging. If an application is restricted to recoverable updates in
MQSeries and no other resource managers, CICS invokes the adapter
for a single-phase commit.

Syncpoint bypassing
The adapter does not use the read-only commit feature in CICS. When
a transaction is restricted to non-recoverable or non-destructive work in
MQSeries, syncpointing is bypassed because it is not necessary. The
clean-up process is performed when the task ends.

Statistics collection
Statistics collection by connection and by task is done on a per MQI call
basis and cannot be switched off. This overhead is negligible.

You can use the CKQC transaction to display statistics for the current
connection. See “Displaying details of connections and CICS tasks” on
page 135.

116 System Management Guide

 CICS adapter conventions

CICS adapter conventions
There are a number of conventions that must be observed in applications using the
adapter.

Temporary storage queue names
The CICS adapter display function uses two temporary storage queues (MAIN) per
invoking task to store the output data for browsing. The names of the queues are
ttttCKRT and ttttCKDP , where tttt is the terminal identifier of the terminal from
which the display function is requested.

Do not try to access these queues.

 MQGET
When the CICS adapter puts a task on a CICS wait because the WAIT option was
used with the MQGET call and there was no message available, the RESOURCE
NAME used is GETWAIT and the RESOURCE_TYPE is MQSeries.

When the CICS adapter puts a task on a CICS wait because of a need to perform
task switching the RESOURCE NAME used is TASKSWCH and the
RESOURCE_TYPE is MQSeries.

 ENQUEUE names
The CICS adapter uses the name:

CSQ.genericapplid(8).QMGR

to issue CICS ENQ and CICS DEQ calls during processing, for example, starting
and stopping the connection.

Attempts to use similar names for CICS ENQ or DEQ purposes should be avoided.

 Chapter 6. The MQSeries-CICS adapter 117

 Setting up CICS adapter

Setting up the CICS adapter
This section tells you how to make the MQSeries-CICS adapter (generally referred
to in this book as the CICS adapter) available to your CICS subsystem. If you are
not familiar with defining resources to CICS, refer to:

� The CICS System Definition Guide for general information on setting up a CICS
subsystem.

� The CICS Resource Definition Guide, for background information on defining
resources to CICS, details of and the command syntax of the CEDA
transaction, and the MIGRATE command.

� The CICS Operations and Utilities Guide and the CICS Resource Definition
Guide for details of the CSD utility program (DFHCSDUP).

 Resource definition
This section takes you through the steps you must perform to define the resources
for the CICS adapter.

Updating the CSD
This section describes the updates required for the CICS system definition (CSD)
data set for the CICS adapter. It also describes the CSD updates required for the
distributed queuing facility (if you want to use the “CICS mover”) and the CICS
sample application programs. However, it does not contain all the information
required to complete these tasks. If you are implementing distributed queuing, see
Appendix D, “Enabling distributed queuing using CICS ISC” on page 479. If you
intend to use the CICS sample application programs, see the MQSeries Application
Programming Guide.

You must use resource definition online (RDO) to add new groups to the CSD data
set. The new groups must contain definitions of:

� The supplied adapter programs
� The supplied adapter management transactions
� The supplied sets of BMS maps, required for the adapter panels

To update the CSD, run the CICS offline utility program, DFHCSDUP, with the
supplied sample input data sets:

 � thlqual.SCSQPROC(CSQ4B100)
 � thlqual.SCSQPROC(CSQ4D100)
 � thlqual.SCSQPROC(CSQ4S100)

Where:

Each of these data sets contains sample CICS definitions that must be tailored. To
preserve the originals, copy these data sets into a user JCL library whose name

This data set... Provides the definitions required for...

CSQ4B100 CICS adapter

CSQ4D100 Distributed queuing using CICS ISC (this is optional)

CSQ4S100 Supplied samples

118 System Management Guide

 Setting up CICS adapter

contains the MQSeries subsystem name, for example, MQS.CSQ1.USERJCL, and
tailor them there.

Note: With some versions of CICS, you might receive warning messages about
obsolete keywords; you can ignore these.

Ensure that any user-written CICS applications that issue MQI calls, and the
resources they use, are also defined to the CSD. You can edit the input data set,
to include definitions of user-programs and their resources.

You can add this fragment of JCL to your CSD upgrade (DFHCSDUP) job to define
the MQSeries supplied groups to the CICS CSD:

//SYSIN DD DSN=thlqual.SCSQPROC(CSQ4B1ðð),DISP=SHR
// DD DSN=thlqual.SCSQPROC(CSQ4D1ðð),DISP=SHR
// DD DSN=thlqual.SCSQPROC(CSQ4S1ðð),DISP=SHR
// DD \
ADD GROUP(CSQCAT1) LIST(yourlist)
ADD GROUP(CSQKDQ1) LIST(yourlist)
ADD GROUP(CSQ4SAMP) LIST(yourlist)

/\

Figure 12. JCL fragment for upgrading the CICS CSD

Here, yourlist is the name of a CICS list that contains a list of groups to be
installed by CICS during a cold start of the system. This is specified in the
GRPLIST parameter of your CICS system initialization table (SIT). For details of
CICS SIT parameters, see the CICS System Definition Guide.

Include the new resource groups in the CICS startup group list. For information
about resource groups, installing them in CICS, the CICS CSD, and DFHCSDUP,
see the CICS Resource Definition Guide.

Note: If you use the CEDA transaction to install redefined adapter resources in an
active CICS system, you must first shut down the adapter and wait until the
alert monitor has finished its work.

Starting a connection automatically during CICS initialization
If you want the adapter to connect to MQSeries automatically during CICS
initialization, the CSQCCODF program should be included in a CICS PLTPI
program. CSQCCODF must execute during the third stage of CICS initialization
and must therefore be added after the entry for DFHDELIM. If there is no entry for
DFHDELIM in your current PLTPI, you must add one.

Alternatively, if your version of CICS supports it, you can use the MQCONN SIT
parameter to connect to MQSeries automatically. See the CICS System Definition
Guide for information about this parameter.

Instead of using CSQCCODF, you can write your own program; see “Writing a
PLTPI program to start the connection” on page 122.

1. Use the CICS DFHPLT macro to add your program to the list of programs
executed by CICS during the third stage initialization. Figure 13 on page 120
shows how to code the entry for CSQCCODF in a CICS PLT program called
DFHPLT41. For information about coding PLT entries, see the CICS Resource
Definition Guide.

 Chapter 6. The MQSeries-CICS adapter 119

 Setting up CICS adapter

DFHPLT41 DFHPLT TYPE=INITIAL,SUFFIX=41
 DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
 DFHPLT TYPE=ENTRY,PROGRAM=CSQCCODF
 DFHPLT TYPE=FINAL
 END

Figure 13. Sample PLT for use with the CICS adapter. This sample assumes that you are
using the supplied PLTPI program, CSQCCODF, to start the adapter.

2. Specify the particular list of programs to be run at initialization by naming the
suffix of your PLT on the PLTPI system initialization parameter. In Figure 13,
the PLT suffix is 41.

Note: You can use the CICS adapter in a CICS system that has interregion
communication (IRC) to remote CICS systems. If you are using IRC, you
should ensure that the IRC facility is OPEN before you start the adapter.
This is essential if the IRC access method is defined as cross memory, that
is, ACCESSMETHOD(XM).

 System definition
Use the INITPARM parameter in the CICS system initialization table (SIT), or the
SYSIN override, to set the default connection parameters. Figure 14 shows you
how to do this.

INITPARM=(CSQCPARM='SN=CSQ1,TN=ðð1,IQ=CICSð1.INITQ')

Figure 14. Sample INITPARM statement to set the default connection values for CICS

Where:

SN The subsystem name.

TN The trace number to identify the adapter in CICS trace entries. This must be
in the range 0 through 199.

IQ The name of the default initiation queue. If this is blank, and you do not
specify an initiation queue name by any other method, an instance of CKTI is
not started when the CICS adapter connects to the queue manager.

The INITPARM statement does not accept a parameter string longer than 60
characters. If you specify a 4-character subsystem name and a 3-character trace
number, the maximum allowable length of the initiation queue name is 42
characters. If you need a queue name longer than 42 characters, you cannot use
the INITPARM statement to specify the default initiation queue.

At connect time, you must override the INITPARM setting, either by using the
CKQC transaction, or in a PLTPI program.

1. If you are using a PLTPI program to start the adapter, code the suffix of your
PLT on the PLTPI system initialization parameter. See Figure 13 for an
example of this.

2. Add the sample DCT entries (CSQ4DCT1 and CSQ4DCT2) to those of the
existing CICS DCT and then reassemble the DCT.

120 System Management Guide

 Setting up CICS adapter

3. Add the following MQSeries libraries to the STEPLIB concatenation in your
CICS procedure in this order:

 � thlqual.SCSQANLx
 � thlqual.SCSQAUTH

Where x is the language letter for your national language.

4. Add the following MQSeries libraries to the DFHRPL concatenation in your
CICS procedure in this order:

 � thlqual.SCSQANLx
 � thlqual.SCSQCICS
 � thlqual.SCSQAUTH

Where x is the language letter for your national language.

If you are using any CICS programs that dynamically call the MQSeries CICS
stub, CSQCSTUB, also add thlqual.SCSQLOAD to the DFHRPL concatenation.

5. Update CSQINP2. You can use the sample CSQ4INP2, but you might need to
change the initiation queue name to match your system definition.

For more information about:

� The CICS initiation queue, see “Task initiator” on page 113.

� The CKQC transaction, see “Starting a connection” on page 127.

� PLTPI programs, see “Writing a PLTPI program to start the connection” on
page 122.

� Coding CICS system initialization parameters, see the CICS System Definition
Guide.

Completing the connection from CICS
The connection is completed when the CICS adapter completes these steps:

1. Enable the CICS adapter and initialize the control blocks.

2. Attach the OS/390 subtasks and identify CICS generic applid (as specified in
the CICS system initialization parameters as the connection ID) to MQSeries.
This is described in the CICS System Definition Guide.

These two steps are done for you automatically if you use the INITPARM
parameter or the CKQC transaction (see Chapter 7, “Operating the CICS adapter”
on page 123). You can also use a PLTPI program to do this; see “Writing a PLTPI
program to start the connection” on page 122.

When the connection is complete, a pending event called a termination notification
is activated. This pending event remains active until MQSeries terminates in either
an orderly or a forced way. When the pending event expires (or matures), it
causes a FORCE shutdown request to be issued to the CICS adapter, and the
pending event is canceled.

 Chapter 6. The MQSeries-CICS adapter 121

 Customizing CICS adapter

Controlling CICS application connections
Every CICS transaction that issues calls to MQSeries is assigned a unique thread
ID to service the requests and keep track of changes made to MQSeries resources.
The thread ID is created the first time a transaction issues an MQSeries request,
and accompanies all subsequent MQSeries requests made by that transaction.

While executing work under the CICS main task TCB, the CICS adapter queues
MQSeries requests for processing by any of the eight subtask TCBs. These
subtask TCBs are attached by the adapter when the connection to MQSeries is
established.

Customizing the CICS adapter
You can customize the CICS adapter by:

� Writing a user version of CSQCCODF that can be included in a CICS PLTPI
program. See “Writing a PLTPI program to start the connection” for more
information.

� Writing an API-crossing exit program. See “The API-crossing exit” on
page 114 for more information.

Writing a PLTPI program to start the connection
You can write your own PLTPI program, based on the supplied assembler sample
thlqual.SCSQASMS(CSQCSPLT).

Although this sample is written in assembler, you can write your own program in
any language supported by CICS. A typical use of PLTPI programs is for
overriding the INITPARM settings if your CICS adapter initiation queue name is too
long. (You cannot use more than 42 characters for an initiation queue name in an
INITPARM statement.) If your PLTPI program gets its input parameters from a
data set, you do not need an INITPARM statement.

Your PLTPI program must link to the adapter connect program,
thlqual.SCSQCICS(CSQCQCON), and pass a parameter list that specifies the
connection values to be used. The parameter list is described in “Starting a
connection from a CICS application program” on page 129. Figure 15 shows the
LINK command that your PLTPI program must issue. In this example, the
parameter list is named CONNPL. Because no terminals are available at this stage
of CICS start up, you must use the COMMAREA option to pass the parameter list.

EXEC CICS LINK PROGRAM('CSQCQCON')
COMMAREA(CONNPL) LENGTH(length of CONNPL)

Figure 15. Linking to the adapter connect program, CSQCQCON, from a PLT program.
The COMMAREA option is used, because no terminals are currently available.

For more information about writing CICS PLTPI programs, see the CICS
Customization Guide.

122 System Management Guide

 Invoking the adapter’s control functions

Chapter 7. Operating the CICS adapter

This chapter describes how you can use the CICS adapter control functions to
initiate and manage connections between MQSeries and CICS. It describes these
tasks:

� “Invoking the adapter’s control functions”
� “Preparing to use the CICS adapter” on page 125
� “Accessing the CICS adapter control panels” on page 126
� “Starting a connection” on page 127
� “Stopping a connection” on page 130
� “Modifying a connection” on page 132
� “Displaying details of connections and CICS tasks” on page 135
� “Starting an instance of the task initiator CKTI” on page 136
� “Stopping an instance of CKTI” on page 138
� “Displaying the current instances of CKTI” on page 140
� “Displaying CICS task information” on page 141
� “Purging tasks that are using the CICS adapter” on page 143
� “Shutting down a connection between MQSeries and the CICS adapter” on

page 144

In this chapter, the MQSeries CICS adapter control panels are referred to as the
CICS adapter control panels.

Invoking the adapter’s control functions
You can invoke the control functions of the CICS adapter in three different ways:

1. From the CICS adapter control panels.
2. From the CICS command line.
3. From an application program.

From the CICS adapter control panels
You can use these CICS adapter controls panels to monitor and control
connections between MQSeries and CICS.

From the initial panel, you first select an item from the menu bar at the top of the
panel, and then select an action from one of the pull-down menus. In the displayed
panel or secondary window, you can then type new values in the fields, as
required.

From the CICS command line
You can take a “fast-path” approach and bypass the CICS adapter control panels,
by specifying command line parameters on the CKQC transaction. The syntax of
these command parameters, and examples of them, are given for each of the tasks
described later in this chapter.

Note: You can also issue these commands from the console using OS/390
commands.

Commands take this form:

MODIFY CICS-job-name CKQC command-line-command

 Copyright IBM Corp. 1993,1999 123

 Invoking the adapter’s control functions

From CICS application programs
You can use the EXEC CICS LINK command to invoke most adapter control
functions from CICS application programs. The syntax of the EXEC CICS LINK
commands you need, and examples, are given for each of the tasks described later
in this chapter.

Command syntax in application programs
Some commands issued in this way must be padded with trailing spaces to make
the length of the command 10 characters. When an argument follows the
command, an extra space character must be added as a separator. See
Figure 16. The commands affected by this restriction and the number of trailing
spaces required for each command are:

Command Number of trailing spaces (not including the separator)
START 5
MODIFY 4
STARTCKTI 1
STOPCKTI 2

With all other commands the padding is optional.

 EXEC CICS LINK PROGRAM('CSQCRST ')
 INPUTMSG('CKQC MODIFY Y')
 ↑ ↑

 1 12

Figure 16. Padding adapter commands. The MODIFY command must be padded with 4
trailing spaces plus another space as a separator. Starting at the ‘M’ in MODIFY, the
argument ‘Y’ is the twelfth character.

Note: This restriction applies only to commands issued from an application
program; it does not apply to commands issued from the command line.

Passing parameters from a CICS transaction
Use the following rules to determine how to pass the parameters:

� The CICS transaction must be running on an attached terminal. If it is not, all
MQSeries commands are ignored.

� If a CICS application program on an attached terminal is connected to
MQSeries, you must use the INPUTMSG option with EXEC CICS LINK to pass
parameters, except at PLTPI time.

� If you connect to MQSeries at PLTPI time, you must use the COMMAREA
option to pass parameters. If you use the INPUTMSG option, the command is
ignored.

However, the adapter STOP commands:

 CKQC STOP
CKQC STOP FORCE

cannot be run at PLTPI time, regardless of whether you use the INPUTMSG
option or the COMMAREA option.

124 System Management Guide

 Preparing to use the CICS adapter

EXEC CICS LINK interface messages
If you invoke the adapter operation functions START and STOP from an application
program using EXEC CICS LINK, the resultant messages are written to both the
system console and a transient data queue (TDQ) named CKQQ. When the
application program returns from the LINK, it can read back the messages by
repeating EXEC CICS READQ TD QUEUE(CKQQ) until the queue is empty. The
following restrictions apply:

� The TDQ queue name is CKQQ and cannot be changed. A sample TDQ
definition is provided (in CSQ4DCT2), which defines CKQQ as an intra-partition
TDQ.

� The queue is not cleared before it is written to.

� The messages are not time-stamped.

� If you have more than one application writing to the TDQ, the messages are
not serialized. It is the responsibility of the invoking programs to serialize
themselves.

� The same set of messages also appear on the system console.

� The server subtask messages are not written to CKQQ.

Preparing to use the CICS adapter
Before you can use the CICS adapter for messaging, you must start the MQSeries
subsystem, if you have not already done so. To do this, use the START command
with the appropriate command prefix string (CPF). Figure 17 shows the start
command you issue from the operator console if the CPF is ‘+cpf’.

+cpf START QMGR

Figure 17. Starting a queue manager that is identified by the CPF '+cpf'

For more information about CPFs, see “Using command prefix strings” on page 42.

 Chapter 7. Operating the CICS adapter 125

 Accessing the CICS adapter control panels

Accessing the CICS adapter control panels
To access the adapter control panels, use the CICS transaction CKQC:

1. Type CKQC and press Enter.

The CICS adapter control initial panel, shown in Figure 18, is displayed.

2. In the menu bar at the top of the screen, use the TAB key to move between
the three options Connection , CKTI, and Task .

3. Press Enter to select your choice.

4. Select the required option from one of the pull-down menus by typing the
number of your choice and then pressing Enter to confirm or function key F12
to cancel.

5. Press function key F1 to get help on any panel or window.

à@ ð
Connection CKTI Task

--
CKQCMð IBM MQSeries for OS/39ð - CICS adapter control initial panel

Select menu bar item using Tab key. Then press Enter.

##########
##
##
######
#

 ## ## ## ## ## ## ## ## ####### ## ## ####### #######
#
######

 for OS/39ð

(C) Copyright IBM Corporation 1993, 1999. All rights reserved.

 F1=Help F3=Exit

á ñ

Figure 18. The CICS adapter control initial panel

Note: You can access the adapter control panels without starting the MQSeries
subsystem. You can also start a connection but it will not be active until MQSeries
is started.

126 System Management Guide

 Starting a connection

Starting a connection
You can start a connection from:

� The CICS adapter control panels
� The CICS command line
� A CICS application program
� A PLTPI program
� The CICS MQCONN SIT parameter

Starting a connection from the CICS adapter control panels
To start a connection from the CICS adapter control initial panel:

1. Select Connection from the menu bar.

2. Select the Start action from the pull-down menu. See Figure 19.

3. Modify the connection values displayed in the Start a Connection secondary
parameter window. Alternatively, use the defaults derived from the INITPARM
settings, if defined.

4. Press Enter to confirm.

Messages indicating the success or failure of the attempt to start the connection
are displayed on the CICS adapter messages panel, CKQCM1.

à@ ð
Connection CKTI Task

 +--------------------+--
 | Select an action. | for OS/39ð - CICS adapter control initial panel
 | |
 | 1 1. Start... |sing Tab key. Then press Enter.
 | 2. Stop... |
 | 3. Modify... | +--+
 | 4. Display | | Start a Connection |
 | |# | |
 +--------------------+ | Type parameters. Then press Enter. |
 | F1=Help F12=Cancel | | |
 +--------------------+ | 1. Queue Manager Name (SN) . . . QMGR |##
 ## ## ## ## ## | 2. Initiation Queue Name (IQ)|
 ## ## ## ## ## # | CICS.INITIATION.QUEUE1 |##
| 3. Trace Number (TN) 123 |
| |#
 +--+
 | F1=Help F12=Cancel |ð
 +--+

 (C) Copyright IBM Corporation 1993, 1999. All rights reserved.

 F1=Help F3=Exit
á ñ

Figure 19. Starting a connection

 Chapter 7. Operating the CICS adapter 127

 Starting a connection

Starting a connection from the CICS command line
The example shown in Figure 20 starts a connection, using the default connection
values set at system initialization.

CKQC START

Figure 20. Starting a connection from the command line

The command shown in Figure 21 starts a connection, using the explicitly defined
connection parameter values. The parameters are positional—every field must be
entered to its maximum length if you want to override the default.

CKQC START Y|N <subsystem ID> <trace number> <initiation queue name>

Figure 21. Starting a connection from the command line specifying parameters

Where:

Y|N
Specify either:

'Y' Use the default values, that is, substitute default values for any blank
arguments.

'N' Do not use the default values.

<subsystem ID>
OS/390 subsystem name of the target queue manager.

<trace number>
The trace number. It must be in the range 0 through 199.

<initiation queue name>
The name of the default initiation queue.

Specifying lowercase queue names
By default, CICS translates lowercase input, for both keywords and parameters, to
uppercase. Therefore, by default, these commands are equivalent:

CKQC START Y CSQ1 199 CICSð1.INITQ
ckqc start y csq1 199 cicsð1.initq

Figure 22. Specifying lowercase queue names

If you want to use lowercase queue names, you must:

1. Specify UCTRAN(TRANID) on the TYPETERM definition of terminals that start
adapter control functions.

2. Specify UCTRAN(NO) on the transaction profile used by all “CKxx”
transactions.

Thereafter, the adapter translates all lowercase arguments, except queue names, to
uppercase.

For details of TYPETERM and PROFILE definitions, see the CICS Resource
Definition Guide.

128 System Management Guide

 Starting a connection

Starting a connection from a CICS application program
You can start a connection by linking the adapter connect program, CSQCQCON,
from a CICS application program. Your program, which can be written in C/370,
COBOL, PL/I, or assembler language, must pass a parameter list that specifies the
connection values to be used. The parameter list is:

CKQC 4-character transaction ID—must be 'CKQC'.

DISPMODE 1-byte field—must contain a blank.

CONNREQ 10-character field—must contain 'START '.

DELIM1 1-byte delimiter field—must contain a blank.

INITP 1-character field that specifies whether this connection is to use the
default parameters set by INITPARM. The possible values are:

'Y' Use the default values, that is, substitute default values for any
blank arguments.

'N' Do not use the default values. If you code 'N', you must supply
all the new connection values, to override the INITPARM
settings, in the CONNSSN, CONNTN, and CONNIQ fields.

' ' Equivalent to 'Y'.

DELIM2 1-byte delimiter field—must contain a blank.

CONNSSN 4-character field used to specify the OS/390 subsystem name of the
target queue manager.

DELIM3 1-byte delimiter field—must contain a blank.

CONNTN 3-character trace number. If supplied, it must be in the range 0
through 199.

DELIM4 1-byte delimiter field—must contain a blank.

CONNIQ 48-character field that specifies the name of the default initiation
queue.

Figure 23 shows the LINK command that your CICS program must issue.

EXEC CICS LINK PROGRAM('CSQCQCON')
INPUTMSG(CONNPL) INPUTMSGLEN(length of CONNPL)

Figure 23. Linking to the adapter connect program, CSQCQCON, from a CICS program. In
this example, the name of the parameter list is CONNPL.

Output messages from CSQCQCON are displayed on the system console.

 Chapter 7. Operating the CICS adapter 129

 Stopping a connection

Stopping a connection
You can stop a connection from:

� The CICS adapter control panels
� The CICS command line
� A CICS application program

Stopping a connection from the CICS adapter control panels
From the initial panel:

1. Select Connection from the menu bar.

2. Select the Stop action from the pull-down menu.

3. Use the Stop Connection secondary parameter window to select the type of
shutdown that you require. Methods of shutting down the CICS adapter are
summarized in Table 13 on page 144.

à@ ð
Connection CKTI Task

 +--------------------+--
 | Select an action. | for OS/39ð - CICS adapter control initial panel
 | |
 | 2 1. Start... |sing Tab key. Then press Enter
 | 2. Stop... |
 | 3. Modify... | +--------------------+

 | 4. Display | | Stop Connection |
 | |# | |
 +--------------------+ | Select stop type. |
 | F1=Help F12=Cancel | | Then press Enter | ##
 +--------------------+ | |## ## #### ##### ######
 ## ## ## ## ## | 1 1. Quiesce | # ##### ## # # #
 ## ## ## ## ## # | 2. Force |### ## ## ####### #######
| | ## ## #
+--------------------+## ## ## #####

| F1=Help F12=Cancel |
 +--------------------+ for OS/39ð

 (C) Copyright IBM Corporation 1993, 1999. All rights reserved.

 F1=Help F3=Exit
á ñ

Figure 24. Stopping a connection from the CKQC initial panel

The messages associated with stopping a connection are displayed on the system
console.

Stopping a connection from the CICS command line
The command shown in Figure 25 initiates a quiesced shutdown. The connection
shuts down only after the last task has completed its work.

CKQC STOP

Figure 25. Stopping a connection from the command line—a quiesced shutdown

The command shown in Figure 26 initiates a forced shutdown. The connection
shuts down immediately, regardless of the state of any in-flight tasks.

130 System Management Guide

 Stopping a connection

CKQC STOP FORCE

Figure 26. Stopping a connection from the command line—a forced shutdown

Stopping a connection from a CICS application program
To stop a connection from a CICS program, the program must link to the adapter
shutdown program, CSQCDSC. Figures 27 and 28 show examples of LINK
commands initiating quiesced and forced shutdowns. When you do an EXEC CICS
LINK to CSQCDSC, the program requires a terminal associated task.

 EXEC CICS LINK PROGRAM('CSQCDSC ')
 INPUTMSG('CKQC STOP')

Figure 27. Stopping a connection from a CICS application program—a quiesced shutdown.
The QUIESCE parameter is optional.

 EXEC CICS LINK PROGRAM('CSQCDSC ')
INPUTMSG('CKQC STOP FORCE')

Figure 28. Stopping a connection from a CICS application program—a forced shutdown

Output messages from CSQCDSC are displayed on the system console.

 Chapter 7. Operating the CICS adapter 131

 Modifying a connection

Modifying a connection
You can modify a connection to reset the connection statistics, enable or disable
the API-crossing exit, or change the adapter’s trace number. You can do this from:

� The CICS adapter control panels
� The CICS command line
� A CICS application program

Modifying a connection from the CICS adapter control panels
From the initial panel:

1. Select Connection from the menu bar.

2. Select the Modify action from the pull-down menu.

3. Use the Modification Options secondary parameter window to specify the
option you require.

To change the trace number:

� Enter 4 in the options selection field

� Enter a number, in the range 0 through 199, in the trace number field. Do
not change the 4 in the options selection field before you press Enter. If
you do, the trace number will not be changed.

4. Press Enter to confirm your choice.

5. Repeat steps 1 through 4, as required.

à@ ð
Connection CKTI Task

 +--------------------+--
 | Select an action. | for OS/39ð - CICS adapter control initial panel
 | |
 | 3 1. Start... |sing Tab key. Then press Enter.
 | 2. Stop... |
 | 3. Modify... | +--------------------------------+
 | 4. Display | | Modification Options |
 | |# | |
 +--------------------+ | Select modify option. Then |
 | F1=Help F12=Cancel | | press Enter. | ##
 +--------------------+ | | ##### ######
 ## ## ## ## ## | 4 1. Reset statistics | ## # # #
 ## ## ## ## ## # | 2. Enable API Exit | ## ####### #######
| 3. Disable API Exit | ## #
| 4. Change Trace Number 123 | ## #####
 +--------------------------------+
 | F1=Help F12=Cancel | for OS/39ð
 +--------------------------------+

 (C) Copyright IBM Corporation 1993, 1999. All rights reserved.

 F1=Help F3=Exit
á ñ

Figure 29. Modifying a connection

132 System Management Guide

 Modifying a connection

Modifying a connection from the CICS command line
You can use the CKQC MODIFY command to modify a connection.

CKQC MODIFY Y|N E|D <trace-number>

Figure 30. Format of command to modify connection parameters from the command line

The command syntax is shown in Figure 30, where:

Y|N Specify one of:

Y Reset connection statistics.
N Do not reset connection statistics.

This parameter is required.

E|D Specify one of:

E Enable the API-crossing exit.
D Disable the API-crossing exit.

This parameter is optional, the default is to disable the API-crossing exit.

<trace number>
Specify a valid trace number in the range 0 through 199. This parameter is
optional. If it is not specified, the trace number is not changed.

The command shown in Figure 31 resets the connection statistics only. The
command shown in Figure 32 disables the API-crossing exit and changes the trace
number to 121.

CKQC MODIFY Y

Figure 31. Resetting connection statistics from the command line

CKQC MODIFY N D 121

Figure 32. Changing the adapter’s trace number and disabling the API-crossing exit from
the command line

Modifying a connection from a CICS application program
To modify a connection from a CICS program, the program must link to the adapter
reset program, CSQCRST.

Figure 33 shows the format of the LINK command. It has the same effect as the
command-line requests described in “Modifying a connection from the CICS
command line.”

 EXEC CICS LINK PROGRAM('CSQCRST ')
INPUTMSG('CKQC MODIFY Y E <trace-number>')

Figure 33. Format of the MODIFY command issued from a CICS adapter application
program

 Chapter 7. Operating the CICS adapter 133

 Modifying a connection

The command shown in Figure 34 on page 134 resets the connection statistics
only.

 EXEC CICS LINK PROGRAM('CSQCRST ')
 INPUTMSG('CKQC MODIFY Y')

Figure 34. Resetting connection statistics from a CICS program

The command shown in Figure 35 disables the API-crossing exit and changes the
trace number to 121.

 EXEC CICS LINK PROGRAM('CSQCRST ')
INPUTMSG('CKQC MODIFY N D 121')

Figure 35. Linking to the adapter reset program, CSQCRST, from a CICS program

Note: The MODIFY command must be padded to 10 characters, see “Command
syntax in application programs” on page 124.

134 System Management Guide

 Displaying information

Displaying details of connections and CICS tasks
You can use the CICS adapter control panels to display details of the current
connection. The equivalent functionality is not available from the CICS command
line or from a CICS application program. However, you can obtain some status
information using the CKQC DISPLAY command, see “Displaying connection status
and in-flight tasks” on page 142.

Displaying details of a connection from the CICS adapter control
panels

From the initial panel:

1. Select Connection from the menu bar.
2. Select the Display action from the pull-down menu.

Figure 36 shows the details provided:

à@ ð
 CKQCM2 Display Connection panel

 Read connection information. Then press F12 to cancel.

CICS Applid = VICIC14 Connection Status = Connected Qmgrname = VCA
Trace No. = 124 Tracing = On API Exit = Off
Initiation Queue Name = VICIC14.INITIATION.QUEUE

 ---------------------------- S T A T I S T I C S -----------------------------
 Number of in-flight tasks = 1 Total No. of API calls = 43912
 Number of running CKTI = 1

APIs and flows analysis Syncpoint Recovery
 -- ------------------- ---------------
 Run OK 43874 MQINQ 68ð6 Tasks 26 Indoubt ð
 Futile ð MQSET ð Backout ð UnResol ð
 MQOPEN 6833 ------ Flows ------ Commit 1ð Commit ð
 MQCLOSE 6823 Calls 43952 S-Phase 1ð Backout ð
 MQGET 1ðð32 SyncComp 43922 2-Phase ð

 GETWAIT 3399 SuspReqd ð ------------------------------------
 MQPUT 13399 MsgWait 7 InitTCBs 8 StrtTCBs 8 BusyTCBs ð
 MQPUT1 5 Switched 4394ð

 F1=Help F12=Cancel Enter=Refresh

á ñ

Figure 36. The display connection panel

The display is organized into three areas:

� Top: parameters used for the connection, and current status.

� Middle: connection statistics. These are totals for the current connection, since
statistics were last reset.

� Bottom: statistics produced by the adapter.

For an explanation of specific fields on this screen, view the online help panels by
pressing function key F1.

 Chapter 7. Operating the CICS adapter 135

 Starting CKTI

Starting an instance of the task initiator CKTI
CKTI is the MQSeries-supplied task initiator3 used in a CICS environment to start a
transaction when the trigger conditions on any of its associated MQSeries queues
are met. For more information, see “Task initiator” on page 113.

You can start a CKTI instance from:

� The CICS adapter control panels
� The CICS command line
� A CICS application program
� From emulated terminals (see “Automating starting of CKTI” on page 446)

Starting CKTI from the CICS adapter control panels
From the initial panel:

1. Select CKTI from the menu bar.

2. Select the Start action from the pull-down menu.

3. In the Start Task Initiator secondary window, use the Initiation Queue Name
field to specify the name of the initiation queue to be serviced by this CKTI
instance. If you leave this field blank, the default initiation queue is used, if
defined.

à@ ð
 Connection CKTI Task
 ------------------ +--------------------+--------------------------------------
 CKQCMð IBM MQSe | Select an action. | adapter control initial panel
 | |
 Select menu bar it | 1 1. Start... |press Enter.
 | 2. Stop... |
 | 3. Display |
 | |
 # # # +--- +--+
 ## ## ### | F1 | Start Task Initiator |
 ### ### ## +--- | |
 #### #### ## | Type Initiation Queue Name. Then press Enter. |##
 ## ## ## ## ## | |
 ## ## ## ## ## # | Initiation Queue Name (IQ) |##
| CICSð1.INITIATION.QUEUE2 |
| |#
 +--+
 | F1=Help F12=Cancel |ð
 +--+

 (C) Copyright IBM Corporation 1993, 1999. All rights reserved.

 F1=Help F3=Exit
á ñ

Figure 37. Starting an instance of CKTI

3 Trigger monitor in MQSeries terminology.

136 System Management Guide

 Starting CKTI

Starting CKTI from the CICS command line
The command shown in Figure 38 starts an instance of CKTI to serve the default
initiation queue, if defined.

CKQC STARTCKTI

Figure 38. Starting an instance of CKTI—for the default initiation queue

The command shown in Figure 39 starts an instance of CKTI to serve a specified
initiation queue.

CKQC STARTCKTI CICSð1.INITIATION.QUEUE2

Figure 39. Starting an instance of CKTI—for a specified initiation queue

Starting CKTI from a CICS application program
To start an instance of CKTI from a CICS program, the program must link to the
adapter task initiation program, CSQCSSQ. Figures 40 through 41 show suitable
LINK commands. When you do an EXEC CICS LINK to CSQCSSQ, the program
requires a terminal associated task.

 EXEC CICS LINK PROGRAM('CSQCSSQ ')
INPUTMSG('CKQC STARTCKTI ')

Figure 40. Linking to the adapter task-initiator program CSQCSSQ from CICS. This starts a
CKTI that uses the default initiation queue.

 EXEC CICS LINK PROGRAM('CSQCSSQ ')
 INPUTMSG('CKQC STARTCKTI CICSð1.INITIATION.QUEUE2')

Figure 41. Linking to the adapter task-initiator program CSQCSSQ from CICS. This starts a
CKTI that uses a named initiation queue.

Output messages from CSQCSSQ are displayed on the system console.

Note: The STARTCKTI command must be padded to 10 characters; see
“Command syntax in application programs” on page 124.

 Chapter 7. Operating the CICS adapter 137

 Stopping CKTI

Stopping an instance of CKTI
You can stop an instance of CKTI by using:

� The CICS adapter control panels
� The CICS command line
� A CICS application program

Stopping an instance of CKTI from the CICS adapter control panels
From the initial panel:

1. Select CKTI from the menu bar.

2. Select the Stop action from the pull-down menu.

3. Use the Stop Task Initiator secondary window to specify the name of the
initiation queue serviced by this instance of CKTI. If you leave the name blank,
the default initiation queue, if defined, is used.

à@ ð
Connection CKTI Task

 ------------------ +--------------------+--------------------------------------
 CKQCMð IBM MQSe | Select an action. | adapter control initial panel
 | |
 Select menu bar it | 2 1. Start... |press Enter.
 | 2. Stop... |
 | 3. Display |
 | |
 # # +--- +--+
 ## ## ### | F1 | Stop Task Initiator |
 ### ### ## +--- | |
 #### #### ## | Type Initiation Queue Name. Then press Enter. |##
 ## ## ## ## ## | |
 ## ## ## ## ## # | Initiation Queue Name (IQ) |##
| CICSð1.INITIATION.QUEUE2 |
| |#
 +--+
 | F1=Help F12=Cancel |ð
 +--+

 (C) Copyright IBM Corporation 1993, 1999. All rights reserved.

 F1=Help F3=Exit
á ñ

Figure 42. Stopping an instance of the task initiator CKTI

Stopping an instance of CKTI from the command line
The command shown in Figure 43 stops an instance of CKTI that is serving the
default initiation queue, if there is one.

CKQC STOPCKTI

Figure 43. Stopping an instance of CKTI from the command line—for the default initiation
queue

The command shown in Figure 44 stops the instance of CKTI that is serving a
specified initiation queue.

138 System Management Guide

 Stopping CKTI

CKQC STOPCKTI CICSð1.INITIATION.QUEUE2

Figure 44. Stopping an instance of CKTI from the command line—for a specified initiation
queue

Stopping an instance of CKTI from an application program
You can stop an instance of CKTI by linking to the adapter task-initiator program,
CSQCSSQ. Figures 45 through 46 show alternative LINK commands to stop an
instance of CKTI from a CICS program. The first command stops the CKTI that is
serving the default initiation queue; the second stops the CKTI serving a specified
initiation queue.

 EXEC CICS LINK PROGRAM('CSQCSSQ ')
 INPUTMSG('CKQC STOPCKTI ')

Figure 45. Stopping an instance of CKTI from a program—for the default initiation queue
from CICS

 EXEC CICS LINK PROGRAM('CSQCSSQ ')
 INPUTMSG('CKQC STOPCKTI CICSð1.INITIATION.QUEUE2')

Figure 46. Stopping an instance of CKTI from a program—for a specified initiation queue
from CICS

Note: The STOPCKTI command must be padded to 10 characters; see
“Command syntax in application programs” on page 124.

 Chapter 7. Operating the CICS adapter 139

 Displaying CKTI

Displaying the current instances of CKTI
You can use the CICS adapter control panels to display details of the current
instances of CKTI. The equivalent functionality is not available from the CICS
command line or from a CICS application program.

Displaying the current instances of CKTI from the CICS adapter
control panels

From the initial panel:

1. Select CKTI from the menu bar
2. Select the Display action from the pull-down menu

Figure 47 shows the details provided for each instance of CKTI:

� CICS task number
 � Task status
 � Thread status
� Number of API calls it has issued
� Most recent API call it has issued
� Name of the initiation queue it is serving

Press function key F1 to display help information about each of the fields in this
panel.

à@ ð
 CKQCM4 Display CKTI panel

 Read CKTI status information. Then press F12 to cancel.

 CKTI 1 to 1 of 1

Task No. Task Status Thread Status No-of-APIs Last API
 ---------- ------------- --------------- ------------ ----------
 ðððð123 Normal Msg Wait 2 MQGET

Initiation Queue Name: CICSð1.INITIATION.QUEUE1

 F1=Help F7=Backward F8=Forward F12=Cancel Enter=Refresh
á ñ

Figure 47. The CKQC Display CKTI panel

140 System Management Guide

 Displaying CICS task information

Displaying CICS task information
You can use the CICS adapter control panels to display information about CICS
tasks using MQI calls. The equivalent functionality is not available from the CICS
command line or from a CICS application program. However, you can obtain some
status information using the CKQC DISPLAY command, see “Displaying connection
status and in-flight tasks” on page 142.

Displaying CICS tasks from the CICS adapter control panels
You can display information about the CICS tasks that are currently using MQI
calls. From the initial panel:

1. Select Task from the menu bar.

2. Select an action from the pull-down menu.

Select option 1, List all tasks to obtain information about all tasks that are
currently active. To limit the scope of the display, select option 2, List from
task , to specify the starting number of the first task to be displayed.

à@ ð
 CKQCM3 Display Task panel

 Read task status information. Then press F12 to cancel.

 Tasks 1 to 3 of 3

Txn User Task Task Thread Total Res In Last Thread
Id Id No. Status Status APIs Sec API-X MQ-Call ID
 ---- -------- ----- -------- -------- ---------- --- --- ---------- --------
 PUTQ CICSUSER ððð65 Normal InQueue 1ð2 No No MQPUT1 ððð1242ð
 GETQ CICSUSER ððð67 Normal BtnCalls 22 No No MQOPEN ððð1262ð
 CKTI CICSUSER ðð123 Normal Msg Wait 2 No No MQGET ððð12C2ð

 F1=Help F7=Backward F8=Forward F12=Cancel Enter=Refresh
á ñ

Figure 48. The CKQC Display Task panel

Figure 48 shows the details provided for each CICS task:

� Transaction ID (name)
 � User ID
� CICS task number

 � Task status
 � Thread status
� Total number of API calls issued by this task
� Whether resource security checking is active for this task
� Whether this task is currently in the API-crossing exit
� Most recent API call issued by this task
� Thread ID used by MQSeries

 Chapter 7. Operating the CICS adapter 141

 Displaying CICS task information

Displaying connection status and in-flight tasks
You can use the CKQC DISPLAY command, from both the CICS command line or
from a CICS application program to display limited information about the current
connection and CICS tasks. The information from this command is returned in a
message CSQC453I, see Figure 49. This message contains:

� The name of the MQSeries subsystem.
� The status of the connection.
� The number of in-flight tasks that are still using the connection.

CSQC453I VICYð6 CSQCDSPL Status of connection to JAC2 is Connected. 2
tasks are in-flight

Figure 49. Message showing the status of a connection

To obtain more detailed information, use the CICS adapter control panels. See
“Displaying details of a connection from the CICS adapter control panels” on
page 135 and “Displaying CICS tasks from the CICS adapter control panels” on
page 141, respectively.

From the CICS command line
You can use the CKQC DISPLAY command, shown in Figure 50, from the CICS
command line.

CKQC DISPLAY

Figure 50. Displaying the status of a connection

Figure 49 shows a typical response to this command. The response messages are
sent to your CICS terminal.

From a CICS application program
Figure 51 shows the LINK command for displaying the status of a connection from
a CICS application program.

EXEC CICS LINK PROGRAM('CSQCDSPL') INPUTMSG('CKQC DISPLAY')

Figure 51. Linking to the adapter program CSQCDSPL from a CICS program

Figure 49 shows a typical output from this command. The response messages are
sent to the CKQQ queue (the transient data queue).

The COMMAREA option can be used instead of INPUTMSG but only when the
program is run at PLT time.

142 System Management Guide

 Purging tasks

Purging tasks that are using the CICS adapter
You can use the CICS CEMT transaction to purge user tasks that are using the
CICS adapter. Tasks that are waiting on the adapter respond only to CEMT SET
TASK FORCEPURGE commands—CEMT SET TASK PURGE commands are
ignored. The way the adapter handles a FORCEPURGE command depends on
the kind of wait state that the task is in:

� If a task is waiting for a message to arrive, for example, the application has
issued an MQGET WAIT call, the task is abended with code AEXY
immediately.

� If the task is waiting for an MQI request to be completed by MQSeries,
message CSQC413I is displayed on the system console.

The adapter waits for the request to complete, and then checks whether it is
suitable to abend the task:

– If the task is in a critical state, the CICS adapter lets the task continue and
ignores the attempt to purge it. This is done to preserve data and system
integrity. Message CSQC415I is displayed.

A task is in a critical state is when, for example, it is in the process of
completing phase 2 of a two-phase commit sequence.

– If the task is not in a critical state, the adapter abends it with code AEXY.
Message CSQC414I is displayed.

For information about CEMT commands, see the CICS-Supplied Transactions
manual.

 Chapter 7. Operating the CICS adapter 143

 Shutting down a connection

Shutting down a connection between MQSeries and the CICS adapter
You can shut down a connection between MQSeries and the CICS adapter by
using the CKQC transaction or an application program. There are two types of
shutdown:

 � Forced
 � Quiesced

Other forms of connection shutdown result from a termination of CICS or
MQSeries. Table 13 summarizes how the adapter handles different forms of
connection shutdown.

Table 13. Shutting down a CICS adapter connection

Method of shutdown How this is handled by the adapter

CKQC STOP
(A quiesced shutdown)

Mark the status of the adapter as Quiescing.
Allow both active and waiting tasks to complete.
Allow syncpoint. Do not allow calls from a new
task. The last task initiates disconnection from
MQSeries.

CKQC STOP FORCE Mark the status of the adapter as StoppingForce.
Disconnect from MQSeries. Resume waiting
tasks. Fail any in-flight or following MQI calls.

CICS warm shutdown Issue message CSQC411I. Initiate a quiesced
shutdown of the connection; see CKQC STOP,
above.

CICS immediate shutdown Issue message CSQC410I. Any in-flight tasks
using MQSeries are backed out.

CICS abend Issue message CSQC412I.

MQSeries quiesced Initiate a quiesced shutdown of the connection;
see CKQC STOP, above.

MQSeries abend or forced
shutdown

Initiate a forced shutdown of connection; see
CKQC STOP FORCE, above.

Notes:

1. If the connection is not active (for example, quiesced) when CICS or MQSeries
shuts down, no action is taken and no messages are issued.

2. “Waiting tasks” includes instances of CKTI, which you must stop before shutdown
completes.

 Orderly shutdown
An orderly shutdown of the connection lets each CICS transaction terminate before
thread subtasks are detached. When you use this method, there should be no
in-doubt units of work when you reconnect CICS. An orderly termination occurs in
each of the following situations:

� The CICS terminal operator issues a CKQC STOP command. CICS and
MQSeries remain active. The command can be issued from the command line,
from a terminal using the CKQC panels, or from a program, see page 131.

� The CICS terminal operator issues the CICS command:

CEMT PERFORM SHUTDOWN

144 System Management Guide

 Shutting down a connection

For information about the CEMT PERFORM SHUTDOWN command, see the
CICS-Supplied Transactions manual.

� MQSeries is quiesced by the command:

+cpf STOP QMGR MODE(QUIESCE)

This stops the MQSeries subsystem, allows the currently identified tasks to
continue normal execution, and does not allow new tasks to identify themselves
to MQSeries. CICS remains active.

 Forced shutdown
A forced shutdown of the connection can abend CICS transactions connected to
MQSeries. Therefore, there might be in-doubt units of work when the system is
reconnected. A forced shutdown occurs in each of these situations:

� The CICS terminal operator issues the CKQC STOP FORCE command. The
command can be issued from the command line, from a terminal using the
CKQC panels, or from a program, see page 131.

� The CICS terminal operator issues the CICS immediate termination command:

CEMT PERFORM SHUTDOWN IMMEDIATE

For information about this command, see the CICS-Supplied Transactions
manual.

MQSeries remains active.

� The MQSeries forced termination command is issued:

+cpf STOP QMGR MODE(FORCE) or +cpf STOP QMGR MODE(RESTART)

CICS remains active.

� An MQSeries abend occurs. CICS remains active.

� CICS abend occurs. MQSeries remains active.

 Chapter 7. Operating the CICS adapter 145

 Shutting down a connection

146 System Management Guide

 Introduction to the CICS bridge

Chapter 8. The MQSeries-CICS bridge

This chapter describes the CICS bridge.

This chapter contains the following sections:

� “Introduction to the CICS bridge”
� “Customizing the CICS bridge” on page 152
� “Starting the CICS bridge” on page 154
� “Shutting down the CICS bridge” on page 155

Introduction to the CICS bridge
The MQSeries-CICS bridge enables an application, not running in a CICS
environment, to run a program or transaction on CICS and get a response back.
This non-CICS application can be run from any environment that has access to an
MQSeries network that encompasses MQSeries for OS/390.

A program is a CICS program that can be invoked using the EXEC CICS LINK
command. It must conform to the DPL subset of the CICS API, that is, it must not
use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This
transaction can use BMS or TC commands. It can be conversational or part of a
pseudoconversation. It is permitted to issue syncpoints. For further details about
the transactions that can be run, see Part 5 of the CICS Internet and External
Interfaces Guide (Bridging to 3270 transactions).

When to use the CICS bridge
The CICS bridge allows an application to run a single CICS program or a ‘set’ of
CICS programs (often referred to as a unit of work). It caters for the application
that waits for a response to come back before it runs the next CICS program
(synchronous processing) and for the application that requests one or more CICS
programs to run, but doesn't wait for a response (asynchronous processing).

The CICS bridge also allows an application to run a 3270-based CICS transaction,
without knowledge of the 3270 data stream.

The CICS bridge uses standard CICS and MQSeries security features and can be
configured to authenticate, trust, or ignore the requestor's user ID.

Given this flexibility, there any many instances where the CICS bridge can be used.
For example, when you want:

� To write a new MQSeries application that needs access to logic or data (or
both) that reside on your CICS server.

� To be able to run CICS programs from a Lotus Notes application.

� To be able to access your CICS applications from

– Your MQSeries Classes for Java client application
– A web browser using the MQSeries Internet gateway

 Copyright IBM Corp. 1993,1999 147

 Introduction to the CICS bridge

For information about how to write an MQSeries-CICS bridge application, see the
MQSeries Application Programming Guide.

System configuration for the CICS bridge
When you are setting your system up, you should ensure that:

� Both MQSeries and CICS are running in the same OS/390 image.

� The MQSeries request queue is local to the CICS bridge, however the
response queue can be local or remote.

� The CICS bridge tasks run in the same CICS as the bridge monitor. The user
programs can be in the same or a different CICS system.

� The MQSeries-CICS adapter is enabled.

Running CICS DPL programs
Data necessary to run the program is provided in the MQSeries message. The
bridge builds a COMMAREA from this data, and runs the program using EXEC
CICS LINK. Figure 52 shows the step sequence taken to process a single
message to run a CICS DPL program:

OS/390

CICSMQSeries

user
program

CICS LINK
5.EXEC

CICS RETURN
6.EXEC

bridge task

CICS DPL

STARTCICS
3.EXEC

queue

Transmission

queue

Request

request
4.MQGET

7.MQPUT
response

request
browse

2.MQGET

message
1.request

message
response

client
server or
MQSeries

monitor
bridge
CICS

Figure 52. Components and data flow to run a CICS DPL program

148 System Management Guide

 Introduction to the CICS bridge

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS program, is put on the request
queue.

2. The CICS bridge monitor task, which is constantly browsing the queue,
recognizes that a ‘start unit of work’ message is waiting
(CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS DPL bridge task is
started with the appropriate authority (see “Security considerations for the CICS
bridge” on page 447 for more information).

4. The CICS DPL bridge task removes the message from the request queue.

5. The CICS DPL bridge task builds a COMMAREA from the data in the message
and issues an EXEC CICS LINK for the program requested in the message.

6. The program returns the response in the COMMAREA used by the request.

7. The CICS DPL bridge task reads the COMMAREA, creates a message, and
puts it on the reply-to queue specified in the request message. All response
messages (normal and error, requests and replies) are put to the reply-to
queue with default context.

8. The CICS DPL bridge task ends.

A unit of work can be just a single user program, or it can be multiple user
programs. There is no limit to the number of messages you can send to make up
a unit of work.

In this scenario, a unit of work made up of many messages works in the same way,
with the exception that the CICS bridge task waits for the next request message in
the final step unless it is the last message in the unit of work.

Running CICS 3270 transactions
Data necessary to run the transaction is provided in the MQSeries message. The
CICS transaction runs as if it has a real 3270 terminal, but instead uses one or
more MQ messages to communicate between the CICS transaction and the
MQSeries application

Unlike traditional 3270 emulators, the bridge does not work by replacing the
VTAM flows with MQSeries messages. Instead, the message consists of a
number of parts called vectors, each of which corresponds to an EXEC CICS
request. Therefore the application is talking directly to the CICS transaction, rather
than via an emulator, using the actual data used by the transaction (known as
application data structures or ADSs).

Figure 53 on page 150 shows the step sequence taken to process a single
message to run a CICS 3270 transaction.

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS transaction, is put on the request
queue.

2. The CICS bridge monitor task, which is constantly browsing the queue,
recognizes that a ‘start unit of work’ message is waiting
(CorrelId=MQCI_NEW_SESSION).

 Chapter 8. The MQSeries-CICS bridge 149

 Introduction to the CICS bridge

OS/390

CICSMQSeries

bridge exit
MQ - CICS

request
4.MQGET

7.MQPUT
response

request
browse

2.MQGET
monitor
bridge
CICS

task
3270 bridge

CICS

transaction
User

message
1. Request

Response
message

queue
Transmission

queue
Request

client
server or
MQSeries

3.EXEC
CICS
START

5

6

Figure 53. Components and data flow to run a CICS 3270 transaction

3. Relevant authentication checks are made, and a CICS 3270 bridge task is
started with the appropriate authority (see “Security considerations for the CICS
bridge” on page 447 for more information).

4. The MQ-CICS bridge exit removes the message from the queue and changes
task to run a user transaction

5. Vectors in the message provide data to answer all terminal related input EXEC
CICS requests in the transaction.

6. Terminal related output EXEC CICS requests result in output vectors being
built.

7. The MQ-CICS bridge exit builds all the output vectors into a single message
and puts this on the reply-to queue.

8. The CICS 3270 bridge task ends.

Note: The CICS bridge exit is an MQSeries supplied CICS exit associated with
the bridge transaction.

A traditional CICS application usually consists of one or more transactions linked
together as a pseudoconversation. In general, each transaction is started by the
3270 terminal user entering data onto the screen and pressing an AID key. This
model of application can be emulated by an MQSeries application. A message is
built for the first transaction, containing information about the transaction, and input

150 System Management Guide

 Introduction to the CICS bridge

vectors. This is put on the queue. The reply message will consist of the output
vectors, the name of the next transaction to be run, and a token that is used to
represent the pseudoconversation. The MQSeries application builds a new input
message, with the transaction name set to the next transaction and the facility
token set to the value returned on the previous message. Vectors for this second
transaction are added to the message, and the message put on the queue. This
process is continued until the application ends.

An alternative approach to writing CICS applications is the conversational model.
In this model, the original message might not contain all the data to run the
transaction. If the transaction issues a request that cannot be answered by any of
the vectors in the message, a message is put onto the reply-to queue requesting
more data. The MQSeries application gets this message and puts a new message
back to the queue with a vector to satisfy the request.

For more information about this, see the CICS Internet and External Interfaces
Guide.

 Chapter 8. The MQSeries-CICS bridge 151

 Customizing the CICS bridge

Customizing the CICS bridge
This section describes what you have to do to customize the MQSeries-CICS
bridge. The bridge is described in “Introduction to the CICS bridge” on page 147.

 Prerequisite APARs

To run 3270 transactions, you must be using CICS Transaction Server for
OS/390 Release 2 or later, with APARs PQ13011 and PQ13012 applied.

Before you can run the bridge you must ensure that your OS/390 system has both
the CICS and MQSeries components in place:

1. On your CICS system:

a. Run the resource definition utility DFHCSDUP, using the sample
thlqual.SCSQPROC(CSQ4CKBC) as input, to define the bridge transactions
and programs:

CKBR Bridge monitor transaction
CSQCBR00 Bridge monitor program
CKBP Bridge ProgramLink transaction
CSQCBP00 Bridge ProgramLink program
CSQCBP10 Bridge ProgramLink abend handler program
CSQCBTX Bridge error messages
CSQCBE00 3270 bridge exit for MQSeries
CBR1 through CBR8 3270 bridge transaction definitions

b. Add the group, CSQCKB, to your startup group list.

Notes:

a. The bridge uses CICS temporary storage IDs with the prefix CKB. You
should make sure these are not recoverable.

b. By default, your CICS DPL programs will be run under transaction code
CKBP. You will need to change the TASKDATALOC attribute to 'BELOW'
if you are going to run 24-bit programs, otherwise you will get a CICS
abend AEZC. If you wish to run your programs under different transaction
codes you will need to install copies of the definition of CKBP, changing the
transaction name to the ones of your choice. DPL bridge transactions must
not be routed to a remote system.

2. On your MQSeries system:

a. Define a local queue for the request messages.

You can use the sample thlqual.SCSQPROC(CSQ4CKBM) to define a
queue named SYSTEM.CICS.BRIDGE.QUEUE, or define your own. If you
define your own, you must set the following attributes:

SHARE
So that both the monitor and the bridge tasks can read it.

MSGDLVSQ(FIFO)
So that messages are processed in FIFO sequence (not priority
sequence).

152 System Management Guide

 Customizing the CICS bridge

If recovery is required, set the following attributes:

DEFPSIST(YES)
Set messages as persistent on the queue by default.

HARDENBO
Set HARDENBO to ensure that messages are not re-processed
erroneously after an emergency restart.

b. Define one or more queues to hold the responses, as required. If your
response queue is remote, you must define a transmission queue to hold
the responses before they are forwarded to the response queue.

 3. Security:

You might need to add RACF definitions, depending on the authentication
option you choose to use. See “Security considerations for the CICS bridge”
on page 447 for more information about this.

If the bridge is to be accessed remotely from MQSeries for OS/390, you need
channel and transmission queue definitions, and a remote queue definition for the
request queue. For more information about using remote queues see the
MQSeries Intercommunication manual.

Note: The MQSeries queue defined to hold requests for the CICS bridge must not
be used by any other application. Each CICS bridge monitor task started requires
its own MQSeries queue to hold requests.

 Chapter 8. The MQSeries-CICS bridge 153

 Starting the CICS bridge

Starting the CICS bridge
To start the bridge, you need to run the CKBR transaction providing a maximum of
three parameters:

� Q=qqq, where qqq is the name of the queue holding requests. If you don't
specify one, the default is:

SYSTEM.CICS.BRIDGE.QUEUE

Remember that names of objects within MQSeries are case-sensitive.

� WAIT=nnn, where nnn is the number of seconds that you want the bridge task
to wait for second and subsequent requests before timing out when processing
a unit of work that runs many user programs.

The default wait time is unlimited.

You are recommended to specify a wait time. If you don't, the CICS bridge
might inhibit CICS or MQSeries shut down.

� AUTH=xxx, where xxx is the security option. The default is LOCAL. See
“Security considerations for the CICS bridge” on page 447 for more
information.

Start the CKBR task running by using one of the following methods:

� Input a single line from a terminal (3270 or other). Note that the terminal is not
freed until the monitor ends. The format is:

<trancode> <parameters>

CKBR Q = <queue name>, AUTH = <auth option>, WAIT = nnn

For example:

CKBR Q = MyQueue, AUTH = IDENTIFY, WAIT = 3ð

� Issue an EXEC CICS START for the CKBR program with the parameters as
data.

� Issue an EXEC CICS LINK to the program CSQCBR00 with the parameters as
data in the commarea.

� Use TRIGGER TRIGTYPE(FIRST) from the bridge request queue to a process
specifying APPLICID(CKBR), with any parameters for the AUTH and WAIT
options in USERDATA.

The level of security you want to use will influence how you start the monitor task.
See “Security considerations for the CICS bridge” on page 447 for more
information on the security options available to you.

 Tuning considerations
You can control the throughput of the bridge by putting the bridge transaction,
CKBP, in a class of its own and setting the CLASSMAXTASK to suit your
requirements.

If a high volume of requests is expected, you could consider starting a second or
subsequent monitor task. To do this, you must create another request queue for
the sole use of this monitor (and the bridge tasks it starts).

154 System Management Guide

 Shutting down the CICS bridge

Shutting down the CICS bridge
There are various ways in which you can shut down the CICS bridge:

� By altering the attributes of the request queue by setting GET(DISABLED)

� By shutting CICS down

� By shutting MQSeries down

Whichever method you choose, it will attempt to allow all the requests in progress
to complete first.

However in the event that this is not possible, the problems encountered are
reported on the CICS CSMT log.

Note: The CICS bridge does not stop CICS or MQSeries if either of them are in
the process of shutting down, unless bridge tasks started with WAIT_UNLIMITED
have MQGET calls outstanding for second or subsequent messages in a unit of
work.

Restarting the monitor

The monitor requires exclusive use of the request queue during its initialization,
so the monitor cannot be restarted until all bridge tasks for the queue have
terminated.

 Chapter 8. The MQSeries-CICS bridge 155

 Shutting down the CICS bridge

156 System Management Guide

Part 4. MQSeries and IMS

Chapter 9. The MQSeries-IMS adapter . 159
Introduction to the IMS adapter . 159

Using the adapter . 159
The IMS trigger monitor . 160

Setting up the IMS adapter . 161
Defining MQSeries to IMS . 162
Defining the MQSeries subsystem to the IMS adapter 165
The IMS trigger monitor . 167

Chapter 10. Operating the IMS adapter . 169
Controlling IMS connections . 169
Connecting from the IMS control region . 170

Initializing the adapter and connecting to MQSeries 170
Thread attachment . 171

Displaying in-doubt units of recovery . 172
Recovering in-doubt units of recovery . 172
Resolving residual recovery entries . 173

Controlling IMS dependent region connections 174
Connecting from dependent regions . 174
Region error options . 174
Monitoring the activity on connections . 174
Disconnecting from dependent regions . 175

Disconnecting from IMS . 176
Controlling the IMS trigger monitor . 177

Starting CSQQTRMN . 177
Stopping CSQQTRMN . 178

Chapter 11. The MQSeries-IMS bridge . 179
Introduction to the IMS bridge . 179

What is OTMA? . 179
Submitting IMS transactions from MQSeries 180

Customizing the IMS bridge . 181
Controlling the IMS bridge . 182

Controlling IMS connections . 182
Controlling bridge queues . 183
Deleting messages from IMS . 183
Resynchronizing the IMS bridge . 184

Security . 185

 Copyright IBM Corp. 1993,1999 157

158 System Management Guide

 IMS adapter

Chapter 9. The MQSeries-IMS adapter

This chapter introduces the MQSeries-IMS adapter (also referred to as the IMS
adapter). It contains these sections:

� “Introduction to the IMS adapter”
� “Setting up the IMS adapter” on page 161

Introduction to the IMS adapter
The MQSeries adapters enable different application environments to send and
receive messages through a message queuing network. The IMS adapter is the
interface between IMS application programs and an MQSeries subsystem. It
makes it possible for IMS application programs to use the MQI.

The IMS adapter provides access to MQSeries resources for programs running in:

� Task (TCB) mode
 � Problem state
 � Non-cross-memory mode
� Non-access register mode

The adapter provides a connection thread from an application task control block
(TCB) to MQSeries.

The adapter supports a two-phase commit protocol for changes made to resources
owned by MQSeries with IMS acting as the syncpoint coordinator.

The adapter also provides a trigger monitor transaction (CSQQTRMN). This is
described in “The IMS trigger monitor” on page 160.

Using the adapter
The application programs and the IMS adapter run in the same address space.
MQSeries for OS/390 is a separate OS/390 subsystem, in its own address space.

Each program that issues one or more MQI calls must be link-edited to a suitable
IMS language interface module, and, unless it uses dynamic MQI calls, the
MQSeries-supplied stub program, CSQQSTUB. When the application issues an
MQI call, the stub transfers control to the adapter through the IMS external
subsystem interface, which manages the processing of the request by the message
queue manager.

Note: If the adapter detects an unexpected MQSeries subsystem error, it issues
an OS/390 SNAP dump to DDname CSQSNAP, and issues reason code
MQRC_UNEXPECTED_ERROR to the application.

If this occurs, rerun the application with a CSQSNAP DD statement included
in the IMS dependent region JCL, and contact your IBM support center.

 Copyright IBM Corp. 1993,1999 159

 IMS adapter

The IMS trigger monitor
CSQQTRMN is an MQSeries-supplied IMS application that starts an IMS
transaction when an MQSeries event occurs, for example, when a message is put
onto a specific queue.

How it works
When a message is put onto a message queue, a trigger is generated if the trigger
conditions are met. The queue manager then writes a message (containing some
user defined data), known as a trigger message, to the initiation queue that has
been specified for that message queue. In an IMS environment, an instance of
CSQQTRMN can be started to monitor an initiation queue and to retrieve the
trigger messages from it as they arrive. Typically, CSQQTRMN schedules another
IMS transaction by an ISRT to the IMS message queue. The IMS application reads
the message from the message queue and then processes it. CSQQTRMN must
run as a non-message BMP.

Each copy of CSQQTRMN services a single initiation queue. Once started, the
trigger monitor runs until MQSeries or IMS ends.

The APPLCTN macro for CSQQTRMN must specify SCHDTYP=PARALLEL.

Because the trigger monitor is a batch-oriented BMP, IMS transactions started by
the trigger monitor will contain:

� Blanks in the LTERM field of the IOPCB
� The PSB name of the trigger monitor BMP in the Userid field of the IOPCB

If the target IMS transaction is RACF protected, you might need to define
CSQQTRMN as a user ID to RACF.

160 System Management Guide

 Setting up the IMS adapter

Setting up the IMS adapter
This section tells you how to make the MQSeries-IMS adapter (referred to in this
book as the IMS adapter) available to your IMS subsystem. If you are not familiar
with tailoring an IMS subsystem, see the IMS Customization Guide.

To make the IMS adapter available to IMS applications, follow these steps:

1. Define MQSeries to IMS as an external subsystem using the IMS external
subsystem attach facility (ESAF). See “Defining MQSeries to IMS” on
page 162.

2. Include the MQSeries load library thlqual.SCSQAUTH in the JOBLIB or
STEPLIB concatenation in the JCL for your IMS control region and for any
dependent region that connects to MQSeries. If your JOBLIB or STEPLIB is
not authorized, also include it in the DFSESL concatenation after the library
containing the IMS modules (usually IMS RESLIB).

Also include thlqual.SCSQANLx (where x is the language letter).

3. Copy the MQSeries assembler program CSQQDEFV from thlqual.SCSQASMS
to a user library.

4. The supplied program, CSQQDEFV, contains one subsystem name CSQ1
identified as default with an IMS language interface token (LIT) of MQM1. You
can retain this name for testing and installation verification. For production
subsystems, you can change the NAME=CSQ1 to your own subsystem name
or use CSQ1. You can add further subsystem definitions as required. See
“Defining the MQSeries subsystem to the IMS adapter” on page 165.

5. Assemble and link-edit the program to produce the CSQQDEFV load module.
For the assembly, include the library thlqual.SCSQMACS in your SYSLIB
concatenation; use the link-edit parameters RENT,AMODE=31,RMODE=ANY. This is
shown in the sample JCL in thlqual.SCSQPROC(CSQ4DEFV).

6. Include the user library containing the module CSQQDEFV that you created in
the JOBLIB or STEPLIB concatenation in the JCL for your IMS control region
and for any dependent region that connects to MQSeries. If you do not do this,
you will receive a user 3041 abend from IMS.

7. If you want to use dynamic MQI calls (described in the MQSeries Application
Programming Guide), build the dynamic stub, as shown in Figure 54 on
page 162.

8. If you want to use the IMS trigger monitor, define the IMS trigger monitor
application CSQQTRMN, and perform PSBGEN and ACBGEN. See “The IMS
trigger monitor” on page 167.

9. If you are using RACF to protect resources in the OPERCMDS class, ensure
that your MQSeries system has authority to issue the MODIFY command to
any IMS system to which it might connect.

 Chapter 9. The MQSeries-IMS adapter 161

 Setting up the IMS adapter

//DYNSTUB EXEC PGM=IEWL,PARM='RENT,REUS,MAP,XREF'
//SYSPRINT DD SYSOUT=\
//ACSQMOD DD DISP=SHR,DSN=thlqual.SCSQLOAD
//IMSLIB DD DISP=SHR,DSN=ims.reslib
//SYSLMOD DD DISP=SHR,DSN=private.load4

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,1)
//SYSLIN DD \
 INCLUDE ACSQMOD(CSQQSTUB)
INCLUDE IMSLIB (DFSLIððð)
ALIAS MQCONN,MQDISC MQI entry points
ALIAS MQGET,MQPUT,MQPUT1 MQI entry points
ALIAS MQOPEN,MQCLOSE MQI entry points
ALIAS MQBACK,MQCMIT MQI entry points
ALIAS CSQBBAK,CSQBCMT MQI entry points
ALIAS MQINQ,MQSET MQI entry points
ALIAS DFSPLI,PLITDLI IMS entry points
ALIAS DFSCOBOL,CBLTDLI IMS entry points
ALIAS DFSFOR,FORTDLI IMS entry points
ALIAS DFSASM,ASMTDLI IMS entry points
ALIAS DFSPASCL,PASTDLI IMS entry points
ALIAS DFHEIð1,DFHEI1 IMS entry points
ALIAS DFSAIBLI,AIBTDLI IMS entry points
ALIAS DFSESS,DSNWLI,DSNHLI IMS entry points

 MODE AMODE(31),RMODE(ANY) Note RMODE
 NAME CSQQDYNS(R)
/\

Figure 54. Sample JCL to link-edit the dynamic call stub. This includes the IMS language
interface module and the MQSeries IMS stub CSQQSTUB.

Defining MQSeries to IMS
An MQSeries instance must be defined to the control region, and to each
dependent region accessing that MQSeries subsystem. To do this, you must
create a subsystem member (SSM) in the IMS.PROCLIB library, and identify the
SSM to the applicable IMS regions.

Placing the subsystem member entry in IMS.PROCLIB
Each SSM entry in IMS.PROCLIB defines a connection from an IMS region to a
different subsystem.

To name an SSM member, concatenate the value (one to four alphanumeric
characters) of the IMSID field of the IMS IMSCTRL macro with any name (one to
four alphanumeric characters) defined by your site.

One SSM member can be shared by all of the IMS regions, or a specific member
can be defined for each region. This member contains as many entries as there
are connections to external subsystems. Each entry is an 80-character record.

4 Specify the name of a library accessible to IMS applications that wish to make dynamic calls to MQSeries.

162 System Management Guide

 Setting up the IMS adapter

Positional parameters: The fields in this entry are:

SSN,LIT,ESMT,RTT,REO,CRC

where:

SSN Specifies the MQSeries subsystem name. It is required, and must contain
one through four characters. This name must be the name you specified in
the subsystem name table (see “Updating the subsystem name table” on
page 41).

LIT Specifies the language interface token (LIT) supplied to IMS. This field is
required, its value must match one in the CSQQDEFV module.

ESMT Specifies the external subsystem module table (ESMT). This table
specifies which attachment modules must be loaded by IMS. CSQQESMT
is the required value for this field.

RTT This option is not supported by MQSeries.

REO Specifies the region error option (REO) to be used if an IMS application
tries to reference a non-operational external subsystem or if resources are
unavailable at create thread time. This field is optional and contains a
single character, which can be:

R Passes a return code to the application, indicating that the request for
MQSeries services failed.

Q Abends the application with an abend code U3051, backs out activity to
the last commit point, does a PSTOP of the transaction, and requeues
the input message. This option only applies when an IMS application
tries to reference a non-operational external subsystem or if the
resources are unavailable at create thread time.

MQSeries completion and reason codes are returned to the application
if the MQSeries problem occurs while MQSeries is processing the
request; that is, after the adapter has passed the request on to
MQSeries.

A Abends the application with an abend code of U3047 and discards the
input message. This option only applies when an IMS application tries
to reference a non-operational external subsystem or if the resources
are unavailable at create thread time.

MQSeries completion and reason codes are returned to the application
if the MQSeries problem occurs while MQSeries is processing the
request; that is, after the adapter has passed the request on to
MQSeries.

CRC This option can be specified but is not used by MQSeries.

 Chapter 9. The MQSeries-IMS adapter 163

 Setting up the IMS adapter

An example SSM entry is:

CSQ1,MQM1,CSQQESMT,,R,

where:

CSQ1 The default subsystem name as supplied with MQSeries. You can
change this to suit your installation.

MQM1 The default LIT as supplied in CSQQDEFV.
CSQQESMT The external subsystem module name. You must use this value.
R REO option.

Keyword parameters: MQSeries parameters can be specified in keyword format;
to do this you must specify SST=DB2. Other parameters are as described in
“Positional parameters” on page 163, and shown in the following example:

SST=DB2,SSN=SYS3,LIT=MQM3,ESMT=CSQQESMT

where:

SYS3 The subsystem name
MQM3 The LIT as supplied in CSQQDEFV
CSQQESMT The external subsystem module name

Specifying the SSM EXEC parameter
Specify the SSM EXEC parameter in the start up procedure of the IMS control
region. This parameter specifies the one-character to four-character subsystem
member name (SSM).

If you specify the SSM for the IMS control region, any dependent region running
under the control region can attach to the MQSeries subsystem named in the
IMS.PROCLIB member specified by the SSM parameter. The IMS.PROCLIB
member name is the IMS ID (IMSID=xxxx) concatenated with the one to four
characters specified in the SSM EXEC parameter. The IMS ID is the IMSID
parameter of the IMSCTRL generation macro.

IMS lets you define as many external subsystem connections as are required.
More than one connection can be defined for different MQSeries subsystems. All
MQSeries connections must be within the same OS/390 system. For a dependent
region, you can specify a dependent region SSM or use the one specified for the
control region. You can specify different region error options (REOs) in the
dependent region SSM member and the control region SSM member. Table 14 on
page 165 shows the different possibilities of SSM specifications.

164 System Management Guide

 Setting up the IMS adapter

There is no specific parameter to control the maximum number of SSM
specification possibilities.

Table 14. SSM specifications options

SSM for
control
region

SSM for
dependent
region

Action Comments

No No None No external subsystem can be
connected.

No Yes None No external subsystem can be
connected.

Yes No Use the control region
SSM

Applications scheduled in the
region can access external
subsystems identified in the
control region SSM. Exits and
control blocks for each
attachment are loaded into the
control region and the
dependent region address
spaces.

Yes Yes
(empty)

No SSM is used for the
dependent region

Applications scheduled in this
region can access DL/I
databases only. Exits and
control blocks for each
attachment are loaded into the
control region address space.

Yes Yes (not
empty)

Check the dependent
region SSM with the
control region SSM

Applications scheduled in this
region can access only external
subsystems identified in both
SSMs. Exits and control blocks
for each attachment are loaded
into the control region and the
dependent region address
spaces.

Defining the MQSeries subsystem to the IMS adapter
The IMS adapter cannot access the IMS PROCLIB so the names of the MQSeries
subsystems and their corresponding LITs must be defined in the subsystem
definition table, CSQQDEFV. Use the supplied CSQQDEFX macro to create the
CSQQDEFV load module. Figure 55 shows the syntax of this assembler macro.

 CSQQDEFX TYPE=ENTRY|DEFAULT,NAME=subsystem,LIT=token
 or
 CSQQDEFX TYPE=END

Figure 55. CSQQDEFX macro syntax

 Chapter 9. The MQSeries-IMS adapter 165

 Setting up the IMS adapter

 Parameters
TYPE=ENTRY|DEFAULT

Specify either TYPE=ENTRY or TYPE=DEFAULT as follows:

TYPE=ENTRY
Specifies that a table entry describing an MQSeries subsystem available to an
IMS application is to be generated. If this is the first entry, the table header is
also generated, including a CSQQDEFV CSECT statement.

TYPE=DEFAULT
As for TYPE=ENTRY. The subsystem specified is the default subsystem to
be used when MQCONN specifies a name that is all blanks. There must be
only one such entry in the table.

NAME=subsystem
Specifies the name of the subsystem, as specified with MQCONN.

LIT=token
Specifies the name of the language interface token (LIT) that IMS uses to
identify the subsystem. The LIT for each CSQQDEFX entry must be unique.

Note: An MQCONN call associates the name input parameter and the hconn
output parameter with the name label and, therefore, the LIT in the
CSQQDEFV entry. Further MQSeries calls passing the hconn
parameter use the LIT from the CSQQDEFV entry identified in the
MQCONN call to direct calls to the MQSeries instance defined in the
IMS SSM PROCLIB member with that same LIT.

In summary, the name parameter on the MQCONN call identifies a LIT
in CSQQDEFV and the same LIT in the SSM member identifies an
MQSeries instance. (For information about the MQCONN call, see the
MQSeries Application Programming Reference manual.)

TYPE=END
Specifies that the table is complete. If this parameter is omitted,
TYPE=ENTRY is assumed.

Using the CSQQDEFX macro
Figure 56 shows the general layout of a subsystem definition table.

CSQQDEFX NAME=subsystem1,LIT=token1
CSQQDEFX NAME=subsystem2,LIT=token2,TYPE=DEFAULT
CSQQDEFX NAME=subsystem3,LIT=token3
 ...
CSQQDEFX NAME=subsystemN,LIT=tokenN
CSQQDEFX TYPE=END
END

Figure 56. Layout of a subsystem definition table

166 System Management Guide

 Setting up the IMS adapter

The IMS trigger monitor
Define the application to IMS using the model CSQQTAPL in the
thlqual.SCSQPROC library (see Figure 57).

Generate the PSB and ACB using the model CSQQTPSB in the
thlqual.SCSQPROC library (see Figure 58).

TITLE 'CSQQTAPL - Transaction Definition for CSQQTRMN'
 SPACE 1
\ \
\\
\ \
\ This is the application definition \
\ for the IMS Trigger Monitor BMP \
\ \
\ The class parameter on the PGMTYPE keyword can be modified \
\ to meet installation conventions. \
\ \
\\
 SPACE 1
 APPLCTN PSB=CSQQTRMN, X
 PGMTYPE=BATCH, X
 SCHDTYP=PARALLEL
 SPACE 1

Figure 57. Example CSQQTAPL transaction definition for CSQQTRMN

TITLE 'CSQQTPSB - PSB for IMS trigger monitor'
 SPACE 1
\\
\ \
\ This is the PSB for the MQSeries IMS trigger monitor program, \
\ CSQQTRMN. \
\ \
\\
 SPACE 1

PCB TYPE=TP, ALTPCB for transaction messages X
MODIFY=YES, To "triggered" IMS transaction X

 PCBNAME=CSQQTRMN
PCB TYPE=TP, ALTPCB for diagnostic messages X

MODIFY=YES, To LTERM specified or "MASTER" X
 PCBNAME=CSQQTRMG, X
 EXPRESS=YES
 PSBGEN LANG=ASSEM, X

PSBNAME=CSQQTRMN, Runs program CSQQTRMN X
 CMPAT=YES
 END

Figure 58. Example CSQQTPSB PSB definition for CSQQTRMN

 Chapter 9. The MQSeries-IMS adapter 167

 Setting up the IMS adapter

168 System Management Guide

 Controlling IMS connections

Chapter 10. Operating the IMS adapter

This chapter describes how to operate the IMS adapter, which connects MQSeries
to IMS systems.

Note: The IMS adapter does not incorporate any operations and control panels.

This chapter contains the following sections:

� “Controlling IMS connections”
� “Connecting from the IMS control region” on page 170
� “Displaying in-doubt units of recovery” on page 172
� “Controlling IMS dependent region connections” on page 174
� “Disconnecting from IMS” on page 176
� “Controlling the IMS trigger monitor” on page 177

Controlling IMS connections
IMS provides these operator commands to control and monitor the connection to
MQSeries:

/CHANGE SUBSYS
Deletes an in-doubt unit of recovery from IMS.

/DISPLAY OASN SUBSYS
Displays outstanding recovery elements.

/DISPLAY SUBSYS
Displays connection status and thread activity.

/START SUBSYS
Connects the IMS control region to an MQSeries subsystem.

/STOP SUBSYS
Disconnects IMS from an MQSeries subsystem.

/TRACE
Controls the IMS trace.

For more information about these commands, see the IMS/ESA Operator’s
Reference manual for the level of IMS that you are using.

IMS command responses are sent to the terminal from which the command was
issued. Authorization to issue IMS commands is based on IMS security.

 Copyright IBM Corp. 1993,1999 169

 Connecting from the IMS control region

Connecting from the IMS control region
IMS makes one connection from its control region to each MQSeries subsystem.
IMS can make the connection in these ways:

� Automatically during either:

– A cold-start initialization.
– A warm start of IMS, if the MQSeries connection was active when IMS was

shut down.

� In response to the IMS command:

/START SUBSYS sysid

where sysid is the MQSeries subsystem name.

This command causes the following message to be displayed at the logical terminal
(LTERM):

DFSð58 START COMMAND COMPLETED

The command is issued regardless of whether MQSeries is active or not, and does
not imply that the connection has been established.

The order in which you start IMS and MQSeries is not significant. If you start IMS
first, then, when MQSeries starts, MQSeries posts the control region modify task,
and IMS again tries to reconnect.

IMS cannot reconnect to MQSeries automatically if MQSeries is stopped with a
STOP QMGR command, the /STOP SUBSYS IMS command, or an abnormal end.

Therefore, you must make the connection by using the /START SUBSYS IMS
command.

Initializing the adapter and connecting to MQSeries
The adapter is a set of modules loaded into the IMS control and dependent
regions, using the IMS external subsystem attach facility.

This procedure initializes the adapter and connects to MQSeries:

1. Read the subsystem member (SSM) from IMS.PROCLIB. The SSM chosen is
an IMS EXEC parameter. There is one entry in the member for each
MQSeries subsystem to which IMS can connect. Each entry contains control
information about an MQSeries adapter.

2. Load the IMS adapter.

Note: IMS loads one copy of the adapter modules for each MQSeries
instance that is defined in the SSM member.

3. Attach the external subsystem task for MQSeries.

4. Run the adapter with the CTL EXEC parameter (IMSID) as the connection
name.

The process is the same whether the connection is part of initialization or a result
of the /START SUBSYS IMS command.

170 System Management Guide

 Connecting from the IMS control region

If MQSeries is active when IMS tries to make the connection, the following
messages are sent:

� To the OS/390 console:

DFS3613I ESS TCB INITIALIZATION COMPLETE

� To the IMS master terminal:

CSQQðððI IMS/TM imsid connected to queue manager ssnm

When IMS tries to make the connection and MQSeries is not active, the following
messages are sent to the IMS master terminal each time an application makes an
MQI call:

CSQQðð1I IMS/TM imsid not connected to queue manager ssnm.
Notify message accepted

DFS36ð7I MQM1 SUBSYSTEM ID EXIT FAILURE, FC = ð286, RC = ð8,
JOBNAME = IMSEMPR1

If you get DFS3607I messages when you start the connection to IMS or on system
startup, this indicates that MQSeries is not available. To prevent a large numbers
of messages being generated, you must do one of the following:

1. Start the relevant MQSeries subsystem.

2. Issue a /STOP SUBSYS IMS command so that IMS does not expect to connect to
the MQSeries subsystem.

If you do neither, a DFS2607I message and the associated CSQQ001I message
are issued each time a job is scheduled in the region and each time a connection
request to MQSeries is made by an application.

 Thread attachment
In an MPP or IFP region, IMS makes a thread connection when the first application
program is scheduled into that region, even if that application program does not
make an MQSeries call. In a BMP region, the thread connection is made when the
application makes its first MQSeries call (MQCONN). This thread is retained for
the duration of the region or until the connection is stopped.

For both the message driven and non-message driven regions, the recovery thread
cross-reference identifier, Thread-xref, associated with the thread is:

PSTid + PSBname

where:

PSTid Partition specification table region identifier
PSBname Program specification block name

You can use connection IDs as unique identifiers in MQSeries commands; if you
do, MQSeries automatically inserts these IDs into any operator message that it
generates.

 Chapter 10. Operating the IMS adapter 171

 Displaying in-doubt units of recovery

Displaying in-doubt units of recovery
The operational steps used to list and recover in-doubt units of recovery are
discussed here for relatively simple cases only. The subject of in-doubt units of
recovery is treated in more detail in Chapter 16, “Understanding termination and
restart” on page 279.

If MQSeries ends abnormally while connected to IMS, it is possible for IMS to
commit or back out work without MQSeries being aware of it. When MQSeries
restarts, that work is termed in doubt. A decision must be made about the status of
the work.

To display a list of in-doubt units of recovery, issue the command:

+cpf DISPLAY THREAD(\) TYPE(INDOUBT)

MQSeries responds with the following messages:

CSQV4ð1I +cpf DISPLAY THREAD REPORT FOLLOWS -
CSQV4ð6I +cpf INDOUBT THREADS - 154
NAME THREAD-XREF URID NID
IMSJ ððð2MQSPRG1 IMSJ.56ðððððððð
IMSJ ððð1MQSINQ IMSJ.57ðððððððð
DISPLAY THREAD REPORT COMPLETE
CSQ9ð22I +cpf CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

where:

NAME The connection name, which is the IMS system ID (the IMSID
parameter from the region JCL).

THREAD-XREF
The associated thread cross-reference, see “Thread attachment” on
page 171.

NID The associated net-node.number taken from the IMS recovery
token, where net-node is the IMS system ID (with trailing blanks
suppressed), number is the OASN and commit number (leading
zeros suppressed).

For a formal explanation of the displayed list, see the description of message
CSQV406I in the MQSeries for OS/390 Messages and Codes manual.

Recovering in-doubt units of recovery
To recover in-doubt units of recovery, issue this command:

+cpf RESOLVE INDOUBT(connection-name) ACTION(COMMIT|BACKOUT)
 NID(net-node.number)

172 System Management Guide

 Displaying in-doubt units of recovery

where:

connection-name The IMS system ID.

ACTION Indicates whether to commit (COMMIT) or back out
(BACKOUT) this unit of recovery.

net-node.number The associated net-node.number.

One of the following messages is generated after the RESOLVE INDOUBT command:

CSQV414I +cpf THREAD network-id COMMIT SCHEDULED

CSQV415I +cpf THREAD network-id BACKOUT SCHEDULED

Resolving residual recovery entries
At given times, IMS builds a list of residual recovery entries (RREs). RREs are
units of recovery about which MQSeries could be in doubt. They arise in several
situations:

� If MQSeries is not operational, IMS has RREs that cannot be resolved until
MQSeries is operational. These RREs are not a problem.

� If MQSeries is operational and connected to IMS, and if IMS backs out the
work that MQSeries has committed, the IMS adapter issues message
CSQQ010E. If the data in the two systems must be consistent, there is a
problem. Resolving it is discussed in “Recovering IMS units of recovery
manually” on page 288.

� If MQSeries is operational and connected to IMS, there might still be RREs
even though no messages have informed you of this problem. After the
MQSeries connection to IMS has been established, you can issue the following
IMS command to find out if there is a problem:

/DISPLAY OASN SUBSYS sysid

To purge the RRE, issue one of the following IMS commands:

/CHANGE SUBSYS sysid RESET
/CHANGE SUBSYS sysid RESET OASN nnnn

where nnnn is the originating application sequence number listed in response to
your +cpf DISPLAY command. This is the schedule number of the program
instance, giving its place in the sequence of invocations of that program since the
last IMS cold start. IMS cannot have two in-doubt units of recovery with the same
schedule number.

These commands reset the status of IMS; they do not result in any communication
with MQSeries.

 Chapter 10. Operating the IMS adapter 173

 Controlling IMS dependent region connections

Controlling IMS dependent region connections
Controlling IMS dependent region connections involves these activities:

� Connecting from dependent regions
� Region error options
� Monitoring the activity on connections
� Disconnecting from dependent regions

Connecting from dependent regions
The IMS adapter used in the control region is also loaded into dependent regions.
A connection is made from each dependent region to MQSeries. This connection
is used to coordinate the commitment of MQSeries and IMS work. To initialize and
make the connection, IMS does the following:

1. It reads the subsystem member (SSM) from IMS.PROCLIB.

A subsystem member can be specified on the dependent region EXEC
parameter. If it is not specified, the control region SSM is used. If the region is
never likely to connect to MQSeries, to avoid loading the adapter, specify a
member with no entries.

2. It loads the MQSeries adapter.

For a batch message program, the load is not done until the application issues
its first messaging command. At that time, IMS tries to make the connection.

For a message-processing program region or IMS fast-path region, the attempt
is made when the region is initialized.

Region error options
If MQSeries is not active, or if resources are not available when the first messaging
command is sent from application programs, the action taken depends on the error
option specified on the SSM entry. The options are:

R The appropriate return code is sent to the application.

Q The application ends abnormally with abend code U3051. The input message
is re-queued.

A The application ends abnormally with abend code U3047. The input message
is discarded.

Monitoring the activity on connections
A thread is established from a dependent region when an application makes its first
successful MQSeries request. Information on connections and the applications
currently using them can be displayed by issuing the following command from
MQSeries:

+cpf DISPLAY THREAD (connection-name)

174 System Management Guide

 Controlling IMS dependent region connections

The command produces the following messages:

CSQV4ð1I +cpf DISPLAY THREAD REPORT FOLLOWS -
CSQV4ð2I +cpf ACTIVE THREADS -
NAME ST A REQ THREAD-XREF USERID ASID URID
name s \ ct thread-xref auth-id asid urid
name s \ ct thread-xref auth-id asid urid
DISPLAY ACTIVE REPORT COMPLETE
CSQ9ð22I +cpf CSQVDT ' DIS THREAD' NORMAL COMPLETION

For the control region, thread-xref is the special value CONTROL. For dependent
regions, it is the PSTid concatenated with the PSBname. auth-id is either the
user field from the job card, or the ID from the OS/390 started procedures table.

For an explanation of the displayed list, see the description of message CSQV402I
in the MQSeries for OS/390 Messages and Codes manual.

IMS provides a display command to monitor the connection to MQSeries. It shows
which program is active on each dependent region connection, the LTERM user
name, and the control region connection status. The command is:

/DISPLAY SUBSYS name

The status of the connection between IMS and MQSeries is shown as one of:

 CONNECTED
 NOT CONNECTED
CONNECT IN PROGRESS

 STOPPED
STOP IN PROGRESS
INVALID SUBSYSTEM NAME=name
SUBSYSTEM name NOT DEFINED BUT RECOVERY OUTSTANDING

The thread status from each dependent region one of the following:

 CONN
CONN, ACTIVE (includes LTERM of user)

Disconnecting from dependent regions
To change values in the SSM member of IMS.PROCLIB, you disconnect a
dependent region. To do this, you must:

1. Issue the /STOP REGION IMS command
2. Update the SSM member
3. Issue the /START REGION IMS command

 Chapter 10. Operating the IMS adapter 175

 Disconnecting from IMS

Disconnecting from IMS
The connection is ended when either IMS or MQSeries terminates. Alternatively,
the IMS master terminal operator can explicitly break the connection by issuing the
following IMS command:

/STOP SUBSYS sysid

The command sends the following message to the terminal that issued it, usually
the master terminal operator (MTO):

DFSð58I STOP COMMAND IN PROGRESS

The /START SUBSYS sysid IMS command is required to re-establish the connection.

Note: The /STOP SUBSYS IMS command will not be completed if an IMS trigger
monitor is running.

176 System Management Guide

 Controlling the IMS trigger monitor

Controlling the IMS trigger monitor
The IMS trigger monitor (the CSQQTRMN transaction) is described in “The IMS
trigger monitor” on page 160.

 Starting CSQQTRMN
1. Start a batch oriented BMP running the program CSQQTRMN for each initiation

queue you want to monitor.

2. Modify your batch JCL (step 2 in “Setting up the IMS adapter” on page 161) to
add a DDname of CSQQUT1 that points to a data set containing the following
information:

QMGRNAME=q_manager_name Comment: queue manager name
INITQUEUENAME=init_q_name Comment: initiation queue name
LTERM=lterm Comment: LTERM to remove error messages
CONSOLEMESSAGES=YES Comment: Send error messages to console

where:

q_manager_name
The name of the queue manager (if this is blank, the default nominated in
CSQQDEFV is assumed)

init_q_name
The name of the initiation queue to be monitored

lterm
The IMS LTERM name for the destination of error messages (if this is
blank, the default value is MASTER).

CONSOLEMESSAGES=YES
Requests that messages sent to the nominated IMS LTERM are also sent
to the OS/390 console. If this parameter is omitted or misspelled then the
default is NOT to send messages to the console.

3. Add a DD name of CSQQUT2 if you want a printed report of the processing of
CSQQUT1 input.

Notes:

1. The data set CSQQUT1 is defined with LRECL=80. Other DCB information is
taken from the data set. The DCB for data set CSQQUT2 is RECFM=VBA and
LRECL=125.

2. You can put only one keyword on each record. The keyword value is delimited
by the first blank following the keyword; this means that you can include
comments. An asterisk in column 1 means that the whole input record is a
comment.

3. If you misspell either of the QMGRNAME or LTERM keywords, CSQQTRMN will use
the default for that keyword.

4. Ensure that the subsystem is started in IMS (by the /START SUBSYS
command) before submitting the trigger monitor BMP job. If it is not started,
your trigger monitor job will terminate, with abend code U3042.

 Chapter 10. Operating the IMS adapter 177

 Controlling the IMS trigger monitor

 Stopping CSQQTRMN
Once started, CSQQTRMN runs until either the connection between MQSeries and
IMS is broken due to one of the following events:

 � MQSeries ending
 � IMS ending

or an OS/390 STOP jobname command is entered.

178 System Management Guide

 Introduction to the IMS bridge

Chapter 11. The MQSeries-IMS bridge

This chapter describes the IMS bridge.

This chapter contains the following sections:

� “Introduction to the IMS bridge”
� “Customizing the IMS bridge” on page 181
� “Controlling the IMS bridge” on page 182
� “Security” on page 185

Introduction to the IMS bridge
The MQSeries-IMS bridge is the component of MQSeries for OS/390 that allows
direct access from MQSeries applications to applications on your IMS system. The
bridge enables implicit MQSeries API support. This means that you can
re-engineer legacy applications that were controlled by 3270-connected terminals to
be controlled by MQSeries messages, without having to rewrite, recompile, or
re-link them. The bridge is an IMS Open Transaction Manager Access (OTMA)
client.

In bridge applications there are no MQSeries calls within the IMS application. The
application gets its input using a GET UNIQUE (GU) to the IOPCB and sends its
output using an INSERT (ISRT) to the IOPCB. MQSeries applications use the IMS
header (the MQIIH structure) in the message data to ensure that the applications
can execute as they did when driven by nonprogrammable terminals.

If you are using an IMS application that processes multi-segment messages, note
that all segments should be contained within one MQSeries message. The IMS
bridge is illustrated in Figure 59 on page 180.

A queue manager can connect to one or more IMS systems, and more than one
queue manager can connect to one IMS system. The only restriction is that they
must all belong to the same XCF group and must all be in the same sysplex.

What is OTMA?
The IMS OTMA facility is a transaction-based connectionless client/server protocol
that runs on version 5.1 of IMS. It functions as an interface for host-based
communications servers accessing IMS TM applications through the OS/390 Cross
Systems Coupling Facility (XCF).

OTMA enables clients to connect to IMS in a high performance manner enabling
the client to support interactions with IMS for a large network or large number of
sessions. OTMA is implemented in an OS/390 sysplex environment. Therefore,
the domain of OTMA is restricted to the domain of XCF. See the IMS/ESA Open
Transaction Manager Access Guide for more information.

 Copyright IBM Corp. 1993,1999 179

 Introduction to the IMS bridge

Bridge

Storage Classes

MQSeries

IMS
TP

IOPCB

IMS/ESA

O
T
M
A

IMS
TP

IOPCB

IMS/ESA

O
T
M
A

XCF

XCF

XCF Group

Figure 59. The MQSeries-IMS bridge

Submitting IMS transactions from MQSeries
To submit an IMS transaction that uses the bridge, applications put messages on
an MQSeries queue as usual. The messages contain IMS transaction data; they
can have an IMS header (the MQIIH structure) or allow the MQSeries-IMS bridge to
make assumptions about the data in the message. See the MQSeries Application
Programming Guide for more information.

MQSeries then puts the message to an IMS queue (it is queued in MQSeries first
to enable the use of syncpoints to assure data integrity). The storage class of the
MQSeries queue determines whether the queue is an OTMA queue (that is, a
queue used to transmit messages to the MQSeries-IMS bridge) and the particular
IMS partner to which the message data is sent.

Remote queue managers can also start IMS transactions by writing to these OTMA
queues on MQSeries for OS/390.

Data returned from the IMS system is written directly to the MQSeries reply-to
queue specified in the message descriptor structure (MQMD). (This might be a
transmission queue to the queue manager specified in the ReplyToQMgr field of
the MQMD.)

180 System Management Guide

 Customizing the IMS bridge

Customizing the IMS bridge
This section describes what you have to do to customize the MQSeries-IMS bridge,
and start sending messages across it to IMS. The bridge is described in
“Introduction to the IMS bridge” on page 179.

1. Define the XCF and OTMA parameters for MQSeries.

This step defines the XCF group and member names for your MQSeries
system, and other OTMA parameters. MQSeries and IMS must belong to the
same XCF group. Use the OTMACON keyword of the CSQ6SYSP macro to
tailor these parameters in the system parameter load module.

See “Using CSQ6SYSP” on page 68 for information about this.

2. Define the XCF and OTMA parameters to IMS.

This step defines the XCF group and member names for the IMS system. IMS
and MQSeries must belong to the same XCF group.

Add the following parameters to your IMS parameter list, either in your JCL or
in member DFSPBxxx in the IMS PROCLIB:

OTMA=Y
This starts OTMA automatically when IMS is started. (This is optional, if
you specify OTMA=N you can also start OTMA by issuing the IMS
command /START OTMA.)

GRNAME=
This gives the XCF group name.

This is the same as the group name specified in the storage class
definition (see Step 3), and in the Group parameter of the OTMACON
keyword of the CSQ6SYSP macro.

USERVAR=
This gives the XCF member name of the IMS system.

This is the same as the member name specified in the storage class
definition (see Step 3).

If you do not specify a name for USERVAR, the value of APPLID1 is
used.

3. Tell MQSeries the XCF group and member name of the IMS system.

This is specified by the storage class of a queue. If you want to send
messages across the MQSeries-IMS bridge you need to specify this when you
define the storage class for the queue. In the storage class, you need to define
the XCF group and the member name of the target IMS system. To do this,
either use the MQSeries operations and control panels, or use the MQSC
commands as described in the MQSeries Command Reference manual.

4. Set up the security that you require.

See “Security considerations for the IMS bridge” on page 449 for information
about this.

 Chapter 11. The MQSeries-IMS bridge 181

 Controlling IMS connections

Controlling the IMS bridge
There are no MQSeries commands to control the MQSeries-IMS bridge.

Start the MQSeries bridge by starting OTMA. Either use the IMS command /START
OTMA, or start it automatically by specifying OTMA=YES in the IMS system
parameters. If OTMA is already started, the bridge starts automatically when
MQSeries startup has completed. An MQSeries event message is produced when
OTMA is started.

Use the IMS command /STOP OTMA to stop OTMA communication. When this
command is issued, an MQSeries event message is produced.

Controlling IMS connections
IMS provides these operator commands to control and monitor the connection to
MQSeries:

/DEQUEUE TMEMBER tmember TPIPE tpipe
Removes messages from a Tpipe, specify PURGE to remove all messages or
PURGE1 to remove the first message only.

/DISPLAY OTMA
Displays summary information about the OTMA server and clients, and client
status.

/DISPLAY TMEMBER name
Displays information about an OTMA client.

/DISPLAY TRACE TMEMBER name
Displays information about what is being traced.

/SECURE OTMA
Sets security options.

/START OTMA
Enables communications through OTMA.

/START TMEMBER tmember TPIPE tpipe
Starts the named Tpipe.

/STOP OTMA
Stops communications through OTMA.

/STOP TMEMBER tmember TPIPE tpipe
Stops the named Tpipe.

/TRACE
Controls the IMS trace.

For more information about these commands, see the IMS/ESA Operator’s
Reference manual for the level of IMS that you are using.

IMS command responses are sent to the terminal from which the command was
issued. Authorization to issue IMS commands is based on IMS security.

182 System Management Guide

Controlling bridge queues
Issue the following IMS command to stop communicating with the MQSeries
system with XCF member name tmember through the bridge:

/STOP TMEMBER tmember TPIPE ALL

Issue the following IMS command to resume communication:

/START TMEMBER tmember TPIPE ALL

To stop communication with the MQSeries system on a single Tpipe, issue the
following IMS command:

/STOP TMEMBER tmember TPIPE tpipe

One or two Tpipes are created for each active bridge queue, so issuing this
command stops communication with the MQSeries queue. Use the following IMS
command to resume communication:

/START TMEMBER tmember TPIPE tpipe

Alternatively, you can alter the attributes of the MQSeries queue to make it get
inhibited.

Deleting messages from IMS
A message that is destined for MQSeries via the IMS bridge can be deleted if the
Tmember/Tpipe is stopped. To delete one message for the MQSeries system with
XCF member name tmember, issue the following IMS command:

/DEQUEUE TMEMBER tmember TPIPE tpipe PURGE1

To delete all the message on the Tpipe, issue the following IMS command:

/DEQUEUE TMEMBER tmember TPIPE tpipe PURGE

 Chapter 11. The MQSeries-IMS bridge 183

Resynchronizing the IMS bridge
The IMS bridge is automatically restarted whenever MQSeries, IMS, or OTMA are
restarted.

The first task undertaken by the IMS bridge is to resynchronize with IMS. This
involves MQSeries and IMS checking sequence numbers on every synchronized
Tpipe. A synchronized Tpipe is used when persistent messages are sent to IMS
from an MQSeries-IMS bridge queue using commit mode 0 (commit-then-send).

If the bridge is unable to resynchronize with IMS at this time, the IMS sense code is
returned in message CSQ2023E and the connection to OTMA is stopped. If the
bridge is unable to resynchronize with an individual IMS Tpipe at this time, the IMS
sense code is returned in message CSQ2025E and the Tpipe is stopped. If a
Tpipe has been cold started, the recoverable sequence numbers are automatically
reset to 1.

If the bridge discovers mismatched sequence numbers when resynchronizing with a
Tpipe, message CSQ2020E is issued. Use the MQSeries command RESET TPIPE
to initiate resynchronization with the IMS Tpipe. You need to provide the XCF
group and member name, and the name of the Tpipe; this information is provided
by the message.

You can also specify:

� A new recoverable sequence number to be set in the Tpipe for messages sent
by MQSeries, and to be set as the partners receive sequence number. If you
do not specify this, the partners receive sequence number is set to the current
MQSeries send sequence number

� A new recoverable sequence number to be set in the Tpipe for messages
received by MQSeries, and to be set as the partners send sequence number.
If you do not specify this, the partners send sequence number is set to the
current MQSeries receive sequence number

If there is an unresolved unit of recovery associated with the Tpipe, this is also
notified in the message. Use the RESET TPIPE MQSeries command to specify
whether to commit it or back it out. If you commit the unit of recovery, the batch of
messages has already been sent to IMS, and is deleted from the bridge queue. If
you back the unit of recovery out, the messages are returned to the bridge queue,
to be subsequently sent to IMS.

Commit mode 1 (Send-then-commit) Tpipes are not synchronized.

Considerations for Commit mode 1 transactions
In IMS, commit mode 1 (CM1) transactions send their output replies before
syncpoint.

It is possible that a CM1 transaction is unable to send its reply, for example
because:

� The Tpipe on which the reply is to be sent is stopped
� OTMA is stopped
� The OTMA client (that is, MQSeries) has gone away
� The reply-to queue and dead-letter queue are unavailable

184 System Management Guide

 IMS bridge security

For all of the above reasons, the IMS application sending the message will
pseudo-abend with code U0119. The IMS transaction and program are not
stopped in this case.

These reasons often prevent messages being sent into IMS, as well as replies
being delivered from IMS. A U0119 abend can occur if:

� The Tpipe, or OTMA, or MQSeries are stopped while the message is in IMS

� IMS replies on a different Tpipe to the incoming message, and that Tpipe is
stopped

� IMS replies to a different OTMA client, and that client is unavailable.

Whenever a U0119 abend occurs, both the incoming message to IMS and the reply
messages to MQSeries are lost. If the output of a CM0 transaction cannot be
delivered for any of the above reasons, it is queued on the Tpipe within IMS.

 Security
The /SECURITY OTMA IMS command determines the level of security to be applied to
every MQSeries subsystem that connects to IMS through OTMA. See “Security
considerations for the IMS bridge” on page 449 for information about what this
should be set to.

 Chapter 11. The MQSeries-IMS bridge 185

 IMS bridge security

186 System Management Guide

Part 5. Operating and administering MQSeries

Chapter 12. Operating MQSeries for OS/390 189
Issuing commands . 189

Issuing commands from an OS/390 console or its equivalent 190
Issuing commands from a TSO terminal . 191
Issuing commands from the utility program CSQUTIL 191

Starting and stopping MQSeries . 191
Before you start MQSeries . 191
Starting MQSeries . 192
Stopping MQSeries . 195

Using the operations and control panels . 197
Invoking the operations and control panels 197
Objects and Actions . 198
Choosing a queue manager . 200
Using the function keys . 200
Using the initial panel . 202
Defining a local queue . 203
Defining other types of objects . 207
Working with object definitions . 207
Working with namelists . 208
Rules for the operations and control panels 209

Chapter 13. Writing programs to administer MQSeries 211
Before you begin . 211
Understanding how it all works . 212
Using the command server . 213

Identifying the queue manager that processes your commands 213
Starting the command server . 213

Preparing queues for administration programs 214
Defining the system-command input queue 214
Defining a reply-to queue . 214
Opening the system-command input queue 214
Opening a reply-to queue . 215

Sending commands to the command server 216
Building a message that includes MQSeries commands 216

Putting messages on the system-command input queue 217
Using MQPUT1 and the system-command input queue 217

Retrieving replies to your commands . 218
Waiting for a reply . 218
The reply message descriptor . 219

Interpreting the replies . 220
Examples of commands and their replies 220
Messages from DISPLAY commands for MQSeries objects 222
Command attributes . 225

If you do not receive a reply . 226
Passing commands using MGCR or MGCRE 226

Chapter 14. Using the MQSeries utilities 227
How to read syntax diagrams . 228
MQSeries utility program (CSQUTIL) . 229

Invoking the MQSeries utility program . 229

 Copyright IBM Corp. 1993,1999 187

Return codes . 230
Monitoring the progress of the MQSeries utility program 230

Page set management functions . 231
Formatting page sets (FORMAT) . 231
Expanding a page set (COPYPAGE) . 233
Copying a page set and resetting the log (RESETPAGE) 235

MQSeries command management functions 238
Issuing commands to MQSeries (COMMAND) 238
Producing a list of MQSeries define commands (SDEFS) 243

Queue management functions . 245
Syncpoints . 245
Copying queues into a data set while the queue manager is running

(COPY) . 246
Copying queues into a data set while the queue manager is not running

(SCOPY) . 249
Emptying a queue of all messages (EMPTY) 252
Restoring messages from a data set to a queue (LOAD) 254

The change log inventory utility (CSQJU003) 256
Invoking the CSQJU003 utility . 256
Adding information about a data set to the BSDS (NEWLOG) 258
Deleting information about a data set from the BSDS (DELETE) 260
Supplying a password for archive log data sets (ARCHIVE) 261
Controlling the next restart (CRESTART) 262
Setting checkpoint records (CHECKPT) . 263
Updating the highest written log RBA (HIGHRBA) 264

The print log map utility (CSQJU004) . 265
Invoking the CSQJU004 utility . 265

The log print utility (CSQ1LOGP) . 266
Invoking the CSQ1LOGP utility . 266
Input control parameters . 267
Output . 268

188 System Management Guide

 Issuing commands

Chapter 12. Operating MQSeries for OS/390

This chapter describes the basic procedures you can use to operate MQSeries for
OS/390. It includes information on how to use the MQSeries operations and
control panels. The simplest elements of MQSeries operation are discussed in
these sections:

 � “Issuing commands”
� “Starting and stopping MQSeries” on page 191
� “Using the operations and control panels” on page 197

Normal operation also requires some more complex tasks. These are discussed in
the following chapters:

� Chapter 7, “Operating the CICS adapter” on page 123 describes how to
manage and operate the CICS adapter, and control and display the status of
the connection.

� Chapter 17, “Understanding the log and the bootstrap data set” on page 299
describes the roles of the log and the log control data sets in preparing for
restart and recovery, what happens when MQSeries terminates normally or
abnormally, and how to restart it while maintaining data integrity.

� Chapter 18, “Planning for backup and recovery” on page 307 explains how to
prepare for recovery.

� Chapter 21, “Example recovery scenarios” on page 337 explains how to
recover both at your own site and at a remote site, and how to recover even
when the BSDS or log is damaged.

Also, for information about connections to other MQSeries subsystems in
distributed queuing applications, see the MQSeries Intercommunication manual.

 Issuing commands
You can control most of the operational environment of MQSeries using the
MQSeries commands. For details of the syntax of the MQSeries commands, see
the MQSeries Command Reference manual. If you are a suitably authorized user,
you can issue MQSeries commands from:

� The initialization input data sets (see “Task 10: Customize the initialization input
data sets” on page 52).

� An OS/390 console

� The OS/390 master get command routine, MGCR and MGCRE (SVC 34)

 � SDSF

� A TSO console

� The MQSeries utility, CSQUTIL

� The operations and control panels

� A user application, which can be:

– A CICS program
– A TSO program
– An OS/390 batch program

 Copyright IBM Corp. 1993,1999 189

 Issuing commands

– An IMS program

See Chapter 13, “Writing programs to administer MQSeries” on page 211 for
information about this.

Issuing commands from an OS/390 console or its equivalent
You can issue all MQSeries commands from an OS/390 console or its equivalent.
This means you can also issue MQSeries commands from anywhere where you
can issue OS/390 commands, such as SDSF or by a program using the MGCR
macro.

The maximum amount of data that can be displayed as a result of a command
typed in at the console is 32 KB.

Notes:

1. You cannot issue MQSeries commands using the IMS /SSR command format
from an IMS terminal. This function is not supported by the IMS adapter.

2. The input field provided by SDSF might not be long enough for some
commands, particularly those for channels.

Command prefix strings
Each MQSeries command must be prefixed with a command prefix string (CPF), as
shown in Figure 61 on page 192.

Because more than one MQSeries subsystem can run under OS/390, the CPF is
used to indicate which MQSeries subsystem processes the command. For
example, to start a subsystem called CSQ1, whose CPF is ‘+cpf’, you issue the
command +cpf START QMGR from the operator console. This CPF must be
defined in the subsystem name table (for the subsystem CSQ1). For more
information about CPFs, see “Using command prefix strings” on page 42. In the
examples, the string ‘+cpf’ is used as the command prefix.

Using the OS/390 console to issue commands
You can type simple commands from the OS/390 console, for example, the
DISPLAY command in Figure 60. However, for complex commands or for sets of
commands that you issue frequently, the other methods of issuing commands are
better.

+cpf DISPLAY QUEUE(TRANSMIT.QUEUE.PROD) TYPE(QLOCAL)

Figure 60. Issuing a DISPLAY command from the OS/390 console. The command is
prefixed by a CPF of ‘+cpf’.

 Command responses
Direct responses to commands are sent to the console that issued the command.
MQSeries supports the Extended Console Support (EMCS) function available in
OS/390, and therefore consoles with 4-byte IDs can be used. Additionally, all
commands except START QMGR and STOP QMGR support the use of Command
and Response Tokens (CARTs) when the command is issued by a program using
the MGCRE macro.

190 System Management Guide

 Starting and stopping MQSeries

Issuing commands from a TSO terminal
MQSeries uses ISPF to provide a set of operations and control panels. You can
use the panels to construct system administrator commands for managing
MQSeries objects. Figure 64 on page 202 shows an example of a MQSeries
operations and control panel.

Using these panels, you can create MQSeries commands quickly and easily. The
panels ensure that you supply all the information that MQSeries needs to complete
the task. All the parameters of the command are displayed, together with their
possible values.

“Using the operations and control panels” on page 197 describes how to use these
panels.

Issuing commands from the utility program CSQUTIL
You can issue commands from a sequential data set using the COMMAND function
of the utility program CSQUTIL. This utility transfers the commands to the
system-command input queue and waits for the response, which is printed together
with the original commands in SYSPRINT. For details of this, see the “MQSeries
utility program (CSQUTIL)” on page 229.

Starting and stopping MQSeries
Starting and stopping MQSeries is relatively straightforward. When MQSeries stops
under normal conditions, its last action is to take a termination checkpoint. This
checkpoint, and the logs, give MQSeries the information it needs to restart.

This section discusses the START and STOP commands, and contains a brief
overview of start up after an abnormal termination has occurred.

Before you start MQSeries
After you have installed MQSeries, it is defined as a formal OS/390 subsystem.
This message appears during any initial program load (IPL) of OS/390:

CSQ311ðI +cpf CSQ3URðð - SUBSYSTEM ssnm READY FOR START COMMAND

where ssnm is the MQSeries subsystem name.

From now on, you can start MQSeries from any OS/390 console that has been
authorized to issue system control commands; that is, an OS/390 SYS command
group. The START command must be issued from the authorized console, and
cannot be submitted through JES or TSO.

 Chapter 12. Operating MQSeries for OS/390 191

 Starting and stopping MQSeries

 Starting MQSeries
You start MQSeries by issuing a START QMGR command. However, you cannot
successfully use the START command unless you have appropriate authority. See
Part 8, “Security” on page 391 for more information about MQSeries security.
Figure 61 shows examples of the START command. See the MQSeries Command
Reference manual for details about the syntax of this command.

+cpf START QMGR

+cpf START QMGR PARM(NEWLOG)

Figure 61. Starting the MQSeries subsystem from an OS/390 console. The second
example specifies a system parameter module name.

Remember that you must prefix an MQSeries command with a command prefix
string (CPF).

You cannot run the MQSeries subsystem as a batch job or start it using an OS/390
START command. These methods are likely to start an address space for
MQSeries that then abends. You also cannot start MQSeries from the CSQUTIL
utility program or a similar user application.

You can, however, start MQSeries from an APF-authorized program by passing a
START QMGR command to the OS/390 MGCR or MGCRE (SVC 34) service.

User messages on start-up
When you start MQSeries successfully, it produces a set of start up messages
similar to the ones in Figure 62 on page 193.

Notes:

1. If you are starting MQSeries for the first time, the messages are slightly
different.

2. If any of the values in message CSQR004I is not zero, message CSQR007I is
issued to provide the restart status table.

3. Messages CSQP018I and CSQP019I are issued every time a checkpoint is
taken (see “Checkpoint records” on page 301). At checkpoint time, all pages
that have not been changed for the two checkpoints are written out to DASD.
Message CSQP019I is issued for each buffer pool, giving the number of pages
written. You can use this information when balancing page sets in buffer pools.

If you want to suppress these messages, see “Task 18: Suppress information
messages” on page 91.

4. There might be periods during startup when no messages are produced; for
example, if you are using indexed queues, no messages are produced while
the queue indexes are being rebuilt.

192 System Management Guide

 Starting and stopping MQSeries

 $HASP373 CSQ1MSTR STARTED
 IEF4ð3I CSQ1MSTR - STARTED - TIME=17.ð6.43
 CSQYðððI +cpf IBM MQSeries for OS/39ð - V2.1
 CSQYðð1I +cpf SUBSYSTEM STARTING, USING PARAMETER MODULE CSQ1ZPRM
 CSQY1ððI +cpf System parameters ...
 CSQY1ð1I +cpf CTHREAD=3ðð, IDBACK=2ð, IDFORE=1ðð, LOGLOAD=16ððð
 CSQY1ð2I +cpf CMDUSER=CSQOPR, QMCCSID=5ðð, ROUTCDE=(1)
 CSQY1ð3I +cpf SMFACCT=NO (ðððððððð), SMFSTAT=NO (ðððððððð), STATIME=3ð
 CSQY1ð4I +cpf OTMACON=
 (, ,DFSYDRUð,2147483647,CSQ)
 CSQY1ð5I +cpf TRACSTR=(1), TRACTBL=5ðð
 CSQY1ð6I +cpf EXITTCB=8, EXITLIM=3ð, WLMTIME=3ð
 CSQY11ðI +cpf Logging parameters ...
 CSQY111I +cpf INBUFF=28, OUTBUFF=4ðð, MAXALLC=3, MAXARCH=5ðð
 CSQY112I +cpf TWOACTV=YES, TWOARCH=YES, TWOBSDS=YES
 CSQY113I +cpf OFFLOAD=YES, WRTHRSH=2ð
 CSQY12ðI +cpf Archive parameters ...
 CSQY121I +cpf UNIT=SYSDA, ALCUNIT=BLK, PRIQTY=1ðð, SECQTY=5ð,
 BLKSIZE=24576
 CSQY122I +cpf ARCPFX1=ABCD.CSQ1.ARCLOG1, ARCPFX2=ABCD.CSQ1.ARCLOG2,
 TSTAMP=NO
 CSQY123I +cpf ARCRETN=ð, ARCWTOR=YES, ARCWRTC=(1 ,3 ,4)
 CSQY124I +cpf CATALOG=YES, COMPACT=NO, PROTECT=NO, QUIESCE=5
 CSQJ127I +cpf SYSTEM TIME STAMP FOR BSDS=1998-ð7-1ð 17:ð5:47.71
 CSQJðð1I +cpf CSQJWðð7 CURRENT COPY 1 ACTIVE LOG
 DATA SET IS DSNAME=ABCD.CSQ1.LOGCOPY1.DSð1,
 STARTRBA=ðððððððððððð,ENDRBA=ðððððð21BFFF
 CSQJðð1I +cpf CSQJWðð7 CURRENT COPY 2 ACTIVE LOG
 DATA SET IS DSNAME=ABCD.CSQ1.LOGCOPY2.DSð1,
 STARTRBA=ðððððððððððð,ENDRBA=ðððððð21BFFF
 CSQJð99I +cpf LOG RECORDING TO COMMENCE WITH
 STARTRBA=ðððððð167ððð
 CSQRðð1I +cpf RESTART INITIATED
 CSQRðð3I +cpf RESTART...PRIOR CHECKPOINT RBA=ðððððð164B78
 CSQRðð4I +cpf RESTART...UR STATUS COUNTS
 IN COMMIT=ð, INDOUBT=ð, INFLIGHT=ð, IN BACKOUT=ð
 CSQRðð5I +cpf RESTART...COUNTS AFTER FORWARD RECOVERY
 IN COMMIT=ð, INDOUBT=ð
 CSQRðð6I +cpf RESTART...COUNTS AFTER BACKWARD RECOVERY
 INFLIGHT=ð, IN BACKOUT=ð
 CSQRðð2I +cpf RESTART COMPLETED
 CSQPð18I +cpf CSQPBCKW CHECKPOINT STARTED FOR ALL BUFFER POOLS
 +cpf DISPLAY THREAD(\) TYPE(INDOUBT)
 CSQPð19I +cpf CSQP1DWP CHECKPOINT COMPLETED FOR
 BUFFER POOL 2, 2 PAGES WRITTEN
 CSQPð19I +cpf CSQP1DWP CHECKPOINT COMPLETED FOR
 BUFFER POOL 3, 2 PAGES WRITTEN
 CSQPð19I +cpf CSQP1DWP CHECKPOINT COMPLETED FOR
 BUFFER POOL 1, 5 PAGES WRITTEN
 CSQPð19I +cpf CSQP1DWP CHECKPOINT COMPLETED FOR
 BUFFER POOL ð, 25 PAGES WRITTEN
 CSQV4ð1I +cpf DISPLAY THREAD REPORT FOLLOWS -
 CSQV4ð2I +cpf NO INDOUBT THREADS FOUND
 CSQ9ð22I +cpf CSQVDT 'DISPLAY THREAD' NORMAL COMPLETION
 CSQYð22I +cpf QUEUE MANAGER INITIALIZATION COMPLETE
 CSQ9ð22I +cpf CSQYASCP 'START QMGR' NORMAL COMPLETION

Figure 62. MQSeries startup messages for subsystem CSQ1. The command prefix string is
+cpf.

 Chapter 12. Operating MQSeries for OS/390 193

 Starting and stopping MQSeries

 Start options
When you start a queue manager, a special routine called the system parameter
module is invoked. You can specify the name of a system parameter module if you
use the PARM keyword. A system parameter module provides information
specified when the queue manager was customized. In Figure 62 on page 193,
the user message CSQY001I indicates the name of the system parameter module
that was used, in this case, CSQ1ZPRM. For more information about this, see
“Task 13: Tailor your system parameter module” on page 67.

You can also use the ENVPARM option to substitute one or more parameters in
the JCL procedure for the queue manager.

For example, you can update your MQSeries startup procedure, so that the
DDname CSQINP2 is a variable. This means that you can change the CSQINP2
DDname without changing the startup procedure. This is very useful for
implementing changes, providing backouts for operators, and so on.

Suppose your start-up procedure, for queue manager CSQ1, looked like this:

//CSQ1MSTR PROC INP2=NORM
//MQMESA EXEC PGM=CSQYASCP
//STEPLIB DD DISP=SHR,DSN=thqual.SCSQANLE
// DD DISP=SHR,DSN=thqual.SCSQAUTH
//BSDS1 DD DISP=SHR,DSN=myqual.BSDSð1
//BSDS2 DD DISP=SHR,DSN=myqual.BSDSð2
//CSQPðððð DD DISP=SHR,DSN=myqual.PSIDðð
//CSQPððð1 DD DISP=SHR,DSN=myqual.PSIDð1
//CSQPððð2 DD DISP=SHR,DSN=myqual.PSIDð2
//CSQPððð3 DD DISP=SHR,DSN=myqual.PSIDð3
//CSQINP1 DD DISP=SHR,DSN=myqual.CSQINP(CSQ1INP1)
//CSQINP2 DD DISP=SHR,DSN=myqual.CSQINP(CSQ1&INP2.)
//CSQOUT1 DD SYSOUT=\
//CSQOUT2 DD SYSOUT=\

If you then start the your queue manager with the command:

+cpf START QMGR

the CSQINP2 actually used is a member called CSQ1NORM.

However, suppose you are putting a new suite of programs into production so that
the next time you start queue manager CSQ1, the CSQINP2 definitions are to be
taken from member CSQ1NEW. To do this, you would start MQSeries with this
command:

+cpf START QMGR ENVPARM('INP2=NEW')

and CSQ1NEW would be used instead of CSQ1NORM. Note that OS/390 limits
the KEYWORD=value specifications for symbolic parameters (as in INP2=NEW) to 48
characters.

194 System Management Guide

 Starting and stopping MQSeries

Starting after an abnormal termination
MQSeries automatically detects whether restart follows a normal shutdown or an
abnormal termination.

Starting MQSeries after it abends is different from starting it after the +cpf STOP
QMGR command has been issued. After +cpf STOP QMGR, the system finishes
its work in an orderly way and takes a termination checkpoint before stopping.
When you restart MQSeries, it uses information from the system checkpoint and
recovery log to determine the system status at shutdown.

However, if MQSeries abends, it terminates without being able to finish its work or
take a termination checkpoint. When you restart MQSeries after an abend, it
refreshes its knowledge of its status at termination using information in the log, and
notifies you of the status of various tasks. Normally, the restart process resolves all
inconsistent states. But, in some cases, you must take specific steps to resolve
inconsistencies. For a discussion of the causes of inconsistencies, and how you
can prepare to recover from them, see Chapter 16, “Understanding termination and
restart” on page 279.

 Stopping MQSeries
Before stopping MQSeries, all MQSeries-related write-to-operator-with-reply
(WTOR) messages must receive replies, for example, getting log requests. Each of
the commands in Figure 63 terminates a running MQSeries subsystem.

+cpf STOP QMGR

+cpf STOP QMGR MODE(QUIESCE)

+cpf STOP QMGR MODE(FORCE)

+cpf STOP QMGR MODE(RESTART)

Figure 63. Stopping MQSeries

The command +cpf STOP QMGR defaults to +cpf STOP QMGR
MODE(QUIESCE).

In QUIESCE mode, MQSeries does not allow any new connection threads to be
created, but allows existing threads to continue; it terminates only when all threads
have ended. Applications can request to be notified in the event of the queue
manager quiescing. Therefore, use the QUIESCE mode where possible so that
applications that have requested notification have the opportunity to disconnect.
See the MQSeries Application Programming Guide for details.

If MQSeries does not terminate in a reasonable time in response to a +cpf STOP
QMGR MODE(QUIESCE) command, use the +cpf DISPLAY THREAD(*)
TYPE(ACTIVE) command to determine whether any connection threads exist, and
take the necessary steps to terminate the associated applications. If there are no
threads then issue a +cpf STOP QMGR MODE(FORCE) command.

The +cpf STOP QMGR MODE(QUIESCE) and +cpf STOP QMGR
MODE(FORCE) commands deregister MQSeries from the MVS Automatic Restart
Manager (ARM), preventing ARM from restarting the queue manager automatically.

 Chapter 12. Operating MQSeries for OS/390 195

 Starting and stopping MQSeries

The +cpf STOP QMGR MODE(RESTART) command works in the same way as
the +cpf STOP QMGR MODE(FORCE) command, except that it does not
deregister MQSeries from ARM. This means that the queue manager is eligible for
immediate automatic restart.

If the MQSeries subsystem is not registered with ARM, the STOP QMGR
MODE(RESTART) command is rejected and the following message sent to the
OS/390 console:

CSQY2ð5I ARM element arm-element is not registered

If this message is not issued, the queue manager is restarted automatically. For
more information about ARM, see “Using the OS/390 Automatic Restart Manager
(ARM)” on page 294.

Do not cancel the MQSeries address space unless +cpf STOP QMGR
MODE(FORCE) does not cause MQSeries to terminate.

If MQSeries is stopped by either canceling the address space or by using the
command +cpf STOP QMGR MODE(FORCE), consistency is maintained with
connected CICS or IMS systems. Resynchronization of resources is started when
MQSeries restarts and is completed when the connection to the CICS or IMS
system is established. See Chapter 16, “Understanding termination and restart” on
page 279.

Note: When you stop your MQSeries subsystem, you might find message IEF352I
is issued. OS/390 issues this message if it detects that failing to mark the address
space as unusable would lead to an integrity exposure. You can ignore this
message.

 Stop messages
After issuing a +cpf STOP QMGR command, you get the messages CSQY009I
and CSQY002I, for example:

CSQYðð9I +cpf ' STOP QMGR' COMMAND ACCEPTED FROM
USER(userid), STOP MODE(FORCE)
CSQYðð2I +cpf SUBSYSTEM STOPPING

Where userid is the user ID that issued the +cpf STOP QMGR command, and the
MODE parameter depends on that specified in command.

When the STOP command has completed successfully, these messages are
displayed on the OS/390 console:

CSQ9ð22I +cpf CSQYASCP ' STOP QMGR' NORMAL COMPLETION
CSQ31ð4I +cpf CSQ3ECðX - TERMINATION COMPLETE

196 System Management Guide

 Operations and control panels

If you are using ARM, the following message is also displayed if you did not specify
MODE(RESTART):

CSQY2ð4I +cpf ARM DEREGISTER for element arm-element type
arm-element-type successful

You cannot restart MQSeries until the following message has been generated:

CSQ31ððI +cpf CSQ3ECðX - SUBSYSTEM ssnm READY FOR START COMMAND

Using the operations and control panels
You can use the MQSeries operations and control panels to perform administration
tasks on MQSeries objects. You use these panels to run commands for defining,
displaying, altering, or deleting MQSeries objects.

The operations and control panels support the system control commands for
distributed queuing without CICS (for example, to start a channel or a TCP/IP
listener), for clustering, and for security. They also enable you to display
information about threads and page set usage. The other system control
commands are not available through the panels. These commands must be issued
explicitly using one of the other methods, see “Issuing commands” on page 189.

Note: You cannot issue the MQSeries commands directly from the command line
in the panels.

To use the operations and control panels, you must have the correct security
authorization; see “Security checking for the operations and control panels” on
page 397 for information.

Invoking the operations and control panels
If the ISPF/PDF primary options menu has been updated for MQSeries, you can
access the MQSeries operations and control panels from that menu. For details
about updating the menu, see “Updating the ISPF menu” on page 89.

You can access the MQSeries operations and control panels from the TSO
command processor panel (usually option 6 on the ISPF/PDF primary options
menu). The name of the exec that you run to do this is CSQOREXX. It has two
parameters; thlqual is the high-level qualifier for the MQSeries libraries to be used,
and langletter is the letter identifying the national language libraries to be used
(for example, E for US English). The parameters can be omitted if the MQSeries
libraries are permanently installed in your ISPF setup. Alternatively, you can issue
CSQOREXX from the TSO command line.

These panels are designed to be used by operators and administrators with a
minimum of formal training. Read these instructions with the panels running and try
out the different tasks suggested.

Note: While using the panels, temporary dynamic queues with names of the form
SYSTEM.CSQOREXX.ñ will be created.

 Chapter 12. Operating MQSeries for OS/390 197

 Operations and control panels

Objects and Actions
The operations and control panels offer you many different types of object and a
number of actions that you can perform on them. The actions are listed on the
initial panel and enable you to manipulate the objects and display information about
them. These objects include all the MQSeries objects, together with some extra
ones. The objects fall into five categories.

1. Queues, Processes, Namelists, and Storage classes
These are the basic MQSeries objects. There can be many of each type.
They can be defined and deleted, and have attributes that can be displayed
and altered, using the DEFINE, DELETE, DISPLAY, and ALTER actions.

This category consists of the following objects:

QLOCAL Local queue
QREMOTE Remote queue
QALIAS Alias queue for indirect reference to a queue
QMODEL Model queue for defining queues dynamically
QUEUE Any of QLOCAL, QREMOTE, QALIAS, or QMODEL
PROCESS Information about an application to be started when a trigger

event occurs
NAMELIST List of names, such as queues or clusters
STGCLASS Storage class

2. Channels
They are used for distributed queuing (not for the CICS mover). There can
be many of each type, and they can be defined, deleted, displayed, and
altered. They also have other functions available; the PERFORM action
provides reset, ping, or resolve channel functions.

This category consists of the following objects:

CHANNEL Any type of channel below
CHLSENDER Sender channel
CHLSERVER Server channel
CHLRECEIVER Receiver channel
CHLREQUESTER Requester channel
CHLCLUSRCVR Cluster-receiver channel
CHLCLUSSDR Cluster-sender channel
CHLSVRCONN Server-connection channel (PERFORM not allowed)
CHLCLNTCONN Client-connection channel (PERFORM, START, STOP not

allowed)

3. Cluster objects
They are created automatically for queues and channels that belong to a
cluster. The base queue and channel definitions can be on another queue
manager. There can be many of each type, and names can be duplicated.
They can only be displayed, using the DISPLAY action.

This category consists of the following objects:

CLUSQ Cluster queue, created for a queue that belongs to a cluster
CLUSCHL Cluster channel, created for a channel that belongs to a

cluster
CLUSQMGR Cluster queue manager, the same as a cluster channel but

identified instead by its queue manager name

Cluster channels and cluster queue managers do have the PERFORM,
START and STOP actions, but only indirectly through the DISPLAY action.

198 System Management Guide

 Operations and control panels

4. Queue Manager and Security
These have a single instance. They have attributes that can be displayed
and altered (using the DISPLAY and ALTER actions), and have other
functions available using the PERFORM action.

This category consists of the following objects:

MANAGER Queue manager - the PERFORM action provides suspend and
resume clustering functions

SECURITY Security functions - the PERFORM action provides refresh and
reverify functions

5. System
A collection of other functions.

This category consists of the following objects:

SYSTEM System functions
CONTROL (Synonym for SYSTEM)

The functions available are:

DISPLAY Display distributed queuing, threads, or page set usage
information

PERFORM Refresh or reset clustering
START, STOP Start or stop the channel initiator or listeners

The actions that you can perform for each type of object are described in the
following table:

Table 15 (Page 1 of 2). Valid operations and control panels actions for MQSeries objects

Object Alter Define Delete Display Perform Start Stop

CHANNEL √ √ √ √ √ √ √

CHLCLNTCONN √ √ √ √

CHLCLUSRCVR √ √ √ √ √ √ √

CHLCLUSSDR √ √ √ √ √ √ √

CHLRECEIVER √ √ √ √ √ √ √

CHLREQUESTER √ √ √ √ √ √ √

CHLSENDER √ √ √ √ √ √ √

CHLSERVER √ √ √ √ √ √ √

CHLSVRCONN √ √ √ √ √ √

CLUSCHL √ √(1) √(1) √(1)

CLUSQ √

CLUSQMGR √ √(1) √(1) √(1)

MANAGER √ √ √

NAMELIST √ √ √ √

PROCESS √ √ √ √

QALIAS √ √ √ √

QLOCAL √ √ √ √

QMODEL √ √ √ √

QREMOTE √ √ √ √

 Chapter 12. Operating MQSeries for OS/390 199

 Operations and control panels

Table 15 (Page 2 of 2). Valid operations and control panels actions for MQSeries objects

Object Alter Define Delete Display Perform Start Stop

QUEUE √ √ √ √

SECURITY √ √ √

STGCLASS √ √ √ √

SYSTEM/CONTROL √ √ √ √

Note:

 1. Via Display

Choosing a queue manager
While you are viewing the initial panel, you are not connected to any queue
manager. However, as soon as you press Enter, you are connected to the queue
manager shown in “Connect to queue manager”. After this, any requests that you
make are directed to that queue manager.

To change the queue manager, press function key F6 in the initial panel and then
complete the Change the Queue Manager secondary window. From this window,
you can also specify a target queue manager that is different from the one you
connect to. If you do, any further requests you make are directed to that queue
manager.

Queue manager defaults
When you first use the operations and control panels, the “Connect to queue
manager ” and “Target queue manager” fields are normally blank. This means after
you press Enter in the initial panel, you are using the default queue manager for
batch applications. This is defined in CSQBDEFV (see “Task 15: Set up Batch,
TSO, and RRS adapters” on page 87). If you return to the initial panel after having
made some requests, you find fields filled in with the actual name. Similarly, if you
set the “Connect to queue manager” field to blanks, any requests that follow are
processed by the default queue manager for batch applications.

Using the function keys
To use the panels, you must use the function keys or enter the equivalent
commands in the command area. The function keys have special settings for
MQSeries. These settings can optionally be displayed on the panels, as shown in
Figure 64 on page 202.

The function key settings in the operations and control panels conform to CUA
standards. Although you can change the key setting through normal ISPF
procedures, you are not recommended to do so.

Displaying the function key menu
Type PFSHOW in the command area of any operations and control panel and then
press Enter.

Use the command PFSHOW OFF to remove the display of the function key settings
from the panels.

200 System Management Guide

 Operations and control panels

Note: PFSHOW causes the function key settings to be displayed on any other
logical ISPF screens that you have. The keys remain displayed when you
leave the operations and control panels.

Getting things done
Press Enter to carry out the action requested on a panel. The information from the
panel is sent to the queue manager for processing.

Each time you press Enter in the panels, MQSeries generates one or more
operator messages. If the operation was successful, you get a confirmation
message, CSQ9022I, otherwise you get some error messages.

Displaying MQSeries user messages
Press function key F10 in any panel to see the MQSeries user messages.

Ignoring what you have done
On the initial panel, both F3 and F12 exit the operations and control panels and
return you to ISPF. No information is sent to the queue manager.

On any other panel, press function keys F3 or F12 to leave the current panel
ignoring any data you have typed since last pressing Enter. Again, no information
is sent to the queue manager.

� F3 takes you straight back to the initial panel.
� F12 takes you back to the previous panel.

 Getting help
Each panel has help panels associated with it. The help panels use the ISPF
protocols:

� Press function key F1 on any panel to see general help (extended help) about
the task.

� Press function key F1 with the cursor on any field to see specific help about
that field.

� Press function key F5 from any field help panel to get the general help.

� Press function key F3 to return to the base panel, that is, the panel from which
you pressed function key F1.

� Press function key F6 from any help panel to get help about the function keys.

If the help information carries on into a second or subsequent pages, a More
indicator is displayed in top right of the panel. Use these function keys to navigate
through the help pages:

� F11 to get to the next help page (if there is one).
� F10 to get back to the previous help page (if there is one).

 Chapter 12. Operating MQSeries for OS/390 201

 Operations and control panels

Using the initial panel
Figure 64 shows the panel that is displayed when you start a panel session.

à@ ð
IBM MQSeries for OS/39ð - Main Menu

 Complete fields. Then press Enter.

 Action _ 1. Display 5. Perform
 2. Define 6. Start
 3. Alter 7. Stop
 4. Delete

 Object type ____________ +
 Name __
 Like __

 Connect to queue
 manager :____
 Target queue manager :____
 Response wait time . : __ seconds

(C) Copyright IBM Corporation 1993,1999. All rights reserved.

 Command ===> __
 F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
 F1ð=Messages F12=Cancel

á ñ

Figure 64. The MQSeries operations and control initial panel

From this panel you can:

� Choose the local queue manager you want and whether you want the
commands issued on that queue manager or on some remote queue manager.
Press function key F6 if you need to change the queue manager name. For
more information, see “Choosing a queue manager” on page 200.

� Select the action you want to perform by typing in the appropriate number in
the Action field.

� Specify the object type that you want to work with. Press function key F4 for a
list of object types if you are not sure what they are, or see “Objects and
Actions” on page 198.

� Display a list of objects of the type specified. Type in an asterisk (ñ) in the
Name field and press Enter to display a list of objects (of the type specified)
that have already been defined on this subsystem. You can then select one or
more objects to work with in sequence. Figure 65 on page 203 shows a list of
queues produced in this way.

� Define an object with the same attributes as an existing object. See “Defining
a local queue using the Like field” on page 207.

202 System Management Guide

 Operations and control panels

à@ ð
List Queues ROW 1 OF 12

 Type action codes. Then press Enter.
 1=Display 2=Define like 3=Alter 4=Delete

 Name Type
 _ CICSð1.INITQ QLOCAL
 _ PROTO.APPL QLOCAL
 _ PROTO.TRIG QLOCAL
 _ LOCAL.QUEUE QLOCAL
 _ SYSTEM.CHANNEL.SEQNO QLOCAL
 _ SYSTEM.COMMAND.INPUT QLOCAL
 _ SYSTEM.COMMAND.REPLY.MODEL QMODEL
 _ SYSTEM.DEFAULT.ALIAS.QUEUE QALIAS
 _ SYSTEM.DEFAULT.LOCAL.QUEUE QLOCAL
 _ SYSTEM.DEFAULT.MODEL.QUEUE QMODEL
 _ SYSTEM.DEFAULT.REMOTE.QUEUE QREMOTE
 _ TRANSMIT.QUEUE.PROD QLOCAL

\\\\\\\\ End of list \\\\\\\\

 Command ===> __
 F1=Help F2=Split F3=Exit F5=Refresh F6=Clusinfo F7=Bkwd
 F8=Fwd F9=Swap F1ð=Messages F12=Cancel
á ñ

Figure 65. Listing queues

Defining a local queue
To define a local queue object from the operations and control panels, there are
several panels to complete. When you have completed all the panels and you are
satisfied that the attributes are correct, you press Enter to send your definition to
the queue manager, which then creates the actual queue.

Starting from the initial panel, complete these fields:

Field Value
Action 2 (Define)
Object type QLOCAL
Name QUEUE.YOU.LIKE

Press Enter to display the Define a Local Queue panel as shown in Figure 66 on
page 204. The queue name displayed is the name you specified in the previous
panel. You can type in your own description in the Description field. Complete
the other fields as required. For example, type Y in the Put enabled field if
suitably authorized applications can put messages on this queue.

 Chapter 12. Operating MQSeries for OS/390 203

 Operations and control panels

à@ ð
Define a Local Queue

Complete fields, then press F8 for further fields, or Enter to define queue.

 More: +

 Queue name QUEUE.YOU.LIKE
 Description Default local queue definition

 Put enabled Y Y=Yes,N=No
 Get enabled Y Y=Yes,N=No
 Usage N N=Normal,X=XmitQ
 Storage class SYSTEM

 Command ===> __
 F1=Help F2=Split F3=Exit F6=Clusinfo F7=Bkwd F8=Fwd
 F9=Swap F1ð=Messages F12=Cancel
á ñ

Figure 66. Defining a local queue - first panel

You get field help by moving the cursor into a field and pressing function key F1.
Field help provides information about the values that can be used for each attribute.

When you have completed the first panel, press function key F8 to display the
second panel, see Figure 67 on page 205.

Hints:

1. Do not press Enter at this stage, otherwise the queue will be created before
you have a chance to complete the remaining fields.

2. Do not press function key F3 or F12 either, or the data you typed will be lost.

3. If you do press Enter prematurely, do not worry; you can always alter your
definition later on.

Press function key F8 repeatedly to see and complete the remaining panels,
including the trigger definition, event control, and backout reporting panels.

204 System Management Guide

 Operations and control panels

à@ ð
Define a Local Queue

 Press F7 or F8 to see other fields, or Enter to define queue.

 More: - +

 Default persistence N Y=Yes,N=No
 Default priority 5 ð - 9
 Message delivery sequence . . P P=Priority,F=FIFO
 Permit shared access Y Y=Yes,N=No
 Default share option S E=Exclusive,S=Shared
 Index type N N=None,M=MsgId,C=CorrelId,T=MsgToken
 Maximum queue depth 1ðððð ð - 999999999
 Maximum message length . . . 1ðððððð ð - 41943ð4
 Retention interval 999999999 ð - 999999999 hours

 Cluster name ___
 Cluster namelist name ___
 Default bind O O=Open,N=Notfixed

 Command ===> __
 F1=Help F2=Split F3=Exit F6=Clusinfo F7=Bkwd F8=Fwd
 F9=Swap F1ð=Messages F12=Cancel
á ñ

Figure 67. Defining a local queue - second panel

à@ ð
Define a Local Queue

 Press F7 or F8 to see other fields, or Enter to define queue.

 More: - +

 Trigger Definition

 Trigger type F F=First,E=Every,D=Depth,N=None

Trigger set N Y=Yes,N=No
Trigger message priority . ð ð - 9
Trigger depth 1 1 - 999999999
Trigger data ________________________________

Process name __
Initiation queue __

 Command ===> __
 F1=Help F2=Split F3=Exit F6=Clusinfo F7=Bkwd F8=Fwd
 F9=Swap F1ð=Messages F12=Cancel
á ñ

Figure 68. Defining a local queue - trigger conditions

 Chapter 12. Operating MQSeries for OS/390 205

 Operations and control panels

à@ ð
Define a Local Queue

Press F7 or F8 to see other fields, or Enter to define queue.

 More: - +
Event Control

Queue full E E=Enabled,D=Disabled

Upper queue depth D E=Enabled,D=Disabled
Threshold 8ð ð - 1ðð %

Lower queue depth D E=Enabled,D=Disabled
Threshold 4ð ð - 1ðð %

Service interval N H=High,O=OK,N=None
Interval 999999999 ð - 999999999 milliseconds

Command ===> __
 F1=Help F2=Split F3=Exit F6=Clusinfo F7=Bkwd F8=Fwd
 F9=Swap F1ð=Messages F12=Cancel
á ñ

Figure 69. Defining a local queue - event control

à@ ð
Define a Local Queue

 Press F7 to see previous fields, or Enter to define queue.

 More: -
 Backout Reporting

 Backout threshold ð ð=No backout reporting

Harden backout counter . . N Y=Yes,N=No
Backout requeue name . . . __

 Command ===> __
 F1=Help F2=Split F3=Exit F6=Clusinfo F7=Bkwd F8=Fwd
 F9=Swap F1ð=Messages F12=Cancel
á ñ

Figure 70. Defining a local queue - backout reporting

When your local queue definition is complete
When your definition is complete, press Enter to send the information to the queue
manager for processing. The queue manager creates the queue according to the
definition you have supplied. If you do not want the queue to be created, press
function key F3 to exit and cancel the definition.

206 System Management Guide

 Operations and control panels

Defining a local queue using the Like field
You can use the Like field to define a local queue that has the same attributes as
an existing local queue. This field is ignored for actions other than Define .

To do this, starting from the initial panel, use these values for the fields specified:

Field Value

Action 2 (Define).

Object type QLOCAL

Name TRANSMIT.QUEUE.NEW
This is the name of the queue you are defining.

Like TRANSMIT.QUEUE.PROD
This is the name of an existing queue.

When you press Enter, the attributes of the new queue, which are initially those of
the queue named in the Like field, are displayed. You can modify these attributes
as required.

You can use this method to define any type of object providing that the object
specified in the Like field exists and it is the same kind of object as that specified in
the Object type field.

Defining other types of objects
You can define objects other than just local queues. To do this, you start from the
initial panel and complete these fields:

Field Value

Action 2 (Define).

Object type QALIAS, NAMELIST, PROCESS, CHANNEL, and so on.

Name The name of the object you are defining.

Like Leave blank or enter the name of an existing object of the same
type.

Press Enter to display the corresponding DEFINE panels. Complete the fields as
required and then press Enter again to send the information to the queue manager.

Like defining a local queue, defining a model queue requires several panels to be
completed. Defining a namelist requires some additional work, as described in
“Working with namelists” on page 208. A single panel is required to define each of
the remaining objects.

Working with object definitions
Once an object has been defined, you can specify an action in the Action field, to
alter, display, or delete an object definition. In each case, you start from the initial
panel, where you specify the object you are working with by completing the Object
type and Name fields.

 Chapter 12. Operating MQSeries for OS/390 207

 Operations and control panels

Altering an object definition
To alter an object definition, specify action 3 and press Enter to see the ALTER
panels. These panels are very similar to the DEFINE panels. You can alter any
values you want. When your changes are complete, press Enter to send the
information to the queue manager.

Displaying an object definition
If you just want to see the details of an object without being able to change them,
specify action 1 and press Enter to see the DISPLAY panels. Again, these panels
are similar to the DEFINE panels except that you cannot change any of the fields.

Deleting an object
To delete an object, specify action 4 and press Enter to see the DELETE panels.
Again these are similar to the DEFINE panels except that when you press Enter,
you are asked to confirm your request. If you press function key F3 or F12, the
request is canceled. If you press Enter, the request is confirmed and passed to the
queue manager. The object you specified is then deleted.

Note: You cannot delete most types of channel object unless the channel initiator
is started.

Working with namelists
Start from the initial panel and complete these fields:

Field Value

Action 1 to 4, as required

Object type NAMELIST

Name Specify the fully qualified name of a namelist (for example:
MY.CSQ.NAMES)

Like You can type the name of an existing namelist if you are defining
a new namelist

Then press Enter. The panel you are shown lists the contents of that namelist.

For the actions DEFINE or ALTER, you must press function key F11 to add names
to the list or to change the names in the list. This involves working with the ISPF
editor and all the normal ISPF edit commands are available. Each name in the
namelist must be entered on a separate line.

Note: When you use the ISPF editor in this way, the function key settings are the
normal ISPF settings, and not those used by the other operations and
control panels.

If you need to specify lowercase queue names, specify CAPS(OFF) on the editor
panel command line. When you do this, all the namelists that you edit in the future
are in lowercase until you specify CAPS(ON).

When you have finished editing the namelist, press function key F3 to end the ISPF
edit session. Then press Enter to send the changes to the queue manager.

Attention: If you do not press Enter at this stage but press function key F3
instead, you lose any updates that you have typed in.

208 System Management Guide

 Operations and control panels

Rules for the operations and control panels
The MQSeries Command Reference manual defines the general rules for
MQSeries character strings and names. However, there are some rules that apply
only to the operations and control panels:

� Do not enclose strings, for example descriptions, in single or double quotes.

� If you need to use a quote mark in a description or other text field, for example:

This is Maria's queue

use just one quote. The panel processor doubles them for you to pass them to
MQSeries. However, if it has to truncate your data to do this, it will do so.

� You can use uppercase or lowercase characters in most fields, and they are
translated to uppercase characters when you press Enter. The exceptions are:

– Storage class which must start with uppercase A through Z and be followed
by uppercase A through Z or 0 through 9 characters.

– The following fields, which are not translated:

 - Application ID
 - Description
 - Environment data

- Object names (but if you use a lowercase object name, you might not
be able to enter it at an OS/390 console)

- Remote system name
 - Trigger data
 - User data

� In names, leading blanks and leading underscores are ignored. Therefore, you
cannot have object names beginning with blanks or underscores.

� Underscores are used to show the extent of blank fields. When you press
Enter, trailing underscores are replaced by blanks.

� Many description and text fields are presented in multiple parts, each part being
handled by MQSeries independently. This means that trailing blanks are
retained and the text is not contiguous.

 Blank fields
When you specify the define action for an MQSeries object, each field on the define
panel contains a value. See the general help (extended help) for the display
panels for information on where MQSeries gets the values. If you type over a field
with blanks, and blanks are not allowed, MQSeries puts the installation default
value in the field.

When you specify the Alter action for an MQSeries object, each field on the alter
panel contains the current value for that field. If you type over a field with blanks,
and blanks are not allowed, the ALTER command fails and an error message is
displayed.

 Chapter 12. Operating MQSeries for OS/390 209

 Operations and control panels

210 System Management Guide

 Writing administration programs

Chapter 13. Writing programs to administer MQSeries

General-use programming interface

This chapter contains hints and guidance to enable you to issue MQSeries
commands from an MQSeries application program.

It contains these sections:

� “Before you begin”
� “Understanding how it all works” on page 212
� “Using the command server” on page 213
� “Preparing queues for administration programs” on page 214
� “Sending commands to the command server” on page 216
� “Putting messages on the system-command input queue” on page 217
� “Retrieving replies to your commands” on page 218
� “Interpreting the replies” on page 220
� “If you do not receive a reply” on page 226
� “Passing commands using MGCR or MGCRE” on page 226

Note: In this chapter, the MQI calls are described using C-language notation. For
typical invocations of the calls in the COBOL, PL/I, and assembler
languages, see the MQSeries Application Programming Reference manual.

Before you begin
Before you can write an application program to issue MQSeries commands, you
must be familiar with:

1. Issuing MQSeries commands and the command syntax. See the MQSeries
Command Reference manual for more information.

2. Writing application programs that use the MQI.

This includes:

� Connecting to a queue manager using the MQCONN call.

� Opening a queue using MQOPEN.

� Opening a dynamic queue using MQOPEN and specifying the name of a
model queue.

� Putting messages on a queue using MQPUT and MQPUT1.

� Getting messages from a queue using MQGET.

You need to know about the messages including:

� The message descriptor structure.

� What the persistence attribute of a message means.

� The types of MQSeries messages, in particular, request messages and the
reply messages they generate.

You can find all this information in the MQSeries Application Programming
Guide and the MQSeries Application Programming Reference manual.

 Copyright IBM Corp. 1993,1999 211

 Understanding how it all works

 3. User messages.

These messages are generated by MQSeries to show the success or failure of,
and the responses to, MQSeries commands. Each message is identified by an
ID that contains the characters CSQ, for example, CSQN205I. For more
information, see the MQSeries for OS/390 Messages and Codes manual.

If you want your MQSeries commands to be run on a remote queue manager, see
the MQSeries Intercommunication manual.

MQSeries can also be set up to perform security checks. For example, to ensure
that a user is authorized to issue a particular command for a particular resource.
For more information, see Part 8, “Security” on page 391.

Understanding how it all works
In outline, the procedure for issuing commands from an application program is quite
simple:

1. You build an MQSeries command into a type of MQSeries message called a
request message.

2. You put (MQPUT) this message onto a special queue called the
system-command input queue. The MQSeries command processor runs the
command.

3. You retrieve (MQGET) the results of the command as reply messages on the
reply-to queue. These messages contain the user messages that you need to
determine whether your command was successful and, if it was, what the
results were.

Then it is up to your application program to process the results.

212 System Management Guide

 Using the command server

Using the command server
The command server is an MQSeries component that works with the command
processor component. The command server reads request messages from the
system-command input queue, verifies them, and passes the valid ones as
commands to the command processor. The command processor processes the
commands and puts any replies as reply messages on to the reply-to queue that
you specify. The first reply message contains the user message CSQN205I. See
“Interpreting the replies” on page 220 for more information.

Identifying the queue manager that processes your commands
The queue manager that processes the commands you issue from an
administration program is the queue manager that owns the system-command input
queue that the message is put onto.

Starting the command server
Normally, the command server is started automatically when the queue manager is
started. It becomes available as soon as the message CSQ9022I 'START QMGR'
NORMAL COMPLETION is returned from the +cpf START QMGR command. The
command server is stopped when all the connected tasks have been disconnected
during the system termination phase.

You can control the command server yourself using the +cpf START CMDSERV
and +cpf STOP CMDSERV commands. To prevent the command server starting
automatically when MQSeries is restarted, you can add a +cpf STOP CMDSERV
command to your CSQINP1 or CSQINP2 initialization data sets.

The +cpf STOP CMDSERV command stops the command server as soon as it has
finished processing the current message or immediately, if no messages are being
processed.

If the command server has been stopped by a +cpf STOP CMDSERV command in
the program, no other commands from the program can be processed. To restart
the command server, you must issue a +cpf START CMDSERV command from
the OS/390 console.

If you stop and restart the command server while MQSeries is running, all the
messages that are on the system-command input queue when the command server
stops are processed when the command server is restarted. However, if you stop
and restart MQSeries after the command server is stopped, only the persistent
messages on the system-command input queue are processed when the command
server is restarted. All nonpersistent messages on the system-command input
queue are lost.

 Chapter 13. Writing programs to administer MQSeries 213

 Preparing queues

Preparing queues for administration programs
Before you can issue any MQPUT or MQGET calls, you must first define, and then
open, the queues you are going to use.

Defining the system-command input queue
The system-command input queue is a local queue called
SYSTEM.COMMAND.INPUT. The supplied CSQINP2 initialization data set,
thlqual.SCSQPROC(CSQ4INSG), contains a default definition for the
system-command input queue. See “System command objects” on page 56 for
more information.

Defining a reply-to queue
You must define a reply-to queue to receive reply messages from the MQSeries
command processor. It can be any queue whose attributes allow reply messages
to be put on it. However, for normal operation, specify these attributes:

 � MAXSMSGL(13000)
 � USAGE(NORMAL)
� NOTRIGGER (unless your application uses triggering)

You should not normally use persistent messages for commands, but if you choose
to do so, the reply-to queue must not be a temporary dynamic queue.

The supplied CSQINP2 initialization data set, thlqual.SCSQPROC(CSQ4INSG),
contains a definition for a model queue called
SYSTEM.COMMAND.REPLY.MODEL. You can use this model to create a
dynamic reply-to queue.

Note: Replies generated by the command processor can be up to 13 000 bytes in
length.

Opening the system-command input queue
Before you can open the system-command input queue, your application program
must be connected to your MQSeries subsystem. Use the MQI call MQCONN to
do this.

Then use the MQI call MQOPEN to open the system-command input queue. To
use this call:

1. Set the Options parameter to MQOO_OUTPUT

2. Set the MQOD object descriptor fields as follows:

ObjectType MQOT_Q (the object is a queue)

ObjectName SYSTEM.COMMAND.INPUT

ObjectQMgrName Leave blank if you want to send your request messages to
your local queue manager. This means that your
commands are processed locally.

If you want your MQSeries commands to be processed on
a remote queue manager, put its name here. You must
also have set up the correct queues and links, as described
in the MQSeries Intercommunication manual.

214 System Management Guide

 Preparing queues

Opening a reply-to queue
To be able to retrieve the replies from an MQSeries command, you must open a
reply-to queue. On way of doing this is to specify the model queue,
SYSTEM.COMMAND.REPLY.MODEL, in an MQOPEN call to create a permanent
dynamic queue as your reply-to queue. To use this call:

1. Set the Options parameter to MQOO_INPUT_SHARED

2. Set the MQOD object descriptor fields as follows:

ObjectType MQOT_Q (the object is a queue)

ObjectName The name of your reply-to queue. If the queue name you
specify is the name of a model queue object, the queue
manager creates a dynamic queue.

ObjectQMgrName To receive replies on your local queue manager, leave this
field blank.

DynamicQName Specify the name of the dynamic queue to be created.

 Chapter 13. Writing programs to administer MQSeries 215

 Sending commands to the command server

Sending commands to the command server
For each command, you build a message containing the command and then you
put it onto the system-command input queue.

Building a message that includes MQSeries commands
You can incorporate MQSeries commands in an application program by building
request messages that include the required commands. For each such command
you:

1. Create a buffer containing a character string representing the command.
2. Issue an MQPUT call specifying the buffer name in the buffer parameter of

the call.

The simplest way to do this in C is to define a buffer using ‘char’. For example:

 char message_buffer[] = "ALTER QLOCAL(SALES) PUT(ENABLED)";

When you build a command, use a null-terminated character string. Do not specify
a command prefix string (CPF) at the start of a command defined in this way. This
means that you do not have to alter your command scripts if you want to run them
on another queue manager. However, you must take into account that a CPF is
included in any response messages that are put onto the reply-to queue.

The command server translates all characters to uppercase unless they are inside
single quotes.

Commands can be any length up to a maximum 32 762 characters.

216 System Management Guide

 Putting messages on the queue

Putting messages on the system-command input queue
Use the MQPUT call to put request messages containing commands on the
system-command input queue. In this call you specify the name of the reply-to
queue that you have already opened.

To use the MQPUT call:

1. Set these MQPUT parameters:

Hconn The connection handle returned by the MQCONN call.

Hobj The object handle returned by the MQOPEN call for the
system-command input queue.

BufferLength The length of the formatted command.

Buffer The name of the buffer containing the command.

2. Set these MQMD fields:

MsgType MQMT_REQUEST

ReplyToQ Name of your reply-to queue.

ReplyToQMgr Leave blank if you want replies sent to your local queue
manager. If you want your MQSeries commands to be sent
to a remote queue manager, put its name here. You must
also have set up the correct queues and links, as described
in the MQSeries Intercommunication manual.

3. Set any other MQMD fields, as required. If you are not using the same code
page as the queue manager, set CodedCharSetId as appropriate, and set
Format to MQFMT_STRING, so that the command server can convert the
message. You should normally use nonpersistent messages for commands.

4. Set any PutMsgOpts options, as required.

If you specify MQPMO_SYNCPOINT (the default), you must follow the MQPUT
call with a syncpoint call.

Using MQPUT1 and the system-command input queue
If you want to put just one message on the system-command input queue, you can
use the MQPUT1 call. This call combines the functions of an MQOPEN, followed
by an MQPUT of one message, followed by an MQCLOSE, all in one call. If you
use this call, modify the parameters accordingly. See the MQSeries Application
Programming Guide for details.

 Chapter 13. Writing programs to administer MQSeries 217

 Retrieving replies

Retrieving replies to your commands
When the command processor processes your commands, any reply messages are
put onto the reply-to queue specified in the MQPUT call. The command server
sends the reply messages with the same persistence as the command message it
received.

Waiting for a reply
Use the MQGET call to retrieve a reply from your request message. One request
message can produce several reply messages. For details, see “Interpreting the
replies” on page 220.

You can specify a time interval that an MQGET call waits for a reply message to be
generated. If you do not get a reply, use the checklist beginning on page 226.

To use the MQGET call:

1. Set these parameters:

Hconn The connection handle returned by the MQCONN call.

Hobj The object handle returned by the MQOPEN call for the
reply-to queue.

Buffer The name of the area to receive the reply.

BufferLength The length of the buffer to receive the reply. This must be
a minimum of 80 bytes.

2. To ensure that you only get the responses from the command that you issued,
you must specify the appropriate MsgId and CorrelId fields. These depend on
the report options, MQMD_REPORT, you specified in the MQPUT call:

Report option... Use this MsgId...

MQRO_NONE Binary zero, '00...00' (24 nulls).

MQRO_NEW_MSG_ID Binary zero, '00...00' (24 nulls).

This is the default if none of these
options has been specified.

MQRO_PASS_MSG_ID The MsgId from the MQPUT.

Report option... Use this CorrelId...

MQRO_NONE The MsgId from the MQPUT call.

MQRO_COPY_MSG_ID_TO_CORREL_ID The MsgId from the MQPUT call.

This is the default if none of these
options has been specified.

MQRO_PASS_CORREL_ID The CorrelId from the MQPUT call.

For more details on report options, see the MQSeries Application Programming
Reference manual.

218 System Management Guide

 Retrieving replies

3. Set the following GetMsgOpts fields:

Options MQGMO_WAIT

If you are not using the same code page as the queue
manager, set MQGMO_CONVERT, and set CodedCharSetId
as appropriate in the MQMD.

WaitInterval For replies from the local queue manager, try 5 seconds.
Coded in milliseconds, this becomes 5 000. For replies
from a remote queue manager, and channel control and
status commands, try 30 seconds. Coded in milliseconds,
this becomes 30 000.

 Discarded messages
If the command server finds that a request message is not valid, it discards this
message and writes the message CSQN205I to the named reply-to queue. If there
is no reply-to queue, the CSQN205I message is put onto the dead-letter queue.
The return code in this message shows why the original request message was not
valid:

Return code Message not valid because...

00D5020F It is not of type MQMT_REQUEST.

00D50210 It has zero length.

00D50212 It is longer than 32 762 bytes.

00D50211 It contains all blanks.

00D5483E It needed converting, but Format was not MQFMT_STRING.

OTHER See the MQSeries for OS/390 Messages and Codes manual.

The reply message descriptor
For any reply message, the following MQMD message descriptor fields are set:

MsgType MQMT_REPLY

Feedback MQFB_NONE

Encoding MQENC_NATIVE

Priority As for the MQMD in the message you issued.

Persistence As for the MQMD in the message you issued.

CorrelId Depends on the MQPUT report options.

ReplyToQ None.

The command server sets the Options field of the MQPMO structure to
MQPMO_NO_SYNCPOINT. This means that you can retrieve the replies as they
are created, rather than as a group at the next syncpoint.

End of General-use programming interface

 Chapter 13. Writing programs to administer MQSeries 219

 Interpreting the replies

Interpreting the replies

Product-sensitive programming interface

Each request message correctly processed by MQSeries produces at least two
reply messages. Each reply message contains a single MQSeries user message.

The length of a reply depends on the command that was issued. The longest reply
you can get is from a DISPLAY NAMELIST, and that can be up to 13 000 bytes
long.

The first user message, CSQN205I, always contains:

� A count of the replies (in decimal), which you can use as a counter in a loop to
get the rest of the replies. The count includes this first message.

� The return code from the command preprocessor.

� A reason code, which is the return code from the command processor.

This message does not contain a CPF.

For example:

CSQN2ð5I COUNT= 4, RETURN=ðððððððC, REASON=ððððððð8

The COUNT field is 8 bytes long and is right-justified. It always starts at position
18, that is, immediately after 'COUNT='. The RETURN field is 8 bytes long in
character hex and is immediately after 'RETURN=' at position 35. The REASON
field is 8 bytes long in character hex and is immediately after 'REASON=' at
position 52.

If the RETURN= value is 00000000 and the REASON= value is 00000004, the set
of reply messages is incomplete. After retrieving the replies indicated by the
CSQN205I message, issue a further MQGET call to wait for a further set of replies.
The first message in the next set of replies will again be CSQN205I, indicating how
many replies there are, and whether there are more to come.

See the MQSeries for OS/390 Messages and Codes manual for more details about
the individual messages.

If you are using a non-English language feature, the text and layout of the replies
are different from those shown here. However, the size and position of the count
and return codes in message CSQN205I are the same.

Examples of commands and their replies
Here are some examples of commands that could be built into MQSeries
messages, and the user messages that are the replies. Unless otherwise stated,
each line of the reply is a separate message.

220 System Management Guide

 Interpreting the replies

Messages from the DEFINE command
Command:

 DEFINE QLOCAL(Q1)

Messages:

CSQN2ð5I COUNT= 2, RETURN=ðððððððð, REASON=ðððððððð
CSQ9ð22I +cpf CSQMMSGP ' DEFINE QLOCAL' NORMAL COMPLETION

These reply messages are produced on normal completion.

Messages from the DELETE command
Command:

 DELETE QLOCAL(Q2)

Messages:

CSQN2ð5I COUNT= 4, RETURN=ðððððððC, REASON=ððððððð8
CSQMð94I +cpf CSQMUQLC QLOCAL (Q2) WAS NOT FOUND
CSQMð9ðI +cpf CSQMUQLC FAILURE REASON CODE X'ððD44ðð2'
CSQ9ð23I +cpf CSQMUQLC ' DELETE QLOCAL' ABNORMAL COMPLETION

These messages indicate that a local queue called Q2 does not exist.

Using the DISPLAY commands
To obtain information about MQSeries, use the MQSeries DISPLAY commands.
Use these commands rather than MQINQ if you want:

� Information about objects on a remote queue manager. MQINQ only returns
information from the local queue manager.

� Reply messages ready-formatted for printing. MQINQ returns information that
is not formatted.

� Other information that MQINQ does not provide.

The format of the replies from these commands:

 DISPLAY THREAD
 DISPLAY TRACE
 DISPLAY CMDSERV

is the same regardless of whether you issue the command from an application
program or from an OS/390 console. However, if you issue DISPLAY commands
for MQSeries objects, the format is different when they are issued from an
application program.

 Chapter 13. Writing programs to administer MQSeries 221

 Interpreting the replies

Messages from the DISPLAY THREAD command
Command:

DISPLAY THREAD(\) TYPE(\)

Messages:

CSQN2ð5I COUNT= 2ð, RETURN=ðððððððð, REASON=ðððððððð.
CSQV4ð1I +cpf DISPLAY THREAD REPORT FOLLOWS -
CSQV4ð2I +cpf ACTIVE THREADS - 668
NAME ST A REQ THREAD-XREF USERID ASID URID
ABCDEFG T 3 ABCDEFG ðð2D ðððððððððððð
MQSCIC1 T 4 MQSCIC1 ðð34 ðððððððððððð
MQSCIC1 T ð ððð11128C3D2C1D4ððððð23C MQSCIC1 ðð34 ðððððððððððð
MQSCIC1 T 3 MQSCIC1 ðð34 ðððððððððððð
MQSCIC1 T 1 ðð34 ðððððððððððð
MQSCIC1 T 1 ðð34 ðððððððððððð
MQSCIC1 T 1 ðð34 ðððððððððððð
MQSCIC1 T 1 ðð34 ðððððððððððð
MQSCIC1 T 1 ðð34 ðððððððððððð
MQSCIC1 T 1 ðð34 ðððððððððððð
MQSCIC1 T 1 ðð34 ðððððððððððð
MQSCIC1 T ð ððð12ð2ðC3D2E3C9ððððð39C MQSCIC1 ðð34 ðððððððððððð
DISPLAY ACTIVE REPORT COMPLETE
CSQV412I +cpf CSQVDT NO INDOUBT THREADS FOUND FOR NAME=MQSCIC1
CSQV412I +cpf CSQVDT NO INDOUBT THREADS FOUND FOR NAME=ABCDEFG
CSQ9ð22I +cpf CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

The actual number and content of the messages depend on what is running in your
queue manager.

Messages from DISPLAY commands for MQSeries objects
These DISPLAY command responses, acting on MQSeries objects, produce user
messages with a different format when you issue them from an application
program:

 DISPLAY CHANNEL/CHSTATUS
 DISPLAY CLUSQMGR
 DISPLAY NAMELIST
 DISPLAY PROCESS
 DISPLAY QMGR
 DISPLAY QUEUE
 DISPLAY STGCLASS

The user messages in the replies are still in the form of character strings, however,
the attribute values in a message have the fixed positions relative to the attribute
name.

222 System Management Guide

 Interpreting the replies

The format of the reply is:

msg_no +cpf attr_name(value) attr_name attr_name(value)

where:

msg_no An 8 character message number
+cpf The command prefix string
attr_name The attribute or keyword name
value The attribute value

Messages from the DEFINE QLOCAL command
The following examples show how the results from a command depend on the
attributes specified in that command.

 Example 1
You define a local queue using the command:

DEFINE QLOCAL(Q1) DESCR('A sample queue') GET(ENABLED) SHARE

You then issue the following command from an application program:

DISPLAY QUEUE(Q1) SHARE GET DESCR

These three user messages are returned:

CSQN2ð5I COUNT= 3, RETURN=ðððððððð, REASON=ðððððððð
CSQM4ð1I +cpf QUEUE(Q1) TYPE(
QLOCAL) DESCR(A sample queue

) SHARE GET(ENABLED)
CSQ9ð22I +cpf CSQMDMSG ' DISPLAY QUEUE' NORMAL COMPLETION

Note: The second message, CSQM401I, is shown here occupying three lines.

 Example 2
Two queues have names beginning with the letter “A”:

A1 is a local queue with its PUT attribute set to DISABLED.
A2 is a remote queue with its PUT attribute set to ENABLED.

You then issue the following command from an application program:

DISPLAY QUEUE(A\) PUT

These four user messages are returned:

CSQN2ð5I COUNT= 4, RETURN=ðððððððð, REASON=ðððððððð
CSQM4ð1I +cpf QUEUE(A1) TYPE(
QLOCAL) PUT(DISABLED)
CSQM4ð6I +cpf QUEUE(A2) TYPE(
QREMOTE) PUT(ENABLED)
CSQ9ð22I +cpf CSQMDMSG ' DISPLAY QUEUE' NORMAL COMPLETION

Note: The second and third messages, CSQM401I and CSQM406I respectively,
are shown here occupying two lines each.

 Chapter 13. Writing programs to administer MQSeries 223

 Interpreting the replies

Messages from the DEFINE NAMELIST command
A namelist is defined by the command:

DEFINE NAMELIST(N1) NAMES(Q1,SAMPLE_QUEUE)

You then issue the following command from an application program:

DISPLAY NAMELIST(N1) NAMES NAMCOUNT

The following three user messages are returned:

CSQN2ð5I COUNT= 3, RETURN=ðððððððð, REASON=ðððððððð
CSQM4ð7I +cpf NAMELIST(N1) NA
MCOUNT(2) NAMES(Q1
 ,SAMPLE_QUEUE)
CSQ9ð22I +cpf CSQMDMSG ' DISPLAY NAMELIST' NORMAL COMPLETION

Note: The third message, CSQM407I, is shown here occupying three lines.

Finding out the name of the dead-letter queue
You want to find out the name of the dead-letter queue for a queue manager.

You issue this command from an application program:

DISPLAY QMGR DEADQ

The following three user messages are returned from which you can extract the
required name:

CSQN2ð5I COUNT= 3, RETURN=ðððððððð, REASON=ðððððððð
CSQM4ð9I +cpf QMNAME(CSQ1) DEADQ(SYSTEM.DEAD.QUEUE)
CSQ9ð22I +cpf CSQMDRTS ' DISPLAY QMGR' NORMAL COMPLETION

224 System Management Guide

 Interpreting the replies

 Command attributes
When using commands in administration programs, you should consider the
following:

1. Not all attributes have associated values.

2. Each attribute or attribute and value pair is separated by one or more blanks.

3. Do not make any assumptions about the order in which attributes are returned.

4. The attribute values returned are fixed length and surrounded by parentheses.

Integer values are ten characters long, right justified, and padded with blanks.

Character values are left justified and padded with blanks. Their lengths are as
follows:

a. Character string lengths are the same as those given in the MQSeries
Application Programming Reference manual.

b. Attributes that return a keyword (for example, DEFSOPT returns EXCL or
SHARED) are 10 characters long, left justified, and padded with blanks.

c. Some attribute keywords can take negated values, for example,
NOTRIGGER, NOSHARE, and NOHARDENBO. The attribute keywords
that can have negated values take their length from the negated value. For
example, the negated equivalent of SHARE is NOSHARE; it has a length of
7. These attributes are left justified and padded with blanks.

5. The number of attributes returned depends on what attributes are requested by
the command.

6. The NAMES attribute of a namelist returns multiple values. This attribute
returns a list of names, each of fixed length, separated by commas. Use the
NAMCOUNT attribute to discover the number of names in the list. If there are
no names in the list, the NAMES attribute is returned as NAMES().

7. Attributes that normally require quotes around the string because they contain
embedded blanks, lowercase characters or special characters, are returned
without the quotes.

8. When you want to use the reply to a +cpf DISPLAY command as input to
another command, put single quotes (' ') around each attribute. For example,
if you define this queue:

+cpf DEFINE QLOCAL(SALES) DESCR('Sales enquiries queue')

You can display it using the command:

+cpf DISPLAY QUEUE(SALES) DESCR

The DESCR attribute is displayed as:

DESCR(Sales enquiries queue)

To use this description in another command you must add the quotes as
follows:

DESCR('Sales enquiries queue')

If the attribute itself contains any quotes, you must double them.

 Chapter 13. Writing programs to administer MQSeries 225

 Using MGCR or MGCRE

If you do not receive a reply
If you do not receive a reply to your request message, work through this checklist:

Ø Is the command server running?

Ø Is the WaitInterval long enough?

Ø Are the system-command input and reply-to queues correctly defined?

Ø Were the MQOPEN calls to these queues successful?

Ø Are both the system-command input and reply-to queues enabled for MQPUT
and MQGET calls?

Ø Have you considered increasing the MAXDEPTH and MAXMSGL attributes of
your queues?

Ø Are you are using the CorrelId and MsgId fields correctly?

Ø Is the MQSeries subsystem still running?

Ø Was the command built correctly?

Ø Are all your remote links defined and operating correctly?

Ø Were the MQPUT calls correctly defined?

Ø Has the reply-to queue been defined as a temporary dynamic queue instead of
a permanent dynamic queue? (If the request message is persistent, you must
use a permanent dynamic queue for the reply.)

When the command server generates replies but cannot write them to the reply-to
queue that you specify, it tries to write them to the system dead-letter queue.

Passing commands using MGCR or MGCRE
If you have the correct authorization, you can pass MQSeries commands from your
program to multiple MQSeries subsystems by the MGCR or MGCRE (SVC 34)
OS/390 service. The value of the CPF identifies the particular MQSeries
subsystem to which the command is directed. For details about CPFs, see
“Updating the subsystem name table” on page 41.

If you use MGCRE, you can use a Command and Response Token (CART) to get
the direct responses to the command.

End of Product-sensitive programming interface

226 System Management Guide

 Utilities

Chapter 14. Using the MQSeries utilities

This chapter describes the MQSeries utility programs that are provided to help you
perform various administrative tasks. Table 16 summarizes what you can do with
these utilities.

Table 16. A summary of MQSeries utilities

Name Purpose See
page

CSQUTIL
(MQSeries utility program)
Page set management

FORMAT Format VSAM data sets as MQSeries page sets.
COPYPAGE Copy MQSeries page sets.
RESETPAGE Copy MQSeries page sets and reset the log

information.

231

CSQUTIL
Command management

COMMAND Issue MQSeries commands from a sequential data
set.
Produce a set of DEFINE commands for objects.
Produce a client channel definition file.

SDEFS Produce a set of DEFINE commands for objects
(offline).

238

CSQUTIL
Queue management

COPY Copy contents of a queue to a data set.
SCOPY Copy contents of a queue to a data set (offline).
EMPTY Delete contents of a queue.
LOAD Restore contents of a queue.

245

CSQUCVX
(Data conversion exit utility)

Generates data conversion exit routines.

For information about the CSQUCVX utility, see the MQSeries
Application Programming Guide.

–

CSQJU003
(Change log inventory
utility)

Changes the bootstrap data set.

NEWLOG Add active or archive log data sets.
DELETE Delete active or archive log data sets.
ARCHIVE Supply passwords for archive logs.
CRESTART Control the next restart of MQSeries.
CHECKPT Set checkpoint records.
HIGHRBA Update the highest written log RBA.

256

CSQJU004
(Print log map utility)

Lists information about the log. 265

CSQ1LOGP
(Log print utility)

Prints the log. 266

These utilities are located in the main MQSeries load library thlqual.SCSQAUTH.

Note: Include the appropriate MQSeries language load library thlqual.SCSQANLx
(where x is the language letter) in the STEPLIB concatenation before the
thlqual.SCSQAUTH or thlqual.SCSQLOAD. The utility control statements
are available only in US English.

 Copyright IBM Corp. 1993,1999 227

 Reading syntax diagrams

How to read syntax diagrams
This chapter contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and left
arrow pair. Lines beginning with a single right arrow are continuation lines. You
read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Table 17. How to read syntax diagrams

Convention Meaning

55──A──B──C──5 You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

55─ ──┬ ┬─── ─5
 └ ┘─A─

You may specify value A. Optional values are shown below the main
line of a syntax diagram.

55─ ──┬ ┬─A─ ─5
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you must specify.

55─ ──┬ ┬─── ─5
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you may specify.

 ┌ ┐─,───
55─ ───6 ┴┬ ┬─── ─5
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

You may specify one or more of the values A, B, and C. Any
required separator for multiple or repeated values (in this example,
the comma (,)) is shown on the arrow.

 ┌ ┐──┬ ┬───
 │ │└ ┘─,─
55─ ───6 ┴┬ ┬───── ─5
 └ ┘─A───

You may specify value A multiple times. The separator in this
example is optional.

 ┌ ┐─A─
55─ ──┼ ┼─── ─5
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you may specify. If
you specify none of the values shown, the default A (the value
shown above the main line) is used.

55──┤ Name ├──5

Name:
├──A─ ──┬ ┬─── ─┤
 └ ┘─B─

The syntax fragment Name is shown separately from the main syntax
diagram.

Punctuation and
uppercase values

Specify exactly as shown.

Lowercase values
(for example, name)

Supply your own text in place of the name variable.

228 System Management Guide

 CSQUTIL

MQSeries utility program (CSQUTIL)
The CSQUTIL utility program is provided with MQSeries to help you to perform
backup, restoration, and reorganization tasks, and to issue MQSeries commands.
Through this utility program, you can invoke functions in these groups:

� Page set management, see page 231
� Issuing commands, see page 238
� Queue management, see page 245

All of the page set management functions and some of the other functions operate
while the queue manager is not running; for these therefore, you do not need any
special authorization other than the appropriate access to the page set data sets.
For the functions that operate while the queue manager is running, CSQUTIL runs
as an ordinary OS/390 batch MQSeries program, issuing commands through the
command server and using the MQSeries API to access queues. You need the
necessary authority to use the command server queues
(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.ñ), to use the MQSC DISPLAY commands, and to use the
MQSeries API to access any queues that you wish to manage. See the usage
notes for each function for more information.

Invoking the MQSeries utility program
The CSQUTIL utility program runs as an OS/390 batch program, below the 16 MB
storage line. In the PARM parameter of the EXEC statement of the JCL, specify
the queue manager that the utility is to work with. For example, see Figure 71.

// EXEC PGM=CSQUTIL,PARM='CSQ1'

Figure 71. Specifying the queue manager that a utility is to work with

If you specify a queue manager name as blanks, CSQUTIL uses the name of the
default queue manager specified for OS/390 batch programs in CSQBDEFV. The
utility then uses this queue manager for the whole job step. When the utility
connects to the queue manager, the authorization of the “signed-on user name” is
checked to see which functions the invocation is allowed to use.

You specify the functions required by statements in the SYSIN data set according
to these rules:

� The data set must have a record length of 80.

� Only columns 1 through 72 are significant. Columns 73 through 80 are
ignored.

� Records with an asterisk (\) in column 1 are interpreted as comments and are
ignored.

� Blank records are ignored.

� Each statement must start on a new line.

� A trailing − means continue from column 1 of the next record.

� A trailing + means continue from the first non-blank column of the next record.

� The keywords of statements are not case-sensitive. However, some
arguments, such as queue name, are case-sensitive.

 Chapter 14. Using the MQSeries utilities 229

 CSQUTIL

The utility statements refer to the default or explicitly named DDnames for input and
output. Your job can use the COPY and LOAD functions repeatedly and process
different page sets or queues during a single run of the utility.

All output messages are sent to the SYSPRINT data set, which must have a record
format VBA and a record length 125.

While running, CSQUTIL uses temporary dynamic queues with names of the form
SYSTEM.CSQUTIL.ñ

 Return codes
When CSQUTIL returns to the operating system, the return code can be:

0 All functions completed successfully.

4 Some functions completed successfully, some did not or forced a
syncpoint.

8 All the attempted functions failed.

12 No functions attempted; there was a syntax error in the statements or the
expected data sets were missing.

In most cases, if a function fails or is forced to take a syncpoint, no further
functions are attempted. In this case, the message CSQU147I replaces the normal
completion message CSQU148I.

See the usage notes for each function for more information about success or
failure.

Monitoring the progress of the MQSeries utility program
To record the progress of CSQUTIL, every SYSIN statement is echoed to
SYSPRINT.

The utility first checks the syntax of the statements in the SYSIN. The requested
functions are started only if all the statements are syntactically correct.

Messages giving a commentary on the progress of each function are sent to
SYSPRINT. When the processing of the utility is complete, statistics are printed
with an indication of how the functions completed.

230 System Management Guide

 Page set management

Page set management functions
These functions enable you to manage MQSeries page sets. You can format data
sets as page sets, you can increase the size of page sets and, if required, reset the
log information contained in a page set. The page set must not belong to a queue
manager that is currently running.

Formatting page sets (FORMAT)
Use the FORMAT function to format page sets on all data sets specified by
DDnames CSQP0000 through CSQP0099. In this way, you can format up to 100
page sets by invoking the utility program once. Use the FORCE parameter to
reuse existing page sets.

Page set management (FORMAT)

55──FORMAT─ ──┬ ┬─────── ──┬ ┬──────────── ─────────────────────────────5%
 └ ┘─FORCE─ └ ┘─PAGES(nnn)─

Keywords and parameters
FORCE

Specifies that existing page sets are to be re-used without having to delete and
redefine them first. You must define any page sets you want to re-use with the
REUSE attribute in the AMS DEFINE CLUSTER statement. For more
information about DEFINE CLUSTER, see the DFSMS/MVS Access Method
Services for VSAM or the DFSMS/MVS Access Method Services for the
Integrated Catalog Facility manual.

PAGES(nnn)
Specifies the minimum number of pages to format in each page set. This
enables a data set that spans more than one volume to be formatted.

Formatting of the data set is always done in whole space allocations, as
specified as primary or secondary quantities when the data set is defined. The
number of space allocations formatted is the minimum necessary to provide the
requested number of pages; if there is insufficient data set space available, as
many extents as can be obtained are formatted. If an existing page set is being
reused (with the FORCE keyword), the whole page set is formatted if that is
larger.

The number of pages must be in the range 1 through 1 048 576 (because the
maximum page set size is 4 GB (gigabytes)). The default is 1.

The number of pages formatted is reported by message CSQU092I for each
page set.

 Example
Figure 72 on page 232 illustrates how the FORMAT command is invoked from
CSQUTIL. In this example, two page sets, referenced by CSQP0000 and
CSQP0003 respectively, are formatted by CSQUTIL.

 Chapter 14. Using the MQSeries utilities 231

 Page set management

//FORMAT EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//CSQPðððð DD DISP=OLD,DSN=pageset.dsnameð
//CSQPððð3 DD DISP=OLD,DSN=pageset.dsname3
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
FORMAT
/\

Figure 72. Sample JCL for the FORMAT function of CSQUTIL

 Usage notes
1. You cannot format page sets that belong to a queue manager that is still

running.

2. When you use FORMAT, it is not necessary to specify a queue manager name.

3. If you use data set names in which the queue manager name is a high-level
qualifier, you can more easily identify which page sets are used by which
MQSeries subsystem, if more than one MQSeries subsystem is defined.

4. If there is an error when formatting a page set, it does not prevent other page
sets from being formatted, although the FORMAT function is considered to
have failed.

5. If FORMAT fails, no further CSQUTIL functions are attempted.

232 System Management Guide

 Page set management

Expanding a page set (COPYPAGE)
Note: The COPYPAGE function is only used for expanding page sets. It is not

used for making backup copies of page sets. If you want to do this, use
AMS REPRO as described in “Backing up and recovering page sets” on
page 331. When you have used the COPYPAGE function, the page sets
cannot be used by a queue manager with a different name, so you must not
rename your queue manager.

Use the COPYPAGE function to copy one or more page sets. All queues and
messages on the page set are copied. If you copy page set zero, all the MQSeries
object definitions are also copied. Each page set is copied to a destination data set
that must be formatted as a page set. Copying to a smaller page set is not
supported.

If you use this function, you must modify the page set definition in the startup
procedure to reflect the change of the name of the data set on which the new page
set resides.

To use the COPYPAGE function, define DDnames in the range CSQS0000 through
CSQS0099 for the source data sets, and define DDnames for the target data sets
from CSQT0000 through CSQT0099 respectively.

For more information, see Chapter 20, “Managing page sets” on page 325.

Page set management (COPYPAGE)

55──COPYPAGE───5%

Keywords and parameters
There are no keywords or parameters.

 Example
In Figure 73 on page 234, two existing page sets are copied onto two new page
sets. The procedure for this is:

1. Set up the required DDnames, where:

CSQP0005, CSQP0006 Identify the destination data sets. These DDnames
are used by the FORMAT function.

CSQS0005, CSQS0006 Identify the source data sets containing the two page
sets you want to copy.

CSQT0005, CSQT0005 Identify the destination data sets (page sets), but this
time for the COPYPAGE function.

2. Format the destination data sets, referenced by DDnames CSQP0005 and
CSQP0006, as page sets using the FORMAT function.

3. Copy the two existing page sets onto the new page sets using the COPYPAGE
function.

 Chapter 14. Using the MQSeries utilities 233

 Page set management

//COPYPAGE EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//CSQPððð5 DD DISP=OLD,DSN=pageset.newname5
//CSQPððð6 DD DISP=OLD,DSN=pageset.newname6
//CSQSððð5 DD DISP=OLD,DSN=pageset.oldname5
//CSQSððð6 DD DISP=OLD,DSN=pageset.oldname6
//CSQTððð5 DD DISP=OLD,DSN=pageset.newname5
//CSQTððð6 DD DISP=OLD,DSN=pageset.newname6
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
\ Format new data sets (CSQPððð5 and CSQPððð6) as page sets
 FORMAT
\ Copy old page sets CSQSððð5 and CSQSððð6 to new
\ page sets CSQTððð5 and CSQTððð6
 COPYPAGE
/\

Figure 73. Sample JCL showing the use of the COPYPAGE function

 Usage notes
1. You cannot use COPYPAGE on page sets of a queue manager that is running.

2. Using COPYPAGE involves stopping the queue manager. This will result in the
loss of nonpersistent messages.

3. Before you use COPYPAGE, the new data sets must be pre-formatted as page
sets. To do this, use the FORMAT function, as shown in Figure 73.

4. Ensure that the new (destination) data sets are larger than the old (source)
data sets.

5. You cannot change the page set identifier (PSID) associated with a page set.
For example, you cannot ‘make’ page set 03 become page set 05.

6. Failure of this function does not prevent other page set management functions
from being completed.

7. If you attempt to use the COPYPAGE function after MQSeries has terminated
abnormally, it is possible that the page sets have not been closed properly. If a
page set has not been closed properly, you cannot successfully run the
COPYPAGE function against it.

To avoid this problem, run the AMS VERIFY command before using the
COPYPAGE function. The AMS VERIFY command might produce error
messages. However, it does close the page sets properly, so that the
COPYPAGE function can complete successfully.

For more information about the AMS VERIFY command, see the DFSMS/MVS
Access Method Services for VSAM or the DFSMS/MVS Access Method
Services for the Integrated Catalog Facility manual.

234 System Management Guide

 Page set management

Copying a page set and resetting the log (RESETPAGE)
The RESETPAGE function is similar to the COPYPAGE function except that it also
resets the log information in the new page sets. RESETPAGE lets you restart
MQSeries from a known, valid set of page sets, even if the corresponding log data
sets have been corrupted.

RESETPAGE either:

� Copies page sets on all data sets referenced by DDnames CSQS0000 through
CSQS0099 to new data sets referenced by DDnames CSQT0000 through
CSQT0099 respectively. If you use this function, you must modify the page set
definition in the startup procedure to reflect the change of the name of the data
set on which the new page set resides.

� Resets the log information in the page set referenced by DDnames CSQP0000
through CSQP0099.

For more information, see Chapter 20, “Managing page sets” on page 325.

Using the RESETPAGE function
You can use the RESETPAGE function to generate a set of consistent page sets
that can be used with a set of new (clean) BSDS and log data sets to start
MQSeries. You would only have to do this if both copies of the log have been lost
or damaged for some reason; you can restart from backup page set copies (and
accept the resulting loss of data from the time the copies were made), or from your
existing page sets.

In this situation, you should use the RESETPAGE function on all the page sets of
the affected queue manager. You must also create new BSDS and log data sets.

Note: The RESETPAGE function should not be used on a subset of the page sets
known to MQSeries.

If you run the RESETPAGE function against any page sets, but do not provide
clean BSDS and log data sets for the MQSeries subsystem, MQSeries will attempt
to recover the logs from RBA zero, and will treat the page sets as empty. For
example, the following messages would be produced if you attempted to use the
RESETPAGE function to generate page sets 0, 1, 2, and 3 without providing a
clean set of BSDS and log data sets:

CSQIð21I +cpf CSQIECUR PAGE SET ð IS EMPTY. MEDIA RECOVERY STARTED
CSQIð21I +cpf CSQIECUR PAGE SET 1 IS EMPTY. MEDIA RECOVERY STARTED
CSQIð21I +cpf CSQIECUR PAGE SET 2 IS EMPTY. MEDIA RECOVERY STARTED
CSQIð21I +cpf CSQIECUR PAGE SET 3 IS EMPTY. MEDIA RECOVERY STARTED

Page set management (RESETPAGE)

55──RESETPAGE─ ──┬ ┬─────── ──5%
 └ ┘─FORCE─

 Chapter 14. Using the MQSeries utilities 235

 Page set management

Keywords and parameters
FORCE

Specifies that the page sets specified by DDnames CSQP0000 through
CSQP00nn are to be reset in place.

If FORCE is not specified, the page sets specified by DDnames CSQS0000
through CSQS00nn are copied to new page sets specified by DDnames
CSQT0000 through CSQT00nn. This is the default.

 Example
An existing page set, referenced by DDname CSQS0007, is copied to a new data
set referenced by DDname CSQT0007. The new data set, which is also
referenced by DDname CSQP0007, is already formatted as a page set before the
RESETPAGE function is called.

//RESTPAGE EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//CSQPððð7 DD DISP=OLD,DSN=pageset.newname7
//CSQSððð7 DD DISP=OLD,DSN=pageset.oldname7
//CSQTððð7 DD DISP=OLD,DSN=pageset.newname7
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
\ Format new data set, CSQPððð7, as page set
 FORMAT
\ Copy page set CSQSððð7 to CSQTððð7 and reset it
 RESETPAGE
/\

Figure 74. Sample JCL showing the use of the RESETPAGE function

 Usage notes
1. You cannot use RESETPAGE on page sets belonging to a queue manager that

is running.

2. Using RESETPAGE involves stopping the queue manager. This will result in
the loss of nonpersistent messages.

3. Before you use RESETPAGE, the new data sets must be pre-formatted as
page sets. To do this, use the FORMAT function, as shown in Figure 74.

4. Ensure that the new (destination) data sets are larger than the old (source)
data sets.

5. You cannot change the page set identifier (PSID) associated with a page set.
For example, you cannot ‘make’ page set 03 become page set 05.

6. Failure of this function does not prevent other page set management functions
from being completed.

7. If you attempt to use the RESETPAGE function after MQSeries has terminated
abnormally, it is possible that the page sets have not been closed properly. If a
page set has not been closed properly, you cannot successfully run the
RESETPAGE function against it.

To avoid this problem, run the AMS VERIFY command before using the
RESETPAGE function. The AMS VERIFY command might produce error

236 System Management Guide

 Page set management

messages. However, it does close the page sets properly, so that the
RESETPAGE function can complete successfully.

For more information about the AMS VERIFY command, see the DFSMS/MVS
Access Method Services for VSAM or the DFSMS/MVS Access Method
Services for the Integrated Catalog Facility manual.

 Chapter 14. Using the MQSeries utilities 237

 Issuing commands

MQSeries command management functions
These functions enable you to:

� Issue commands to MQSeries

� Produce a list of define commands describing the objects in your MQSeries
subsystem

Issuing commands to MQSeries (COMMAND)
Use the COMMAND function to:

1. Pass MQSeries commands from an input data set to the queue manager.

2. Produce a list of MQSeries DEFINE commands that describe the objects in an
MQSeries subsystem. The statements can be used to keep a record of the
object definitions or to regenerate all or part of a queue manager’s objects as
part of a migration from one MQSeries system to another.

3. Make a client channel definition file.

The queue manager specified in the PARM parameter of the EXEC statement must
be running.

Command management (COMMAND)

55──COMMAND─ ─── ───┬ ┬───────────────── ─── ───┬ ┬────────────────── ─────5
└ ┘──DDNAME(ddname1) └ ┘──MAKEDEF(ddname2)

5─ ─── ───┬ ┬─────────────────── ─── ───┬ ┬─────────────── ────────────────5
└ ┘──TGTQMGR(qmgrname) └ ┘──RESPTIME(nnn)

5─ ─── ───┬ ┬───────────────────────────────────── ─────────────────────5
└ ┘──MAKECLNT(ddname3) ──┬ ┬──────────────

└ ┘──CCSID(ccsid)

 ┌ ┐─FAILURE(IGNORE)───
5─ ──┼ ┼─────────────────── ──5%

 ├ ┤─FAILURE(CONTINUE)─
 └ ┘─FAILURE(STOP)─────

Keywords and parameters
DDNAME(ddname1)

Specifies that the MQSeries commands are to be read from a named input data
set. If this keyword is omitted, the default DDname, CSQUCMD, is used.

ddname1 specifies the DDname that identifies the input data set from which
MQSeries commands are to be read.

MAKEDEF(ddname2)
Specifies that DEFINE commands are to be generated from any DISPLAY
object commands in the input data set.

There is no default if this keyword is omitted.

ddname2 specifies the DDname that identifies the output data set in which the
DEFINE statements are to be stored. The data set should be RECFM=FB,
LRECL=80. This data set can then be used as input for a later invocation of the
COMMAND function or it can be incorporated into the initialization data sets
CSQINP1 and CSQINP2.

238 System Management Guide

 Issuing commands

TGTQMGR(qmgrname)
Specifies the name of the (remote) queue manager where you want the
commands to be performed.

The default is that commands are performed on the queue manager to which
you are connected, as specified in the PARM field of the EXEC statement.

RESPTIME(nnn)
Specifies the time in seconds to wait for a response to each of the commands,
in the range 5 through 999.

The default is 30 seconds.

MAKECLNT(ddname3)
Specifies that a client channel definition file, in binary format suitable for
downloading to a client machine, is to be generated from any DISPLAY
CHANNEL commands in the input data set that return information about
client-connection channels.

If this keyword is omitted, no file is generated.

ddname3 specifies the DDname that identifies the output data set in which the
generated file is to be stored; the data set should be RECFM=U, LRECL=2048,
BLKSIZE=2048. The file can then be downloaded as binary data to the client
machine by a suitable file transfer program.

CCSID(ccsid)
Specifies the coded character set identifier that is to be used for the data in a
client channel definition file. The value must be in the range 1 through 65535;
the default is 437. You can only specify CCSID if you also specify MAKECLNT.

Note: MQSeries assumes that the data is to be in ASCII, and that the
encoding for numeric data is to be MQENC_INTEGER_REVERSED.

FAILURE
Specifies what action to take if an MQSeries command that is issued fails to
execute successfully. Values are:

IGNORE Ignore the failure; continue reading and issuing commands, and
treat the COMMAND function as being successful. This is the
default.

CONTINUE Read and issue any remaining commands in the input data set,
but treat the COMMAND function as being unsuccessful.

STOP Do not read or issue any more commands, and treat the
COMMAND function as being unsuccessful.

 Examples
Issuing commands: In Figure 75 on page 240, the data sets referenced by
DDnames CSQUCMD and OTHER contain sets of MQSeries commands. The first
COMMAND statement takes MQSeries commands from the default input data set
MY.MQSERIES.COMMANDS(COMMAND1) and passes them to the command
processor. The second COMMAND statement takes MQSeries commands from
the input data set MY.MQSERIES.COMMANDS(OTHER1), which is referenced by
DDname OTHER.

 Chapter 14. Using the MQSeries utilities 239

 Issuing commands

//COMMAND EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//CSQUCMD DD DSN=MY.MQSERIES.COMMANDS(COMMAND1),DISP=SHR
//OTHER DD DSN=MY.MQSERIES.COMMANDS(OTHER1),DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
\ NEXT STATEMENT CAUSES COMMANDS TO BE READ FROM CSQUCMD DDNAME
COMMAND
\ THE NEXT SET OF COMMANDS WILL COME FROM 'OTHER' DDNAME
COMMAND DDNAME(OTHER)
\ THE NEXT STATEMENT CAUSES COMMANDS TO BE READ FROM CSQUCMD
\ DDNAME AND ISSUED ON QUEUE MANAGER CSQ2 WITH A RESPONSE TIME
\ OF 1ð SECONDS
COMMAND TGTQMGR(CSQ2) RESPTIME(1ð)
/\

Figure 75. Sample JCL for issuing MQSeries commands using CSQUTIL

Making a list of DEFINE commands: In Figure 76, the data set referenced by
DDname CMDINP contains a set of MQSeries DISPLAY commands. These
DISPLAY commands specify generic names for each object type (except the queue
manager itself). If you run these commands, a list is produced containing all the
MQSeries objects (except the queue manager). In these DISPLAY commands, the
ALL keyword is specified to ensure that all the attributes of all the objects are
included in the list.

The MAKEDEF keyword causes this list to be converted into a corresponding set of
DEFINE commands. These commands are put into a data set referenced by the
ddname2 parameter of the MAKEDEF keyword, that is, OUTPUT1. If you run this
set of commands, MQSeries regenerates all the object definitions (except the
queue manager) in the MQSeries subsystem.

//QDEFS EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUT1 DD DISP=OLD,DSN=MY.MQSERIES.COMMANDS(DEFS)
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
COMMAND DDNAME(CMDINP) MAKEDEF(OUTPUT1)
/\
//CMDINP DD \
DISPLAY STGCLASS(\)
DISPLAY QUEUE(\) ALL
DISPLAY NAMELIST(\) ALL
DISPLAY PROCESS(\) ALL
DISPLAY CHANNEL(\) ALL
/\

Figure 76. Sample JCL for using the MAKEDEF option of the COMMAND function

Making a client channel definition file: In Figure 77 on page 241, the data set
referenced by DDname CMDCHL contains an MQSeries DISPLAY CHANNEL
command. The DISPLAY command specifies a generic name and the ALL
keyword is specified to ensure that all the attributes are included.

240 System Management Guide

 Issuing commands

The MAKECLNT keyword causes this to be converted into a corresponding set of
client channel definitions. These are put into a data set referenced by the ddname3
parameter of the MAKECLNT keyword, that is, OUTCLNT, which is ready to be
downloaded to the client machine.

//CLIENT EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTCLNT DD DISP=OLD,DSN=MY.MQSERIES.CLIENTS
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
COMMAND DDNAME(CMDCHL) MAKECLNT(OUTCLNT)
/\
//CMDCHL DD \
DISPLAY CHANNEL(\) ALL TYPE(CLNTCONN)
/\

Figure 77. Sample JCL for using the MAKECLNT option of the COMMAND function

 Usage notes
1. The format of commands issued from the COMMAND function is similar to the

MQSeries operator command format. See the MQSeries Command Reference
manual for information about the rules for building MQSeries commands.

2. The rules for specifying commands in the input data set are the same as for
the initialization data sets:

� The data set must have a record length of 80.

� Only columns 1 through 72 are significant. Columns 73 through 80 are
ignored.

� Records with an asterisk (ñ) in column 1 are interpreted as comments and
are ignored.

� Blank records are ignored.

� Each command must start on a new record.

� A trailing − means continue from column 1 of the next record.

� A trailing + means continue from the first non-blank column of the next
record.

� The maximum number of characters permitted in a command is 32 762.

With the additional rule:

� A semicolon (;) can be used to terminate a command, the remaining data in
the record is ignored.

 Chapter 14. Using the MQSeries utilities 241

 Issuing commands

3. If you specify the MAKEDEF keyword:

� In the input data set, the DISPLAY commands for objects must contain the
ALL parameter so that the complete definition of each object is produced.
See Figure 76 on page 240.

� To obtain a complete definition, you must DISPLAY the following:

 Queues
 Namelists
 Process definitions
 Channels
 Storage classes

Note: DEFINE commands are not generated for any local queues that can
be identified as dynamic, or for channels that were defined
automatically.

� Do not specify the same MAKEDEF data set for more than one COMMAND
function, unless its DD statement specifies a sequential data set with
DISP=MOD.

4. Whether or not the MAKEDEF or MAKECLNT keywords are used, the results of
these DISPLAY commands are also sent to SYSPRINT.

5. If you specify the MAKECLNT keyword:

� In the input data set, the display commands for channels must contain the
ALL parameter so that the complete definition of each channel is produced.

� If the DISPLAY commands return information for a given channel more
than once, only the last set of information is used.

� Do not specify the same client definition file data set for more than one
COMMAND function, unless its DD statement specifies a sequential data
set with DISP=MOD.

6. If you specify the FAILURE keyword, a command is considered to execute
successfully or not according to the codes returned in message CSQN205I. If
the return code is 00000000 and the reason code is 00000000 or 00000004, it
is a success; for all other values it is a failure.

7. The COMMAND function is considered to be successful only if both:

� All the commands in the input data set are read and issued and get a
response from MQSeries, regardless of whether the response indicates
successful execution of the command or not.

� Every command issued executes successfully, if FAILURE(CONTINUE) or
FAILURE(STOP) is specified.

If COMMAND fails, no further CSQUTIL functions are attempted.

8. You need the necessary authority to use the command server queues
(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.ñ) and to use the MQSC commands that you wish to issue.

242 System Management Guide

 Issuing commands

Producing a list of MQSeries define commands (SDEFS)
Use the SDEFS function to produce a list of DEFINE statements describing the
objects in your MQSeries subsystem, when the queue manager is not running.

To use the SDEFS function, DDname CSQP0000 must specify the data set with
page set zero for the subsystem required.

Command management (SDEFS)

55──SDEFS─ ──OBJECT(──┬ ┬─CHANNEL──) ──MAKEDEF(ddname2) ───────────────5%
 ├ ┤─NAMELIST─
 ├ ┤─PROCESS──
 ├ ┤─QALIAS───
 ├ ┤─QLOCAL───
 ├ ┤─QMODEL───
 ├ ┤─QREMOTE──
 ├ ┤─QUEUE────
 └ ┘─STGCLASS─

Keywords and parameters
OBJECT

Specifies the type of object to be listed.

MAKEDEF(ddname2)
Specifies that define commands generated for the object are to be placed in the
output data set identified by the DDname. The data set should be RECFM=FB,
LRECL=80. This data set can then be used as input for a later invocation of the
COMMAND function or it can be incorporated into the initialization data sets
CSQINP1 and CSQINP2.

Note: DEFINE commands are not generated for any local queues that can be
identified as dynamic, or for channels that were defined automatically.

 Example

//SDEFS EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//CSQPðððð DD DISP=OLD,DSN=pageset.dsnameð
//OUTPUT1 DD DISP=OLD,DSN=MY.MQSERIES.COMMANDS(DEFS)
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
SDEFS OBJECT(QUEUE) MAKEDEF(OUTPUT1)
/\

Figure 78. Sample JCL for the SDEFS function of CSQUTIL

 Usage notes
1. You should not use SDEFS for a queue manager that is running because

results will be unpredictable. You can avoid doing this accidentally by using
DISP=OLD in the CSQP0000 DD statement.

2. When you use SDEFS, it is not necessary to specify a queue manager name.

 Chapter 14. Using the MQSeries utilities 243

 Issuing commands

3. To use the SDEFS function more than once in a job, specify different DDnames
and data sets for each invocation of the function, or specify a sequential data
set and DISP=MOD in the DD statements.

244 System Management Guide

 Queue management functions

Queue management functions
Use the CSQUTIL queue management functions to back up and restore queues
and page sets or to copy queues and page sets to another MQSeries system. You
can use these functions to reset your MQSeries subsystem or for migrating from
one MQSeries subsystem to another.

Specifically, you can:

� Copy messages from a queue to a data set
� Delete messages from a queue
� Restore previously copied messages to their respective queues

The scope of these functions can be either:

� A queue, in which case the function operates on all messages in the specified
queue.

� A page set, in which case the function operates on all the messages, in all the
queues, on the specified page set.

You should use these functions only for your own queues; do not use them for
system queues (those with names beginning SYSTEM).

 Syncpoints
The queue management functions run within a syncpoint so that, if a function fails,
its effects can be backed out. The MQSeries entity, MAXSMSGS, specifies the
maximum number of messages that a task can get or put within a single unit of
recovery. MAXSMSGS should be greater than:

� The number of messages in the queue – if you are working with a single
queue.

� The number of messages in the longest queue in the page set – if you are
working with an entire page set.

Otherwise, the utility forcibly takes syncpoints as required and issues the warning
message CSQU087I. If the function subsequently fails, the already committed
changes will not be backed out. Do not simply re-run the job to correct the problem
or you might get duplicate messages on your queues. Instead, use the current
depth of the queue to work out, from the utility output, which messages have not
been backed out. Then determine the most appropriate course of action. For
example, you can empty the queue and start again or you can choose to accept
duplicate messages on the queues.

Use the DISPLAY QLOCAL command to find out the value of the CURDEPTH
attribute, which is the current depth of the queue. To find out the value of
MAXSMSGS, use the DISPLAY MAXSMSGS command. See the MQSeries
Command Reference manual for more information.

 Chapter 14. Using the MQSeries utilities 245

 Queue management functions

Copying queues into a data set while the queue manager is running
(COPY)

Use the COPY function to copy queued messages to a sequential data set, when
the queue manager is running, without destroying any messages in the original
queues.

The scope of the COPY function is determined by the keyword that you specify in
the first parameter. You can either copy all the messages from a named queue, or
all the messages from all the queues on a named page set.

Use the complementary function, LOAD, to restore the messages to their respective
queues.

Note: If you want to copy the object definitions from the named page set, use
COPYPAGE. If you want to copy messages to a data set when the queue
manager is not running, use SCOPY.

Queue management (COPY)

55──COPY─ ──┬ ┬──QUEUE(q-name) ───────────────────────────── ───────────5
 │ │┌ ┐─DEFTYPE(ALL)────────

└ ┘──PSID(psid-number) ──┼ ┼─────────────────────
 └ ┘─DEFTYPE(PREDEFINED)─

5─ ──┬ ┬──────────────── ───5%
└ ┘──DDNAME(ddname)

Keywords and parameters
QUEUE(q-name)

QUEUE specifies that messages in the named queue are to be copied. The
keyword QUEUE can be abbreviated to Q.

q-name specifies the name of the queue to be copied. This name is
case-sensitive.

PSID(psid-number)
PSID specifies that all the messages in all the queues in the specified page set
are to be copied.

psid-number is the page set identifier, which specifies the page set to be used.
This identifier is a two-digit integer (whole number) representing a single page
set.

DEFTYPE
Specifies whether to copy dynamic queues:

ALL Copy all queues; this is the default.

PREDEFINED Do not include dynamic queues; this is the same set of queues
that are selected by the COMMAND and SDEFS functions with
the MAKEDEF parameter.

DDNAME
Specifies that the messages are to be copied to a named data set. If this
keyword is omitted, the default DDname, CSQUOUT, is used. The keyword
DDname can be abbreviated to DD.

246 System Management Guide

 Queue management functions

ddname specifies the DDname of the destination data set, which is used to store
the messages. The record format of this data set must be variable block
spanned (VBS).

 Example

//COPY EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUTA DD DSN=SAMPLE.UTILITY.COPYA,DISP=(NEW,CATLG),
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=232ðð)
//CSQUOUT DD DSN=SAMPLE.UTILITY.COPY3,DISP=(NEW,CATLG),
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=232ðð)
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
\ COPY WHOLE PAGESET TO 'CSQUOUT'
COPY PSID(ð3)
\ COPY ONE QUEUE TO 'OUTPUT'
COPY QUEUE(ABC123A) DDNAME(OUTPUTA)
/\

Figure 79. Sample JCL for the CSQUTIL COPY functions. The sample shows two
instances of the COPY function—one COPY to the default DDNAME, CSQUOUT; the other
to DDNAME OUTPUTA, which overrides CSQUOUT.

 Usage notes
1. The queues or page set involved must not be in use when the function is

invoked.

2. If you want to operate on a range of page sets, you must repeat the COPY
function for each page set.

3. The function operates only on local queues.

4. A COPY PSID function is considered successful only if it successfully copies all
the queues on the page set.

5. If you try to copy an empty queue (whether explicitly by COPY QUEUE or
because there are one or more empty queues on a page set that you are
copying), data indicating this is written to the sequential data set, and the copy
is considered to be a success. However, if you attempt to copy a non-existent
queue, or a page set containing no queues, the COPY function fails, and no
data is written to the data set.

6. If COPY fails, no further CSQUTIL functions will be attempted.

7. To use the COPY function more than once in the job, specify different
DDnames and data sets for each invocation of the function, or specify a
sequential data set and DISP=MOD in the DD statements.

8. You need the necessary authority to use the command server queues
(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.ñ), to use the DISPLAY QUEUE and DISPLAY STGCLASS
MQSC commands, and to use the MQSeries API to browse messages on the

 Chapter 14. Using the MQSeries utilities 247

 Queue management functions

queues that you wish to copy. See “Syncpoints” on page 245 for information
about possible syncpoint restrictions.

248 System Management Guide

 Queue management functions

Copying queues into a data set while the queue manager is not
running (SCOPY)

Use the SCOPY function to copy queued messages to a sequential data set when
the queue manager is not running, without destroying any messages in the original
queues.

The scope of the SCOPY function is determined by the keyword that you specify in
the first parameter. You can either copy all the messages from a named queue, or
all the messages from all the queues on a named page set.

Use the complementary function, LOAD, to restore the messages to their respective
queues.

To use the SCOPY function, DDname CSQP0000 must specify the data set with
page set zero for the subsystem required.

Queue Management (SCOPY)

55──SCOPY─ ──┬ ┬──QUEUE(q-name) ───────────────────────────── ──────────5
 │ │┌ ┐─DEFTYPE(ALL)────────

└ ┘──PSID(psid-number) ──┼ ┼─────────────────────
 └ ┘─DEFTYPE(PREDEFINED)─

5─ ──┬ ┬──────────────── ───5%
└ ┘──DDNAME(ddname)

Keywords and parameters
QUEUE(q-name)

QUEUE specifies that messages in the named queue are to be copied. The
keyword QUEUE can be abbreviated to Q.

q-name specifies the name of the queue to be copied. This name is
case-sensitive.

DDname CSQP00nn must specify the data set with page set nn for the
subsystem required, where nn is the number of the page set where the queue
resides.

PSID(psid-number)
PSID specifies that all the messages in all the queues in the specified page set
are to be copied.

psid-number is the page set identifier, which specifies the page set to be used.
This identifier is a two-digit integer (whole number) representing a single page
set.

DDname CSQP00psid-number must specify the data set with the required page
set for the subsystem required.

DEFTYPE
Specifies whether to copy dynamic queues:

ALL Copy all queues; this is the default.

PREDEFINED Do not include dynamic queues; this is the same set of queues
that are selected by the COMMAND and SDEFS functions with
the MAKEDEF parameter.

This parameter is only valid if you specify PSID.

 Chapter 14. Using the MQSeries utilities 249

 Queue management functions

DDNAME
Specifies that the messages are to be copied to a named data set. If this
keyword is omitted, the default DDname, CSQUOUT, is used. The keyword
DDname can be abbreviated to DD.

ddname specifies the DDname of the destination data set, which is used to store
the messages. The record format of this data set must be variable block
spanned (VBS).

Do not specify the same DDname on more than one SCOPY statement, unless
its DD statement specifies a sequential data set with DISP=MOD.

 Example

//SCOPY EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUTA DD DSN=SAMPLE.UTILITY.COPYA,DISP=(NEW,CATLG),
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=232ðð)
//CSQUOUT DD DSN=SAMPLE.UTILITY.COPY3,DISP=(NEW,CATLG),
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=232ðð)
//CSQPðððð DD DISP=OLD,DSN=pageset.dsnameð
//CSQPððð3 DD DISP=OLD,DSN=pageset.dsname3
//CSQPððð6 DD DISP=OLD,DSN=pageset.dsname6
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
\ COPY WHOLE PAGE SET TO 'CSQUOUT'
SCOPY PSID(ð3)
\ COPY ONE QUEUE TO 'OUTPUT' - QUEUE IS ON PAGE SET 6
SCOPY QUEUE(ABC123A) DDNAME(OUTPUTA)
/\

Figure 80. Sample JCL for the CSQUTIL SCOPY functions. The sample shows two
instances of the SCOPY function—one SCOPY to the default DDNAME, CSQUOUT; the
other to DDNAME OUTPUTA, which overrides CSQUOUT.

 Usage notes
1. You should not use SCOPY for a queue manager that is running because

results will be unpredictable. You can avoid doing this accidentally by using
DISP=OLD in the page set DD statement.

2. When you use SCOPY, it is not necessary to specify a queue manager name.

3. If you want to operate on a range of page sets, you must repeat the SCOPY
function for each page set.

4. The function operates only on local queues and only for persistent messages.

5. A SCOPY PSID function is considered successful only if it successfully copies
all the queues on the page set that have messages; empty queues are ignored.
If the page set has no queues with messages, the SCOPY function fails, and
no data is written to the data set.

6. If you try to copy an empty queue explicitly by SCOPY QUEUE, data indicating
this is written to the sequential data set, and the copy is considered to be a

250 System Management Guide

 Queue management functions

success. However, if you attempt to copy a non-existent queue, the SCOPY
function fails, and no data is written to the data set.

7. If the SCOPY function fails, no further CSQUTIL functions are attempted.

8. To use the SCOPY function more than once in the job, specify different
DDnames and data sets for each invocation of the function, or specify a
sequential data set and DISP=MOD in the DD statements.

 Chapter 14. Using the MQSeries utilities 251

 Queue management functions

Emptying a queue of all messages (EMPTY)
Use the EMPTY function to delete all messages from a named queue or all the
queues on a page set. The queue manager must be running. The scope of the
function is determined by the keyword that you specify in the first parameter.

Use this function with care. You should only delete messages of which copies
have already been made.

Queue management (EMPTY)

55──EMPTY─ ──┬ ┬──QUEUE(q-name) ──── ──────────────────────────────────5%
└ ┘──PSID(psid-number)

Keywords and parameters
You must specify the scope of the EMPTY function. Choose one of these:

QUEUE(q-name)
QUEUE specifies that messages are to be deleted from a named queue. This
keyword can be abbreviated to Q.

q-name specifies the name of the queue from which messages are to be deleted.
This name is case-sensitive.

PSID(psid-number)
PSID specifies that all the messages are to be deleted from all queues in the
named page set.

psid-number specifies the page-set identifier. This identifier is a two-digit integer
(whole number) representing a single page set.

 Example

//EMPTY EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
EMPTY QUEUE(SPARE)
EMPTY PSID(66)
/\

Figure 81. Sample JCL for the CSQUTIL EMPTY function

 Usage notes
1. The queues or page sets involved must not be in use when the function is

invoked.

2. This function operates only on local queues.

3. If you want to operate on a range of page sets, you must repeat the EMPTY
function for each page set.

4. You cannot empty the system-command input queue
(SYSTEM.COMMAND.INPUT).

252 System Management Guide

 Queue management functions

5. An EMPTY PSID function is considered successful only if it successfully
empties all the queues on the page set.

6. If you empty a queue that is already empty (whether explicitly by EMPTY
QUEUE or because there are one or more empty queues on a page set that
you are emptying), the EMPTY function is considered to be a success.
However, if you attempt to empty a non-existent queue, or a page set
containing no queues, the EMPTY function fails.

7. If EMPTY fails or is forced to take a syncpoint, no further CSQUTIL functions
will be attempted.

8. You need the necessary authority to use the command server queues
(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.ñ), to use the DISPLAY QUEUE and DISPLAY STGCLASS
MQSC commands, and to use the MQSeries API to get messages from the
queues that you wish to empty. See “Syncpoints” on page 245 for information
about possible syncpoint restrictions.

 Chapter 14. Using the MQSeries utilities 253

 Queue management functions

Restoring messages from a data set to a queue (LOAD)
The LOAD function of CSQUTIL is complementary to the COPY or SCOPY
function. LOAD restores messages from the destination data set of an earlier
COPY or SCOPY operation. The queue manager must be running.

The data set can contain messages from one queue only if it was created by COPY
or SCOPY QUEUE, or from a number of queues if it was created by COPY PSID
or several successive COPY or SCOPY QUEUE operations. Messages are
restored to queues with the same name as those from which they were copied.
You can specify that the first or only queue is loaded to a queue with a different
name. (This would normally be used with a data set created with a single COPY
queue operation to restore the messages to a queue with a different name.)

Queue management (LOAD)

55──LOAD─ ──┬ ┬─────────────── ──┬ ┬──────────────── ───────────────────5%
 └ ┘──QUEUE(q-name) └ ┘──DDNAME(ddname)

Keywords and parameters
QUEUE(q-name)

QUEUE specifies that the messages from the first or only queue on the
destination data set of a prior COPY or SCOPY operation are to be loaded to a
named queue. Messages from any subsequent queues are loaded to queues
with the same names as those they came from. The keyword QUEUE can be
abbreviated to Q.

q-name specifies the name of the queue to which the messages are to be
loaded. This name is case-sensitive. It must not be a model queue.

DDNAME(ddname)
DDNAME specifies that messages are to be loaded from a named data set.
This keyword can be abbreviated to DD.

ddname specifies the DDname that identifies the destination data set of a prior
COPY or SCOPY operation—from which the messages are to be loaded. This
name is not case-sensitive, and can be up to eight characters long.

If you omit DDname(ddname) the default DDname, CSQUINP, is used.

 Example

//LOAD EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUTA DD DSN=MY.UTILITY.OUTPUTA,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
LOAD QUEUE(ABC123) DDNAME(OUTPUTA)
/\

Figure 82. Sample JCL for the CSQUTIL LOAD function

254 System Management Guide

 Queue management functions

 Usage notes
1. To use the LOAD function, the queues or page sets involved must not be in

use when the function is invoked.

2. If the data set contains multiple queues, the LOAD function is considered
successful only if it successfully loads all the queues on the data set.

3. If LOAD fails, or is forced to take a syncpoint, no further CSQUTIL functions will
be attempted.

4. You need the necessary authority to use the MQSeries API to put messages
on the queues that you wish to load. See “Syncpoints” on page 245 for
information about possible syncpoint restrictions.

 Chapter 14. Using the MQSeries utilities 255

 Change log inventory utility

The change log inventory utility (CSQJU003)
The MQSeries change log inventory utility runs as an OS/390 batch job to change
the bootstrap data set (BSDS). If you need more information about the MQSeries
logs and the BSDS, see Chapter 17, “Understanding the log and the bootstrap data
set” on page 299.

Through this utility, you can invoke these functions:

Function name Purpose
NEWLOG Add active or archive log data sets.
DELETE Delete active or archive log data sets.
ARCHIVE Supply passwords for archive logs.
CRESTART Control the next restart of MQSeries.
CHECKPT Set checkpoint records.
HIGHRBA Update the highest written log RBA.

This utility should be run only when MQSeries is not running. This is because the
active log data sets named in the BSDS are dynamically added for exclusive use to
MQSeries and remain allocated exclusively to MQSeries until it terminates.

Invoking the CSQJU003 utility
The utility runs as an OS/390 batch program. Figure 83 gives an example of the
JCL required.

//JUðð3 EXEC PGM=CSQJUðð3
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//SYSPRINT DD SYSOUT=\,DCB=BLKSIZE=629
//SYSUT1 DD DISP=SHR,DSN=bsds.dsname
//SYSIN DD \
 NEWLOG DSNAME=CSQREPAL.Aððð1187,COPY1VOL=CSQVð4,UNIT=SYSDA,
 STARTRBA=3A19ðððð,ENDRBA=3A1Fðððð,CATALOG=YES,PASSWORD=SYSNKZX
/\

Figure 83. Sample JCL to invoke the CSQJU003 utility

Data definition (DD) statements
CSQJU003 requires DD statements with these DDnames:

SYSUT1
This statement is required; it names the BSDS.

SYSUT2
This statement is required if you use dual BSDSs; it names the second copy of
the BSDS.

Dual BSDSs and CSQJU003

Each time you run the CSQJU003 utility, the BSDS time stamp field is updated
with the current system time. If you run CSQJU003 separately for each copy of
a dual copy BSDS, the time stamp fields are not synchronized so that MQSeries
fails at startup, issuing error message CSQJ120E. Therefore, if CSQJU003 is
used to update dual copy BSDSs, both BSDSs must be updated within a single
run of CSQJU003.

256 System Management Guide

 Change log inventory utility

SYSPRINT
This statement is required; it names a data set for print output. The logical
record length (LRECL) is 125. The block size (BLKSIZE) must be 629.

SYSIN
This statement is required; it names the input data set for statements that
specify what the utility is to do. The logical record length (LRECL) is 80.

You can use more than one statement of each type. In each statement, separate
the operation name (NEWLOG, DELETE, ARCHIVE, CRESTART) from the first
parameter by one or more blanks. You can use parameters in any order; separate
them by commas with no blanks. Do not split a parameter description across two
SYSIN records.

A statement containing an asterisk in column 1 is considered to be a comment, and
is ignored. However, it appears in the output listing. To include a comment or
sequence number in a SYSIN record, separate it from the last comma by a blank.
When a blank follows a comma, the rest of the record is ignored.

Multiple statement operation
When running CSQJU003, a significant error in any statement causes the control
statements for the statement in error and all following statements to be skipped.
Therefore, BSDS updates cannot occur for any operation specified in the statement
in error, or any following statements. However, all the remaining statements are
checked for syntax errors.

 Chapter 14. Using the MQSeries utilities 257

 Change log inventory utility

Adding information about a data set to the BSDS (NEWLOG)
The NEWLOG function declares one of these data sets:

� A VSAM data set that is available for use as an active log data set.

Use the keywords DSNAME=, COPY1, COPY2, and PASSWORD=.

� An active log data set that is replacing one that encountered an I/O error.

Use the keywords DSNAME=, COPY1, COPY2, STRTRBA=, ENDRBA=, and
PASSWORD=.

� An archive log data set volume.

Use the keywords DSNAME=, COPY1VOL=, COPY2VOL=, STARTRBA=,
ENDRBA=, UNIT=, CATALOG=, and PASSWORD=.

 NEWLOG

55──NEWLOG─ ──DSNAME=dsname ──┬ ┬─┤ New active log ├── ──┬ ┬──────────────────── ─────────5%
└ ┘─┤ New archive log ├─ └ ┘──,PASSWORD=password

New active log:
├─ ──┬ ┬──,COPY1 ───5

└ ┘──,COPY2

5─ ──┬ ┬── ─────┤
 └ ┘──,STARTRBA=startrba,ENDRBA=endrba ──┬ ┬────────────────────────────────────

└ ┘──,STARTIME=startime,ENDTIME=endtime

New archive log:
├─ ──┬ ┬──,COPY1VOL=vol-id ──,STARTRBA=startrba,ENDRBA=endrba ───────────────────────────5

└ ┘──,COPY2VOL=vol-id

 ┌ ┐─,CATALOG=NO──
5─ ──┬ ┬──────────────────────────────────── ──,UNIT=unit-id ──┼ ┼────────────── ──────────┤

└ ┘──,STARTIME=startime,ENDTIME=endtime └ ┘─,CATALOG=YES─

Keywords and parameters
DSNAME=dsname

Names a log data set. dsname can be up to 44 characters long.

PASSWORD=password
Assigns a password to the data set. It is stored in the BSDS and subsequently
used in any access to the active or archive log data sets.

The password is a data set password, and should follow standard VSAM
convention: 1 through 8 alphanumeric characters (A through Z, 0 through 9) or
special characters (& * + − . ; ' /).

We recommend that you use an ESM such as RACF to provide your data set
security requirements.

COPY1
Makes the data set an active log copy-1 data set.

COPY2
Makes the data set an active log copy-2 data set.

STARTRBA =startrba
Gives the log RBA (relative byte address within the log) of the beginning of the
replacement active log data set or the archive log data set volume specified by
DSNAME. startrba is a hexadecimal number of up to 12 characters. If you
use fewer than 12 characters, leading zeros are added. The RBA can be
obtained from messages or by printing the log map.

258 System Management Guide

 Change log inventory utility

ENDRBA=endrba
Gives the log RBA (relative byte address within the log) of the end of the
replacement active log data set or the archive log data set volume specified by
DSNAME. endrba is a hexadecimal number of up to 12 characters. If you use
fewer than 12 characters, leading zeros are added.

STARTIME=startime
Lets you record the start time of the RBA in the BSDS. This is an optional field.
The time stamp format (with valid values in parentheses) is as follows:

yyyydddhhmmsst, where:

yyyy Indicates the year (1993 through 2099)
ddd Indicates the day of the year (0 through 365; 366 in leap years)
hh Indicates the hour (0 through 23)
mm Indicates the minutes (0 through 59)
ss Indicates the seconds (0 through 59)
t Indicates tenths of a second

If fewer than 14 digits are specified for the STARTIME and ENDTIME
parameter, then trailing zeros will be added.

STARTRBA is required when STARTIME is specified.

ENDTIME=endtime
Enables you to record the end time of the RBA in the BSDS. This is an optional
field. For time stamp format, see the STARTIME option. The ENDTIME value
must be greater than or equal to the value of STARTIME.

COPY1VOL=vol-id
The volume serial of the copy-1 archive log data set named after DSNAME.

COPY2VOL=vol-id
The volume serial of the copy-2 archive log data set named after DSNAME.

UNIT=unit-id
The device type of the archive log data set named after DSNAME.

CATALOG
Tells whether the archive log data set is cataloged:

NO Indicates that the archive log data set is not cataloged. All subsequent
allocations of the data set are made using the unit and volume information
specified on the function. The default is NO.

YES Indicates that the archive log data set is cataloged. A flag is set in the
BSDS indicating this, and all subsequent allocations of the data set are
made using the catalog.

MQSeries requires that all archive log data sets on DASD be cataloged.
Select CATALOG=YES if the archive log data set is on DASD.

 Chapter 14. Using the MQSeries utilities 259

 Change log inventory utility

Deleting information about a data set from the BSDS (DELETE)
Use the DELETE function to delete all information about a specified log data set or
data set volume from the bootstrap data sets. For example, you can use this
function to delete outdated archive log data sets.

 DELETE

55──DELETE─ ──DSNAME=dsname ──┬ ┬────────────────── ────────────────────────────────────5%
├ ┤──,COPY1VOL=vol-id
└ ┘──,COPY2VOL=vol-id

Keywords and parameters
DSNAME=dsname

Specifies the name of the log data set. dsname can be up to 44 characters long.

COPY1VOL=vol-id
The volume serial number of the copy-1 archive log data set named after
DSNAME.

COPY2VOL=vol-id
The volume serial number of the copy-2 archive log data set named after
DSNAME.

260 System Management Guide

 Change log inventory utility

Supplying a password for archive log data sets (ARCHIVE)
Use the ARCHIVE function to give a password to all archive data sets created after
this operation. This password is added to the installation’s OS/390 password data
set each time a new archive log data set is created.

Use the NOPASSWD keyword to remove the password protection for all archives
created after the archive operation.

Note: You should normally use an ESM, such as RACF, if you want to implement
security on any MQSeries data sets.

 ARCHIVE

55──ARCHIVE─ ──┬ ┬──PASSWORD=password ───5%
 └ ┘──NOPASSWD ─────────

Keywords and parameters
PASSWORD=password

PASSWORD specifies that a password is to be assigned to the archive log data
sets.

password specifies the password, which is a data set password and it must
follow the standard VSAM convention; that is, 1 through 8 alphanumeric
characters (A through Z, 0 through 9) or special characters (& * + − . ; ' /).

NOPASSWD
Specifies that archive password protection is not to be active for all archives
created after this operation. No other keyword can be used with NOPASSWD.

 Chapter 14. Using the MQSeries utilities 261

 Change log inventory utility

Controlling the next restart (CRESTART)
Use the CRESTART function to control the next restart of MQSeries, either by
creating a new conditional restart control record or by cancelling the one currently
active. These records limit the scope of the log data that will be used during
restart. Any existing conditional restart control record governs every restart until
one of these events occurs:

� A restart operation completes
� A CRESTART CANCEL is issued
� A new conditional restart control record is created

Attention: This can override MQSeries efforts to maintain data in a
consistent state. You would normally only use this function when
implementing the disaster recovery process described in “Preparing for
disaster recovery” on page 312, or under the guidance of IBM service.

 CRESTART

55──CRESTART─ ──┬ ┬──CREATE ──┬ ┬──────────────────── ──┬ ┬──────────────── ───────────────5%
 │ │└ ┘─,STARTRBA=startrba─ └ ┘─,ENDRBA=endrba─
 └ ┘──CANCEL ──

Keywords and parameters
CREATE

Creates a new conditional restart control record. When the new record is
created, the previous control record becomes inactive.

CANCEL
Makes the currently active conditional restart control record inactive. The record
remains in the BSDS as historical information.

No other keyword can be used with CANCEL.

STARTRBA =startrba
Gives the earliest RBA of the log to be used during restart. If you omit this
option, MQSeries determines the beginning of the log range.

startrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The RBA can be obtained from messages or
by printing the log map.

ENDRBA=endrba
Gives the last RBA of the log to be used during restart, and the starting RBA of
the next active log to be written after restart. Any log information in the
bootstrap data set and the active logs, with an RBA greater than endrba, is
discarded. If you omit this option, MQSeries determines the end of the log
range.

endrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added.

The value of ENDRBA must be a multiple of 4096. (The hexadecimal value
must end in 000.) Also, the value must be greater than or equal to the value of
STARTRBA. If STARTRBA and ENDRBA are equal, the next restart is a ‘cold
start’; that is, no log records are processed during restart.

262 System Management Guide

 Change log inventory utility

Setting checkpoint records (CHECKPT)
Use the CHECKPT function to add or delete a record in the BSDS checkpoint
queue. Use the STARTRBA and ENDRBA keywords to add a record, or the
STARTRBA and CANCEL keywords to delete a record.

Attention: This can override MQSeries efforts to maintain data in a
consistent state. You would normally only use this function when
implementing the disaster recovery process described in “Preparing for
disaster recovery” on page 312, or under the guidance of IBM service.

 CHECKPT

55──CHECKPT─ ──STARTRBA=startrba ──┬ ┬──,ENDLRBA=offlrba,TIME=time ─────────────────────5%
└ ┘──,CANCEL ───────────────────

Keywords and parameters
STARTRBA =startrba

Indicates the start checkpoint log record.

startrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The RBA can be obtained from messages or
by printing the log map.

ENDRBA=endrba
Indicates the end checkpoint log record corresponding to the start checkpoint
record.

endrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The RBA can be obtained from messages or
by printing the log map.

TIME=time
Gives the time the start checkpoint record was written. The time stamp format
(with valid values in parentheses) is as follows:

yyyydddhhmmsst, where:

yyyy Indicates the year (1993 through 2099)
ddd Indicates the day of the year (0 through 365; 366 in leap years)
hh Indicates the hour (0 through 23)
mm Indicates the minutes (0 through 59)
ss Indicates the seconds (0 through 59)
t Indicates tenths of a second

If fewer than 14 digits are specified for the TIME parameter, then trailing zeros
are added.

CANCEL
Deletes the checkpoint queue record containing a starting RBA that matches the
RBA specified by STARTRBA.

 Chapter 14. Using the MQSeries utilities 263

 Change log inventory utility

Updating the highest written log RBA (HIGHRBA)
Use the HIGHRBA function to update the highest written log RBA recorded in the
BSDS for either the active or archive log data sets. Use the STARTRBA keyword
to update the active log, and the OFFLRBA keyword to update the archive log.

Attention: This can override MQSeries efforts to maintain data in a
consistent state. You would normally only use this function when
implementing the disaster recovery process described in “Preparing for
disaster recovery” on page 312, or under the guidance of IBM service.

 HIGHRBA

55──HIGHRBA─ ──┬ ┬──STARTRBA=startrba ──┬ ┬────────────────── ,TIME=time ─────────────────5%
│ │└ ┘──,OFFLRBA=offlrba
└ ┘──OFFLRBA=offlrba ──────────────────────────────────

Keywords and parameters
STARTRBA =startrba

Indicates the log RBA of the highest written log record in the active log data set.

startrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The RBA can be obtained from messages or
by printing the log map.

TIME=time
Specifies when the log record with the highest RBA was written to the log. The
time stamp format (with valid values in parentheses) is as follows:

yyyydddhhmmsst, where:

yyyy Indicates the year (1993 through 2099)
ddd Indicates the day of the year (0 through 365; 366 in leap years)
hh Indicates the hour (0 through 23)
mm Indicates the minutes (0 through 59)
ss Indicates the seconds (0 through 59)
t Indicates tenths of a second

If fewer than 14 digits are specified for the TIME parameter, then trailing zeros
will be added.

OFFLRBA= offlrba
Specifies the highest offloaded RBA in the archive log.

offlrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The value must end with hexadecimal 'FFF'.

264 System Management Guide

 Print log map utility

The print log map utility (CSQJU004)
The MQSeries print log map utility runs as an OS/390 batch program to list this
information:

� Log data set name and log RBA association for both copies of all active and
archive log data sets

� Active log data sets available for new log data

� Contents of the queue of checkpoint records in the bootstrap data set (BSDS)

� Contents of the quiesce history record

� System and utility time stamps

� Passwords for the active and archive log data sets, if provided

The CSQJU004 program can be run regardless of whether MQSeries is running.
However, if MQSeries is running, consistent results from the utility can be ensured
only if both the utility and the MQSeries subsystem are running under control of the
same OS/390 system.

To use this utility, the user ID of the job must have the requisite security
authorization, or, if the BSDS is password protected, the appropriate VSAM
password for the data set.

Invoking the CSQJU004 utility
Figure 84 shows an example of the JCL used to invoke the CSQJU004 utility:

//JUðð4 EXEC PGM=CSQJUðð4
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//SYSPRINT DD SYSOUT=\,DCB=BLKSIZE=629
//SYSUT1 DD DISP=SHR,DSN=bsds.dsname

Figure 84. Sample JCL to invoke the CSQJU004 utility

Data definition statements
The CSQJU004 utility requires DD statements with the following DDnames:

SYSUT1 This statement is required to specify and allocate the bootstrap data set.
If the BSDS must be shared with a concurrently executing MQSeries
online subsystem, use DISP=SHR on the DD statement.

SYSPRINT
This statement is required to specify a data set or print spool class for
print output. The logical record length (LRECL) is 125. The block size
(BLKSIZE) must be 629.

“Finding out what the BSDS contains” on page 319 describes the output.

 Chapter 14. Using the MQSeries utilities 265

 Log print utility

The log print utility (CSQ1LOGP)
You can use this utility to print information contained in the logs or the BSDS.

Invoking the CSQ1LOGP utility
You run the MQSeries log print utility as an OS/390 batch program. You can
specify:

� A bootstrap data set (BSDS)
� Active logs (with no BSDS)
� Archive logs (with no BSDS)

Sample JCL to invoke the CSQ1LOGP utility is shown in figures 85, 86, and 87.

These DD statements should be provided:

SYSPRINT
All error messages, exception conditions and the detail report are written to this
data set. The logical record length (LRECL) is 131.

SYSIN
Input selection criteria can be specified in this data set (see “Input control
parameters” on page 267 for more information).

SYSSUMRY
If a summary report is requested, the output is written to this data set. The
logical record length (LRECL) is 131.

BSDS
Name of the bootstrap data set (BSDS).

ACTIVEn
Name of an active log data set you want to print (n=number).

ARCHIVE
Name of an archive log data set you want to print.

Note: The utility will not run if MQSeries is active and you are trying to process
active logs (using a BSDS or the active logs directly).

//PRTLOG EXEC PGM=CSQ1LOGP
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQLOAD
//BSDS DD DSN=bsds.dsname,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSSUMRY DD SYSOUT=\
//SYSIN DD \
insert your input control statements here

/\

Figure 85. Sample JCL to invoke the CSQ1LOGP utility using a BSDS

266 System Management Guide

 Log print utility

//PRTLOG EXEC PGM=CSQ1LOGP
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQLOAD
//ACTIVE1 DD DSN=bsds.logcopy1.dsð1,DISP=SHR
//ACTIVE2 DD DSN=bsds.logcopy1.dsð2,DISP=SHR
//ACTIVE3 DD DSN=bsds.logcopy1.dsð3,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSSUMRY DD SYSOUT=\
//SYSIN DD \
insert your input control statements here

/\

Figure 86. Sample JCL to invoke the CSQ1LOGP utility using active log data sets

//PRTLOG EXEC PGM=CSQ1LOGP
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQLOAD
//ARCHIVE DD DSN=bsds.archive1.dsð1,DISP=SHR
// DD DSN=bsds.archive1.dsð2,DISP=SHR
// DD DSN=bsds.archive1.dsð3,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSSUMRY DD SYSOUT=\
//SYSIN DD \
insert your input control statements here

/\

Figure 87. Sample JCL to invoke the CSQ1LOGP utility using archive logs

Input control parameters
The keywords that you can use in the SYSIN data set are described below:

RBASTART(hexadecimal-constant)
Specifies the log RBA from which to begin processing. If you are using a
BSDS, this parameter must be specified.

Normally you are only interested in the most recent additions to the log.
Therefore, do not specify a value of zero. If you do, you create an enormous
amount of data, most of which is of no interest to you.

You can also use the forms STARTRBA or ST. Specify this keyword only once.

RBAEND(hexadecimal-constant)
Specifies the last valid log RBA that is to be processed. If this keyword is
omitted, processing continues to the end of the log (FFFFFFFFFFFF).

You can also use the forms ENDRBA or EN. Specify this keyword only once.

PAGESET(decimal-integer)
Specifies a page-set identifier. The number should be in the range 00 through
99. Only log records associated with the page set you specify will be
processed.

 Chapter 14. Using the MQSeries utilities 267

 Log print utility

URID (hexadecimal-constant)
Specifies a hexadecimal unit of recovery identifier. Changes to data occur in
the context of an MQSeries unit of recovery. A unit of recovery is identified on
the log via a BEGIN UR record. The log RBA of that BEGIN UR record is the
URID value you must use. If you know the URID for a given UR that you are
interested in, you can limit the extraction of information from the MQSeries log
to that URID.

The hexadecimal-constant can consist of 1 through 12 characters (6 bytes), and
leading zeros are not required.

You can specify a maximum of 10 URID keywords in any given CSQ1LOGP
job. To narrow the search, you can specify URID keywords in a job that
contains other keywords.

RM (resource_manager)
Specifies a particular resource manager. Only records associated with this
resource manager will be processed. Valid values for this keyword are:

 � RECOVERY
 � DATA
 � BUFFER

SUMMARY(YES|NO|ONLY)
Specifies whether a summary report is to be produced or not:

YES Produce a summary report in addition to the detail report.
NO Do not produce a summary report.
ONLY Produce only a summary report (no detail report).

 Output
The detail report begins by echoing the input selection criteria specified via SYSIN,
and then prints each valid log record encountered. Definitions of keywords in the
detail report are as follows:

RM Resource manager that wrote the log record.
TYPE Type of log record.
URID BEGIN UR for this unit of recovery, see the description

above.
LRID Logical record identifier in the form:

AAAAAAAA.BBBBBBCC

where:

AAAAAAAA Is the page set number.

BBBBBB Is the relative page number in the page set.

CC Is the relative record number on the page.

SUBTYPE Subtype of the log record type.
CHANGE LENGTH Length of the logged change.
CHANGE OFFSET Start position of the change.
BACKWARD CHAIN Pointer to the previous page.
FORWARD CHAIN Pointer to the next page.
RECORD LENGTH Length of the inserted record.

268 System Management Guide

Part 6. Backup, recovery, and restart

Chapter 15. Introducing some recovery concepts 273
How changes are made to data . 273

Units of recovery . 273
Backing out work . 274

How consistency is maintained . 275
Consistency with CICS or IMS . 275
How consistency is maintained after an abnormal termination 277

Chapter 16. Understanding termination and restart 279
What happens during termination . 279

Normal termination . 279
Abnormal termination . 280

Connections and threads . 280
Active threads . 280
In-doubt threads . 281

What happens during restart and recovery . 281
Rebuilding queue indexes . 282

How in-doubt units of recovery are resolved 283
How in-doubt units of recovery are resolved from CICS 283
How in-doubt units of recovery are resolved from IMS 284
How in-doubt units of recovery are resolved from RRS 285

Recovering CICS units of recovery manually 286
Recovering IMS units of recovery manually . 288

Recovery procedure . 288
Recovering RRS units of recovery manually 290
What happens when the CICS adapter restarts 291
What happens when the IMS adapter restarts 293
Using the OS/390 Automatic Restart Manager (ARM) 294

ARM couple data sets . 294
ARM policies . 295
Registering with ARM . 296
Using ARM in an MQSeries network . 296

Chapter 17. Understanding the log and the bootstrap data set 299
What logs are . 299

Archiving . 299
Dual logging . 300
Log data . 300
Unit-of-recovery log records . 301
Checkpoint records . 301
Page set control records . 301

How the log is structured . 301
How the logs are written . 302

When the active log is written . 303
When the archive log is written . 303

What the bootstrap data set is for . 305
Managing the logs and BSDS . 306

Chapter 18. Planning for backup and recovery 307
Introduction . 307

 Copyright IBM Corp. 1993,1999 269

General tips for backup and recovery . 307
Periodically take backup copies . 308
Do not discard archive logs you might need 309
Do not change the DDname-to-page set association 309

Planning your logging environment . 309
Use dual logging for your active log, archive log, and bootstrap data sets 309

Planning your archive storage . 310
Archiving to tape . 310
Archiving to DASD volumes . 310
Using SMS with archive log data sets . 311

Other recovery considerations . 311
Backup and recovery with DFHSM . 311
MQSeries recovery and CICS . 312
MQSeries recovery and IMS . 312
Using Extended Recovery Facility . 312
Preparing for disaster recovery . 312

Chapter 19. Managing the logs and the bootstrap data set 315
Archiving logs with the ARCHIVE LOG command 315
Discarding archive log data sets . 317

Automatic archive log data set deletion . 317
Manually deleting archive log data sets . 318

Printing log records . 319
Finding out what the BSDS contains . 319
Changing the BSDS . 321
Recovering logs . 323

Chapter 20. Managing page sets . 325
Adding a page set to a queue manager . 325
When one of your page sets becomes full . 325

How to expand a page set . 326
How to balance loads on page sets . 327

Load balancing by moving queues . 328
How to reduce a page set . 330
Backing up and recovering page sets . 331

Creating a point of recovery . 331
Recovering page sets . 333

Backing up and restoring queues using CSQUTIL 335

Chapter 21. Example recovery scenarios 337
Dealing with active log problems . 338

Out-of-space in active logs and delays in off-loading 338
Dual logging is lost . 339
Write I/O errors on an active log data set 339
I/O errors occur while reading the active log 340
Active log stopped . 342

Dealing with archive log problems . 343
Allocation problems . 343
Write I/O errors on the archive log during off-load 343
Read I/O errors on the archive data set while MQSeries is restarting . . . 344
Insufficient DASD space to complete off-load processing 344

Dealing with BSDS errors . 346
I/O error . 346
Error occurs while opening the BSDS . 347

270 System Management Guide

Unequal time stamps . 347
Out of synchronization . 348
Log content does not agree with the BSDS information 349

BSDS recovery . 350
Dealing with page set problems . 353

Page set I/O errors . 353
Page set full . 353

Restarting if you have lost your log data sets 355
Performing a cold start of MQSeries . 356
Dealing with IMS-related problems . 357

IMS application problem . 357
IMS is not operational . 357
IMS is unable to connect to MQSeries . 358

Dealing with hardware errors . 359

 Part 6. Backup, recovery, and restart 271

272 System Management Guide

 Recovery concepts

Chapter 15. Introducing some recovery concepts

This chapter describes the background concepts of recovery and restart, which you
must understand before reading the other chapters in this part of the book.

The chapter contains the following sections:

� “How changes are made to data”
� “How consistency is maintained” on page 275

How changes are made to data
MQSeries must interact with other subsystems to keep all the data consistent. This
section discusses units of recovery; what they are and how they are used in back
outs.

Units of recovery
A unit of recovery is the processing done by a single MQSeries subsystem for an
application program, that changes MQSeries data from one point of consistency to
another. A point of consistency – also called a syncpoint or commit point – is a
point in time when all the recoverable data that an application program accesses is
consistent.

Time line

Unit of recovery

Application process

MQI call 1 MQI call 2

MQGET
begins

MQGET
ends

MQPUT
ends

MQPUT
begins

Application
process ends

Application
process begins

COMMIT

Point of
consistency

Point of
consistency

Figure 88. A unit of recovery within an application program. Typically, the unit of recovery consists of more than one
MQI call. More than one unit of recovery can occur within an application program.

A unit of recovery begins with the first change to the data after the beginning of the
program or following the previous point of consistency; it ends with a later point of
consistency. Figure 88 shows the relationship between units of recovery, the point
of consistency, and an application program. In this example, the application
program makes changes to queues through MQI calls 1 and 2. The application
program can include more than one unit of recovery or just one. However, any
complete unit of recovery ends in a commit point.

 Copyright IBM Corp. 1993,1999 273

 Recovery concepts

For example, a bank transaction transfers funds from one account to another.
First, the program subtracts the amount from the first account, account A. Then, it
adds the amount to the second account, B. After subtracting the amount from A,
the two accounts are inconsistent and MQSeries cannot commit. They become
consistent when the amount is added to account B. When both steps are
complete, the program can announce a point of consistency through a commit,
making the changes visible to other application programs.

Normal termination of an application program automatically causes a point of
consistency. Some program requests in CICS and IMS programs also cause a
point of consistency, for example, EXEC CICS SYNCPOINT.

Backing out work
If an error occurs within a unit of recovery, MQSeries removes any changes to
data, returning the data to its state at the start of the unit of recovery; that is,
MQSeries backs out the work. The events are shown in Figure 89.

Point of
consistency

New point of
consistency

One unit of recovery

Page set updates Back out updates

Begin unit
of recovery

Begin
back out

Data is returned to
its initial state;

end unit of recovery

Time line

Figure 89. A unit of recovery showing back out

274 System Management Guide

 Maintaining consistency

How consistency is maintained
If data in an MQSeries subsystem is to be consistent with batch, CICS, IMS, or
TSO, any data changed in one must be matched by a change in the other. Before
one system commits the changed data, it must know that the other system can
make the corresponding change. So, the systems must communicate.

During a two-phase commit (for example under CICS), one subsystem coordinates
the process. That subsystem is called the coordinator; the other is the participant.
CICS or IMS is always the coordinator in interactions with MQSeries, and
MQSeries is always the participant. In the batch or TSO environment, MQSeries
can participate in two-phase commit protocols coordinated by OS/390 RRS.

During a single-phase commit (for example under TSO or batch), MQSeries is
always the coordinator in the interactions and completely controls the commit
process.

Consistency with CICS or IMS
The CICS–MQSeries connection supports the following syncpoint protocols:

� Two-phase commit – for transactions that update resources owned by more
than one resource manager.

This is the standard distributed syncpoint protocol. It involves more logging
and message flows than a single-phase commit.

� Single-phase commit – for transactions that update resources owned by a
single resource manager.

This protocol is optimized for logging and message flows.

� Bypass of syncpoint – for transactions that involve MQSeries but which do
nothing in the queue manager that requires a syncpoint.

In each case, CICS acts as the syncpoint manager.

The stages of the two-phase commit that MQSeries uses to communicate with
CICS or IMS are:

1. In phase 1 each system determines independently whether it has recorded
enough recovery information in its log, and can commit its work.

At the end of the phase, the systems communicate. If they agree, each begins the
next phase.

2. In phase 2, the changes are made permanent. If one of the systems abends
during phase 2, the operation is completed by the recovery process during
restart.

 Chapter 15. Introducing some recovery concepts 275

 Maintaining consistency

Illustration of the two-phase commit process
Figure 90 illustrates the two-phase commit process. Events in the CICS or IMS
coordinator are shown on the upper line, events in MQSeries on the lower line.

Old point of
consistency

New point of
consistency

Old point of
consistency

New point of
consistency

Instant of
COMMIT

COMMIT
process begins

Application
synchronization
point

Phase 1 Phase 2

Phase 2Phase 1

CICS
or
IMS

a b c d

Data is backed
out at restart

Data is backed
out at restart

Data is committed
at restart

Data is in-doubt
at restart and
either backed out
or committed

Begin unit of
recovery

End unit of
recovery

Time lineMQSeries

Figure 90. The two-phase commit process

The numbers in the following discussion are linked to those in the figure.

1. The data in the coordinator is at a point of consistency.

2. An application program in the coordinator calls MQSeries to update a queue by
adding a message.

3. This starts a unit of recovery in MQSeries.

4. Processing continues in the coordinator until an application synchronization
point is reached.

5. The coordinator then starts commit processing. CICS programs use a
SYNCPOINT command or a normal application termination to start the commit.
IMS programs can start the commit by using a CHKP call, a SYNC call, a GET
UNIQUE call to the IOPCB, or a normal application termination. Phase 1 of
commit processing begins.

6. As the coordinator begins phase 1 processing, so does MQSeries.

7. MQSeries successfully completes phase 1, writes this fact in its log, and
notifies the coordinator.

8. The coordinator receives the notification.

276 System Management Guide

 Maintaining consistency

9. The coordinator successfully completes its phase 1 processing. Now both
subsystems agree to commit the data changes, because both have completed
phase 1 and could recover from any errors. The coordinator records in its log
the instant of commit – the irrevocable decision of the two subsystems to make
the changes.

The coordinator now begins phase 2 of the processing – the actual
commitment.

10. The coordinator notifies MQSeries to begin its phase 2.

11. MQSeries logs the start of phase 2.

12. Phase 2 is successfully completed, and this is now a new point of consistency
for MQSeries. MQSeries then notifies the coordinator that it has finished its
phase 2 processing.

13. The coordinator finishes its phase 2 processing. The data controlled by both
subsystems is now consistent and available to other applications.

There are occasions when CICS or IMS invokes MQSeries when no MQSeries
resource has been altered since the completion of the last commit process. This
can happen, for example, when a SYNCPOINT request is issued after a series of
commands have been processed, or when end-of-task is reached immediately after
a SYNCPOINT request has been issued. When this occurs, the MQSeries
subsystem performs both phases of the two-phase commit during the first commit
phase, and records that the user or job is read-only in relation to its MQSeries
processing.

How consistency is maintained after an abnormal termination
When MQSeries is restarted after an abnormal termination, it must determine
whether to commit or to back out units of recovery that were active at the time of
termination. For certain units of recovery, MQSeries has enough information to
make the decision. For others, it does not, and must get information from the
coordinator when the connection is reestablished.

Figure 90 shows four periods within the two phases: a, b, c, and d. The status of a
unit of recovery depends on the period in which termination happened. The status
can be:

In-flight MQSeries ended before finishing phase 1 (period a or b); during
restart, MQSeries backs out the updates.

In-doubt MQSeries ended after finishing phase 1 and before starting phase 2
(period c); only the coordinator knows whether the error happened
before or after the commit (point 9). If it happened before, MQSeries
must back out its changes; if it happened after, MQSeries must make
its changes and commit them. At restart, MQSeries waits for
information from the coordinator before processing this unit of
recovery.

In-commit MQSeries ended after it began its own phase 2 processing (period d);
it makes committed changes.

In-backout MQSeries ended after a unit of recovery began to be backed out but
before the process was complete (not shown in the figure); during
restart, MQSeries continues to back out the changes.

 Chapter 15. Introducing some recovery concepts 277

 Maintaining consistency

278 System Management Guide

 Termination

Chapter 16. Understanding termination and restart

This chapter describes what happens when MQSeries terminates abnormally, and
how to start it again. It contains the following sections:

� “What happens during termination”
� “Connections and threads” on page 280
� “What happens during restart and recovery” on page 281
� “How in-doubt units of recovery are resolved” on page 283
� “Recovering CICS units of recovery manually” on page 286
� “Recovering IMS units of recovery manually” on page 288
� “Recovering RRS units of recovery manually” on page 290
� “What happens when the CICS adapter restarts” on page 291
� “What happens when the IMS adapter restarts” on page 293
� “Using the OS/390 Automatic Restart Manager (ARM)” on page 294

More information about restarting MQSeries is available in:

� “Restarting if you have lost your log data sets” on page 355
� “Performing a cold start of MQSeries” on page 356

What happens during termination
MQSeries terminates normally in response to the command STOP QMGR. If
MQSeries stops for any other reason, the termination is considered to be abnormal.

 Normal termination
In a normal termination, MQSeries stops all activity in an orderly way. You can use
either STOP QMGR MODE(QUIESCE), STOP QMGR MODE(FORCE), or STOP
QMGR MODE(RESTART). The effects are given in Table 18:

Batch applications are notified if a termination occurs while the application is still
connected.

With CICS, a current thread runs only to the end of the unit of recovery. With
CICS, STOP QMGR MODE(QUIESCE) stops the CICS adapter, and so if an active
task contains more than one unit of recovery, the task does not necessarily run to
completion.

Table 18. Termination using QUIESCE, FORCE, and RESTART

Thread type QUIESCE FORCE RESTART

Active threads Run to
completion

Back out Back out

New threads Can start Not permitted Not permitted

New connections Not permitted Not permitted Not permitted

Deregister from
ARM1

Yes Yes No

Note:

1. See “Using the OS/390 Automatic Restart Manager (ARM)” on page 294 for more
information.

 Copyright IBM Corp. 1993,1999 279

 Connections and threads

When you issue the STOP QMGR MODE(FORCE) or MODE(RESTART)
command, no new threads are allocated, and work on connected threads is rolled
back. Using these modes can create in-doubt units of recovery for threads that are
between commit processing phases. They are resolved when MQSeries is
reconnected with the controlling CICS, IMS, or RRS subsystem.

When you stop MQSeries, in any mode, the steps are:

� Connections are ended.

� MQSeries ceases to accept commands.

� MQSeries ensures that any outstanding updates to the page sets are
completed.

� The DISPLAY USAGE command is issued internally by MQSeries so that the
restart RBA is recorded on the OS/390 console log.

� The shutdown checkpoint is taken and the BSDS is updated.

Terminations that specify MODE (QUIESCE) do not affect in-doubt units of
recovery. Any unit that is in doubt remains in doubt.

 Abnormal termination
An abnormal termination can leave data in an inconsistent state, for example:

� A unit of recovery has been interrupted before reaching a point of consistency.

� Committed data has not been written to page sets.

� Uncommitted data has been written to page sets.

� An application program has been interrupted between phase 1 and phase 2 of
the commit process, leaving the unit of recovery in doubt.

Note: MQSeries resolves any data inconsistencies arising from abnormal
termination during restart and recovery.

Connections and threads
You can use the DISPLAY THREAD command (described in the MQSeries
Command Reference manual) to get information about connections to MQSeries
and their associated threads. You can display active threads to see what is
currently happening, or to see what needs to be terminated in order to allow
MQSeries to shut down. You can display in-doubt threads to help with recovery.
Messages CSQV401I through CSQV406I describe the information returned, these
are documented in the MQSeries for OS/390 Messages and Codes manual.

 Active threads
Each current connection (MQCONN) to MQSeries is represented by one active
thread, but certain connections (such as those by the CICS adapter or the mover)
might have additional threads associated with them. Note that the CTHREAD
system parameter in CSQ6SYSP (described in “Using CSQ6SYSP” on page 68)
controls the number of connections (MQCONNs), not the number of threads.

In addition to the connection name, the display includes the associated user ID (if
known), the number of MQSeries requests made by a thread, and the thread
cross-reference identifier. The number of MQSeries requests is generally 0 for

280 System Management Guide

 Restart and recovery

associated threads. The thread cross-reference identifier is shown in character
form if possible, but otherwise in hexadecimal; its format depends on the type of
connection:

CICS Contains the CICS thread number, transaction name, and task number – see
Table 30 on page 389.

IMS Contains the IMS PST region identifier and PSB name – see Table 31 on
page 390.

Batch, TSO, and RRS
Contains nulls or blanks.

Mover
Blank for connections. Associated threads contain 'T' (X'E3') or 'XX**'
(X'E7E75C5C') at character position 5.

 In-doubt threads
An in-doubt thread is one that is in the second pass of the two-phase commit
operation. Resources are held in MQSeries on its behalf. External intervention is
needed to resolve the status or in-doubt threads. This might only involve starting
the recovery coordinator (CICS, IMS, or RRS) or might involve more, as described
in the following sections. They might have been in doubt at the last restart, or they
might have become in doubt since the last restart.

The display includes the thread cross-reference identifier, which might be needed if
manual recovery is necessary.

What happens during restart and recovery
MQSeries uses its recovery log and the bootstrap data set (BSDS) to determine
what to recover when it restarts. The BSDS identifies the active and archive log
data sets, and the location of the most recent MQSeries checkpoint in the log.

After MQSeries has been initialized, the restart process takes place as follows:

 � Log initialization
� Current status rebuild
� Forward log recovery
� Backward log recovery
� Queue index rebuilding

When recovery has been completed:

� Committed changes are reflected in the data.

� In-doubt activity is reflected in the data. However, the data is locked and
cannot be used until MQSeries recognizes and acts on the in-doubt decision.
(For more information about in-doubt units of recovery, see “How consistency is
maintained after an abnormal termination” on page 277.)

� Interrupted in-flight and in-abort changes have been removed from the queues.
The messages are consistent and can be used.

� A new checkpoint has been taken.

� New indexes have been built for indexed queues containing persistent
messages (see “Rebuilding queue indexes” on page 282).

 Chapter 16. Understanding termination and restart 281

 Restart and recovery

For an example of the messages that are written to the MQSeries console during
restart processing, see “User messages on start-up” on page 192.

Batch applications are not notified when restart occurs after the application has
requested a connection.

If dual BSDSs are in use, MQSeries checks the consistency of the time stamps in
the BSDS:

� If both copies of the BSDS are current, MQSeries tests whether the two time
stamps are equal. If they are not, MQSeries issues message CSQJ120E and
terminates. This can happen when the two copies of the BSDS are maintained
on separate DASD volumes and one of the volumes was restored while
MQSeries was stopped. MQSeries detects the situation at restart.

To recover, copy the BSDS with the latest time stamp to the BSDS on the
restored volume. Also recover any active log data sets on the restored volume,
by copying the dual copy of the active log data sets onto the restored volume.
For more detailed instructions, see “Dealing with BSDS errors” on page 346.

� If one copy of the BSDS was deallocated, and logging continued with a single
BSDS, a problem could arise. If both copies of the BSDS are maintained on a
single volume, and the volume was restored, or if both BSDS copies were
restored separately, MQSeries might not detect the restoration. In that case,
log records not noted in the BSDS would be unknown to the system.

Rebuilding queue indexes
To increase the speed of MQGET operations on a queue where messages are not
retrieved sequentially, you can use the INDXTYPE queue attribute. This attribute
causes MQSeries to maintain an index of the message or correlation identifiers for
all the messages on that queue (as described in the MQSeries Application
Programming Guide).

When MQSeries is restarted, these indexes are rebuilt for each queue. This only
applies to persistent messages; nonpersistent messages are deleted at restart. If
your indexed queues contain large numbers of persistent messages, this will
increase the time taken to restart MQSeries.

No messages are sent to the OS/390 console while these indexes are being rebuilt.

282 System Management Guide

 Resolving in-doubt units of recovery

How in-doubt units of recovery are resolved
If MQSeries loses its connection to CICS, IMS, or RRS, it normally attempts to
recover all inconsistent objects at restart. The information needed to resolve
in-doubt units of recovery must come from the coordinating system. The next
section describes the process of resolution.

How in-doubt units of recovery are resolved from CICS
The resolution of in-doubt units has no effect on CICS resources. CICS is in
control of recovery coordination and, when it restarts, automatically commits or
backs out each unit, depending on whether there was a log record marking the
beginning of the commit. The existence of in-doubt objects does not lock CICS
resources while MQSeries is being reconnected.

One of the functions of the CICS adapter is to keep data synchronized between
CICS and MQSeries. If MQSeries abends while connected to CICS, it is possible
for CICS to commit or back out work without MQSeries being aware of it. When
MQSeries restarts, that work is termed in doubt.

MQSeries cannot resolve these in-doubt units of recovery (that is, commit or back
out the changes made to MQSeries resources) until the connection to CICS is
restarted or reconnected.

A process to resolve in-doubt units of recovery is initiated during startup of the
CICS adapter. The process starts when the adapter requests a list of in-doubt
units of recovery. Then:

� The adapter receives a list of in-doubt units of recovery for this connection ID
from MQSeries, and passes them to CICS for resolution.

� CICS compares entries from this list with entries in its own. CICS determines
from its own list what action it took for each in-doubt unit of recovery.

Under some circumstances, CICS cannot run the MQSeries process to resolve
in-doubt units of recovery. When this happens, MQSeries sends one of these
messages:

 � CSQC404E
 � CSQC405E
 � CSQC406E
 � CSQC407E

followed by the message CSQC408I.

For details of what these messages mean, see the MQSeries for OS/390 Messages
and Codes manual.

For all resolved units, MQSeries updates the queues as necessary and releases
the corresponding locks. Unresolved units can remain after restart. Resolve them
by the methods described in “Recovering CICS units of recovery manually” on
page 286.

 Chapter 16. Understanding termination and restart 283

 Resolving in-doubt units of recovery

How in-doubt units of recovery are resolved from IMS
Resolving in-doubt units of recovery in IMS has no effect on DL/I resources. IMS is
in control of recovery coordination and, when it restarts, automatically commits or
backs out incomplete DL/I work. The decision to commit or back out for online
regions (non-fast-path) is on the presence or absence of IMS log record types
X'3730' and X'3801' respectively. The existence of in-doubt units of recovery
does not imply that DL/I records are locked until MQSeries connects.

During restart, MQSeries makes a list of in-doubt units of recovery. IMS builds its
own list of residual recovery entries (RREs). The RREs are logged at IMS
checkpoints until all entries are resolved.

When in-doubt units are resolved:

1. If MQSeries recognizes that it has marked an entry for commit and IMS has
marked it to be backed out, MQSeries issues message CSQQ010E. MQSeries
issues this message for all inconsistencies of this type between MQSeries and
IMS.

2. If MQSeries has any remaining in-doubt units, the adapter issues message
CSQQ008I.

For all resolved units, MQSeries updates queues as necessary and releases the
corresponding locks.

MQSeries maintains locks on in-doubt work that was not resolved. This can cause
a backlog in the system if important locks are being held. The connection remains
active so you can resolve the IMS RREs. Recover the in-doubt threads by the
methods described in “Controlling IMS connections” on page 169.

All in-doubt work should be resolved unless there are software or operating
problems, such as with an IMS cold start. In-doubt resolution by the IMS control
region takes place in two circumstances:

1. At the start of the connection to MQSeries, during which resolution is done
synchronously.

2. When a program abends, during which the resolution is done asynchronously.

284 System Management Guide

 Resolving in-doubt units of recovery

How in-doubt units of recovery are resolved from RRS
One of the functions of the RRS adapter is to keep data synchronized between
MQSeries and other RRS-participating resource managers. If a failure occurs when
MQSeries has completed phase one of the commit and is waiting for a decision
from RRS (the commit coordinator), the unit of recovery enters the in-doubt state.

When communication is reestablished between RRS and MQSeries, RRS
automatically commits or backs out each unit of recovery, depending on whether
there was a log record marking the beginning of the commit. MQSeries cannot
resolve these in-doubt units of recovery (that is, commit or back out the changes
made to MQSeries resources) until the connection to RRS is reestablished.

Under some circumstances, RRS cannot resolve in-doubt units of recovery. When
this happens, MQSeries sends one of the following messages to the OS/390
console:

 � CSQ3011I
 � CSQ3013I
 � CSQ3014I
 � CSQ3016I

For details of what these messages mean, see the MQSeries for OS/390 Messages
and Codes manual.

For all resolved units of recovery, MQSeries updates the queues as necessary and
releases the corresponding locks. Unresolved units of recovery can remain after
restart. Resolve them by the method described in “Recovering RRS units of
recovery manually” on page 290.

 Chapter 16. Understanding termination and restart 285

 Manually recovering CICS units of recovery

Recovering CICS units of recovery manually
If the adapter abends, CICS and MQSeries build in-doubt lists either dynamically or
during restart, depending on which subsystem caused the abend.

Note: If you use the DFH£INDB sample program to show units of work, you might
find that it does not always show MQSeries ones correctly.

When CICS connects to MQSeries, there might be one or more units of recovery,
that have not been resolved.

One of the following messages is sent to the console:

 � CSQC404E
 � CSQC405E
 � CSQC406E
 � CSQC407E
 � CSQC408I

For details of what these messages mean, see the MQSeries for OS/390 Messages
and Codes manual.

CICS retains details of units of recovery that were not resolved during connection
startup. An entry is purged when it no longer appears on the list presented by
MQSeries.

Any units of recovery that CICS cannot resolve must be resolved manually using
MQSeries commands. This manual procedure is rarely used within an installation,
because it is required only where operational errors or software problems have
prevented automatic resolution. Any inconsistencies found during in-doubt
resolution must be investigated.

To recover the units of recovery:

1. Obtain a list of the units of recovery from MQSeries by issuing the following
command:

+cpf DISPLAY THREAD(\) TYPE(INDOUBT)

You receive the following messages:

CSQV4ð1I +cpf DISPLAY THREAD REPORT FOLLOWS -
CSQV4ð6I +cpf INDOUBT THREADS
NAME THREAD-XREF URID NID
VICIC3 xref VICIC3.A75E483235A9ð9ðð
 DISPLAY THREAD REPORT COMPLETE
CSQ9ð22I +cpf CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

For CICS connections, the NID consists of the CICS applid and a unique
number provided by CICS at the time the syncpoint log entries are written.
This unique number is stored in records written to both the CICS system log
and the MQSeries log at syncpoint processing time. This value is referred to in
CICS as the recovery token.

286 System Management Guide

 Manually recovering CICS units of recovery

2. Scan the CICS log for entries related to a particular unit of recovery.

Look for a PREPARE record, for the task-related installation where the
recovery token field (JCSRMTKN) equals the value obtained from the network
ID. The network ID is supplied by MQSeries in the DISPLAY THREAD
command output.

The PREPARE record in the CICS log for the units of recovery provides the
CICS task number. All other entries on the log for this CICS task can be
located using this number.

You can use the CICS journal print utility DFHJUP when scanning the log. For
details of using this program, see the CICS Operations Guide.

3. Scan the MQSeries log for entries related to a particular unit of recovery.

To do this, scan the MQSeries log to locate the record with the NID required.
Then use the URID from this record to obtain the rest of the log records for this
unit of recovery.

When scanning the MQSeries log, note that the MQSeries startup message
CSQJ001I provides the start RBA for this session.

The print log records program (CSQ1LOGP) can be used for that purpose.

4. If you need to, do in-doubt resolution in MQSeries.

MQSeries can be directed to take the recovery action for a unit of recovery
using an MQSeries RESOLVE INDOUBT command.

For information about RESOLVE INDOUBT, see the MQSeries Command
Reference manual.

To recover all threads associated with connection-name, use the NID(ñ) option.

The command produces one of the following messages showing whether the
thread is committed or backed out:

CSQV414I +cpf THREAD network-id COMMIT SCHEDULED
CSQV415I +cpf THREAD network-id ABORT SCHEDULED

When performing in-doubt resolution, CICS and the adapter are not aware of the
commands to MQSeries to commit or back out units of recovery, because only
MQSeries resources are affected. However, CICS keeps details about the in-doubt
threads that could not be resolved by MQSeries. This information is purged either
when the list presented is empty, or when the list does not include a unit of
recovery of which CICS has details.

 Chapter 16. Understanding termination and restart 287

 Manually recovering IMS units of recovery

Recovering IMS units of recovery manually
When IMS connects to MQSeries, MQSeries might have one or more in-doubt units
of recovery that have not been resolved.

If MQSeries has in-doubt units of recovery that IMS did not resolve, the following
message is issued at the IMS master terminal:

CSQQðð8I nn units of recovery are still in doubt in queue manager

When this message is issued, IMS was either cold-started or it was started with an
incomplete log tape. This message can also be issued if MQSeries or IMS
terminates abnormally because of a software error or other subsystem failure.

After receiving the CSQQ008I message:

� The connection remains active.
� IMS applications can still access MQSeries resources.
� Some MQSeries resources remain locked out.

If the in-doubt thread is not resolved, IMS message queues can start to build up. If
the IMS queues fill to capacity, IMS terminates. Therefore, users must be aware of
this potential difficulty and must monitor IMS until the in-doubt units of recovery are
fully resolved.

 Recovery procedure
Use the following procedure to recover the IMS units of work:

1. Force the IMS log closed, using /SWI OLDS, and then archive the IMS log.
Use the utility, DFSERA10, to print the records from the previous IMS log tape.
Type X'3730' log records indicate a phase-2 commit request and type X'38'
log records indicate an abort request. Record the requested action for the last
transaction in each dependent region.

2. Run the DL/I batch job to back out each PSB involved that has not reached a
commit point. The process might take some time because transactions are still
being processed. It might also lock up a number of records, which could
impact the rest of the processing and the rest of the message queues.

3. Produce a list of the in-doubt units of recovery from MQSeries by issuing the
following command:

DISPLAY THREAD(\) TYPE(INDOUBT)

You receive the following messages:

CSQV4ð1I +cpf DISPLAY THREAD REPORT FOLLOWS -
CSQV4ð6I +cpf INDOUBT THREADS -
NAME THREAD-XREF URID NID
name xref network-id
name xref network-id
 DISPLAY THREAD REPORT COMPLETE
CSQ9ð22I +cpf CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

288 System Management Guide

 Manually recovering IMS units of recovery

For IMS, the NID consists of the IMS connection name and a unique number
provided by IMS. The value is referred to in IMS as the recovery token. For more
information, see the IMS Customization Guide.

4. Compare the NIDs (IMSID plus OASN in hexadecimal) displayed in the
DISPLAY THREAD messages with the OASNs (4 bytes decimal) shown in the
DFSERA10 output. Decide whether to commit or back out.

5. Perform in-doubt resolution in MQSeries with the RESOLVE INDOUBT
command, as follows:

RESOLVE INDOUBT(connection-name)
 ACTION(COMMIT|BACKOUT)
 NID(network-id)

For information about RESOLVE INDOUBT, see the MQSeries Command
Reference manual.

To recover all threads associated with connection-name, use the NID(ñ) option.

The command results in one of the following messages to indicate whether the
thread is committed or backed out:

CSQV414I THREAD network-id COMMIT SCHEDULED
CSQV415I THREAD network-id BACKOUT SCHEDULED

When performing in-doubt resolution, IMS and the adapter are not aware of the
commands to MQSeries to commit or back out in-doubt units of recovery because
only MQSeries resources are affected.

 Chapter 16. Understanding termination and restart 289

 Manually recovering RRS units of recovery

Recovering RRS units of recovery manually
When RRS connects to MQSeries, MQSeries may have one or more in-doubt units
of recovery that have not been resolved. If MQSeries has in-doubt units of
recovery that RRS did not resolve, one of the following messages is issued at the
OS/390 console:

 � CSQ3011I
 � CSQ3013I
 � CSQ3014I
 � CSQ3016I

Both MQSeries and RRS provide tools to display information about in-doubt units of
recovery, and techniques for manually resolving them.

In MQSeries, use the DISPLAY THREAD command to display information about
in-doubt MQSeries threads. The output from the command includes RRS unit of
recovery IDs for those MQSeries threads that have RRS as a coordinator. This
can be used to determine the outcome of the unit of recovery.

Use the MQSeries RESOLVE INDOUBT command to resolve the MQSeries in-doubt
thread manually. This command can be used to either commit or back out the unit
of recovery after you have determined what the correct decision is.

290 System Management Guide

 CICS adapter restart

What happens when the CICS adapter restarts
For background information, see Chapter 6, “The MQSeries-CICS adapter” on
page 109.

Whenever a connection is broken, the adapter has to go through a restart phase
during the reconnect process. The restart phase resynchronizes resources.
Resynchronization between CICS and MQSeries enables in-doubt units of work to
be identified and resolved.

Resynchronization can be caused by:

� An explicit request from the distributed queuing component
� An implicit request when a connection is made to MQSeries

If the resynchronization is caused by connecting to MQSeries, the sequence of
events is:

1. The connection process gets a list of unit of work (UOW) IDs that MQSeries
thinks are in doubt.

2. The UOW IDs are displayed on the console in CSQC313I messages.

3. The UOW IDs are passed to CICS.

4. CICS initiates a resynchronization task (CRSY) for each in-doubt UOW ID.

5. The result of the task for each in-doubt UOW is displayed on the console.

You need to check the messages that are displayed during the connect process:

CSQC313I Shows that a UOW is in doubt.

CSQC400I Identifies the UOW and is followed by one of these messages:

� CSQC402I and CSQC403I show that the UOW was resolved
successfully (committed or backed out).

� CSQC404E, CSQC405E, CSQC406E, and CSQC407E show that
the UOW was not resolved.

CSQC409I Shows that all UOWs were resolved successfully.

CSQC408I Shows that not all UOWs were resolved successfully.

CSQC314I Warns that UOW IDs highlighted with a “ñ” will not be resolved
automatically. These UOWs must be resolved explicitly by the
distributed queuing component when it is restarted.

Figure 91 on page 292 shows an example set of restart messages displayed on
the OS/390 console.

 Chapter 16. Understanding termination and restart 291

 CICS adapter restart

CSQ9ð22I +cpf CSQYASCP ' START QMGR' NORMAL COMPLETION
+CSQC323I VICIC1 CSQCQCON CONNECT received from TERMID=PB62 TRANID=CKCN
+CSQC3ð3I VICIC1 CSQCCON CSQCSERV loaded. Entry point is 85ðE8918.
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6FðE2178D25 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6Fð55B2AC25 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6EFFD6ðD425 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6Fð7AB56D22 is in doubt
+CSQC3ð7I VICIC1 CSQCCON Successful connection to subsystem VC2
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8BAD18) connect
successful.
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8BAA1ð) connect
successful.
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8BA7ð8) connect
successful.
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8CAE88) connect
successful.
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8CAB8ð) connect
successful.
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8CA878) connect
successful.
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8CA57ð) connect
successful.
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=ðð8CA268) connect
successful.
+CSQC4ð3I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC4ððI VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6FðE2178D25
+CSQC4ð3I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC4ððI VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6Fð55B2AC25
+CSQC4ð3I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC4ððI VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6Fð7AB56D22
+CSQC4ð3I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC4ððI VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6EFFD6ðD425
+CSQC4ð9I VICIC1 CSQCTRUE Resynchronization completed successfully

Figure 91. Example restart messages

The total number of CSQC313I messages should equal the total number of
CSQC402I plus CSQC403I messages. If the totals are not equal, there are UOWs
that the connection process cannot resolve. Those UOWs that cannot be resolved
are caused by problems with CICS (for example, a cold start) or with MQSeries, or
by distributing queuing. When these problems have been fixed, you can initiate
another resynchronization by disconnecting and then reconnecting.

Alternatively, you can resolve each outstanding UOW yourself using the MQSeries
RESOLVE INDOUBT command and the UOW ID shown in message CSQC400I.
You must then initiate a disconnect and a connect to clean up the unit of recovery
descriptors in CICS. You need to know the correct outcome of the UOW to resolve
UOWs manually. See also “Recovering CICS units of recovery manually” on
page 286.

All messages that are associated with unresolved UOWs are locked by MQSeries
and no Batch, TSO, or CICS task can access them.

Note: If CICS fails and an emergency restart is necessary, do not vary the
GENERIC APPLID of the CICS system. If you do and then reconnect to
MQSeries, data integrity with MQSeries cannot be guaranteed. This is
because MQSeries treats the new instance of CICS as a different CICS
(because the APPLID is different). In-doubt resolution is then based on the
wrong CICS log.

Similarly, if MQSeries fails, do not change the subsystem ID of the
MQSeries system.

292 System Management Guide

 IMS adapter restart

What happens when the IMS adapter restarts
For background information, see Chapter 9, “The MQSeries-IMS adapter” on
page 159.

Whenever the connection to MQSeries is restarted, either following an MQSeries
restart, or an IMS /START SUBSYS command, IMS initiates the following
resynchronization process:

1. IMS presents the list of unit of work (UOW) IDs that it believes are in doubt to
the MQSeries IMS adapter one at a time with a resolution parameter of Commit
or Backout.

2. The IMS adapter passes the resolution request to MQSeries and reports the
result back to IMS.

3. Having processed all the IMS resolution requests, the IMS adapter gets from
MQSeries a list of all UOWs that MQSeries still holds in doubt that were
initiated by the IMS system. These are reported to the IMS master terminal in
message CSQQ008I.

See “Recovering IMS units of recovery manually” on page 288 for information
about recovering these UOWs.

Note: While a UOW is in doubt, any associated MQSeries message is locked by
MQSeries and is not available to any application.

 Chapter 16. Understanding termination and restart 293

Using the OS/390 Automatic Restart Manager (ARM)
The OS/390 Automatic Restart Manager (ARM) is an OS/390 recovery function that
can improve the availability of your MQSeries subsystems. When a job or task
fails, or the system on which it is running fails, ARM can restart the job or task
without operator intervention.

If a queue manager or a channel initiator has failed, ARM restarts it on the same
OS/390 image. If OS/390, and hence a whole group of related subsystems and
applications have failed, ARM can restart all the failed systems automatically, in a
predefined order, on another OS/390 image within the sysplex. This is called a
cross-system restart.

The channel initiator should be restarted by ARM only in exceptional
circumstances. If the queue manager is restarted by ARM, the channel initiator
should be restarted from the CSQINP2 initialization data set (see “Using ARM in an
MQSeries network” on page 296).

You can use ARM to restart an MQSeries subsystem that uses LU 6.2
communication protocols on a different OS/390 image within the sysplex in the
event of OS/390 failure. (You cannot do this if you use TCP/IP communication
protocols.) The network implications of MQSeries ARM restart on a different
OS/390 image are discussed in “Using ARM in an MQSeries network” on
page 296.

To enable automatic restart:

� You must set up an ARM couple data set.

� You must define the automatic restart actions that you want OS/390 to perform
in an ARM policy.

� You must start the ARM policy.

Also, MQSeries must register with ARM at startup (this happens automatically).

Note: If you want to restart queue managers in different OS/390 images
automatically, every queue manager must be defined as a subsystem in
each OS/390 image on which that queue manager might be restarted, with
a sysplex wide unique 4-character subsystem name.

ARM couple data sets
You must ensure that you define the couple data sets required for ARM, and that
they are online and active before you start any MQSeries subsystem for which you
want ARM support. MQSeries automatic ARM registration fails if the couple data
sets are not available at MQSeries startup. In this situation, MQSeries assumes
that the absence of the couple data set means that you do not want ARM support,
and initialization continues.

See the OS/390 MVS Setting up a Sysplex manual for information about ARM
couple data sets.

294 System Management Guide

 ARM policies
ARM functions are controlled by a user-defined ARM policy. Each OS/390 image
running a queue manager instance that is to be restart ed by ARM must be
connected to an ARM couple data set with an active ARM policy.

IBM provides a default ARM policy. You can define new policies, or override the
policy defaults by using the administrative data utility (IXCMIAPU) provided with
OS/390. The OS/390 MVS Setting up a Sysplex manual describes this utility, and
includes full details of how to define an ARM policy.

Figure 92 shows an example of an ARM policy. This sample policy will restart any
MQSeries queue manager within a sysplex, in the event that either the queue
manager failed, or a whole system failed.

//IXCMIAPU EXEC PGM=IXCMIAPU,REGION=2M
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
 DATA TYPE(ARM)
DEFINE POLICY NAME(ARMPOL1) REPLACE(YES)
 RESTART_GROUP(DEFAULT)
 ELEMENT(\)

RESTART_ATTEMPTS(ð) /\ Jobs not to be restarted by ARM \/
 RESTART_GROUP(GROUP1)

ELEMENT(SYSMQMGRMQ\) /\ These jobs to be restarted by ARM \/
/\

Figure 92. Sample ARM policy

Defining an ARM policy
We recommend that you set up your ARM policy as follows:

� Define RESTART_GROUPs for each queue manager instance which also
contain any CICS or IMS subsystems that connect to that queue manager
instance. If you use a subsystem naming convention, you might be able to use
the '?' and '*' wild-card characters in your element names to achieve the above
with minimum definition effort.

� Specify TERMTYPE(ELEMTERM) for your channel initiators to indicate that
they will be restarted only if the channel initiator has failed and the OS/390
image has not failed.

� Specify TERMTYPE(ALLTERM) for your queue managers to indicate that they
will be restarted if either the queue manager has failed or the OS/390 image
has failed.

� Specify RESTART_METHOD(BOTH, PERSIST) for both queue managers and
channel initiators. This tells ARM to restart using the JCL it saved (after
resolution of system symbols) during the last startup. It tells ARM to do this
irrespective of whether the individual element failed, or the OS/390 image
failed.

� Accept the default values for all the other ARM policy options.

 Chapter 16. Understanding termination and restart 295

Activating an ARM policy
To start your automatic restart management policy, issue the following OS/390
command:

SETXCF START,POLICY,TYPE=ARM,POLNAME=mypol

When the policy is started, all systems connected to the ARM couple data set use
the same active policy.

Use the SETXCF STOP command to disable automatic restarts.

Registering with ARM
MQSeries registers automatically as an ARM element during its startup phase
(subject to ARM availability). It deregisters during its shutdown phase, unless
requested not to.

At startup, the queue manager determines whether ARM is available. If it is,
MQSeries registers using the name SYSMQMGRssid, where ssid is the 4-character
queue-manager name, and SYSMQMGR is the element type.

The STOP QMGR MODE(QUIESCE) and STOP QMGR MODE(FORCE) MQSeries
commands deregister MQSeries from ARM (if it was registered with ARM at
startup). This prevents ARM restarting this queue manager. The STOP QMGR
MODE(RESTART) command does not deregister the queue manager from ARM. It
is thus eligible for immediate automatic restart.

Each MQSeries channel initiator address space determines whether ARM is
available, and if so will register with the element name SYSMQCHssid, where ssid
is the queue manager name, and SYSMQCH is the element type.

The channel initiator is always deregistered from ARM when it stops normally, and
remains registered only if it ends abnormally. The channel initiator is always
deregistered if the queue manager fails.

Using ARM in an MQSeries network
You should set up your MQSeries system so that the channel initiators and
associated listeners are started automatically when MQSeries is restarted. To
ensure fully automatic MQSeries restart on the same OS/390 image for both LU 6.2
and TCP/IP communication protocols:

� Start your channel initiator automatically by adding the appropriate START
CHINIT command to the CSQINP2 data set.

� Start your listeners automatically by adding the appropriate START LISTENER
command to the CSQINPX data set.

See “Task 10: Customize the initialization input data sets” on page 52 for
information about the CSQINP2 data set and “Initialization commands for
distributed queuing” on page 53 for information about the CSQINPX data set.

296 System Management Guide

Restarting on a different OS/390 image
If you use only LU 6.2 communication protocols you should also do the following to
enable network reconnect after automatic restart of MQSeries on a different OS/390
image within the sysplex:

� Define each MQSeries queue manager within the sysplex with a unique
subsystem name.

� Define each channel initiator within the sysplex with a unique LUNAME. This is
specified in both the channel initiator parameter module and in the START
LISTENER command.

Note: The LUNAME names an entry in the APPC side table, which in turn
maps this to the actual LUNAME.

� Set up a shared APPC side table, which is referenced by each OS/390 image
within the sysplex. This should contain an entry for each channel initiator's
LUNAME. See the MVS Planning: APPC/MVS Management manual for
information about this.

� Set up an APPCPMxx member of SYS1.PARMLIB for each channel initiator
within the sysplex to contain an LUADD to activate the APPC side table entry
for that channel initiator. These members should be shared by each OS/390
image. The appropriate SYS1.PARMLIB member is activated by a SET
APPC=xx OS/390 command which is issued automatically during ARM restart
of MQSeries (and its channel initiator) on a different OS/390 image, as
described below.

� Use the LU62ARM keyword of the CSQ6CHIP macro to specify the xx suffix of
this SYS1.PARMLIB member for each channel initiator in the channel initiator
parameter module. This will cause the channel initiator to issue the required
SET APPC=xx OS/390 command to activate its LUNAME.

You should define your ARM policy to restart the channel initiator only if it fails
while its OS/390 image stays up. You should not restart the channel initiator
automatically if its OS/390 image also fails, but use the CSQINP2 and CSQINPX
data sets to start the channel initiator and listeners.

TCP/IP does not currently support moving of an IP address from one OS/390
image to another OS/390 image within the sysplex. If your MQSeries subsystem
uses TCP/IP communication protocols, you should not define your ARM policy to
restart MQSeries in a different OS/390 image within the sysplex following OS/390
failure.

 Chapter 16. Understanding termination and restart 297

298 System Management Guide

 Log and bootstrap data set

Chapter 17. Understanding the log and the bootstrap data set

MQSeries maintains logs of data changes and significant events as they occur.
The bootstrap data set (BSDS) stores information about the data sets that contain
the logs.

Note: You must set up the log data sets for MQSeries, see “Task 11: Create the
bootstrap and log data sets” on page 61.

This chapter serves as a general introduction and reference to the logging
mechanism. Day-to-day procedures for managing the log and the BSDS are not
described here; you can find them in Chapter 19, “Managing the logs and the
bootstrap data set” on page 315.

This chapter contains the following sections:

� “What logs are”
� “How the log is structured” on page 301
� “How the logs are written” on page 302
� “What the bootstrap data set is for” on page 305
� “Managing the logs and BSDS” on page 306

What logs are
MQSeries records all significant events in an active log as they occur. The log
contains the information needed to recover:

 � Persistent messages
� MQSeries objects, such as queues
� The MQSeries subsystem

Note: The log does not contain information for statistics, traces, or performance
evaluation.

The active log comprises a series of data sets that are used cyclically. See “How
the logs are written” on page 302 for more information.

 Archiving
Because the active log is finite, MQSeries copies the contents of each log data set
periodically to an archive log, which is normally a data set on a direct access
storage device (DASD) or a magnetic tape. If there is a subsystem or transaction
failure, MQSeries uses the active log and, if necessary, the archive log for
recovery.

The archive log can contain up to 1000 sequential data sets. Each data set can be
cataloged using the integrated catalog facility (ICF).

 Copyright IBM Corp. 1993,1999 299

 Log and bootstrap data set

Important note about archiving

Archiving is an essential component of MQSeries recovery. If a unit of recovery
is a long-running one, it is possible that log records within that unit of recovery
will be found in the archive log. In this case, recovery will require data from the
archive log. However, if archiving is switched off, the active log records will
wrap, overwriting earlier log records. This means that MQSeries will be unable
to back out the unit of recovery and messages will be lost. MQSeries will then
terminate abnormally with a reason code 00D94012.

Therefore, in a production environment, you must never switch archiving off .
If you do, you run the risk of losing data after a system or transaction failure.
Only if you are running in a test environment should you consider switching
archiving off. If you need to do this, use the CSQ6LOGP macro (see “Using
CSQ6LOGP” on page 74).

 Dual logging
You can configure MQSeries to run with either single logging or dual logging. With
single logging, log records are written once to an active log data set. With dual
logging, each log record is written to two different active log data sets. Dual
logging minimizes the likelihood of data loss problems during restart. If possible,
the two log data sets should be on separate volumes. This reduces the risk of
them both being lost if one of the volumes is corrupted or destroyed. If both copies
of the log are lost, the probability of data loss is high.

Note: You should always use dual logging and dual BSDSs rather than dual
writing to DASD.

Single logging gives you 2 through 53 active log data sets, whereas dual logging
gives you 4 through 106. Each active log data set is a single-volume, single-extent
VSAM linear data set (LDS).

Although the minimum number of log data sets required is two, in practice you
should have at least three, and on a busy system you might need more. This is to
allow time for each log data set to be copied to archive before it is reused in the
active log cycle.

 Log data
The log can contain up to 280 million million (2.8*1014) bytes. Each byte can be
addressed by its offset from the beginning of the log, and that offset is known as its
relative byte address (RBA).

The log is made up of log records, each of which is a set of log data treated as a
single unit. A log record is identified by the RBA of the first byte of its header; that
RBA is called the relative byte address of the record. The RBA uniquely identifies
a record that starts at a particular point in the log.

Each log record has a header that gives its type, the MQSeries sub-component that
made the record, and, for unit of recovery records, a unit of recovery identifier.

There are three types of log record, described under these headings:

� “Unit-of-recovery log records” on page 301

300 System Management Guide

 Log structure

� “Checkpoint records” on page 301
� “Page set control records”

Unit-of-recovery log records
Most of the log records describe changes to MQSeries queues. All such changes
are made within units of recovery.

MQSeries uses special logging techniques involving undo/redo and compensating
log records to reduce restart times and improve system availability.

One effect of this is that the restart time is bounded. If a failure occurs during a
restart so that MQSeries has to be restarted a second time, all the recovery activity
that completed to the point of failure in the first restart does not need to be
re-applied during a second restart. This means that successive restarts do not take
progressively longer times to complete.

 Checkpoint records
To reduce restart time, MQSeries takes periodic checkpoints during normal
operation:

� When a predefined number of log records has been written.

This number is defined by the checkpoint frequency operand called LOGLOAD
of the installation macro CSQ6SYSP described in “Using CSQ6SYSP” on
page 68.

� At the end of a successful restart.

� At normal termination.

At the time a checkpoint is taken, MQSeries issues the DISPLAY THREAD
command internally so that a list of threads currently in doubt is written to the
OS/390 console log.

Page set control records
These records register the page sets known to the MQSeries subsystem at each
checkpoint.

How the log is structured
Each active log data set must be a VSAM linear data set (LDS). The physical
output unit written to the active log data set is a 4 KB control interval (CI). Each CI
contains one VSAM record.

Physical and logical log records
One VSAM CI is a physical record. The information to be logged at a particular
time forms a logical record, whose length varies independently of the space
available in the CI. So one physical record can contain:

� Several logical records
� One or more logical records and part of another logical record
� Part of one logical record only

The term “log record” refers to the logical record, regardless of how many physical
records are needed to store it.

 Chapter 17. Understanding the log and the bootstrap data set 301

 Log writing

How the logs are written
MQSeries writes each log record to a DASD data set called the active log. When
the active log is full, MQSeries copies its contents to a DASD or tape data set
called the archive log. This process is called off-loading.

Figure 93 illustrates the process of logging. Log records typically go through the
following cycle:

1. MQSeries notes changes to data and significant events in recovery log records.

2. MQSeries processes recovery log records and breaks them into segments, if
necessary.

3. Log records are placed sequentially in output log buffers, which are formatted
as VSAM CIs. Each log record is identified by a relative byte address in the
range 0 through 248−1.

4. The CIs are written to a set of predefined DASD active log data sets, which are
used sequentially and recycled.

5. If archiving is active, as each active log data set becomes full, its contents are
automatically off-loaded to a new archive log data set.

 ┌────────────────────────┐
Register events │ Recovery log records │ 1
in recovery log records │ │
 └───────────┬────────────┘
 6
 ┌────────────────────────┐
Process the │ Log record │ 2
recovery log records │ processing │
 └───────────┬────────────┘
 6
Output log buffers ┌───┬──────────────────────┬───┐
hold recovery log records │ │ Output log buffers │ │ 3
waiting to be written │ │ │ │
to the active log └───┴──────────┬───────────┴───┘
 6
The active log holds ┌───┬──────────────────────────┬───┐
records that have │ │ Active log data sets │ │ 4
been written but not │ │ │ │
yet archived └───┴────────────┬─────────────┴───┘
 6
The archive log ┌───┬──────────────────────────────┬───┐
holds records that │ │ Archive log data sets │ │ 5
have been archived │ │ │ │
 └───┴──────────────────────────────┴───┘

Figure 93. The logging process

302 System Management Guide

 Log writing

When the active log is written
The in-storage log buffers are written to an active log data set whenever any of the
following occur:

� The log buffers become full.
� The write threshold is reached (as specified in the CSQ6LOGP macro).
� Certain significant events occur, such as, a commit point.

When MQSeries is initialized, the active log data sets named in the BSDS are
dynamically allocated for exclusive use by MQSeries and remain allocated
exclusively to MQSeries until MQSeries terminates. To add or replace active log
data sets, you must terminate and restart MQSeries (see “The change log inventory
utility (CSQJU003)” on page 256). For details about setting log parameters, see
“Using CSQ6LOGP” on page 74.

When the archive log is written
The process of copying active logs to archive logs is called off-loading. The
relation of off-loading to other logging events is shown schematically in Figure 94.

┌──────────────┐ ┌──────────────┐
│ Write to │ │ Triggering │
│ active log ├─────5│ event │
└──────────────┘ └──────┬───────┘
 6
 ┌──────────────┐

│ Off─load │
 │ process │
 └──────┬───────┘ ┌──────────────┐
 │ │ Write to │

├─────────────5│ archive log │
 │ └──────────────┘
 │
 │ ┌──────────────┐
 │ │ Record on │

└─────────────5│ BSDS │
 └──────────────┘

Figure 94. The off-loading process

Triggering an off-load
The off-load of an active log to an archive log can be triggered by several events.
For example:

� Filling an active log data set.

Message CSQJ110E is issued when the last available active log is 75% full
and at 5% increments thereafter, stating the percentage of the log’s capacity in
use. If all the active logs become full, MQSeries stops processing until
off-loading occurs and issues this message:

CSQJ111A +cpf OUT OF SPACE IN ACTIVE LOG DATA SETS

� Using the MQSeries command ARCHIVE LOG.

� An error occurring while writing to an active log data set.

The data set is truncated before the point of failure, and the record that failed to be
written becomes the first record of the new data set. Off-load is triggered for the

 Chapter 17. Understanding the log and the bootstrap data set 303

 Log writing

truncated data set as it would be for a normal full log data set. If there are dual
active logs, both copies are truncated so that the two copies remain synchronized.

The off-load process
When all the active logs become full, the MQSeries subsystem runs an off-load and
halts processing until the off-load has been completed. If the off-load processing
fails when the active logs are full, then MQSeries abends. For more information,
see “Dealing with active log problems” on page 338.

When an active log is ready to be off-loaded, a request is sent to the OS/390
console operator to mount a tape or prepare a DASD unit. The value of the
ARCWTOR option, discussed in “Using CSQ6ARVP” on page 76, determines
whether the request is received. If you are using tape for off-loading, specify
ARCWTOR=YES. If the value is YES, the request is preceded by a WTOR
(message number CSQJ008E) telling the operator to prepare an archive log data
set to be allocated.

The operator need not respond to this message immediately. However, delaying
the response delays the off-load process. It does not affect MQSeries performance
unless the operator delays the response for so long that MQSeries runs out of
active logs.

The operator can respond by canceling the off-load. In which case, if the allocation
is for the first copy of dual archive data sets, the off-load is merely delayed until the
next active log data set becomes full. If the allocation is for the second copy, the
archive process switches to single copy mode, but for this data set only.

Archive log data sets
Details of how to plan your archive storage are given in “Planning your archive
storage” on page 310.

Day-to-day procedures for managing the archive log are given in Chapter 19,
“Managing the logs and the bootstrap data set” on page 315.

Interruptions and errors while off-loading
A +cpf STOP QMGR command does not take effect until off-loading has finished.
If MQSeries fails while off-loading is in progress, off-load begins again when
MQSeries is restarted. Off-load handling of read I/O errors on the active log is
discussed under “Dealing with active log problems” on page 338, and of write I/O
errors on the archive log, under “Dealing with archive log problems” on page 343.

Messages during off-load
Off-load messages are sent to the OS/390 console by MQSeries and the off-load
process. With the exception of the CSQJ139I message, these messages can be
used to find the RBA ranges in the various log data sets. For an explanation of the
off-load messages, see the MQSeries for OS/390 Messages and Codes manual.

304 System Management Guide

 Bootstrap data set

What the bootstrap data set is for
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS) that
holds information needed by MQSeries. It contains:

� An inventory of all active and archived log data sets known to MQSeries.
MQSeries uses this inventory to:

– Track the active and archived log data sets

– Locate log records so that it can satisfy log read requests during normal
processing

– Locate log records so that it can handle restart processing

MQSeries stores information in the inventory each time an archive log data set
is defined or an active log data set is reused. For active logs, the inventory
shows which are full and which are available for reuse. The inventory holds
the relative byte address (RBA) of each log data set. There can be more than
one RBA if the log data set spans more than one volume.

� A wrap-around inventory of all recent MQSeries activity. This is needed if
MQSeries has to be restarted.

The BSDS is required if the subsystem has an error and has to be restarted.
MQSeries must have a BSDS; it is not optional. To minimize the likelihood of
problems during a restart, MQSeries can be configured with dual BSDSs, each
recording the same information. This is known as running in dual mode. If
possible, the copies should be on separate volumes. This reduces the risk of them
both being lost if the volume is corrupted or destroyed. You should use dual
BSDSs rather than dual write to DASD.

The BSDS is set up when MQSeries is customized and the inventory can be
managed using the change log inventory utility (CSQJU003). For further
information, see “Changing the BSDS” on page 321. It is referenced by a DD
statement in the MQSeries startup procedure.

Normally, MQSeries keeps duplicate copies of the BSDS. If an I/O error occurs, it
deallocates the failing copy and continues with a single BSDS. (For details of how
to restore dual mode, see “Dealing with BSDS errors” on page 346.)

The active logs are first registered in the BSDS when MQSeries is installed. They
cannot be replaced, nor can new ones be added, without terminating and restarting
MQSeries.

Archive log data sets are dynamically allocated. When one is allocated, the data
set name is registered in the BSDS. The list of archive log data sets expands as
archives are added, and wraps when a user-determined number of entries has
been reached. The maximum number of entries is 1000 for single archive logging
and 2000 for dual logging.

You can use a tape management system to delete the archive log data sets.
MQSeries does not have an automated method. Therefore, the information about
an archive log data set can be in the BSDS long after the archive log data set has
been deleted by the system administrator.

Conversely, the maximum number of archive log data sets could have been
exceeded, and the data from the BSDS dropped long before the data set has

 Chapter 17. Understanding the log and the bootstrap data set 305

reached its expiry date. For additional information, see “Automatic archive log data
set deletion” on page 317.

If CSQZPARM specifies that archive log data sets are cataloged when allocated,
the BSDS points to the interactive catalog facility (ICF) catalog for the information
needed for later allocations. Otherwise, the BSDS entries for each volume register
the volume serial number and unit information that is needed for later allocations.

Archive log data sets and BSDS copies
Each time a new archive log data set is created, a copy of the BSDS is also
created. If the archive log is on tape, the BSDS is the first data set on the first
output volume. If the archive log is on DASD, the BSDS is a separate data set.

The data set names of the archive log and the BSDS copy are the same, except
that the lowest-level qualifier of the archive log name begins with A and the BSDS
copy begins with B, for example:

Archive log name CSQ.ARCHLOG1.D93022.T2336229.A0000001
BSDS copy name CSQ.ARCHLOG1.D93022.T2336229.B0000001

If there is a read error while copying the BSDS, the copy is not created, message
CSQJ125E is issued, and the off-load to the new archive log data set continues
without the BSDS copy.

Managing the logs and BSDS
Day-to-day procedures for managing the BSDS are described in Chapter 19,
“Managing the logs and the bootstrap data set” on page 315.

In these procedures and the other specialized procedures that are described, you
might need to copy log or BSDS data sets. Because they are VSAM data sets, use
the Access Method Services REPRO function (or any equivalent) to do this.

For more information on the REPRO statement, see the DFSMS/MVS Access
Method Services for VSAM or the DFSMS/MVS Access Method Services for the
Integrated Catalog Facility manuals.

306 System Management Guide

 Planning backup and recovery

Chapter 18. Planning for backup and recovery

This chapter describes what you can do now to minimize problems following any
future failure. Chapter 21, “Example recovery scenarios” on page 337 describes
the procedures you should follow when particular failures occur.

This chapter contains these sections:

 � “Introduction”
� “General tips for backup and recovery”
� “Planning your logging environment” on page 309
� “Planning your archive storage” on page 310
� “Other recovery considerations” on page 311

 Introduction
Developing backup and recovery procedures at your site is vital to avoid costly and
time-consuming losses of data. MQSeries provides means for recovering both
queues and messages to their current state after a system failure. You should
develop the following procedures for MQSeries:

� Creating a point of recovery
� Backing up page sets
� Recovering page sets
� Recovering from out-of-space conditions (MQSeries logs and page sets)

See Chapter 20, “Managing page sets” on page 325 for information about
procedures for page sets and creating a point of recovery, and “Dealing with active
log problems” on page 338 for information about dealing with problems with the
log.

You should also be familiar with the procedures used at your site for the following:

� Recovering from a hardware or power failure
� Recovering from an OS/390 component failure
� Recovering from a site interruption, using off-site recovery

General tips for backup and recovery
The MQSeries restart process recovers your data to a consistent state by applying
log information to the page sets. If your page sets are damaged or unavailable,
you can resolve the problem using your backup copies of your page sets (provided
that all the logs are available). If your log data sets are damaged or unavailable, it
might not be possible to recover completely. This section introduces some backup
and recovery tasks.

 Copyright IBM Corp. 1993,1999 307

 Planning backup and recovery

Periodically take backup copies
A point of recovery is the term used to describe a set of backup copies of
MQSeries page sets and the corresponding log data sets required to recover these
page sets. These backup copies provide a potential restart point in the event of
page set loss (for example, page set I/O error). If MQSeries were to be restarted
using these backup copies, the data in MQSeries will be consistent up to the point
that these copies were taken. Providing that all logs are available from this point,
MQSeries can be recovered to the point of failure. See “Creating a point of
recovery” on page 331 for more information about points of recovery.

The more recent your backup copies, the quicker MQSeries can recover the data in
the page sets. The recovery of the page sets are dependent on all the necessary
log data sets being available.

In planning for recovery, you need to determine how often to take backup copies
and how many complete backup cycles to keep. These values tell you how long
you must keep your log data sets and backup copies of page sets for MQSeries
recovery.

In deciding how often to take backup copies, consider the time needed to recover a
page set. It is determined by:

� The amount of log to traverse
� The time it takes an operator to mount and remove archive tape volumes
� The time it takes to read the part of the log needed for recovery
� The time needed to reprocess changed pages
� The storage medium used for the backup copies
� The method used to make and restore backup copies

In general, the more often you make backup copies, the less time recovery takes,
but, the more time is spent making copies.

For each queue manager, you should take backup copies of:

� The archive log data sets

� The BSDS copies created at the time of the archive (see “Archive log data sets
and BSDS copies” on page 306)

� The page sets

� Your object definitions

To reduce the risk of your backup copies being lost of damaged, you should
consider:

� Storing the backup copies on different storage volumes to the original copies.

� Storing the backup copies at a different site to the original copies.

� Making at least two copies of each backup of your page sets and, if you are
using single logging or a single BSDS, two copies of your archive logs and
BSDS. If you are using dual logging or BSDS, a single copy of both archive
logs or BSDS will suffice.

Before moving MQSeries to a production environment you should have tested and
documented your backup procedures.

308 System Management Guide

 Logging environment

Backing up your object definitions
You should also back up copies of your object definitions. To do this, use the
MAKEDEF feature of the CSQUTIL COMMAND function (described in “MQSeries
command management functions” on page 238).

You should do this whenever you take backup copies of your queue manager data
sets, and keep the most current version.

Do not discard archive logs you might need
MQSeries might need to use archive logs during restart. You must keep sufficient
archive logs so the system can be fully restored. MQSeries might use an archive
log to recover a page set from a restored backup copy. If you have discarded that
archive log, MQSeries is not able to restore the page set to its current state. To
find out when and how you should discard archive logs, see “Discarding archive log
data sets” on page 317.

Do not change the DDname-to-page set association
MQSeries associates page set number 00 with DDname CSQP0000, page set
number 01 with DDname CSQP0001, and so on up to CSQP0099. MQSeries
writes recovery log records for a page set based on the DDname that the page set
is associated with. For this reason, you must not move page sets that have
already been associated with a PSID DDname.

Planning your logging environment
The MQSeries logging environment is established using the installation macros to
specify options, such as whether to have single or dual active logs, what media to
use for the archive log volumes, and how many log buffers to have. For details,
see “Task 13: Tailor your system parameter module” on page 67.

Use dual logging for your active log, archive log, and bootstrap data
sets

Dual logging minimizes the risk associated with DASD failure.

 Important

In a production MQSeries subsystem, it is important to establish both of the
following:

 1. Archiving
2. Dual logging for:

 � Active logs
 � Archive logs
� Bootstrap data sets

This minimizes the risk of losing your data, for example, because of DASD
failures.

 Chapter 18. Planning for backup and recovery 309

 Archive storage

Planning your archive storage
This section describes the different ways of maintaining your archive log data sets.

Archive log data sets can be placed on standard-label tapes, or DASD, and can be
managed by data facility hierarchical storage manager (DFHSM). Each OS/390
logical record in an archive log data set is a VSAM control interval from the active
log data set. The block size is a multiple of 4 KB. For more information, see
“Using CSQ6LOGP” on page 74.

Archive log data sets are dynamically allocated, with names chosen by MQSeries.
The data set name prefix, block size, unit name, and DASD sizes needed for such
allocations are specified in the CSQZPARM module. You can also choose, at
installation time, to have MQSeries add a date and time to the archive log data set
name. For more information, see “Using CSQ6ARVP” on page 76.

It is not possible to choose specific volumes for new archive logs. If allocation
errors occur, off-loading is postponed until the next time off-loading is triggered.

If you specify dual archive logs at installation time, each log control interval
retrieved from the active log is written to two archive log data sets. The log records
that are contained in the pair of archive log data sets are identical, but the
end-of-volume points are not synchronized for multi-volume data sets.

Archiving to tape
If the unit name reflects a tape device, MQSeries can extend to a maximum of
twenty volumes.

If you choose to off-load to tape, you should consider adjusting the size of your
active log data sets so that each nearly fills a tape volume. This minimizes tape
handling and volume mounts, and maximizes the use of tape resources. However,
such an adjustment is not essential.

If you are considering changing the size of the active log data set so that the set
fits on one tape volume, you must bear in mind that a copy of the BSDS is placed
on the same tape volume as the copy of the active log data set. Adjust the size of
the active log data set downward to offset the space required for the BSDS on the
tape volume.

Archiving to DASD volumes
MQSeries requires that all archive log data sets allocated on non-tape devices
(DASD) be cataloged. If you choose to archive to DASD, the CATALOG DATA
parameter of the CSQ6ARVP macro must be YES. (For details, see “Using
CSQ6ARVP” on page 76.) If this parameter is NO, and you decide to place
archive log data sets on DASD, you receive message CSQJ072E each time an
archive log data set is allocated, although the MQSeries subsystem still catalogs
the data set.

If the unit name shows that the archive log data set is held on DASD, the archive
log data sets cannot extend to another volume.

If you choose to use DASD, make sure that the primary space allocation (both
quantity and block size) is large enough to contain all of the data coming from the

310 System Management Guide

 Recovery considerations

active log data set, plus that from the corresponding BSDS. This minimizes the
possibility of unwanted OS/390 B37 or E37 abends during the off-load process.
The primary space allocation is set with the PRIQTY (primary quantity) parameter
of the CSQ6ARVP macro discussed in “Using CSQ6ARVP” on page 76.

Using SMS with archive log data sets
If you have MVS/DFP storage management subsystem (DFSMS) installed, you
can write an assembly control system (ACS) user-exit filter for your archive log data
sets, which helps you convert them for the SMS environment. Such a filter, for
example, can route your output to a DASD data set, which in turn can be managed
by DFSMS. You must exercise caution if you use an ACS filter in this manner.
Because SMS requires DASD data sets to be cataloged, you must make sure the
CATALOG DATA field of the CSQ6ARVP macro contains YES. If it does not,
message CSQJ072E is returned; however, the data set is still cataloged by
MQSeries. For details about this macro, see “Using CSQ6ARVP” on page 76.

For more information about ACS filters, see the DFP Storage Administration
Reference manual, and the SMS Migration Planning Guide.

Other recovery considerations
This section describes some other things that you should take into account when
you are planning your backup and recovery procedures.

Backup and recovery with DFHSM
The data facility hierarchical storage manager (DFHSM) does automatic space- and
data-availability management among storage devices in your system. If you use it,
you need to know that it moves data to and from the MQSeries storage
automatically.

DFHSM manages your DASD space efficiently by moving data sets that have not
been used recently to alternate storage. It also makes your data available for
recovery by automatically copying new or changed data sets to tape or DASD
backup volumes. It can delete data sets, or move them to another device. Its
operations occur daily, at a specified time, and allow for keeping a data set for a
predetermined period before deleting or moving it.

All DFHSM operations can also be performed manually. The Data Facility
Hierarchical Storage Manager User’s Guide explains how to use the DFHSM
commands.

If you use DFHSM with MQSeries, note that DFHSM:

� Uses cataloged data sets
� Operates on page sets and logs
� Supports VSAM data sets

 Chapter 18. Planning for backup and recovery 311

 Recovery considerations

MQSeries recovery and CICS
The recovery of CICS resources is not affected by the presence of MQSeries.
CICS recognizes MQSeries as a non-CICS resource (or external resource
manager), and includes MQSeries as a participant in any syncpoint coordination
requests using the CICS resource manager interface (RMI). For more information
about CICS recovery, see the CICS Recovery and Restart Guide. For information
about the CICS resource manager interface, see the CICS Customization Guide.

MQSeries recovery and IMS
IMS recognizes MQSeries as an external subsystem and as a participant in
syncpoint coordination. IMS recovery for external subsystem resources is
described in the IMS Customization Guide.

Using Extended Recovery Facility
MQSeries can be used in an extended recovery facility (XRF) environment. All
MQSeries-owned data sets (executable code, BSDSs, logs, and page sets) must
be on DASD shared between the active and alternate XRF processors. If you use
XRF for recovery, you must stop MQSeries on the active processor and start it on
the alternate. For CICS, this can be done using the command list table (CLT)
provided by CICS, or manually by the system operator. For IMS, this is a manual
operation and must be done after the coordinating IMS system has completed the
processor switch. MQSeries utilities must be completed or terminated before
MQSeries can be switched to the alternate processor. Consider the effect of this
potential interruption carefully when planning your XRF recovery plans.

Take care to prevent MQSeries starting on the alternate processor before the
MQSeries system on the active processor terminates. A premature start can cause
severe integrity problems in data, the catalog, and the log. Using global resource
serialization (GRS) helps avoid the integrity problems by preventing simultaneous
use of MQSeries on the two systems. The BSDS must be included as a protected
resource, and the active and alternate XRF processors must be included in the
GRS ring.

Preparing for disaster recovery
In the case of a total loss of an MQSeries computing center, you can recover on
another MQSeries system at a recovery site. To be able to do this, you must
regularly back up the page sets and the logs. As with all data recovery operations,
the objectives of disaster recovery are to lose as little data, workload processing
(updates), and time as possible.

At the recovery site:

� The recovery MQSeries queue manager must have the same name as the lost
queue manager.

� The system parameter module (CSQZPARM) used on the recovery queue
manager should contain the same parameters as the lost queue manager.

The following process can be used to perform disaster recovery at the recovery
site. It assumes that all that is available are:

� Copies of the archive logs and BSDSs created by normal running at the
primary site (the active logs will have been lost along with the queue manager
at the primary site).

312 System Management Guide

 Recovery considerations

� Copies of the page sets from the queue manager at the primary site that are
the same age or older than the most recent archive log copies available.

If required, dual active and archive logs should be considered, and the BSDS
updates applied to both copies:

1. Define new page set data sets and load them with the data in the copies of the
page sets from the primary site.

2. Define new active log data sets.

3. Define a new BSDS data set and use Access Method Services REPRO to copy
the most recent archived BSDS into it.

4. Use the print log map utility CSQJU004 to print information from this most
recent BSDS. At the time this BSDS was archived, the most recent archived
log you have would have just been truncated as an active log, and will not
appear as an archived log. Record the STARTRBA and ENDRBA of this log.

5. Use Access Method Services REPRO to copy the most recent archived log into
one of the active logs.

6. Use the change log inventory utility CSQJU003 to remove all active log
information from the BSDS.

7. Use CSQJU003 to add active logs to the BSDS, including the RBA range of the
logs used in Step 5 as found in Step 4.

8. Use CSQJU003 to add a restart control record to the BSDS. Specify:

CRESTART CREATE,ENDRBA=highrba

Where highrba is the high RBA of the most recent archive log available (found
in Step 4), plus 1.

The BSDS now describes one active log with an RBA range, all other active
logs as being empty, all the archived logs you have available, and no
checkpoints beyond the end of your logs.

9. Restart MQSeries with the usual START QMGR command. During
initialization, an operator reply message such as the following will be issued:

CSQJ245D +cpf RESTART CONTROL INDICATES TRUNCATION AT RBA highrba.
REPLY Y TO CONTINUE, N TO CANCEL

Reply Y to start MQSeries. MQSeries will start, and will recover data up to
ENDRBA specified in the CRESTART statement.

See “The change log inventory utility (CSQJU003)” on page 256 for information
about using CSQJU003 and “The print log map utility (CSQJU004)” on page 265
for information about using CSQJU004.

Figure 95 on page 314 shows sample input statements for CSQJU003 for steps 6,
7, and 8.

The things you need to consider for restarting the channel initiator at the recovery
site are similar to those faced when using ARM to restart the channel initiator on a
different OS/390 image. See “Restarting on a different OS/390 image” on
page 297 for more information.

Your recovery strategy should also cover recovery of the MQSeries product
libraries and the application programming environments that use MQSeries (CICS,
for example).

 Chapter 18. Planning for backup and recovery 313

 Recovery considerations

\ Step 6
 DELETE DSNAME=MQM2.LOGCOPY1.DSð1
 DELETE DSNAME=MQM2.LOGCOPY1.DSð2
 DELETE DSNAME=MQM2.LOGCOPY1.DSð3
 DELETE DSNAME=MQM2.LOGCOPY2.DSð1
 DELETE DSNAME=MQM2.LOGCOPY2.DSð2
 DELETE DSNAME=MQM2.LOGCOPY2.DSð3

\ Step 7
 NEWLOG DSNAME=MQM2.LOGCOPY1.DSð1,COPY1
 STARTRBA=ð5Cððð,ENDRBA=ððððððð62FFF
 NEWLOG DSNAME=MQM2.LOGCOPY1.DSð2,COPY1
 NEWLOG DSNAME=MQM2.LOGCOPY1.DSð3,COPY1
 NEWLOG DSNAME=MQM2.LOGCOPY2.DSð1,COPY2
 STARTRBA=ð5Cððð,ENDRBA=ððððððð62FFF
 NEWLOG DSNAME=MQM2.LOGCOPY2.DSð2,COPY2
 NEWLOG DSNAME=MQM2.LOGCOPY2.DSð3,COPY2

\ Step 8
 CRESTART CREATE,ENDRBA=ð63ððð

Figure 95. Sample input statements for CSQJU003

Other functions of the change log inventory utility (CSQJU003) can also be used in
disaster recovery scenarios. The HIGHRBA function allows the update of the
highest RBA written and highest RBA offloaded values within the bootstrap data
set. The CHECKPT function allows the addition of new checkpoint queue records
or the deletion of existing checkpoint queue records in the BSDS. These functions
might affect the integrity of the MQSeries system and should only be used in
disaster recovery scenarios under the guidance of IBM service personnel.

314 System Management Guide

 Archiving logs

Chapter 19. Managing the logs and the bootstrap data set

This chapter describes the tasks involved in managing the logs and the bootstrap
data set. It contains these sections:

� “Archiving logs with the ARCHIVE LOG command”
� “Discarding archive log data sets” on page 317
� “Printing log records” on page 319
� “Finding out what the BSDS contains” on page 319
� “Changing the BSDS” on page 321
� “Recovering logs” on page 323

Archiving logs with the ARCHIVE LOG command
An authorized operator can archive the current MQSeries active log data sets
whenever required using the ARCHIVE LOG command.

When you issue the ARCHIVE LOG command, MQSeries truncates the current
active log data sets, then runs an asynchronous off-load, and updates the BSDS
with a record of the off-load.

The ARCHIVE LOG command has a MODE(QUIESCE) option. With this option,
MQSeries users are quiesced after a commit point, and the resulting point of
consistency is captured in the current active log before it is off-loaded.

Consider using the MODE(QUIESCE) option when planning a backup strategy for
off site recovery. It creates a system-wide point of consistency, which minimizes
the number of data inconsistencies when the archive log is used with the most
current backup page set copy during recovery. For example:

ARCHIVE LOG MODE(QUIESCE)

If the ARCHIVE LOG command is issued without specifying a TIME parameter, the
quiesce time period defaults to the value of the QUIESCE parameter of the
CSQ6ARVP macro. If the time required for the ARCHIVE LOG MODE(QUIESCE)
to complete is less than the time specified, the command completes successfully;
otherwise, the command fails when the time period expires. You can specify the
time period explicitly by using the TIME option, for example:

ARCHIVE LOG MODE(QUIESCE) TIME(6ð)

This command specifies a quiesce period of up to 60 seconds before ARCHIVE
LOG processing occurs.

Attention: Using this option when time is critical can cause a significant disruption
in MQSeries availability for all jobs and users that use MQSeries resources.

By default, the command is processed asynchronously from the time you submit
the command. (To process the command synchronously with other MQSeries
commands use the WAIT(YES) option QUIESCE, but be aware that the OS/390
console is locked from MQSeries command input for the entire QUIESCE period.)

 Copyright IBM Corp. 1993,1999 315

 Archiving logs

During the quiesce period:

� Jobs and users on MQSeries are allowed to go through commit processing, but
are suspended if they try to update any MQSeries resource after the commit.

� Jobs and users that only read data can be affected, since they can be waiting
for locks held by jobs or users that were suspended.

� New tasks can start, but they are not allowed to update data.

The DISPLAY THREAD output uses the message CSQV400I to indicate that a
quiesce is in effect. For example:

CSQV4ð1I +cpf DISPLAY THREAD REPORT FOLLOWS -
CSQV4ððI +cpf ARCHIVE LOG QUIESCE CURRENTLY ACTIVE
CSQV4ð2I +cpf ACTIVE THREADS -

 NAME ST A REQ THREAD-XREF USERID ASID URID
 BATCH T 14 CONð327 ðð16 ðððððððððððð

DISPLAY ACTIVE REPORT COMPLETE
CSQ9ð22I +cpf CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

When all updates are quiesced, the quiesce history record in the BSDS is updated
with the date and time that the active log data sets were truncated, and with the
last-written RBA in the current active log data sets. MQSeries truncates the current
active log data sets, switches to the next available active log data sets, and issues
message CSQJ311E stating that off-load started.

If updates cannot be quiesced before the quiesce period expires, MQSeries issues
message CSQJ317I, and ARCHIVE LOG processing terminates. The current
active log data sets are not truncated and not switched to the next available log
data sets, and off-load is not started.

Whether the quiesce was successful or not, all suspended users and jobs are then
resumed, and MQSeries issues message CSQJ312I, stating that the quiesce is
ended and update activity is resumed.

If ARCHIVE LOG is issued when the current active log is the last available active
log data set, the command is not processed, and MQSeries issues this message:

CSQJ319I - csect-name CURRENT ACTIVE LOG DATA SET IS THE LAST
AVAILABLE ACTIVE LOG DATA SET. ARCHIVE LOG PROCESSING
WILL BE TERMINATED.

If ARCHIVE LOG is issued when another ARCHIVE LOG command is already in
progress, the new command is not processed, and MQSeries issues this message:

CSQJ318I - ARCHIVE LOG COMMAND ALREADY IN PROGRESS.

For information about the syntax of the ARCHIVE LOG command, see the
MQSeries Command Reference manual. For information about the messages
issued during archiving, see the MQSeries for OS/390 Messages and Codes
manual.

316 System Management Guide

 Discarding archive logs

Discarding archive log data sets
You must keep enough log records to recover units of recovery or perform media
recovery if a page set is lost. Do not discard archive log data sets that might be
required for recovery; if you discard these archive log data sets you might not be
able to recover using your page set backups.

However, if you have confirmed that your archive log data sets can be discarded,
you can do this in either of the following ways:

� Automatic archive deletion (see “Automatic archive log data set deletion”)

� Manual archive deletion (see “Manually deleting archive log data sets” on
page 318)

Automatic archive log data set deletion
You can use a DASD or tape management system to delete archive log data sets
automatically. The retention period for MQSeries archive log data sets is specified
by the retention period field ARCRETN in the CSQ6ARVP installation macro. See
“Using CSQ6ARVP” on page 76 for more information. This value is passed to the
management system in the JCL parameter RETPD.

The default for the retention period specifies that archive logs are to be kept for
9999 days (the maximum possible). You can change the retention period but
you must ensure that you can accommodate the number of backup cycles
that you have planned for .

MQSeries uses the value as the value for the JCL parameter RETPD when archive
log data sets are created.

The retention period set by MVS/DFP’s storage management subsystem (SMS) can
be overridden by this MQSeries parameter. Typically, the retention period is set to
the smaller value specified by either MQSeries or SMS. The storage administrator
and MQSeries administrator must agree on a retention period value that is
appropriate for MQSeries.

Note: Because some tape management systems provide external manual
overrides of retention periods, MQSeries does not have an automated
method to delete information about archive log data sets from the BSDS.
Therefore, information about an archive log data set can still be in the
BSDS long after the data-set retention period has expired and the data set
has been scratched by the tape management system. Conversely, the
maximum number of archive log data sets might have been exceeded and
the data from the BSDS might have been dropped before the data set has
reached its expiration date.

If archive log data sets are deleted automatically, remember that the operation does
not update the list of archive logs in the BSDS. You can update the BSDS with the
change log inventory utility, as described in “Changing the BSDS” on page 321.
The update is not essential. Recording old archive logs wastes space in the BSDS,
but does no other harm.

 Chapter 19. Managing the logs and the bootstrap data set 317

 Discarding archive logs

Manually deleting archive log data sets
You must keep all the log records as far back as the lowest RBA identified in
messages CSQI024I and CSQI025I. This RBA is obtained using the DISPLAY
USAGE command as issued when creating a point of recovery using “Method 1:
Full backup” on page 331. You should read “Creating a point of recovery” on
page 331 before discarding any logs .

Locate and discard archive log data sets
Having established the minimum log RBA required for recovery from your page set
backup cycles, you can find archive log data sets that contain only earlier log
records by performing the following procedure:

1. Use the print log map utility to print the contents of the BSDS. For an example
of the output, see “The print log map utility (CSQJU004)” on page 265.

2. Find the sections of the output titled “ARCHIVE LOG COPY n DATA SETS”. If
you use dual logging, there are two sections. The columns labeled STARTRBA
and ENDRBA show the range of RBAs contained in each volume. Find the
volumes whose ranges include the minimum RBA you found with messages
CSQI024I and CSQI025I. These are the earliest volumes you need to keep. If
you are using dual-logging, there are two such volumes.

If no volumes have an appropriate range, one of these cases applies:

� The minimum RBA has not yet been archived, and you can discard all
archive log volumes.

� The list of archive log volumes in the BSDS wrapped around when the
number of volumes exceeded the number allowed by the MAXARCH
parameter of the CSQ6LOGP macro. If the BSDS does not register an
archive log volume, that volume cannot be used for recovery. Therefore,
you should consider adding information about existing volumes to the
BSDS. For instructions, see “Changes for archive logs” on page 322.

You should also consider increasing the value of MAXARCH. For
information, see “Using CSQ6LOGP” on page 74.

3. Delete any archive log data set or volume whose ENDRBA value is less than
the STARTRBA value of the earliest volume you want to keep. If you are using
dual logging, delete both such copies.

Because BSDS entries wrap around, the first few entries in the BSDS archive
log section might be more recent than the entries at the bottom. Look at the
combination of date and time and compare their ages. Do not assume that you
can discard all entries above the entry for the archive log containing the
minimum LOGRBA.

Delete the data sets. If the archives are on tape, erase the tapes. If they are
on DASD, run an OS/390 utility to delete each data set. Then, if you want the
BSDS to list only existing archive volumes, use the change log inventory utility
(CSQJU003) to delete entries for the discarded volumes. See “Changes for
archive logs” on page 322 for an example.

318 System Management Guide

 Finding what the BSDS contains

Printing log records
You can extract and print log records using the CSQ1LOGP utility. For instructions,
see “The log print utility (CSQ1LOGP)” on page 266.

Finding out what the BSDS contains
The print log map utility (CSQJU004) is a batch utility that lists the information
stored in the BSDS. For instructions on running it, see “The print log map utility
(CSQJU004)” on page 265.

Time stamps in the BSDS
The output of the print log map utility shows the time stamps, which are used to
record the date and time of various system events, that are stored in the BSDS.

The following time stamps are included in the header section of the report:

SYSTEM TIMESTAMP
Reflects the date and time the BSDS was last updated. The BSDS time
stamp can be updated when:

 � MQSeries starts.

� The write threshold is reached during log write activities. Depending
on the number of output buffers you have specified and the system
activity rate, the BSDS can be updated several times a second, or
could not be updated for several seconds, minutes, or even hours.
For details of the write threshold, see the WRTHRSH parameter of
the CSQ6LOGP macro in the section “Using CSQ6LOGP” on
page 74.

� MQSeries drops into a single BSDS mode from its normal dual
BSDS mode due to an error. This can occur when a request to get,
insert, point to, update, or delete a BSDS record is unsuccessful.
When this error occurs, MQSeries updates the time stamp in the
remaining BSDS to force a time stamp mismatch with the disabled
BSDS.

UTILITY TIMESTAMP
The date and time the contents of the BSDS were altered by the change
log inventory utility (CSQJU003).

The following time stamps are included in the active and archive log data sets
portion of the report:

Active log date
The date the active log entry was created in the BSDS, that is, when the
CSQJU003 NEWLOG was done.

Active log time
The time the active log entry was created in the BSDS, that is, when the
CSQJU003 NEWLOG was done.

Archive log date
The date the archive log entry was created in the BSDS, that is, when
the CSQJU003 NEWLOG was done or the archive itself was done.

 Chapter 19. Managing the logs and the bootstrap data set 319

 Finding what the BSDS contains

Archive log time
The time the archive log entry was created in the BSDS, that is, when
the CSQJU003 NEWLOG was done or the archive itself was done.

Active log data set status
The BSDS records the status of an active log data set as one of the following:

NEW The data set has been defined but never used by MQSeries, or
the log was truncated to a point before the data set was first
used. In either case, the data set starting and ending RBA
values are reset to zero.

REUSABLE Either the data set has been defined but never used by
MQSeries, or the data set has been off-loaded. In the print log
map output, the start RBA value for the last REUSABLE data set
is equal to the start RBA value of the last archive log data set.

NOT REUSABLE The data set contains records that have not been off-loaded.

STOPPED The off-load processor encountered an error while reading a
record, and that record could not be obtained from the other
copy of the active log.

TRUNCATED Either:

� An I/O error occurred, and MQSeries has stopped writing to
this data set. The active log data set is off-loaded,
beginning with the starting RBA and continuing up to the last
valid record segment in the truncated active log data set.
The RBA of the last valid record segment is lower than the
ending RBA of the active log data set. Logging is switched
to the next available active log data set, and continues
uninterrupted.

or

� An ARCHIVE LOG function has been called, which has
truncated the active log.

The status appears in the output from the print log map utility.

320 System Management Guide

 Changing the BSDS

Changing the BSDS
You do not have to take special steps to keep the BSDS updated with records of
logging events because MQSeries does that automatically. However, you might
want to change the BSDS if you do any of the following:

� Add more active log data sets.

� Copy active log data sets to newly allocated data sets, for example, when
providing larger active log allocations.

� Move log data sets to other devices.

� Recover a damaged BSDS.

� Discard outdated archive log data sets.

You can change the BSDS by running the change log inventory utility (CSQJU003).
This utility can be run whether MQSeries is active or inactive. However, you are
recommended not to run it when MQSeries is active, or you might get inconsistent
results. The action of the utility is controlled by statements in the SYSIN data set.
This section shows several examples. For complete instructions, see “The change
log inventory utility (CSQJU003)” on page 256.

You can copy an active log data set only when MQSeries is inactive because
MQSeries allocates the active log data sets as exclusive (DISP=OLD) at MQSeries
startup.

Changes for active logs
You can add to, delete from, and record entries in the BSDS for active logs using
the change log utility. Examples only are shown here; replace the data set names
shown with the ones you want to use. For more details of the utility, see “The
change log inventory utility (CSQJU003)” on page 256.

Adding record entries to the BSDS: If an active log has been flagged as
“stopped”, it is not reused for logging; however, it continues to be used for reading.
Use the access method services to define new active log data sets, then use the
change log inventory utility to register the new data sets in the BSDS. For
example, use:

NEWLOG DSNAME=MQM111.LOGCOPY1.DS1ð,COPY1
NEWLOG DSNAME=MQM111.LOGCOPY2.DS1ð,COPY2

If you are copying the contents of an old active log data set to the new one, you
can also give the RBA range and the starting and ending time stamps on the
NEWLOG function.

 Chapter 19. Managing the logs and the bootstrap data set 321

 Changing the BSDS

Deleting information about the active log data set from the BSDS: To delete
information about an active log data set from the BSDS, you could use:

DELETE DSNAME=MQM111.LOGCOPY1.DS99
DELETE DSNAME=MQM111.LOGCOPY2.DS99

Recording information about the log data set in the BSDS: To record
information about an existing active log data set in the BSDS, use:

NEWLOG DSNAME=MQM111.LOGCOPY1.DS1ð,COPY2,STARTIME=1993ð2122ð5198,
 ENDTIME=1993ð4122ð52ðð,STARTRBA=64ðð,ENDRBA=94FF

Inserting a record containing this type of information in the BSDS might be
necessary because:

� The entry for the data set has been deleted, but is needed again.
� You are copying the contents of one active log data set to another data set.
� You are recovering the BSDS from a backup copy.

Enlarging the active log: This procedure must only be used when MQSeries is
inactive:

1. Stop MQSeries. This step is required because MQSeries allocates all active
log data sets for its exclusive use when it is active.

2. Use Access Method Services ALTER with the NEWNAME option to rename
your active log data sets.

3. Use Access Method Services DEFINE to define larger active log data sets.

By reusing the old data set names, you do not have to run the change log
inventory utility to establish new names in the BSDSs. The old data set names
and the correct RBA ranges are already in the BSDSs.

4. Use Access Method Services REPRO to copy the old (renamed) data sets into
their respective new data sets.

 5. Start MQSeries.

Although it is not necessary for all log data sets to be the same size, it is
operationally more consistent and efficient. If the log data sets are not the same
size, it is more difficult to track your system’s logs, and so space can be wasted.

Changes for archive logs
You can add to, delete from, and change the password of entries in the BSDS for
archive logs. Examples only are shown here; you must replace the data set names
shown with the ones you want to use. For more details of the utility, see “The
change log inventory utility (CSQJU003)” on page 256.

322 System Management Guide

 Recovering logs

Adding an archive log: When the recovery of an object depends on reading an
existing archive log data set, the BSDS must contain information about that data
set, so that MQSeries can find it. To register information about an existing archive
log data set in the BSDS, use:

NEWLOG DSNAME=CSQARC1.ARCHLOG1.D92ð21.T22ð5197.Aððððð15,COPY1VOL=CSQVð4,
 UNIT=TAPE,STARTRBA=3A19ðððð,ENDRBA=3A1FðFFF,CATALOG=NO

Deleting an archive log: To delete an entire archive log data set on one or more
volumes, use:

DELETE DSNAME=CSQARC1.ARCHLOG1.D92ð21.T22ð5197.Aððððð15,COPY1VOL=CSQVð4

Changing the password of an archive log: If you change the password of an
existing archive log data set, you must also change the information in the BSDS.

1. List the BSDS, using the print log map utility.

2. Delete the entry for the archive log data set with the changed password, using
the DELETE function of the CSQJU003 utility (see page 256).

3. Name the same data set as a new archive log data set. Use the NEWLOG
function of the CSQJU003 utility (see page 256), and give the new password,
the starting and ending RBAs, and the volume serial numbers (which can be
found in the print log map utility output, see page 265).

To change the password for new archive log data sets, use:

ARCHIVE PASSWORD=password

To stop placing passwords on new archive log data sets, use:

ARCHIVE NOPASSWD

Note: You should only use the ARCHIVE utility function if you do not have an
external security manager.

 Recovering logs
Normally, you do not need to back up and restore the MQSeries logs, especially if
you are using dual logging. However, in rare circumstances, such as an I/O error
on a log, you might need to recover the logs. Use Access Method Services to
delete and redefine the data set, and then copy the corresponding dual log into it.

 Chapter 19. Managing the logs and the bootstrap data set 323

 Recovering logs

324 System Management Guide

 Page set full

Chapter 20. Managing page sets

This chapter describes how to create, copy, and generally manage the page sets
associated with a queue manager. It contains these sections:

� “Adding a page set to a queue manager”
� “When one of your page sets becomes full”
� “How to balance loads on page sets” on page 327
� “How to reduce a page set” on page 330
� “Backing up and recovering page sets” on page 331
� “Backing up and restoring queues using CSQUTIL” on page 335

See “An overview of storage management” on page 15 for a description of page
sets, storage classes, buffers, and buffer pools, and some of the performance
considerations that apply.

Adding a page set to a queue manager
This description assumes that you have an MQSeries subsystem that is already
running. You might need to add a page set if, for example, your MQSeries
subsystem has to cope with new applications using new queues.

To add a new page set, use the following procedure:

1. Stop the queue manager by issuing a STOP QMGR command.

2. Define and format the new page set. You can use the sample JCL in
thlqual.SCSQPROC(CSQ4PAGE) as a basis. For more information, see
“Formatting page sets (FORMAT)” on page 231.

Take care not to format any page sets that are in use, unless this is what you
intend. If so, use the FORCE option of the FORMAT utility function.

3. Add the new page set to the startup procedure for your MQSeries subsystem.

4. Add a definition for the new page set to your CSQINP1 initialization data set.
Use the DEFINE PSID command to associate the page set with a buffer pool.

5. Add the appropriate storage class definitions for your page set to your
CSQINP2 initialization data set concatenation. This step is optional but
recommended, see “Task 10: Customize the initialization input data sets” on
page 52.

6. Restart the queue manager.

When one of your page sets becomes full
You can find out about the utilization of page sets by using the MQSeries command
DISPLAY USAGE. For example, the command:

DISPLAY USAGE PSID(ð3)

displays the current state of the page set 03. This tells you how many free pages
this page set has.

 Copyright IBM Corp. 1993,1999 325

 Page set full

If you have defined secondary extents for your page sets, they will be dynamically
expanded each time they fill up. Eventually, all secondary extents will be used, or
no further disk space is available, in which case, and application will receive a
return code MQRC_PAGESET_FULL.

If an application receives a return code of MQRC_PAGE_SET_FULL from an MQI
call, this is a clear indication that this page set is over-utilized, that is, there is not
enough space left on the page set. If the problem persists or is likely to reoccur,
you must do something to solve it.

You can approach this problem in two ways:

1. Expand the page set.

2. Balance the load between page sets by moving queues from one page set to
another.

How to expand a page set
You expand a page set by creating a new, larger page set and copying the
messages from the old page set to the new one. You then have to ensure that the
new page set is used when you restart the queue manager.

 Note

This technique involves stopping and restarting the queue manager. This will
result in any nonpersistent messages being deleted at restart time. If you have
nonpersistent messages that you do not want to be deleted, consider load
balancing (see “How to balance loads on page sets” on page 327).

Note: In this description, the page set that you want to expand is referred to as
the source page set; the new, larger page set is referred to as the
destination page set.

Follow these steps:

1. Stop the queue manager.

2. Define the destination page set, ensuring that it is larger than the source page
set, with a larger secondary extent value.

3. Use the FORMAT function of CSQUTIL to format the destination page set.
See “Formatting page sets (FORMAT)” on page 231 for more details.

4. Use the COPYPAGE function of CSQUTIL to copy all the messages from the
source page set to the destination page set. See “Expanding a page set
(COPYPAGE)” on page 233 for more details.

5. Restart the queue manager using the destination page set by doing one of the
following:

� Change the MQSeries startup procedure to reference the destination page
set. See “Task 12: Define your page sets” on page 62 for more details.

� Use Access Method Services to delete the source page set and then
rename the destination page set, giving it the same name as that of the
source page set.

Attention: Before you delete any MQSeries page set, be sure that you have
made the required backup copies.

326 System Management Guide

 Balancing loads

How to balance loads on page sets
Load balancing on page sets means moving the messages associated with one or
more queues from one page set to another, less utilized page set.

 Note

You should use this technique if it is not practical to expand the page set. It is
possible that messages can be lost when uncommitted messages on the queue
are committed or backed out during the load balancing operation.

Step 5 on page 328 uses the COPY function of CSQUTIL to off-load the messages
to a data set. This only copies committed messages. Step 7 on page 328 deletes
the queue that you are moving with the PURGE option, and only succeeds if there
are no uncommitted messages on the queue. In the time between execution of
these steps:

� MQPUT calls that are committed in this window are deleted with the queue
� MQGET calls that are backed out in this window are deleted with the queue

When identifying which queues are most suitable for moving you should therefore
consider the following points:

� Do applications issue MQPUT or MQGET calls within syncpoint against the
queue?

If not, there is no potential for losing messages between the execution of steps
5 and 7 on page 328 because no commit or backout activity will occur during
load balancing. These queues are therefore the most suitable for moving, and
the considerations listed below do not apply.

� Do these applications ever issue MQCLOSE calls against the queue before
issuing a syncpoint?

If not, there is no potential for losing messages during the execution of steps 5
and 7 on page 328 because all commit or backout activity will have completed
before the queue is closed. These queues are the next most suitable for
moving and the considerations listed below do not apply.

� If applications do issue MQCLOSE calls against the queue before issuing a
syncpoint, these queues are most likely to lose messages during the load
balancing operation. This is because there might be uncommitted messages
on the queue even though there are no open handles. These queues are
therefore the least suitable for moving.

You should also consider the following points:

� There is no method for establishing whether there are uncommitted MQPUT or
MQGET calls outstanding against the queue. In particular, the CURDEPTH
attribute of a queue reflects both committed and uncommitted messages, and
so is not a reliable indicator of whether all messages on the queue are
committed.

� Using MQSeries security to restrict access to queues during the load balancing
operation will not prevent the potential loss of messages between the execution
of steps 5 and 7 on page 328 because it has no effect on the uncommitted
activity on the queue.

 Chapter 20. Managing page sets 327

 Balancing loads

To identify which queues are using a page set, use the appropriate MQSeries
commands. For example, to find out which queues are mapped to page set 02,
first, find out which storage classes map to page set 02, by using this command:

DISPLAY STGCLASS(\) PSID(ð2)

Then use this command:

DISPLAY QUEUE(\) TYPE(QLOCAL) STGCLASS

to find out which queues use which storage class.

Load balancing by moving queues
To move queues and their messages from one page set to another, use the COPY
or SCOPY, LOAD, and COMMAND functions of the MQSeries utility program,
CSQUTIL. These are described in Chapter 14, “Using the MQSeries utilities” on
page 227.

When you have identified the queue or queues that you want to move to a new
page set, follow this procedure for each of these queues:

1. Ensure that the queue to be moved is not in use by any applications, that is,
the queue attributes IPPROCS and OPPROCS are zero.

2. Change the following queue attributes:

 � PUT(ENABLED)
 � GET(ENABLED)

3. Define a temporary queue with the same attributes as the queue that is being
moved:

DEFINE QL(TEMPQ) LIKE(Q_BEING_MOVED)

Note: If this temporary queue already exists from a previous run, delete it
before doing the define.

4. Prevent applications from putting messages on the queue being moved by
altering the queue definition to disable MQPUTs. Change this queue attribute:

 � PUT(DISABLED)

5. Run the COPY (or SCOPY) function to off-load the messages to a data set.
See “Copying queues into a data set while the queue manager is running
(COPY)” on page 246.

Note: Only committed messages will be copied.

6. Prevent applications from getting messages from the queue by altering the
queue definition to disable MQGETs. Change this queue attribute:

 � GET(DISABLED)

7. Delete the queue you are moving, using the purge option to delete all
messages associated with the queue.

Note: The delete purge will fail if the queue is open for inquire, set, or browse,
or if there are uncommitted messages on the queue.

328 System Management Guide

 Balancing loads

8. Define a new storage class which maps to the required page set, for example:

DEFINE STGCLASS(NEW) PSID(nn)

Add the new storage class definition to CSQINP2 ready for the next MQSeries
subsystem restart.

9. Redefine the queue that is being moved, changing the storage class attribute.
When the queue is redefined, it is based on the temporary queue created in
step 3 on page 328:

DEFINE QL(Q_BEING_MOVED) LIKE(TEMPQ) STGCLASS(NEW)

10. The queue created in step 3 on page 328 is no longer required. Use the
following command to delete it:

DELETE QL(TEMPQ)

11. If the queue being moved was defined in the CSQINP2 concatenation, change
the STGCLASS attribute of the appropriate DEFINE QLOCAL command in the
CSQINP2 concatenation. Add the REPLACE keyword so that the existing
queue definition is replaced.

12. Use the LOAD function to restore the messages onto the queue from the data
set generated by the COPY or SCOPY function in step 5 on page 328.

Figure 96 shows an extract from a load balancing job.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
//OUTPUT DD DSN=&©MSG,
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=232ðð)
//SYSPRINT DD SYSOUT=\
//SYSIN DD \
COMMAND DDNAME(PUTDIS)
COPY QUEUE(QUEUE_TO_MOVE) DDNAME(OUTPUT)
COMMAND DDNAME(DEFTEMP)
LOAD QUEUE(QUEUE_TO_MOVE) DDNAME(OUTPUT)
/\
//PUTDIS DD \
ALTER QL(QUEUE_TO_MOVE) GET(ENABLED) PUT(ENABLED)
DELETE QL(TEMP_QUEUE) PURGE
DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE)
ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)
/\
//DEFTEMP DD \
ALTER QL(QUEUE_TO_MOVE) GET(DISABLED)
DELETE QL(QUEUE_TO_MOVE) PURGE
DEFINE STGCLASS(NEW) PSID(2)
DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) STGCLASS(NEW)
DELETE QL(TEMP_QUEUE)
/\

Figure 96. Extract from a load balancing job

 Chapter 20. Managing page sets 329

 Reducing a page set

How to reduce a page set
If you have a large page set that is mostly empty (as shown by the DISPLAY
USAGE command), you might want to reduce its size. The procedure to do this
involves using the COPY, EMPTY, RESETPAGE, FORMAT, LOAD, and
COMMAND functions of CSQUTIL (see “MQSeries utility program (CSQUTIL)” on
page 229). This procedure will not work for page set zero; it is not practical to
reduce the size of this page set.

1. Prevent all users, other than the MQSeries administrator, from using the queue
manager. This could be done by changing the access security settings for
example.

2. Wait until all queue manager use has ended; you might have to stop and
restart the queue manager to achieve this. (Remember that if you do this, you
will lose all your nonpersistent messages.)

3. Run the COPY function of CSQUTIL with the PSID option to copy all message
data from the large page set and save them in a sequential data set.

4. Run the EMPTY function of CSQUTIL with the PSID option to remove all
messages from the page set. Use the DISPLAY USAGE PSID(n) command to
verify that the page set is totally empty.

5. Use the DISPLAY STGCLASS(\) PSID(n) command to identify all storage classes
that relate to the page set that is to be reduced in size.

6. Use the DISPLAY QUEUE(\) TYPE(QLOCAL) STGCLASS command to identify all
queues that use any of the storage classes identified in step 5.

7. Alter each queue that you have identified to use a different storage class that
maps to a different page set. This does not have to be a permanent change to
the queue, but is essential for the queue manager to be able to restart. If you
do not do this, you could get 00C91B01 abends when the queue manager
attempts to start.

Use the ALTER QLOCAL(q-name) STGCLASS(stgcl-name) command to alter the
storage class attribute of each queue.

8. Use the STOP QMGR command with the QUIESCE or FORCE attribute to stop the
queue manager.

9. Run the RESETPAGE function of CSQUTIL against all page sets other than
the page set that is to be reduced in size. (You can choose to reset the page
set in place, or you can copy and reset the page set.)

10. Define a new smaller page set data set to replace the large page set. Run the
FORMAT function of CSQUTIL against it.

11. Define new log data sets (BSDS and active logs) with new data set names.

12. Restart the queue manager using the page sets created in steps 9 and 10 and
the new BSDS and log data sets created in step 11.

13. Use the ALTER QLOCAL(q-name) STGCLASS(stgcl-name) command to reset the
storage class attribute to the previous value for each queue altered in step 7.

14. Run the LOAD function of CSQUTIL to load back all the messages saved
during step 3.

15. Allow all users access to the queue manager.

330 System Management Guide

 Page set backup

16. You can now delete the old large page set and the old BSDS and log data
sets.

Backing up and recovering page sets
This section describes:

� “Creating a point of recovery”
� “Recovering page sets” on page 333

Creating a point of recovery
MQSeries can recover objects and persistent messages to their current state only if
there is:

1. A copy of all page sets from an earlier point.
2. All the MQSeries logs since that point.

These represent a point of recovery.

Both objects and messages are held on page sets. Multiple objects and messages
from different queues can exist on the same page set. Therefore, for recovery
purposes, objects and messages cannot be backed up in isolation so that a page
set must be backed up as a whole to ensure the proper recovery of the data.

The MQSeries recovery log contains a record of all persistent messages and
changes made to objects. If MQSeries fails (for example, due to an I/O error on a
page set), you can recover the page set by restoring the backup copy and
restarting MQSeries. MQSeries applies the log changes to the page set from the
point of the backup copy.

There are two ways of creating a point of recovery. The first involves stopping the
queue manager thereby forcing all updates on to the page sets. The second
involves taking ‘fuzzy’ backup copies of the page sets without stopping the queue
manager.

The first will allow you to restart from the point of recovery, using only the backed
up page set data sets and the logs from that point on.

If you use the second method, and your associated logs subsequently become
damaged or lost you will not be able to use the fuzzy page set backup copies to
recover. This is because the fuzzy page set backup copies contain an inconsistent
view of the state of MQSeries and are dependent on the logs being available. If
the logs are not available, you will have to return to the last set of backup page set
copies taken while the subsystem was inactive (Method 1 below) and accept the
loss of data from that time.

Method 1: Full backup
This method involves shutting MQSeries down. This forces all updates on to the
page sets so that the page sets are in a consistent state.

1. Stop all MQSeries applications using the queue manager (allowing them to
complete first). This could be done by changing the access security or queue
settings, for example.

2. When all activity has completed, display and resolve any in-doubt units of
recovery in the subsystem. (Use the MQSeries DISPLAY THREAD and

 Chapter 20. Managing page sets 331

 Page set backup

RESOLVE INDOUBT commands as described in the MQSeries Command
Reference manual.)

This will bring the page sets to a consistent state; if you do not do this, or can’t,
your page sets might not be consistent, and you are effectively doing a “fuzzy”
backup.

3. Issue the MQSeries command ARCHIVE LOG to ensure that the latest log data
is written out to the log data sets, and a new log data set is started at the RBA
value to be recorded in the next step. In order to restart from the point of
recovery, you do not need to keep any log data sets up to and including that
created by the ARCHIVE LOG command.

4. Issue the MQSeries command STOP QMGR MODE(QUIESCE). Record the
lowest RBA value in the CSQI024I or CSQI025I messages (see the MQSeries
for OS/390 Messages and Codes manual for information about these
messages).

5. Take backup copies of the page sets (see “Backing up page sets”).

Method 2: Fuzzy backup
This method does not involve shutting MQSeries down. Therefore, updates might
be in virtual storage buffers during the backup process. This means that the page
sets are not in a consistent state, and can only be used for recovery in conjunction
with the logs.

1. Issue the MQSeries command DISPLAY USAGE and record the RBA value in
the CSQI024I or CSQI205I message (see the MQSeries for OS/390 Messages
and Codes manual for information about these messages).

2. Take backup copies of the page sets (see “Backing up page sets”).

3. Issue the MQSeries command ARCHIVE LOG to ensure that the latest log data
is written out to the log data sets. In order to restart from the point of recovery,
you must keep copies of all the log data sets from that containing the recorded
RBA value to that created by the ARCHIVE LOG command.

Backing up page sets
You can take a backup of your page sets in two ways:

� “Using Access Method Services”
� “Using volume dump and restore” on page 333.

To recover a page set, MQSeries needs to know how far back in the log to go.
MQSeries maintains a log RBA number in page 0 of each page set, called the
recovery log sequence number (LSN). This number is the starting RBA in the log
from which MQSeries can recover the page set. When you back up a page set,
this number is also copied.

If the copy is later used to recover the page set, MQSeries must have access to all
of the log records from this RBA value to the current RBA. That means you must
keep enough of the log records to enable MQSeries to recover from the oldest
backup copy of a page set you intend to keep.

Using Access Method Services: You can use Access Method Services REPRO
function (or any equivalent) to make copies of your page sets. You can do this
whether or not MQSeries is running. If you want to do it while MQSeries is
running, you must DEFINE the page sets with SHAREOPTIONS(2,3).

332 System Management Guide

 Page set recovery

If you copy the page set while MQSeries is running you must use a copy utility that
copies page 0 of the page set first – if you do not do this you could corrupt the data
in your page set. Access Method Services REPRO meets this requirement.

If the process of dynamically expanding a page set is interrupted, for example by
power to the system being lost, you can still use Access Method Services REPRO
to take a backup of a page set.

If you perform an Access Method Services IDCAMS LISTCAT ENT('page set data
set name') ALLOC, you will see that the HI-ALLOC-RBA will be higher than the
HI-USED-RBA. Access Method Services REPRO will just copy the page set up to
the high used RBA, and not give an error.

The next time this page set fills up it will be extended again, if possible, and the
pages between the high used RBA and the highest allocated RBA will be used,
along with another new extent.

For more information on the REPRO statement, see the DFSMS/MVS Access
Method Services for VSAM or the DFSMS/MVS Access Method Services for the
Integrated Catalog Facility manual.

Using volume dump and restore: Volume dump services dumps all the data
sets on the volume. Likewise, restore volume services can (depending on the type
of service) restore all the data sets.

Backing up your object definitions
You should also back up copies of your object definitions. To do this, use the
MAKEDEF feature of the CSQUTIL COMMAND function (described in “MQSeries
command management functions” on page 238).

You should do this whenever you take a backup copy of your queue manager, and
keep the most current version.

Recovering page sets
If MQSeries has suffered a failure that has caused it to terminate, MQSeries can
normally be restarted with all recovery being performed during restart. However,
such recovery is not possible if any of your page sets or log data sets are not
available. The extent to which you can now recover depends on the availability of
backup copies of page sets and log data sets.

To restart from a point of recovery you must have:

� A backup copy of the page set that is to be recovered.

� If you used “fuzzy” backup, the log data set that included the recorded RBA
value, the log data set that was made by the ARCHIVE LOG command, and all
the log data sets between these.

� If you used full backup, but you do not have the log data set following that
made by the ARCHIVE LOG command, you will need to use the RESETPAGE
function of the CSQUTIL utility. The RBA identified using either method in
“Creating a point of recovery” on page 331 is the restart point for the
backed-up page sets.

 Chapter 20. Managing page sets 333

 Page set recovery

To recover a page set to its current state, you must also have all the log data sets
and records since the ARCHIVE LOG command.

There are two methods for recovering a page set. To use either method, the
queue manager must not be running.

 Simple recovery
This is the simpler method, and is appropriate for most recovery situations.

1. Delete and redefine the page set you want to restore from backup.

2. Use Access Method Services REPRO to copy the backup copy of the page set
into the new page set. You should define your new page set with a secondary
extent value so that it can be expanded dynamically.

Alternatively, you can rename your backup copy to the original name, or
change the CSQP00xx DD statement in your queue manager procedure to
point to your backup page set. However, if you then lose or corrupt the page
set, you will no longer have a backup copy to restore from.

3. Restart the queue manager.

4. When the queue manager has restarted successfully, you can restart your
applications

5. Reinstate your normal backup procedures for the restored page.

 Advanced recovery
This method provides performance advantages if you have a large page set to
recover, or if there has been a lot of activity on the page set since the last backup
copy was taken. However, it requires more manual intervention than the simple
method, which might increase the risk of error and the time taken to perform the
recovery.

1. Delete and redefine the page set you want to restore from backup.

2. Use Access Method Services REPRO to copy the backup copy of the page set
into the new page set. You should define your new page set with a secondary
extent value so that it can be expanded dynamically.

Alternatively, you can rename your backup copy to the original name, or
change the CSQP00xx DD statement in your queue manager procedure to
point to your backup page set. However, if you then lose or corrupt the page
set, you will no longer have a backup copy to restore from.

3. Change the CSQINP1 definitions for your queue manager to make the buffer
pool associated with the page set being recovered as large as possible. By
making the buffer pool this large, you might be able to keep all of the changed
pages resident in the buffer pool and reduce the amount of I/O to the page set.

4. Restart the queue manager.

5. When the queue manager has restarted successfully, stop it (using quiesce)
and then restart it using the normal buffer pool definition for that page set.
After this second restart completes successfully, you can restart your
applications

6. Reinstate your normal backup procedures for the restored page.

334 System Management Guide

 Backing up and restoring using CSQUTIL

What happens when MQSeries is restarted
When MQSeries is restarted, it applies all changes made to the page set that are
registered in the log, beginning at the restart point for the page set. MQSeries can
recover multiple page sets in this way. The page set will be dynamically expanded,
if required, during media recovery.

During restart MQSeries determines the log RBA to start from by taking the lowest
value from the following:

� Recovery LSN from the checkpoint log record for each page set.

� Recovery LSN from page 0 in each page set.

� The RBA of the oldest incomplete unit of recovery in the system at the time the
backup was taken.

All object definitions are stored on page set 0. Messages can be stored on any
available page set.

Note: MQSeries cannot restart if page set 0 is not available.

Backing up and restoring queues using CSQUTIL
You can use the CSQUTIL utility functions for backing up and restoring queues. To
back up a queue, use the COPY or SCOPY function to copy the messages from a
queue onto a data set. To restore the queue, use the complementary function
LOAD. For more information, see “MQSeries utility program (CSQUTIL)” on
page 229.

 Chapter 20. Managing page sets 335

 Backing up and restoring using CSQUTIL

336 System Management Guide

 Recovery scenarios

Chapter 21. Example recovery scenarios

This chapter describes procedures for recovering MQSeries in the following
circumstances:

� “Dealing with active log problems” on page 338
� “Dealing with archive log problems” on page 343
� “Dealing with BSDS errors” on page 346
� “BSDS recovery” on page 350
� “Dealing with page set problems” on page 353
� “Restarting if you have lost your log data sets” on page 355
� “Performing a cold start of MQSeries” on page 356
� “Dealing with IMS-related problems” on page 357
� “Dealing with hardware errors” on page 359

Day-to-day logging tasks are described in Chapter 19, “Managing the logs and the
bootstrap data set” on page 315.

Note: In connection with some recovery procedures, it might be necessary to
reset the BSDS. This will cause the current archive log data set sequence
number to be reset to 1.

This means that you might subsequently get duplicate data set name errors
when an archive log copy is created, because of previously created archive
log data sets. You can avoid this by:

� Using data set names including a time stamp, by setting TSTAMP=YES or
TSTAMP=EXT in CSQ6ARVP.

� Using a different data set name prefix, by setting ARCPFX1 and ARCPFX2
in CSQ6ARVP.

See “Using CSQ6ARVP” on page 76 for more information.

 Copyright IBM Corp. 1993,1999 337

 Active log problems

Dealing with active log problems
This section covers some of the more likely active log problems:

� “Out-of-space in active logs and delays in off-loading”
� “Dual logging is lost” on page 339
� “Write I/O errors on an active log data set” on page 339
� “I/O errors occur while reading the active log” on page 340
� “Active log stopped” on page 342

Out-of-space in active logs and delays in off-loading
The active log can fill up for several reasons, for example, delays in off-loading and
excessive logging.

Symptoms
An out-of-space condition on the active log has serious consequences.
When the active log becomes full, the MQSeries subsystem halts
processing until an off-load has been completed. If the off-load
processing stops when the active log is full, the MQSeries subsystem
can abend. Corrective action is required before MQSeries can be
restarted.

Because of the serious implications of this event, the MQSeries
subsystem issues the following warning message when the last
available active log data set is 75% full:

CSQJ11ðE +cpf LAST COPYn ACTIVE LOG DATA SET IS nnn PERCENT FULL

and reissues the message after each additional 5% of the data set
space is filled. Each time the message is issued, the off-load process is
started.

If the active log fills to capacity, MQSeries issues the following message:

CSQJ111A +cpf OUT OF SPACE IN ACTIVE LOG DATA SETS

and an off-load is started. The MQSeries subsystem then halts
processing until an off-load has been completed.

System action
MQSeries waits for an available active log data set before resuming
normal MQSeries processing. Normal shutdown, with either QUIESCE
or FORCE, is not possible because the shutdown sequence requires log
space to record system events related to shutdown (for example,
checkpoint records). If the off-load processing stops when the active log
is full, MQSeries forces itself to stop using an X'6C6' abend; restart in
this case requires special attention. For more details, see the MQSeries
for OS/390 Problem Determination Guide.

System programmer action
Additional active log data sets can be provided as required before
restarting MQSeries. This permits MQSeries to continue its normal
operation while the error causing the off-load problems is corrected. To
add new active log data sets, use the change log inventory utility
(CSQJU003) when MQSeries is not active. For more details about
adding new active log data sets, see “Changing the BSDS” on
page 321.

338 System Management Guide

 Active log problems

You should also consider increasing the number of logs in the
CSQZPARM member by:

1. Making sure MQSeries is stopped, then using the Access Method
Services DEFINE command to define a new active log data set.

2. Defining the new active log data set in the BSDS using the change
log inventory utility (CSQJU003).

Restarting MQSeries: off-load starts automatically during startup, and
work in progress when MQSeries was forced to stop is recovered.

To optimize the number of off-loads taken per day in your installation,
you should consider adjusting the size of the active log data sets. Use
Access Method Services to define new active log data sets, and use the
change log inventory utility CSQJU003 to add the new data sets to the
log inventory in the BSDS.

Operator action
Check whether the off-load process is waiting for a tape drive. If it is,
mount a tape. If you cannot mount a tape, force MQSeries to stop by
using OS/390 CANCEL.

Dual logging is lost
Symptoms

MQSeries issues the following message:

CSQJðð4I +cpf ACTIVE LOG COPY n INACTIVE, LOG IN SINGLE MODE,
 ENDRBA=...

Having completed one active log data set, MQSeries found that the
subsequent (COPY n) data sets were not off-loaded or were marked
stopped.

System action
MQSeries continues in single mode until off-loading has been
completed, then returns to dual mode.

System programmer action
None.

Operator action
Check that the off-load is proceeding and is not waiting for a tape
mount. It might be necessary to run the print log map utility to
determine the state of all data sets. It might also be necessary to define
additional data sets.

Write I/O errors on an active log data set
Symptoms

MQSeries issues the following message:

CSQJ1ð5E +cpf csect-name LOG WRITE ERROR DSNAME=...,
LOGRBA=..., ERROR STATUS=ccccffss

System action
MQSeries carries out these steps:

1. Marks the log data set that has the error as TRUNCATED in the
BSDS.

2. Goes on to the next available data set.

 Chapter 21. Example recovery scenarios 339

 Active log problems

3. If dual active logging is used, truncates the other copy at the same
point.

The data in the truncated data set is off-loaded later, as usual.

The data set is not stopped and is reused on the next cycle.

System programmer action
None.

Operator action
If errors on this data set still exist, take MQSeries down after the next
off-load. Then use access method services (AMS) and the change log
inventory utility to add a replacement. (For instructions, see “Changing
the BSDS” on page 321.)

I/O errors occur while reading the active log
Symptoms

MQSeries issues the following message:

CSQJ1ð6E +cpf LOG READ ERROR DSNAME=..., LOGRBA=...,
 ERROR STATUS=ccccffss

System action
This depends on when the error occurred:

� If the error occurs during the off-load process, the process tries to
read the RBA range from a second copy.

– If no second copy exists, the active log data set is stopped.

– If the second copy also has an error, only the original data set
that triggered the off-load is stopped. The archive log data set
is then terminated, leaving a gap in the archived log RBA range.

– This message is issued:

CSQJ124E +cpf OFFLOAD OF ACTIVE LOG SUSPENDED FROM
RBA xxxxxx TO RBA xxxxxx DUE TO I/O ERROR

– If the second copy is satisfactory, the first copy is not stopped.

� If the error occurs during recovery, MQSeries provides data from
specific log RBAs requested from another copy or archive. If this is
unsuccessful, recovery does not succeed, and MQSeries terminates
abnormally.

� If the error occurs during restart, MQSeries terminates. All the
copies of the active log data sets must be available to MQSeries.

System programmer action
Look for system messages, such as IEC prefixed messages, and try to
resolve the problem using the recommended actions for these
messages.

(You could write a program to archive as much of the stopped active log
data set as possible. Then run the change log inventory utility to notify
the BSDS of the new archive log and its log RBA range.) Repairing the
active log does not solve the problem, because off-load does not go
back to unload it.

If the active log data set has been stopped, it is not used for logging.
The data set is not deallocated; it is still used for reading. Even if the

340 System Management Guide

 Active log problems

data set is not stopped, an active log data set that gives persistent
errors should nevertheless be replaced.

Operator action
None. You are not told explicitly whether the data set has been
stopped.

Replacing the data set
How you replace the data set depends on whether you are using single or dual
active logging.

If you are using dual active logging:

1. Ensure that the data has been saved.

The data is saved on the other active log and this can be copied to a
replacement active log.

2. Stop MQSeries and delete the data set in error using Access Method Services.

3. Redefine a new log data set using Access Method Services DEFINE so that
you can write to it. Use the Access Method Services REPRO function to copy
the good log into the redefined data set so that you have two consistent,
correct logs again.

4. Use the change log inventory utility, CSQJU003, to update the information in
the BSDS about the corrupt data set as follows:

a. Use the DELETE function to remove information about the corrupt data set.

b. Use the NEWLOG function to name the new data set as the new active log
data set and give it the RBA range that was successfully copied.

The DELETE and NEWLOG functions can be run in the same job step.
Put the DELETE statement before NEWLOG statement in the SYSIN input
data set.

 5. Restart MQSeries.

If you are using single active logging:

1. Ensure that the data has been saved.

 2. Stop MQSeries.

3. Determine whether the data set with the error has been off-loaded:

a. Use the CSQJU003 utility to list information about the archive log data sets
from the BSDS.

b. Search the list for a data set whose RBA range includes the RBA of the
corrupt data set.

4. If the corrupt data set has been off-loaded, copy its backup in the archive log to
a new data set. Then, skip to step 6.

5. If an active log data set is stopped, an RBA is not off-loaded. Use Access
Method Services REPRO to copy the data from the corrupt data set to a new
data set.

If further I/O errors prevent you from copying the entire data set, a gap occurs
in the log.

Note: MQSeries restart will not be successful if a gap in the log is detected.

 Chapter 21. Example recovery scenarios 341

 Active log problems

6. Use the change log inventory utility, CSQJU003, to update the information in
the BSDS about the corrupt data set as follows:

a. Use the DELETE function to remove information about the corrupt data set.

b. Use the NEWLOG function to name the new data set as the new active log
data set and to give it the RBA range that was successfully copied.

The DELETE and NEWLOG functions can be run in the same job step.
Put the DELETE statement before NEWLOG statement in the SYSIN input
data set.

 7. Restart MQSeries.

Active log stopped
Symptoms

MQSeries issues the following message :

CSQJð3ðE +cpf RBA RANGE startrba TO endrba NOT AVAILABLE IN ACTIVE
LOG DATA SETS

System action
The active log data sets that contain the RBA range reported in
message CSQJ030E are unavailable to MQSeries. The status of these
logs is STOPPED in the BSDS. MQSeries will terminate with a dump.

System programmer action
This problem must be resolved before restarting MQSeries. The log
RBA range must be available for MQSeries to be recoverable. An
active log that is marked as STOPPED in the BSDS will never be
reused or archived and this will create a hole in the log.

Look for messages that indicate why the log data set has stopped, and
follow the instructions for those messages.

The BSDS active log inventory needs to be modified to reset the
STOPPED status. To do this, follow this procedure after MQSeries has
terminated:

1. Use the print log utility (CSQJU004) to obtain a copy of the BSDS
log inventory. This shows the status of the log data sets.

2. Use the DELETE function of the change log inventory utility
(CSQJU003) to delete the active log data sets that are marked as
STOPPED.

3. Use the NEWLOG function of CSQJU003 to add the active logs
back into the BSDS inventory. The starting and ending RBA for
each active log data set must be specified on the NEWLOG
statement. (The correct values to use can be found from the print
log utility report obtained in Step 1.)

4. Rerun CSQJU004. The active log data sets that were marked as
STOPPED will now be shown as NEW and NOT REUSABLE.
These active logs will be archived in due course.

 5. Restart MQSeries.

Note: If your MQSeries subsystem is running in dual BSDS mode, you
must update both BSDS inventories.

342 System Management Guide

 Archive log problems

Dealing with archive log problems
This section covers the most likely archive log problems:

 � “Allocation problems”
� “Write I/O errors on the archive log during off-load”
� “Read I/O errors on the archive data set while MQSeries is restarting” on

page 344
� “Insufficient DASD space to complete off-load processing” on page 344

 Allocation problems
Symptoms

MQSeries issues the following message:

CSQJ1ð3E +cpf LOG ALLOCATION ERROR DSNAME=dsname,
 ERROR STATUS=eeeeiiii

OS/390 dynamic allocation provides the ERROR STATUS. If the
allocation was for off-load processing, the following message is also
displayed:

CSQJ115E +cpf OFFLOAD FAILED, COULD NOT ALLOCATE AN ARCHIVE
 DATA SET

System action
The following actions take place:

� If the input is needed for recovery, recovery is not successful, and
MQSeries will abend.

� If the active log had become full and an off-load was scheduled,
off-load tries again the next time it is triggered. The active log does
not wrap around.

System programmer action
None.

Operator action
Check the allocation error code for the cause of the problem, and
correct it. Ensure that drives are available, and either restart or wait for
the off-load to be retried. Be careful if a DFP/DFSMS ACS user-exit
filter has been written for an archive log data set, because this can
cause a device allocation error when the MQSeries subsystem tries to
read the archive log data set. For details of how to solve this problem,
see “Archiving to DASD volumes” on page 310.

Write I/O errors on the archive log during off-load
Symptoms

No specific MQSeries message is issued for write I/O errors.

Only an OS/390 error recovery program message appears. If you get
MQSeries message CSQJ128E, the off-load task has terminated
abnormally and you should consult the MQSeries for OS/390 Messages
and Codes manual.

 Chapter 21. Example recovery scenarios 343

 Archive log problems

System action
The following actions take place:

� Off-load abandons the output data set; no entry is made in the
BSDS.

� Off-load dynamically allocates a new archive and restarts off-loading
from the point at which it was previously triggered. If there is dual
archiving, the second copy waits.

� If an error occurs on the new data set, then:

– In dual archive mode, this message is generated and the
off-load processing changes to single mode:

CSQJ114I +cpf ERROR ON ARCHIVE DATA SET, OFFLOAD
CONTINUING WITH ONLY ONE ARCHIVE DATA SET BEING

 GENERATED

– In single archive mode, the output data set is abandoned.
Another attempt to off-load this RBA range is made the next
time off-load is triggered.

– The active log does not wrap around; if there are no more active
logs, data is not lost.

System programmer action
None.

Operator action
Ensure that off-load is allocated on a reliable drive and control unit.

Read I/O errors on the archive data set while MQSeries is restarting
Symptoms

No specific MQSeries message is issued; only the OS/390 error
recovery program message appears.

System action
This depends on whether a second copy exists:

� If a second copy exists, it is allocated and used.
� If a second copy does not exist, restart is not successful.

System programmer action
None.

Operator action
Try to restart, using a different drive.

Insufficient DASD space to complete off-load processing
Symptoms

While off-loading the active log data sets to DASD, the process
terminates unexpectedly. MQSeries issues the following message:

CSQJ128E +cpf LOG OFF-LOAD TASK FAILED FOR ACTIVE LOG nnnnn

The error is preceded by OS/390 messages IEC030I, IEC031I, or
IEC032I.

System action
MQSeries de-allocates the data set on which the error occurred. If
MQSeries is running in dual archive mode, MQSeries changes to single

344 System Management Guide

 Archive log problems

archive mode and continues the off-load. If the off-load cannot be
completed in single archive mode, the active log data sets cannot be
off-loaded, and the state of the active log data sets remains NOT
REUSABLE. Another attempt to off-load the RBA range of the
abandoned active log data sets is made the next time the off-load
process is triggered.

System programmer action
None.

Operator action
Quiesce the MQSeries subsystem (using +cpf STOP QMGR
MODE(QUIESCE)) to restrict logging activity until the OS/390 abend is
resolved.

The most likely causes of these symptoms are:

� The size of the archive log data set is too small to contain the data
from the active log data sets during off-load processing. All the
secondary space allocations have been used. This condition is
normally accompanied by OS/390 message IEC030I.

To solve the problem, either increase the primary or secondary
allocations (or both) for the archive log data set (in CSQZPARM), or
reduce the size of the active log data set. If the data to be
off-loaded is particularly large, you can mount another online
storage volume or make one available to MQSeries.

� All available space on the DASD volumes to which the archive data
set is being written has been exhausted. This condition is normally
accompanied by OS/390 message IEC032I.

To solve the problem, make more space available on the DASD
volumes, or make available another online storage volume for
MQSeries.

� The primary space allocation for the archive log data set (as
specified in CSQZPARM) is too large to allocate to any available
online DASD device. This condition is normally accompanied by
OS/390 message IEC032I.

To solve the problem, make more space available on the DASD
volumes, or make available another online storage volume for
MQSeries. If this is not possible, you must adjust the value of
PRIQTY in CSQ6ARVP to reduce the primary allocation. (For
details, see “Using CSQ6ARVP” on page 76.)

Note: If the primary allocation is reduced, the size of the secondary
space allocation might have to be increased to avoid future
abends.

 Chapter 21. Example recovery scenarios 345

 BSDS errors

Dealing with BSDS errors
For background information about the bootstrap data set (BSDS), see “What the
bootstrap data set is for” on page 305.

This section describes the more likely BSDS problems:

 � “I/O error”
� “Error occurs while opening the BSDS” on page 347
� “Unequal time stamps” on page 347
� “Out of synchronization” on page 348
� “Log content does not agree with the BSDS information” on page 349

Normally, there are two copies of the BSDS, but if one is damaged, MQSeries
immediately changes to single BSDS mode. However, the damaged copy of the
BSDS must be recovered before restart. If you are in single mode and damage the
only copy of the BSDS, or if you are in dual mode and damage both copies, see
“BSDS recovery” on page 350.

This section covers some of the BSDS problems that can occur at startup.
Problems not covered here include:

� +cpf RECOVER BSDS command errors (messages CSQJ301E - CSQJ307I)
� Change log inventory utility errors (message CSQJ123E)
� Errors in the BSDS backup being dumped by off-load (message CSQJ125E)

For information about those problems, see the MQSeries for OS/390 Messages and
Codes manual.

 I/O error
Symptoms

MQSeries changes to single BSDS mode and issues the user message:

CSQJ126E +cpf BSDS ERROR FORCED SINGLE BSDS MODE

This is followed by one of these messages:

CSQJ1ð7E +cpf READ ERROR ON BSDS
DSNAME=... ERROR STATUS=...

CSQJ1ð8E +cpf WRITE ERROR ON BSDS
DSNAME=... ERROR STATUS=...

System action
The BSDS mode changes from dual to single.

System programmer action
None.

Operator action
Carry out these steps:

1. Use Access Method Services to rename or delete the damaged
BSDS and to define a new BSDS with the same name as the BSDS
that had the error. Control statements can be found in job
CSQ4BSDS in thlqual.SCSQPROC.

346 System Management Guide

 BSDS errors

2. Issue the MQSeries command +cpf RECOVER BSDS to make a
copy of the good BSDS in the newly allocated data set and reinstate
dual BSDS mode. See also “BSDS recovery” on page 350.

Error occurs while opening the BSDS
Symptoms

MQSeries issues the following message:

CSQJ1ððE +cpf ERROR OPENING BSDSn DSNAME=..., ERROR STATUS=eeii

where eeii is the VSAM return code. For information about VSAM
codes, see the DFSMS/MVS Macro Instructions for Data Sets manual.
For an explanation of this message, see the MQSeries for OS/390
Messages and Codes manual.

System action
During system initialization, the startup is terminated.

During a +cpf RECOVER BSDS command, the system continues in
single BSDS mode.

System programmer action
None.

Operator action
This depends on when the error occurred:

If the error occurred at restart:

1. Use Access Method Services to delete or rename the damaged data
set, to define a replacement data set, and to copy the remaining
BSDS to the replacement with the Access Method Services REPRO
command.

2. Use the command +cpf START QMGR to start the MQSeries
subsystem.

If the error occurred during the RECOVER BSDS command:

1. Use Access Method Services to rename or delete the damaged
BSDS and to define a new BSDS with the same name as the BSDS
that had the error. Control statements can be found in job
CSQ4BSDS in thlqual.SCSQPROC.

2. Issue the MQSeries command +cpf RECOVER BSDS to make a
copy of the good BSDS in the newly allocated data set and reinstate
dual BSDS mode. See also “BSDS recovery” on page 350.

Unequal time stamps
Symptoms

MQSeries issues the following message:

CSQJ12ðE +cpf DUAL BSDS DATA SETS HAVE UNEQUAL TIME STAMPS,
 SYSTEM BSDS1=...,BSDS2=...,
 UTILITY BSDS1=...,BSDS2=...

 Chapter 21. Example recovery scenarios 347

 BSDS errors

The possible causes are:

� One of the volumes containing the BSDS has been restored. All
information on the restored volume is down-level. If the volume
contains any active log data sets or MQSeries data, they are also
down-level. The down-level volume has the lower time stamp.

� Dual logging has degraded to single logging, and you are trying to
start without recovering the damaged log.

� The MQSeries subsystem terminated abnormally after updating one
copy of the BSDS but before updating the second copy.

System action
MQSeries startup is terminated.

System programmer action
None.

Operator action
Carry out these steps:

1. Run the print log map utility on both copies of the BSDS, compare
the lists to determine which copy is accurate or current.

2. Rename the down-level data set and define a replacement for it.

3. Copy the good data set to the replacement data set, using access
method services.

4. Determine whether the volume containing the down-level BSDS has
been restored. If it has been restored, all data on that volume, such
as the active log data, is also down-level.

If the restored volume contains active log data and you were using
dual active logs on separate volumes, you need to copy the current
version of the active log to the down-level data set. “Recovering
logs” on page 323 tells you how to do this.

Out of synchronization
Symptoms

MQSeries issues the following message:

CSQJ122E +cpf DUAL BSDS DATA SETS ARE OUT OF SYNCHRONIZATION

The system time stamps of the two data sets are identical. Differences
can exist if operator errors occurred while the change log inventory utility
was being used. (For example, the change log inventory utility was only
run on one copy.) The change log inventory utility sets a private time
stamp in the BSDS control record when it starts, and a close flag when
it ends. MQSeries checks the change log inventory utility time stamps
and, if they are different, or they are the same but one close flag is not
set, MQSeries compares the copies of the BSDSs. If the copies are
different, CSQJ122E is issued.

System action
MQSeries startup is terminated.

System programmer action
None.

348 System Management Guide

 BSDS errors

Operator action
Carry out these steps:

1. Run the print log map utility on both copies of the BSDS, and
compare the lists to determine which copy is accurate or current.

2. Rename the data set that had the problem, and define a
replacement for it.

3. Copy the accurate data set to the replacement data set, using
access method services.

Log content does not agree with the BSDS information
Symptoms

This message appears:

CSQJ1ð2E +cpf LOG RBA CONTENT OF LOG DATA SET DSNAME=...,
 STARTRBA=..., ENDRBA=...,

DOES NOT AGREE WITH BSDS INFORMATION

This message indicates that the change log inventory utility was used
incorrectly or that a down-level volume is being used.

System action
MQSeries startup processing is terminated.

System programmer action
None.

Operator action
Run the print log map utility and the change log inventory utility to print
and correct the contents of the BSDS.

 Chapter 21. Example recovery scenarios 349

 BSDS recovery

 BSDS recovery
If MQSeries is operating in dual BSDS mode and one BSDS becomes damaged,
forcing MQSeries into single BSDS mode, MQSeries continues to operate without a
problem (until the next restart). To return the environment to dual BSDS mode:

1. Use Access Method Services to rename or delete the damaged BSDS and to
define a new BSDS with the same name as the damaged BSDS. Control
statements can be found in job CSQ4BSDS in thlqual.SCSQPROC. (See
“Task 11: Create the bootstrap and log data sets” on page 61.)

2. Issue the MQSeries command +cpf RECOVER BSDS to make a copy of the
valid BSDS in the newly allocated data set and to reinstate dual BSDS mode.

If MQSeries is operating in single BSDS mode and the BSDS is damaged, or if
MQSeries is operating in dual BSDS mode and both BSDSs are damaged,
MQSeries stops and does not restart until the BSDS data sets are repaired. In this
case:

1. Locate the BSDS associated with the most recent archive log data set. The
data set name of the most recent archive log appears on the OS/390 console
in the last occurrence of message CSQJ003I, which indicates that off-loading
has been completed successfully. In preparation for the rest of this procedure,
it is a good practice to keep a log of all successful archives noted by that
message:

� If archive logs are on DASD, the BSDS is allocated on any available
DASD. The BSDS name is like the corresponding archive log data set
name; change only the first letter of the last qualifier, from A to B, as in the
example below:

Archive log name CSQ.ARCHLOG1.A0000001
BSDS copy name CSQ.ARCHLOG1.B0000001

� If archive logs are on tape, the BSDS is the first data set of the first archive
log volume. The BSDS is not repeated on later volumes.

2. If the most recent archive log data set has no copy of the BSDS (presumably
because an error occurred when off-loading it), then locate an earlier copy of
the BSDS from an earlier off-load.

3. Rename damaged BSDSs using the Access Method Services ALTER
command with the NEWNAME option. If you decide to delete a damaged
BSDS, use the Access Method Services DELETE command. For each
damaged BSDS, use Access Method Services to define a new BSDS as a
replacement data set. Job CSQ4BSDS in thlqual.SCSQPROC contains Access
Method Services control statements to define a new BSDS. (See “Task 11:
Create the bootstrap and log data sets” on page 61.)

4. Use Access Method Services to delete or rename the damaged data set, to
define a replacement data set, and to copy the remaining BSDS to the
replacement with the Access Method Services REPRO command.

5. Use the Access Method Services REPRO command to copy the BSDS from
the archive log to one of the replacement BSDSs you defined in step 3. Do not
copy any data to the second replacement BSDS—you do that in step 6 on
page 352.

a. Print the contents of the replacement BSDS.

350 System Management Guide

 BSDS recovery

Use the print log map utility (CSQJU004) to print the contents of the
replacement BSDS. This enables you to review the contents of the
replacement BSDS before continuing your recovery work.

b. Update the archive log data set inventory in the replacement BSDS.

Examine the output from the print log map utility and check that the
replacement BSDS does not contain a record of the archive log from which
the BSDS was copied. If the replacement BSDS is an old copy, its
inventory might not contain all archive log data sets that were created more
recently. Therefore, the BSDS inventory of the archive log data sets must
be updated to reflect the current subsystem inventory.

Use the change log inventory utility (CSQJU003) NEWLOG statement to
update the replacement BSDS, adding a record of the archive log from
which the BSDS was copied. If the archive log data set is
password-protected, be certain to use the PASSWORD option of the
NEWLOG function. Also, make certain the CATALOG option of the
NEWLOG function is properly set to CATALOG=YES if the archive log data
set is cataloged. Use the NEWLOG statement to add any additional
archive log data sets that were created later than the BSDS copy.

c. Update passwords in the replacement BSDS.

The BSDS contains passwords for the archive log data sets and for the
active log data sets. To ensure that the passwords in the replacement
BSDS reflect the current passwords used by your installation, use the
change log inventory ARCHIVE utility function with the PASSWORD option.

d. Update the active log data set inventory in the replacement BSDS.

In unusual circumstances, your installation could have added, deleted, or
renamed active log data sets since the BSDS was copied. In this case, the
replacement BSDS does not reflect the actual number or names of the
active log data sets your installation has currently in use.

If you need to delete an active log data set from the replacement BSDS log
inventory, use the change log inventory utility DELETE function.

If you need to add an active log data set to the replacement BSDS log
inventory, use the change log inventory utility NEWLOG function. Ensure
that the RBA range is specified correctly on the NEWLOG function. If the
active log data set is password-protected, be sure to use the PASSWORD
option.

If you need to rename an active log data set in the replacement BSDS log
inventory, use the change log inventory utility DELETE function, followed by
the NEWLOG function. Be sure that the RBA range is specified correctly
on the NEWLOG function. If the active log data set is password-protected,
be certain to use the PASSWORD option.

 Chapter 21. Example recovery scenarios 351

 BSDS recovery

e. Update the active log RBA ranges in the replacement BSDS.

Later, when MQSeries restarts, it compares the RBAs of the active log data
sets listed in the BSDS with the RBAs found in the actual active log data
sets. If the RBAs do not agree, MQSeries does not restart. The problem
is magnified when a particularly old copy of the BSDS is used. To solve
this problem, you can use the change log inventory utility (CSQJU003) to
adjust the RBAs found in the BSDS using the RBAs in the actual active log
data sets. This can be done by:

� Using the print log records utility (CSQ1LOGP) to print a summary
report of the active log data set. This shows the starting and ending
RBAs.

� Comparing the actual RBA ranges with the RBA ranges you have just
printed, when the RBAs of all active log data sets are known.

If the RBA ranges are equal for all active log data sets, you can
proceed to the next recovery step without any additional work.

If the RBA ranges are not equal, then the values in the BSDS must be
adjusted to reflect the actual values. For each active log data set that
needs to have the RBA range adjusted, use the change log inventory
utility DELETE function to delete the active log data set from the
inventory in the replacement BSDS. Then use the NEWLOG function
to redefine the active log data set to the BSDS. If the active log data
sets are password-protected, be certain to use the PASSWORD option
of the NEWLOG function.

f. If only two active log data sets are specified for each copy of the active log,
MQSeries can have difficulty during restart. The problem can arise when
one of the active log data sets is full and has not been off-loaded, while the
second active log data set is close to filling. In this case, add a new active
log data set for each copy of the active log and define each new active log
data set in the replacement BSDS log inventory.

Use the Access Method Services DEFINE command to define a new active
log data set for each copy of the active log. The control statements to
accomplish this task can be found in job CSQ4BSDS in
thlqual.SCSQPROC. (See “Task 11: Create the bootstrap and log data
sets” on page 61.) Once the active log data sets are physically defined
and allocated, use the change log inventory utility NEWLOG function to
define the new active log data sets in the replacement BSDS. The RBA
ranges need not be specified on the NEWLOG statement; however, if the
active log data sets are password-protected, be certain to use the
PASSWORD option of the NEWLOG function.

6. Copy the updated BSDS to the second new BSDS data set. The BSDSs are
now identical.

Consider using the print log map utility (CSQJU004) to print the contents of the
second replacement BSDS at this point.

7. See “Dealing with active log problems” on page 338 for information about what
to do if you have lost your current active log data set.

8. Restart MQSeries, using the newly constructed BSDS. MQSeries determines
the current RBA and what active logs need to be archived.

352 System Management Guide

 Page set problems

Dealing with page set problems
This section covers the problems that you might encounter with page sets:

� “Page set I/O errors” describes what happens if a page set is damaged.

� “Page set full” describes what happens if there is not enough space on the
page set for any more MQPUT operations.

Page set I/O errors
Problem A page set has an I/O error.

Symptoms
This message is issued:

CSQPðð4I +cpf csect-name I/O ERROR STATUS ret-code
PSID psid RBA rba

System action
MQSeries terminates abnormally.

System programmer action
None.

Operator action
Repair the I/O error cause.

If none of the page sets are damaged, restart MQSeries. From the logs,
MQSeries automatically restores the page set to a consistent state.

If one or more page sets are damaged, restore them from a backup
copy and restart MQSeries. As before, from the logs MQSeries
automatically applies any updates that are necessary.

You cannot restart MQSeries if page set zero is not available. However,
if one of the other page sets is not available, you can comment out the
page set DD statement in the MQSeries start-up JCL procedure. This
lets you defer recovery of the defective page set, enabling other users to
continue accessing MQSeries.

A reason code of MQRC_PAGESET_ERROR is returned to any
application that tries to access a queue defined on a page set that is not
available. When you have restored the defective page set, restore its
associated DD statement and restart MQSeries.

The operator actions described here are only possible if all log data sets are
available. If your log data sets are lost or damaged, see “Restarting if you have
lost your log data sets” on page 355.

Page set full
Problem

There is not enough space on a page set for one of the following:

� MQPUT or MQPUT1 calls to be completed

� Object manipulation commands to be completed (for example,
DEFINE QLOCAL)

� MQOPEN calls for dynamic queues to be completed

 Chapter 21. Example recovery scenarios 353

 Page set problems

Symptoms
The request fails with reason code MQRC_PAGESET_FULL. The
queue manager is unable to complete the request because, there is not
enough space remaining on the page set.

The cause of this problem could be due to messages accumulating on a
transmission queue because they cannot be sent to another system.

System action
Further requests that use this page set are blocked until enough
messages are removed or objects deleted to make room for the new
incoming requests.

Operator action
Use the MQSeries command DISPLAY USAGE PSID(*) to identify which
page set is full.

System programmer action
You can either enlarge the page set involved or reduce the loading on
that page set by moving queues to another page set. See Chapter 20,
“Managing page sets” on page 325 for more information about these
tasks. If the cause of the problem is messages accumulating on the
transmission queue, consider starting distributed queuing to transmit the
messages.

354 System Management Guide

 Restart after log data set loss

Restarting if you have lost your log data sets
If, after stopping MQSeries (using the STOP QMGR command), both copies of the
log are lost or found to be corrupt, it is possible to restart MQSeries providing you
have a consistent set of page sets (produced using “Method 1: Full backup” on
page 331).

Follow this procedure:

1. Define new page sets to correspond to each existing page set in your
MQSeries subsystem. See “Task 12: Define your page sets” on page 62 for
information about page set definition.

Ensure that each new page set is larger than the corresponding source page
set.

2. Use the FORMAT function of CSQUTIL to format the destination page set.
See “Formatting page sets (FORMAT)” on page 231 for more details.

3. Use the RESETPAGE function of CSQUTIL to copy the existing page sets or
reset them in place, and reset the log RBA in each page. See “Copying a
page set and resetting the log (RESETPAGE)” on page 235 for more
information about this function.

4. Redefine your MQSeries log data sets and BSDS using CSQJU003 (see “The
change log inventory utility (CSQJU003)” on page 256).

5. Restart MQSeries, using the new page sets. To do this, you do one of the
following:

� Change the MQSeries startup procedure to reference the new page sets.
See “Task 12: Define your page sets” on page 62 for more details.

� Use Access Method Services to delete the old page sets and then rename
the new page sets, giving them the same names as the old page sets.

Attention: Before you delete any MQSeries page set, be sure that you have
made the required backup copies.

 Chapter 21. Example recovery scenarios 355

 Cold starting MQSeries

Performing a cold start of MQSeries
If MQSeries has terminated abnormally you might not be able to restart it. This
could be because your page sets or logs have been lost, truncated, or corrupted. If
this has happened, you will have to perform a cold start to restart MQSeries.

 Attention

Performing a cold start will enable you to recover your MQSeries system and
your object definitions; you will not be able to recover your message data. This
means that you should only perform a cold start if you are unable to restart
MQSeries any other way.

When you have successfully restarted, all your MQSeries objects will be defined
and available for use, but there will be no message data.

To cold start MQSeries, follow this procedure:

1. Prepare the object definition statements that will be used when you restart
MQSeries. To do this, either:

� If page set zero is available, use the CSQUTIL SDEFS function (see
“Producing a list of MQSeries define commands (SDEFS)” on page 243)

� If page set zero is not available, use the definitions from the last time you
backed up your object definitions (see “Backing up your object definitions”
on page 309)

2. Redefine your queue manager data sets (do not do this until you have
completed step 1).

� See “Task 11: Create the bootstrap and log data sets” on page 61 for
information about redefining your log data sets and BSDS.

� See “Task 12: Define your page sets” on page 62 for information about
redefining your page sets.

3. Restart MQSeries using the newly defined and initialized log data sets, BSDS,
and page sets. Use the object definition input statements that you created in
step 1 as input in the CSQINP2 initialization input data set.

356 System Management Guide

 IMS problems

Dealing with IMS-related problems
This section includes plans for problems that you might encounter in the IMS
environment:

“IMS application problem”
“IMS is not operational”
“IMS is unable to connect to MQSeries” on page 358

IMS application problem
Problem

An IMS application terminates abnormally.

Symptoms
The following message is sent to the user’s terminal:

DFS555I TRANSACTION tranid ABEND abcode
MSG IN PROCESS: message data:

where tranid represents any IMS transaction that is terminating
abnormally and abcode is the abend code.

System action
IMS requests the adapter to resolve the unit of recovery. IMS remains
connected to MQSeries.

System programmer action
None.

Operator action
As indicated in message DFS554A on the IMS master terminal.

IMS is not operational
Problem

IMS is not operational.

Symptoms
More than one symptom is possible:

� IMS waits or loops

Because MQSeries cannot detect a wait or loop in IMS, you must
find the origin of the wait or loop. This can be IMS, IMS
applications, or the IMS adapter.

� IMS terminates abnormally.

– See the manuals IMS/ESA Messages and Codes and IMS/ESA
Failure Analysis Structure Tables for more information.

– If threads are connected to MQSeries when IMS terminates,
MQSeries issues message CSQ3201E. This message indicates
that MQSeries end-of-task (EOT) routines have been run to
clean up and disconnect any connected threads.

System action
MQSeries detects the IMS error and:

� Backs out in-flight work.

 Chapter 21. Example recovery scenarios 357

 IMS problems

� Saves in-doubt units of recovery to be resolved when IMS is
reconnected.

System programmer action
None.

Operator action
Resolve and correct the problem that caused IMS to terminate
abnormally, then carry out an emergency restart of IMS. The
emergency restart:

� Backs out in-flight transactions that changed IMS resources.

� Remembers the transactions with access to MQSeries that might be
in doubt.

It might be necessary to restart the connection to MQSeries with the
IMS command:

/START SUBSYS subsysname

During startup, IMS requests the adapter to resolve in-doubt units of
recovery.

IMS is unable to connect to MQSeries
Problem

The IMS adapter cannot connect to MQSeries.

Symptoms
IMS remains operative. The IMS adapter issues these messages for
control region connect:

 CSQQ001I
 CSQQ002E
 CSQQ003E
 CSQQ004E
 CSQQ005E
 CSQQ007E

For details, see the MQSeries for OS/390 Messages and Codes manual.

If an IMS application program tries to access MQSeries while the IMS
adapter cannot connect, it can either receive a completion code and
reason code or terminate abnormally. This depends on the value of the
REO option in the SSM member of IMS PROCLIB.

System action
All connection errors are also reported in the IMS message DFS3611.

System programmer action
None.

Operator action
Analyze and correct the problem, then restart the connection with the
IMS command:

/START SUBSYS subsysname

IMS requests the adapter to resolve in-doubt units of recovery.

358 System Management Guide

 Hardware errors

Dealing with hardware errors
If a hardware error causes data to be unreadable on your subsystem, MQSeries
can still be recovered by using the media recovery technique:

1. To recover the data, you need a backup copy of the data. Use Access Method
Services REPRO regularly to make a copy of your data.

2. Reinstate the most recent backup copy.

 3. Restart MQSeries.

The more recent your backup copy, the more quickly your subsystem can be made
available again.

When MQSeries restarts, it uses the archive logs to reinstate changes made since
the backup copy was taken. You must keep sufficient archive logs to enable
MQSeries to reinstate the subsystem fully. Do not delete archive logs until there is
a backup copy that includes all the changes in the log.

 Chapter 21. Example recovery scenarios 359

 Hardware errors

360 System Management Guide

Part 7. Monitoring performance and resource usage

Chapter 22. Monitoring performance and resource usage 363
Getting snapshots of MQSeries . 364

Using DISPLAY commands . 364
Using CICS adapter statistics . 364
Investigating performance problems . 364

Symptoms of reduced performance . 365
Investigating the overall system . 365

Using System Management Facility . 366
Reporting data in SMF . 366
Allocating additional SMF buffers . 366

Using other products with MQSeries . 367
Using Resource Measurement Facility . 367
Using Performance Reporter for OS/390 . 367
Using the CICS monitoring facility . 367

Using MQSeries trace . 368
Starting MQSeries trace . 368
Controlling MQSeries trace . 368
Specifying trace keywords . 368
Effect of trace on MQSeries performance 369

Using MQSeries events . 370

Chapter 23. Interpreting MQSeries performance statistics 371
SMF type 115 record layout . 371

SMF type 115 record header description 371
Processing type 115 SMF records . 372
Record subtypes . 372
Where the information comes from . 372
Self-defining sections for type 115 records 373

Message manager statistics . 374
Interpretation . 374

Data manager statistics . 375
Interpretation . 375

Buffer manager statistics . 376
Interpreting buffer manager statistics . 377
Buffer pool management . 377

Log manager statistics . 380
Interpreting log manager statistics . 381

Sample SMF statistics records . 382

Chapter 24. Interpreting MQSeries accounting data 385
SMF type 116 record layout . 385

SMF type 116 record header description 385
Processing type 116 SMF records . 386
Where the information comes from . 386
Self-defining sections . 387

Message manager accounting . 388
Interpretation . 389

Sample SMF accounting record . 390

 Copyright IBM Corp. 1993,1999 361

362 System Management Guide

 Monitoring performance and resource usage

Chapter 22. Monitoring performance and resource usage

This part describes how to monitor the performance and resource usage of an
MQSeries subsystem.

� It outlines some of the information that you can retrieve and briefly describes a
general approach to investigating performance problems. (You can find
information about dealing with performance problems in the MQSeries for
OS/390 Problem Determination Guide.)

� It describes how you can obtain statistics related to the performance of an
MQSeries subsystem by using SMF records.

� It describes how to gather accounting data to enable you to charge your
customers for their use of your MQSeries subsystems.

� It describes how to use MQSeries events (alerts) to monitor your systems.

These are some of the tools you might use to monitor MQSeries; they are
described in the sections that follow:

� Tools provided by MQSeries:

– “Using DISPLAY commands” on page 364
– “Using CICS adapter statistics” on page 364
– “Using MQSeries events” on page 370

� OS/390 service aids:

– “Using System Management Facility” on page 366

� Other IBM licensed programs:

– “Using Resource Measurement Facility” on page 367
– “Using Performance Reporter for OS/390” on page 367
– “Using the CICS monitoring facility” on page 367

Information about interpreting the data gathered by the performance statistics trace
is given in Chapter 23, “Interpreting MQSeries performance statistics” on
page 371.

Information about interpreting the data gathered by the accounting trace is given in
Chapter 24, “Interpreting MQSeries accounting data” on page 385.

 Copyright IBM Corp. 1993,1999 363

 Investigating performance problems

Getting snapshots of MQSeries
You can get an idea of the current the state of your MQSeries subsystem by using
the DISPLAY commands and, for the CICS adapter, the CICS adapter panels.

Using DISPLAY commands
You can use the MQSeries DISPLAY commands to obtain information about the
current state of MQSeries. They provide information on the status of the command
server, process definitions, queues, the queue manager, and so on. These
commands are:

 � DISPLAY CHANNEL
 � DISPLAY CHSTATUS
 � DISPLAY CMDSERV
 � DISPLAY CLUSQMGR
 � DISPLAY DQM
 � DISPLAY PROCESS
 � DISPLAY QUEUE
 � DISPLAY QMGR
 � DISPLAY SECURITY
 � DISPLAY STGCLASS
 � DISPLAY THREAD
 � DISPLAY TRACE
 � DISPLAY USAGE

These commands provide a snapshot of the system only at the moment the
command was processed. If you want to examine trends in the system, you must
start an MQSeries trace and analyze the results over a period of time.

Note: You must be authorized to use these commands.

For the detailed syntax of each command, see the MQSeries Command Reference
manual. All of the functions of these commands (except DISPLAY CMDSERV and
DISPLAY TRACE) are also available through the operations and control panels.

Using CICS adapter statistics
If you are an authorized CICS user, you can use the CICS adapter control panels
to display CICS adapter statistics dynamically. These statistics provide a snapshot
of information related to CICS thread usage and situations when all threads are
busy. The display connection panel can be refreshed by pressing the Enter key.
For more information, see “Displaying details of connections and CICS tasks” on
page 135.

Investigating performance problems
The performance measurement tools discussed so far are useful for monitoring
MQSeries, as well as for MQSeries problem determination.

This section presents an overview of problem investigation and analyzes reports
generated by performance monitoring tools.

364 System Management Guide

 Investigating performance problems

Symptoms of reduced performance
Performance can be adversely affected by:

� Buffer pools that are the wrong size

� Lack of real storage

� I/O contention for page sets

� I/O contention for the logs

� Log buffer thresholds that are set wrongly

� Wrong numbers of log buffers

 � Large messages

� Units of recovery that last a long time, incorporating many messages per
syncpoint

� Messages that remain on a queue for a long time

 � RACF auditing

� Unnecessary security checks

� Inefficient program design

When you analyze performance data, always start by looking at the overall system
before you decide that you have a specific MQSeries problem. Remember that
almost all symptoms of reduced performance are magnified when there is
contention. For example, if there is contention for DASD, transaction response
times can increase.

Also, the more transactions there are in the system, the greater the processor
overhead and greater the demand for both virtual and real storage.

In such situations, the system shows heavy use of all its resources. However, the
system is actually experiencing normal system stress, and this might be hiding the
cause of a performance reduction. To find the cause of such a loss of
performance, you must consider all items that might be affecting your active tasks.

Investigating the overall system
Within MQSeries, the performance problem is either reduced response time or an
unexpected and unexplained heavy use of resources. You should first check
factors such as total processor usage, DASD activity, and paging. An IBM tool for
this is resource management facility (RMF). In general, you need to look at the
system in some detail to see why tasks are progressing slowly, or why a given
resource is being heavily used.

Start by looking at general task activity, then focus on particular activities, such as
specific tasks or a specific time interval.

Another possibility is that the system has limited real storage; therefore, because of
paging interrupts, the tasks progress more slowly than expected.

 Chapter 22. Monitoring performance and resource usage 365

 Collecting statistics

Using System Management Facility
System management facility (SMF) is an OS/390 service aid used to collect
information from various OS/390 subsystems. This information is dumped and
reported periodically, for example, hourly. You can use SMF with the MQSeries
trace facility to collect data from MQSeries. In this way you can monitor trends, for
example, in system utilization and performance, and collect accounting information
about each user ID using the MQSeries subsystem.

You must decide how you are going to process the SMF records produced by
MQSeries trace. For example, while MQSeries is running, you can use the OS/390
operator commands SETSMF or SS to alter the SMF parameters that you specified
previously.

To record performance statistics (record type 115) to SMF specify the following in
the SMFPRMxx member of SYS1.PARMLIB.

SETSMF SYS(TYPE(115))

To record accounting information (record type 116) to SMF specify the following in
the SMFPRMxx member of SYS1.PARMLIB.

SETSMF SYS(TYPE(116))

Either PROMPT(ALL) or PROMPT(LIST) must be specified in the SMFPRMxx
member if these commands are to work.

SMF must be running before you can send data to it. For more information about
SMF, see the MVS System Management Facilities (SMF) manual.

Reporting data in SMF
You can use the SMF program IFASMFDP to dump SMF records to a sequential
data set so that they can be processed.

There are several ways to report on this data, for example:

� Define service level reporter (SLR) tables that can be used to load MQSeries
trace records from SMF into SLR. You can do this while loading any other
SMF data into SLR.

� Write an application program to read and report information from the SMF data
set. You can then tailor the report to fit your exact needs.

Allocating additional SMF buffers
When you invoke a trace, you must ensure that you allocate adequate SMF buffers.
Specify SMF buffering on the VSAM BUFSP parameter of the access method
services DEFINE CLUSTER statement. Specify CISZ(4096) and BUFSP(81920) on
the DEFINE CLUSTER statement for each SMF VSAM data set.

If an SMF buffer shortage occurs, SMF rejects any trace records sent to it.
MQSeries sends a CSQW133I message to the OS/390 operator when this occurs.
MQSeries treats the error as temporary and remains active even though SMF data
could be lost. When the shortage has been alleviated and trace recording has
resumed, MQSeries sends a CSQW123I message to the OS/390 operator.

366 System Management Guide

 Collecting statistics

Using other products with MQSeries
You can use other products to help you to improve the presentation of, or to
augment statistics related to, performance and accounting.

Using Resource Measurement Facility
Resource Management Facility (RMF) is an IBM licensed program (program
number 5685-029) that provides system-wide information on processor utilization,
I/O activity, storage, and paging. You can use RMF to monitor the utilization of
physical resources across the whole system dynamically. For more information,
see the MVS Resource Measurement Facility User’s Guide.

Using Performance Reporter for OS/390
You can use Performance Reporter for OS/390 to interpret RMF and SMF records.

Performance Reporter for OS/390 is an IBM licensed program (program number
5695-101) that enables you to manage the performance of your system by
collecting performance data in a DB2 database and presenting the data in a variety
of formats for use in systems management. Performance Reporter can generate
graphic and tabular reports using systems management data it stores in its DB2
database. It includes an administration dialog, a reporting dialog, and a log
collector, all of which interact with a standard DB2 database.

This is described in the Performance Reporter for OS/390 Administration Guide.

Using the CICS monitoring facility
The CICS monitoring facility provides performance information about each CICS
transaction running. It can be used to investigate the resources used and the time
spent processing transactions. For background information, see the CICS
Performance Guide and the CICS Customization Guide.

 Chapter 22. Monitoring performance and resource usage 367

 Using MQSeries trace

Using MQSeries trace
You can record performance statistics and accounting data for MQSeries by using
the MQSeries trace facility. The data generated by MQSeries is sent to:

� The System Management Facility (SMF), specifically as SMF record type 115,
subtypes 1 and 2 for the performance statistics trace

� The SMF, specifically as SMF record type 116, for the accounting trace.

If you prefer, the data generated by the MQSeries accounting trace can also be
sent to the generalized trace facility (GTF).

Starting MQSeries trace
You can start the MQSeries trace facility at any time by issuing the MQSeries
command, +cpf START TRACE.

Note: Accounting data can be lost if the accounting trace is started or stopped
while applications are running. In order to collect accounting data
successfully, the following conditions must apply:

� The accounting trace must be active when an application starts, and it
must still be active when the application finishes.

� If the accounting trace is stopped, any accounting data collection that
was active will cease.

You can also start collecting trace information automatically if you specify YES on
the SMFSTAT (SMF STATISTICS) and SMFACCT (SMF ACCOUNTING)
parameters of the CSQ6SYSP macro. You can also use the CSQ6SYSP macro to
control the collection interval for the statistics trace with the STATIME parameter.

For details, see “Using CSQ6SYSP” on page 68 but, before invoking an MQSeries
trace, read “Using System Management Facility” on page 366.

Controlling MQSeries trace
To control the MQSeries trace data collection at start up, specify values for the
parameters in the CSQ6SYSP macro when you install MQSeries, see page 68.

You can control MQSeries tracing when MQSeries is running with these
commands:

� +cpf START TRACE
� +cpf ALTER TRACE
� +cpf STOP TRACE

For information about these commands, see the MQSeries Command Reference
manual.

Specifying trace keywords
The commands and keywords you can specify to control trace are described in the
MQSeries Command Reference manual. When you specify a trace number, you
must also specify the trace type.

368 System Management Guide

 Using MQSeries trace

Specifying a destination
The DEST keyword specifies the location to which trace data is sent. Possible
destinations are:

SMF System Management Facility
GTF Generalized Trace Facility (accounting trace only)
SRV Serviceability routine for diagnostic use by IBM service personnel

The default destination for trace data is SMF.

When you specify a destination with the DEST keyword, use the appropriate
abbreviation. For example, DEST(SMF).

For daily monitoring, information is sent to SMF. SMF data sets usually contain
information from other systems; this information is not available for reporting until
the SMF data set is dumped.

Effect of trace on MQSeries performance
Using the MQSeries trace facility can have a significant effect on MQSeries and
transaction performance. For example, if you start a global trace for class 1 or for
all classes, it is likely to increase CPU usage and transaction response times by
approximately 50%. However, if you start a global trace for classes 2 to 4 alone, or
a statistics or accounting trace, the increase in CPU usage and transaction
response times is likely to be less than 1%.

 Chapter 22. Monitoring performance and resource usage 369

 MQSeries events

Using MQSeries events
MQSeries instrumentation events provide information about errors, warnings, and
other significant occurrences in a queue manager. You can monitor the operation
of all your queue managers by incorporating these events into your own system
management application.

MQSeries instrumentation events fall into the following categories:

Queue manager events
These events are related to the definitions of resources within queue
managers. For example, an application attempts to put a message to a
queue that does not exist.

Performance events
These events are notifications that a threshold condition has been reached by
a resource. For example, a queue depth limit has been reached, or the
queue was not serviced within a predefined time limit.

Channel events
These events are reported by channels as a result of conditions detected
during their operation. For example, when a channel instance is stopped.

Note: Channel events are not produced if you are using the “CICS mover”
for distributed queuing.

When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that can be retrieved by a suitable MQI application.

MQSeries events can be enabled using the MQSC commands or the operations
and control panels. Channel events can only be disabled by altering the definition
of the event queue to PUT(DISABLED).

See the MQSeries Programmable System Management for information about the
MQSeries events that cause event messages to be generated, and for information
about the format of these messages. See the MQSeries Command Reference for
information about enabling the events.

370 System Management Guide

 Using performance statistics

Chapter 23. Interpreting MQSeries performance statistics

You must process any data you collect from SMF to extract useful information. To
do this, you must understand the format of the type 115 records from SMF.

SMF type 115 record layout
The standard layout for SMF records involves three parts:

Part of record What it is used for

SMF header Provides format, identification, and time and date
information about the record itself.

Self-defining section Defines the location and size of the individual data records
within the SMF record.

Data records The actual data from MQSeries that you want to analyze.

For more information about SMF record formats, see the MVS System
Management Facilities (SMF) manual.

SMF type 115 record header description
Table 19 shows the format of SMF record header (SM115).

Table 19. SMF record header description

Offsets

Type Len Name Description ExampleDec Hex

0 (0) Structure 28 SM115 SMF record header.

0 (0) Unsigned 2 SM115LEN SMF record length. 0294

2 (2) 2 Reserved. 0000

4 (4) Unsigned 1 SM115FLG System indicator. 1E

5 (5) Unsigned 1 SM115RTY Record type. The SMF record type, for
MQSeries statistics records this is always 115
(X'73').

73

6 (6) Unsigned 4 SM115TME Time when SMF moved record. 004C551B

10 (A) Unsigned 4 SM115DTE Date when SMF moved record. 0098149F

14 (E) Character 4 SM115SID OS/390 subsystem ID. Defines the OS/390
subsystem on which the records were
collected.

D4E5F4F1
(MV41)

18 (12) Character 4 SM115SSI MQSeries subsystem ID. D4D8F3F7
(MQ37)

22 (16) Unsigned 1 SM115STF Record subtype. 02

23 (17) 1 Reserved. 00

24 (18) 4 SM115BUF Reserved. 00000000

28 (1C) Character 0 SM115END End of SMF header and start of self-defining
section.

Note: The (hexadecimal) values in the right-hand column relate to Figure 97.

 Copyright IBM Corp. 1993,1999 371

 Using performance statistics

Figure 97 shows an example of part of an SMF type 115 record. The numbers in
the left-hand column represent the offset, in hexadecimal, from the start of the
record. Each line corresponds to sixteen bytes of data, where each byte is two
hexadecimal characters, for example 0C. The characters in the right-hand column
represent the printable characters for each byte. Non-printable characters are
shown by a period (.) character. In this example, alternate fields are underlined to
help you to see them; refer to Table 19 to identify them.

+ðððððððð ð294 | .m|
+ððððððð2 ðððð1E73 ðð4C551B ðð98149F D4E5F4F1 |.....<...q..MV41|
+ðððððð12 D4D8F3F7 ð2ðððððð ðððððððð ð27ððð24 |MQ37............|
+ðððððð22 ððð1ðððð ðð44ðð3ð ððð1ðððð ðð74ðð4C |...............<|
+ðððððð32 ððð1ðððð ððCððð68 ððð4ðððð ð26ððð1ð |.....{.......-..|
+ðððððð42 ððð1 |.. |
...

Figure 97. Part of an SMF record showing the header and self-defining sections. Alternate
fields in the header are underlined. The characters highlighted in bold represent a
self-defining section.

Processing type 115 SMF records
When you process the data, verify that the records are from MQSeries and that
they are the records you are expecting.

Validate the values of the following fields:

� SM115RTY, the SMF record number = X'73' (115)
� SM115STF, the record subtype, must be 01 or 02

 Record subtypes
MQSeries statistics can be collected for two subtypes:

01 System information, for example, related to the logs.

02 MQSeries information about number of messages, MQSeries buffer and
paging information, and so on.

The subtype is specified in the SM115STF field, see Table 19 on page 371. For
example, in Figure 97, the record subtype is 02. “Sample SMF statistics records”
on page 382 shows example of records for both subtypes.

Where the information comes from
The information provided in the SMF records comes from specific functional
components of MQSeries. These are:

MQSeries component Function

Message manager Processes all MQI requests.

Data manager Manages the links between messages and queues. It
calls the buffer manager to process the pages with
messages on them.

372 System Management Guide

 Using performance statistics

Buffer manager Manages the buffer pools in virtual storage and the
writing of pages to page sets as the buffer pools
become full. Also manages the reading of pages from
page sets.

Log manager Manages the writing of log records, which are essential
for maintaining the integrity of the system, if there is a
backout request, or for recovery, if there is a system or
media failure.

Self-defining sections for type 115 records
A self-defining section of a type 115 SMF record tells you where to find a statistics
record, how long it is, and how many times that type of record is repeated (with
different values). The self-defining sections follow after the header, at fixed offsets
from the start of the SMF record.

Four types of self-defining section are available to users for type 115 records.
Each self-defining section points to statistics data related to one of four MQSeries
components. Table 20 summarizes the sources of the statistics, and the offsets to
the start of the SMF record header.

Each self-defining record is two fullwords long and has this format:

 ssssssssllllnnnn

where:

ssssssss Fullword containing the offset from start of the SMF record.
llll Halfword giving the length of this data record.
nnnn Halfword giving the number of data records in this SMF record.

For example, in Figure 97 on page 372, the self-defining section for message
manager statistics is shown in bold. It is located at offset X'24' from the start of
the SMF record and contains this information:

� The offset of the message manager statistics is located X'00000044' bytes
from the start of the SMF record.

� The message manager record is X'0030' bytes long.

� There is one record (X'0001').

Similarly, in Figure 97, the buffer manager self-defining section at X'34' specifies
that the offset to the buffer manager statistics is X'000000C0', is of length
X'0068', and occurs X'0004' times.

Table 20. Offsets to self-defining sections. Offsets are from the start of the SMF record
and are fixed for each type of statistics source.

Source of statistics
Record subtype

(SM115STF)

Offsets
See
pageDec Hex

Message manager 02 36 (X'24') 374

Data manager 02 44 (X'2C') 375

Buffer manager 02 52 (X'34') 376

Log manager 01 116 (X'74') 380

Note: Other self-defining sections refer to data for IBM use only.

 Chapter 23. Interpreting MQSeries performance statistics 373

 Message manager statistics

Note: Always use offsets in the self-defining sections to locate the statistics
records.

Message manager statistics
The following table shows the format of the message manager statistics record:

Table 21. Structure of the message manager statistics record QMST

Offsets

Type Len Name DescriptionDec Hex

0 (0) Structure 48 QMST Message manager statistics

0 (0) Bitstring 2 QMSTID Control block identifier

2 (2) Unsigned 2 QMSTLL Control block length

4 (4) Character 4 QMSTEYEC Control block eye catcher (QMST)

8 (8) Signed 4 QMSTOPEN Number of MQOPEN requests

12 (C) Signed 4 QMSTCLOS Number of MQCLOSE requests

16 (10) Signed 4 QMSTGET Number of MQGET requests

20 (14) Signed 4 QMSTPUT Number of MQPUT requests

24 (18) Signed 4 QMSTPUT1 Number of MQPUT1 requests

28 (1C) Signed 4 QMSTINQ Number of MQINQ requests

32 (20) 4 Reserved

36 (24) Signed 4 QMSTSET Number of MQSET requests

40 (28) 4 Reserved

44 (2C) Signed 4 QMSTCALH Number of “close handle” requests

 Interpretation
The data gives you counts of different MQI requests.

374 System Management Guide

 Data manager statistics

Data manager statistics
The following table shows the format of the data manager statistics record:

Table 22. Structure of the data manager statistics record QIST

Offsets

Type Len Name DescriptionDec Hex

0 (0) Structure 60 QIST Data manager statistics

0 (0) Bitstring 2 QISTID Control block identifier

2 (2) Unsigned 2 QISTLL Control block length

4 (4) Character 4 QISTEYEC Control block eye catcher (QIST)

8 (8) Unsigned 4 QISTMGET Number of message get requests

12 (C) Unsigned 4 QISTMPUT Number of message put requests

16 (10) 4 Reserved

20 (14) Signed 4 QISTDCRE Number of object create requests

24 (18) Signed 4 QISTDPUT Number of object put requests

28 (1C) Signed 4 QISTDDEL Number of object delete requests

32 (20) Signed 4 QISTDGET Number of object get requests

36 (24) Signed 4 QISTDLOC Number of object locate requests

40 (28) 4 Reserved

44 (2C) Signed 4 QISTALST Number of Stgclass change requests

48 (30) 4 Reserved

52 (34) 4 Reserved

56 (38) 4 Reserved

60 (3C) 4 Reserved

64 (40) 4 Reserved

68 (44) 4 Reserved

72 (48) 4 Reserved

 Interpretation
The data gives you counts of different object requests.

 Chapter 23. Interpreting MQSeries performance statistics 375

 Buffer manager statistics

Buffer manager statistics
The following table shows the format of the buffer manager statistics record.

Note: If you have defined a buffer pool, but not used it, no values are set so the
buffer manager statistics record will not contain any data.

Table 23. Structure of the buffer manager statistics record QPST

Offsets

Type Len Name DescriptionDec Hex

0 (0) Structure 104 QPST Buffer manager statistics.

0 (0) Bitstring 2 QPSTID Control block identifier.

2 (2) Unsigned 2 QPSTLL Control block length.

4 (4) Character 4 QPSTEYEC Control block eye catcher (QPST).

8 (8) Signed 4 QPSTPOOL Buffer pool identifier (0000-0003).

12 (C) Signed 4 QPSTNBUF Number of buffers in this buffer pool.

16 (10) Signed 4 QPSTCBSL Lowest number of available buffers.

20 (14) Signed 4 QPSTCBS Number of available buffers.

24 (18) Signed 4 QPSTGETP The number of page get requests where the current page
contents are required. This might involve a read DASD
operation if the page is not currently in the buffer pool.

28 (1C) Signed 4 QPSTGETN The number of get requests for a new - or empty - page
(that is, no read operation is necessary).

32 (20) Signed 4 QPSTRIO The number of page read DASD operations.

36 (24) Signed 4 QPSTSTW The number of page updates.

40 (28) Signed 4 QPSTTPW Number of pages written to DASD.

44 (2C) Signed 4 QPSTWIO The number of page write operations.

48 (30) Signed 4 QPSTIMW The number of synchronous page write operations.

52 (34) Signed 4 QPSTDWT The number of times the asynchronous write processor was
started.

56 (38) Signed 4 QPSTDMC The number of times the synchronous page processor was
started because the synchronous write threshold was
reached.

60 (3C) Signed 4 QPSTSTL The number of times a page get request did not find the
page already in the buffer pool.

64 (40) Signed 4 QPSTSTLA Number of times the hash chain has been changed during a
buffer steal.

68 (44) Signed 4 QPSTSOS The number of times NO available buffers were found.

72 (48) 32 Reserved.

376 System Management Guide

 Buffer manager statistics

Interpreting buffer manager statistics
The buffer manager is the component of MQSeries that handles the movement of
data between DASD and virtual storage.

Buffer pools are areas of MQSeries virtual storage reserved to satisfy the buffering
requirements for MQSeries queues. Each buffer pool contains an installation
defined number of 4 KB virtual storage pages or buffers. Page sets are VSAM
linear data sets and each page set is associated with a buffer pool. Queues are
mapped to page sets via their storage class attribute. For more information on the
relationship between these entities, see “Storage classes - mapping queues to
page sets” on page 15.

A buffer pool can be the holding storage for many message queues. To be able to
estimate the required size of the buffer pools, you must understand their
characteristics and how to interpret the buffer manager statistics generated by
MQSeries.

A buffer pool can hold MQSeries objects, as well as messages, in 4 KB virtual
storage pages. MQSeries is designed to keep these pages in buffer pool virtual
storage as long as possible in order to obtain the best performance.

However, if a buffer pool starts to fill up, updated pages are written out to their
relevant DASD page sets to free up buffer pool space. This happens if, for
example, messages are being put onto queues associated with the buffer faster
than they are being taken off.

Information contained in pages that have been written out to DASD page sets can
be read in again on demand.

Nonpersistent messages can also be written out to DASD if the buffer pools in
which they reside become short on storage. This is because the page sets are the
backing store for the buffer pools during MQSeries operation.

Ideally, a transaction pattern should be such that messages do not spend a long
time on a queue waiting to be retrieved. This means that messages never have to
spill over to DASD because the pages used to hold them remain in virtual storage.

Buffer pool management
To manage your buffer pools efficiently, you must consider the factors that affect
the buffer pool I/O operations and also the statistics associated with the buffer
pools.

 DASD operations
The following factors affect buffer pool I/O operations.

� If a page containing the required data is not found in the buffer pool, it is read
in synchronously to an available buffer from its DASD page set.

� Whenever a page is updated, it is put on an internal queue of pages to be
(potentially) written out to DASD. This means that the buffer used by that page
is unavailable for use by any other page until the buffer has been written to
DASD.

 Chapter 23. Interpreting MQSeries performance statistics 377

 Buffer manager statistics

� If the number of pages queued to be written to DASD exceeds 85% of the total
number of buffers in the pool, an asynchronous write processor is started in
order to put the buffers to DASD.

Similarly, should the number of buffers available for page get requests become
less than 15% of the total number of buffers in the pool, then the asynchronous
write processor is started in order to perform the write I/O operations.

The write processor stops when the number of pages queued to be written to
DASD has fallen to 75% of the total number of buffer in the pool.

� If the number of pages queued for writing to DASD exceed 95% of the total
number of buffers in the pool, all updates result in a synchronous write of the
page to DASD.

Similarly, if the number of buffers available for page get requests becomes less
than 5% of the total number of buffers in the pool, all updates result in a
synchronous write of the page to DASD.

� If the number of buffers available for page get requests ever reaches zero, a
transaction that encounters this condition is suspended until the asynchronous
write processor has finished.

� If a page is frequently updated, the page spends most of its time on the queue
of pages waiting to be written to DASD. Because this queue is in least recently
used order, it is possible that a frequently updated page placed on this least
recently used queue will never be written out to DASD. For this reason, at the
time of update, if the page is found to have been waiting on the write to DASD
queue for at least 2 checkpoints, it will be synchronously written to DASD.
Updating occurs at checkpoint time.

The aim of the above algorithm is to maximize the time pages spend in buffer
pool memory while allowing the system to function should system load put the
buffer pool usage under stress.

Buffer pool statistics
MQSeries writes statistics to SMF for each buffer pool, if statistics trace gathering
has been requested. Table 23 on page 376 shows the statistics that are recorded.
The statistics are reset each time they are output.

The values of these fields can be used to improve the performance of your system.
These are the important factors:

� The ratio of QPSTRIO to QPSTGETP shows the efficiency of page retrieval
within the buffer pool. Increasing the buffer pool size should decrease this ratio
and, therefore, increase the page retrieval efficiency.

If this does not happen, it indicates that pages are not being frequently
reaccessed. This implies a transaction pattern where there is a long delay
between messages being put and then subsequently retrieved.

� The ratio of QPSTGETN to QPSTGETP indicates the number of times an
empty page, as opposed to a non-empty page, has been requested.

This ratio is more an indication of transaction pattern, than a value that can be
used to tune the system.

� QPSTSTL is a count of the number of times a page access request did not find
the page already in the buffer pool. Again, the lower the ratio of QPSTSTL to
(QPSTGETP + QPSTGETN) is, the higher the page retrieval efficiency.

378 System Management Guide

 Buffer manager statistics

Increasing the buffer pool size should decrease this ratio but, if it does not, it is
an indication that there are long delays between puts and gets.

� The higher the ratio of QPSTSTW to QPSTWIO, the better the efficiency of the
asynchronous write processor. You can increase this ratio, and therefore the
efficiency of the asynchronous write processor, by increasing the buffer pool
size.

� QPSTIMW is a count of the number of times pages were written out
synchronously. If QPSTDMC is zero, QPSTIMW is the number of times pages
were found on the queue waiting for write I/O that had been there for at least
two checkpoints.

� QPSTDWT is the number of times the asynchronous write processor was
started because there was either more than 85% of the pages in the buffer pool
waiting for write I/O, or there was less than 15% of the buffer pool available for
read requests. Increasing the buffer pool size should reduce this value. If it
does not, the pattern of access is one of long delays between puts and gets.

� QPSTDMC is the number of updates that were performed synchronously
because there was either more than 95% of the pages in the buffer pool
waiting for write I/O, or there was less than 5% of the buffer pool available for
read requests. If this number is not zero, the buffer pool might be too small
and should be enlarged. If increasing the buffer pool size does not reduce
QPSTDMC to zero, there might be I/O contention on the DASD page sets.

� QPSTSOS is the number of times that there were no buffers available for page
get requests. If QPSTSOS ever becomes non-zero, it shows that MQSeries is
under severe stress. The buffer pool size should be significantly increased. If
increasing the buffer pool size does not make the value of QPSTSOS zero,
there might be I/O contention on the DASD page sets.

 Chapter 23. Interpreting MQSeries performance statistics 379

 Log manager statistics

Log manager statistics
The following table shows the format of the log manager statistics record:

Table 24. Structure of the log manager statistics record QJST

Offsets

Type Len Name DescriptionDec Hex

0 (0) Structure 64 QJST Log manager statistics.

0 (0) Character 2 QJSTID Control block identifier.

2 (2) Signed 2 QJSTLL Control block length.

4 (4) Character 4 QJSTEID Control block eye catcher (QJST).

8 (8) Signed 4 QJSTWRW Write_request count - Wait.
Tasks are suspended until the write to active log is
complete.

12 (C) Signed 4 QJSTWRNW Write_request count - No wait.
Asynchronous writes to the active log. Tasks are not
suspended.

16 (10) Signed 4 QJSTWRF Write_request count - Force.
Tasks are suspended until all the log records for this unit of
recovery are written to the active log data set.

20 (14) Signed 4 QJSTWTB Wait count for unavailable buffers.
Number of times a task was suspended because all the
buffers were waiting to be written to the active log data set.

24 (18) Signed 4 QJSTRBUF Number of read log requests satisfied from in-storage
buffers.

28 (1C) Signed 4 QJSTRACT Number of read log requests satisfied from the active log
data set.

32 (20) Signed 4 QJSTRARH Number of read log requests satisfied from an archive log
data set.

36 (24) Signed 4 QJSTWTL Number of read log requests delayed because the
MAXALLC parameter in CSQ6LOGP limited the number of
archive log data sets that could be used.

40 (28) Signed 4 QJSTBSDS Total number of bootstrap data set (BSDS) access
requests.

44 (2C) Signed 4 QJSTBFFL The number of active log control intervals (CIs) created (log
pages used).

48 (30) Signed 4 QJSTBFWR Number of calls made that wrote to active log buffers.

52 (34) Signed 4 QJSTALR Number of times an archive log data set was allocated for a
read request.

56 (38) Signed 4 QJSTALW Number of times an archive log data set was allocated for a
write request.

60 (3C) Signed 4 QJSTCIOF Count of CIs off-loaded to the archive data set.

64 (40) Signed 4 QJSTLLCP Number of times that checkpoint was invoked.

380 System Management Guide

 Log manager statistics

Interpreting log manager statistics
These counts are important:

1. The total number of log write requests:

Nlogwrite = QJSTWRW + QJSTWRNW + QJSTWRF

2. The total number of log read requests:

Nlogread = QJSTRBUF + QJSTRACT + QJSTRARCH

The problem symptoms that can be examined using log manager statistics are
described in Table 25.

Table 25 (Page 1 of 2). Problem symptoms that can be examined using log manager
statistics

Symptom 1 QJSTWTB is non-zero.

Reason Tasks are being suspended while the in-storage buffer is being
written to the active log.
There might be problems writing to the active log.
The OUTBUFF parameter within CSQ6LOGP is too small.

Action Investigate the problems writing to the active log.
Increase the value of the OUTBUFF parameter within CSQ6LOGP.

Symptom 2 The ratio: QJSTRARH/Nlogread is larger than normal.

Reason Most log read requests should come from the output buffer or the
active log. To satisfy requests for back out, unit-of-recovery records
are read from the in-storage buffer, the active log, and the archived
logs.

A long-running unit of recovery, extending over a period of many
minutes, might have log records spread across many different logs.
This degrades performance because extra work has to be done to
recover the log records.

Action Change the application to reduce the length of a unit of recovery.
Also, consider increasing the size of the active log to reduce the
possibility of a single unit of recovery being spread out over more
than one log.

Other pointers The ratio Nlogread/Nlogwrite gives an indication of how much work has
to be backed out.

Symptom 3 The ratio: QJSTWTL/Nlogread is greater than 1%.

Reason Log reads were initiated that had to read from an archive log, but
MQSeries was not able to allocate a data set because MAXALLC
data sets were already allocated.

Action Increase MAXALLC.

 Chapter 23. Interpreting MQSeries performance statistics 381

 Sample SMF statistics records

Note: In the first set of statistics produced after system startup, there might be
significant log activity due to the resolution of in-flight units of recovery.

Table 25 (Page 2 of 2). Problem symptoms that can be examined using log manager
statistics

Symptom 4 QJSTLLCP is more than 10 per hour.

Reason On a busy system you would expect to see typically 10 checkpoints
an hour. If the QJSTLLCP value is larger than this, it indicates a
problem in the setup of the queue manager.

The most likely reason for this is that the LOGLOAD parameter in
CSQ6SYSP is too small. The other event that causes a checkpoint
is when an active log fills up and switches to the next active log data
set. If your logs are too small, this can cause frequent checkpoints.

Action Increase the LOGLOAD parameter, or increase the size of your log
data sets as required.

Sample SMF statistics records
Figure 98 shows the SMF record for subtype 1. Subtype 1 includes the log
manager statistics record. In this figure, the SMF record header, the self-defining
section, and the statistics record are underlined.

In this example, the self-defining section, at offset X'74', refers to log manager
statistics, see Table 24 on page 380. The statistics are located at offset
X'00000164' from the start of the header and is X'40' bytes long. There is only
one set of statistics identified by the eye catcher string QJST.

Figure 99 on page 384 shows the SMF record for subtype 2. Subtype 2 includes
the buffer manager statistics. The SMF record header, the self-defining section,
and the buffer manager statistics record are shown underlined. In this example, the
self-defining section, at offset X'34', refers to buffer manager statistics (see
Table 23 on page 376). The statistics are located at offset X'000000B0' from the
start of the header and is X'68' bytes long.

There are four sets of statistics corresponding the four buffer pools numbered 0, 1,
2, and 3 respectively. Each set of data related to the buffer manager can be
identified by the eye catcher string QPST.

The eye catcher strings are:

QIST Data manager
QJST Log manager (subtype 1, see Figure 98 on page 383)
QMST Message manager
QPST Buffer manager

382 System Management Guide

 Sample SMF statistics records

ðððððððð. ð1C8ðððð 1E73ðð3ð C47Aðð93 238FD4E5 |.H......D:.l..MV|
ðððððð1ð. E2D4E5C3 E3F8ð1ðC ðððððððð1 |SMVCT8...... |

ðððððð1C. ððððð1A4 | ...u|
ðððððð2ð. ðð24ððð1 ðððððððð ðððððððð ðððððððð |................|
ðððððð3ð. ðððððððð ðððððððð ðððððððð ðððððð7C |...............@|
ðððððð4ð. ðð4ðððð1 ððððððBC ðð6ðððð1 ðððððððð |.-......|
ðððððð5ð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ðððððð6ð. ðððððððð ððððð11C ðð48ððð1 ðððððððð |................|
ðððððð7ð. ðððððððð ððððð164 ðð4ðððð12 |......... .. |

ðððððð7C. ðððð2ð86 | ...f|
ðððððð8ð. ðððððððð ðððð2ð86 ðððð4ðFA ðððððððð |.......f..|
ðððððð9ð. ðððððððð ðððððððð ððððððð5 ðððð2ð78 |................|
ððððððAð. ðððð2ð7E ðððððððð ððððððð5 ðððððððð |...=............|
ððððððBð. ðððð2ð8D ðððððððð ðððððððð |............. |

ððððððBC. ðððððððð | ...|
ððððððCð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððððDð. ðððððððð ððððððð3 ððððððð1 ðððððððð |................|
ððððððEð. ððððððð1 ðððððððð ðððððððð ððððððð1 |................|
ððððððFð. ðððððððð ððððð2ð7 ðððððððð ðððððððð |................|
ððððð1ðð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððð11C. ðððððððð ðððððððð ðððððððð |............ |

ððððð11ð. ðð3Cðð48 ||
ððððð12ð. D8E2E2E3 ðððð2ð9E ðððð2ð8ð ððððððð2 |QSST............|
ððððð13ð. ððððð114 ðððððð85 ððððð54A ððððð536 |.......e...¢....|
ððððð14ð. ððððð575 ððððð88C ðððððð11 ðððð4D64 |..............(.|
ððððð15ð. ðððð4CE7 ðððððððð ðððððððð ðððððððð |..[X............|
ððððð16ð. ðððððððð |.... |

ððððð164. ðð93ðð44 D8D1E2E3 ðððððððð | .l. QJST....|
ððððð17ð. ðððð59BA ððððð883 ðððððððð ðððððEED |.......c........|
ððððð18ð. ðððððð9D ðððððððð ðððððððð ðððððð68 |................|
ððððð19ð. ððððð218 ðððð11E9 ðððððððð ðððððððð |.......Z........|
ððððð1Að. ðððððððð ððððððð23 |........ |

ððððð1A8. ðð24ð11A ððð1ðC1ð ||
ððððð1Bð. ðFð49158 E5C3E3F8 A7FDDCC5 D3C241ð1 |..j.VCT8x..ELB..|
ððððð1Cð. ððððððð1 ððððððð5 ððððððð2 |............ |

Figure 98. SMF record 115, subtype 1. The subscripts identify: (1) the SMF record header,
(2) the self-defining section, and (3) the log manager statistics record.

 Chapter 23. Interpreting MQSeries performance statistics 383

 Sample SMF statistics records

+ðððððððð ð294 | .m|
+ððððððð2 ðððð1E73 ðð4C551B ðð98149F D4E5F4F1 |.....<...q..MV41|
+ðððððð12 D4D8F3F7 ð2ðððððð ðððððððð ð27ððð24 |MQ37............|
+ðððððð22 ððð1ðððð ðð44ðð3ð ððð1ðððð ðð74ðð4C |...............<|
+ðððððð32 ððð1ðððð ððCððð68 ððð4ðððð ð26ððð1ð |.....{.......-..|
+ðððððð42 ððð1 |.. |
+ðððððð44 D4ðF ðð3ðD8D4 E2E3ðððð ððð7ðððð | M...QMST......|
+ðððððð52 ððð6ðððð ðððDðððð ðððEðððð ðððððððð |................|
+ðððððð62 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ðððððð72 ðððð |.. |

+ðððððð74 C9ðF ðð4CD8C9 E2E3ðððð ðððDðððð | I..<QIST......|
+ðððððð82 ðððEðððð ðððððððð ðððððððð ðððððððð |................|
+ðððððð92 ðððððððð ðð1Aðððð ðððEðððð ðððððððð |................|
+ððððððA2 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððððB2 ðððððððð ðððððððð ðððððððð ððð3 |.............. |

+ððððððCð D7ðF | P.|
+ððððððC2 ðð68D8D7 E2E3ðððð ðððððððð ð7Dððððð |..QPST.......}..|
+ððððððD2 ð7CDðððð ð7CDðððð ðð21ðððð ðððððððð |................|
+ððððððE2 ðððððððð ðð21ðððð ðððððððð ðððððððð |................|
+ððððððF2 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð1ð2 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð112 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð122 ðððððððð ðððð |...... |

+ððððð128 D7ðF ðð68D8D7 E2E3ðððð | P...QPST..|
+ððððð132 ððð1ðððð ð7Dððððð ð7CAðððð ð7CAðððð |.....}..........|
+ððððð142 ðð3ððððð ððð4ðððð ðððððððð ðð29ðððð |................|
+ððððð152 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð162 ðððððððð ððð3ðððð ðððððððð ðððððððð |................|
+ððððð172 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð182 ðððððððð ðððððððð ðððððððð ðððð |.............. |

+ððððð19ð D7ðF | P.|
+ððððð192 ðð68D8D7 E2E3ðððð ððð2ðððð ð41Aðððð |..QPST..........|
+ððððð1A2 ð41Aðððð ðððððððð ðððððððð ðððððððð |................|
+ððððð1B2 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð1C2 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð1D2 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð1E2 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð1F2 ðððððððð ðððð |...... |

+ððððð1F8 D7ðF ðð68D8D7 E2E3ðððð | P...QPST..|
+ððððð2ð2 ððð3ðððð ð41Aðððð ð41Aðððð ðððððððð |................|
+ððððð212 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð222 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð232 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð242 ðððððððð ðððððððð ðððððððð ðððððððð |................|
+ððððð252 ðððððððð ðððððððð ðððððððð ðððð |.............. |

+ððððð26ð D3ðF | L.|
+ððððð262 ðð1ðD8D3 E2E3ðððð ðððððððð ðððð |..QLST........ |

Figure 99. SMF record 115, subtype 2. The underlined sections indicate the SMF record
header, the self-defining section, and a buffer manager statistics record.

384 System Management Guide

 Using accounting data

Chapter 24. Interpreting MQSeries accounting data

You must process any accounting data you collect from SMF to extract useful
information. To do this, you must understand the format of the type 116 records
from SMF.

SMF type 116 record layout
The standard layout for SMF records involves three parts:

Part of record What it is used for

SMF header Provides format, identification, and time and date
information about the record itself.

Self-defining section Defines the location and size of the individual data records
within the SMF record.

Data records The actual data from MQSeries that you want to analyze.

For more information about SMF record formats, see the MVS System
Management Facilities (SMF) manual.

SMF type 116 record header description
Table 26 shows the format of SMF record header (SM116).

Table 26 (Page 1 of 2). SMF record header description

Offsets

Type Len Name Description ExampleDec Hex

0 (0) Structure 28 SM116 SMF record header.

0 (0) Unsigned 2 SM116LEN SMF record length. 01A4

2 (2) 2 Reserved. 0000

4 (4) Unsigned 1 SM116FLG System indicator. 1E

5 (5) Unsigned 1 SM116RTY Record type. The SMF record type, for
MQSeries accounting records this is always
116 (X'74').

74

6 (6) Unsigned 4 SM116TME Time when SMF moved record. 005BD9BD

10 (A) Unsigned 4 SM116DTE Date when SMF moved record. 0094088F

14 (E) Character 4 SM116SID OS/390 subsystem ID. Defines the OS/390
subsystem on which the records were
collected.

D7D4C5E2
(PMES)

18 (12) Character 4 SM116SSI MQSeries subsystem ID. E5C3F140
(VC1)

22 (16) Unsigned 1 SM116STF Record subtype. 00

23 (17) 1 Reserved. 00

24 (18) 4 SM116SEQ Reserved. 00000000

24 (18) 4 SM116BUF Reserved. 00000000

 Copyright IBM Corp. 1993,1999 385

 Using accounting data

Table 26 (Page 2 of 2). SMF record header description

Offsets

Type Len Name Description ExampleDec Hex

28 (1C) Character 0 SM116END End of SMF header and start of self-defining
section.

Note: The (hexadecimal) values in the right-hand column relate to Figure 100.

Figure 100 shows an example of part of an SMF type 116 record. The numbers in
the left-hand column represent the offset, in hexadecimal, from the start of the
record. Each line corresponds to sixteen bytes of data, where each byte is two
hexadecimal characters, for example 0C. The characters in the right-hand column
represent the printable characters for each byte. Non-printable characters are
shown by a period (.) character. In this example, alternate fields are underlined to
help you to see them; refer to Table 26 to identify them.

ðððððððð. ð1A4ðððð 1E74ðð5B D9BDðð94 ð88FD7D4 |.u.....$R..m..PM|
ðððððð1ð. C5E2E5C3 F14ððððð ðððððððð ððððð134 |ESVC1|
ðððððð2ð. ðð7ðððð1 ðððððð54 ððBðððð1 ððððð1ð4 |................|
ðððððð3ð. ðð3ðððð1 ðððððððð ðððððððð ðððððððð |................|
ðððððð4ð. ðððððððð |.... |

Figure 100. Part of an SMF record showing the header and self-defining sections. Alternate
fields in the header are underlined. The characters highlighted in bold represent a
self-defining section.

Processing type 116 SMF records
When you process the data, verify that the records are from MQSeries and that
they are the records you are expecting.

Validate the value of the following fields:

� SM116RTY, the SMF record number = X'74' (116)
� SM116STF, the record subtype, must be 00

Where the information comes from
The information provided in the SMF records comes from the message manager
component of MQSeries. This component processes all MQI requests.

386 System Management Guide

 Using accounting data

 Self-defining sections
A self-defining section of an SMF record tells you where to find an accounting
record, how long it is, and how many times that type of record is repeated (with
different values). The self-defining sections follow the header, at a fixed offset from
the start of the SMF record.

Two types of self-defining section are available to users for type 116 records. Each
self-defining section points to accounting related data. Table 27 summarizes the
offsets from the start of the SMF record header.

Each self-defining record is two fullwords long and has this format:

 ssssssssllllnnnn

where:

ssssssss Fullword containing the offset from start of the SMF record.
llll Halfword giving the length of this data record.
nnnn Halfword giving the number of data records in this SMF record.

For example, in Figure 100, the self-defining section for the type of message
manager accounting data is shown in bold. It is located at offset X'2C' from the
start of the SMF record and contains this information:

� The offset of the message manager accounting data is located X'00000104'
bytes from the start of the SMF record.

� This message manager record is X'0030' bytes long.

� There is one record (X'0001').

Note: Always use offsets in the self-defining sections to locate the accounting
records.

Table 27. Offsets to self-defining sections. Offsets are from the start of the SMF record
and are fixed for each type of accounting source.

Source of accounting data

Offsets

See...Dec Hex

Message manager 28 (X'1C') Table 28 on page 388

Message manager 44 (X'2C') Table 29 on page 388

Note: Other self-defining sections refer to data for IBM use only.

 Chapter 24. Interpreting MQSeries accounting data 387

 Message manager accounting

Message manager accounting
The following tables show the format of the message manager accounting records:

Table 28. Structure of the message manager accounting record QWHS

Offsets

Type Len Name DescriptionDec Hex

0 (0) Structure 112 QWHS Message manager accounting data.

0 (0) 12 Reserved.

12 (0C) Character 4 QWHSSSID Subsystem name.

16 (10) 24 Reserved.

40 (28) Character 8 QWHCAID User ID associated with the OS/390 job.

48 (30) Character 12 QWHCCV Thread cross reference (see “Thread cross reference data”
on page 389).

60 (3C) Character 8 QWHCCN Connection name.

68 (44) 8 Reserved.

76 (4C) Character 8 QWHCOPID User ID associated with the transaction.

84 (54) Signed 4 QWHCATYP Type of connecting system (1=CICS, 2=Batch or TSO,
3=IMS control region, 4=IMS MPP or BMP, 5=Command
server, 6=Channel initiator, 7=RRS Batch).

88 (58) Character 22 QWHCTOKN Accounting token set to the OS/390 accounting information
for the user.

110 (6E) 2 Reserved.

Table 29 (Page 1 of 2). Structure of the message manager accounting record QMAC

Offsets

Type Len Name DescriptionDec Hex

0 (0) Structure 48 QMAC Message manager accounting data.

0 (0) Bitstring 2 QMACID Control block identifier.

2 (2) Unsigned 2 QMACLL Control block length.

4 (4) Character 4 QMACEYEC Control block eye catcher (QMAC).

8 (8) Character 8 QMACCPUT CPU time used (TOD format).

16 (10) Signed 4 QMACPUTA Number of MQPUT requests for messages of length 0
through 99 bytes.

20 (14) Signed 4 QMACPUTB Number of MQPUT requests for messages of length 100
through 999 bytes.

24 (18) Signed 4 QMACPUTC Number of MQPUT requests for messages of length 1000
through 9999 bytes.

28 (1C) Signed 4 QMACPUTD Number of MQPUT requests for messages of length greater
than or equal to 10000 bytes.

32 (20) Signed 4 QMACGETA Number of MQGET requests for messages of length 0
through 99 bytes.

36 (24) Signed 4 QMACGETB Number of MQGET requests for messages of length 100
through 999 bytes.

388 System Management Guide

 Message manager accounting

Table 29 (Page 2 of 2). Structure of the message manager accounting record QMAC

Offsets

Type Len Name DescriptionDec Hex

40 (28) Signed 4 QMACGETC Number of MQGET requests for messages of length 1000
through 9999 bytes.

44 (2C) Signed 4 QMACGETD Number of MQGET requests for messages of length greater
than or equal to 10000 bytes.

 Interpretation
The QMAC data gives you information about the CPU time spent processing
MQSeries calls, and counts of the number of MQPUT and MQGET requests for
messages of different sizes.

The QWHC data gives you information about the user (for example, the user ID
(QWHCAID) and the type of application (QWHCATYP)).

Records containing zero CPU time
Records are sometimes produced that contain zero CPU time in the QMACCPUT
field. These records occur when long running TCBs identified to MQSeries either
terminate or are prompted to output accounting records by accounting trace being
stopped. Such TCBs exist in the CICS adapter and in the channel initiator (for
distributed queuing without CICS). The number of these TCBs with zero CPU time
depends upon how much activity there has been in the system:

� For the CICS adapter, this can result in up to nine records with zero CPU time.

� For the channel initiator, the number of records with zero CPU time can be up
to the sum of Adapters + Dispatchers + 6, as defined in the channel initiator
parameters.

These records reflect the amount of work done under the TCB, and can be ignored.

Thread cross reference data
The interpretation of the data in the thread cross reference (QWHCCV) field varies.
This depends on what the data relates to:

� CICS (QWHCATYP=1) – see Table 30

� IMS (QWHCATYP=3 or 4) – see Table 31 on page 390

� Batch, TSO, or RRS Batch (QWHCATYP=2 or 7) – this field consists of binary
zeros

� Others – no meaningful data

Table 30. Structure of the thread cross reference record for a CICS system

Offsets

Type Len Name DescriptionDec Hex

48 (30) Character 4 QWHCTNO CICS thread number.

52 (34) Character 4 QWHCTRN CICS transaction name.

56 (38) Signed 4 QWHCTASK CICS task number.

 Chapter 24. Interpreting MQSeries accounting data 389

 Sample SMF accounting record

Some entries contain blank characters. These apply to the TCB, rather than to a
specific transaction.

Table 31. Structure of the thread cross reference record for an IMS system

Offsets

Type Len Name DescriptionDec Hex

48 (30) Character 4 QWHCPST IMS partition specification table (PST) region identifier.

52 (34) Character 8 QWHCPSB IMS program specification block (PSB) name.

Special considerations when using IMS accounting records
A single IMS application might write two SMF records. In this case, the figures
from both records should be added to provide the correct totals for the IMS
application.

Sample SMF accounting record
Figure 101 shows a type 116 SMF record. In this figure, the SMF record header,
the self-defining section, and the accounting data record are underlined.

ðððððððð. ð1A4ðððð 1E74ðð5B D9BDðð94 ð88FD7D4 |.u.....$R..m..PM|
ðððððð1ð. C5E2E5C3 F14ððððð ðððððððð1 |ESVC1 |
ðððððð1C. ððððð134 ||
ðððððð2ð. ðð7ðððð1 ðððððð54 ððBðððð1 ððððð1ð4 |................|
ðððððð3ð. ðð3ðððð1 ðððððððð ðððððððð ðððððððð |................|
ðððððð4ð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ðððððð5ð. ðððððððð2 |....
ðððððð54. A9ðCA45A 76B71Að4 A9ðCA45C | z.u!....z.u\|
ðððððð6ð. ðF95CEð3 ðððððððð ðBE78EC5 ðððððððð |.n.......X.E....|
ðððððð7ð. 2Eð52997 ðððððððð ð1F3BDðð ðððððððð |...p.....3......|
ðððððð8ð. ð25777ðð ðððððððC 4ð4ð4ð4ð 4ð4ð4ð4ð |........ |
ðððððð9ð. ðððððððð ðððððððð ððððððð1 ðððððððð |................|
ððððððAð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððððBð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððððCð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððððDð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððððEð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððððFð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððð1ðð. ðððððððð |.... |
ððððð1ð4. D414ðð3ð D8D4C1C3 ðððððððð | M...QMAC....|
ððððð11ð. 1D7AF539 ðððððððA ðððððððA ðððððððA |.:5.............|
ððððð12ð. ðððððððA ðððððððð ðððððððð ðððððððð |................|
ððððð13ð. ðððððððð3 |.... |
ððððð134. ðð24ð11A ððð3ð71ð ð2DAACFð |ð|
ððððð14ð. E5C3F14ð A9ðCA45C ðFC24Eð3 ððððððð3 |VC1 z.u\.B+.....|
ððððð15ð. ððððððð3 ððððððð1 ðð4Cð2ðð C3D6D5Fð |.........<..CONð|
ððððð16ð. F3F4Fð4ð ðððððððð ðððððððð ðððððððð |34ð|
ððððð17ð. D7C1E4D3 D7E4E34ð ðððððððð ðððððððð |PAULPUT|
ððððð18ð. C3D6D5Fð F3F4Fð4ð ððððððð2 ðððððððð |CONð34ð|
ððððð19ð. ðððððððð ðððððððð ðððððððð ðððððððð |................|
ððððð1Að. ðððððððð |.... |

Figure 101. SMF record 116. The subscripts identify: (1) the SMF record header, (2) the
self-defining section, and (3) an example of a message manager accounting record.

390 System Management Guide

 Part 8. Security

Chapter 25. Introduction to MQSeries security 393
Why you need to protect MQSeries resources 393
Implementing MQSeries security . 394

Security controls and options . 394
Resources you can protect . 395

Connection security . 395
API-resource security . 395
Command security . 397
Command resource security . 397

Chapter 26. Using RACF classes and profiles 399
Using RACF security classes . 400
RACF profiles . 401
Switch profiles . 401

How switches work . 402
Profiles used to protect MQSeries resources 404

Profiles for connection security . 404
Profiles for queue security . 406
Profiles for processes . 413
Profiles for namelists . 414
Profiles for alternate user security . 415
Profiles for context security . 417
API-resource security access quick reference 419

Profiles for command security . 421
Profiles for command resource security . 422
Using the RESLEVEL security profile . 425

RESLEVEL and Batch/TSO connections . 425
RESLEVEL and system utilities . 425
RESLEVEL and CICS connections . 425
RESLEVEL and IMS connections . 426
RESLEVEL and channel initiator connections 427
The RESLEVEL profile . 428
Important notes on using RESLEVEL . 430

User IDs for security checking . 430
User IDs for connection security . 430
User IDs for command security and command resource security 431
User IDs for resource security (MQOPEN and MQPUT1) 431
Blank user IDs and UACC levels . 436

Auditing considerations . 437
Auditing RESLEVEL . 437
Statistics . 438

Chapter 27. MQSeries security implementation 439
Security implementation checklist . 439
MQSeries security management . 441

User ID timeouts . 441
User ID reverification . 442
Security refreshes . 442
Displaying security status . 443

Customizing security . 444

 Copyright IBM Corp. 1993,1999 391

Security considerations for using MQSeries with CICS 445
Controlling the security of CICS transactions supplied by MQSeries 445
CICS adapter user IDs . 446
Security considerations for the CICS bridge 447

Security considerations for using MQSeries with IMS 449
Using the OPERCMDS class . 449
Security considerations for the IMS bridge 449

Security considerations for distributed queuing 453
Security considerations for cluster support . 455
Security installation tasks . 456

Setting up MQSeries data set and system security 456
Example security scenario . 458

Security switch settings . 458
MQSeries object definitions . 459
User IDs used in scenarios . 460
Security profiles and accesses required . 460

Security problem determination . 464
Violation messages . 464
What to do if access is allowed or disallowed incorrectly 465

392 System Management Guide

 Managing security

Chapter 25. Introduction to MQSeries security

 Important

This section assumes you are using Resource Access Control Facility (RACF)
as the external security manager (ESM) in your installation. Therefore, if you
are using a different ESM, you must modify the techniques described here.

It also assumes that you are familiar with MQSeries concepts and terminology
described in the MQSeries Application Programming Guide.

Where profile names are shown, replace the subsystem identifier (ssid) in the
profile name with the name of the MQSeries subsystem you are using.

Why you need to protect MQSeries resources
Because MQSeries handles the transfer of information that is potentially valuable, it
needs the safeguard of a security system. This is to ensure that the resources
MQSeries owns and manages are protected from unauthorized access that might
lead to the loss or disclosure of the information. It is essential that none of the
following are accessed or changed by any unauthorized user or process:

� Connections to MQSeries
� MQSeries objects such as queues, processes, and namelists
� MQSeries transmission links
� MQSeries system control commands

 � MQSeries messages
� Context information associated with messages

If you do nothing

If you do nothing about security, the most likely effect is that all users can
access and change every resource. This includes not only local users, but also
those on remote systems using distributed queuing or clients, where the logon
security controls might be less strict than is normally the case for OS/390.

To provide the necessary security, MQSeries uses the OS/390 system authorization
facility (SAF) to route authorization requests to an ESM, for example, RACF.
MQSeries does no security verification of its own. Where distributed queuing or
clients are being used, additional security measures might be required, for which
MQSeries provides channel exits and the MCAUSER channel attribute.

The decision to allow access to an object is made by the ESM and MQSeries
follows that decision. If the ESM cannot make a decision, MQSeries prevents
access to the object.

 Copyright IBM Corp. 1993,1999 393

 Managing security

Implementing MQSeries security
It is easier to set up and administer your security if you first decide on a set of
naming conventions for your MQSeries objects.

To implement the security strategy for your MQSeries subsystem, you must decide:

� How security is to be used and implemented.

� Who is going to use the MQSeries system and resources.

Read through the topics listed above, noting the work that must be done before
anyone uses the system. Then work through “Security implementation checklist” on
page 439 to set up the security you need for each of your MQSeries subsystems.
See “Security installation tasks” on page 456 to see how to tailor your security
system.

To use the RACF examples as shown in this manual, you must be a suitably
authorized user, for example, a SYSTEM SPECIAL user. You can enter the
commands from either TSO in the RACF command form or the RACF ISPF panels.

Security controls and options
You can specify whether security is turned on for the whole MQSeries subsystem,
and you can also control the number of user IDs checked for API-resource security.

 Subsystem security
Subsystem security is a control that specifies whether any security checking is
done on the whole MQSeries subsystem. If the security on your CICS, IMS, TSO,
or batch system is adequate, you can turn off security checking for the MQSeries
subsystem so that no further security checking takes place.

Note: This is the only check that affects other security checks. That is, if you turn
off checking for the MQSeries subsystem, no other MQSeries checking is
done; if you leave it turned on, MQSeries checks your security requirements
for other MQSeries resources.

 RESLEVEL
RESLEVEL is a RACF profile that controls the number of user IDs checked for
MQSeries resource security. Normally, when a user attempts to access an
MQSeries resource, RACF checks the relevant user ID or IDs to see if access is
allowed to that resource. By defining a RESLEVEL profile you can control whether
zero, one or, where applicable, two user IDs are checked.

There is only one RESLEVEL profile per queue manager. Control is implemented
by the access that a user ID has to this profile.

394 System Management Guide

 Resource protection

Resources you can protect
When MQSeries starts, or when instructed by an operator command, MQSeries
determines which resources you want to protect. You can control which security
checks are performed for each individual queue manager. For example, you could
implement a number of security checks on a production queue manager, but none
on a test queue manager.

 Connection security
Connection security checking is carried out either when an application program tries
to connect to a queue manager by issuing an MQCONN request or when the CICS
or IMS adapter issues a connection request. You can turn connection security
checking off for a particular MQSeries subsystem, but if you do any user can
connect to that subsystem.

For the CICS adapter, only the CICS address space user ID is used for the
connection security check—not the individual CICS terminal user ID. For the IMS
adapter, when the IMS control or dependent regions connect to MQSeries, the IMS
address space user ID is checked.

 API-resource security
Resources are checked when an application opens an object with an MQOPEN or
an MQPUT1 call. The RACF access needed to open an object depends on what
open options are specified when the queue is opened.

API-resource security is subdivided into these checks:

 � Queue
 � Process
 � Namelist
 � Context
 � Alternate user

No security checks are performed when opening the queue manager object.

 Queue security
Queue security checking controls who is allowed to open which queue, and what
options they are allowed to open it with. For example, a user might be allowed to
open a queue called PAYROLL.INCREASE.SALARY to browse the messages on
the queue (via the MQOO_BROWSE option), but not to remove messages from the
queue (via one of the MQOO_INPUT_ñ options). If you turn checking for queues
off, any user can open any queue with any valid open option (that is, any valid
MQOO_ñ option on an MQOPEN or MQPUT1 call).

 Process security
Process security checking is carried out when a user opens a process definition
object. If you turn checking for processes off, any user can open any process.

 Chapter 25. Introduction to MQSeries security 395

 Resource protection

 Namelist security
Namelist security checking is carried out when a user opens a namelist. If you turn
checking for namelists off, any user can open any namelist.

Alternate user security
Alternate user security controls whether one user ID can use the authority of
another user ID to open an MQSeries object.

For example:

� A server program running under user ID PAYSERV retrieves a request
message from a queue that was put on the queue by user ID USER1.

� When the server program gets the request message, it processes the request
and puts the reply back into the reply-to-queue specified with the request
message.

� Instead of using its own user ID (PAYSERV) to authorize opening the
reply-to-queue, the server can specify some other user ID, in this case, USER1.
In this example, alternate user security would control whether user ID
PAYSERV is allowed to specify user ID USER1 as an alternate user ID when
opening the reply-to-queue.

If alternate user security is not active, any user can use any other user ID as an
alternate user ID.

The alternate user ID is specified in the AlternateUserId field of the object
descriptor (MQOD).

Note: You can use alternate user IDs on any MQSeries object, for example,
processes or namelists. It does not affect the user ID used by any other
resource managers, for example, for CICS security or for OS/390 data set
security. See “Profiles for alternate user security” on page 415 for more
information.

 Context security
Context is information that is applicable to a particular message and is contained in
the message descriptor (MQMD) that is part of the message. The context
information comes in two sections:

Identity section The user of the application that first put the message to a
queue. It consists of the following fields:

 � UserIdentifier
 � AccountingToken
 � ApplIdentityData

Origin section The application that put the message on the queue where it
is currently stored. It consists of the following fields:

 � PutApplType
 � PutApplName
 � PutDate
 � PutTime
 � ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT1
call is made. This data might be generated by the application, it might be passed

396 System Management Guide

 Resource protection

on from another message, or it might be generated by the queue manager by
default. For example, context data can be used by server programs to check the
identity of the requester, that is, did this message come from the correct
application? Typically, the UserIdentifier field is used to determine the user ID of
an alternate user.

You use context security to control whether the user can specify any of the context
options on any MQOPEN or MQPUT1 call. For information about the context
options, see the MQSeries Application Programming Guide; for descriptions of the
message descriptor fields relating to context, see the MQSeries Application
Programming Reference manual. If you turn context security checking off, any user
can use any of the context options that the queue security allows.

See “Profiles for context security” on page 417 for more information.

 Command security
Command security checking is carried out when a user issues an MQSeries
command from any of the sources described in “Managing MQSeries with
commands and utilities” on page 18. A separate check can be made on the
resource specified by the command as described in “Command resource security.”

If you turn off command checking, issuers of commands are not checked to see
whether they have the authority to issue the command.

If MQSeries commands are entered from a console, the console must have the
OS/390 SYS console authority attribute. Commands that are issued from the
CSQINP1 or CSQINP2 data sets, or internally by the queue manager, are exempt
from all security checking while those for CSQINPX use the user ID of the channel
initiator address space. You should control who is allowed to update these data
sets through normal data set protection. See “Profiles for command security” on
page 421 for more information.

Security checking for the operations and control panels
If you are going to use the operations and control panels, you must have the
appropriate authority to issue the commands corresponding to the actions that you
choose. In addition, you must have READ access to all the ssid.DISPLAY.object
profiles in the MQCMDS class (see Table 42 on page 423) because the panels
use the various DISPLAY commands to gather the information that they present.

Command resource security
Some MQSeries commands, for example defining a local queue, involve the
manipulation of MQSeries resources. When command resource security is active,
each time a command involving a resource is issued, MQSeries checks to see if
the user is allowed to change the definition of that resource.

You can use command resource security to help enforce naming standards. For
example, a payroll administrator might be allowed to delete and define only queues
with names beginning “PAYROLL”. If command resource security is inactive, no
security checks are made on the resource that is being manipulated by the
command. Do not confuse command resource security with command security; the
two are independent.

 Chapter 25. Introduction to MQSeries security 397

 Resource protection

Note: Turning off command resource security checking does not affect the
resource checking that is done specifically for other types of processing that
do not involve commands.

See “Profiles for command resource security” on page 422 for more information.

398 System Management Guide

 RACF classes and profiles

Chapter 26. Using RACF classes and profiles

This chapter discusses the following subjects:

� “Using RACF security classes” on page 400
� “RACF profiles” on page 401
� “Switch profiles” on page 401
� “Profiles used to protect MQSeries resources” on page 404
� “Profiles for command security” on page 421
� “Profiles for command resource security” on page 422
� “Using the RESLEVEL security profile” on page 425
� “User IDs for security checking” on page 430
� “Auditing considerations” on page 437

 Copyright IBM Corp. 1993,1999 399

 RACF security classes

Using RACF security classes
RACF classes are used to hold the profiles required for MQSeries security
checking. Each RACF class holds one or more profiles used at some point in the
checking sequence, as shown in Table 32.

Some classes have a related group class that enables you to put together groups
of resources that have similar access requirements. For details about the
difference between the member and group classes and when to use a member or
group class, see the Security Server (RACF) Security Administrator’s Guide.

The classes must be activated before security checks can be made. To activate all
of the MQSeries classes, you use can use this RACF command:

Table 32. RACF classes used by MQSeries

Member
class

Group
class

Contents

MQADMIN GMQADMIN Profiles:

Used mainly for holding profiles for administration-type
functions. For example:

� Profiles for MQSeries security switches
� The RESLEVEL security profile
� Profiles for alternate user security
� The context security profile
� Profiles for command resource security

MQCONN Profiles used for connection security

MQCMDS Profiles used for command security

MQQUEUE GMQQUEUE Profiles used in queue resource security

MQPROC GMQPROC Profiles used in process resource security

MQNLIST GMQNLIST Profiles used in namelist resource security

SETROPTS CLASSACT(MQADMIN,MQQUEUE,MQPROC,MQNLIST,MQCONN,MQCMDS)

You should also ensure that you set up the classes so that they can accept generic
profiles. You also do this with the RACF command SETROPTS, for example:

SETROPTS GENERIC(MQADMIN,MQQUEUE,MQPROC,MQNLIST,MQCONN,MQCMDS)

400 System Management Guide

 Switch profiles

 RACF profiles
All RACF profiles used by MQSeries are prefixed with the name of the subsystem
that they are to be used by. For example, if queue manager STCD has a queue
called QUEUE_FOR_LOST_CARD_LIST, the appropriate profile would be defined
to RACF as:

RDEFINE MQQUEUE STCD.QUEUE_FOR_LOST_CARD_LIST

This means that different MQSeries subsystems sharing the same RACF database
can have different security options. The subsystem ID in the profile cannot be
generic.

Note: MQSeries allows the use of the percent character (%) in object names.
However, RACF uses the % character as a single-character wild card. This
means that when you define an object name with a % character in its name,
you must consider this when you define the corresponding profile.

For example, for the queue CREDIT_CARD_%_RATE_INQUIRY, on queue
manager CRDP, the profile would be defined to RACF as follows:

RDEFINE MQQUEUE CRDP.CREDIT_CARD_%_RATE_INQUIRY

This queue cannot be protected by a generic profile, such as, CRDP.ññ.

 Switch profiles
To control the security checking performed by MQSeries, you must define switch
profiles. A switch profile is a normal RACF profile that has a special meaning to
MQSeries. The access list in switch profiles is not used by MQSeries.

Each switch profile that MQSeries detects turns off the checking for that type of
resource. Switch profiles are activated during startup of the queue manager. If you
change the switch profiles while the queue manager is running, you can get
MQSeries to recognize the changes by issuing the MQSeries command REFRESH
SECURITY.

The switch profiles must always be defined in the MQADMIN class. Table 33 on
page 402 shows the valid switch profiles and the security type they control. Do not
define them in the GMQADMIN class.

Note: In the descriptions that follow, the parts of profile names shown in
uppercase must be entered exactly as shown. The lowercase 'ssid' part
must be replaced by the queue manager name for the MQSeries subsystem
you are setting up.

 Chapter 26. Using RACF classes and profiles 401

 Switch profiles

Table 33. Switch profiles

Switch profile name Type of resource or checking
that is controlled

ssid.NO.SUBSYS.SECURITY Subsystem security

ssid.NO.CONNECT.CHECKS Connection security

ssid.NO.QUEUE.CHECKS Queue security

ssid.NO.PROCESS.CHECKS Process security

ssid.NO.NLIST.CHECKS Namelist security

ssid.NO.CONTEXT.CHECKS Context security

ssid.NO.ALTERNATE.USER.CHECKS Alternate user security

ssid.NO.CMD.CHECKS Command security

ssid.NO.CMD.RESC.CHECKS Command resource security

Note: Generic switch profiles such as ssid.NO.ññ are not detected by MQSeries

How switches work
MQSeries maintains a switch, which is associated with each of the switch profiles
shown in Table 33. When a security switch is set on, the security checks
associated with the switch are performed. When a security switch is set off, the
security checks associated with switch are bypassed.

When a queue manager is started or when the MQADMIN class is refreshed by the
MQSeries command REFRESH SECURITY, the queue manager first checks the
status of RACF and the MQADMIN class. It sets its subsystem security switch off if
it discovers one of these conditions:

� RACF is inactive or not installed
� The MQADMIN class is not defined
� The MQADMIN class has not been activated

If both RACF and the MQADMIN class are active, the queue manager checks the
MQADMIN class to see whether any of the switch profiles have been defined. It
first checks for the ssid.NO.SUBSYS.SECURITY profile. If this profile is defined,
the queue manager sets its subsystem security switch off, and performs no further
checks. If this profile is not defined, the queue manager sets the subsystem
security switch on and checks whether any of the other switch profiles are present.
If they are, the corresponding MQSeries switch is set off and that type of security is
deactivated.

However, if any MQSeries switch is set on, the queue manager checks the status
of the RACF class associated with the type of security corresponding to the
MQSeries switch. If the class is not installed or not active, the MQSeries switch is
set off. For example, process security checks are not carried out if the MQPROC
class has not been activated. The class not being active is equivalent to defining
an ssid.NO.PROCESS.CHECKS for every queue manager that uses this RACF
database.

402 System Management Guide

 Switch profiles

An example of defining switches
Three MQSeries subsystems have been defined called PROD, DEVT, and TEST
respectively and all MQSeries RACF classes have been defined and activated.
These subsystems have different security requirements:

� Queue manager PROD requires all MQSeries security checking to be active.

This is done by ensuring no PROD.NO.xx profiles are defined in the MQADMIN
class. You can check this by using the RACF command, SEARCH, for
example:

SEARCH CLASS(MQADMIN) MASK(PROD.NO)

and checking the resulting output.

� Queue manager DEVT requires only connection and queue security to be
active.

This is done by defining DEVT.NO.xx profiles for each of the security types you
do not want. For example:

RDEFINE MQADMIN DEVT.NO.CMD.CHECKS
RDEFINE MQADMIN DEVT.NO.CMD.RESC.CHECKS
RDEFINE MQADMIN DEVT.NO.PROCESS.CHECKS
RDEFINE MQADMIN DEVT.NO.NLIST.CHECKS
RDEFINE MQADMIN DEVT.NO.CONTEXT.CHECKS
RDEFINE MQADMIN DEVT.NO.ALTERNATE.USER.CHECKS

You should also check there are no other DEVT.NO.xx profiles defined in the
MQADMIN class.

� Queue manager TEST does not require any security checking at all.

This is done by defining the NO.SUBSYS.SECURITY profile for TEST as
follows:

RDEFINE MQADMIN TEST.NO.SUBSYS.SECURITY

Once MQSeries is active, you can display the current security settings by issuing
the MQSeries command DISPLAY SECURITY.

You can also change the switch settings when MQSeries is running by defining or
deleting the appropriate switch profile in the MQADMIN class. To make the
changes to the switch settings active, you must issue the MQSeries command
REFRESH SECURITY for the MQADMIN class.

See “Security refreshes” on page 442 for more details about using the MQSeries
commands DISPLAY SECURITY and REFRESH SECURITY.

 Chapter 26. Using RACF classes and profiles 403

 Protecting MQSeries resources

Profiles used to protect MQSeries resources
In addition to the switch profiles that might have been defined, RACF profiles must
be defined to protect the MQSeries resources.

If you do not have a resource profile defined for a particular security check, and a
user issues a request that would involve making that check, MQSeries denies
access.

You do not need to define profiles for security types relating to any security switch
profiles that you have deactivated.

Profiles for connection security
If connection security is active, you must define profiles in the MQCONN class and
permit the necessary groups or user IDs access to those profiles, so that they can
connect to MQSeries subsystems.

To enable a connection to be made, you must grant users RACF READ access to
the appropriate profile.

Notes:

1. For information about the user IDs checked for different security requests, see
“User IDs for security checking” on page 430.

2. Resource level security (RESLEVEL) checks are also made at connection time.
For details, see “Using the RESLEVEL security profile” on page 425.

Connection security profiles for the Batch/TSO adapter
Profiles for checking connections from Batch or TSO take the form:

ssid.BATCH

RRS uses the Batch/TSO adapter for connection security.

For connection requests through Batch or TSO, you must permit the job or TSO
user ID to access the connection profile. For example, the following RACF
command allows Batch and TSO users in the CONNTQM1 group to connect to the
queue manager TQM1:

RDEFINE MQCONN TQM1.BATCH UACC(NONE)
PERMIT TQM1.BATCH CLASS(MQCONN) ID(CONNTQM1) ACCESS(READ)

Connection security profiles for the CICS adapter
Profiles for checking connections from CICS take the form:

ssid.CICS

404 System Management Guide

 Protecting MQSeries resources

For connection requests by CICS, you need only define the CICS address space
user ID access to the connection profile.

For example, the following RACF commands allow the CICS address space user ID
KCBCICS to connect to the queue manager TQM1:

RDEFINE MQCONN TQM1.CICS UACC(NONE)
PERMIT TQM1.CICS CLASS(MQCONN) ID(KCBCICS) ACCESS(READ)

Connection security profiles for the IMS adapter
Profiles for checking connections from IMS take the form:

ssid.IMS

For connection requests by IMS, define access to the connection profile for the IMS
control and dependent region user IDs.

For example, the following RACF commands allow:

� The IMS region user ID, IMSREG, to connect to the queue manager TQM1.
� Users in group BMPGRP to submit BMP jobs.

RDEFINE MQCONN TQM1.IMS UACC(NONE)
PERMIT TQM1.IMS CLASS(MQCONN) ID(IMSREG,BMPGRP) ACCESS(READ)

Connection security profiles for distributed queuing
Profiles for checking connections from distributed queuing (without CICS ISC) take
the form:

ssid.CHIN

For connection requests by the channel initiator, define access to the connection
profile for the user ID used by the channel initiator started task address space.

For example, the following RACF commands allow the channel initiator address
space running with user ID DQCTRL to connect to the queue manager TQM1:

RDEFINE MQCONN TQM1.CHIN UACC(NONE)
PERMIT TQM1.CHIN CLASS(MQCONN) ID(DQCTRL) ACCESS(READ)

 Chapter 26. Using RACF classes and profiles 405

 Protecting MQSeries resources

Profiles for queue security
If queue security is active, you must define profiles in the MQQUEUE or
GMQQUEUE classes and permit the necessary groups or user IDs access to these
profiles, so they can issue MQSeries API requests that use queues.

Profiles for queue security take the form:

ssid.queuename

where queuename is the name of the queue being opened, as specified in the object
descriptor on the MQOPEN or MQPUT1 call. For details of how queue security
operates when the queue name is that of an alias or a model queue, see
“Considerations for alias queues” on page 407 and “Considerations for model
queues” on page 409.

The RACF access required to open a queue depends on the MQOPEN or
MQPUT1 options specified. If more than one of the MQOO_ñ and MQPMO_ñ
options is coded, the queue security check is performed for the highest RACF
authority required.

Table 34. Access levels for queue security

MQOPEN or MQPUT1 option RACF access
level required to
access
ssid.queuename

MQOO_BROWSE READ

MQOO_INQUIRE READ

MQOO_BIND_ñ UPDATE

MQOO_INPUT_ñ UPDATE

MQOO_OUTPUT or MQPUT1 UPDATE

MQOO_PASS_ALL_CONTEXT
MQPMO_PASS_ALL_CONTEXT

UPDATE

MQOO_PASS_IDENTITY_CONTEXT
MQPMO_PASS_IDENTITY_CONTEXT

UPDATE

MQOO_SAVE_ALL_CONTEXT UPDATE

MQOO_SET_IDENTITY_CONTEXT
MQPMO_SET_IDENTITY_CONTEXT

UPDATE

MQOO_SET_ALL_CONTEXT
MQPMO_SET_ALL_CONTEXT

UPDATE

MQOO_SET ALTER

406 System Management Guide

 Protecting MQSeries resources

For example, on MQSeries subsystem QM77, all user IDs in the RACF group
PAYGRP are to be given access to get messages from or put messages to all
queues with names beginning with ‘PAY.’. You can do this using these RACF
commands:

RDEFINE MQQUEUE QM77.PAY.ññ UACC(NONE)
PERMIT QM77.PAY.ññ CLASS(MQQUEUE) ID(PAYGRP) ACCESS(UPDATE)

Also, all user IDs in the PAYGRP group must have access to put messages on
queues that do not follow the PAY naming convention. For example:

REQUEST_QUEUE_FOR_PAYROLL
SALARY.INCREASE.SERVER
REPLIES.FROM.SALARY.MODEL

You can do this by defining profiles for these queues in the GMQQUEUE class and
giving access to that class as follows:

RDEFINE GMQQUEUE PAYROLL.EXTRAS UACC(NONE)
 ADDMEM(QM77.REQUEST_QUEUE_FOR_PAYROLL,
 QM77.SALARY.INCREASE.SERVER,
 QM77.REPLIES.FROM.SALARY.MODEL)
PERMIT PAYROLL.EXTRAS CLASS(GMQQUEUE) ID(PAYGRP) ACCESS(UPDATE)

Note: If the RACF access level that an application has to a queue security profile
is changed, the changes will only take effect for any new object handles
obtained (that is, new MQOPENs) for that queue. Those handles already in
existence at the time of the change retain their existing access to the
queue. If an application is required to use its changed access level to the
queue rather than its existing access level, it must close and re-open the
queue for each object handle that requires the change.

Other types of security checks might also occur at the time the queue is opened
depending on the open options specified and the types of security that are active.
See also “Profiles for context security” on page 417 and “Profiles for alternate user
security” on page 415. For a summary table showing the open options and the
security authorization needed when queue, context, and alternate user security are
all active, see Table 41 on page 419.

Considerations for alias queues
When you issue an MQOPEN or MQPUT1 call for an alias queue, MQSeries
makes a resource check against the queue name specified in the object descriptor
(MQOD) on the call. It does not check if the user is allowed access to the target
queue name.

For example, an alias queue called PAYROLL.REQUEST resolves to a target
queue of PAY.REQUEST. If queue security is active, you need only be authorized
to access the queue PAYROLL.REQUEST. No check is made to see if you are
authorized to access the queue PAY.REQUEST.

 Chapter 26. Using RACF classes and profiles 407

 Protecting MQSeries resources

Using alias queues to distinguish between MQGET and MQPUT
requests
The range of MQI calls available in one access level can cause a problem if you
want to restrict access to a queue to allow only the MQPUT call or only the
MQGET call. A queue can be protected by defining two aliases that resolve to that
queue: one that enables applications to get messages from the queue, and one
that enable applications to put messages on the queue.

The following text gives you an example of how you can define your queues to
MQSeries:

DEFINE QLOCAL(MUST_USE_ALIAS_TO_ACCESS) GET(ENABLED)
 PUT(ENABLED)

DEFINE QALIAS(USE_THIS_ONE_FOR_GETS) GET(ENABLED)
 PUT(DISABLED) TARGQ(MUST_USE_ALIAS_TO_ACCESS)

DEFINE QALIAS(USE_THIS_ONE_FOR_PUTS) GET(DISABLED)
 PUT(ENABLED) TARGQ(MUST_USE_ALIAS_TO_ACCESS)

You must also make these RACF definitions:

RDEFINE MQQUEUE ssid.MUST_USE_ALIAS_TO_ACCESS UACC(NONE)
RDEFINE MQQUEUE ssid.USE_THIS_ONE_FOR_GETS UACC(NONE)
RDEFINE MQQUEUE ssid.USE_THIS_ONE_FOR_PUTS UACC(NONE)

Then you ensure no users have access to the queue
ssid.MUST_USE_ALIAS_TO_ACCESS, and give the appropriate users or groups
access to the alias. You can do this using these RACF commands:

PERMIT ssid.USE_THIS_ONE_FOR_GETS CLASS(MQQUEUE)
 ID(GETUSER,GETGRP) ACCESS(UPDATE)
PERMIT ssid.USE_THIS_ONE_FOR_PUTS CLASS(MQQUEUE)
 ID(PUTUSER,PUTGRP) ACCESS(UPDATE)

This means user ID GETUSER and user IDs in the group GETGRP are only
allowed to get messages on MUST_USE_ALIAS_TO_ACCESS through the alias
queue USE_THIS_ONE_FOR_GETS; and user ID PUTUSER and user IDs in the
group PUTGRP are only allowed to put messages through the alias queue
USE_THIS_ONE_FOR_PUTS.

If you want to use a technique like this, you must inform your application
developers, so they can design their programs appropriately.

408 System Management Guide

 Protecting MQSeries resources

Considerations for model queues
When you open a model queue, MQSeries security makes two queue security
checks:

1. Are you authorized to access the model queue?

2. Are you authorized to access the dynamic queue to which the model queue
resolves?

If the dynamic queue name contains a trailing ñ character, this ñ is replaced by a
character string generated by MQSeries, to create a dynamic queue with a unique
name. However, because the whole name, including this generated string, is used
for checking authority, you should define generic profiles for these queues.

For example, an MQOPEN call uses a model queue name of
CREDIT.CHECK.REPLY.MODEL and a dynamic queue name of CREDIT.REPLY.ñ
on queue manager MQSP. To do this, you must issue the following RACF
commands to define the necessary queue profiles:

RDEFINE MQQUEUE MQSP.CREDIT.CHECK.REPLY.MODEL
RDEFINE MQQUEUE MQSP.CREDIT.REPLY.ññ

You must also issue the corresponding RACF PERMIT commands to allow the user
access to these profiles.

A typical dynamic queue name created by an MQOPEN is something like
CREDIT.REPLY.A346EF00367849A0. The precise value of the last qualifier is
unpredictable; this is why you should use generic profiles for such queue names.

A number of MQSeries utilities put messages on dynamic queues. You should
define profiles for the following dynamic queue names, and provide RACF UPDATE
access to the relevant user IDs (see “User IDs for security checking” on page 430
for the correct user IDs):

SYSTEM.CSQUTIL.\ (used by CSQUTIL)
SYSTEM.CSQOREXX.\ (used by the operations and control panels)
SYSTEM.CSQXCMD.\ (used by the channel initiator when processing CSQINPX)
CSQ4SAMP.\ (used by the MQSeries supplied samples)

You might also consider defining a profile to control use of the dynamic queue
name used by default in the application programming copy members. The
MQSeries-supplied copybooks contain a default DynamicQName, which is CSQ.ñ.
This enables an appropriate RACF profile to be established.

Note: Do not allow application programmers to specify a single ñ for the dynamic
queue name. If you do, you must define an ssid.ññ profile in the
MQQUEUE class, and you would have to give it wide-ranging access. This
means that this profile could also be used for other non-dynamic queues
that do not have a more specific RACF profile. Your users could, therefore,
gain access to queues you do not want them to access.

 Chapter 26. Using RACF classes and profiles 409

 Protecting MQSeries resources

Close options on permanent dynamic queues
If an application opens a permanent dynamic queue that was created by another
application and then attempts to delete that queue with an MQCLOSE option, some
extra security checks are applied when the attempt is made. See Table 35.

Table 35. Access levels for close options on permanent dynamic queues

MQCLOSE option RACF access
level required to
ssid.queuename

MQCO_DELETE ALTER

MQCO_DELETE_PURGE ALTER

Security and remote queues
When a message is put on a remote queue, the queue security that is performed
by the local queue manager depends on how the remote queue is specified when it
is opened. For example:

1. If the remote queue has been defined on the local queue manager through the
MQSeries command, DEFINE QREMOTE, the queue that is checked is the
name of the remote queue. For example, if a remote queue is defined on
queue manager MQS1 as follows:

DEFINE QREMOTE(BANK7.CREDIT.REFERENCE)
 RNAME(CREDIT.SCORING.REQUEST)
 RQMNAME(BNK7)
 XMITQ(BANK1.TO.BANK7)

In this case, a profile for BANK7.CREDIT.REFERENCE, must be defined in the
MQQUEUE class.

2. If the ObjectQMgrName for the request does not resolve to the local queue
manager, the queue used for queue security is the name of the transmission
queue used to send messages to the remote queue manager specified by the
MQOD_ObjectQMgrName.

For example, the transmission queue BANK1.TO.BANK7 is defined on queue
manager MQS1. An MQPUT1 request is then issued on MQS1 specifying
ObjectName as BANK1.INTERBANK.TRANSFERS and an ObjectQMgrName of
BANK1.TO.BANK7. In this case, the user performing the request must have
access to MQS1.BANK1.TO.BANK7.

3. If you make an MQPUT request to a queue and specify ObjectQMgrName as the
name of an alias of the local queue manager, only the queue name is checked
for security, not that of the queue manager.

When the message gets to the remote queue manager it might be subject to
additional security processing. For more information, see the MQSeries
Intercommunication manual.

410 System Management Guide

 Protecting MQSeries resources

Dead-letter queue security
Undelivered messages can be put on a special queue called the dead-letter queue.
If you have sensitive data that could possibly end up on this queue, you must
consider the security implications of this because you do not want unauthorized
users to be able to retrieve this data.

Each of the following must be able to put messages onto the dead-letter queue:

 � Application programs.

� The channel initiator address space and any MCA user IDs. (If the RESLEVEL
profile is not present, or is defined so that network-received user IDs are
checked, the network-received user ID also needs authority to put messages
on the dead-letter queue.)

� For distributed queuing using CICS, the various MCA transactions.

� CKTI, the MQSeries-supplied CICS task initiator.

� CSQQTRMN, the MQSeries-supplied IMS trigger monitor.

The only application able to retrieve messages from the dead-letter queue should
be a ‘special’ application that processes these messages. However, a problem
arises if you give applications RACF UPDATE authority to the dead-letter queue for
MQPUTs because they can then automatically retrieve messages from the queue
using MQGET calls. You cannot disable the dead-letter queue for get operations
because, if you do, not even the ‘special’ applications could retrieve the messages.

One solution to this problem is set up a two-level access to the dead-letter queue.
CKTI, message channel agent transactions or the channel initiator address space,
and ‘special’ applications have direct access; other applications can only access the
dead-letter queue through an alias queue. This alias is defined to allow
applications to put messages on the dead-letter queue, but not to get messages
from it.

This is how it might work:

1. Define the real dead-letter queue with attributes PUT(ENABLED) and
GET(ENABLED), as shown in the sample thlqual.SCSQPROC(CSQ4INYG).

2. Give RACF UPDATE authority for the dead-letter queue to the following user
IDs:

� User IDs that the CKTI and the MCAs or channel initiator address space
run under.

� The user IDs associated with the ‘special’ dead-letter queue processing
application.

3. Define an alias queue that resolves to the real dead-letter queue, but give the
alias queue these attributes: PUT(ENABLED) and GET(DISABLED). Give the
alias queue a name with the same stem as the dead-letter queue name but
append the characters “.PUT” to this stem. For example, if the dead-letter
queue name is ssid.DEAD.QUEUE, the alias queue name would be
ssid.DEAD.QUEUE.PUT.

 Chapter 26. Using RACF classes and profiles 411

 Protecting MQSeries resources

4. To put a message on the dead-letter queue, an application uses the alias
queue. This what your application must do:

� Retrieve the name of the real dead-letter queue. To do this, it opens the
queue manager object using MQOPEN and then issues an MQINQ to get
the dead-letter queue name.

� Build the name of the alias queue by appending the characters ‘.PUT’ to
this name, in this case, ssid.DEAD.QUEUE.PUT.

� Open the alias queue, ssid.DEAD.QUEUE.PUT.

� Put the message on the real dead-letter queue by issuing an MQPUT
against the alias queue.

5. Give the user ID associated with the application RACF UPDATE authority to
the alias, but no access (authority NONE) to the real dead-letter queue. This
means that:

� The application can put messages onto the dead-letter queue using the
alias queue.

� The application cannot get messages from the dead-letter queue using the
alias queue because the alias queue is disabled for get operations.

The application cannot get any messages from the real dead-letter queue either
because it does have the correct RACF authority.

Table 36 summarizes the RACF authority required for the various participants in
this solution.

If you use this method, the application cannot determine the maximum message
length, MAXMSGL, of the dead-letter queue. This is because the MAXMSGL
attribute cannot be retrieved from an alias queue. Therefore, your application
should assume that the maximum message length is 4 MB, the maximum size
MQSeries for OS/390 supports. The real dead-letter queue should also be defined
with a MAXMSGL attribute of 4 MB.

Note: User-written application programs should not normally use alternate user
authority to put messages on the dead-letter queue. This reduces the
number of user IDs that have access to the dead-letter queue.

Table 36. RACF authority to the dead-letter queue and its alias

Associated user IDs
Real dead-letter queue
(ssid.DEAD.QUEUE)

Alias dead-letter queue
(ssid.DEAD.QUEUE.PUT)

MCA or channel initiator
address space and CKTI

UPDATE NONE

'Special' application
(for dead-letter queue
processing)

UPDATE NONE

User-written application
user IDs

NONE UPDATE

412 System Management Guide

 Protecting MQSeries resources

System queue security
Many of the system queues are accessed by the ancillary parts of the queue
manager:

� The CSQUTIL utility
� The operations and control panels
� The channel initiator address space for distributed queuing without CICS
� The CICS transactions for distributed queuing using CICS

The user IDs under which these run must be given RACF access to these queues,
as shown in the following table:

 CSQUTIL Operations
and control

panels

Channel
initiator for
distributed

queuing
without

CICS

Transactions
for

distributed
queuing

with CICS

SYSTEM.ADMIN.CHANNEL.EVENT UPDATE

SYSTEM.CHANNEL.COMMAND UPDATE

SYSTEM.CHANNEL.INITQ UPDATE

SYSTEM.CHANNEL.SEQNO UPDATE

SYSTEM.CHANNEL.SYNCQ UPDATE

SYSTEM.CLUSTER.COMMAND.QUEUE ALTER

SYSTEM.CLUSTER.REPOSITORY.QUEUE UPDATE

SYSTEM.CLUSTER.TRANSMIT.QUEUE ALTER

SYSTEM.COMMAND.INPUT UPDATE UPDATE UPDATE

SYSTEM.COMMAND.REPLY.MODEL UPDATE UPDATE UPDATE

SYSTEM.CSQOREXX.ñ UPDATE

SYSTEM.CSQUTIL.ñ UPDATE

SYSTEM.CSQXCMD.ñ UPDATE

Profiles for processes
If process security is active, you must define profiles in the MQPROC or
GMQPROC classes and permit the necessary groups or user IDs access to these
profiles, so they can use MQI requests that use processes. Profiles for processes
take the form:

ssid.processname

where processname is the name of the process being opened. The following table
shows the access required for opening a process.

 Chapter 26. Using RACF classes and profiles 413

 Protecting MQSeries resources

For example, on queue manager MQS9, the RACF group INQVPRC must be able
to inquire (MQINQ) on all processes starting with the letter V. The RACF
definitions for this would be:

Table 37. Access levels for process security

MQOPEN option RACF access
level required to
ssid.processname

MQOO_INQUIRE READ

RDEFINE MQPROC MQS9.Vñ UACC(NONE)
PERMIT MQS9.Vñ CLASS(MQPROC) ID(INQVPRC) ACCESS(READ)

Alternate user security might also be active, depending on the open options
specified when a process definition object is opened.

Profiles for namelists
If namelist security is active, you define profiles in the MQNLIST or GMQNLIST
classes and give the necessary groups or user IDs access to these profiles.

Profiles for namelists take the form:

ssid.namelistname

where namelistname is the name of the namelist being opened. The following table
shows the access required for opening a namelist.

For example, on queue manager PQM3, the RACF group DEPT571 must be able
to inquire (MQINQ) on these namelists:

� All namelists starting with “DEPT571.”
 � PRINTER/DESTINATIONS/DEPT571
 � AGENCY/REQUEST/QUEUES
 � WAREHOUSE.BROADCAST

Table 38. Access levels for namelist security

MQOPEN option RACF access
level required to
ssid.namelistname

MQOO_INQUIRE READ

414 System Management Guide

 Protecting MQSeries resources

The RACF definitions to do this are:

RDEFINE MQNLIST PQM3.DEPT571.ññ UACC(NONE)
PERMIT PQM3.DEPT571.ññ CLASS(MQNLIST) ID(DEPT571) ACCESS(READ)

RDEFINE GMQNLIST NLISTS.FOR.DEPT571 UACC(NONE)
 ADDMEM(PQM3.PRINTER/DESTINATIONS/DEPT571,
 PQM3.AGENCY/REQUEST/QUEUES,
 PQM3.WAREHOUSE.BROADCAST)
PERMIT NLISTS.FOR.DEPT571 CLASS(GMQNLIST) ID(DEPT571) ACCESS(READ)

Alternate user security might be active, depending on the options specified when a
namelist object is opened.

Profiles for alternate user security
If alternate user security is active, you must define profiles in the MQADMIN class
and permit the necessary groups or user IDs access to these profiles, so that they
can use the ALTERNATE_USER_AUTHORITY options when the queue is opened.

Profiles for alternate user security take the following form:

ssid.ALTERNATE.USER.alternateuserid

where alternateuserid is the value of the AlternateUserId field in the object
descriptor. The following table shows the access when specifying an alternate user
option.

In addition to alternate user security checks, other security checks for queue,
process, namelist, and context security can also be made. The alternate user ID, if
provided, is only used for security checks on queue, process definition, or namelist
resources. For alternate user and context security checks, the user ID requesting
the check is used. For details about how user IDs are handled, see “User IDs for
security checking” on page 430. For a summary table showing the open options
and the security checks required when queue, context and alternate user security
are all active, see Table 41 on page 419.

An alternate user profile gives the requesting user ID access to resources
associated with the user ID specified in the alternate user ID. For example, the
payroll server running under user ID PAYSERV on queue manager QMPY
processes requests from personnel user IDs, all of which start with PS. To cause
the work performed by the payroll server to be carried out under the user ID of the
requesting user, alternate user authority is used. The payroll server knows which
user ID to specify as the alternate user ID because the requesting programs
generate messages using the MQPMO_DEFAULT_CONTEXT put message option.

Table 39. Access levels for alternate user security

MQOPEN or MQPUT1 option RACF access level required

MQOO_ALTERNATE_USER_AUTHORITY
MQPMO_ALTERNATE_USER_AUTHORITY

UPDATE

 Chapter 26. Using RACF classes and profiles 415

 Protecting MQSeries resources

See “User IDs for security checking” on page 430 for more details about from
where alternate user IDs are obtained.

The following example RACF definitions enable the server program to specify
alternate user IDs starting with the characters PS:

REDEFINE MQADMIN QMPY.ALTERNATE.USER.PSñ UACC(NONE)
PERMIT QMPY.ALTERNATE.USER.PSñ CLASS(MQADMIN) ID(PAYSERV) ACCESS(UPDATE)

Notes:

1. The AlternateUserId field in the object descriptor is 12 bytes long. All 12
bytes are used in the profile checks, but only the first eight bytes are used as
the user ID by MQSeries. If this user ID truncation is not desirable, application
programs making the request should translate any alternate user ID over 8
bytes into something more appropriate.

2. If you specify MQOO_ALTERNATE_USER_AUTHORITY or
MQPMO_ALTERNATE_USER_AUTHORITY and you do not specify an
AlternateUserId field in the object descriptor, a user ID of blanks is used. For
the purposes of the alternate user security check the user ID used for the
AlternateUserId qualifier is -BLANK-. For example:

RDEF MQADMIN ssid.ALTERNATE.USER.-BLANK-

If the user is allowed to access this profile, all further checks are made with a
user ID of blanks. For details of blank user IDs, see “Blank user IDs and
UACC levels” on page 436.

The administration of alternate user IDs is easier if you have a naming convention
for user IDs that enables you to use generic alternate user profiles. If they do not,
you could use the RACF RACVARS feature. For details about using RACVARS,
see the Security Server (RACF) Security Administrator’s Guide.

When a message is put to a queue that has been opened with alternate user
authority and the context of the message has been generated by the queue
manager, the MQMD_USER_IDENTIFIER field is set to the alternate user ID.

416 System Management Guide

 Protecting MQSeries resources

Profiles for context security
If context security is active, you must define a profile in the MQADMIN class called:

ssid.CONTEXT

You must give the necessary groups or user IDs access to this profile. The
following table shows the access level required, depending on the specification of
the context options when the queue is opened.

If you put commands on the system-command input queue, use the default context
put message option to associate the correct user ID with the command.

For example, the MQSeries-supplied utility program CSQUTIL can be used to
off-load and reload messages in queues. When off-loaded messages are restored
to a queue, the CSQUTIL utility uses the MQOO_SET_ALL_CONTEXT option to
return the messages to their original state. In addition to the queue security
required by this open option, context authority is also required. For example, if this
authority is required by the group BACKGRP on queue manager MQS1, this would
be defined by:

Table 40. Access levels for context security

MQOPEN or MQPUT1 option RACF access
level required to
ssid.CONTEXT

MQPMO_NO_CONTEXT No context
security check

MQPMO_DEFAULT_CONTEXT No context
security check

MQOO_SAVE_ALL_CONTEXT No context
security check

MQOO_PASS_IDENTITY_CONTEXT
MQPMO_PASS_IDENTITY_CONTEXT

READ

MQOO_PASS_ALL_CONTEXT
MQPMO_PASS_ALL_CONTEXT

READ

MQOO_SET_IDENTITY_CONTEXT
MQPMO_SET_IDENTITY_CONTEXT

UPDATE

MQOO_SET_ALL_CONTEXT
MQPMO_SET_ALL_CONTEXT

CONTROL

MQOO_OUTPUT or MQPUT1
(Usage=XMITQ)

CONTROL

Note: The user ID of the receiving channel initiator address space (or the MCA user ID
if one has been specified) requires CONTROL access to ssid.CONTEXT in order to put
messages on the destination queue. If the RESLEVEL profile requires that two user IDs
are checked, the network-received user ID also needs CONTROL access to
ssid.CONTEXT.

RDEFINE MQADMIN MQS1.CONTEXT UACC(NONE)
PERMIT MQS1.CONTEXT CLASS(MQADMIN) ID(BACKGRP) ACCESS(CONTROL)

 Chapter 26. Using RACF classes and profiles 417

 Protecting MQSeries resources

Depending on the options specified, and the types of security performed, other
types of security checks might also occur when the queue is opened. These
include queue security (see “Profiles for queue security” on page 406), and
alternate user security (see “Profiles for alternate user security” on page 415). For
a summary table showing the open options and the security checks required when
queue, context and alternate user security are all active, see Table 41 on
page 419.

418 System Management Guide

 Protecting MQSeries resources

API-resource security access quick reference
Table 41 summarizes the MQOPEN, MQPUT1, and MQCLOSE options and the
access required by the different resource security types.

Table 41. MQOPEN, MQPUT1, and MQCLOSE options and the security authorization required. Callouts shown
like this (1) refer to the notes following this table.

Minimum RACF access level required

RACF class: MQQUEUE (1) MQADMIN MQADMIN
RACF profile: (2) (3) (4)

MQOPEN option

MQOO_INQUIRE (1) READ (5) No check No check

MQOO_BROWSE READ No check No check

MQOO_INPUT_ñ UPDATE No check No check

MQOO_SAVE_ALL_CONTEXT (6) UPDATE No check No check

MQOO_OUTPUT (USAGE=NORMAL) (7) UPDATE No check No check

MQOO_PASS_IDENTITY_CONTEXT (8) UPDATE READ No check

MQOO_PASS_ALL_CONTEXT (8) (9) UPDATE READ No check

MQOO_SET_IDENTITY_CONTEXT (8) (9) UPDATE UPDATE No check

MQOO_SET_ALL_CONTEXT (8) (10) UPDATE CONTROL No check

MQOO_OUTPUT (USAGE=XMITQ) (11) UPDATE CONTROL No check

MQOO_SET ALTER No check No check

MQOO_ALTERNATE_USER_AUTHORITY (1) (12) (12) UPDATE

MQPUT1 option

Put on a normal queue (7) UPDATE No check No check

MQPMO_PASS_IDENTITY_CONTEXT UPDATE READ No check

MQPMO_PASS_ALL_CONTEXT UPDATE READ No check

MQPMO_SET_IDENTITY_CONTEXT UPDATE UPDATE No check

MQPMO_SET_ALL_CONTEXT UPDATE CONTROL No check

MQOO_OUTPUT
Put on a transmission queue (11)

UPDATE CONTROL No check

MQPMO_ALTERNATE_USER_AUTHORITY (13) (13) UPDATE

MQCLOSE option

MQCO_DELETE (14) ALTER No check No check

MQCO_DELETE_PURGE (14) ALTER No check No check

Notes:

1. This option is not restricted to queues. Use the MQNLIST class for namelists,
and the MQPROC class for processes.

2. Use RACF profile: ssid.localresourcename

3. Use RACF profile: ssid.CONTEXT

4. Use RACF profile: ssid.ALTERNATE.USER.alternateuserid

alternateuserid is the user identifier that is specified in the AlternateUserId
field of the object descriptor. Note that all 12 characters of the
AlternateUserId field are used for this check, unlike other checks where only
the first 8 characters of a user identifier are used.

5. No check is made when opening the queue manager for inquiries.

 Chapter 26. Using RACF classes and profiles 419

 Protecting MQSeries resources

6. MQOO_INPUT_ñ must be specified as well. This is valid for a local, model or
alias queue.

7. This check is done for a local or model queue that has a Usage queue attribute
of MQUS_NORMAL, and also for an alias or remote queue (that is defined to
the connected queue manager.) If the queue is a remote queue that is opened
specifying an ObjectQMgrName (not the name of the connected queue manager)
explicitly, the check is carried out against the queue with the same name as
ObjectQMgrName (which must be a local queue with a Usage queue attribute of
MQUS_TRANSMISSION).

8. MQOO_OUTPUT must be specified as well.

9. MQOO_PASS_IDENTITY_CONTEXT is implied as well by this option.

10. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT and
MQOO_SET_IDENTITY_CONTEXT are implied as well by this option.

11. This check is done for a local or model queue that has a Usage queue attribute
of MQUS_TRANSMISSION, and is being opened directly for output. It does
not apply if a remote queue is being opened.

12. At least one of MQOO_INQUIRE, MQOO_BROWSE, MQOO_INPUT_ñ,
MQOO_OUTPUT or MQOO_SET must be specified as well. The check carried
out is the same as that for the other options specified.

13. The check carried out is the same as that for the other options specified.

14. This only applies when a permanent dynamic queue has been opened directly,
that is, not opened through a model queue.

420 System Management Guide

 Command security profiles

Profiles for command security
If you have not defined the command security switch profile,
ssid.NO.CMD.CHECKS because you want security checking for commands, you
must add profiles to the MQCMDS class.

The names of the RACF profiles for command security checking are based on the
command names themselves. These profiles take the form:

ssid.verb.pkw

For example, the profile name for the MQSeries command ALTER QLOCAL in
subsystem AMQS is:

AMQS.ALTER.QLOCAL

Table 42 on page 423 shows, for each MQSeries command, the profiles required
for command security checking to be carried out, and the corresponding access
level for each profile in the MQCMDS class.

 Chapter 26. Using RACF classes and profiles 421

 Command resources profiles

Profiles for command resource security
If you have not defined the command resource security switch profile,
ssid.NO.CMD.RESC.CHECKS, because you want security checking for resources
associated with commands, you must add resource profiles to the MQADMIN class
for each resource.

Profiles for command resource security checking take the form:

ssid.type.localresourcename

For example, the RACF profile name for command resource security checking
against the model queue CREDIT.WORTHY in subsystem AMQS is:

AMQS.QUEUE.CREDIT.WORTHY

Because the profiles for all types of command resource are held in the MQADMIN
class, the “type” part of the profile name is needed in the profile to distinguish
between resources of different types that have the same name. The “type” part of
the profile name can be CHANNEL, QUEUE, PROCESS, or NAMELIST. For
example, a user might be authorized to define ssid.QUEUE.PAYROLL.ONE, but not
authorized to define ssid.PROCESS.PAYROLL.ONE.

Table 42 on page 423 shows for each MQSeries command, the profiles you need
to enable command resource security checking to be carried out, and the access
level that you need for each in the MQADMIN class.

Command resource security checking for alias queues
When you define an alias queue, command resource security checks are only
performed against the name of the alias queue, not against the name of the target
queue to which the alias resolves.

Alias queues can resolve to both local and remote queues. If you do not want to
permit users access to certain local or remote queues, you must do both of the
following:

1. Do not allow the users access to these local and remote queues.

2. Restrict the users from being able to define aliases for these queues. That is,
prevent them from being able to issue DEFINE QALIAS and ALTER QALIAS
commands.

Command resource security checking for remote queues
When you define a remote queue, command resource security checks are
performed only against the name of the remote queue. No checks are performed
against the names of the queues specified in the RNAME or XMITQ attributes in
the remote queue object definition. For more information about the attributes of
queues, see the MQSeries Command Reference manual.

422 System Management Guide

 Command resources profiles

Table 42 (Page 1 of 2). Commands, profiles, and their access levels

Command

MQCMDS MQADMIN

Profile Access
level

Profile Access
level

ALTER CHANNEL ssid.ALTER.CHANNEL ALTER ssid.CHANNEL.channel ALTER

ALTER NAMELIST ssid.ALTER.NAMELIST ALTER ssid.NAMELIST.namelist ALTER

ALTER PROCESS ssid.ALTER.PROCESS ALTER ssid.PROCESS.process ALTER

ALTER QALIAS ssid.ALTER.QALIAS ALTER ssid.QUEUE.queue ALTER

ALTER QLOCAL ssid.ALTER.QLOCAL ALTER ssid.QUEUE.queue ALTER

ALTER QMGR ssid.ALTER.QMGR ALTER No check

ALTER QMODEL ssid.ALTER.QMODEL ALTER ssid.QUEUE.queue ALTER

ALTER QREMOTE ssid.ALTER.QREMOTE ALTER ssid.QUEUE.queue ALTER

ALTER SECURITY ssid.ALTER.SECURITY ALTER No check

ALTER STGCLASS ssid.ALTER.STGCLASS ALTER No check

ALTER TRACE ssid.ALTER.TRACE ALTER No check

ARCHIVE LOG ssid.ARCHIVE.LOG CONTROL No check

DEFINE BUFFPOOL ssid.DEFINE.BUFFPOOL ALTER No check

DEFINE CHANNEL ssid.DEFINE.CHANNEL ALTER ssid.CHANNEL.channel ALTER

DEFINE MAXSMSGS ssid.DEFINE.MAXSMSGS ALTER No check

DEFINE NAMELIST ssid.DEFINE.NAMELIST ALTER ssid.NAMELIST.namelist ALTER

DEFINE PROCESS ssid.DEFINE.PROCESS ALTER ssid.PROCESS.process ALTER

DEFINE PSID ssid.DEFINE.PSID ALTER No check

DEFINE QALIAS ssid.DEFINE.QALIAS ALTER ssid.QUEUE.queue ALTER

DEFINE QLOCAL ssid.DEFINE.QLOCAL ALTER ssid.QUEUE.queue ALTER

DEFINE QMODEL ssid.DEFINE.QMODEL ALTER ssid.QUEUE.queue ALTER

DEFINE QREMOTE ssid.DEFINE.QREMOTE ALTER ssid.QUEUE.queue ALTER

DEFINE STGCLASS ssid.DEFINE.STGCLASS ALTER No check

DELETE CHANNEL ssid.DELETE.CHANNEL ALTER ssid.CHANNEL.channel ALTER

DELETE NAMELIST ssid.DELETE.NAMELIST ALTER ssid.NAMELIST.namelist ALTER

DELETE PROCESS ssid.DELETE.PROCESS ALTER ssid.PROCESS.process ALTER

DELETE QALIAS ssid.DELETE.QALIAS ALTER ssid.QUEUE.queue ALTER

DELETE QLOCAL ssid.DELETE.QLOCAL ALTER ssid.QUEUE.queue ALTER

DELETE QMODEL ssid.DELETE.QMODEL ALTER ssid.QUEUE.queue ALTER

DELETE QREMOTE ssid.DELETE.QREMOTE ALTER ssid.QUEUE.queue ALTER

DELETE STGCLASS ssid.DELETE.STGCLASS ALTER No check

DISPLAY CHANNEL ssid.DISPLAY.CHANNEL READ No check

DISPLAY CHSTATUS ssid.DISPLAY.CHSTATUS READ No check

DISPLAY CLUSQMGR ssid.DISPLAY.CLUSQMGR READ No check

DISPLAY CMDSERV ssid.DISPLAY.CMDSERV READ No check

DISPLAY DQM ssid.DISPLAY.DQM READ No check

DISPLAY MAXSMSGS ssid.DISPLAY.MAXSMSGS READ No check

DISPLAY NAMELIST ssid.DISPLAY.NAMELIST READ No check

DISPLAY PROCESS ssid.DISPLAY.PROCESS READ No check

DISPLAY QMGR ssid.DISPLAY.QMGR READ No check

DISPLAY QUEUE ssid.DISPLAY.QUEUE READ No check

 Chapter 26. Using RACF classes and profiles 423

 Command resources profiles

Table 42 (Page 2 of 2). Commands, profiles, and their access levels

Command

MQCMDS MQADMIN

Profile Access
level

Profile Access
level

DISPLAY THREAD ssid.DISPLAY.THREAD READ No check

DISPLAY SECURITY ssid.DISPLAY.SECURITY READ No check

DISPLAY STGCLASS ssid.DISPLAY.STGCLASS READ No check

DISPLAY TRACE ssid.DISPLAY.TRACE READ No check

DISPLAY USAGE ssid.DISPLAY.USAGE READ No check

PING CHANNEL ssid.PING.CHANNEL CONTROL ssid.CHANNEL.channel CONTROL

RECOVER BSDS ssid.RECOVER.BSDS CONTROL No check

REFRESH CLUSTER ssid.REFRESH.CLUSTER ALTER No check

REFRESH SECURITY ssid.REFRESH.SECURITY ALTER No check

RESET CHANNEL ssid.RESET.CHANNEL CONTROL ssid.CHANNEL.channel CONTROL

RESET CLUSTER ssid.RESET.CLUSTER CONTROL No check

RESET TPIPE ssid.RESET.TPIPE CONTROL No check

RESOLVE CHANNEL ssid.RESOLVE.CHANNEL CONTROL ssid.CHANNEL.channel CONTROL

RESOLVE INDOUBT ssid.RESOLVE.INDOUBT CONTROL No check

RESUME QMGR ssid.RESUME.QMGR CONTROL No check

RVERIFY SECURITY ssid.RVERIFY.SECURITY ALTER No check

START CHANNEL ssid.START.CHANNEL CONTROL ssid.CHANNEL.channel CONTROL

START CHINIT ssid.START.CHINIT CONTROL No check

START CMDSERV ssid.START.CMDSERV CONTROL No check

START LISTENER ssid.START.LISTENER CONTROL No check

START TRACE ssid.START.TRACE CONTROL No check

STOP CHANNEL ssid.STOP.CHANNEL CONTROL ssid.CHANNEL.channel CONTROL

STOP CHINIT ssid.STOP.CHINIT CONTROL No check

STOP CMDSERV ssid.STOP.CMDSERV CONTROL No check

STOP LISTENER ssid.STOP.LISTENER CONTROL No check

STOP QMGR ssid.STOP.QMGR CONTROL No check

STOP TRACE ssid.STOP.TRACE CONTROL No check

SUSPEND QMGR ssid.SUSPEND.QMGR CONTROL No check

Notes:

� MQSeries does not check the authority of the user who issues the +cpf START QMGR command. However, you can use
RACF facilities to protect the START xxxxMSTR command that is issued as a result of the +cpf START QMGR command.
This is done by controlling access to the MVS.START.STC.xxxxMSTR profile in the RACF operator commands
(OPERCMDS) class. For details of this, see the Security Server (RACF) Security Administrator’s Guide. If you use this
technique, and an unauthorized user tries to start MQSeries, MQSeries terminates with a reason code of 00F30216.

� The DISPLAY THREAD and DISPLAY USAGE commands might be issued internally by the queue manager; no authority is
checked in these cases.

424 System Management Guide

 RESLEVEL security profile

Using the RESLEVEL security profile
You can define a special profile in the MQADMIN class to control the number of
user IDs checked for API-resource security. How this RESLEVEL profile affects
API-resource security depends on how you are accessing MQSeries.

RESLEVEL and Batch/TSO connections
By default, when an MQSeries resource is being accessed through the Batch/TSO
adapter, the user must be authorized to access that resource for the particular
operation. You can bypass the security check by setting up an appropriate
RESLEVEL definition.

Whether the user is checked or not is based on the user ID used at connect time;
the TSO user ID or the job user ID.

For example, you can set up RESLEVEL so that when a user you trust accesses
certain resources from Batch/TSO, no API-resource security checks are done; but
when a user you do not trust tries to access the same resources, security checks
are carried out as normal. You should set up RESLEVEL checking to bypass
API-resource security checks only when you sufficiently trust the user and the
programs run by that user.

RESLEVEL and system utilities
The operations and control panels and the CSQUTIL utility are batch applications.
You can use RESLEVEL to bypass security checking for the
SYSTEM.COMMAND.INPUT and SYSTEM.COMMAND.REPLY.MODEL queues
that they use, but not for the dynamic queues SYSTEM.CSQOREXX.ñ and
SYSTEM.CSQUTIL.ñ. Users must be authorized to use these queues as described
in “System queue security” on page 413 in addition to any RESLEVEL
authorization they are given.

RESLEVEL and CICS connections
By default, when an API-resource security check is made on a CICS connection,
two user IDs are checked to see if access is allowed to the resource.

User IDs checked
The first user ID checked is that of the CICS address space. This is the user ID on
the job card of the CICS job, or the user ID assigned to the CICS started task by
the OS/390 STARTED class or the started procedures table. (It is not the CICS
DFLTUSER.)

The second user ID checked is the user ID associated with the CICS transaction.

 Completion codes
If one of these user IDs does not have access to the resource, the request fails
with a completion code of MQRC_NOT_AUTHORIZED. Both the CICS address
space user ID and the user ID of the person running the CICS transaction must
have access to the resource at the correct level.

 Chapter 26. Using RACF classes and profiles 425

 RESLEVEL security profile

How RESLEVEL can affect the checks made
Depending on how you set up your RESLEVEL profile, you can change which user
IDs are checked when access to a resource is requested. The possible checks
are:

� Check the CICS address space user ID and the transaction user ID.

� Check the CICS address space user ID only.

� If the transaction is defined to CICS with RESSEC(NO), check the CICS
address space user ID only5.

� If the transaction is defined to CICS with RESSEC(YES), check the CICS
address space user ID and the transaction user ID5.

� Do not check any user IDs.

The user IDs checked depend on the user ID used at connection time, that is, the
CICS address space user ID. This control enables you to bypass API-resource
security checking for MQSeries requests coming from one system (for example, a
test system, TESTCICS,) but to implement them for another (for example, a
production system, PRODCICS).

Note: If you set up your CICS address space user ID with the “trusted” attribute in
the STARTED class or the RACF started procedures table ICHRIN03, this
overrides any user ID checks for the CICS address space established by
the RESLEVEL profile for your queue manager (that is, the queue manager
does not perform the security checks for the CICS address space). For
more information, see the CICS RACF Security Guide.

RESLEVEL and IMS connections
By default, when an API-resource security check is made for an IMS adapter, two
user IDs are checked to see if access is allowed to the resource.

The first user ID checked is that of the address space of the IMS region. This is
taken from either the USER field from the job card or the user ID assigned to the
region from the OS/390 STARTED class or the started procedures table (SPT).

The second user ID checked is associated with the work being done in the
dependent region. It is determined according to the type of the dependent region
as shown in Table 50 on page 432.

The setting of MQ RESLEVEL profiles cannot alter the user ID under which IMS
transactions are scheduled from the IBM-supplied MQ-IMS trigger monitor program
CSQQTRMN. This user ID is the PSBNAME of that trigger monitor, which by
default is CSQQTRMN.

5 The status of the CICS security is NOT checked when taking into consideration the transaction RESSEC setting. For example, if
CICS has been started with SEC=NO, but the transaction has been defined with RESSEC(YES), MQSeries still checks both user
IDs.

426 System Management Guide

 RESLEVEL security profile

 Completion codes
If either the first or second IMS user ID does not have access to the resource, the
request fails with a completion code of MQRC_NOT_AUTHORIZED.

How RESLEVEL can affect the checks made
Depending on how you set up your RESLEVEL profile, you can change which user
IDs are checked when access to a resource is requested. The possible checks
are:

� Check the IMS region address space user ID and the second user ID.
� Check IMS region address space user ID only.
� Do not check any user IDs.

RESLEVEL and channel initiator connections
By default, when an API-resource security check is made by the channel initiator,
two user IDs are checked to see if access is allowed to the resource.

The user IDs checked can be that specified by the MCAUSER channel attribute,
that received from the network, that of the channel initiator address space, or the
alternate user ID for the message descriptor. This depends on the communication
protocol you are using and the setting of the PUTAUT channel attribute. See “User
IDs used by the channel initiator” on page 433 for more information.

 Completion codes
If one of these user IDs does not have access to the resource, the request fails
with a completion code of MQRC_NOT_AUTHORIZED.

How RESLEVEL can affect the checks made
Depending on how you set up your RESLEVEL profile, you can change which user
IDs are checked when access to a resource is requested, and how many are
checked.

 Chapter 26. Using RACF classes and profiles 427

 RESLEVEL security profile

The RESLEVEL profile
When an application tries to connect to MQSeries, MQSeries checks the access
that the user ID associated with the adapter has to a profile in the MQADMIN class
called:

ssid.RESLEVEL

The user IDs associated with each adapter are:

� The batch job ID or TSO user ID for the Batch/TSO adapter
� The CICS address space user ID for the CICS adapter
� The IMS region address space user ID for the IMS adapter
� The channel initiator address space user ID for the non-CICS mover.

This check is always performed unless the ssid.NO.SUBSYS.SECURITY switch
has been set.

If there is no RESLEVEL profile, MQSeries enables checking of both the job and
task (or alternate user) ID for a CICS or an IMS connection. For a batch
connection, MQSeries enables checking of the job (or alternate) user ID. For the
non-CICS mover, MQSeries enables checking of the MCA user ID and the channel
(or alternate) user ID.

If there is a RESLEVEL profile, the level of checking depends on the environment
and access level for the profile.

Table 43 shows the checks made for batch and TSO connections.

Table 44 shows the checks made for CICS connections.

Table 43. Checks made at different RACF access levels for the Batch/TSO adapter

RACF access level Level of checking

NONE Check the job/TSO (or alternate) user ID.

READ Check the job/TSO (or alternate) user ID.

UPDATE Check the job/TSO (or alternate) user ID.

CONTROL No check.

ALTER No check.

Table 44. Checks made at different RACF access levels for the CICS adapter

RACF access level Level of checking

NONE Check the CICS address space user ID and the task or
alternate user ID.

READ Check the CICS address space user ID.

UPDATE Check the CICS address space user ID and, if the transaction
has been defined with RESSEC=YES, also check the task or
alternate user ID.

CONTROL No check.

ALTER No check.

428 System Management Guide

 RESLEVEL security profile

Table 45 on page 429 shows the checks made for IMS connections.

Table 46 shows the checks made for channel initiator connections.

Table 47 through Table 53 on page 435 show how RESLEVEL affects which user
IDs are checked for different MQI requests.

For example, you have a queue manager called QM66, where:

� User WS21B is to be exempt from resource security.

� CICS started task WXNCICS running under address space user ID CICSWXN
is to perform full resource checking only for transactions defined with
RESSEC(YES).

To define the appropriate RESLEVEL profile, issue the RACF command:

Table 45. Checks made at different RACF access levels for the IMS adapter

RACF access level Level of checking

NONE Check the IMS address space user ID and the IMS second user
ID.

READ Check the IMS address space user ID.

UPDATE Check the IMS address space user ID.

CONTROL No check.

ALTER No check.

Table 46. Checks made at different RACF access levels for channel initiator
connections

RACF access level Level of checking

NONE Check two user IDs.

READ Check one user ID.

UPDATE Check one user ID.

CONTROL No check.

ALTER No check.

Note: See “User IDs used by the channel initiator” on page 433 for a definition of the
user IDs checked

RDEFINE MQADMIN QM66.RESLEVEL UACC(NONE) AUDIT(ALL)

Then give the users access to this profile:

PERMIT QM66.RESLEVEL CLASS(MQADMIN) ID(WS21B) ACCESS(CONTROL)
PERMIT QM66.RESLEVEL CLASS(MQADMIN) ID(CICSWXN) ACCESS(UPDATE)

If you make these changes while the user IDs are connected to queue manager
QM66, the users must disconnect and connect again before the change takes
place.

 Chapter 26. Using RACF classes and profiles 429

 User ID security checking

If subsystem security is not active when a user connects but, while this user is still
connected, subsystem security becomes active, full resource security checking is
applied to the user. The user must re-connect to get the correct RESLEVEL
processing.

Important notes on using RESLEVEL
1. RESLEVEL is a very powerful option; it can cause the bypassing of all resource

security checks, so that they cannot be audited by RACF.

2. Using the RESLEVEL profile means that normal security audit records are not
taken. For example, if you put UAUDIT on a user, the access to the
ssid.RESLEVEL profile in MQADMIN is not audited.

3. If you use the RACF WARNING option on the ssid.RESLEVEL profile, no
RACF warning messages are produced.

4. If you do not have a RESLEVEL profile defined, you must be careful that no
other profile in the MQADMIN class matches ssid.RESLEVEL. For example, if
you have a profile in MQADMIN called ssid.ññ and no ssid.RESLEVEL profile,
beware of the consequences of the ssid.ññ profile because it is used for the
RESLEVEL check.

You should define an ssid.RESLEVEL profile and set the UACC to NONE,
rather than not have a RESLEVEL profile at all. You should have as few users
or groups in the access list as possible. For details about how to audit
RESLEVEL access, see “Auditing considerations” on page 437.

5. If you make any changes to the RESLEVEL profile users must disconnect and
connect again before the change takes place. (This includes stopping and
restarting the channel initiator if the access that the distributed queuing address
space user ID has to the RESLEVEL profile is changed.)

User IDs for security checking
MQSeries initiates security checks based on user IDs associated with users,
terminals, applications, and so on. The following sections show the contents of the
user IDs used for each type of security check.

User IDs for connection security
Issued from... User ID contents

Batch/TSO, CICS,
IMS

The user ID normally found for connection security is one of
these:

� The TSO user ID.
� The user ID assigned to a batch job via the USER JCL

parameter.
� The user ID assigned to a started task by the STARTED

class or the started procedures table.

430 System Management Guide

 User ID security checking

User IDs for command security and command resource security
Issued from... User ID contents

CSQINP1 or
CSQINP2

No check is made.

System command
input queue

The user ID found in the UserIdentifier of the message
descriptor of the message which contains the command. If the
message does not contain a UserIdentifier, a user ID of blanks
is passed to the security manager.

Console The user ID signed onto the console. If the console is not signed
on, the default user ID from the MQSeries subsystem initialization
parameter module (CSQZPARM). This default is set the by
CMDUSER operand on the CSQ6SYSP macro.

To issue commands from a console, the console must have the
OS/390 SYS AUTHORITY attribute.

SDSF/TSO
console

TSO or job user ID.

MGCR (SVC34) If MGCR is used with Utoken, the user ID in the Utoken.

If MGCR is issued without the Utoken, the TSO or job user ID is
used.

CSQUTIL Job user ID.

CSQINPX User ID of the channel initiator address space.

User IDs for resource security (MQOPEN and MQPUT1)
Table 47 through Table 53 on page 435 show the contents of the user IDs for
normal and alternate user IDs for each type of adapter. The number of checks is
defined by the RESLEVEL profile. The user ID checked is that used for MQOPEN
or MQPUT1 calls.

Note: All user ID fields are checked exactly as they are received. No conversions
take place, and, for example, three user ID fields containing Bob, BOB, and
bob are not equivalent.

User IDs checked for Batch
Table 47. User ID checking for Batch/TSO-type user IDs

Profile name

Alternate user ID specified on open?

No Yes

ssid.ALTERNATE.USER.userid – JOB

ssid.CONTEXT JOB JOB

ssid.localresourcename JOB ALT

Key:

ALT Alternate user ID.
JOB

� The TSO user ID.
� The user ID assigned to a batch job.
� The user ID assigned to a started task by the STARTED class or the started

procedures table.

 Chapter 26. Using RACF classes and profiles 431

 User ID security checking

User IDs checked for CICS
Table 48. User ID checking for CICS-type user IDs

Profile name

Alternate user ID specified on open?

No Yes

1 Check 2 Checks 1 Check 2 Checks

ssid.ALTERNATE.USER.userid – – ADS ADS+TXN

ssid.CONTEXT ADS ADS+TXN ADS ADS+TXN

ssid.localresourcename ADS ADS+TXN ADS ADS+ALT

Key:

ALT Alternate user ID
ADS The user ID associated with the CICS batch job or, if CICS is running as a started task,

through the STARTED class or the started procedures table.
TXN The user ID associated with the CICS transaction. This is normally the user ID of the

terminal user who started the transaction. It can be the CICS DFLTUSER, a PRESET
security terminal, or a manually signed-on user.

User IDs checked for IMS
Table 49. User ID checking for IMS-type user IDs

Profile name

Alternate user ID specified on open?

No Yes

1 Check 2 Checks 1 Check 2 Checks

ssid.ALTERNATE.USER.userid – – REG REG+SEC

ssid.CONTEXT REG REG+SEC REG REG+SEC

ssid.localresourcename REG REG+SEC REG REG+ALT

Key:

ALT Alternate user ID.
REG The user ID is normally set through the STARTED class or the started procedures table or,

if IMS is running, from a submitted job, via the USER JCL parameter.
SEC The second user ID is associated with the work being done in a dependent region. It is

determined according to Table 50.

Table 50. How the second user ID is determined for the IMS adapter

Types of dependent region Hierarchy for determining the second user ID

� BMP message driven and
successful GET UNIQUE
issued.

� IFP and GET UNIQUE
issued.

 � MPP.

User ID associated with the IMS transaction if the
user is signed on.

LTERM name if available.

PSBNAME.

� BMP message driven and
successful GET UNIQUE not
issued.

� BMP not message driven.

� IFP and GET UNIQUE not
issued.

User ID associated with the IMS dependent region
address space if this is not all blanks or all zeros.

PSBNAME.

432 System Management Guide

 User ID security checking

User IDs used by the channel initiator
The following sections describe the user IDs used and checked for TCP/IP
channels, LU 6.2 channels, and client MQI requests issued over server-connection
channels for both TCP/IP and LU 6.2.

You can use the PUTAUT parameter of the channel definition to determine the type
of security checking used. To get consistent security checking throughout your
MQSeries network, you can use the ONLYMCA and ALTMCA options.

User IDs checked for channels using TCP/IP

MCA user ID (MCA)
The user ID specified for the MCAUSER channel attribute at the receiver; if
blank, the channel initiator address space user ID of the receiver or requester
side is used.

Channel user ID (CHL)
For TCP/IP, where security is not supported by the communication system for
the channel, the user ID of the channel initiator address space of the receiver
or requestor end is used as the channel user ID on channels defined with
PUTAUT set to DEF or CTX.

If PUTAUT is set to ONLYMCA or ALTMCA for the channel, the channel user
ID is ignored and the MCA user ID of the receiver or requester is used.

Table 51. User IDs checked for TCP/IP channels

Profile Name

PUTAUT option specified on receiver or requester channel

DEF CTX ONLYMCA ALTMCA

1
Check

2
Checks

1
Check

2
Checks

1
Check

2
Checks

1
Check

2
Checks

ssid.ALTERNATE.USER.userid - - CHL CHL +
MCA

- - MCA MCA

ssid.CONTEXT CHL CHL +
MCA

CHL CHL +
MCA

MCA MCA MCA MCA

ssid.localresourcename CHL CHL +
MCA

CHL CHL +
ALT

MCA MCA MCA MCA +
ALT

Key:

ALT Alternate user ID.
CHL Channel user ID.
MCA MCA user ID.

 Chapter 26. Using RACF classes and profiles 433

 User ID security checking

User IDs checked for channels using LU 6.2

MCA user ID (MCA)
The user ID specified for the MCAUSER channel attribute at the receiver; if
blank, the channel initiator address space user ID of the receiver or requester
side is used.

Channel user ID (CHL)

Sender-receiver, sender-requester, and server-requester channels
If PUTAUT is set to DEF or CTX on the receiver or requester channel,
the channel user ID is the user ID received from the communications
system when the channel is initiated.

� If the user ID received is blank, or no user ID is received, a channel
user ID of blanks is used.

� If the sending channel is on OS/390, the channel user ID received is
the channel initiator address space user ID of the sender.

� If the sending channel is on a different platform (for example, AIX or
HP-UX, the channel user ID received is typically provided by the
USERID parameter of the channel definition.

If PUTAUT is set to ONLYMCA or ALTMCA for the channel, any user ID
received from the network is ignored, and the MCA user ID of the
receiver is used.

Requester-server channels
If the channel is started from the requester, there is no opportunity to
receive a network user ID (the channel user ID)

If PUTAUT is set to DEF or CTX on the requester channel, the channel
user ID is that of the channel initiator address space of the requester
because no user ID is received from the network.

If PUTAUT is set to ONLYMCA or ALTMCA, the channel user ID is
ignored and the MCA user ID of the requester is used.

Table 52. User IDs checked for LU 6.2 channels

Profile Name

PUTAUT option specified on receiver or requester channel

DEF CTX ONLYMCA ALTMCA

1
Check

2
Checks

1
Check

2
Checks

1
Check

2
Checks

1
Check

2
Checks

ssid.ALTERNATE.USER.userid - - CHL CHL +
MCA

- - MCA MCA

ssid.CONTEXT CHL CHL +
MCA

CHL CHL +
MCA

MCA MCA MCA MCA

ssid.localresourcename CHL CHL +
MCA

CHL CHL +
ALT

MCA MCA MCA MCA +
ALT

Key:

ALT Alternate user ID.
CHL Channel user ID.
MCA MCA user ID.

434 System Management Guide

 User ID security checking

User IDs checked for client MQI requests: This section described the user IDs
checked for client MQI requests issued over server-connection channels for TCP/IP
and LU 6.2. The MCA user ID and channel user ID are as for the TCP/IP and LU
6.2 channels described in the previous sections.

For server-connection channels, the MCA user ID received from the client is used if
the MCAUSER attribute is blank. However, for the clients that use the
MQ_USER_ID environment variable to supply the user ID, it is possible that no
environment variable is set. In this case, the user ID that started the server
channel is used. This is the user ID assigned to the channel initiator started task
by the OS/390 started procedures table.

See the MQSeries Clients manual for more information.

For client MQOPEN and MQPUT1 requests, use the following rules to determine
the profile that will be checked:

� If the request specifies alternate user authority, a check is made against the
ssid.ALTERNATE.USER.userid profile.

� If the request specifies context authority, a check is made against the
ssid.CONTEXT profile.

� For all MQOPEN and MQPUT1 requests, a check is made against the
ssid.localresourcename profile.

When you have determined which profiles are checked, use the following table to
determine which user IDs are checked against these profiles.

Table 53. User IDs checked for LU 6.2 and TCP/IP server-connection channels

Profile Name

PUTAUT option specified on server-connection channel

DEF ONLYMCA

Alternate user ID specified on open? Alternate user ID specified on open?

No Yes No Yes

1
Check

2
Checks

1
Check

2
Checks

1
Check

2
Checks

1
Check

2
Checks

ssid.ALTERNATE.USER.userid - - CHL CHL +
MCA

- - MCA MCA

ssid.CONTEXT CHL CHL +
MCA

CHL CHL +
MCA

MCA MCA MCA MCA

ssid.localresourcename CHL CHL +
MCA

CHL CHL +
ALT

MCA MCA MCA MCA +
ALT

Key:

ALT Alternate user ID.
CHL Channel user ID.
MCA MCA user ID.

 Chapter 26. Using RACF classes and profiles 435

 User ID security checking

 Examples
How you use these tables is best explained by some examples.

Example 1: In a CICS transaction where the RESLEVEL profile is set to READ,
determine which user IDs are checked.

Answer: First, see how many CICS user IDs are checked based on the CICS
address space user ID access to the RESLEVEL profile. From Table 44 on
page 428, only one user ID is checked if the RESLEVEL profile is set to READ.
Then, in Table 48, look in the appropriate “1 Check” column, depending on whether
the alternate user authority open option is specified. In either case, the CICS
address space (ADS) user ID is checked.

Example 2: Determine the user IDs checked for the following conditions:

� The RACF access level to the RESLEVEL profile, for a CICS address space
user ID, is set to NONE.

� An MQOPEN call is made against a queue with MQOO_OUTPUT and
MQOO_PASS_IDENTITY_CONTEXT.

Answer: First, see how many CICS user IDs are checked based on the CICS
address space user ID access to the RESLEVEL profile. From Table 44 on
page 428, two user IDs are checked if the RESLEVEL profile is set to NONE.
Then, from Table 48, these checks are carried out:

� The ssid.ALTERNATE.USER.userid profile is not checked.

� The ssid.CONTEXT profile is checked with both the CICS address space user
ID and the CICS transaction user ID.

� The ssid.localresourcename profile is checked with both the CICS address
space user ID and the CICS transaction user ID.

This means that four security checks are made for this MQOPEN call.

Blank user IDs and UACC levels
Blank user IDs can exist when a user is manipulating messages using context or
alternate user security, or when MQSeries is passed a blank user ID. For example,
a blank user ID is used when a message is written to the system-command input
queue without context.

Note: A user ID of '* ' (that is, an asterisk character followed by seven
spaces) is treated as a blank user ID.

MQSeries passes the blank user ID to RACF and a RACF undefined user is signed
on. All security checks then use the universal access (UACC) for the relevant
profile. Depending on how you have set your access levels, the UACC might give
the undefined user a wide-ranging access.

For example, if you issue this RACF command from TSO:

RDEFINE MQQUEUE Q.AVAILABLE.TO.EVERYONE UACC(UPDATE)

436 System Management Guide

you define a profile that enables both OS/390-defined user IDs (that have not been
put in the access list) and the RACF undefined user ID to put messages on, and
get messages from, that queue.

To protect your MQSeries subsystem from blank user IDs you must plan your
access levels carefully, and limit the number of people who can use context and
alternate user security. You must prevent people using the RACF undefined user
ID from getting access to resources that they should not. However, at the same
time, you must allow access to people with defined user IDs. To do this, you can
specify a user ID of asterisk (ñ) in a RACF command PERMIT. For example, these
RACF commands prevent the RACF undefined user ID from gaining access to the
queue to put or get messages:

RDEFINE MQQUEUE Q.AVAILABLE.TO.RACF.DEFINED.USERS.ONLY UACC(NONE)
PERMIT Q.AVAILABLE.TO.RACF.DEFINED.USERS.ONLY CLASS(MQQUEUE) ACCESS(UPDATE) ID(ñ)

 Auditing considerations
The normal RACF auditing controls are available for conducting a security audit of
a queue manager. The RACF auditing can be based upon:

 � User IDs
 � Resource classes
 � Profiles

For more details, see the Security Server (RACF) Auditor’s Guide.

Note: Auditing degrades performance; the more auditing you implement, the more
performance is degraded. This is also a consideration for the use of the
RACF WARNING option.

 Auditing RESLEVEL
No normal RACF audit records are taken when the RESLEVEL check is made to
see what access an address space user ID has to the ssid.RESLEVEL profile.
Instead, MQSeries requests that RACF create a GENERAL audit record (event
number 27).

These checks are only carried out at connect time, so the overhead should be
minimal.

You can report the MQSeries general audit records using the RACF report writer
(RACFRW). You could use the following RACFRW commands to report the
RESLEVEL access:

RACFRW
SELECT PROCESS
EVENT GENERAL
LIST
END

 Chapter 26. Using RACF classes and profiles 437

A sample report from RACFRW, excluding the Date, Time, and SYSID fields, is
shown in Figure 102 on page 438.

RACF REPORT - LISTING OF PROCESS RECORDS PAGE 4
 E
 V Q
 E U

 \JOB/USER \STEP/ --TERMINAL-- N A
 NAME GROUP ID LVL T L

WS21B MQMGRP IGJZMððð ð 27 ð JOBID=(WS21B 93.111 ð9:44:57),USERDATA=()
 TRUSTED USER AUTH=(NONE),REASON=(NONE)
 SESSION=TSOLOGON,TERMINAL=IGJZMððð,

LOGSTR='CSQH RESLEVEL CHECK PERFORMED AGAINST PROFILE(QM66.RESLEVEL),
CLASS(MQADMIN), ACCESS EQUATES TO (CONTROL)',RESULT=SUCCESS,MQADMIN

Figure 102. Sample output from RACFRW showing RESLEVEL general audit records

From checking the LOGSTR data in the output above, you can see that TSO user
WS21B has CONTROL access to QM66.RESLEVEL. This means that all resource
security checks will be bypassed when user WS21B access QM66 resources.

For more information about using RACFRW, see the Security Server (RACF)
Auditor’s Guide.

 Statistics
MQSeries does not gather any security statistics of its own. The only statistics are
those that can be created by auditing.

438 System Management Guide

 Security checklist

Chapter 27. MQSeries security implementation

The chapter covers the following subjects:

� “Security implementation checklist”
� “MQSeries security management” on page 441
� “Customizing security” on page 444
� “Security considerations for using MQSeries with CICS” on page 445
� “Security considerations for using MQSeries with IMS” on page 449
� “Security considerations for distributed queuing” on page 453
� “Security considerations for cluster support” on page 455
� “Security installation tasks” on page 456
� “Example security scenario” on page 458
� “Security problem determination” on page 464

Security implementation checklist
This section gives a step-by-step procedure you can use to work out and define the
security implementation for each of your MQSeries subsystems. Refer to other
sections for details, in particular “Profiles used to protect MQSeries resources” on
page 404.

If you require security checking to be implemented on at least one of your
MQSeries subsystems, you must first activate the RACF MQADMIN class. Then,
for each MQSeries subsystem, you must decide whether you need security
checking on that subsystem. If you do not require security checking, you must
define an ssid.NO.SUBSYS.SECURITY profile in the MQADMIN class.

If you do require security checking, follow this checklist to implement it:

Ø Do you need connection security?

Yes: Define appropriate connection profiles in the MQCONN class and
permit the appropriate users or groups access to these profiles.

Note: Only users of the MQCONN API request or CICS or IMS address
space user IDs need to have access to the corresponding
connection profile.

No: Define an ssid.NO.CONNECT.CHECKS profile in the MQADMIN class.

Ø Do you need security checking on commands?

Yes: Activate the MQCMDS class. Define appropriate command profiles in
the MQCMDS class and permit the appropriate users or groups access to
these profiles.

No: Define an ssid.NO.CMD.CHECKS profile in the MQADMIN class.

Ø Do you need security on the resources used in commands?

Yes: Ensure the MQADMIN class is active. Define appropriate profiles for
protecting resources on commands in the MQADMIN class and permit the
appropriate users or groups access to these profiles. Set the CMDUSER
parameter in CSQ6SYSP to the default user ID to be used for command
security checks.

 Copyright IBM Corp. 1993,1999 439

 Security checklist

No: Define an ssid.NO.RESC.CMD.CHECKS profile in the MQADMIN
class.

Ø Do you need queue security?

Yes: Activate the MQQUEUE class. Define appropriate queue profiles in
the MQQUEUE class and permit the appropriate users or groups access to
these profiles.

No: Define an ssid.NO.QUEUE.CHECKS profile in the MQADMIN class.

Ø Do you need process security?

Yes: Activate the MQPROC class. Define appropriate process profiles and
permit the appropriate users or groups access to these profiles.

No: Define an ssid.NO.PROCESS.CHECKS profile in the MQADMIN class.

Ø Do you need namelist security?

Yes: Activate the MQNLIST class. Define appropriate namelist profiles in
the MQNLIST class and permit the appropriate users or groups access to
these profiles.

No: Define an ssid.NO.NLIST.CHECKS profile in the MQADMIN class.

Ø Do any users need to protect the use of the MQOPEN or MQPUT1 options
relating to the use of context?

Yes: Ensure the MQADMIN class is active. Define an ssid.CONTEXT
profile in the MQADMIN class and permit the appropriate users or groups
access to this profile.

No: Define an ssid.NO.CONTEXT.CHECKS profile in the MQADMIN class.

Ø Do you need to protect the use of alternate user IDs?

Yes: Ensure the MQADMIN class is active. Define the appropriate
ssid.ALTERNATE.USER.alternateuserid profiles and permit the required
users or groups access to these profiles.

No: Define the profile ssid.NO.ALTERNATE.USER.CHECKS in the
MQADMIN class.

Ø Do you need to tailor which user IDs are to be used for resource security
checks through RESLEVEL?

Yes: Ensure the MQADMIN class is active. Define an ssid.RESLEVEL
profile in the MQADMIN class and permit the required users or groups
access to the profile.

No: Ensure that no generic profiles exist in the MQADMIN class that could
apply to ssid.RESLEVEL. Define an ssid.RESLEVEL profile and ensure
that no users or groups have access to it.

Ø Do you need to ‘time out’ unused user IDs from MQSeries?

Yes: Determine what timeout values you would like to use and issue the
MQSeries command alter security to change the TIMEOUT and INTERVAL
parameters.

No: Issue the MQSeries command ALTER SECURITY to set the
INTERVAL value to zero.

440 System Management Guide

 Security management

Note: Update the CSQINP1 data set used by your subsystem so that the
MQSeries command ALTER SECURITY is issued automatically at every
MQSeries start up.

Ø Do you use distributed queuing (without CICS)?

Yes: Determine the appropriate MCAUSER attribute value for each
channel, and/or provide suitable channel security exits.

Ø Do you use clients?

Yes: Determine the appropriate MCAUSER attribute value for each
server-connection channel, and/or provide suitable channel security exits.

MQSeries security management
MQSeries uses an in-storage table to hold information relating to each user and the
access requests made by each user.

To manage this table efficiently and to reduce the number of requests made from
MQSeries to the external security manager (ESM), these controls are available:

� User ID timeouts
� User ID reverification

 � Security refreshes
� Displaying security status

These controls are available through both the operations and control panels and
MQSC.

User ID timeouts
When a user accesses an MQSeries resource, the queue manager tries to sign this
user on to the queue manager—if subsystem security is active. This means that
the user is authenticated to RACF. This user remains signed on to MQSeries until
either the queue manager is shut down, or until the user ID is “timed out” (the
authentication lapses) or reverified (reauthenticated).

When a user is timed out, the user ID is “signed off” within the queue manager and
any security related information retained for this user is discarded.

Users are eligible for time out when they have not used any MQSeries resources
for a predetermined amount of time. This time period is set by the MQSeries
command ALTER SECURITY. For a description of the command syntax, see the
MQSeries Command Reference manual.

Two values can be specified in the ALTER SECURITY command:

TIMEOUT The time period in minutes that an unused user ID can remain signed
on within the MQSeries subsystem.

INTERVAL The time period in minutes between MQSeries checks for user IDs for
which the TIMEOUT has expired.

For example, if the TIMEOUT value is 30 and the INTERVAL value is 10, every 10
minutes MQSeries checks for user IDs that have not been used for 30 minutes. If
such a user ID is found, that user ID is signed off within the queue manager.

 Chapter 27. MQSeries security implementation 441

 Security management

Note: The signing on and off of the user within the queue manager is transparent
to the application program and to the end user.

If you do not want to time out user IDs, set the INTERVAL value to zero.

Note: If you use values for INTERVAL or TIMEOUT other than the defaults, you
must re-enter the command at every MQSeries startup. You can do this
automatically by putting the MQSeries command ALTER SECURITY in the
CSQINP1 data set for that queue manager.

User ID reverification
If the RACF definition of a user who is using MQSeries resources has been
changed—for example, by connecting the user to a new group—you can tell the
queue manager to sign this user on again the next time it tries to access an
MQSeries resource. You can do this by using the MQSeries command RVERIFY
SECURITY. For example:

� User HX0804 is getting and putting messages to the PAYROLL queues on
queue manager PRD1. However HX0804, now requires access to some of the
PENSION queues on the same queue manager (PRD1).

� The data security administrator connects user HX0804 to the RACF group that
allows access to the PENSION queues.

� So that HX0804 can access the PENSION queues immediately—that is,
without shutting down queue manager PRD1, or waiting for HX0804 to time
out—you must use the MQSeries command:

RVERIFY SECURITY(HXð8ð4)

Note: If you turn off user ID timeout for long periods of time (days or even weeks),
while the queue manager is running, you must remember to perform an
RVERIFY SECURITY for any users that have been revoked or deleted in
that time.

 Security refreshes
Whenever you change a RACF profile that is used by MQSeries security, you must
tell the corresponding queue manager to refresh its in-storage list of RACF profiles.
You can do this by using the MQSeries command REFRESH SECURITY. For a
description of command syntax, see the MQSeries Command Reference manual.

You must also issue normal RACF refresh commands if you change generic
profiles. For example, SETROPTS GENERIC(classname) REFRESH. You must
also issue the MQSeries command, REFRESH SECURITY, if you change a profile
in any of these RACF classes:

 � MQADMIN
 � MQQUEUE
 � MQNLIST
 � MQPROC

These are the only classes affected by the MQSeries command REFRESH
SECURITY. You do not need to use REFRESH SECURITY if you change a profile
in either the MQCONN or MQCMDS classes.

Note: A refresh of MQADMIN is not required if you change a RESLEVEL security
profile.

442 System Management Guide

 Security management

For performance reasons, use REFRESH SECURITY as infrequently as possible,
ideally at off-peak times. You can minimize the number of security refreshes by
connecting users to RACF groups that are already in the access list for MQSeries
profiles, rather than putting individual users in the access lists. In this way, you
change the user rather than the resource profile. You can also RVERIFY
SECURITY the appropriate user instead of refreshing security.

As an example of REFRESH SECURITY, suppose you define the new profiles to
protect access to queues starting with INSURANCE.LIFE on queue manager
PRMQ. You use these RACF commands:

RDEFINE MQQUEUE PRMQ.INSURANCE.LIFE.ññ UACC(NONE)
PERMIT PRMQ.INSURANCE.LIFE.ññ ID(LIFEGRP) ACCESS(UPDATE)

Because these profiles are generic, you must tell RACF to refresh the generic
profiles for MQQUEUE. For example:

SETROPTS GENERIC(MQQUEUE) REFRESH

Then you must use this command to tell queue manager PRMQ that the queue
profiles have changed:

REFRESH SECURITY(MQQUEUE)

If you issue a REFRESH SECURITY(ñ) or a REFRESH SECURITY(MQADMIN),
the status of the security switches in the MQADMIN class are also checked. This
means you can activate new security types, or de-activate them without having to
restart the queue manager.

Displaying security status
To display the status of the security switches, and other security controls, you can
issue the MQSeries command DISPLAY SECURITY. For a description of the
command syntax, see the MQSeries Command Reference manual.

Figure 103 shows a typical output of the MQSeries command DISPLAY SECURITY
ALL. The example shows that the queue manager that replied to the command
has all MQSeries security active, except for namelist security. It also shows that
user ID timeouts are active, and that every 12 minutes the queue manager checks
for user IDs that have not been used in this queue manager for 54 minutes and
removes them.

Note: This command shows the current security status. It does not necessarily
reflect the current status of the switch profiles defined to RACF, or the
status of the RACF classes. For example, the switch profiles might have
been changed since the last restart of this queue manager or REFRESH
SECURITY command.

 Chapter 27. MQSeries security implementation 443

 Customizing security

CSQHð15I +cpf SECURITY TIMEOUT = 54 MINUTES
CSQHð16I +cpf SECURITY INTERVAL = 12 MINUTES
CSQHðð2I +cpf CSQHPDTC SUBSYSTEM SECURITY SWITCH SET ON
CSQHðð2I +cpf CSQHPDTC CONNECTION SECURITY SWITCH SET ON
CSQHðð2I +cpf CSQHPDTC COMMAND SECURITY SWITCH SET ON
CSQHðð2I +cpf CSQHPDTC CONTEXT SECURITY SWITCH SET ON
CSQHðð2I +cpf CSQHPDTC ALTERNATE USER SECURITY SWITCH SET ON
CSQHðð2I +cpf CSQHPDTC PROCESS SECURITY SWITCH SET ON
CSQHðð2I +cpf CSQHPDTC NAMELIST SECURITY SWITCH SET OFF
CSQHðð2I +cpf CSQHPDTC QUEUE SECURITY SWITCH SET ON
CSQHðð2I +cpf CSQHPDTC COMMAND RESOURCES SECURITY SWITCH SET ON
CSQ9ð22I +cpf CSQHPDTC ' DISPLAY SECURITY' NORMAL COMPLETION

Figure 103. Typical output from the MQSeries command DISPLAY SECURITY

 Customizing security
If you want to change the way MQSeries security operates, you must do this via
the SAF exit (ICHRFR00), or exits in your external security manager. To find out
more about RACF exits, see the Security Server (RACF) External Security Interface
(RACROUTE) Macro Reference manual.

Note: Because MQSeries optimizes calls to the ESM, RACROUTE requests will
not be made on, for example, every open for a particular queue by a
particular user.

444 System Management Guide

 CICS security

Security considerations for using MQSeries with CICS
The CICS adapter provides this information to MQSeries specifically for use in
MQSeries security:

� Whether CICS resource-level security is active for this transaction—as specified
on the RESSEC or RSLC operand of the RDO TRANSACTION definition.

 � User IDs.

For terminal tasks where a user has not signed on, the user ID is the CICS
user ID associated with the terminal and is either:

– The default CICS user ID as specified on the CICS parameter DFLTUSER
SIT

– A preset security user ID specified on the terminal definition

For non-terminal tasks, the CICS adapter tries to get a user ID with an EXEC
CICS ASSIGN command. If this is unsuccessful, the adapter tries to get the
user ID using EXEC CICS INQUIRE TASK. If security is active in CICS, and
the non-terminal attached transaction is defined with CMDSEC(YES), the CICS
adapter passes a user ID of blanks to MQSeries.

For more information about RACF security management in the CICS environment,
see the CICS RACF Security Guide.

Controlling the security of CICS transactions supplied by MQSeries
The CKTI and CKAM transactions are designed to be run without a terminal; no
user should have access to these transactions. These transactions are examples
of what the CICS RACF Security Guide calls “category 1 transactions”. For
information about to set these transactions up in CICS and RACF, see the
information about category 1 transactions in the CICS RACF Security Guide.

If you want a user to administer the CICS adapter, you must authorize them to
these transactions:

Transaction What it does
CKQC Controls the CICS adapter functions
CKBM Controls the CICS adapter functions
CKRT Controls the CICS adapter functions
CKCN Connect
CKSD Disconnect
CKRS Statistics
CKDP Full screen display
CKDL Line mode display
CKSQ CKTI START/STOP

If required, you can restrict access to specific functions of the adapter. For
example, if you want to allow users to display the current status of the adapter via
the full screen interface, but nothing else, give them access to CKQC, CKBM,
CKRT, and CKDP only.

You should define these transactions to CICS with RESSEC(NO) and
CMDSEC(NO). For more details, see the CICS RACF Security Guide. For
information about the security of the CICS transactions supplied by MQSeries for
remote queuing, see the MQSeries Intercommunication manual.

 Chapter 27. MQSeries security implementation 445

 CICS security

CICS adapter user IDs
The user ID associated with CICS adapter is that of the MQSeries-supplied task
initiator transaction, CKTI. This section describes some of the implications of this.

User ID checking for MQSeries resources during PLTPI and
PLTSD
If an MQSeries resource is accessed during the CICS PLTPI phase, the user ID
passed to MQSeries is blanks. If an MQSeries resource is accessed during the
CICS PLTSD phase, the user ID passed to MQSeries is the user ID associated
with the shutdown transaction.

If CKTI is started during the CICS PLTPI phase, the user ID of the CKTI task is the
CICS sysidnt. This means that a user ID with the same name as the CICS sysidnt
must be defined and given access to the required MQSeries resources, for
example, initiation queues.

Terminal user IDs
If CKTI is started from a terminal from the CKQC transaction or a user-written
program that links to CSQCSSQ, the user ID that CKTI uses is the same as the
user ID of the terminal that started CKTI.

Automating starting of CKTI
To automate the starting of CKTIs under a specific user ID, you can use an
automation product, for example, NetView. You can use this to sign on a CICS
console and issue the STARTCKTI command.

You can also use preset security sequential terminals, which have been defined to
emulate a CRLP terminal, with the sequential terminal input containing the CKQC
STARTCKTI command.

However, when the CICS adapter alert monitor reconnects CICS to MQSeries,
after, for example, an MQSeries restart, only the CKTI specified at the initial
MQSeries connection is restarted. You must automate starting any extra CKTIs
yourself.

Propagating the CKTI user ID to other CICS transactions
If CKTI starts other CICS transactions, for example, message channel agents
(MCAs) or user-written CICS applications, the user ID of CKTI is propagated to
these applications. For example, if CKTI is running under user ID CIC1 and a
trigger event occurs which requires the sender MCA transaction, CKSG, to be
started, the CKSG transaction also runs under user ID CIC1. Therefore user ID
CIC1 must have access to the required transmission queue.

446 System Management Guide

 CICS security

Security considerations for the CICS bridge
When you run the CICS bridge, you can specify the level of authentication you
want to take place. If requested, the bridge checks the user ID and password
extracted from the MQSeries request message before running the CICS program
named in the request message.

Notes:

1. If you have not specified a user ID or password in a message, the bridge task
runs with the LOCAL level of authentication, even if you started the bridge
monitor with a different authentication option.

2. The options that include password (or passticket) validation require a CICS
bridge header (MQCIH) to be provided. See the MQSeries Application
Programming Reference manual for more information about the MQCIH header.

The level of authentication you can use is described below:

LOCAL This is the default. CICS programs run by the bridge task are
started with the CICS DFLTUSER user ID, therefore run with the
authority associated with this user ID. There is no checking of user
IDs or passwords. If a CICS program is run that tries to access
protected resources, it will probably fail.

IDENTIFY When you start the monitor task with the IDENTIFY authentication
option, the bridge task is started with the user ID specified in the
message (MQMD). CICS programs run by the bridge run with the
user ID extracted from the MQMD. There is no password checking,
the user ID is treated as trusted.

VERIFY_UOW When you start the monitor task with the VERIFY_UOW
authentication option, the monitor task checks the user ID and
password by issuing the EXEC CICS VERIFY PASSWORD
command before starting the bridge task. CICS programs run by
the bridge run with the user ID extracted from the MQMD. If the
user ID or password is invalid, the request fails with return code
MQCRC_SECURITY_ERROR.

VERIFY_ALL This is the same as VERIFY_UOW except that the bridge task
checks the user ID and password in every message. This is not
applicable for 3270 transactions.

If you have not specified a user ID in a message, or you have not provided a
password, the CICS program started by the CICS bridge runs with the user ID set
to the CICS DFLTUSER, regardless of the option requested. If you want more than
one level of authentication checking performed, run a monitor task for each level
you need.

Table 54 and Table 55 on page 448 summarize the level of authority of the bridge
monitor and the bridge tasks, and the use of the MQMD user ID.

Table 54 (Page 1 of 2). CICS bridge monitor security

Monitor started by At a signed on terminal Monitor authority

From a terminal or EXEC
CICS LINK within a
program

Yes Signed on user ID

 Chapter 27. MQSeries security implementation 447

 CICS security

The options IDENTIFY, VERIFY_UOW, and VERIFY_ALL need the user ID of the
bridge monitor defined to RACF as a surrogate of all the user IDs used in request
messages. This is in addition to the user ID in the message being defined to
RACF. (A surrogate user is one who has the authority to start work on behalf of
another user, without knowing the other user's password.)

For more information on surrogate user security, see the CICS RACF Security
Guide.

Note: When IDENTIFY security is being used, you might see abend AICO for
CKBP if you try to run with a user ID that has been revoked. The error reply will
have return code MQCRC_BRIDGE_ERROR with reason
MQFB_CICS_BRIDGE_FAILURE.

Table 54 (Page 2 of 2). CICS bridge monitor security

Monitor started by At a signed on terminal Monitor authority

From a terminal or EXEC
CICS LINK within a
program

No CICS default user ID

EXEC CICS START with
user ID

– User ID from START

EXEC CICS START
without user ID

– CICS default user ID

The MQSeries trigger
monitor CKTI

– CICS default user ID

Table 55. CICS bridge task security

AUTH Bridge task authority

LOCAL CICS default user ID

IDENTIFY MQMD UserIdentifier

VERIFY_UOW MQMD UserIdentifier

VERIFY_ALL MQMD UserIdentifier

 Authority
Components of the bridge need authority to either put to or get from the various
MQSeries queues. In summary:

� The monitor and all bridge tasks need authority to get messages from the
bridge request queue.

� A bridge tasks need authority to put messages to its reply-to queue.

� To ensure any error replies are received, the monitor should have authority to
put messages to all reply-to queues.

� Bridge tasks should have authority to put messages to the dead-letter queue.

� The monitor needs authority to put messages to the dead-letter queue, unless
you want the bridge to stop if an error occurs.

See Table 54 on page 447 to determine the correlation between user IDs and
authority.

448 System Management Guide

 IMS security

Security considerations for using MQSeries with IMS

Using the OPERCMDS class
If you are using RACF to protect resources in the OPERCMDS class, ensure that
your MQSeries system has authority to issue the MODIFY command to any IMS
system to which it can connect.

Security considerations for the IMS bridge
There are four aspects that you must consider when deciding your security
requirements for the IMS bridge, these are:

� What security authorization is needed to connect MQSeries to IMS
(“Connecting to IMS”)

� How much security checking is performed on applications using the bridge to
access IMS (“Application access control” on page 450)

� Which IMS resources these applications are allowed to use (“Security checking
on IMS” on page 451)

� What authority is to be used for messages that are put and got by the bridge
(“Security checking done by the bridge” on page 452)

When you define your security requirements for the IMS bridge you must consider
the following:

� Messages passing across the bridge might have originated from applications on
platforms that do not offer strong security features

� Messages passing across the bridge might have originated from applications
that are not controlled by the same enterprise or organization

Connecting to IMS
The IMS bridge is an OTMA client. The connection to IMS operates under the user
ID of the MQSeries for OS/390 address space. This is normally defined as a
member of the started task group. This user ID must be granted access to the
OTMA group (unless the /SECURE OTMA setting is NONE). To do this, define the
following profile in the FACILITY class:

IMSXCF.xcfgname.xcfmname

Where xcfgname is the XCF group name and xcfmname is the XCF member name
of MQSeries.

You must give your MQSeries subsystem user ID read access to this profile.

Notes:

1. If you change the authorities in the FACILITY class, you must issue the RACF
command SETROPTS RACLIST(FACILITY) REFRESH to activate the changes.

2. If profile qmgr.NO.SUBSYS.SECURITY exists in the MQADMIN class, no user
ID will be passed to IMS and the connection will fail unless the /SECURE
OTMA setting is NONE.

 Chapter 27. MQSeries security implementation 449

 IMS security

Application access control
For each IMS system that the IMS bridge connects to, you can define the following
RACF profile in the FACILITY class to determine how much security checking is
performed for each message passed to the IMS system.

IMSXCF.xcfgname.xcfmname

Where xcfgname is the XCF group name and xcfmname is the XCF member name
for IMS. (You need to define a separate profile for each IMS system.)

The access level you allow for the MQSeries subsystem user ID in this profile is
returned to MQSeries when the IMS bridge connects to IMS, and indicates the level
of security that is required on subsequent transactions. For subsequent
transactions, MQSeries requests the appropriate services from RACF and, where
the user ID is authorized, passes the message to IMS.

OTMA does not support the IMS /SIGN command; however, MQSeries allows you
to set the access checking for each message to enable implementation of the
necessary level of control.

The following access level information can be returned:

NONE or NO PROFILE FOUND
This indicates that maximum security is required, that is, authentication is
required for every transaction. A check is made to verify that the user ID
specified in the UserIdentifier field of the MQMD structure, and the password
or passticket in the Authenticator field of the MQIIH structure are known to
RACF, and are a valid combination. A Utoken is created with a password or
passticket, and passed to IMS; the Utoken is not cached.

Note: If profile qmgr.NO.SUBSYS.SECURITY exists in the MQADMIN class,
this level of security overrides whatever is defined in the profile.

READ
This indicates that the same authentication is to be performed as above under
the following circumstances:

� The first time that a specific user ID is encountered
� When the user ID has been encountered before but the cached Utoken

was not created with a password or passticket

MQSeries requests a Utoken if required, and passes it to IMS.

Note: If a request to reverify security has been actioned, all cached
information is lost and a Utoken is requested the first time each user
ID is subsequently encountered.

UPDATE
A check is made that the user ID in the UserIdentifier field of the MQMD
structure is known to RACF.

A Utoken is built and passed to IMS; the Utoken is cached.

CONTROL/ALTER
These indicate that no security Utokens need to be provided for any user IDs
for this IMS system. (You would probably only use this for development and
test systems.)

450 System Management Guide

 IMS security

Notes:

1. This access is defined when MQSeries connects to IMS, and lasts for the
duration of the connection. To change the security level, the access to the
security profile must be changed and then the bridge stopped and restarted (for
example, by stopping and restarting OTMA).

2. If you change the authorities in the FACILITY class, you must issue the RACF
command SETROPTS RACLIST(FACILITY) REFRESH to activate the changes.

3. You can use a password or a passticket, but you must remember that the IMS
bridge does not encrypt data. For information about using passtickets, see
“Using RACF passtickets in the IMS header” on page 452.

4. Some of the above might be affected by security settings in IMS, using the
/SECURE OTMA command.

5. Cached Utoken information is held for the duration defined by the INTERVAL
and TIMEOUT parameters of the MQSeries ALTER SECURITY command.

Security checking on IMS
Each MQSeries message that passes across the bridge contains the following
security information:

� A user ID contained in the UserIdentifier field of the MQMD structure
� The security scope contained in the SecurityScope field of the MQIIH structure

(if the MQIIH structure is present)
� A Utoken (unless the MQSeries sub system has CONTROL or ALTER access

to the relevant IMSXCF.xcfgname.xcfmname profile)

The security checks made depend on the setting by the IMS command /SECURE
OTMA, as follows:

/SECURE OTMA NONE
No security checks are made for the transaction.

/SECURE OTMA CHECK
The UserIdentifier field of the MQMD structure is passed to IMS for
transaction or command authority checking.

An ACEE (Accessor Environment Element) is built in the IMS control region.

/SECURE OTMA FULL
The UserIdentifier field of the MQMD structure is passed to IMS for
transaction or command authority checking.

An ACEE is built in the IMS dependent region as well as the IMS control
region.

/SECURE OTMA PROFILE
The UserIdentifier field of the MQMD structure is passed to IMS for
transaction or command authority checking

The SecurityScope field in the MQIIH structure is used to determine whether
to build an ACEE in the IMS dependent region as well as the control region.

 Chapter 27. MQSeries security implementation 451

 IMS security

Notes:

1. If you change the authorities in the TIMS or CIMS class, or the associated
group classes GIMS or DIMS, you must issue the following IMS commands to
activate the changes:

� /MODIFY PREPARE RACF
 � /MODIFY COMMIT

2. If you do not use /SECURE OTMA PROFILE, any value specified in the
SecurityScope field of the MQIIH structure is ignored.

Security checking done by the bridge
When the bridge puts or gets a message, the following authorities are used:

Getting a message from the bridge queue
No security checks are performed.

Putting an exception, or COA report message
Uses the authority of the user ID in the UserIdentifier field of the MQMD
structure.

Putting a reply message
Uses the authority of the user ID in the UserIdentifier field of the MQMD
structure of the original message

Putting a message to the dead-letter queue
No security checks are performed.

Notes:

1. If you change the MQSeries class profiles, you must issue the MQSeries
command REFRESH SECURITY(*) to activate the changes.

2. If you change the authority of a user, you must issue the MQSeries command
RVERIFY SECURITY to activate the change.

Using RACF passtickets in the IMS header
If you want to use a passticket instead of a password in the IMS header (MQIIH),
you should use an application name as if you were creating a passticket for an
OS/390 batch job. That is, the APPL field should be of the form MVSxxxx, where
xxxx is the SMFID of the OS/390 system on which the target queue manager runs.

A passticket is built from a user ID, the target application name (APPL), and a
secret key. It is an 8-byte value containing uppercase alphabetic and numeric
characters. It can be used only once, and is valid for a 20 minute period centered
on the time that it was created. For full information about passtickets, see the
Security Server (RACF) Security Administrator’s Guide.

Passtickets in IMS headers are given to RACF by MQSeries, not IMS.

452 System Management Guide

 Distributed queuing security

Security considerations for distributed queuing
This section discusses security considerations for the non-CICS mover. If you are
using the CICS mover, see “Security considerations for distributed queuing (using
CICS ISC)” on page 482. If you are using clustering, you should also read
“Security considerations for cluster support” on page 455.

If you are using resource security, you should consider the following if you are
using distributed queuing:

� The channel initiator address space needs RACF UPDATE access to these
system queues:

 – SYSTEM.CHANNEL.INITQ
 – SYSTEM.CHANNEL.SYNCQ
 – SYSTEM.COMMAND.INPUT
 – SYSTEM.ADMIN.CHANNEL.EVENT

and to all the user destination queues, and also the dead-letter queue (but see
“Dead-letter queue security” on page 411).

� The channel initiator address space (and the user ID specified by MCAUSER
on each channel if you have a RESLEVEL profile specifying that two user IDs
are to be checked) need ALTER access to all the user transmission queues.

� The channel initiator address space (or the MCA user ID if one has been
specified) also need RACF CONTROL access to the ssid.CONTEXT profile in
the MQADMIN class, and, depending on the RESLEVEL profile, the
network-received user ID might also need CONTROL access to this profile.
See “Profiles for context security” on page 417 and “RESLEVEL and channel
initiator connections” on page 427 for more information.

If you are using the CSQINPX input data set, the channel initiator also needs
READ access to CSQINPX, and UPDATE access to data set CSQOUTX and
dynamic queues SYSTEM.CSQXCMD.ñ.

� The channel initiator address space connection requests use a connection type
of CHIN, for which appropriate access security must be set, see “Connection
security profiles for distributed queuing” on page 405.

� The channel initiator address space needs appropriate access to queue
manager data sets, see “Authorizing access to data sets” on page 457.

� The distributed queuing commands (for example, DEFINE CHANNEL, START
CHINIT, START LISTENER, and so on) should have appropriate command
security set, see Table 42 on page 423.

� Channels, particularly receivers and server-connections, need appropriate
security to be set up; see “User IDs for security checking” on page 430 for
more information. See also the MQSeries Clients manual for information about
server-connection security.

� The user ID specified by MCAUSER on each channel (and if you have a
RESLEVEL profile specifying that two user IDs are to be checked, the
network-received user ID if there is one being used), need the following:

– RACF UPDATE access to the appropriate destination queues and the
dead-letter queue

– RACF CONTROL access to the ssid.CONTEXT profile if context checking is
performed at the receiver

 Chapter 27. MQSeries security implementation 453

 Distributed queuing security

– For clients, the appropriate RACF access to the resources to be used.

� Set appropriate APPC security if you are using the LU 6.2 transmission
protocol. (Use the APPCLU RACF class for example.) For information about
setting up security for APPC, see the following manuals:

– MVS Planning: APPC/MVS Management
– APPC Security: MVS/ESA, CICS/ESA, and OS/2 (redbook)

Outbound transmissions use the “SECURITY(SAME)” APPC option. This
means that the user ID of the channel initiator address space and its default
profile (RACF GROUP) are flowed across the network to the receiver with an
indicator that the user ID has already been verified (ALREADYV).

If the receiving side is also OS/390, the user ID and profile are verified by
APPC and the user ID is presented to the receiver channel and used as the
network user ID.

In an environment where the queue manager is using APPC to communicate
with another queue manager on the same or another OS/390 system, you need
to ensure that either:

– The VTAM definition for the communicating LU specifies
SETACPT(ALREADYV)

– There is a RACF APPCLU profile for the connection between LUs that
specifies CONVSEC(ALREADYV)

� If the RACF access level that either the channel user ID or network-received
user ID has to a destination queue is changed, this change will only take effect
for new object handles (that is, new MQOPENs) for the destination queue. The
times when MCAs open and close queues is variable; if a channel is already
running when such an access change is made, the MCA can continue to put
messages on the destination queue using the existing security access of the
user ID(s) rather than the updated security access. To avoid this, you should
stop and re-start the channels to enforce the updated access level.

454 System Management Guide

Security considerations for cluster support
This section discusses the security considerations for cluster support.

You can use the MCA user ID and security exits to authenticate cluster channels
(as with conventional channels). The security exit on the cluster-receiver channel
must check that the queue manager is permitted access to the server queue
manager's clusters. You can start to use MQSeries cluster support without having
to change your existing queue access security, however you must allow other
queue managers in the cluster to write to the
SYSTEM.CLUSTER.COMMAND.QUEUE if they are to join the cluster.

MQSeries cluster support does not provide a mechanism to limit a member of a
cluster to the client role only. As a result, you must be sure that you trust any
queue managers that you allow into the cluster. If any queue manager in the
cluster creates a queue with a particular name, it will be able to receive messages
for that queue, regardless of whether the application putting messages to that
queue intended this or not.

To restrict the membership of a cluster, you need to take the same action that you
would take to prevent queue managers connecting to receiver channels. You can
achieve this by writing a security exit program on the receiver channel or by writing
an exit program to prevent unauthorized queue managers from writing to the
SYSTEM.CLUSTER.COMMAND.QUEUE.

Note: It is not advisable to permit applications to open the
SYSTEM.CLUSTER.TRANSMIT.QUEUE directly, just as it is not advisable to
permit an application to open any other transmission queue directly.

If you are using resource security you should consider the following in addition to
the considerations discussed in “Security considerations for distributed queuing” on
page 453:

� The channel initiator needs RACF ALTER access to the following system
queues:

 – SYSTEM.CLUSTER.COMMAND QUEUE
 – SYSTEM.CLUSTER.TRANSMIT.QUEUE.

and UPDATE access to SYSTEM.CLUSTER.REPOSITORY.QUEUE

It also needs READ access to any namelists used for clustering.

� The cluster support commands (REFRESH and RESET CLUSTER, SUSPEND
and RESUME QMGR) should have appropriate command security set (as
described in Table 42 on page 423).

 Chapter 27. MQSeries security implementation 455

 Security installation tasks

Security installation tasks
When MQSeries is first installed, you must perform these security-related tasks:

1. Set up MQSeries data set and system security by:

� Authorizing the queue manager started-task procedure xxxxMSTR and the
distributed queuing started-task procedure xxxxCHIN to run under RACF.

� Authorizing access to queue manager data sets.

2. Set up RACF definitions for MQSeries security.

Setting up MQSeries data set and system security
The possible users of MQSeries data sets include:

� The queue manager itself.

� MQSeries administrators who need to create MQSeries data sets, run utility
programs, and so on.

� Application programmers, who need to use the MQSeries-supplied copybooks,
include data sets, macros, and so on.

� Applications involving one or more of the following:

 – Batch jobs
 – TSO users
 – CICS regions
 – IMS regions

For all of these potential users, protect the MQSeries data sets with RACF.

You must also control access to all your ‘CSQINP’ data sets.

RACF authorization of started-task procedures
Some MQSeries data sets should be for the exclusive use of the queue manager.
If you protect your MQSeries data sets using RACF, you must also authorize the
queue manager started-task procedure xxxxMSTR, and the distributed queuing
started-task procedure xxxxCHIN, using RACF. To do this, use either:

� The STARTED class.

� The started procedures table (ICHRIN03).

(Any changes you make to the RACF started procedures table require that you
IPL your OS/390 system before the changes can take effect.)

For more information, see the Security Server (RACF) System Programmer’s
Guide.

The RACF user ID identified must have the required access to the data sets in the
started-task procedure. For example, if you associate a queue manager started
task procedure called CSQ1MSTR with the RACF user ID QMGRCSQ1, the user
ID QMGRCSQ1 must have access to the OS/390 resources accessed by the CSQ1
queue manager.

The RACF user IDs associated with the queue manager and channel initiator
started task procedures should not have the TRUSTED attribute set.

456 System Management Guide

 Security installation tasks

Authorizing access to data sets
The MQSeries data sets should be protected so that no unauthorized user can run
a queue manager instance, or gain access to any queue manager data. To do this,
use normal OS/390 RACF data set protection. For more information, see the
Security Server (RACF) Security Administrator’s Guide.

Table 56 summarizes the RACF access that the queue manager started task
procedure must have to the different data sets.

Table 57 summarizes the RACF access that the started task procedure for
distributed queuing must have to the different data sets.

Table 56. RACF access to data sets associated with a queue manager

RACF access Data sets

READ � thlqual.SCSQAUTH and thlqual.SCSQANLx (where x is the
language letter for your national language).

� The data sets referred to by CSQINP1, CSQINP2 and
CSQXLIB in the queue manager’s started task procedure.

UPDATE � All page sets and log and BSDS data sets.

ALTER � All archive data sets.

Table 57. RACF access to data sets associated with distributed queuing

RACF access Data sets

READ � thlqual.SCSQAUTH, thlqual.SCSQANLx (where x is the
language letter for your national language), and
thlqual.SCSQMVR1 or thlqual.SCSQMVR2.

� LE/370 library data sets.
� The data sets referred to by CSQXLIB and CSQINPX in the

distributed queuing started task procedure.

UPDATE � Data sets CSQOUTX and CSQSNAP
� Dynamic queues SYSTEM.CSQXCMD.ñ

 Chapter 27. MQSeries security implementation 457

 Example security scenario

Example security scenario
This section describes an example security scenario, showing the security settings
required. The scenario uses 2 queue managers on OS/390, called QM1 and QM2.

An application uses the MQPUT1 call to put messages to queues on queue
manager QM1. Some of the messages are then forwarded to queues on QM2,
using TCP and LU 6.2 channels. The application could be a batch application or a
CICS application, and the messages are put using the
MQPMO_SET_ALL_CONTEXT option. This is illustrated in Figure 104.

LQ1

RQA

RQA

QM1.TO.QM2.TCP

QM1.TO.QM2.LU62

TCP

LU 6.2

QM1 (sender)Application

MQPUT1

MQPUT1

MQPUT1

C
H
I
N
I
T

QM2 (receiver)

DLQ

LQA

LQB

C
H
I
N
I
T

Figure 104. Example security scenario

The following assumptions are made about the queue managers:

� All the required MQSeries definitions have been predefined or have been made
through the CSQINP2 data set processed at queue manager startup.

If they have not, you will need the appropriate access authority to the
commands needed to define these objects.

� All the RACF profiles required have been defined and appropriate access
authorities have been granted, before the queue manager and channel initiators
started.

If they have not, you will need the appropriate authority to issue the RACF
commands required to define all the profiles needed and grant the appropriate
access authorities to those profiles. You will also need the appropriate
authority to issue the MQSeries security commands to start using the new
security profiles.

Security switch settings
The following security switches are set for both queue managers:

� Subsystem security on
� Queue security on
� Alternate user security on
� Context security on
� Process security off
� Namelist security off
� Connection security on

458 System Management Guide

 Example security scenario

� Command security on
� Command resource security on

The following profiles are defined in the MQADMIN class to turn process and
namelist security off:

QM1.NO.PROCESS.CHECKS
QM1.NO.NLIST.CHECKS
QM2.NO.PROCESS.CHECKS
QM2.NO.NLIST.CHECKS

MQSeries object definitions
The following objects are defined on the two queue managers. The definitions use
the defaults supplied with MQSeries, unless otherwise stated.

Queue manager QM1
The following queues are defined on queue manager QM1:

LQ1 A local queue.

RQA A remote queue definition, with the following attributes:

 � RNAME(LQA)
 � RQMNAME(QM2)
 � XMITQ(QM1.TO.QM2.TCP)

RQB A remote queue definition, with the following attributes:

 � RNAME(LQB)
 � RQMNAME(QM2)
 � XMITQ(QM1.TO.QM2.LU62)

QM1.TO.QM2.TCP
A transmission queue.

QM1.TO.QM2.LU62
A transmission queue.

The following channels are defined on QM1:

QM1.TO.QM2.TCP
A sender channel definition, with the following attributes:

� Channel name = QM1.TO.QM2.TCP
 � CHLTYPE(SDR)
 � TRPTYPE(TCP)
 � XMITQ(QM1.TO.QM2.TCP)
 � CONNAME(QM2TCP)

QM1.TO.QM2.LU62
A sender channel definition, with the following attributes:

� Channel name = QM1.TO.QM2.LU62
 � CHLTYPE(SDR)
 � TRPTYPE(LU62)
 � XMITQ(QM1.TO.QM2.LU62)
 � CONNAME(QM2LU62)

 Chapter 27. MQSeries security implementation 459

 Example security scenario

(See “Security considerations for distributed queuing” on page 453 for
information about setting up APPC security.)

Queue manager QM2
The following queues have been defined on queue manager QM2:

LQ1 A local queue.
LQB A local queue.
DLQ A local queue that is used as the dead-letter queue.

The following channels have been defined on QM2:

QM1.TO.QM2.TCP
A receiver channel definition, with the following attributes:

� Channel name = QM1.TO.QM2.TCP
 � CHLTYPE(RCVR)
 � TRPTYPE(TCP)
 � PUTAUT(CTX)
 � MCAUSER(MCATCP)

QM1.TO.QM2.LU62
A receiver channel definition, with the following attributes:

� Channel name = QM1.TO.QM2.LU62
 � CHLTYPE(RCVR)
 � TRPTYPE(LU62)
 � PUTAUT(CTX)
 � MCAUSER(MCALU62)

(See “Security considerations for distributed queuing” on page 453 for
information about setting up APPC security.)

User IDs used in scenarios
The following user IDs are used:

BATCHID Batch application (Job or TSO ID)
MSGUSR UserIdentifier in MQMD (context user ID)
MOVER1 QM1 channel initiator address space user ID
MOVER2 QM2 channel initiator address space user ID
MCATCP MCAUSER specified on the TCP receiver channel definition
MCALU62 MCAUSER specified on the LU 6.2 receiver channel definition
CICSAD1 CICS address space ID
CICSTX1 CICS task user ID

Security profiles and accesses required
Table 58 through Table 62 on page 463 show the security profiles that are
required to enable the scenario to work:

Table 58 (Page 1 of 2). Security profiles for the example scenario

Class Profile User ID Access

MQCONN QM1.CHIN MOVER1 READ

MQADMIN QM1.RESLEVEL BATCHID NONE

MQADMIN QM1.RESLEVEL CICSAD1 NONE

MQADMIN QM1.CONTEXT MOVER1 CONTROL

460 System Management Guide

 Example security scenario

Table 58 (Page 2 of 2). Security profiles for the example scenario

Class Profile User ID Access

MQQUEUE QM1.SYSTEM.COMMAND.INPUT MOVER1 UPDATE

MQQUEUE QM1.SYSTEM.CHANNEL.SYNCQ MOVER1 UPDATE

MQQUEUE QM1.SYSTEM.CHANNEL.INITQ MOVER1 UPDATE

MQQUEUE QM1.SYSTEM.COMMAND.REPLY.MODEL MOVER1 UPDATE

MQQUEUE QM1.SYSTEM.ADMIN.CHANNEL.EVENT MOVER1 UPDATE

MQQUEUE QM1.QM1.TO.QM2.TCP MOVER1 ALTER

MQQUEUE QM1.QM1.TO.QM2.LU62 MOVER1 ALTER

MQCONN QM2.CHIN MOVER2 READ

MQADMIN QM2.RESLEVEL MOVER2 NONE

MQADMIN QM2.CONTEXT MOVER2 CONTROL

MQQUEUE QM2.SYSTEM.COMMAND.INPUT MOVER2 UPDATE

MQQUEUE QM2.SYSTEM.CHANNEL.SYNCQ MOVER2 UPDATE

MQQUEUE QM2.SYSTEM.CHANNEL.INITQ MOVER2 UPDATE

MQQUEUE QM2.SYSTEM.COMMAND.REPLY.MODEL MOVER2 UPDATE

MQQUEUE QM2.SYSTEM.ADMIN.CHANNEL.EVENT MOVER2 UPDATE

MQQUEUE QM2.DLQ MOVER2 UPDATE

Security profiles required for a batch application
The batch application runs under user ID BATCHID on QM1. It connects to queue
manager QM1 and puts messages to the following queues:

 � LQ1
 � RQA
 � RQB

It uses the MQPMO_SET_ALL_CONTEXT and
MQPMO_ALTERNATE_USER_AUTHORITY options. The alternate user ID found
in the UserIdentifier field of the message descriptor (MQMD) is MSGUSR.

The following profiles are required on queue manager QM1:

Table 59. Sample security profiles for the batch application on queue manager QM1

Class Profile User ID Access

MQCONN QM1.BATCH BATCHID READ

MQADMIN QM1.CONTEXT BATCHID CONTROL

MQQUEUE QM1.LQ1 BATCHID UPDATE

MQQUEUE QM1.RQA BATCHID UPDATE

MQQUEUE QM1.RQB BATCHID UPDATE

 Chapter 27. MQSeries security implementation 461

 Example security scenario

The following profiles are required on queue manager QM2 for messages put to
queue RQA on queue manager QM1 (for the TCP channel):

Table 60. Sample security profiles for queue manager QM2 using TCP

Class Profile User ID Access

MQADMIN QM2.ALTERNATE.USER.MSGUSR MCATCP UPDATE

MQADMIN QM2.ALTERNATE.USER.MSGUSR MOVER2 UPDATE

MQADMIN QM2.CONTEXT MCATCP CONTROL

MQADMIN QM2.CONTEXT MOVER2 CONTROL

MQQUEUE QM2.LQA MOVER2 UPDATE

MQQUEUE QM2.LQA MSGUSR UPDATE

MQQUEUE QM2.DLQ MOVER2 UPDATE

MQQUEUE QM2.DLQ MSGUSR UPDATE

Notes:

1. The user ID passed in the MQMD of the message is used as the user ID for the MQPUT1 on queue manager
QM2 because the receiver channel was defined with PUTAUT=CTX and MCAUSER=MCATCP.

2. The MCAUSER field of the receiver channel definition is set to MCATCP; this user ID is used in addition to
the channel initiator address space user ID for the checks carried out against the alternate user ID and
context profile.

3. The MOVER2 user ID and the UserIdentifier in the message descriptor (MQMD) are used for the resource
checks against the queue.

4. The MOVER2 and MSGUSR user IDs both need access to the dead-letter queue so that messages that
cannot be put to the destination queue can be sent there.

5. Two user IDs are checked on all three checks performed because RESLEVEL is set to NONE.

The following profiles are required on queue manager QM2 for messages put to
queue RQB on queue manager QM1 (for the LU 6.2 channel):

Table 61 (Page 1 of 2). Sample security profiles for queue manager QM2 using LU 6.2

Class Profile User ID Access

MQADMIN QM2.ALTERNATE.USER.MSGUSR MCALU62 UPDATE

MQADMIN QM2.ALTERNATE.USER.MSGUSR MOVER1 UPDATE

MQADMIN QM2.CONTEXT MCALU62 CONTROL

MQADMIN QM2.CONTEXT MOVER1 CONTROL

MQQUEUE QM2.LQB MOVER1 UPDATE

MQQUEUE QM2.LQB MSGUSR UPDATE

MQQUEUE QM2.DLQ MOVER1 UPDATE

462 System Management Guide

 Example security scenario

Table 61 (Page 2 of 2). Sample security profiles for queue manager QM2 using LU 6.2

Class Profile User ID Access

MQQUEUE QM2.DLQ MSGUSR UPDATE

Notes:

1. The user ID passed in the MQMD of the message is used as the user ID for the MQPUT1 on queue manager
QM2 because the receiver channel was defined with PUTAUT=CTX and MCAUSER=MCALU62.

2. The MCA user ID is set to the value or the MCAUSER field of the receiver channel definition (MCALU62).
3. Because LU 6.2 supports security on the communications system for the channel, the user ID received from

the network is used as the channel user ID (MOVER1).
4. Two user IDs are checked on all three checks performed because RESLEVEL is set to NONE.
5. MCALU62 and MOVER1 are used for the checks performed against the alternate user ID and Context

profiles, and MOVER1 and MSGUSR are used for the checks against the queue profile.
6. The MOVER1 and MSGUSR user IDs both need access to the dead-letter queue so that messages that

cannot be put to the destination queue can be sent there.

Security profiles required for a CICS application
The CICS application uses a CICS address space user ID of CICSAD1 and a CICS
task user ID of CICSTX1. The security profiles required on queue manager QM1
are different to those required for the batch application. The profiles required on
queue manager QM2 are the same as for the batch application.

The following profiles are required on queue manager QM1:

Table 62. Sample security profiles for the CICS application on queue manager QM1

Class Profile User ID Access

MQCONN QM1.CICS CICSAD1 READ

MQADMIN QM1.CONTEXT CICSAD1 CONTROL

MQADMIN QM1.CONTEXT CICSTX1 CONTROL

MQQUEUE QM1.LQ1 CICSAD1 UPDATE

MQQUEUE QM1.LQ1 CICSTX1 UPDATE

MQQUEUE QM1.RQA CICSAD1 UPDATE

MQQUEUE QM1.RQA CICSTX1 UPDATE

MQQUEUE QM1.RQB CICSAD1 UPDATE

MQQUEUE QM1.RQB CICSTX1 UPDATE

 Chapter 27. MQSeries security implementation 463

 Security problem determination

Security problem determination
This section describes the conditions under which violation messages can be
generated in an MQSeries application program and provides a checklist to be
implemented if the ESM is not controlling access in the way that you expect.

 Violation messages
An MQRC_NOT_AUTHORIZED can be returned to an application program
because:

� A user is not allowed to connect to the queue manager. In this case, you get
an ICH408I message in the Batch/TSO, CICS, or IMS joblog.

� A user signon to the queue manager has failed because, for example, the job
user ID is not valid or appropriate, or the task user ID or alternate user ID is not
valid. One or more of these user IDs might not be valid because they have
been revoked or deleted. In this case, you get an ICHxxxx message and
possibly an IRRxxxx message in the queue manager joblog giving the reason
for the signon failure. For example:

ICH4ð8I USER(NOTDFND) GROUP() NAME(???)
LOGON/JOB INITIATION - USER AT TERMINAL NOT RACF-DEFINED

IRRð12I VERIFICATION FAILED. USER PROFILE NOT FOUND

� An alternate user has been requested, but the job or task user ID does not
have access to the alternate user ID. For this failure, you get a violation
message in the joblog of the relevant queue manager.

� A context option has been used or is implied by opening a transmission queue
for output, but the job user ID or, where applicable, the task or alternate user
ID does not have access to the context option. In this case, a violation
message is put in the joblog of the relevant queue manager.

� An unauthorized user has attempted to access a secured queue manager
object, for example, a queue. In this case, an ICH408I message for the
violation is put in the joblog of the relevant queue manager. This violation
might be due to the job or, when applicable, the task or alternate user ID.

Violation messages for command security and command resource security can also
be found in the joblog of the queue manager.

If the ICH408I violation message shows the queue manager jobname rather than a
user ID, this is normally the result of a blank alternate user ID being specified. For
example:

ICH4ð8I JOB(MQS1MSTR) STEP(MQS1MSTR)
 MQS1.PAYROLL.REQUEST CL(MQQUEUE)

INSUFFICIENT ACCESS AUTHORITY
ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)

You can find out who is allowed to use blank alternate user IDs by checking the
access list of the MQADMIN profile ssid.ALTERNATE.USER.-BLANK-.

464 System Management Guide

 Security problem determination

An ICH408I violation message can also be generated by:

� A command being sent to the system-command input queue without context.
User-written programs that write to the system-command input queue should
always use a context option. For more information, see “Profiles for context
security” on page 417.

� When the job accessing the MQSeries resource does not have a user ID
associated with it, or when an MQSeries adapter cannot extract the user ID
from the adapter environment.

What to do if access is allowed or disallowed incorrectly
In addition to the steps detailed in the Security Server (RACF) Security
Administrator’s Guide, use this checklist if access to a resource appears incorrectly
controlled:

� Are the switch profiles correctly set?

Ø Is RACF active?

Ø Are the MQSeries RACF classes installed and active?
Use the RACF command, SETROPTS LIST, to check this.

Ø Use the MQSeries command, DISPLAY SECURITY, to display the current
switch status from the queue manager.

Ø Check the switch profiles in the MQADMIN class.
Use the RACF commands, SEARCH and RLIST, for this.

Ø Re-check the RACF switch profiles by issuing the MQSeries command,
REFRESH SECURITY(MQADMIN).

� Has the RACF resource profile changed? For example, has universal access
on the profile changed or has the access list of the profile changed?

Ø Is the profile generic?
If it is, issue the RACF command, SETROPTS GENERIC(classname)
REFRESH.

Ø Have you refreshed the security on this queue manager?
If required, issue the MQSeries command, REFRESH SECURITY(*).

� Has the RACF definition of the user changed? For example, has the user been
connected to a new group or has the user access authority been revoked?

Ø Have you re-verified the user by issuing the MQSeries command, RVERIFY
SECURITY(userid)?

� Are security checks being bypassed due to RESLEVEL?

Ø Check the connecting user ID’s access to the RESLEVEL profile. Use the
RACF audit records to determine what the RESLEVEL is set to.

Ø If you are running from CICS, check the transaction’s RESSEC setting.

Ø If RESLEVEL has been changed while a user is connected, they must
disconnect and re-connect before the new RESLEVEL setting takes effect.

 Chapter 27. MQSeries security implementation 465

 Security problem determination

466 System Management Guide

 Part 9. Appendixes

 Copyright IBM Corp. 1993,1999 467

468 System Management Guide

 Macros

Appendix A. Macros intended for customer use

The macros identified in this appendix are provided as programming interfaces for
customers by MQSeries.

Note: Do not use as programming interfaces any MQSeries macros other than
those identified in this appendix.

General-use programming interface macros
The following macros are provided to enable you to write programs that use the
services of MQSeries. The macros are supplied in library thlqual.SCSQMACS.

 CMQA
 CMQCDA
 CMQCFA
 CMQCFHA
 CMQCFILA
 CMQCFINA
 CMQCFSLA
 CMQCFSTA
 CMQCIHA
 CMQCXPA
 CMQDLHA
 CMQDXPA
 CMQGMOA
 CMQIIHA
 CMQMDA
 CMQMDEA
 CMQODA
 CMQPMOA
 CMQRMHA
 CMQTMA
 CMQTMC2A
 CMQWCRA
 CMQWDRA
 CMQWIHA
 CMQWPRA
 CMQWXPA
 CMQXA
 CMQXCALA
 CMQXCFBA
 CMQXCFCA
 CMQXCDFA
 CMQXCINA
 CMQXCVCA
 CMQXPA
 CMQXQHA
 CMQXWDA

 Copyright IBM Corp. 1993,1999 469

 Macros

General-use programming interface copy files
The following COBOL copy files are provided to enable you to write programs that
use the services of MQSeries. The copy files are supplied in library
thlqual.SCSQCOBC.

 CMQCDL
 CMQCDV
 CMQCFHL
 CMQCFHV
 CMQCFILL
 CMQCFILV
 CMQCFINL
 CMQCFINV
 CMQCFSLL
 CMQCFSLV
 CMQCFSTL
 CMQCFSTV
 CMQCFV
 CMQCIHL
 CMQCIHV
 CMQCXPL
 CMQCXPV
 CMQDLHL
 CMQDLHV
 CMQGMOL
 CMQGMOV
 CMQIIHL
 CMQIIHV
 CMQMDEL
 CMQMDEV
 CMQMDL
 CMQMDV
 CMQODL
 CMQODV
 CMQPMOL
 CMQPMOV
 CMQRMHL
 CMQRMHV
 CMQTML
 CMQTMV
 CMQTMC2L
 CMQTMC2V
 CMQWIHL
 CMQWIHV
 CMQV
 CMQXV
 CMQXQHL
 CMQXQHV

470 System Management Guide

 Macros

Product-sensitive programming interface macros
The following macros are provided to enable you to write programs that use the
services of MQSeries. The macros are supplied in library thlqual.SCSQMACS.

 CSQBDEF
 CSQQDEFX
 CSQQLITX

General-use programming interface include files
The following C include files are provided to enable you to write programs that use
the services of MQSeries. The files are supplied in library thlqual.SCSQC370.

 CMQC
 CMQXC
 CMQCFC

The following PL/I include files are provided to enable you to write programs that
use the services of MQSeries. The files are supplied in library thlqual.SCSQPLIC.

 CMQP
 CMQEPP
 CMQXP
 CMQCFP

 Appendix A. Macros intended for customer use 471

 Macros

472 System Management Guide

 IMS OTMA exits

Appendix B. Using OTMA exits in IMS

If you want to send output from an IMS transaction to MQSeries, and that
transaction did not originate in MQSeries, you need to code one or more IMS
OTMA exits.

Similarly if you want to send output to a non-OTMA destination, and the transaction
did originate in MQSeries, you also need to code one or more IMS OTMA exits.

The following exits are available in IMS to enable you to customize processing
between IMS and MQSeries:

� An OTMA pre-routing exit
� A destination resolution user (DRU) exit

 Exit names
You must name the pre-routing exit DFSYPRX0. You can name the DRU exit
anything, as long as it does not conflict with a module name already in IMS.

Specifying the destination resolution user exit name
You can use the Druexit parameter of the OTMACON keyword of the CSQ6SYSP
macro to specify the name of the OTMA DRU exit to be run by IMS.

We suggest you adopt a naming convention of DRU0xxxx, where xxxx is the name
of your MQSeries system.

If you do not specify the name of a DRU exit in the OTMACON parameter, the
default is DFSYDRU0. A sample of this module is supplied by IMS. See the
IMS/ESA Customization Guide for information about this.

Naming convention for IMS destination
You need a naming convention for the destination to which you send the output
from your IMS program. This is the destination that is set in the CHNG call of your
IMS application, or that is pre-set in the IMS PSB.

A sample scenario
We suggest the OTMA destination name is synonymous with the MQSeries system
name, for example the MQSeries system name repeated. (In this case, if the
MQSeries system name is VCPE, the destination set by the CHNG call is
VCPEVCPE.)

The pre-routing exit DFSYPRX0
You must first code a pre-routing exit DFSYPRX0. Parameters passed to this
routine by IMS are documented in IMS/ESA Customization Guide.

This exit tests whether the message is intended for a known OTMA destination (in
our example VCPEVCPE). If it is, the exit must check whether the transaction
sending the message originated in OTMA. If so, it will already have an OTMA
header, so you should exit from DFSYPRX0 with register 15 set to 0.

 Copyright IBM Corp. 1993,1999 473

 IMS OTMA exits

� If the transaction sending the message did not originate in OTMA, you must set
the client name to be a valid OTMA client. This is the XCF member-name of
the MQSeries system to which you want to send the message. The IMS/ESA
Customization Guide tells you where to set this. We suggest you set your
client name (in the OTMACON parameter of the CSQ6SYSP macro) to be the
queue manager name. This is the default. You should then exit from
DFSYPRX0 setting register 15 to 4.

� If the transaction sending the message originated in OTMA, and the destination
is non-OTMA, you should set register 15 to 8 and exit.

� In all other cases, you should set register 15 to 0.

If you set the OTMA client name to one that is not known to IMS, your application
CHNG or ISRT call returns an A1 status code.

For an IMS system communicating with more than one MQSeries system, you
should repeat the logic above for each MQSeries system.

Sample assembler code to achieve the above is shown in Figure 105:

TITLE 'DFSYPRXð: OTMA PRE-ROUTING USER EXIT'
DFSYPRXð CSECT
DFSYPRXð AMODE 31
DFSYPRXð RMODE ANY
\
 SAVE (14,12),,DFSYPRXð&SYSDATE&SYSTIME
 SPACE 2
 LR R12,R15 MODULE ADDRESSABILITY
 USING DFSYPRXð,R12
\

L R2,12(,R1) R2 -> OTMA PREROUTE PARMS
\

LA R3,48(,R2) R3 AT ORIGINAL OTMA CLIENT (IF ANY)
 CLC ð(16,R3),=XL16'ðð' OTMA ORIG?

BNE OTMAIN YES, GO TO THAT CODE
\
NOOTMAIN DS ðH NOT OTMA INPUT

LA R5,8(,R2) R5 IS AT THE DESTINATION NAME
CLC ð(8,R5),=C'VCPEVCPE' IS IT THE OTMA UNSOLICITED DEST?
BNE EXITð NO, NORMAL PROCESSING

\
L R4,8ð(,R2) R4 AT ADDR OF OTMA CLIENT

 MVC ð(16,R4),=CL16'VCPE' CLIENT OVERRIDE
 B EXIT4 AND EXIT
\
OTMAIN DS ðH OTMA INPUT

LA R5,8(,R2) R5 IS AT THE DESTINATION NAME
CLC ð(8,R5),=C'VCPEVCPE' IS IT THE OTMA UNSOLICITED DEST?
BNE EXIT8 NO, NORMAL PROCESSING

Figure 105 (Part 1 of 2). OTMA pre-routing exit assembler sample

474 System Management Guide

 IMS OTMA exits

\
EXITð DS ðH

LA R15,ð RC = ð
 B BYEBYE
\
EXIT4 DS ðH

LA R15,4 RC = 4
 B BYEBYE
\
EXIT8 DS ðH

LA R15,8 RC = 8
 B BYEBYE
\
BYEBYE DS ðH

RETURN (14,12),,RC=(15) RETURN WITH RETURN CODE IN R15
 SPACE 2
 REQUATE
 SPACE 2
 END

Figure 105 (Part 2 of 2). OTMA pre-routing exit assembler sample

The destination resolution user exit
If you have set register 15 to 4 in DFSYPRX0, or if the source of the transaction
was OTMA and you set Register 15 to 0, your DRU exit is invoked. In our
example, the DRU exit name is DRU0VCPE.

The DRU exit checks if the destination is VCPEVCPE. If it is, it sets the OTMA
user data (in the OTMA prefix) as follows:

Offset OTMA user data
(decimal)
0 OTMA user data length (in this example, 334)
2 MQMD
326 Reply to format

These offsets are where the MQSeries-IMS bridge expects to find this information.

We suggest that the DRU exit is as simple as possible. Therefore, in this sample,
all messages originating in IMS for a particular MQSeries system will be put to the
same MQSeries queue.

If the message needs to be persistent, IMS must use a synchronized transaction
pipe. To do this, the DRU exit must set the OUTPUT flag. For further details,
please refer to the IMS/ESA Customization Guide.

You should write an MQSeries application to process this queue, and use
information from the MQMD structure, the MQIIH structure (if present), or the user
data, to route each message to its destination.

A sample assembler DRU exit is shown in Figure 106 on page 476.

 Appendix B. Using OTMA exits in IMS 475

 IMS OTMA exits

TITLE 'DRUðVCPE: OTMA DESTINATION RESOLUTION USER EXIT'
DRUðVCPE CSECT
DRUðVCPE AMODE 31
DRUðVCPE RMODE ANY
\
 SAVE (14,12),,DRUðVCPE&SYSDATE&SYSTIME
 SPACE 2
 LR R12,R15 MODULE ADDRESSABILITY
 USING DRUðVCPE,R12
\

L R2,12(,R1) R2 -> OTMA DRU PARMS
\

L R5,88(,R2) R5 ADDR OF OTMA USERDATA
LA R6,2(,R5) R6 ADDR OF MQMD
USING MQMD,R6 AS A BASE

\
LA R4,MQMD_LENGTH+1ð SET THE OTMA USERDATA LEN
STH R4,ð(,R5) = LL + MQMD + 8

\ CLEAR REST OF USERDATA
MVI ð(R6),X'ðð' ...NULL FIRST BYTE
MVC 1(255,R6),ð(R6) ...AND PROPAGATE IT
MVC 256(MQMD_LENGTH-256+8,R6),255(R6) ...AND PROPAGATE IT

\
VCPE DS ðH

CLC 44(16,R2),=CL16'VCPE' IS DESTINATION VCPE?
BNE EXIT4 NO, THEN DEST IS NON-OTMA

 MVC MQMD_REPLYTOQ,=CL48'IMS.BRIDGE.UNSOLICITED.QUEUE'
MVC MQMD_REPLYTOQMGR,=CL48'VCPE' SET QNAME AND QMGRNAME
MVC MQMD_FORMAT,MQFMT_IMS SET MQMD FORMAT NAME

 MVC MQMD_LENGTH(8,R6),MQFMT_IMS_VAR_STRING
\ SET REPLYTO FORMAT NAME
 B EXITð
\
EXITð DS ðH

LA R15,ð SET RC TO OTMA PROCESS
 B BYEBYE AND EXIT
\
EXIT4 DS ðH

LA R15,4 SET RC TO NON-OTMA
 B BYEBYE AND EXIT
\
BYEBYE DS ðH

RETURN (14,12),,RC=(15) RETURN CODE IN R15
 SPACE 2
 REQUATE
 SPACE 2
 CMQA EQUONLY=NO
 CMQMDA DSECT=YES
 SPACE 2
 END

Figure 106. Sample assembler DRU exit

476 System Management Guide

 Service and upgrade considerations

Appendix C. Upgrading and applying service to TCP/IP,
Language Environment, or OS/390 Callable Services

The following tables show you what you need to do to MQSeries for OS/390 if you
upgrade your level of, or apply service to, the following products:

 � TCP/IP
 � Language Environment
� OS/390 Callable Services (APPC and RRS for example)

Table 63. Service has been applied or the product has been upgraded to a new release

Product Action if using CALLLIBS Action if using LINK

TCP/IP You need to do this only if the TCP/IP
module DSPREFIX in the SEZACMTX
library has been changed.

1. Run REPORT CALLLIBS for DDDEF
SEZACMTX.

2. Run the job generated by REPORT
CALLLIBS.

No action required provided that the
SMP/E zones were set up for automatic
relinking, and the CSQ8LDQM job has
been run.

Language
Environment

1. Run REPORT CALLLIBS for DDDEFs
SCEELKED and SCEESPC.

2. Run the job generated by REPORT
CALLLIBS.

No action required provided that the
SMP/E zones were set up for automatic
relinking, and the CSQ8LDQM job has
been run.

Callable Services 1. Run REPORT CALLLIBS for DDDEF
CSSLIB.

2. Run the job generated by REPORT
CALLLIBS.

No action required provided that the
SMP/E zones were set up for automatic
relinking, and the CSQ8LDQM job has
been run.

Table 64 (Page 1 of 2). One of the products has been updated to a new release in a new SMP/E environment
and libraries

Product Action if using CALLLIBS Action if using LINK

TCP/IP 1. Change the DDDEF for SEZACMTX to
point to the new library.

2. Run REPORT CALLLIBS for DDDEF
SEZACMTX.

3. Run the job generated by REPORT
CALLLIBS.

1. Delete the XZMOD subentries for the
following LMOD entries in the
MQSeries for OS/390 target zone:
 � CSQXRCTL
 � CSQXSUPR
 � CSQXTCP

2. Set up the appropriate ZONEINDEXs
between the MQSeries zones and the
TCP/IP zone.

3. Tailor CSQ8LDQM to refer to the new
zone on the FROMZONE parameter of
the LINK commands (CSQ8LDQM can
be found in the SCSQINST library).

 4. Run CSQ8LDQM.

 Copyright IBM Corp. 1993,1999 477

 Service and upgrade considerations

Table 64 (Page 2 of 2). One of the products has been updated to a new release in a new SMP/E environment
and libraries

Product Action if using CALLLIBS Action if using LINK

Language
Environment

1. Change the DDDEFs for SCEELKED
and SCEESPC to point to the new
library.

2. Run REPORT CALLLIBS for DDDEF
SEZACMTX.

3. Run the job generated by REPORT
CALLLIBS.

1. Delete the XZMOD subentries for the
following LMOD entries in the
MQSeries for OS/390 target zone:
CMQXDCST, CMQXRCTL,
CMQXSUPR, CSQCBE00,
CSQCBP00, CSQCBP10, CSQCBR00,
CSQUCVX, CSQVXPCB, CSQVXSPT,
CSQXDCST, CSQXRCTL,
CSQXSUPR, CSQXTCP, CSQXTNSV,
IMQB23IC, IMQB23IM, IMQB23IR,
IMQS23IC, IMQS23IM, IMQS23IR

2. Set up the appropriate ZONEINDEXs
between the MQSeries zones and the
Language Environment zones.

3. Tailor CSQ8LDQM to refer to the new
zone on the FROMZONE parameter of
the LINK commands. CSQ8LDQM
can be found in the SCSQINST library.

 4. Run CSQ8LDQM.

Callable services 1. Change the DDDEF for CSSLIB to
point to the new library.

2. Run REPORT CALLLIBS for DDDEF
CSSLIB.

3. Run the job generated by REPORT
CALLLIBS.

1. Delete the XZMOD subentries for the
following LMOD entries in the
MQSeries for OS/390 target zone:
CMQXRCTL, CMQXSUPR,
CSQBSRV, CSQILPLM, CSQXJST,
CSQXSUPR, CSQ3AMGP, CSQ3EPX,
CSQ3REPL,

2. Set up the appropriate ZONEINDEXs
between the MQSeries zones and the
Callable Services zones.

3. Tailor CSQ8LDQM to refer to the new
zone on the FROMZONE parameter of
the LINK commands. CSQ8LDQM
can be found in the SCSQINST library.

 4. Run CSQ8LDQM.

478 System Management Guide

 Enabling distributed queuing using CICS ISC

Appendix D. Enabling distributed queuing using CICS ISC

To enable distributed queuing using CICS ISC (the “CICS mover”), you must do the
tasks described in the following sections:

� “Defining MQSeries programs and data sets as CICS resources”
� “Defining the channel definitions” on page 480
� “Defining the CKMQ transient data queue” on page 481
� “Defining MQSeries queues, triggers, and processes” on page 481
� “Defining CICS resources used by distributed queuing” on page 481
� “Security considerations for distributed queuing (using CICS ISC)” on page 482

Note: You must also define access security as described in “Security
considerations for distributed queuing (using CICS ISC)” on page 482.

Prerequisites are that you have installed the CICS mover feature, and that the
CICS adapter component has already been set up (see “Setting up the CICS
adapter” on page 118).

Defining MQSeries programs and data sets as CICS resources
As part of installing the CICS adapter, you might already have updated the CICS
system definition (CSD) data set. If you have already done this, go to “Defining the
channel definitions” on page 480.

The thlqual.SCSQPROC library includes a member called CSQ4D100. This
member contains the resource definition online (RDO) statements required for
distributed queuing. These RDO statements must be included in the CSD of both
the local CICS system and the remote CICS system to be used by the distributed
queuing facility.

Notes:

1. You might have to customize CSQ4D100; in particular, the definition for the
channel definition data set might have to be changed to include a data set
name. There is a note at the beginning of CSQ4D100 that explains this.

2. The CSQKCDF file definition must specify a variable record format, that is,
RECORDFORMAT(V). You must not change this format.

The group created is called CSQKDQ1. This group can be included in a group
LIST so that the definitions are available at CICS startup. A cold start of your CICS
system is required. Figure 107 shows an example of JCL that can be used to do
this using the CICS DFHCSDUP offline utility.

 Copyright IBM Corp. 1993,1999 479

 Enabling distributed queuing using CICS ISC

//CSDLOOKC EXEC PGM=DFHCSDUP,REGION=4ð96K
//STEPLIB DD DSN=CICS33ð.SDFHLOAD,DISP=SHR
//DFHCSD DD DSN=your.cics.csd,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1ð24,(1ðð,1ð))
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=MQM.CSQ1.USER(CSQ4D1ðð),DISP=SHR
// DD \
ADD GROUP(CSQKDQ1) LIST(yourlist)

/\

Figure 107. Adding the distributed queuing definitions to the CICS CSD. This JCL sample
assumes that the group CSQKDQ1 does not already exist on your CICS system.

Defining the channel definitions
You must also define the CSQKCDF data set for the channel definitions to be used
by the distributed queuing facility. A data set definition is required on both the local
and remote CICS systems.

The member CSQ4CHDF of thlqual.SCSQPROC contains the JCL to define the
CSQKCDF data set. You must modify the JCL so that the data set high level
qualifier and volume attributes conform to the naming conventions at your
installation.

When the data set has been defined this DD statement can be added to your CICS
startup procedure:

//CSQKCDF DD DSN=thlqual.CDFILE,DISP=SHR

Figure 108. Adding a DD statement to the CICS startup procedure

Alternatively, you can modify the DSNAME field of the CSQKCDF file definition in
the CSQKDQ1 group to contain the data set name. CICS then dynamically
allocates the data set, removing the need to modify the CICS startup procedure.

Notes:

1. You must not change the supplied values for the RECORDSIZE and KEYS
parameters ((400 400) and (20 8) respectively) of the DEFINE CLUSTER
functional command in CSQ4CHDF.

2. You should have only one channel definition file for each queue manager. A
single CICS system should own the channel definition file; the other CICS
systems should define it as a remote file.

3. The channel definitions must be available, via function shipping if necessary, to
all CICS regions running distributed queuing programs.

480 System Management Guide

 Enabling distributed queuing using CICS ISC

Defining the CKMQ transient data queue
Messages from the MQSeries distributed queue management facility are normally
sent to the system console. However, these can be routed to the CKMQ
extra-partition transient data queue. CSQ4DCT2 contains a sample DCT entry for
CKMQ.

The sample DCT entries, CSQ4DCT1 and CSQ4DCT2, should already be
incorporated with those of the existing DCT as part of installing the CICS adapter.
See step 2 on page 120. If you have not done this, follow the instructions in
“System definition” on page 120. Then add a DD statement for the CKMQ
transient data queue to your CICS startup procedure. For example:

//MQMMSG DD SYSOUT=\

See also “EXEC CICS LINK interface messages” on page 125.

Defining MQSeries queues, triggers, and processes
You must include the required queue definitions in your MQSeries subsystem.
Distributed queuing requires a queue for use with sequence numbers and logical
units of work identifiers (LUWID). You must ensure that a queue is available with
the name SYSTEM.CHANNEL.SEQNO.

To pass commands to a running channel program, you need to ensure that a
channel command queue exists for your system with the name
SYSTEM.CHANNEL.COMMAND.

The member CSQ4DISQ in the thlqual.SCSQPROC library contains the queue
definitions required for distributed queuing and examples of definitions of your own
that you will need. You must customize this sample before you use it, then you
can include this member in the CSQINP2 DD concatenation of the MQSeries
startup procedure or you can use the COMMAND function in CSQUTIL utility to
issue the required DEFINE commands.

Defining CICS resources used by distributed queuing
The distributed queuing facilities on the local and remote CICS system require the
definition of certain CICS resources for communication to be established. Before
starting a channel, you must define these resources using the CICS RDO facility:

ISC LU 6.2 CONNECTION
This can be one of:

� An LU 6.2 single session terminal
� An LU 6.2 single session connection
� An LU 6.2 parallel session connection

SESSIONS
You must define enough sessions to accommodate all the channels that might
be active at the same time.

PROFILE (optional)
Profile definitions can be created so that channels are allocated a session
from a specific mode group.

 Appendix D. Enabling distributed queuing using CICS ISC 481

 Distributed queuing (using CICS ISC)

For information about the definition of these CICS resources, see these books:

� CICS Intercommunication Guide for defining CICS ISC links.
� CICS System Definition Guide for guidance on implementing ISC in a CICS

system.
� CICS Resource Definition Guide manual for defining resources to CICS.

Defining access security
You need to give the required access to the distributed queuing transactions. See
“Security considerations for distributed queuing (using CICS ISC)” for information
about this.

Setting up communications
For information on this, and all other aspects of distributed queuing using CICS
ISC, see the MQSeries Intercommunication manual.

Security considerations for distributed queuing (using CICS ISC)
This section discusses security considerations for the “CICS mover.”

When defining and starting channels for distributed queuing, the transactions used
require access to certain MQSeries for OS/390 and CICS resources. The list below
shows the transactions that are used for distributed queuing and the access
requirements that might be needed. Security is not a mandatory requirement and
these examples are only relevant where you are using resource security.

CKMC This transaction will require RACF UPDATE access to the following
resources:

� The CSQKCDF VSAM file in CICS
� The SYSTEM.CHANNEL.SEQNO local queue in MQSeries for OS/390
� The SYSTEM.CHANNEL.COMMAND local queue in MQSeries for

OS/390

The CKMC transaction only needs RACF UPDATE access to the above
resources under certain conditions:

� For the CSQKCDF file, only when the following functions are
performed:

– CREATE a channel
– COPY a channel
– DELETE a channel
– ALTER a channel

� For the SYSTEM.CHANNEL.SEQNO local queue, only when the
following functions are performed:

– RESYNC a channel
– RESET a channel
– RESOLVE a channel

� For the system.channel.command local queue when requesting stop for
a channel.

All other functions only require RACF READ access.

482 System Management Guide

 Distributed queuing (using CICS ISC)

CKSG This transaction will require RACF READ access to the following resources:

� The CSQKCDF VSAM file in CICS

RACF UPDATE access to the following resources:

� The SYSTEM.CHANNEL.SEQNO local queue in MQSeries for OS/390

� The SYSTEM.CHANNEL.COMMAND local queue in MQSeries for
OS/390

� The dead-letter queue (see “Dead-letter queue security” on page 411
for information about how to achieve this)

and RACF ALTER access to the following resources:

� The transmission queue specified in the channel definition in MQSeries
for OS/390

CKSV This transaction will require RACF READ access to the following resources:

� The CSQKCDF VSAM file in MQSeries for OS/390

RACF UPDATE access to the following resources:

� The SYSTEM.CHANNEL.SEQNO local queue in MQSeries for OS/390

� The SYSTEM.CHANNEL.COMMAND local queue in MQSeries for
OS/390

� The dead-letter queue (see “Dead-letter queue security” on page 411
for information about how to achieve this)

and RACF ALTER access to the following resources:

� The transmission queue specified in the channel definition in MQSeries
for OS/390

CKRQ This transaction will require RACF READ access to the following resources:

� The CSQKCDF VSAM file in CICS

and RACF UPDATE access to the following resources:

� The SYSTEM.CHANNEL.SEQNO local queue in MQSeries for OS/390
� In MQSeries for OS/390, either

– The object name passed in the RemoteQname field of the MQXQH
structure, or

– The transmission queue representing the remote queue manager, if
the value in the RemoteQMgrName field of the MQXQH structure
does not match the local queue manager name.

� In MQSeries for OS/390 the SYSTEM.CHANNEL.COMMAND local
queue

� The dead-letter queue (see “Dead-letter queue security” on page 411
for information about how to achieve this)

CKRC This transaction will require RACF READ access to the following resources:

� The CSQKCDF VSAM file in CICS

and RACF UPDATE access to the following resources:

� The SYSTEM.CHANNEL.SEQNO local queue in MQSeries for OS/390
� The SYSTEM.CHANNEL.COMMAND local queue
� In MQSeries for OS/390, either

 Appendix D. Enabling distributed queuing using CICS ISC 483

 Distributed queuing (using CICS ISC)

– The object name passed in the RemoteQName field of the MQXQH
structure, or

– The transmission queue representing the remote queue manager, if
the value in the RemoteQmgrName field of the MQXQH structure
does not match the local queue manager name

� The dead-letter queue (see “Dead-letter queue security” on page 411
for information about how to achieve this)

484 System Management Guide

 Notices

 Appendix E. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web sites
are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

 Copyright IBM Corp. 1993,1999 485

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

486 System Management Guide

 Notices

Programming interface information
This book is intended to help you to administer and operate MQSeries for OS/390.

This book also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and Associated
Guidance Information provided by MQSeries for OS/390.

General-use programming interfaces allow the customer to write programs that
obtain the services of MQSeries for OS/390.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-use programming interface

General-use Programming Interface and Associated Guidance Information...

End of General-use programming interface

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
MQSeries for OS/390. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-sensitive programming interface

 Appendix E. Notices 487

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service
marks of others.

AIX AS/400 BookManager
C/370 CICS CICS/ESA
CUA DB2 DFSMS
DFSMS/MVS IBM IMS
IMS/ESA Language Environment MQ
MQSeries MVS/ESA MVS/DFP
NetView OpenEdition OS/2
OS/390 OS/400 RACF
RMF VSE/ESA VTAM

488 System Management Guide

Part 10. Glossary and index

 Copyright IBM Corp. 1993,1999 489

490 System Management Guide

 abend reason code � Automatic Restart Management (ARM)

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
abend reason code . A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for OS/390.
A complete list of MQSeries for OS/390 abend reason
codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log . See recovery log.

adapter . An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space . The area of virtual storage available
for a particular job.

address space identifier (ASID) . A unique,
system-assigned identifier for an address space.

administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

affinity . An association between objects that have
some relationship or dependency upon each other.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alert monitor . In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local

queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

allied address space . See ally.

ally . An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR . Authorized program analysis report.

application environment . The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application queue . A queue used by an application.

archive log . See recovery log.

ARM. Automatic Restart Management

ASID. Address space identifier.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks . Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

Automatic Restart Management (ARM) . An OS/390
recovery function that can improve the availability of
specific batch jobs or started tasks, and therefore result
in faster resumption of productive work.

 Copyright IBM Corp. 1993,1999 491

 backout � command prefix (CPF)

B
backout . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

basic mapping support (BMS) . An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS) . A VSAM data set that
contains:

� An inventory of all active and archived log data sets
known to MQSeries for OS/390

� A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

BSDS. Bootstrap data set.

buffer pool . An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . A time when significant information is
written on the log. Contrast with syncpoint.

CI. Control interval.

CL. Control Language.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster . A network of queue managers that are
logically associated in some way.

cluster queue . A queue that is hosted by a cluster
queue manager and made available to other queue
managers in the cluster.

cluster queue manager . A queue manager that is a
member of a cluster. A queue manager may be a
member of more than one cluster.

cluster transmission queue . A transmission queue
that transmits all messages from a queue manager to
any other queue manager that is in the same cluster.
The queue is called
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF) . In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

492 System Management Guide

 command processor � event header

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . An operation that applies all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

completion code . A return code indicating how an
MQI call has ended.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control interval (CI) . A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

controlled shutdown . See quiesced shutdown.

CPF. Command prefix.

Cross Systems Coupling Facility (XCF) . Provides
the OS/390 coupling services that allow authorized
programs in a multisystem environment to communicate
with programs on the same or different OS/390
systems.

D
datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection . A pending event that is
activated when a CICS subsystem tries to connect to
MQSeries for OS/390 before MQSeries for OS/390 has
been started.

dequeue . To remove a message from a queue.
Contrast with enqueue.

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

distributed queue management (DQM) . In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging . A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode . See dual logging.

dynamic queue . A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
enqueue . To put a message on a queue. Contrast
with dequeue.

environment . See application environment.

ESM. External security manager.

event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

 Glossary of terms and abbreviations 493

 event message � Interactive System Productivity Facility (ISPF)

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

external security manager (ESM) . A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FIFO. First-in-first-out.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

forced shutdown . A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC) . An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF) . An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace . An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle . See connection handle and object handle.

hardened message . A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also
persistent message.

I
immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

in-doubt unit of recovery . In MQSeries, the status of
a unit of recovery for which a syncpoint has been
requested but not yet confirmed.

initialization input data sets . Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS) . A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF) . An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating standard

494 System Management Guide

 IPCS � MQSC

screen panels and interactive dialogues between the
application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
listener . In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition . An MQSeries object belonging to a
local queue manager.

local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

logical unit of work (LUW) . See unit of work.

M
machine check interrupt . An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue

manager to another. A message channel comprises
two message channel agents (a sender at one end and
a receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved, and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

 Glossary of terms and abbreviations 495

 MQSeries � process definition object

MQSeries . A family of IBM licensed programs that
provides message queuing services.

N
namelist . An MQSeries object that contains a list of
names, for example, queue names.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

null character . The character that is represented by
X'00'.

O
object . In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading . In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

Open Transaction Manager Access (OTMA) . A
transaction-based, connectionless client/server protocol.
It functions as an interface for host-based
communications servers accessing IMS TM applications
through the OS/390 Cross Systems Coupling Facility
(XCF). OTMA is implemented in an OS/390 sysplex
environment. Therefore, the domain of OTMA is
restricted to the domain of XCF.

OTMA. Open Transaction Manager Access.

output log-buffer . In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
page set . A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event indicating
that a limit condition has occurred.

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

point of recovery . In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries
for OS/390 page sets and the corresponding log data
sets required to recover these page sets. These
backup copies provide a potential restart point in the
event of page set loss (for example, page set I/O error).

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

496 System Management Guide

 queue � resolution path

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,
programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log . In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the
active log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

relative byte address (RBA) . The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply
message and request message.

repository . A collection of information about the queue
managers that are members of a cluster. This
information includes queue manager names, their
locations, their channels, what queues they host, and so
on.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used to request
a reply from another program. Contrast with reply
message and report message.

RESLEVEL . In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

 Glossary of terms and abbreviations 497

 resource � storage class

resource . Any facility of the computing system or
operating system required by a job or task. In
MQSeries for OS/390, examples of resources are buffer
pools, page sets, log data sets, queues, and messages.

resource manager . An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

Resource Recovery Services (RRS) . An OS/390
facility that provides 2-phase syncpoint support across
participating resource managers.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

RRS. Resource Recovery Services.

S
SAF. System Authorization Facility.

security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event . An event related to the service
interval.

session ID . In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be used
by a message channel agent when moving messages
from a transmission queue to a link.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling . In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating system
to notify a program when an expected message arrives
on a queue.

single logging . A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout . A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

storage class . In MQSeries for OS/390, a storage
class defines the page set that is to hold the messages
for a particular queue. The storage class is specified
when the queue is defined.

498 System Management Guide

 store and forward � trigger event

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem . In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC) . An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile . In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a refresh
security command is issued. Each switch profile that
MQSeries detects turns off checking for the specified
resource.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

sysplex . A multiple OS/390-system environment that
allows multiple-console support (MCS) consoles to
receive console messages and send operator
commands across systems.

System Authorization Facility (SAF) . An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system initialization table (SIT) . A table containing
parameters used by CICS on start up.

T
target library high-level qualifier (thlqual) . High-level
qualifier for OS/390 target data set names.

task control block (TCB) . An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching . The overlapping of I/O operations and
processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

termination notification . A pending event that is
activated when a CICS subsystem successfully
connects to MQSeries for OS/390.

thlqual . Target library high-level qualifier.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

trace . In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid . See transaction identifier.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

 Glossary of terms and abbreviations 499

 triggering � XCF

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be
made to an MQSeries object. The undo part describes
how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
XCF. Cross Systems Coupling Facility.

500 System Management Guide

 Index

 Index

Special Characters
&ZSEL 89
% character in RACF profiles 401

A
abend

application option of SSM entry 174
CICS transaction disconnecting 145
starting after 195
states 280
U3042 177

abnormal termination 277, 280
access

if incorrect 465
restricting by using alias queues 408

access method services (AMS)
BSDS definition 306
commands 350
defining page sets 62
deleting damaged BSDS 346
new active log definition 321
renaming damaged BSDS 346
REPRO 332, 350

accounting
eye catcher string 388
introduction 363
message manager 388
rules for data collection 368
sample SMF records 390
SMF trace 366
starting automatically 72

ACS user-exit filter, archive log data sets 311
ACTCHL parameter of CSQ6CHIP 83
active log

copy to archive 20
CSQJU003, change log inventory utility 256
data set

copying 321
copying with AMS REPRO statement 332
off-loaded to archive log 302
VSAM linear 301

defining in BSDS 321
delays in off-loading 338
deleting from BSDS 322
description 299
dual logging 303
enlarging 322
input buffer size (INBUFF) 74
log print utility (CSQ1LOGP) 266
number of buffers per write 76

active log (continued)
off-loading 303
out of space 338
output buffer

number filled (WRTHRSH) 76
size (OUTBUFF) 75

printing (CSQ1LOGP) 266
recording existing in BSDS 322
recovery plan, problems 338
single or dual (TWOACTV) 75
space allocation

primary (PRIQTY) 79
secondary (SECQTY) 80
units (ALCUNIT) 77

status 320
stopped data set effect 342
truncation 304
writing 303

active log problem
delays in off-loading 338
dual logging lost 339
log stopped 342
out of space 338
read I/O errors 340
write I/O errors 339

ADAPS parameter of CSQ6CHIP 84
adapter

CICS 109—155
illustration 8
introduction 8, 22

adapter subtasks, number to use for channel
initiator 84

adapters
IMS 159—161, 180

adapters and dispatchers, total number 86
address space

abend 192
canceling for MQSeries 196
CICS adapter 111
CICS, user ID 432
connection security 439
for MQSeries 22
IMS adapter 159
IMS control region 165
IMS, user ID 432
user ID 429, 430

administering
by writing programs 211
introduction 27

administration programs 211, 214
administrator commands 19

 Copyright IBM Corp. 1993,1999 501

 Index

age, specifying for OTMA 72
ALCUNIT parameter of CSQ6ARVP 77
alert monitor 112
alias queue 10

system default 55
alias queues

command resource checking 422
restricting access using 408
security 407, 411
undelivered messages 411

ALL, attribute of DISPLAY SECURITY 443
ALTER commands, security 423
alter queue attributes, security 423
ALTER SECURITY command 441
alternate user ID 431
alternate user ID, distributed queuing 429
alternate user security 396, 415
AMS (access method services)

BSDS definition 306
commands 350
defining page sets 62
deleting damaged BSDS 346
new active log definition 321
renaming damaged BSDS 346
REPRO 332, 350

AMS REPRO, backing up and recovering page
sets 332

APF authorization of load libraries 47
API-crossing exit

defining 114
enable or disable 132

API-resource security 395
quick reference 419
RESLEVEL 425

APPC
LU name 84
LUADD 84
maximum number of current channels 85
restart interval after failure 84

APPC, applying service 477
APPCPMxx 84
application

data 4
environments 4
in MQSeries 14
program 23, 299

batch adapter 23
CICS adapter 24
command format 124
CQKC DISPLAY 142
IMS adapter 25
issuing commands from 211
recovery 299

starting automatically 14
time-independent 3
types 14

application access control 450
application stubs, coexistence with earlier versions 98
applid node name 121
archive initialization parameters, setting 68
archive log

ACS user-exit filter 311
adding information to BSDS (NEWLOG) 258, 323
BSDS copies 306
cataloging (CATALOG) 78
compacting (COMPACT) 78
create 20
CSQJU003, change log inventory utility 256
data set

name prefix 77
off-loading 302
password 261
password protection (PROTECT) 79
time stamp (TSTAMP) 80

deleting 317
deleting information from the BSDS 260, 323
device type (UNIT) 80
discarding records 317
dual copies 306
dynamic allocation of data sets 310
information in BSDS 305
input buffer size (INBUFF) 74
maximum number in BSDS (MAXARCH) 74
maximum number of volumes (MAXALLC) 74
mounting, WTOR (ARCWTOR) 78
output buffer size (OUTBUFF) 75
password, changing 323
printing (CSQ1LOGP) 266
quiesce time (QUIESCE) 80
recording in BSDS 323
recovery plan 343
retention period (ARCRETN) 77
route codes (ARCWRTC) 77
single or dual (TWOARCH) 75
space allocation

block size (BLKSIZE) 78
primary (PRIQTY) 79
secondary (SECQTY) 80
units (ALCUNIT) 77

ARCHIVE LOG command
security 423

archive log problem
allocation problems 343
insufficient DASD for off-load 344
read I/O errors during restart 344
write I/O errors during off-load 343

ARCHIVE LOG, command 315
archive parameter

default 76
setting 76

ARCHIVE, utility function (CSQJU003) 261

502 System Management Guide

 Index

archiving 299, 310, 315
See also archive log
controlling, OFFLOAD parameter of CSQ6LOGP 75
log data sets 304, 310
SMS 311

ARCPFX1 parameter of CSQ6ARVP 77
ARCPFX2 parameter of CSQ6ARVP 77
ARCRETN parameter of CSQ6ARVP 77
ARCWRTC parameter of CSQ6ARVP 77
ARCWTOR parameter of CSQ6ARVP 78
ARM

activating a policy 296
couple data sets 294
defining a policy 295
introduction 294
network considerations 296
policy sample 295
registering with 296

ARM (automatic restart manager)
coexistence 93
introduction 26
LUADD for channel initiator 84
migration 93
subsystem name table 45

attributes of queues 9
audit, security 437
auditing RESLEVEL 437
authority, alternate user 396
auto-reconnect, CICS adapter 113
Automatic Restart Manager

See ARM
automatic restart manager (ARM)

coexistence 93
introduction 26
LUADD for channel initiator 84
migration 93
subsystem name table 45

automating starting of CKTI 446
availability, recovery planning 307

B
back out 274
backing up

logs, frequency 308
object definitions 309
page sets 331, 332
queues 307

base function 33
batch

example security scenario 458
Batch adapter

See Batch/TSO adapter
batch application, improving portability 87
batch assembler, IVP 99

batch message program (BMP)
See BMP (batch message program)

batch utility
See MQSeries utility program (CSQUTIL)

batch, testing customization 99
Batch/TSO adapter 23

connection security 404
CSQBSTUB stub program 23
installing 87
maximum number of connections

background (IDBACK) 70
foreground (IDFORE) 70
total (CTHREAD) 69

OS/390 SNAP dump 87
RESLEVEL 425
security checking 425
user IDs, security checking 431

Batch/TSO RRS adapter
See RRS adapter

bibliography xvi
blank fields in operations and control panels 209
blank user IDs 436
BLKSIZE parameter of CSQ6ARVP 78
BLSCECTX SYS1.PARMLIB member 90
BMP (batch message program) 174
BookManager xxi
bootstrap data set (BSDS)

introduction 17
BSDS (bootstrap data set) 299

changing log inventory utility (CSQJU003) 323
defining 305
dual copies 305
errors 346
introduction 17
managing 315, 323
print log map utility (CSQJU004) 265
recovery 350
registers log data 305
time stamps 319
what it is for 305

BSDS problem
does not agree with log 349
error while opening 347
I/O error 346
out of synchronization 348
unequal time stamps 347

buffer
illustration 17
input buffer size (INBUFF) 74
maximum number 17
number filled before write to log 76
output buffer size (OUTBUFF) 75
output log 302
what they are 17

buffer manager
suppressing console messages 91

 Index 503

 Index

buffer manager statistics 376
interpretation 377

buffer pool
defining 17, 20, 54
illustration 17
performance implications 17

buffer pools
management 377
size 379
statistics 378

building messages 216
bypass of syncpoint 275

C
C and C++, testing customization 102
callable services, applying service 477
canceling MQSeries address space 196
CARTs 190
CATALOG parameter of CSQ6ARVP 78
catalog, archive log (CATALOG) 78
CCSID (coded character set identifier)

queue manager (QMCCSID) 72
CCSID, keyword of COMMAND function 239
change log inventory utility (CSQJU003) 256—264

adding new active log 321, 338
BSDS preparation 61
change BSDS 319, 321
changes for active logs 321
changes for archive logs 322
functions

ARCHIVE 261, 351
CHECKPT 263
conditional restart 262
CRESTART 262
DELETE 260
HIGHRBA 264
NEWLOG 258, 321, 323
setting checkpoint records 263
updating the highest written log RBA 264

invoking 256
log data set preparation 61
managing log data sets 305
multiple statement operation 257
time stamp in BSDS 348

CHANGE SUBSYS, command of IMS 169, 173
channel

controlling 20
introduction 13
maximum number active 83
maximum number current 84
maximum number of current LU 6.2 85
maximum number of current TCP/IP 85
queues 56
sample definitions 58
storage requirement 28

channel (continued)
suppressing console messages 91
system default 55
user ID 429

channel definitions (CICS mover) 480
channel file definition (CSQKCDF) 479
channel initiator

controlling 21
CSQ6CHIP 83
defining the procedure 50
installation verification program 102
maximum number of connections (CTHREAD) 69
migration considerations 94
restarting with ARM 296
sample definitions 60
tailoring the parameter module 82

channel initiator parameter module, invoking 83
channel initiator parameters

default 83
displaying settings 82
migration considerations 93

channel listener, controlling
channel reply information queue 11
channel sequence number queue 481
channel synchronization queue 11
channel-initiation queue 11
checkpoint

number of log records (LOGLOAD) 71
records 300, 301

checkpoint records, setting 263
CHECKPT, utility function (CSQJU003) 263
Chinese language feature 39, 227
CI (control interval), description 302

description 310
CICS

address space user ID, security checking 430
CICS mover

See distributed queuing using CICS ISC
completing the connection 121
connection ID 283
definition of term xv
example security scenario 458
in-doubt units of recovery 283
monitoring facility 367
MQSeries-CICS bridge 24
recovery considerations when using MQSeries 312
related publications xxiii
resources for distributed queuing 479
system administration and operation 24
system definition (CSD) data set 118
terminating 144
testing customization 102
units of recovery 286
user IDs, security checking 432

CICS adapter 57, 109—155
address space 111

504 System Management Guide

 Index

CICS adapter (continued)
administrative functions 109
alert monitor 112
API-crossing exit 114
application programming 24
auto-reconnect 113
CKTI task initiator 113
commands 123
components 111
connect program (CSQCQCON) 129
connection security 404
consistency with MQSeries 275
control panels 126—142
conventions 117
CSQ4INYG object sample 57
CSQCSTUB stub program 111, 121
customizing 122
deferred connection 112
disconnect program 131
displaying CICS tasks 135
displaying connection details 135
displaying status 142
forced shutdown 144, 145
initiation queue, defining 58
installing 118
introduction 23
maximum number of connections (CTHREAD) 69
MQI support 110
object sample 57
operation of

control functions 109
control panels 126
displaying current tasks 141
displaying instances of CKTI 140
lowercase queue names 128
modifying a connection 132
starting a connection 127
starting CKTI 136
stopping CKTI 138

orderly shutdown 144
overview 109
passing parameters 124
pending events 112
performance 115

connection statistics 116
multi-tasking 114

PLTPI program, writing 122
quiesced shutdown 144
recovery 283
RESLEVEL 425
resource definition 118
restart, what happens 291
restrictions 113
security 446

authorization 445
checking 425
for transactions 445

CICS adapter (continued)
security (continued)

PLTPI 446
PLTSD 446
terminal user IDs 446

shutting down a connection 144
starting a connection 127
statistics 364
system definition 120
task initiation program (CSQCSSQ) 137
terminating 144
testing customization 102
transaction authority 445
transaction services

security support 445
syncpoint support 275

two-phase commit 116, 276
user IDs for security 425, 430, 446
VTAM node name, connection ID in system

initialization tables 121
CICS bridge

customizing 152
definition 147
migration considerations 93
prerequisite APARs 152
security 447
starting 154
stopping 155
system configuration 148
tuning considerations 154
when to use 147

CICS mover
See distributed queuing using CICS ISC

CICS system definition data set (CSD)
updating for CICS 118

CICS Transaction Server for OS/390
See CICS

CKBM, security 445
CKCN, security 445
CKDL, security 445
CKDP, security 445
CKMQ, transient data queue 481
CKQC

authorization 445
CICS adapter transaction 109
DISPLAY command 142
MODIFY command 133
security 445
START command 128
STARTCKTI command 137
STOP command 130
STOPCKTI command 138

CKQQ, transient data queue 125
CKRS, security 445
CKRT, security 445

 Index 505

 Index

CKSD, security 445
CKSG, MCA transaction 446
CKSQ, security 445
CKTI transaction 113

automating starting of 446
displaying 140
propagating user IDs 446
security 445, 446
starting 136
stopping 138, 139

class of service 26
client

channels 13
sample definitions 58

client attachment feature 33
client channel definition file, generating 239
close options, dynamic queues 410
cluster

coexistence 94
command queue 11
commands 21
introduction 6
joining 20
leaving 20
migration 94
queues 10, 57
queues required 11
repository queue 11
sample definitions 59
transmission queue 12

cluster support
security considerations 455

CMDUSER parameter of CSQ6SYSP 69
COBOL, testing customization 102
coded character set identifier (CCSID)

queue manager (QMCCSID) 72
coded character set identifier, queue manager

(QMCCSID) 72
cold start 356
command

administrator 19
for the CICS adapter 123
introduction 18
issuing

from initialization input data sets 52
methods of issuing 19
processor 12, 213
queue manager 8
queues required 12
resource checking summary table 423
resource security 397
resource security profiles 422
security 397
security profiles 421
summary table 19
system control, summary 20

command and response tokens 190
command prefix (CPF)

displaying existing 43
naming convention 42
valid characters 43

command prefix string
See CPF (command prefix)

command prefix strings
See CPF (command prefix)

command queue, clustering 11
command server 12, 213—226

controlling 20
restart 213
sending commands to 216
starting 213
stopping 213

COMMAND, CSQUTIL function 238
MAKECLNT keyword 241
MAKEDEF keyword 240

commands
See also MQSeries, commands
DISPLAY 364
examples of 220
in request messages 216
issuing 189, 190

from CSQUTIL 191, 238
from system-command input queue 211
from the OS/390 console 190
from TSO panels 191

no reply to 226
operator 191
remote queue manager 214
STOP QMGR 195
user messages

from DEFINE 221
from DEFINE QLOCAL 223
from DEFINE THREAD 222
from DELETE 221
from DISPLAY 221
from DISPLAY commands 222

commit 275
commit point

See point of consistency
communication protocol, choosing 40
COMPACT parameter of CSQ6ARVP 78
compacting archive logs (COMPACT) 78
conditional restart 262
connection parameters, setting 68
connection security 395, 439, 449
connections

controlling CICS 122
controlling IMS 169
displaying details of

CICS 135
IMS 174

maximum number
Batch/TSO, background (IDBACK) 70

506 System Management Guide

 Index

connections (continued)
maximum number (continued)

Batch/TSO, foreground (IDFORE) 70
total (CTHREAD) 69

monitoring the activity on 174
profiles for security 404
starting from

CICS adapter control panel 127
CICS application program 129
CICS command line 128
IMS 170
PLTPI program 119

statistics for CICS adapter 116
stopping from

CICS adapter control panel 130
CICS application program 131
CICS command line 130
IMS 169

to IMS, monitoring activity 174—175
consistency of data, abnormal termination 277
consistency with batch, CICS, IMS, and TSO 275
console messages, suppressing 91
context security 396, 417
continuous operation, recovery planning 307
control functions, CICS adapter 109
control interval

See CI (control interval), description
control panels for the CICS adapter 126
control region

See CTL (IMS control region)
controlling application connections 122
controls and options, security 394
coordinator, recovery 275
copy files

general-use programming interface 470
COPY, CSQUTIL function 246
copying

messages from a queue (COPY) 245
page sets

COPYPAGE function 233
RESETPAGE function 235

queues to a data set (COPY) 246
queues to a data set (SCOPY) 249

COPYPAGE, CSQUTIL function 233
CorrelId field, administration programs 218
COUNT field, user messages 220
couple data sets, ARM 294
CPF (command prefix)

displaying existing 43
establishing 41
issuing commands 190
naming convention 42
registering 44
registration 44
running in a sysplex 44
scope 44

CPF (command prefix) (continued)
valid characters 42, 43

CRESTART, utility function (CSQJU003) 262
CSA storage requirement 28
CSD (CICS system definition data set) 118
CSQ1LOGP

See log print utility (CSQ1LOGP)
CSQ2020E message 184
CSQ4BSDS, sample 346, 350
CSQ4D100, customization 479
CSQ4DISP, display sample 54, 59
CSQ4DISQ, distributed queuing sample 54
CSQ4DISQ, distributed queuing using CICS ISC

sample 59
CSQ4INP1 sample initialization data set 54
CSQ4INPX sample initialization data set 54
CSQ4INSG sample initialization data set 54
CSQ4INSX sample initialization data set 54
CSQ4INSX system object sample 56
CSQ4INYC sample initialization data set 54
CSQ4INYD sample initialization data set 54
CSQ4INYG sample initialization data set 54
CSQ4IVP, installation verification program 54, 59
CSQ4IVP1

RACF commands 100, 103
CSQ4IVP1 installation verification program 99
CSQ4IVPX 102

example output 105
CSQ4MPFL information message suppression

sample 91
CSQ4MSTR sample startup procedure 49
CSQ4PAGE page set sample 62
CSQ6ARVP macro 67, 76
CSQ6ARVP, macro 310
CSQ6CHIP 83
CSQ6LOGP macro 67, 74
CSQ6SYSP macro 67, 68
CSQ6SYSP, macro 368
CSQBDEFV 87
CSQBSTUB for Batch/TSO adapter 23
CSQBSTUB for IMS adapter 25
CSQCAPX sample API-crossing exit program 114
CSQCCODF sample PLTPI program 119
CSQCDSC CICS adapter disconnect program 131
CSQCQCON CICS adapter connect program 129
CSQCRST CICS adapter reset program 133
CSQCSSQ CICS adapter task initiation program 137,

139
CSQCSTUB for CICS adapter 24, 111, 121
CSQINP1

commands 52
sample data set 54
security 397, 431

CSQINP2
commands 52
security 397, 431

 Index 507

 Index

CSQINP2 (continued)
updating 121
using 55

CSQINPX
security 397, 453
specifying a response time 53

CSQINPx data sets, issuing commands from 52
CSQJ004I message 339
CSQJ030E message 342
CSQJ100E message 347
CSQJ102E message 349
CSQJ103E message 343
CSQJ105E message 339
CSQJ106E message 340
CSQJ107E message 346
CSQJ108E message 346
CSQJ110E message 338
CSQJ111A message 338
CSQJ114I message 344
CSQJ115E message 343
CSQJ120E message 347
CSQJ122E message 348
CSQJ124E message 340
CSQJ126E message 346
CSQJ138E message 344
CSQJU003

See change log inventory utility (CSQJU003)
CSQJU004

See print log map utility (CSQJU004)
CSQKCDF, channel file definition 479
CSQOREXX 89
CSQP004I message 353
CSQP018I message 192
CSQP019I message 192
CSQQDEFV, subsystem definition table 161—166
CSQQDEFX, macro 165
CSQQSTUB for IMS adapter 25
CSQQSTUB, for IMS adapter 159
CSQQTRMN program

starting 177
CSQQTRMN transaction 160

stopping 178
CSQQxxx messages 358
CSQSNAP 87, 110, 159
CSQUTIL

See also MQSeries utility program (CSQUTIL)
RESLEVEL 425
security checking 425

CSQWDMP 90
CSQWDPRD 90
CSQXPARM

description 82
displaying settings 82

CSQZPARM
creating 67
displaying settings 67

CSQZPARM (continued)
specifying an alternate 194

CTHREAD parameter of CSQ6SYSP 69
CTL (IMS control region) 170, 174
CURRCHL parameter of CSQ6CHIP 84
customizing 33

before you start 37
CICS adapter 122
CICS bridge 152
IMS bridge 181
initialization input data sets 52
introduction 27, 37
IPL 37
overview 33
planning 33
security 444
tasks 37
testing 99
when migrating from previous versions 93

D
DASD 17, 302, 310

performance 377
Data Facility Hierarchical Storage Manager

See DFHSM (Data Facility Hierarchical Storage
Manager)

data integrity 4
data manager statistics 375
data set

See also page set
multivolume 66
space management 15

data sets
See also active log
See also archive log
active log 321
archive log 310
bootstrap, creating 61
copying messages from queues 246
copying messages from queues (offline) 249
dump and restore 333
initialization 52
log, creating 61
page set I/O error 353
restart on losing 356
restoring messages from 254

datagram, message 5
dead-letter queue 12, 58

finding out its name 224
security 411

DEAD.QUEUE
See dead-letter queue

default
archive parameters 76
CCSID 72

508 System Management Guide

 Index

default (continued)
channel definition 13
channel initiator parameters 83
CSQ6ARVP macro 76
CSQ6LOGP macro 74
CSQ6SYSP macro 68
logging parameters 74
namelist definition 13
process definition 14
queue definitions 13
routing code 72
system queues 13
user ID 69

DEFAULT storage class 57
default transmission queue 58
deferred connection for CICS 112
DEFINE commands, security 423
defining

buffer pools 17
CICS resources for MQSeries 118
MQSeries to IMS 162
storage class 15
subsystems 41

defining queues 9
defaults 13

definitions
storing 15

DELETE commands, security 423
DELETE, utility function (CSQJU003) 260
deleting

active information log from BSDS 322
archive logs 317, 318
log information from BSDS 260
messages from a queue 252

dependent region, IMS 174, 175
disconnecting from 175
user ID 432

DEQUEUE TMEMBER, command of IMS 183
descriptor, message 4
DEST option, trace data destination 369
destination resolution exit

sample 475
specifying name 71

destination resolution exit, writing 473
device type for logs (UNIT) 80
DFHSM (Data Facility Hierarchical Storage Manager)

in backup and recovery 311—312
DFS3611 message 358
DFS555I message 357
DFSMS

related publications xxiv
DFSYDRU0 sample module 473
DFSYPRX0 473
disaster recovery 312
discarded messages 219

disconnecting
from CICS 130
from IMS 176

dispatchers and adapters, total number 86
dispatchers, number to use for channel initiator 84
display

channel initiator parameters 82
CKQC transaction 142
system settings 67

DISPLAY commands, security 423
DISPLAY OASN command of IMS 173
display sample 59
DISPLAY THREAD 280
displaying

function key settings 200
units of recovery in CICS 286
units of recovery in IMS 172, 288

DISPS parameter of CSQ6CHIP 84
distributed queuing

choosing facility 40
connection security 405
CSQINPX 53
defining the data sets 50
definition of term xv
initialization input data sets 53
installation verification program 102
LE runtime library 46
MCA user ID 433
queues required 11
RESLEVEL 427
sample definitions 58
SCEERUN 46
security 51
security checking 427
security considerations 453
setting the CCSID 72
testing customization 102

distributed queuing using CICS ISC
channel definitions 480
channel file definition 479
channel sequence number queue 481
defining CICS resources 479, 481
defining queues, triggers, and processes 481
LU 6.2 connections 481
sample, CSQ4DISQ 59
security 482
transient data queue 481

DRU exit
specifying name 71

DRU exit sample
sample 475

DRU exit, writing 473
druexit name, specifying for OTMA 71
dual BSDS (TWOBSDS) 75
dual logging 300

establishing 309

 Index 509

 Index

dual logging (continued)
losing 339
specifying for active log (TWOACTV) 75
specifying for archive log (TWOARCH) 75

dump formatting member 90
dynamic calls, IMS 162
dynamic expansion of page sets 65
dynamic queue

specifying a name 10
template 10

dynamic queues 5
close options 410
security 409

E
early code library 46
early code, multiple versions 98
ECSA storage requirement 28
editing namelists 208
EMCS 190
EMPTY, utility function (CSQUTIL) 252
English language feature 39
ENQUEUE names, CICS 117
environments, for applications 4
error symptoms

OS/390 error recovery program message 344
errors, hardware 359
euro currency support 95
event

introduction 18
event queues 12
event reporting sample, CSQ4INSG 55
event-driven processing 4
example

ARM policy 295
output from CSQ4IVPX 105
security scenario 458

example recovery scenarios
active log problems

delays in off-loading 338
dual logging lost 339
log stopped 342
out of space 338
read I/O errors 340
write I/O errors 339

archive log problems
allocation problems 343
insufficient DASD for off-load 344
read I/O errors during restart 344
write I/O errors during off-load 343

BSDS problems
BSDS recovery 350
does not agree with log 349
error while opening 347
I/O error 346
out of synchronization 348

example recovery scenarios (continued)
BSDS problems (continued)

unequal time stamps 347
hardware problems 359
IMS problems

application terminates 357
IMS not operational 357
unable to connect to MQSeries 358

page set problems
I/O error 353
page set full 353

EXEC CICS LINK
COMMAREA option 122
INPUTMSG option 124
linking to the CICS adapter 122, 129

exit program
CICS adapter 114
number of TCBs 70
time allowed per invocation 70

EXITLIM parameter of CSQ6SYSP 70
EXITTCB parameter of CSQ6SYSP 70
expanding page sets 233
extended console support 190
Extended Recovery Facility (XRF) 312
external security manager (ESM) 393
eye catcher strings 382, 388

SMF type 115 records 382
SMF type 116 records 388

F
F keys

See function keys
FAILURE, keyword of COMMAND function 239
features, installable 33
finding archive log data sets to be deleted 318
FORCE 279

parameter, table of effects 279
FORCE keyword of FORMAT 231
FORCE option of STOP QMGR command 280
FORCE parameter or RESETPAGE 236
format

type 115 SMF records 371
type 116 SMF records 385

FORMAT, utility function (CSQUTIL) 231
formatting dumps 90
frequency backing up logs 308
function keys

changing namelists 208
operations and control panels 201
showing 200
updating 89
using 200

functions
See change log inventory utility (CSQJU003)
See MQSeries utility program (CSQUTIL)

510 System Management Guide

 Index

functions, return codes from CSQUTIL 230

G
global trace

initial setting 73
start automatically 73

glossary 491
GMQADMIN, security class 400, 401
GMQNLIST, security class 400
GMQPROC, security class 400
GMQQUEUE, security class 400
group class, security 400
group name, specifying for OTMA 71
GRPLIST system initialization parameter 120

H
hardware errors 359
header

SMF type 115 record 371
SMF type 116 record 385

help
CICS adapter 126
operations and control panels 201

HIGHRBA, utility function (CSQJU003) 264
HTML (Hypertext Markup Language) xxi
Hypertext Markup Language (HTML) xxi

I
I/O error

marks active log as TRUNCATED 320
occurrence 305
queues 353

ICHRIN03, started-task procedure table 456
IDBACK parameter of CSQ6SYSP 70
IDFORE parameter of CSQ6SYSP 71
IEFSSNss, SYS1.PARMLIB member 41
IFASMFDP, reporting program for SMF 366
IMS

abend U3042 177
adapter 174
application programming 25
commands

CHANGE SUBSYS 169, 173
DEQEUUE TMEMBER 183
DISPLAY OASN 173
DISPLAY OASN SUBSYS 169
DISPLAY SUBSYS 175
START REGION 175
START SUBSYS 169
START TMEMBER 183
STOP REGION 175
STOP SUBSYS 169, 176
STOP TMEMBER 183
TRACE 169

IMS (continued)
connection status 175
connections to MQSeries 169
control region 170
controlling dependent region connections 174
CSQQTRMN transaction 160
definition of term xv
disconnecting from dependent region 175
dynamic call stub, linking 162
in-doubt units of recovery 284, 288
initializing 170
log record 284
MQSeries-IMS bridge 25
recovery considerations when using MQSeries 312
related problems 357
related publications xxiv
reset Tpipe 21
resynchronizing the bridge 184
second user ID, determining 432
system administration and operation 25
thread 171
trigger monitor 160
user IDs, security checking 432

IMS adapter 161, 180
address space user ID 395
connection security 405
connection status 175
CSQBSTUB stub program 25
CSQQDEFV, subsystem definition table 165
CSQQDEFX, macro 165, 166
CSQQSTUB stub program 25
CSQQSTUB, stub program 159
CSQQTRMN transaction 160
defining MQSeries to it 165
dependent regions of IMS 174
displaying in-doubt units of recovery 172
IMSID option 170
installing 161
language interface token (LIT) 166
logical terminal (LTERM) 170
maximum number of connections (CTHREAD) 69
residual recovery entry (RRE) 173
RESLEVEL 426
restart, what happens 293
second user ID 426, 432
security checking 426
SSM EXEC parameter 164
SSM specification options 165
starting CSQQTRMN 177
stopping CSQQTRMN 178
subsystem member entry in IMS.PROCLIB 162
threads, displaying 172
trigger monitor 160

IMS bridge
age, specifying for OTMA 72
Commit mode, synchronization 184

 Index 511

 Index

IMS bridge (continued)
controlling queues 183
customizing 181
deleting messages 183
description 179
druexit name, specifying for OTMA 71
group name, specifying for OTMA 71
illustration 179
member name, specifying for OTMA 71
OTMA parameters 71
persistent messages 475
resynchronizing 184
security 449
starting 179
stopping 179
storage class 181
suppressing console messages 91
Tpipe name 72

IMS problem
application terminates 357
IMS not operational 357
unable to connect to MQSeries 358

IMS transactions, submitting 180
IMS.PROCLIB library 162, 170, 174
in-doubt units of recovery 283, 285, 291, 293

causing inconsistent state 280
resolution 289
resolving, in CICS 283
resolving, in IMS 284
resolving, in RRS 285

INBUFF parameter of CSQ6LOGP 74
include files

general-use programming interface 471
incorrect access 465
indexed queues, effect on restart time 282
information messages, suppressing 91
initialization input data sets

customizing 52
editing 53
formats 53
migration considerations 94
MQSeries-supplied samples 54

initiation queue 11
defining for CICS 58

INITPARM system initialization parameter 120
input buffer size (INBUFF) 74
installable features 33
installation verification program (IVP) 59

distributed queuing 102
sample output 105

queue manager 99
installing

See also customizing
CICS adapter 118
IMS adapter 161
introduction 26

installing (continued)
security 456

Internet Gateway feature 34
interpreting

buffer manager statistics 377
log manager statistics 381
replies to messages 220

intersystem connection (ISC) links 113
INTERVAL, attribute of ALTER SECURITY 55, 441
introduction
introduction to MQSeries 3
investigating performance 365
IPCS job, formatting dumps 90
IPCS list, updating 90
IPCS VERBEXIT 90
IPL (initial program load)

when required for MQSeries 37
IRC and the CICS adapter 120
ISC LU 6.2 connection 481
ISPF

See also operations and control panels
effect of split screen 71
installing panels permanently 88
menu, updating 89
operations and control panels, setting up 88
panel 21
showing keys (PFSHOW) 200

ISPLLIB, concatenation 88
ISPMLIB, concatenation 88
ISPPLIB, concatenation 88
ISPSLIB, concatenation 88
ISPTLIB, concatenation 88
issuing commands 189, 238
IUCV

migration considerations 94
IUCV interface to TCP/IP 85
IVP

See installation verification program (IVP)
IVP (installation verification program)

distributed queuing 102
sample output 105

queue manager 99

J
Japanese language feature 39, 227
Japanese language letter 33

K
KEEPALIVE value, TCP/IP 85

L
Language Environment, applying service 477

512 System Management Guide

 Index

language interface token (LIT) 163
language letter 33
language, national 39
layout

type 115 SMF records 371
type 116 SMF records 385

libraries, after installation 34
link list, updating 46
listener

controlling 21
restarting with ARM 296

listener restart time 84
LIT (language interface token) 163
load balancing on page sets 327
load libraries, APF authorization of 47
load management 15
LOAD, utility function 254
local queue 10

system default 55
locating archive log data sets to be deleted 318
log

active 299
archive 299
changing log inventory utility (CSQJU003) 256
copy active to archive 20
determining inventory contents 319
dual logging 300

active 300, 306
archive 300, 306
synchronization 304

error recovery procedures 338
introduction 17
log print utility (CSQ1LOGP) 266
managing 299
number of buffers per write 76
print log map utility (CSQJU004) 265
records 284

logical 301
physical 301
types 300

recovering from problems
active log 338
archive log 343

recovery 323
structure 301

log data sets
creating 61
restart on losing 355
single or dual 74
storage required 61

log initialization parameters, setting 68
log manager statistics 380, 381
log print utility (CSQ1LOGP) 266—268

extract log records 266
invoking 266
output 268

log print utility (CSQ1LOGP) (continued)
print log records 266, 319
time stamp 319
what it does 266

log RBA value, modifying 256
log RBA, updating the highest written 264
log records

number between checkpoints 71
logging parameters

default 74
setting 74

logging process 302
logging, single and dual 74, 300
LOGLOAD parameter of CSQ6SYSP 71
logs and recovery 17
lowercase queue names

CICS adapter 128
operations and control panels 209

LSTRTMR parameter of CSQ6CHIP 84
LU 6.2

LU name 84
LUADD 84
maximum number of current channels 85
restart interval after failure 84

LU 6.2 and ARM 297
LU 6.2 connections (CICS mover) 481
LU name for outbound transmissions 84
LU62ARM parameter of CSQ6CHIP 84
LU62CHL parameter of CSQ6CHIP 85
LUNAME parameter of CSQ6CHIP 84

M
macros

CSQ6ARVP 67
CSQ6LOGP 67, 74
CSQ6SYSP 67
general-use programming interface 469
product-sensitive programming interface 471

maintaining consistency after errors 277
MAKECLNT, keyword of COMMAND function 239,

241
MAKEDEF, keyword of COMMAND function 238, 240
managing

BSDS 306, 321
MQSeries log 315
page sets 325

MAXALLC parameter of CSQ6LOGP 74
MAXARCH parameter of CSQ6LOGP 74
MAXFILEPROC 85
maximum number of uncommitted messages 54, 245
maximum page set extents 66
MAXSMSGS 54, 245
MCA user ID, distributed queuing 433
media recovery 359

 Index 513

 Index

member class, security 400
member name, specifying for OTMA 71
message

calculating the space required 63
channels 13
illustration 4
maximum length 5
retrieval algorithms 6
storing 15
types 5
what they are 4

message channel 13
message descriptor 4
message manager accounting 388
message manager statistics 374
message processing program (MPP) 174
message queue interface (MQI) 3

calls 8
message queuing, what it is 3
message routing code (ROUTCDE) 72
message-driven processing 3
messages

CICS adapter 125
discarded 219
incorporating MQSeries commands 216
information, suppressing 91
interpreting replies to MQSeries commands 220
maximum number of uncommitted 54, 245
on the system-command input queue 217
suppressing 91
undelivered, security 411
user 201, 212
violation, security 464
waiting for replies to 218

MGCR 431
MGCR and MGCRE 189
migration

testing 99
migration considerations

ARM 93
changes to installation process 93
channel initiator 94
channel initiator parameters 93
channel initiator security 94
CICS bridge 93
clusters 94
coexistence with earlier versions 98
euro currency support 95
initialization input data sets 94
IUCV 94
OpenEdition sockets 94
operations and control panels 95
queue objects 95
RRS 94
software levels 93
storage classes 94

migration considerations (continued)
system parameters 93
TCP/IP 94

model queue 10
system default 55

model queues
security 409

modifying an MQSeries-CICS connection 132
monitoring

CICS connection activity 135
DISPLAY commands 364
IMS connection activity 174
performance 363
resource usage 363
tools 363

mounting, archive log (ARCWTOR) 78
mover

CICS
See distributed queuing using CICS ISC

moving queues 328
MPP (message processing program) connection

control 174
MQADMIN, security class 400, 401
MQCLOSE options, security 419
MQCMDS, security class 400
MQCONN, security class 400, 404
MQGET

in administration programs 214
security 408

MQI (message queue interface)
calls 8
support, CICS adapter 110
what it is 3

MQI channel 13
MQNLIST, security class 400
MQOPEN/MQPUT1 options, security 406, 419
MQPROC, security class 400
MQPUT

in administration programs 214
security 408

MQQUEUE, security class 400
MQSC command

introduction 18
MQSeries commands

ARCHIVE LOG 303, 315
DEFINE PSID 325
DISPLAY SECURITY 403
DISPLAY THREAD 286
issuing from TSO panels 191
REFRESH SECURITY 403
remote queue manager 214
RESOLVE INDOUBT 286
resource security profiles 422
security 423
security profiles 421
START TRACE 368

514 System Management Guide

 Index

MQSeries commands (continued)
STOP TRACE 368

MQSeries publications xvi
MQSeries subsystems

running different versions 98
MQSeries utility program (CSQUTIL) 229—256

COMMAND function 238
COPY function 246
COPYPAGE function 233
EMPTY function 252
FORMAT function 231
introduction 229
invoking 229
issuing commands from 191
LOAD function 254
monitoring the progress of 230
moving queues 328
page set management 231, 328
queue management functions 245
RESETPAGE function 235
return codes 230
SCOPY function 249
SDEFS function 243
security 431
syntax checking 230

MQSeries-IMS bridge
See IMS bridge

MsgId field, administration programs 218
multi-region operation (MRO) restrictions 113
multi-tasking, CICS adapter 114
multi-volume archive log data sets 304
MVS

See OS/390

N
name of LU to use 84
namelist 13

system default 55
namelists 208

security 396, 414
names of objects 7
national language feature 33
network considerations for ARM 296
network ID (NID)

See NID (network ID)
NEWLOG, utility function (CSQJU003) 258, 321, 323
NID (network ID) 286, 289
NODEFINE storage class 57
nonpersistent messages 213
NSYSLX, value of 45

O
object

channel 13

object (continued)
namelist 13
names 7
process definition 14
queue 10
queue manager 8
storage class 15
types 7

object definition
storing 15

objects
backing up definitions 309
defining 207
operations and control panels 207
supplied samples 55
system default 55

off-loading
active log 303
description 302, 304
diagram of process 303
errors during 304, 320
messages issued during 304
process description 302
relationship to other logging events 303

OFFLOAD parameter of CSQ6LOGP 75
OpenEdition 22
OpenEdition sockets

migration considerations 94
security 51

OpenEdition sockets interface to TCP/IP 85
opening the system-command input queue 214
operating

basic operations 189
introduction 27

operations and control panels
changing function keys 89
changing the subsystem ID 202
coexistence with earlier versions 98
example of 202
function keys 201
installing permanently 88
introduction 21
invoking 197
libraries 88
migration considerations 95
performance 16
queue manager default 200
RESLEVEL 425
rules for using 209
security checking 425
setting up 88
system command objects 56
user messages 201
using 197
working with object definitions 207

 Index 515

 Index

operator commands
CICS adapter 143
IMS adapter 169
issuing 189
operations and control panels 197

orderly shutdown
CICS adapter 144
MQSeries 279

OS/390
APF authorized libraries 47
console, connecting from 190
environment 22
issuing MQSeries commands 192
link list, updating 46
MQSeries considerations 22
parmlibs, updating 41
program properties table, updating 48
related publications xxiii
SNAP dump 87, 110, 159
subsystem name table, updating 41
WLM 26
workload manager 26

OS/390 Automatic Restart Manager
See ARM

OS/390 OpenEdition 22
OTMA 179

DRU exit sample 475
pre-routing exit sample 473

OTMA exit 473
OTMACON parameter of CSQ6SYSP 71
out of space on active log 338
OUTBUFF parameter of CSQ6LOGP 75
output buffer, logs (OUTBUFF) 75, 302

P
page set

backing up 332
define 20
display current state 20
dynamic expansion 65

maximum limit 66
how messages are stored 64
illustration 16, 17
number used 65
problems 353
reducing the size 330
sample 62
storage management 15
what they are 15

page set identifier (PSID)
specifying 15

page set problem
I/O error 353
page set full 353

page set zero 15
managing 16
performance 16
storage requirements 63

page set zero, migration 95
page sets

adding 62, 325
AMS REPRO 332
backing up 308, 331
control records 301
copying 233, 235
COPYPAGE 233
creating a point of recovery 331
defining 62
dynamic expansion 62
expanding 233, 326
formatting 231
full 325, 353
initialization input data sets 54
load balancing 327
managing 325
performance 378
recovery 308, 333
RESETPAGE 235
resetting the log 235
storage requirements 63
utility functions 231

PAGES keyword of FORMAT 231
panels

blank fields in 209
coexistence with earlier versions 98
installing 89
issuing commands from 191
operations and control 197, 202
rules for using 209

PARM option, START QMGR command 194
parmlibs, updating 41
passwords

archive log data set 323
data sets 258
supply for archive log 261

PDF (Portable Document Format) xxi
pending events

deferred connection 112
termination notification 112, 121

performance
buffer pool management 377
buffer pools 17
compacting archive log 79
DASD operations 377
DISPLAY commands 364
effect of indexed queues 282
effect of MQSeries trace 369
monitoring 363
of CICS adapter 115
operations and control panels 16

516 System Management Guide

 Index

performance (continued)
page set zero 16
problems 364, 365
sample SMF records 382
SMF trace 366
snapshots 364
symptoms of reduced 365

Performance Reporter 367
permanent dynamic queues, problems 16
permanent queue 10
permanent queues 5
PF keys

See function keys
PFSHOW, ISPF command 200
PING CHANNEL command

security 423
PL/I, testing customization 102
PLTPI (program list table post initialization) 119

starting the CICS adapter 122
point of consistency

CICS 275
description 273
IMS 275

point of recovery 308
creating 331

Portable Document Format (PDF) xxi
PostScript format xxii
PPT (program properties table)

example 48
updating 48

pre-routing exit 473
predefined queues 5
previous versions

migrating from
coexistence with earlier versions 98

print log map utility (CSQJU004) 265
invoking 265

PRIQTY parameter of CSQ6ARVP 79
problem determination

IMS 357
performance 364
security 464

problems
operations and control panels 16
permanent dynamic queues 16

procedures
channel initiator 50
queue manager subsystem 49

process
definitions 14
security 395
security profile 413
system default 55

proclibs 49
profile, RACF 401

for alternate user security 415

profile, RACF (continued)
for command resources 422
for command security 421
for connection security

batch/TSO adapter 404
CICS adapter 404
distributed queuing 405
IMS adapter 405
RRS adapter 404

for context security 417
for namelists 414
for process security 413
for queue security 406
RESLEVEL 428
switch 401
used to protect MQSeries resources 404

program list table (PLT) 119
program properties table

See PPT (program properties table)
program, administration 211
PROTECT parameter of CSQ6ARVP 79
PSID (page set identifier)

specifying 15
publications

MQSeries xvi
related xxiii

Q
QIST, data manager statistics record 375
QJST, log manager statistics record 380
QMAC, message manager accounting record 388
QMCCSID (queue manager coded character set

identifier) 72
QMCCSID parameter of CSQ6SYSP 72
QMST, message manager statistics record 374
QPST, buffer manager statistics record 376
queue

alias 10
attributes 9
channel 11
channel initiation 11
channel reply information 11
channel sequence number (CICS mover) 481
channel synchronization 11
cluster 10
cluster command 11
cluster repository 11
cluster transmission 12
dead-letter 12
defining 9
dynamic 5
event 12
illustration 8
initiation 11
local 10

 Index 517

 Index

queue (continued)
mapping to page sets 15
model 10
permanent 5, 10
predefined 5
remote 10
required for clusters 11
required for commands 12
required for distributed queuing 11
required for events 12
required for triggering 11
system default 13
system-command

input 12
temporary 10
transmission 11
used with MQSeries 10
what they are 5
where they reside 6
WLM-managed 26

queue management utility functions 245
queue manager

commands 8
display cluster information 21
illustration 8
installation verification program 99
relationship to queues 6
running multiple versions 98
starting 20, 192
stopping 20, 195
what it is 8

queue manager cluster
See cluster

queue manager coded character set identifier
(QMCCSID) 72

queue manager event
introduction 18

queue object
types 10
using 10

queue objects
migration considerations 95

queues 117
alter attributes, security 423
backup 307
channel 56
cluster 57
copying 233, 246
copying (offline) 249
dead-letter 58
defining local 203
emptying 252
indexed, effect on restart time 282
LOAD function 254
moving them 328
profiles for security 406

queues (continued)
recommended, sample 57
recovery 307
reply-to model 214
reserved names 117
restoring messages 254
security 395, 406
supplied samples 55
system-administration 56
system-command 214

input 214
reply-to model 214

transmission, default 58
QUIESCE 195, 279, 280

option of STOP QMGR command 280
parameter, table of effects 279
stop mode 195

QUIESCE MODE, of ARCHIVE LOG utility
function 315

QUIESCE parameter of CSQ6ARVP 80
QWHS, message manager accounting record 388

R
RACF

See also profile, RACF
See also security
authority, dead-letter queue 412
authorization

ICHRIN03 456
STARTED class 456
started-task procedure table 456
to MQSeries data sets 457

commands for CSQ4IVP1 100, 103
profiles 401
related publications xxiv
security classes 400

RACF profiles 450
railroad diagrams, how to read 228
RBA (relative byte address)

description 300
range shown in messages 304
range specified in active log 321

RDO (resource definition online) 118
recommended queues sample, CSQ4INYG 57
record subtypes, SMF type 115 records 372
records

type 115 (SMF) 366
type 116 (SMF) 366

RECOVER BSDS command
security 423

recovery 335
active log problems 338
application program 299
basic operations 189
BSDS

errors 346

518 System Management Guide

 Index

recovery (continued)
BSDS (continued)

log inventory 317
CICS

manually recovering units of recovery 286
resolving in-doubt units of recovery 283

COPY 335
creating a point of 331
data with DFHSM 311
description 333
example scenarios 337
IMS

manually recovering units of recovery 288
resolving in-doubt units of recovery 172, 284
resynchronizing the bridge 184

introduction 17, 28
logs 323
MQSeries-related problems

active log problems 338
archive log problems 343—344
BSDS 346—352
page set problems 353

object definitions, backing up 309
page sets 332
point of 331
procedure, IMS units of recovery 288
restart 281
RRS

manually recovering units of recovery 290
resolving in-doubt units of recovery 285

single BSDS 350
starting 191—195
subsystem 299
system procedures 307
tokens 286

redo records 301
reduced performance, symptoms of 365
reducing the size of a page set 330
REFRESH SECURITY command 403

security 423
using 442

region error options (REO) 163, 174
registering with ARM 296
relative byte address (RBA) 300

See also RBA (relative byte address)
remote queue

system default 55
remote queues 10

command resource checking 422
security 410

REMOTE storage class 57
REO (region error options) 163, 174
replies, examples 220
reply message descriptor 219
reply messages 5, 218

reply-to queue
attributes 214
defining 214
opening 215
system-command 56

report message 5
repository queue, clustering 11
REPRO command of access method services 332,

350
request message 5, 217
RESET CHANNEL command

security 423
RESETPAGE, utility function (CSQUTIL) 235
resetting page sets 235
residual recovery entry (RRE)

See RRE (residual recovery entry)
RESLEVEL

auditing 430, 437
checking CICS user IDs 425
distributed queuing 427
IMS adapter 426
security profile 394
usage notes 430
user IDs associated with 428
using 425

RESOLVE commands
security 423

RESOLVE INDOUBT command
free locked resources 286

resolving
in-doubt units of recovery 172
units of recovery 286, 290

resource definition online (RDO) 118
Resource Measurement Facility (RMF) 367
resource protection 4, 395
resource recovery services (RRS)

adapter 23
introduction 23
migration considerations 94

resource security
alias queues 422
API 395, 419
commands 397, 422
remote queues 422

resource-level security checking by CICS adapter 445
RESOURCE_TYPE, CICS adapter 117
RESPTIME, keyword of COMMAND function 239
restart 279

See also recovery
after abnormal termination 277
after losing data sets 356
after losing logs 355
CICS adapter 283, 291
cold start 356
conditional 262
distributed recovery environment 277

 Index 519

 Index

restart (continued)
effect of indexed queues 282
effect of lost connections 283
IMS 284
IMS adapter 293
MQSeries 284

phase 275
normal 281
OS/390 Automatic Restart Manager 294
parameter, table of effects 279
process 273, 279, 281
RRS adapter 285
user messages 292
with ARM 294

RESTART option of STOP QMGR command 280
restart timer, listener 84
restoring

messages to a queue 245
restricting access using alias queues 408, 411
resynchronization of CICS and MQSeries

resources 283
resynchronization of IMS and MQSeries resources 284
resynchronization of RRS and MQSeries

resources 285
retention period, archive logs (ARCRETN) 77, 317
retrieval algorithms, for messages 6
return codes, from utility functions 230
RMF (Resource Measurement Facility) 367
ROUTCDE parameter of CSQ6SYSP 72
route codes, archive log (ARCWRTC) 77
routing code, message (ROUTCDE) 72
routing commands

in a sysplex 44
using CPFs 42

RRE (residual recovery entry) 173
logged at IMS checkpoint 284
not resolved 284

RRS
applying service 477
units of recovery 290

RRS (resource recovery services)
adapter 23
introduction 23
migration considerations 94

RRS adapter 23
connection security 404
installing 87
recovery 285

rules for using the operations and control panels 209
RVERIFY SECURITY command

security 423
using 442

S
sample

ARM policy 295
channel definitions (CICS mover) 480
defining page sets 62
destination resolution exit 475
initialization input data set members 54
linking the IMS dynamic call stub 162
OTMA pre-routing exit 473
output from CSQ4IVPX 105
security scenario 458
SMF accounting record 390
SMF statistics records 382
startup procedure 49

sample data set members 37
SCOPY, CSQUTIL function 249
SCSQxxxx contents 34
SDEFS, CSQUTIL function 243
second user ID, IMS adapter 426, 429, 432
SECQTY parameter of CSQ6ARVP 80
security

See also profile, RACF
See also RACF
alternate user 396
API quick-reference table 419
archive log 79
auditing considerations 437
automating starting of CKTI 446
blank user IDs 436
CICS adapter 445

transactions 445
user IDs 446

CICS bridge 447
CKSG user IDs 446
CKTI 446
clustering 455
command 397

summary table 423
command resource 397
connection 395, 404, 430
context 396
controlling 20
controls and options 394
customizing 444
data sets 456
default user ID 69, 430
displaying status 443
distributed queuing 453
distributed queuing (using CICS ISC) 482
example scenario 458
implementation 394
implementation checklist 439
IMS 449
installation tasks 51, 456
installation verification program

distributed queuing 103

520 System Management Guide

 Index

security (continued)
installation verification program (continued)

queue manager 100
INTERVAL attribute 55, 441
management 393, 441
migration considerations 94
MQCLOSE/MQOPEN/MQPUT1 options 419
namelist 396
OTMA 449
problem determination 464
process 395
profile, RESLEVEL 394, 425
propagating CKTI user IDs 446
queues 395

alias 407, 422
dead-letter 411
dynamic 410
model 409
profiles 406, 423
remote 410, 422
transmission 417, 419, 422

refreshes 442
subsystem 394
terminal user IDs 446
TIMEOUT attribute 55, 441
undelivered messages 411
universal access (UACC) levels 436
user ID timeouts 441
user IDs 430
using RACF classes 400
utilities 431

Security Server
See also RACF
related publications xxiv

self-defining section
SMF type 115 records 371, 373
SMF type 116 records 385, 387

service considerations 477
service goal 26
SETSSI command 41
shutdown

See terminating
shutting down

CICS bridge 155
Simplified Chinese language feature 39
Simplified Chinese language letter 33
single BSDS (TWOBSDS) 75
single logging 300

establishing 309
specifying for active log (TWOACTV) 75
specifying for archive log (TWOARCH) 75

single phase commit 275
SIT (system initialization table) 121

GRPLIST parameter 120
INITPARM parameter 120
PLTPI parameter 120

SMF (System Management Facility) 366
accounting record sample 390
buffers 366
CSQ6SYSP, specifying parameters 68
data records

type 115 371
type 116 385

gathering (STATIME) 73
processing type 115 records 372
processing type 116 records 386
recording trace data for 366
reporting data in (IFASMFDP) 366
self-defining section

type 115 records 371
type 116 records 385, 387

starting automatically (SMFSTAT) 72
statistics records sample 382
type 115 header 371
type 115 record layout 371
type 115 record subtypes 372
type 115 self-defining section 373
type 116 header 385
type 116 record layout 385

SMFACCT parameter of CSQ6SYSP 72
SMFSTAT parameter of CSQ6SYSP 72
SMS (Storage Management Subsystem)

See Storage Management Subsystem (SMS)
SNAP dump

Batch/TSO adapter 87
CICS adapter 110
IMS adapter 159

snapshots, performance 364
sockets

security 51
sockets interface to TCP/IP 85
softcopy books xxi
software levels 93
space allocation

archive logs, block size (BLKSIZE) 78
logs, primary (PRIQTY) 79
logs, secondary (SECQTY) 80
units, logs (ALCUNIT) 77

SPT (started-task procedure table) 456
ssid.DEAD.QUEUE

See dead-letter queue
SSM (subsystem member)

contains control information 170
entry in IMS.PROCLIB 162
error options 174
EXEC parameter 164
specification options 165
specified on EXEC parameter 174

START CMDSERV command 213
START commands

security 423

 Index 521

 Index

start options for MQSeries 194
START QMGR command

from OS/390 console 191
options 194

START REGION, command of IMS 175
START SUBSYS, command of IMS 169
START TMEMBER, command of IMS 183
START TRACE command 368
start-up messages (MQSeries) 192
STARTED RACF class 456

authorization to data sets 457
started task procedure

authorization 456
creating for channel initiator 50
creating for queue manager 49
security 49

starting
after an abend 195
CICS bridge 154
CICS-MQSeries connection

from a CICS program 129
from the command line 128
using the CICS adapter control panels 127

command server 213
IMS-MQSeries connection 170
MQSeries 191, 192, 195
MQSeries trace 368
OS/390 Automatic Restart Manager 294
with ARM 294

startup procedure, CSQ4MSTR 49
STATIME parameter of CSQ6SYSP 73
statistics

buffer manager 376
buffer pool 378
CICS adapter 116, 364
data manager 375
eye catcher strings 382
gathering time interval 73
log manager 380, 381
message manager 374
sample SMF records 382
security 438
starting automatically 72

STOP CMDSERV command 213
STOP commands

security 423
STOP QMGR command

MODE(FORCE) 195, 279
MODE(QUIESCE) 195, 279
MODE(RESTART) 195, 279

STOP REGION, command of IMS 175
STOP SUBSYS, command of IMS 169, 176
STOP TMEMBER, command of IMS 183
STOP TRACE command 368
stopping

See also terminating

stopping (continued)
CICS bridge 155

storage class
errors 58
illustration 16
migration considerations 94
sample 57
storage management 15
system default 55
when to change 58

storage class sample, CSQ4INYG 57
storage class, defining 15
storage class, IMS bridge 181
storage management 15
Storage Management Subsystem (SMS) 26, 317

archive log data sets 311
storage requirement

BSDS 61
CSA 28
messages 63
page set 63
trace table 73

storage, archive planning 310
stub program

CSQBRRSI, for Batch/TSO RRS adapter 23
CSQBRRSI, for RRS adapter 23
CSQBRSTB, for Batch/TSO RRS adapter 23
CSQBRSTB, for RRS adapter 23
CSQBSTUB for Batch/TSO adapter 23
CSQBSTUB for IMS adapter 25
CSQCSTUB for CICS adapter 24
CSQQSTUB for IMS adapter 25

stub programs
coexistence with earlier versions 98
CSQCSTUB for CICS adapter 111, 121
CSQQSTUB, for IMS adapter 159

subsystem ID, changing 202
subsystem member (SSM)

See SSM (subsystem member)
subsystem name table, updating 41
subsystem recovery 299

See also recovery
subsystem security 394

See also security
subsystems, defining
successful collection, accounting data 368
suppressing information messages 91
switches, security 401
syncpoint

See point of consistency
syncpoint protocols 275
syncpoint-bypassing, CICS adapter 116
syntax diagrams, how to read 228
SYS1.PARMLIB member

APPCPMxx 84

522 System Management Guide

 Index

SYS1.PARMLIB members
IEFSSNss 41

SYSEXEC, concatenation 88
sysplex

routing commands 44
SYSPROC, concatenation 88
system administration

CICS 24
IMS 25
MQSC commands 19
MQSeries commands 189, 191
using application programs 211

system command sample, CSQ4INSG 55
system control command

summary 20
system control commands

for starting MQSeries 191
system default

objects 55
queues 13
sample, CSQ4INPX 60
sample, CSQ4INSG 55, 57
sample, CSQ4INYC 59
sample, CSQ4INYG 58

system initialization table (SIT)
See SIT (system initialization table)

system linkage index, reviewing the number 45
System Management Facility (SMF)

See SMF (System Management Facility)
system monitoring, DISPLAY commands 364
system object sample, CSQ4INSG 55
system parameter module

CSQZPARM 194
displaying settings 67
invoking 67
tailoring 67

system parameters
migration considerations 93
setting 68

system security 456
SYSTEM storage class 57

migration considerations 94
system-administration

objects 56
system-command

input queue 12, 56, 191
default attributes 56
defining 214
opening 214
putting messages on 217

objects 56
reply-to model queue 12, 56, 214

SYSTEM.ADMIN.CHANNEL.EVENT queue 12
SYSTEM.ADMIN.PERFM.EVENT queue 12
SYSTEM.ADMIN.QMGR queue 12

SYSTEM.CHANNEL.COMMAND queue 481
SYSTEM.CHANNEL.INITQ queue 11
SYSTEM.CHANNEL.REPLY.INFO queue 11
SYSTEM.CHANNEL.SEQNO queue 481
SYSTEM.CHANNEL.SYNCQ queue 11
SYSTEM.CLUSTER.COMMAND.QUEUE 12
SYSTEM.CLUSTER.REPOSITORY.QUEUE 11
SYSTEM.CLUSTER.TRANSMIT.QUEUE 12
SYSTEM.COMMAND.INPUT queue 12
SYSTEM.COMMAND.REPLY.MODEL queue 12

T
target library high-level qualifier (thlqual) 34
task initiator (CKTI)

See CKTI transaction
tasks, displaying CICS 141
TCB

CICS adapter 114
number for exit programs 70

TCP/IP
address space name 85
interface type 85
KEEPALIVE value 85
MAXFILEPROC 85
maximum number of current channels 85
migration considerations 94
number of dispatchers 84
restart interval after failure 84
settings 86

TCP/IP and ARM 297
TCP/IP, applying service 477
TCPCHL parameter of CSQ6CHIP 85
TCPKEEP parameter of CSQ6CHIP 85
TCPNAME parameter of CSQ6CHIP 85
TCPTYPE parameter of CSQ6CHIP 85
temporary queues

See dynamic queues
terminal user IDs, CICS adapter 446
terminating

MQSeries 195, 279
MQSeries-CICS connection 144

from a CICS program 131
from the CICS adapter control panels 130
from the CICS command line 130

MQSeries-IMS connection 176
using QUIESCE, FORCE, and RESTART, table of

effects 279
termination notification, CICS adapter 112
terminology used in this book 491
testing your queue manager 99
TGTQMGR, keyword of COMMAND function 239
thlqual

definition of term xv
thlqual (target library high-level qualifier) 34

 Index 523

 Index

thlqual.SCSQxxxx contents 34
thread cross reference 280
thread, display information 20
threads

attachment in IMS 171
CICS adapter termination 144, 279
displaying, IMS adapter 172
ID for CICS transactions 122
IMS termination 176
maximum number (CTHREAD) 69
stopping MQSeries 195

time stamps 282, 319
archive log (TSTAMP) 80
from BSDS 319
unequal in BSDS 347

time-independent applications 3
TIMEOUT, security attribute 55, 441
Tpipe

name 72
reset 21

trace
controlling 20
controlling MQSeries 368
effect on performance 369
specifying destinations 369
specifying keywords 368
starting automatically (TRACSTR) 73
trace table size (TRACTBL) 73

TRACE, command of IMS 169
trace, size of data space for channel initiator 86
trace, start automatically for channel initiator 86
tracing parameters, setting 68
TRACSTR parameter of CSQ6SYSP 73
TRACTBL parameter of CSQ6SYSP 73
transaction pipe

See Tpipe
transient data queue (TDQ), CKMQ 481
transient data queue (TDQ), CKQQ 125
transmission queue 11

See also security
default 58

transmission queue, clustering 12
TRAXSTR parameter of CSQ6CHIP 86
TRAXTBL parameter of CSQ6CHIP 86
trigger monitor 14

See also CKTI transaction
See also CSQQTRMN transaction

triggering
queues required 11

truncation, active log 304
TSO

See also Batch/TSO adapter
formatting dumps 90
issuing MQSeries commands from 191
starting MQSeries from 191

TSO applications
improving portability 87

TSTAMP parameter of CSQ6ARVP 80
tuning

CICS bridge 154
tuning MQSeries 363
tuning, introduction 27
two-phase commit 275
TWOACTV parameter of CSQ6LOGP 75
TWOARCH parameter of CSQ6LOGP 75
TWOBSDS parameter of CSQ6LOGP 75
type 115 SMF records 366
type 116 SMF records 366
types of objects 7

U
U.S. English language letter 33
U3042 abend (IMS) 177
unauthorized access, protecting from 393
uncommitted messages, maximum number 20, 54,

245
undelivered messages, security 411
undelivered-message queue

See dead-letter queue
undo records 301
unit of recovery

maximum number of messages in 54, 245
unit of work (UOW) 291
UNIT parameter of CSQ6ARVP 80
units of recovery 273

CICS
in-doubt resolution 283
recovering manually 286

IMS
in-doubt resolution 172, 284
recovering manually 288

in-doubt
displaying in IMS 172
how they are resolved 283
recovering in IMS 172

log records 301
RRS

in-doubt resolution 285
recovering manually 290

universal access (UACC) levels 436
UNIX system services sockets interface to TCP/IP

See OpenEdition sockets interface to TCP/IP
UOW (unit of work) 291
updating

CSQINP2 121
OS/390 link list 46
OS/390 parmlibs 41
OS/390 subsystem name table 41
RACF security 393

524 System Management Guide

 Index

upgrade considerations 477
upgrading from previous versions

coexistence with earlier versions 98
US English language features 227
user exits 114
user ID

maximum age in OTMA 72
user ID security

alternate user 428
Batch/TSO adapter

connection 404, 425, 430
RESLEVEL 425, 428

blank 436
checking 431
CICS adapter 445

address space 432
connection 404, 425, 430
RESLEVEL 425, 428
task 432
transactions 432

CKTI 446
CSQUTIL 425
default 69
distributed queuing 429

connection 405, 427
RESLEVEL 427

IMS adapter
address space 432
connection 405, 426, 430
RESLEVEL 426, 428
second user ID 426, 429, 432

number checked 425
operations and control panels 425
RESLEVEL profile 394, 425, 428
reverification 442
RRS adapter

connection 404
timeouts 441

user messages 212
at start up 192
COUNT field 220
displaying from panels 201
from MQSeries commands, replies 220

utilities
CSQ1LOGP

See log print utility (CSQ1LOGP)
CSQJU003

See change log inventory utility (CSQJU003)
CSQJU004

See print log map utility (CSQJU004)
CSQUTIL

See MQSeries utility program (CSQUTIL)
functions

ARCHIVE 261
CHECKPT 263
COMMAND 238
conditional restart 262

utilities (continued)
functions (continued)

COPY 246
COPYPAGE 233
CRESTART 262
DELETE 260
EMPTY 252
FORMAT 231
HIGHRBA 264
LOAD 254
NEWLOG 258
RESETPAGE 235
SCOPY 249
SDEFS 243
setting checkpoint records 263
updating the highest written log RBA 264

summary table 227
time stamp 319
unit of recovery, maximum number of

messages 245
utility program

See MQSeries utility program (CSQUTIL)
Utoken 431

V
VERBEXIT, IPCS 90
violation messages, security 464
virtual storage access method (VSAM)

See VSAM (virtual storage access method)
volume dump and restore 333
volume serial number 306
VSAM (virtual storage access method) 258, 300, 302

control interval, block size 310

W
WAIT option, CICS adapter 117
waiting for replies to messages 218
Windows Help xxii
WLM 26
WLMTIME parameter of CSQ6SYSP 73
work, units of 286
Workflow 26
workload manager 26

queue scan interval 73
writing

programs to administer MQSeries 211
to the active log 303
to the archive log 303

WRTHRSH parameter of CSQ6LOGP 76
WTOR, MQSeries-related 195

 Index 525

 Index

X
XCF

group name, specifying for OTMA 71
member name, specifying for OTMA 71

XRF (Extended Recovery Facility) 312

526 System Management Guide

Sending your comments to IBM
System Management Guide

SC34-5374-00

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form.

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
System Management Guide

SC34-5374-00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

IBM

System Management Guide
SC34-5374-00

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5374-ðð

	About this book
	Who this book is for
	How to use this book
	Conventions used in this book

	What you need to know to understand this book
	MQSeries publications
	MQSeries cross-platform publications
	MQSeries platform-specific publications
	MQSeries Level 1 product publications
	Softcopy books

	MQSeries information available on the Internet
	Related publications
	OS/390
	CICS Transaction Server for OS/390
	CICS for MVS/ESA Version 4
	IMS
	DFSMS/MVS
	Security Server
	Other products

	What is new for this version
	Part 1. Introduction
	Chapter 1. Introduction to MQSeries for OS/390
	MQSeries and message queuing
	Messages and queues
	Objects and commands
	An overview of storage management
	Logs and recovery
	Events
	Managing MQSeries with commands and utilities
	MQSeries and other products
	Making MQSeries available
	CSA storage requirement

	Part 2. Customizing MQSeries after installation
	Chapter 2. Preparing for customization
	Installable features
	Libraries that exist after installation

	Chapter 3. Customizing the queue managers
	Introducing the customization tasks
	Task 1: Choose which language you want to use
	Task 2: Choose the distributed queuing facility
	Task 3: Define the MQSeries subsystem to OS/390
	Task 4: Update the OS/390 link list
	Task 5: APF authorize the MQSeries load libraries
	Task 6: Update the OS/390 program properties table
	Task 7: Create procedures for the MQSeries subsystem
	Task 8: Create procedures for the channel initiator
	Task 9: Implement your ESM security controls
	Task 10: Customize the initialization input data sets
	Task 11: Create the bootstrap and log data sets
	Task 12: Define your page sets
	Task 13: Tailor your system parameter module
	Task 14: Tailor the channel initiator parameter module
	Task 15: Set up Batch, TSO, and RRS adapters
	Task 16: Set up the operations and control panels
	Task 17: Include the MQSeries dump formatting member
	Task 18: Suppress information messages

	Chapter 4. Migrating from previous versions of MQSeries for MVS/ESA
	Migrating from Version 1.2 to Version 2.1
	Migrating from Version 1.1.4 to Version 2.1
	Migrating from Version 1.1.3 to Version 2.1
	Migrating from Version 1.1.2 or earlier to Version 2.1
	Coexistence with earlier versions of MQSeries for MVS/ESA

	Chapter 5. Testing your queue manager
	Basic function testing
	Testing for C, C<<, COBOL, PL/I, and CICS
	Testing for distributed queuing

	Part 3. MQSeries and CICS
	Chapter 6. The MQSeries-CICS adapter
	CICS adapter overview
	Adapter components
	Other adapter features
	CICS adapter performance considerations
	CICS adapter conventions
	Setting up the CICS adapter
	Customizing the CICS adapter

	Chapter 7. Operating the CICS adapter
	Invoking the adapter's control functions
	Preparing to use the CICS adapter
	Accessing the CICS adapter control panels
	Starting a connection
	Stopping a connection
	Modifying a connection
	Displaying details of connections and CICS tasks
	Starting an instance of the task initiator CKTI
	Stopping an instance of CKTI
	Displaying the current instances of CKTI
	Displaying CICS task information
	Purging tasks that are using the CICS adapter
	Shutting down a connection between MQSeries and the CICS adapter

	Chapter 8. The MQSeries-CICS bridge
	Introduction to the CICS bridge
	Customizing the CICS bridge
	Starting the CICS bridge
	Shutting down the CICS bridge

	Part 4. MQSeries and IMS
	Chapter 9. The MQSeries-IMS adapter
	Introduction to the IMS adapter
	Setting up the IMS adapter

	Chapter 10. Operating the IMS adapter
	Controlling IMS connections
	Connecting from the IMS control region
	Displaying in-doubt units of recovery
	Controlling IMS dependent region connections
	Disconnecting from IMS
	Controlling the IMS trigger monitor

	Chapter 11. The MQSeries-IMS bridge
	Introduction to the IMS bridge
	Customizing the IMS bridge
	Controlling the IMS bridge
	Security

	Part 5. Operating and administering MQSeries
	Chapter 12. Operating MQSeries for OS/390
	Issuing commands
	Starting and stopping MQSeries
	Using the operations and control panels

	Chapter 13. Writing programs to administer MQSeries
	Before you begin
	Understanding how it all works
	Using the command server
	Preparing queues for administration programs
	Sending commands to the command server
	Putting messages on the system-command input queue
	Retrieving replies to your commands
	Interpreting the replies
	If you do not receive a reply
	Passing commands using MGCR or MGCRE

	Chapter 14. Using the MQSeries utilities
	How to read syntax diagrams
	MQSeries utility program (CSQUTIL)
	Page set management functions
	MQSeries command management functions
	Queue management functions
	The change log inventory utility (CSQJU003)
	The print log map utility (CSQJU004)
	The log print utility (CSQ1LOGP)

	Part 6. Backup, recovery, and restart
	Chapter 15. Introducing some recovery concepts
	How changes are made to data
	How consistency is maintained

	Chapter 16. Understanding termination and restart
	What happens during termination
	Connections and threads
	What happens during restart and recovery
	How in-doubt units of recovery are resolved
	Recovering CICS units of recovery manually
	Recovering IMS units of recovery manually
	Recovering RRS units of recovery manually
	What happens when the CICS adapter restarts
	What happens when the IMS adapter restarts
	Using the OS/390 Automatic Restart Manager (ARM)

	Chapter 17. Understanding the log and the bootstrap data set
	What logs are
	How the log is structured
	How the logs are written
	What the bootstrap data set is for
	Managing the logs and BSDS

	Chapter 18. Planning for backup and recovery
	Introduction
	General tips for backup and recovery
	Planning your logging environment
	Planning your archive storage
	Other recovery considerations

	Chapter 19. Managing the logs and the bootstrap data set
	Archiving logs with the ARCHIVE LOG command
	Discarding archive log data sets
	Printing log records
	Finding out what the BSDS contains
	Changing the BSDS
	Recovering logs

	Chapter 20. Managing page sets
	Adding a page set to a queue manager
	When one of your page sets becomes full
	How to balance loads on page sets
	How to reduce a page set
	Backing up and recovering page sets
	Backing up and restoring queues using CSQUTIL

	Chapter 21. Example recovery scenarios
	Dealing with active log problems
	Dealing with archive log problems
	Dealing with BSDS errors
	BSDS recovery
	Dealing with page set problems
	Restarting if you have lost your log data sets
	Performing a cold start of MQSeries
	Dealing with IMS-related problems
	Dealing with hardware errors

	Part 7. Monitoring performance and resource usage
	Chapter 22. Monitoring performance and resource usage
	Getting snapshots of MQSeries
	Using CICS adapter statistics
	Investigating performance problems
	Using System Management Facility
	Using other products with MQSeries
	Using MQSeries trace
	Using MQSeries events

	Chapter 23. Interpreting MQSeries performance statistics
	SMF type 115 record layout
	Message manager statistics
	Data manager statistics
	Buffer manager statistics
	Log manager statistics
	Sample SMF statistics records

	Chapter 24. Interpreting MQSeries accounting data
	SMF type 116 record layout
	Message manager accounting
	Sample SMF accounting record

	Part 8. Security
	Chapter 25. Introduction to MQSeries security
	Why you need to protect MQSeries resources
	Implementing MQSeries security
	Resources you can protect

	Chapter 26. Using RACF classes and profiles
	Using RACF security classes
	RACF profiles
	Switch profiles
	Profiles used to protect MQSeries resources
	Profiles for command security
	Profiles for command resource security
	Using the RESLEVEL security profile
	User IDs for security checking
	Auditing considerations

	Chapter 27. MQSeries security implementation
	Security implementation checklist
	MQSeries security management
	Customizing security
	Security considerations for using MQSeries with CICS
	Security considerations for using MQSeries with IMS
	Security considerations for distributed queuing
	Security considerations for cluster support
	Security installation tasks
	Example security scenario
	Security problem determination

	Part 9. Appendixes
	Appendix A. Macros intended for customer use
	General-use programming interface macros
	General-use programming interface copy files
	Product-sensitive programming interface macros
	General-use programming interface include files

	Appendix B. Using OTMA exits in IMS
	Exit names
	A sample scenario

	Appendix C. Upgrading and applying service to TCP/IP, Language Environment, or OS/390 Callable Services
	Appendix D. Enabling distributed queuing using CICS ISC
	Defining MQSeries programs and data sets as CICS resources
	Defining the channel definitions
	Defining the CKMQ transient data queue
	Defining MQSeries queues, triggers, and processes
	Defining CICS resources used by distributed queuing
	Defining access security
	Setting up communications
	Security considerations for distributed queuing (using CICS ISC)

	Appendix E. Notices
	Programming interface information
	Trademarks

	Part 10. Glossary and index
	Glossary of terms and abbreviations
	Index

