

MQSeries IBM

Using C++

 SC33-1877-01

MQSeries IBM

Using C++

 SC33-1877-01

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix D, “Notices”
on page 109.

Second edition (February 1998)

This edition applies to the following products:

� MQSeries for AIX Version 5
| � MQSeries for AS/400 Version 4 Release 2

� MQSeries for HP-UX Version 5
� MQSeries for OS/2 Warp Version 5
� MQSeries for Sun Solaris Version 5
� MQSeries for Windows NT Version 5

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997,1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . v
What you need to know . v
How to use this book . v
MQSeries publications . vi

MQSeries cross-platform publications . vi
MQSeries platform-specific publications . viii
MQSeries Level 1 product publications . ix
Softcopy books . x

MQSeries information available on the Internet xi
Related publications . xi

Summary of changes . xiii
| Changes for this edition . xiii

Chapter 1. Introduction to MQSeries C ++ . 1
Features of MQSeries C++ . 1
Preparing message data . 4
Reading messages . 5
Writing a message to the dead-letter queue . 9
Writing a message to the IMS bridge . 10
The sample programs . 10
Implicit operations . 14
Binary and character strings . 15

Chapter 2. C ++ language considerations . 17
Header files . 17
Methods . 17
Attributes . 17
Data types . 18
Manipulating binary strings . 18
Manipulating character strings . 18
Initial state of objects . 19
Using C from C++ . 19
Notational conventions . 19

Chapter 3. MQSeries C ++ classes . 21
ImqBinary . 23
ImqCache . 25
ImqDeadLetterHeader . 28
ImqDistributionList . 31
ImqError . 33
ImqGetMessageOptions . 35
ImqHeader . 38
ImqImsBridgeHeader . 40
ImqItem . 43
ImqMessage . 45
ImqMessageTracker . 50
ImqObject . 53
ImqProcess . 58
ImqPutMessageOptions . 60

 Copyright IBM Corp. 1997,1998 iii

 Figures � Tables

ImqQueue . 62
ImqQueueManager . 73
ImqReferenceHeader . 79
ImqString . 82
ImqTrigger . 88

Appendix A. Compiling and linking . 91
| Compilers for MQSeries platforms . 91
| Compiling C++ sample programs for the AS/400 92
| Compiling VisualAge C++ sample programs for Windows 95 and NT 94

Appendix B. MQI cross-reference . 95

Appendix C. Reason codes . 105

Appendix D. Notices . 109
Programming interface information . 109
Trademarks . 110

Glossary of terms and abbreviations . 111

Index . 113

 Figures

1. MQSeries C++ classes (queue management) 2
2. MQSeries C++ classes (item handling) . 3
3. Ways of preparing message data . 5
4. Retrieving items within a message . 6
5. Retrieving messages into a fixed area of storage 8
6. Writing a message to the dead-letter queue 9
7. Writing a message to the IMS bridge . 10
8. The HELLO WORLD sample program . 11
9. Manipulating binary strings . 18

10. Declaration and use conventions . 19
11. Format for string text to integer conversion 84
12. Retrieving integers from string text . 85
13. Retrieving tokens from string text . 85
14. Parsing a path in a string . 85

 Tables

1. C/C++ header files . 17
2. Elementary data types . 18
3. MQSeries C++ switches and link libraries 91
4. Data structure, class, and file cross-reference 95
5. Object attribute cross-reference . 95

iv MQSeries using C++

 About this book

About this book

This publication describes the C++ programming-language binding to the Message
Queue Interface (MQI). This part of the MQSeries products is referred to as
MQSeries C++.

MQSeries C++ is supplied as part of the following products:

� MQSeries for AIX Version 5
| � MQSeries for AS/400 V4R2

� MQSeries for HP-UX Version 5
� MQSeries for OS/2 Warp Version 5
� MQSeries for Sun Solaris Version 5
� MQSeries for Windows NT Version 5

The information is intended for application programmers who write programs to
make use of the MQI.

What you need to know
You should have:

� Knowledge of the C programming language

� Knowledge of the C++ programming language

� Understanding of the purpose of the Message Queue Interface (MQI) as
described in the MQSeries Application Programming Guide, and the MQSeries
Application Programming Reference

� Experience of MQSeries programs in general, or familiarity with the content of
the other MQSeries publications

How to use this book
First read Chapter 1, “Introduction to MQSeries C++” on page 1. This is a
programming guide as well as an introduction.

There are some things specific to C++ that you may need to know in Chapter 2,
“C++ language considerations” on page 17.

The main, reference part of the book is Chapter 3, “MQSeries C++ classes” on
page 21.

The Appendixes contain information about compiling and linking your programs, a
cross reference to the MQSeries data structures, object attributes, and calls, and
some additional reason codes.

 Copyright IBM Corp. 1997,1998 v

 MQSeries publications

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.0
| � MQSeries for AS/400 V4R2

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.0
� MQSeries for MVS/ESA V1.2
� MQSeries for OS/2 Warp V5.0
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for SunOS V2.2
� MQSeries for Sun Solaris V5.0

| � MQSeries for Tandem NonStop Kernel V2.2
� MQSeries Three Tier
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.0

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page ix. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

vi MQSeries using C++

 MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, the
dead-letter queue handler, and the MQSeries links for Lotus Notes**. It also
includes the syntax of the MQSeries control commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
programmable command formats (PCFs), and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

 About this book vii

 MQSeries publications

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by V5.0 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and by MQSeries clients supplied with those
products and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
 � Windows 95

| MQSeries C++ is also supported by MQSeries for AS/400 V4R2.

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.0 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2 Licensed Program Specifications,
| GC33-1958

| MQSeries for AS/400 Version 4 Release 2 Administration Guide, GC33-1956

| MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
| (RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2.2 System Management Guide,
GC33-1791

MQSeries for HP-UX

MQSeries for HP-UX V5.0 Quick Beginnings, GC33-1869

MQSeries for MVS/ESA

MQSeries for MVS/ESA Version 1 Release 2 Licensed Program Specifications,
GC33-1350

MQSeries for MVS/ESA Version 1 Release 2 Program Directory

MQSeries for MVS/ESA Version 1 Release 2 System Management Guide,
SC33-0806

MQSeries for MVS/ESA Version 1 Release 2 Messages and Codes,
GC33-0819

MQSeries for MVS/ESA Version 1 Release 2 Problem Determination Guide,
GC33-0808

viii MQSeries using C++

 MQSeries publications

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.0 Quick Beginnings, GC33-1868

MQSeries link for R/3

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.0 Quick Beginnings, GC33-1870

| MQSeries for Tandem NonStop Kernel

| MQSeries for Tandem NonStop Kernel Version 2.2 System Management
| Guide, GC33-1893

MQSeries Three Tier

MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452

MQSeries for Windows

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822

MQSeries for Windows Version 2.1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.0 Quick Beginnings, GC33-1871

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for SCO UNIX Version 1.4 User’s Guide, SC33-1378

MQSeries for UnixWare Version 1.4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

 About this book ix

 MQSeries publications

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
products, including all MQSeries V5.0 products. Books in PostScript format can be
printed on a PostScript printer or viewed with a suitable viewer.

 HTML format
The MQSeries documentation is provided in HTML format with these MQSeries
products:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

The MQSeries books are also available from the MQSeries product family Web
site:

| http://www.software.ibm.com/ts/mqseries/

Information Presentation Facility (IPF) format
In the OS/2 environment, the MQSeries documentation is supplied in IBM IPF
format on the MQSeries product CD-ROM.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

x MQSeries using C++

 MQSeries on the Internet � Related publications

MQSeries information available on the Internet
MQSeries web site

The MQSeries product family Web site is at:

| http://www.software.ibm.com/ts/mqseries/

| By following links from this Web site you can:

| � Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML format.

| � Download MQSeries SupportPacs.

 Related publications
The Booch methodology
Object-Oriented Analysis and Design with Applications 2nd Edition, by Grady
Booch, Benjamin/Cummings Publishing, ISBN 0-8053-5340-2.

 About this book xi

 Related publications

xii MQSeries using C++

 Changes

Summary of changes

| Changes to the previous edition are marked in the left-hand margin with bars.

| Changes for this edition
| MQSeries C++ is now supplied as part of MQSeries for AS/400 Version 4 Release
| 2, in addition to being supplied as part of the MQSeries Version 5 products.

 Copyright IBM Corp. 1997,1998 xiii

 Changes

xiv MQSeries using C++

 Features

Chapter 1. Introduction to MQSeries C ++

MQSeries C++ allows you to write MQSeries application programs in the C++

programming language.

This chapter introduces the features of MQSeries C++. There are details about
preparing message data, reading messages and writing messages to the
dead-letter queue. The sample programs provided are introduced and there is a
sample program listing. Implicit operations (connect, open, reopen, close and
disconnect) are explained and there are some notes about binary and character
strings.

MQSeries C++ can be used with the following products when they have been
installed as a full queue manager (the MQSeries Base product and server):

� MQSeries for AIX Version 5
| � MQSeries for AS/400 Version 4 Release 2

� MQSeries for HP-UX Version 5
� MQSeries for OS/2 Warp Version 5
� MQSeries for Sun Solaris Version 5
� MQSeries for Windows NT Version 5

MQSeries C++ can also be used with an MQSeries client supplied with the above
| Version 5 products and installed on the following platforms:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows 3.1
 � Windows 95
 � Windows NT

Features of MQSeries C ++

MQSeries C++ provides the following features:

� Automatic initialization of MQSeries data structures
� Just-in-time queue manager connection and queue opening
� Implicit queue closure and queue manager disconnection
� Dead-letter header transmission and receipt
� IMS Bridge header transmission and receipt
� Reference message header transmission and receipt
� Trigger message receipt

All the classes in the following Booch class diagrams broadly parallel those
MQSeries entities in the procedural MQI (for example C) that have either handles
or data structures. All classes inherit from the ImqError (see “ImqError” on
page 33) class, which allows an error condition to be associated with each object.

In the Booch methodology, each class is identified by a name within a cloud.
Below the class name may be listed any noteworthy attributes and methods. An
abstract class is denoted by a small triangle within a cloud. Inheritance is denoted
by an arrow to the parent class. A cooperative relationship between two classes is

 Copyright IBM Corp. 1997,1998 1

 Features

denoted by an undecorated line between clouds. A referential relationship between
two classes is denoted by a line decorated with numbers indicating the number of
objects that may participate in a given relationship at any one time.

Object
close()

name : String
open()

A

Queue
get()
put()

queue manager name : String

Queue Manager
backout()

begin()
commit()
connect()

disconnect()

Message
priority : Integer

Get Message
Options

wait interval : Integer
Put Message

Options

Cache
buffer length : Integer
data offset : Integer

message length : Integer
useEmptyBuffer()

useFullBuffer()

Message Tracker
correlation id : Binary

group id : Binary
message id : Binary

A

Distribution
List

1

n

referenced by

managed by

1

n

Figure 1. MQSeries C++ classes (queue management)

2 MQSeries using C++

 Features

Message
format : String

formatIs()
readItem()
writeItem()

Dead Letter
Header

Trigger

Item
copyOut()
pasteIn()

A

Header
character set : Integer

encoding : Integer
format : String

header flags : Integer

A

Reference
Header

IMS Bridge
Header

Figure 2. MQSeries C++ classes (item handling)

The following classes and data types are used in the C++ method signatures of the
queue management classes (see Figure 1 on page 2) and the item handling
classes (see Figure 2):

� The ImqBinary class (see “ImqBinary” on page 23) which encapsulates byte
arrays such as MQBYTE24.

� The ImqBoolean data type which is defined as typedef unsigned char
ImqBoolean .

� The ImqString class (see “ImqString” on page 82) which encapsulates
character arrays such as MQCHAR64.

Entities with data structures are subsumed within appropriate object classes.
Individual data structure fields (see Appendix B, “MQI cross-reference” on
page 95) are accessed with methods.

Entities with handles come under the ImqObject (see “ImqObject” on page 53)
class hierarchy and provide encapsulated interfaces to the MQI. Objects of these
classes exhibit intelligent behavior that can reduce the number of method
invocations required relative to the procedural MQI. For example, you can
establish and discard queue manager connections as required, or you can open a
queue with appropriate options, then close it.

The ImqMessage class (see “ImqMessage” on page 45) encapsulates the MQMD
data structure and also acts as a holding point for user data and items
(see “Reading messages” on page 5) by providing cached buffer facilities. You
can provide fixed-length buffers for user data and use the buffer many times, the
amount of data present in the buffer can vary from one use to the next.
Alternatively, the system can provide and manage a buffer of flexible length. Both

 Chapter 1. Introduction to MQSeries C++ 3

 Preparing message data

the size of the buffer (the amount available for receipt of messages) and the
amount actually used (either the number of bytes for transmission or the number of
bytes actually received) become important considerations.

Preparing message data
When you send a message, message data is first prepared in a buffer managed by
an ImqCache object (see “ImqCache” on page 25). A buffer is associated (by
inheritance) with each ImqMessage object (see “ImqMessage” on page 45): it can
be supplied by the application (using either the useEmptyBuffer or useFullBuffer
method); or it can be supplied automatically by the system. The advantage of the
application supplying the message buffer is that no data copying is necessary in
many cases because the application can use prepared data areas directly; the
disadvantage is that the supplied buffer is of a fixed length.

The buffer can be reused, and the number of bytes transmitted can be varied each
time if desired by using the setMessageLength method prior to transmission.

When supplied automatically by the system, the number of bytes available is
managed by the system, and data can be copied into the message buffer using, for
example, the ImqCache write method, or the ImqMessage writeItem method. The
message buffer grows according to need. As the buffer grows, there is no loss of
previously written data. A large or multi-part message can be written in sequential
pieces.

The following fragments show simplified straightforward message sends:

4 MQSeries using C++

 Reading messages

/\ 1. Use prepared data in a user-supplied buffer. \/

char pszBuffer[] = "Hello world" ;

msg.useFullBuffer(pszBuffer, sizeof(pszBuffer));

msg.setFormat(MQFMT_STRING);

/\ 2. Use prepared data in a user-supplied buffer, \/

/\ where the buffer size exceeds the data size. \/

char pszBuffer[24] = "Hello world" ;

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));

msg.setFormat(MQFMT_STRING);

msg.setMessageLength(12);

/\ 3. Copy data to a user-supplied buffer. \/

char pszBuffer[12];

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));

msg.setFormat(MQFMT_STRING);

msg.write(12, "Hello world");

/\ 4. Copy data to a system-supplied buffer. \/

msg.setFormat(MQFMT_STRING);

msg.write(12, "Hello world");

/\ 5. Copy data to a system-supplied buffer using objects. \/

/\ (Objects set the message format as well as content.) \/

ImqString strText("Hello world");

msg.writeItem(strText);

Figure 3. Ways of preparing message data

 Reading messages
When receiving data, the application or the system can supply a suitable message
buffer. The same buffer can be used for both multiple transmission and multiple
receipt for a given ImqMessage object. If the message buffer is supplied
automatically, it grows to accommodate whatever length of data is received.
However, if the application supplies the message buffer, it might not be big enough.
Then either truncation or failure might occur, depending on the options used for
message receipt.

Incoming data can be accessed directly from the message buffer, in which case the
data length indicates the total amount of incoming data. Alternatively, incoming
data can be read sequentially from the message buffer. In this case, the data
pointer addresses the next byte of incoming data, and the data pointer and data
length are updated each time data is read.

Items are pieces of a message, all in the user area of the message buffer, that
need to be processed sequentially and separately. Apart from regular user data,
an item might be a dead-letter header or a trigger message. Items are always
associated with message formats; message formats are not always associated with
items.

 Chapter 1. Introduction to MQSeries C++ 5

 Reading messages

There is a class of object for each item that corresponds to a recognizable
MQSeries message format. There is one for a dead-letter header and one for a
trigger message. There is no class of object for user data. That is, once the
recognizable formats have been exhausted, processing the remainder is left to the
application program. Classes for user data can be written by specializing the
ImqItem class.

This next fragment shows a message receipt that takes account of all potential
items that can precede the user data, in an imaginary situation. Non-item user data
is simply defined as anything that occurs after items that can be identified. An
automatic buffer (the default) is used to hold an arbitrary amount of message data.

ImqQueue queue ;

ImqMessage msg ;

if (queue.get(msg)) {

/\ Process all items of data in the message buffer. \/

do while (msg.dataLength()) {

ImqBoolean bFormatKnown = FALSE ;

/\ There remains unprocessed data in the message buffer. \/

/\ Determine what kind of item is next. \/

if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {

ImqDeadLetterHeader header ;

/\ The next item is a dead-letter header. \/

/\ For the next statement to work and return TRUE, \/

/\ the correct class of object pointer must be supplied. \/

bFormatKnown = TRUE ;

if (msg.readItem(header)) {

/\ The dead-letter header has been extricated from the \/

/\ buffer and transformed into a dead-letter object. \/

/\ The encoding and character set of the dead-letter \/

/\ object itself are MQENC_NATIVE and MQCCSI_Q_MGR. \/

/\ The encoding and character set from the dead-letter \/

/\ header have been copied to the message attributes \/

/\ to reflect any remaining data in the buffer. \/

/\ Process the information in the dead-letter object. \/

/\ Note that the encoding and character set have \/

/\ already been processed. \/

 ...

 }

Figure 4 (Part 1 of 3). Retrieving items within a message

6 MQSeries using C++

 Reading messages

/\ There might be another item after this, \/

/\ or just the user data. \/

 }

if (msg.formatIs(MQFMT_TRIGGER)) {

ImqTrigger trigger ;

/\ The next item is a trigger message. \/

/\ For the next statement to work and return TRUE, \/

/\ the correct class of object pointer must be supplied. \/

bFormatKnown = TRUE ;

if (msg.readItem(trigger)) {

/\ The trigger message has been extricated from the \/

/\ buffer and transformed into a trigger object. \/

/\ Process the information in the trigger object. \/

 ...

 }

/\ There is usually nothing after a trigger message. \/

 }

if (msg.formatIs(FMT_USERCLASS)) {

UserClass object ;

/\ The next item is an item of a user-defined class. \/

/\ For the next statement to work and return TRUE, \/

/\ the correct class of object pointer must be supplied. \/

bFormatKnown = TRUE ;

if (msg.readItem(object)) {

/\ The user-defined data has been extricated from the \/

/\ buffer and transformed into a user-defined object. \/

/\ Process the information in the user-defined object. \/

 ...

 }

/\ Continue looking for further items. \/

 }

if (! bFormatKnown) {

/\ There remains data which is not associated with a specific \/

/\ item class. \/

char \ pszDataPointer = msg.dataPointer(); /\ Address. \/

int iDataLength = msg.dataLength(); /\ Length. \/

Figure 4 (Part 2 of 3). Retrieving items within a message

 Chapter 1. Introduction to MQSeries C++ 7

 Reading messages

/\ The encoding and character set for the remaining data are \/

/\ reflected in the attributes of the message object, even \/

/\ if a dead-letter header was present. \/

 ...

 }

 }

}

Figure 4 (Part 3 of 3). Retrieving items within a message

With an automatic buffer, it is important to remember that the buffer storage is
volatile. That is, buffer data might be held at a different physical location after each
get method invocation. Therefore each time buffer data is referenced, use the
bufferPointer or dataPointer methods to access message data.

You may want a program to set aside a fixed area for receiving message data. In
this case invoke the useEmptyBuffer method before using the get method.

Using a fixed, non-automatic area limits messages to a maximum size, so it is
important to consider the MQGMO_ACCEPT_TRUNCATED_MSG option of the
ImqGetMessageOptions object. If this option is not specified (this is the default),
the MQRC_TRUNCATED_MSG_FAILED reason code can be expected. If this
option is specified, the MQRC_TRUNCATED_MSG_ACCEPTED reason code may
be expected depending upon the design of the application.

This next code fragment shows how a fixed area of storage might be used to
receive messages:

char \ pszBuffer = new char[1ðð];

msg.useEmptyBuffer(pszBuffer, 1ðð);

gmo.setOptions(MQGMO_ACCEPT_TRUNCATED_MSG);

queue.get(msg, gmo);

delete [] pszBuffer ;

Figure 5. Retrieving messages into a fixed area of storage

Note: The responsibility for discarding a user-defined (non-automatic) buffer rests
with the application, not with the ImqCache class object.

In the above fragment, the buffer can always be addressed directly, with pszBuffer,
as opposed to using the bufferPointer method, although it is advisable to use the
dataPointer method for general-purpose access.

Note: Specifying a null pointer and zero length with useEmptyBuffer does not
nominate a fixed length buffer of length zero, as might be expected. This
combination is actually interpreted as a request to ignore any previous user-defined
buffer, and instead revert to the use of an automatic buffer.

8 MQSeries using C++

 Writing to dead-letter queue

Writing a message to the dead-letter queue
A typical case of a multi-part message is one containing a dead-letter header. The
data from a message that cannot be processed is appended to the dead-letter
header.

ImqQueueManager mgr ; // The queue manager.

ImqQueue queueIn ; // Incoming message queue.

ImqQueue queueDead ; // Dead-letter message queue.

ImqMessage msg ; // Incoming and outgoing message.

ImqDeadLetterHeader header ; // Dead-letter header information.

// Retrieve the message to be rerouted.

queueIn.setConnectionReference(mgr);

queueIn.setName(MY_QUEUE);

queueIn.get(msg);

// Set up the dead-letter header information.

header.setDestinationQueueManagerName(mgr.name());

header.setDestinationQueueName(queueIn.name());

header.setPutApplicationName(/\ ? \/);

header.setPutApplicationType(/\ ? \/);

header.setPutDate(/\ TODAY \/);

header.setPutTime(/\ NOW \/);

header.setDeadLetterReasonCode(FB_APPL_ERROR_1234);

// Insert the dead-letter header information. This will vary

// the encoding, character set and format of the message.

// Message data is moved along, past the header.

msg.writeItem(header);

// Send the message to the dead-letter queue.

queueDead.setConnectionReference(mgr);

queueDead.setName(mgr.deadLetterQueueName());

queueDead.put(msg);

Figure 6. Writing a message to the dead-letter queue

 Chapter 1. Introduction to MQSeries C++ 9

 Writing to IMS Bridge � Sample programs

Writing a message to the IMS bridge
Messages sent to MQSeries for MVS/ESA via the IMS bridge require a special
header. The IMS bridge header is prefixed to regular message data.

ImqQueueManager mgr ; // The queue manager.

ImqQueue queueIn ; // Incoming message queue.

ImqQueue queueBridge ; // IMS bridge message queue.

ImqMessage msg ; // Incoming and outgoing message.

ImqImsBridgeHeader header ; // IMS bridge header information.

// Retrieve the message to be forwarded.

queueIn.setConnectionReference(mgr);

queueIn.setName(MY_QUEUE);

queueIn.get(msg);

// Set up the IMS bridge header information.

// The reply-to format is often specified.

// Other attributes can be specified, but all have default values.

header.setReplyToFormat(/\ ? \/);

// Insert the IMS bridge header information. This will vary

// the encoding, character set and format of the message.

// Message data is moved along, past the header.

msg.writeItem(header);

// Send the message to the IMS bridge queue.

queueBridge.setConnectionReference(mgr);

queueBridge.setName(/\ ? \/);

queueBridge.put(msg);

Figure 7. Writing a message to the IMS bridge

The sample programs
The sample programs are:

� HELLO WORLD (imqwrld.cpp)
� SPUT (imqsput.cpp) and SGET (imqsget.cpp)

 � DPUT (imqdput.cpp)

Sample program HELLO WORLD (imqwrld.cpp)
This program shows how to put or get a regular datagram (C structure) using the
ImqMessage class. This sample employs few method invocations, taking
advantage of implicit method invocations such as open , close , and disconnect .

Using a server connection to MQSeries:

| � Run1 imqwrlds to use the existing default queue
| SYSTEM.DEFAULT.LOCAL.QUEUE.

| 1 For details of executing AS/400 programs see “Compiling C++ sample programs for the AS/400” on page 92

10 MQSeries using C++

 Sample programs

� Run imqwrlds SYSTEM.DEFAULT.MODEL.QUEUE to use a temporary
dynamically assigned queue.

Using a client connection to MQSeries:

 � Run imqwrldc .

extern "C" {

#include <stdio.h>

}

#include <imqi.hpp> // MQSeries C++

#define EXISTING_QUEUE "SYSTEM.DEFAULT.LOCAL.QUEUE"

#define BUFFER_SIZE 12

static char gpszHello[BUFFER_SIZE] = "Hello world" ;

int main (int argc, char \ \ argv) {

ImqQueueManager manager ;

int iReturnCode = ð ;

// Connect to the queue manager.

if (argc > 2) {

pmanager -> setName(argv[2]);

 }

if (pmanager -> connect()) {

ImqQueue \ pqueue = new ImqQueue ;

ImqMessage \ pmsg = new ImqMessage ;

// Identify the queue which will hold the message.

pqueue -> setConnectionReference(manager);

if (argc > 1) {

pqueue -> setName(argv[1]);

// The named queue can be a model queue, which will result in the

// creation of a temporary dynamic queue, which will be destroyed

// as soon as it is closed. Therefore we must ensure that such a

// queue is not automatically closed and reopened. We do this by

// setting open options which will avoid the need for closure and

 // reopening.

pqueue -> setOpenOptions(MQOO_OUTPUT │ MQOO_INPUT_SHARED │

 MQOO_INQUIRE);

Figure 8 (Part 1 of 3). The HELLO WORLD sample program

 Chapter 1. Introduction to MQSeries C++ 11

 Sample programs

} else {

pqueue -> setName(EXISTING_QUEUE);

// The existing queue is not a model queue, and will not be

// destroyed by automatic closure and reopening. Therefore we will

// let the open options be selected on an as-needed basis. The

// queue will be opened implicitly with an output option during

// the "put", and then implicitly closed and reopened with the

// addition of an input option during the "get".

 }

// Prepare a message containing the text "Hello world".

pmsg -> useFullBuffer(gpszHello , BUFFER_SIZE);

pmsg -> setFormat(MQFMT_STRING);

// Place the message on the queue, using default put message options.

// The queue will be automatically opened with an output option.

if (pqueue -> put(\ pmsg)) {

ImqString strQueue(pqueue -> name());

// Discover the name of the queue manager.

ImqString strQueueManagerName(manager.name());

printf("The queue manager name is %s.\n",

(char \)strQueueManagerName);

// Show the name of the queue.

printf("Message sent to %s.\n", (char \)strQueue);

// Retrieve the data message just sent ("Hello world" expected)

// from the queue, using default get message options. The queue

// is automatically closed and reopened with an input option

// if it is not already open with an input option. We get the

// message just sent, rather than any other message on the

// queue, because the "put" will have set the ID of the message

// so, as we are using the same message object, the message ID

// acts as in the message object, a filter which says that we

// are interested in a message only if it has this particular ID.

if (pqueue -> get(\ pmsg)) {

int iDataLength = pmsg -> dataLength();

Figure 8 (Part 2 of 3). The HELLO WORLD sample program

12 MQSeries using C++

 Sample programs

// Show the text of the received message.

printf("Message of length %d received, ", iDataLength);

if (pmsg -> formatIs(MQFMT_STRING)) {

char \ pszText = pmsg -> bufferPointer();

// If the last character of data is a null, then we can

// assume that the data can be interpreted as a text string.

if (! pszText[iDataLength - 1]) {

printf("text is \"%s\".\n", pszText);

} else {

printf("no text.\n");

 }

} else {

printf("non-text message.\n");

 }

} else {

printf("ImqQueue::get failed with reason code %ld\n",

pqueue -> reasonCode());

iReturnCode = (int)pqueue -> reasonCode();

 }

} else {

printf("ImqQueue::open/put failed with reason code %ld\n",

pqueue -> reasonCode());

iReturnCode = (int)pqueue -> reasonCode();

 }

// Deletion of the queue will ensure that it is closed.

// If the queue is dynamic then it will also be destroyed.

delete pqueue ;

delete pmsg ;

} else {

printf("ImqQueueManager::connect failed with reason code %ld\n",

manager.reasonCode());

iReturnCode = (int)manager.reasonCode();

 }

// Destruction of the queue manager ensures that it is

// disconnected. If the queue object were still available

// and open (which it is not), the queue would be closed

// prior to disconnection.

return iReturnCode ;

}

Figure 8 (Part 3 of 3). The HELLO WORLD sample program

 Chapter 1. Introduction to MQSeries C++ 13

 Implicit operations

Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)
These programs place messages to and retrieve messages from a named queue.

1. Run imqsputs queue-name

2. Type in lines at the console, which are placed with MQSeries as messages.

3. Enter a null line to end the input.

4. Run imqsgets queue-name to retrieve all the lines and display them at the
console.

These samples show the use of the following classes:

ImqError (see “ImqError” on page 33)
ImqMessage (see “ImqMessage” on page 45)
ImqObject (see “ImqObject” on page 53)
ImqQueue (see “ImqQueue” on page 62)
ImqQueueManager (see “ImqQueueManager” on page 73)

Sample program DPUT (imqdput.cpp)
This is a distribution list program that puts messages to a distribution list consisting
of two queues.

1. Run imqdputs queue-name-1 queue-name-2 to place messages on the two
named queues.

2. Run imqsgets queue-name-1 and imqsgets queue-name-2 to retrieve the
messages from those queues.

DPUT shows the use of class ImqDistributionList (see “ImqDistributionList” on
page 31).

 Implicit operations
Several operations can occur implicitly, “just in time” to satisfy the prerequisite
conditions for the successful execution of a method. These implicit operations are
connect, open, reopen, close, and disconnect.

 Connect
An ImqQueueManager object is connected automatically for any method that
results in any call to the MQI (see Appendix B, “MQI cross-reference” on
page 95).

 Open
An ImqObject object is opened automatically for any method that results in an
MQGET, MQINQ, MQPUT or MQSET call. The openFor method is used to specify
one or more relevant open option values.

14 MQSeries using C++

 Binary and character strings

 Reopen
An ImqObject is reopened automatically for any method that results in an MQGET,
MQINQ, MQPUT or MQSET call, where the object is already open, but the existing
open options are not adequate to allow the MQI call to be successful. The object
is temporarily closed using a temporary close options value of MQCO_NONE.
The openFor method is used to add a relevant open option .

Reopen can cause problems in specific circumstances.

� A temporary dynamic queue is destroyed when it is closed and can never be
reopened.

� A queue opened for exclusive input (either explicitly or by default) might be
accessed by others in the window of opportunity during closure and reopening.

� A browse cursor position is lost when a queue is closed. This situation will not
prevent closure and reopening, but will prevent subsequent use of the cursor
until MQGMO_BROWSE_FIRST is used again.

� The context of the last message retrieved is lost when a queue is closed.

If any of these circumstances occur or can be foreseen, then avoid reopens by
explicitly setting adequate open options before an object is opened (either
explicitly or implicitly).

Setting the open options explicitly for complex queue-handling situations results in
better performance and avoids the potential problems listed above.

 Close
An ImqObject is closed automatically at any point where the object state would no
longer be viable, for example if an ImqObject connection reference is severed, or
if an ImqObject object is destroyed.

 Disconnect
An ImqQueueManager is disconnected automatically at any point where the
connection would no longer be viable, for example if an ImqObject connection
reference is severed, or if an ImqQueueManager object is destroyed.

Binary and character strings
Methods that set character (char *) data always take a copy of the data, but some
methods might truncate the copy, because certain limits are imposed by MQSeries.

The ImqString class (see “ImqString” on page 82) encapsulates the traditional char
* and provides support for:

 � Comparison
 � Concatenation
 � Copying
� Integer-to-text and text-to-integer conversion
� Token (word) extraction

 � Uppercase translation

The ImqBinary class (see “ImqBinary” on page 23) encapsulates binary byte arrays
of arbitrary size, but in particular it is used to hold these attributes:

 Chapter 1. Introduction to MQSeries C++ 15

 Binary and character strings

accounting token (MQBYTE32)

correlation id (MQBYTE24)

group id (MQBYTE24)

instance id (MQBYTE24)

message id (MQBYTE24)

transaction instance id (MQBYTE16)

of objects of these classes:

ImqImsBridgeHeader (see “ImqImsBridgeHeader” on page 40)

ImqMessageTracker (see “ImqMessageTracker” on page 50)

ImqReferenceHeader (see “ImqReferenceHeader” on page 79)

and provides support for:

 � Comparison
 � Copying

16 MQSeries using C++

 C++ language

Chapter 2. C ++ language considerations

This chapter details the aspects of the C++ language that you must consider when
writing application programs that use the Message Queue Interface (MQI).

 Header files
Header files are provided as part of the definition of the MQI, to assist with the
writing of MQSeries application programs in the C++ language. These header files
are summarized in the following table.

To improve the portability of applications, it is recommended that the name of the
header file should be coded in lowercase on the #include preprocessor directive:

#include <imqi.hpp> // C++ classes

Table 1. C/C++ header files

Filename Contents

IMQI.HPP C++ MQI Classes (includes CMQC.H and
IMQTYPE.H)

IMQTYPE.H Defines the ImqBoolean data type

CMQC.H MQI data structures and manifest constants

 Methods
Parameters that are const are input only. Parameters whose signature includes a
pointer (*) or a reference (&) are passed by reference. Return values that do not
include a pointer or a reference are passed by value; in the case of returned
objects these are new entities that become the responsibility of the caller.

Some method signatures include items that take a default if not specified. Such
items are always at the end of signatures and are denoted by an equality sign (=);
the value after the equality sign indicates the default value that applies if the item is
omitted.

All methods are mixed case beginning with lowercase. Each word except the first
within a method name begins with a capital letter. Abbreviations are not used
unless their meaning is widely understood. Abbreviations used include “id” for
identity and also “sync” for synchronization.

 Attributes
Object attributes are accessed using “set” and “get” methods. A “set” method
begins with the word “set” whereas a “get” method has no prefix. If an attribute is
read only there is no “set” method.

Attributes are initialized to valid states during object construction, and the state of
an object is always consistent.

 Copyright IBM Corp. 1997,1998 17

 C++ language

 Data types
All data types are defined by the C typedef statement. The type ImqBoolean is
defined as unsigned character in IMQTYPE.H and can have the values TRUE and
FALSE. You can use ImqBinary class objects in place of MQBYTE arrays, and
ImqString class objects in place of char * . Many methods return objects rather
than char or MQBYTE pointers to ease storage management. All return values
become the responsibility of the caller, and in the case of a returned object the
storage can be easily disposed of using delete.

Elementary data types
Table 2. Elementary data types

Data Type Representation

ImqBoolean typedef unsigned char ImqBoolean ;

Manipulating binary strings
Strings of binary data are declared as objects of the ImqBinary class. Objects of
this class may be copied, compared, and set using the familiar C operators. For
example:

#include <imqi.hpp> // C++ classes

ImqMessage message ;

ImqBinary id, correlationId ;

MQBYTE24 byteId ;

correlationId.set(byteId, sizeof(byteId)); // Set.

id = message.id(); // Assign.

if (correlationId == id) { // Compare.

 ...

Figure 9. Manipulating binary strings

Manipulating character strings
When character data is accepted or returned using C++ methods, the character
data is always null-terminated and may be of any length. However, certain limits
are imposed by MQSeries which may result in information being truncated. To
ease storage management, character data is often returned in ImqString class
objects. These objects can be cast to char * and used for read only purposes in
many situations where a char * is required.

Note: The char * in an ImqString class object may be null.

Although C functions may be used on the char * , there are special methods of the
ImqString class which are preferable; operator length () is the equivalent of strlen
and storage () indicates the memory allocated for the character data.

18 MQSeries using C++

 C++ language

Initial state of objects
All objects have a consistent initial state reflected by their attributes. The initial
values are defined in the class descriptions.

Using C from C ++

When using C functions from a C++ program, include headers as in the following
example:

extern "C" {

#include <string.h>

}

 Notational conventions
This shows how the methods should be invoked and how the parameters should be
declared:

ImqBoolean ImqQueue ::get (ImqMessage & msg)

Declare and use the parameters as follows:

ImqQueueManager \ pmanager ; // Queue manager

ImqQueue \ pqueue ; // Message queue

ImqMessage msg ; // Message

char pszBuffer[1ðð]; // Buffer for message data

pmanager = new ImqQueueManager ;

pqueue = new ImqQueue ;

pqueue -> setName("myreplyq");

pqueue -> setConnectionReference(pmanager);

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));

if (pqueue -> get(msg)) {

long lDataLength = msg.dataLength();

 ...

}

Figure 10. Declaration and use conventions

 Chapter 2. C++ language considerations 19

 C++ language

20 MQSeries using C++

 C++ classes

Chapter 3. MQSeries C ++ classes

This library component encapsulates the MQSeries Message Queue Interface
(MQI). There is a single C++ header file imqi.hpp which covers all of these
classes.

For each class, the following information is shown:

Class hierarchy diagram
A class diagram showing the class in its inheritance relation to its
immediate parent classes, if any.

Other relevant classes
These are document links to other relevant classes, such as parent
classes, and the classes of objects used in method signatures.

Object attributes
These are the attributes unique to the class, and are in addition to those
attributes defined for any parent classes. Many attributes reflect
MQSeries data structure members (see Appendix B, “MQI
cross-reference” on page 95), and for detailed descriptions see the
MQSeries Application Programming Reference manual.

Constructors
These are the signatures of the special methods used to create an
object of the class. See the glossary for further information.

Object methods (public)
These are the signatures of methods that do require an instance of the
class for their operation, and that have no usage restrictions.

Where it applies, the following information is also shown:

Class methods (public)
These are the signatures of methods that do not require an instance of
the class for their operation, and that have no usage restrictions.

Overloaded “(parent class)” methods
These are the signatures of those virtual methods that are defined in
parent classes, but exhibit different, polymorphic, behavior for this class.

Object methods (protected)
These are the signatures of methods that do require an instance of the
class for their operation, and are reserved for use by the
implementations of derived classes. This section is of interest only to
class writers, as opposed to class users.

Object data (protected)
These are the implementation details for object instance data available
to the implementations of derived classes. This section is of interest only
to class writers, as opposed to class users.

Reason codes
These are the possible MQRC_* values (see Appendix C, “Reason
codes” on page 105) that can be expected from those methods that can
fail. For an exhaustive list of reason codes that can occur for an object
of a given class, consult parent class documentation. The documented

 Copyright IBM Corp. 1997,1998 21

 C++ classes

list of reason codes for a given class does not include the reason codes
for parent classes.

Notes

1. Objects of these classes are not thread-safe. This ensures optimal
performance, but care must be taken not to access any given object from more
than one thread.

2. For a multi-threaded program, use a separate ImqQueueManager object for
each thread. MQSeries requires a separate queue manager connection for
each thread, and does not permit cross-thread operations. Each
ImqQueueManager object should have its own independent collection of
ImqQueue and other objects, ensuring that objects in different threads are
isolated from one another.

22 MQSeries using C++

 ImqBinary class

 ImqBinary

Item

A

Binary

This class encapsulates a binary byte array that can be used for ImqMessage
accounting token , correlation id , and message id values. It allows easy
assignment, copying, and comparison.

Other relevant classes
ImqItem (see “ImqItem” on page 43)
ImqMessage (see “ImqMessage” on page 45)

 Object attributes
data An array of bytes of binary data. Initially null.

data length
The number of bytes. Initially zero.

data pointer
The address of the first byte of the data . Initially zero.

 Constructors
ImqBinary();

The default constructor.

ImqBinary(const ImqBinary & binary);
The copy constructor.

ImqBinary(const void * data, const size_t length);
Copies length bytes from data.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the data to the message buffer, replacing any existing content.
Sets the msg format to MQFMT_NONE.

See the ImqItem class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Sets the data by transferring the remaining data from the message
buffer, replacing the existing data .

To be successful, the ImqMessage format must be MQFMT_NONE.

See the ImqItem class method description for further details.

 Chapter 3. MQSeries C++ classes 23

 ImqBinary class

Object methods (public)
void operator = (const ImqBinary & binary);

Copies bytes from binary.

ImqBoolean operator == (const ImqBinary & binary);
Compares this object with binary. Returns zero if not equal and nonzero
otherwise. The objects are equal if they have the same data length
and the bytes match.

ImqBoolean copyOut(void * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the data pointer to buffer. If the data
length is insufficient, the remaining space in buffer is filled with pad
bytes. buffer may be zero if length is also zero. length must not be
negative. Returns TRUE if successful.

size_t dataLength() const ;
Returns the data length .

ImqBoolean setDataLength(const size_t length);
Sets the data length . If the data length is changed as a result of this
method, then the data in the object is uninitialized. Returns TRUE if
successful.

void * dataPointer() const ;
Returns the data pointer .

ImqBoolean isNull() const ;
Returns TRUE if the data length is zero, or if all of the data bytes are
zero. Otherwise returns FALSE.

ImqBoolean set(const void * buffer, const size_t length);
Copies length bytes from buffer. Returns TRUE if successful.

Object methods (protected)
void clear();

Reduces the data length to zero.

 Reason codes
 MQRC_NO_BUFFER
 MQRC_STORAGE_NOT_AVAILABLE

24 MQSeries using C++

 ImqCache class

 ImqCache

Error

A

Cache

Use this class to hold or marshal data in memory. The user can nominate a buffer
of memory of fixed size, or the system can provide a flexible amount of memory
automatically.

Other relevant classes
ImqError (see “ImqError” on page 33)

 Object attributes
automatic buffer

Indicates whether buffer memory is managed automatically by the
system (TRUE) or is supplied by the user (FALSE). Initially TRUE.

buffer length
The number of bytes of memory in the buffer. Initially zero.

buffer pointer
The address of the buffer memory. Initially null.

data length
The number of bytes succeeding the data pointer . Equal to or less
than the message length . Initially zero.

data offset
The number of bytes preceding the data pointer . Equal to or less than
the message length . Initially zero.

data pointer
The address of that part of the buffer that is to be written to or read from
next. Initially null.

message length
The number of bytes of significant data in the buffer. Initially zero.

 Constructors
ImqCache();

The default constructor.

ImqCache(const ImqCache & cache);
The copy constructor.

 Chapter 3. MQSeries C++ classes 25

 ImqCache class

Object methods (public)
void operator = (const ImqCache & cache);

Copies up to message length bytes of data from the cache object to
the object. If automatic buffer is FALSE, then the buffer length must
already be sufficient to accommodate the copied data.

ImqBoolean automaticBuffer() const ;
Returns the automatic buffer value.

size_t bufferLength() const ;
Returns the buffer length .

char * bufferPointer() const ;
Returns the buffer pointer .

void clearMessage();
Sets the message length and data offset both to zero.

size_t dataLength() const ;
Returns the data length .

size_t dataOffset() const ;
Returns the data offset .

ImqBoolean setDataOffset(const size_t offset);
Sets the data offset . The message length is increased if necessary to
ensure that it is no less than the data offset . Returns TRUE if
successful.

char * dataPointer() const ;
Returns a copy of the data pointer .

size_t messageLength() const ;
Returns the message length .

ImqBoolean setMessageLength(const size_t length);
Sets the message length . Increases the buffer length if necessary to
ensure that the message length is no greater than the buffer length .
Reduces the data offset if necessary to ensure that it is no greater than
the message length . Returns TRUE if successful.

ImqBoolean moreBytes(const size_t bytes-required);
Assures that bytes-required more bytes are available (for writing)
between the data pointer and the end of the buffer. Returns TRUE if
successful.

If automatic buffer is TRUE, then more memory will be acquired as
required; otherwise, the buffer length must already be adequate.

ImqBoolean read(const size_t length, char * & external-buffer);
Copies length bytes, from the buffer starting at the data pointer
position, into the external-buffer. After the data has been copied, the
data offset is increased by length. Returns TRUE if successful.

ImqBoolean resizeBuffer(const size_t length);
Varies the buffer length , provided that automatic buffer is TRUE. This
is achieved by reallocating the buffer memory. Up to message length
bytes of data from the existing buffer are copied to the new one. The
maximum number copied is length bytes. The buffer pointer is
changed. The message length and data offset are preserved as

26 MQSeries using C++

 ImqCache class

closely as possible within the confines of the new buffer. Returns TRUE
if successful. Returns FALSE if automatic buffer is FALSE.

Note: This method may fail with MQRC_STORAGE_NOT_AVAILABLE
if there is any problem with system resources.

ImqBoolean useEmptyBuffer(const char * external-buffer, const size_t length);
Identifies an empty user buffer, setting the buffer pointer to point to
external-buffer, the buffer length to length, and the message length to
zero. Performs a clearMessage . If the buffer is fully primed with data,
use the useFullBuffer method instead. If the buffer is partially primed
with data, use the setMessageLength method to indicate the correct
amount. Returns TRUE if successful.

This method can be used to identify a fixed amount of memory, as
described above (external-buffer is non-null and length is non-zero), in
which case automatic buffer is set to FALSE, or it can be used to
revert to system-managed flexible memory (external-buffer is null and
length is zero), in which case automatic buffer is set to TRUE.

ImqBoolean useFullBuffer(const char * externalBuffer, const size_t length);
As for useEmptyBuffer , except that the message length is set to
length. Returns TRUE if successful.

ImqBoolean write(const size_t length, const char * external-buffer);
Copies length bytes, from the external-buffer, into the buffer starting at
the data pointer position. After the data has been copied, the data
offset is increased by length, and the message length is increased if
necessary to ensure that it is no less than the new data offset value.
Returns TRUE if successful.

If automatic buffer is TRUE, an adequate amount of memory is
guaranteed; otherwise, the ultimate data offset must not exceed the
buffer length .

 Reason codes
 MQRC_BUFFER_NOT_AUTOMATIC
 MQRC_DATA_TRUNCATED
 MQRC_INSUFFICIENT_BUFFER
 MQRC_INSUFFICIENT_DATA
 MQRC_NULL_POINTER
 MQRC_STORAGE_NOT_AVAILABLE
 MQRC_ZERO_LENGTH

 Chapter 3. MQSeries C++ classes 27

 ImqDeadLetterHeader class

 ImqDeadLetterHeader

Header

A

Dead Letter
Header

This class encapsulates specific features of the MQDLH data structure
(see Appendix B, “MQI cross-reference” on page 95). Objects of this class are
typically used by an application that encounters an unprocessable message. A new
message comprising a dead-letter header and the unprocessable message content
is placed on the dead-letter queue, and the unprocessable message is discarded.

Other relevant classes
ImqHeader (see “ImqHeader” on page 38)
ImqItem (see “ImqItem” on page 43)
ImqMessage (see “ImqMessage” on page 45)
ImqString (see “ImqString” on page 82)

 Object attributes
dead-letter reason code

The reason the message arrived on the dead-letter queue. Initially
MQRC_NONE.

destination queue manager name
The name of the original destination queue manager. Initially null.

destination queue name
The name of the original destination queue. Initially null.

put application name
The name of the application that put the message on the dead-letter
queue. Initially null.

put application type
The type of application that put the message on the dead-letter queue.
Initially zero.

put date The date when the message was put on the dead-letter queue. Initially
a null string.

put time The time when the message was put on the dead-letter queue. Initially
a null string.

28 MQSeries using C++

 ImqDeadLetterHeader class

 Constructors
ImqDeadLetterHeader();

The default constructor.

ImqDeadLetterHeader(const ImqDeadLetterHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQDLH data structure into the message buffer at the
beginning, moving existing message data further along. Sets the msg
format to MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQDLH data structure from the message buffer.

To be successful, the ImqMessage format must be
MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description for further details.

Object methods (public)
void operator = (const ImqDeadLetterHeader & header);

Instance data is copied from header, replacing the existing instance
data.

MQLONG deadLetterReasonCode() const ;
Returns the dead-letter reason code .

void setDeadLetterReasonCode(const MQLONG reason);
Sets the dead-letter reason code .

ImqString destinationQueueManagerName() const ;
Returns the destination queue manager name .

void setDestinationQueueManagerName(const char * name);
Sets the destination queue manager name .

ImqString destinationQueueName() const ;
Returns a copy of the destination queue name .

void setDestinationQueueName(const char * name);
Sets the destination queue name .

ImqString putApplicationName() const ;
Returns a copy of the put application name .

void setPutApplicationName(const char * name = 0);
Sets the put application name .

MQLONG putApplicationType() const ;
Returns the put application type .

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type .

ImqString putDate() const ;
Returns a copy of the put date .

 Chapter 3. MQSeries C++ classes 29

 ImqDeadLetterHeader class

void setPutDate(const char * date = 0);
Sets the put date .

ImqString putTime() const ;
Returns a copy of the put time .

void setPutTime(const char * time = 0);
Sets the put time .

Object data (protected)
MQDLH omqdlh

The MQDLH data structure.

30 MQSeries using C++

 ImqDistributionList class

 ImqDistributionList

Queue

Distribution
List

distributed from

1

n

This class encapsulates a distribution list.

Other relevant classes
ImqMessage (see “ImqMessage” on page 45)
ImqQueue (see “ImqQueue” on page 62)

 Object attributes
first distributed queue

The first of one or more objects of class ImqQueue, in no particular
order, in which the ImqQueue distribution list reference addresses this
object. Initially zero.

Note: When an ImqDistributionList object is opened, any open
ImqQueue objects that reference it are automatically closed.

 Constructors
ImqDistributionList();

The default constructor.

ImqDistributionList(const ImqDistributionList & list);
The copy constructor.

Object methods (public)
void operator = (const ImqDistributionList & list);

All ImqQueue objects that reference this object are dereferenced prior
to copying. No ImqQueue objects will reference this object after the
invocation of this method.

ImqQueue * firstDistributedQueue() const ;
Returns the first distributed queue .

 Chapter 3. MQSeries C++ classes 31

 ImqDistributionList class

Object methods (protected)
void setFirstDistributedQueue(ImqQueue * queue = 0);

Sets the first distributed queue .

32 MQSeries using C++

 ImqError class

 ImqError

Error

A

This abstract class provides information on errors associated with an object.

Other relevant classes
None.

 Object attributes
completion code

The most recent completion code. Initially zero.

reason code
The most recent reason code. Initially zero.

 Constructors
ImqError();

The default constructor.

ImqError(const ImqError & error);
The copy constructor.

Object methods (public)
void operator = (const ImqError & error);

Instance data is copied from error, replacing the existing instance data.

void clearErrorCodes();
Sets the completion code and reason code both to zero.

MQLONG completionCode() const ;
Returns the completion code .

MQLONG reasonCode() const ;
Returns the reason code .

Object methods (protected)
ImqBoolean checkReadPointer(const void * pointer, const size_t length);

Verifies that the combination of pointer and length is valid for read-only
access. Returns TRUE if successful.

ImqBoolean checkWritePointer(const void * pointer, const size_t length);
Verifies that the combination of pointer and length is valid for read-write
access. Returns TRUE if successful.

void setCompletionCode(const MQLONG code = 0);
Sets the completion code .

void setReasonCode(const MQLONG code = 0);
Sets the reason code .

 Chapter 3. MQSeries C++ classes 33

 ImqError class

 Reason codes
 MQRC_BUFFER_ERROR

34 MQSeries using C++

 ImqGetMessageOptions class

 ImqGetMessageOptions

Error

A

Get Message
Options

This class encapsulates the MQGMO data structure (see Appendix B, “MQI
cross-reference” on page 95).

Other relevant classes
ImqString (see “ImqString” on page 82)

 Object attributes
group status

This is status of a message with respect to a group of messages. The
initial value is MQGS_NOT_IN_GROUP.

match options
These are the options for selecting incoming messages. The initial
value is MQMO_MATCH_MSG_ID or MQMO_MATCH_CORREL_ID.

options These are the options applicable to a message. The initial value is
MQGMO_NO_WAIT.

resolved queue name
This attribute is read-only. This is the resolved queue name. Names
are never longer than 48 characters and may be padded to that length
with nulls. The initial value is a null string.

segmentation
The capability for segmentation of a message. The initial value is
MSEG_INHIBITED.

segment status
The segmentation status of a message. The initial value is
MQSS_NOT_A_SEGMENT.

sync-point participation
TRUE when messages are retrieved under sync-point control.

wait interval
This is the length of time that the ImqQueue class get method pauses
while waiting for a suitable message to arrive, if one is not already
available. The initial value is zero, which effects an indefinite wait. This
attribute is ignored unless the options include MQGMO_WAIT.

 Chapter 3. MQSeries C++ classes 35

 ImqGetMessageOptions class

 Constructors
ImqGetMessageOptions();

The default constructor.

ImqGetMessageOptions(const ImqGetMessageOptions & gmo);
The copy constructor.

Object methods (public)
void operator = (const ImqGetMessageOptions & gmo);

Instance data is copied from gmo, replacing the existing instance data.

MQCHAR groupStatus() const ;
Returns the group status .

void setGroupStatus(const MQCHAR status);
Sets the group status .

MQLONG matchOptions() const ;
Returns the match options .

void setMatchOptions(const MQLONG options);
Sets the match options .

MQLONG options() const ;
Returns the options .

void setOptions(const MQLONG options);
Sets the options , including the sync-point participation value.

ImqString resolvedQueueName() const ;
Returns a copy of the resolved queue name .

MQCHAR segmentation() const ;
Returns the segmentation .

void setSegmentation(const MQCHAR value);
Sets the segmentation .

MQCHAR segmentStatus() const ;
Returns the segment status .

void setSegmentStatus(const MQCHAR status);
Sets the segment status .

ImqBoolean syncPointParticipation() const ;
Returns the sync-point participation value, which is TRUE if the

| options include either MQGMO_SYNCPOINT or
| MQGMO_SYNCPOINT_IF_PERSISTENT.

void setSyncPointParticipation(const ImqBoolean sync);
| Sets the sync-point participation value. If sync is TRUE, the options
| are altered to include MQGMO_SYNCPOINT, and to exclude both
| MQGMO_NO_SYNCPOINT and
| MQGMO_SYNCPOINT_IF_PERSISTENT. If sync is FALSE, the
| options are altered to include MQGMO_NO_SYNCPOINT, and to
| exclude both MQGMO_SYNCPOINT and
| MQGMO_SYNCPOINT_IF_PERSISTENT.

MQLONG waitInterval() const ;
Returns the wait interval .

36 MQSeries using C++

 ImqGetMessageOptions class

void setWaitInterval(const MQLONG interval);
Sets the wait interval .

Object data (protected)
MQGMO omqgmo

The MQGMO data structure.

 Chapter 3. MQSeries C++ classes 37

 ImqHeader class

 ImqHeader

Item

A

Header

A

This abstract class encapsulates common features of the MQDLH data structure
(see Appendix B, “MQI cross-reference” on page 95).

Other relevant classes
ImqDeadLetterHeader (see “ImqDeadLetterHeader” on page 28)
ImqImsBridgeHeader (see “ImqImsBridgeHeader” on page 40)
ImqItem (see “ImqItem” on page 43)
ImqMessage (see “ImqMessage” on page 45)
ImqReferenceHeader (see “ImqReferenceHeader” on page 79)
ImqString (see “ImqString” on page 82)

 Object attributes
character set

The original coded character set identifier. Initially MQCCSI_Q_MGR.

encoding The original encoding. Initially MQENC_NATIVE.

format The original format. Initially MQFMT_NONE.

header flags
The initial value is zero for objects of the ImqDeadLetterHeader class,
MQIIH_NONE for objects of the ImqImsBridgeHeader class, and
MQRMHF_LAST for objects of the ImqReferenceHeader class.

 Constructors
ImqHeader();

The default constructor.

ImqHeader(const ImqHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg) = 0 ;

Before the data structure is written, the encoding , character set , and
format from the msg object are copied into this object, and the
encoding and character set of the msg object are set to
MQENC_NATIVE and MQCCSI_Q_MGR respectively. Thus the header
attributes reflect the message data that will follow after the data written
to the message buffer.

38 MQSeries using C++

 ImqHeader class

See the ImqItem class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg) = 0 ;
After a successful data transfer, the encoding , character set and
format attributes from the header in the message buffer are copied to
the msg object so that remaining items of data in the message buffer
are correctly represented by the msg object attributes.

See the ImqItem class method description for further details.

Object methods (public)
void operator = (const ImqHeader & header);

Instance data is copied from header, replacing the existing instance
data.

virtual MQLONG characterSet() const ;
Returns the character set .

virtual void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);
Sets the character set .

virtual MQLONG encoding() const ;
Returns the encoding .

virtual void setEncoding(const MQLONG encoding = MQENC_NATIVE);
Sets the encoding .

virtual ImqString format() const ;
Returns a copy of the format , including trailing blanks.

virtual void setFormat(const char * name = 0);
Sets the format , padding to 8 characters with trailing blanks.

virtual MQLONG headerFlags() const ;
Returns the header flags .

virtual void setHeaderFlags(const MQLONG flags = 0);
Sets the header flags .

 Chapter 3. MQSeries C++ classes 39

 ImqImsBridgeHeader class

 ImqImsBridgeHeader

Header

A

IMS Bridge
Header

This class encapsulates specific features of the MQIIH data structure. Objects of
this class are used by applications that send messages to the IMS bridge through
MQSeries for MVS/ESA.

Note: The ImqHeader character set and encoding must have default values and
must not be set to any other values.

Other relevant classes
ImqBinary (see “ImqBinary” on page 23)
ImqHeader (see “ImqHeader” on page 38)
ImqItem (see “ImqItem” on page 43)
ImqMessage (see “ImqMessage” on page 45)
ImqString (see “ImqString” on page 82)

 Object attributes
authenticator

This is the RACF password or passticket, of length
MQ_AUTHENTICATOR_LENGTH. The initial value is MQIAUT_NONE.

commit mode
This is the commit mode. See the OTMA User's Guide for more
information about IMS commit modes. The initial value is
MQICM_COMMIT_THEN_SEND.

logical terminal override
This is the logical terminal override, of length
MQ_LTERM_OVERRIDE_LENGTH. The initial value is a null string.

message format services map name
This is the MFS map name, of length MQ_MFS_MAP_NAME_LENGTH.
The initial value is a null string.

reply-to format
This is the format of any reply, of length MQ_FORMAT_LENGTH. The
initial value is MQFMT_NONE.

security scope
This indicates the desired IMS security processing. The initial value is
MQISS_CHECK.

40 MQSeries using C++

 ImqImsBridgeHeader class

transaction instance id
This is the transaction instance identity, a binary (MQBYTE16) value of
length MQ_TRAN_INSTANCE_ID_LENGTH. The initial value is
MQITII_NONE.

transaction state
This indicates the state of the IMS conversation. The initial value is
MQITS_NOT_IN_CONVERSATION.

 Constructors
ImqImsBridgeHeader();

The default constructor.

ImqImsBridgeHeader(const ImqImsBridgeHeader & header);
The copy constructor.

Overloaded "ImqItem" methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQIIH data structure into the message buffer at the
beginning, moving existing message data further along. Sets the msg
format to MQFMT_IMS.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQIIH data structure from the message buffer.

To be successful, the encoding of the msg object should be
MQENC_NATIVE. It is recommended that messages be retrieved with
MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_IMS.

See the parent class method description for further details.

Object methods (public)
void operator = (const ImqImsBridgeHeader & header);

Instance data is copied from header, replacing the existing instance
data.

ImqString authenticator() const ;
Returns a copy of the authenticator , padded with trailing blanks to
length MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator(const char * name);
Sets the authenticator .

MQCHAR commitMode() const ;
Returns the commit mode .

void setCommitMode(const MQCHAR mode);
Sets the commit mode .

ImqString logicalTerminalOverride() const ;
Returns a copy of the logical terminal override .

void setLogicalTerminalOverride(const char * override);
Sets the logical terminal override .

ImqString messageFormatServicesMapName() const ;
Returns a copy of the message format services map name .

 Chapter 3. MQSeries C++ classes 41

 ImqImsBridgeHeader class

void setMessageFormatServicesMapName(const char * name);
Sets the message format services map name .

ImqString replyToFormat() const ;
Returns a copy of the reply-to format , padded with trailing blanks to
length MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * format);
Sets the reply-to format , padding with trailing blanks to length
MQ_FORMAT_LENGTH.

MQCHAR securityScope() const ;
Returns the security scope .

void setSecurityScope(const MQCHAR scope);
Sets the security scope .

ImqBinary transactionInstanceId() const ;
Returns a copy of the transaction instance id .

ImqBoolean setTransactionInstanceId(const ImqBinary & id);
Sets the transaction instance id . The data length of token must be
either zero or MQ_TRAN_INSTANCE_ID_LENGTH. Returns TRUE if
successful.

void setTransactionInstanceId(const MQBYTE16 id = 0);
Sets the transaction instance id . id may be zero, which is the same
as specifying MQITII_NONE. If id is non-zero, then it must address
MQ_TRAN_INSTANCE_ID_LENGTH bytes of binary data. When using
pre-defined values such as MQITII_NONE, it may be necessary to make
a cast to ensure a signature match, for example
(MQBYTE *)MQITII_NONE.

MQCHAR transactionState() const ;
Returns the transaction state .

void setTransactionState(const MQCHAR state);
Sets the transaction state .

Object data (protected)
MQIIH omqiih

The MQIIH data structure.

 Reason codes
 MQRC_BINARY_DATA_LENGTH_ERROR

42 MQSeries using C++

 ImqItem class

 ImqItem

Error

A

Item

A

This abstract class represents an item, perhaps one of several, within a message.
Items are concatenated together in a message buffer. Each specialization is
associated with a particular data structure that begins with a structure id.

Polymorphic methods in this abstract class allow items to be copied to and from
messages. The ImqMessage class readItem and writeItem methods provide
another style of invoking these polymorphic methods, a style that is more natural
for application programs.

Other relevant classes
ImqCache (see “ImqCache” on page 25)
ImqError (see “ImqError” on page 33)
ImqMessage (see “ImqMessage” on page 45)

 Object attributes
structure id

This attribute is read-only. A string of 4 characters at the beginning of
the data structure.

 Constructors
ImqItem();

The default constructor.

ImqItem(const ImqItem & item);
The copy constructor.

Class methods (public)
static ImqBoolean structureIdIs(const char * structure-id-to-test, const
ImqMessage & msg);

Returns TRUE if the structure id of the next ImqItem in the incoming
msg is the same as structure-id-to-test. The next item is identified as
that part of the message buffer currently addressed by the ImqCache
data pointer .

 Chapter 3. MQSeries C++ classes 43

 ImqItem class

Object methods (public)
void operator = (const ImqItem & item);

Instance data is copied from item, replacing the existing instance data.

virtual ImqBoolean copyOut(ImqMessage & msg) = 0 ;
Writes this object as the next item in an outgoing message buffer,
appending it to any existing items. If the write operation is successful,
the ImqCache data length is increased. Returns TRUE if successful.

Override this method to work with a specific subclass.

virtual ImqBoolean pasteIn(ImqMessage & msg) = 0 ;
Reads this object destructively2 from the incoming message buffer.

The (sub)class of this object must be consistent with the structure id
found next in the message buffer of the msg object.

The encoding of the msg object should be MQENC_NATIVE. It is
recommended that messages be retrieved with the ImqMessage
encoding set to MQENC_NATIVE, and with the
ImqGetMessageOptions options .

If the read operation is successful, the ImqCache data length is
reduced. Returns TRUE if successful.

Override this method to work with a specific subclass.

 Reason codes
 MQRC_ENCODING_ERROR
 MQRC_STRUC_ID_ERROR
 MQRC_INCONSISTENT_FORMAT
 MQRC_INSUFFICIENT_BUFFER
 MQRC_INSUFFICIENT_DATA

2 The read is destructive in that the ImqCache data pointer is moved on. However, the buffer content remains the same, so data
can be re-read by resetting the ImqCache data pointer .

44 MQSeries using C++

 ImqMessage class

 ImqMessage

Cache

Message

Message
Tracker

A

This class encapsulates an MQMD data structure (see Appendix B, “MQI
cross-reference” on page 95), and also handles the construction and reconstruction
of message data.

Other relevant classes
ImqCache (see “ImqCache” on page 25)
ImqItem (see “ImqItem” on page 43)
ImqMessageTracker (see “ImqMessageTracker” on page 50)
ImqString (see “ImqString” on page 82)

 Object attributes
application id data

Identity information associated with a message. The initial value is a
null string.

application origin data
Origin information associated with a message. The initial value is a null
string.

backout count
This attribute is read-only. The number of times a message has been
tentatively retrieved and subsequently backed out. The initial value is
zero.

character set
Coded Character Set Id. The initial value is MQCCSI_Q_MGR.

encoding The machine encoding of the message data. The initial value is
MQENC_NATIVE.

expiry A time-dependent quantity that controls how long MQSeries retains an
unretrieved message before discarding it. The initial value is
MQEI_UNLIMITED.

format The name of the format (template) that describes the layout of data in
the buffer. Names longer than 8 characters are truncated to 8
characters. Names are always padded with blanks to 8 characters. The
initial value is MQFMT_NONE.

message flags
Segmentation control information. The initial value is
MQMF_SEGMENTATION_INHIBITED.

 Chapter 3. MQSeries C++ classes 45

 ImqMessage class

message type
The broad categorization of a message. The initial value is
MQMT_DATAGRAM.

offset Offset information. The initial value is 0.

original length
The original length of a segmented message. The initial value is
MQOL_UNDEFINED.

persistence
Indicates that the message is important and must at all times be backed
up using persistent storage. This option implies a performance penalty.
The initial value is MQPER_PERSISTENCE_AS_Q_DEF.

priority The relative priority for transmission and delivery. Messages of the
same priority are usually delivered in the same sequence as they were
supplied (although there are several criteria that must be satisfied to
guarantee this). The initial value is MQPRI_PRIORITY_AS_Q_DEF.

put application name
The name of the application that put a message. Initially a null string.

put application type
The type of application that put a message. The initial value is
MQAT_NO_CONTEXT.

put date The date on which a message was put. Initially a null string.

put time The time at which a message was put. Initially a null string.

reply-to queue manager name
The name of the queue manager to which any reply should be sent.
Initially a null string.

reply-to queue name
The name of the queue to which any reply should be sent. Initially a
null string.

report Feedback information associated with a message. The initial value is
MQRO_NONE.

sequence number
Sequence information identifying a message within a group. The initial
value is 1.

| total message length
| This attribute is read-only. This is the number of bytes that were
| available during the most recent attempt to read a message. This
| number will be greater than the ImqCache message length if the last
| message was truncated, or if the last message was not read because
| truncation would have occurred. The initial value is zero.

| This attribute can be useful in any situation involving truncated
| messages.

user id A user identity associated with a message. Initially a null string.

46 MQSeries using C++

 ImqMessage class

 Constructors
ImqMessage();

The default constructor.

ImqMessage(const ImqMessage & msg);
The copy constructor. See the operator = method for details.

Object methods (public)
void operator = (const ImqMessage & msg);

Copies the MQMD and message data from msg. If a buffer has been
supplied by the user for this object, the amount of data copied is
restricted to the available buffer size. Otherwise, the system ensures
that a buffer of adequate size is made available for the copied data.

ImqString applicationIdData() const ;
Returns a copy of the application id data .

void setApplicationIdData(const char * data = 0);
Sets the application id data .

ImqString applicationOriginData() const ;
Returns a copy of the application origin data .

void setApplicationOriginData(const char * data = 0);
Sets the application origin data .

MQLONG backoutCount() const ;
Returns the backout count .

MQLONG characterSet() const ;
Returns the character set .

void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);
Sets the character set .

MQLONG encoding() const ;
Returns the encoding .

void setEncoding(const MQLONG encoding = MQENC_NATIVE);
Sets the encoding .

MQLONG expiry() const ;
Returns the expiry .

void setExpiry(const MQLONG expiry);
Sets the expiry .

ImqString format() const ;
Returns a copy of the format , including trailing blanks.

ImqBoolean formatIs(const char * format-to-test) const ;
Returns TRUE if the format is the same as format-to-test.

void setFormat(const char * name = 0);
Sets the format , padding to 8 characters with trailing blanks.

MQLONG messageFlags() const ;
Returns the message flags .

void setMessageFlags(const MQLONG flags);
Sets the message flags .

 Chapter 3. MQSeries C++ classes 47

 ImqMessage class

MQLONG messageType() const ;
Returns the message type .

void setMessageType(const MQLONG type);
Sets the message type .

MQLONG offset() const ;
Returns the offset .

void setOffset(const MQLONG offset);
Sets the offset .

MQLONG originalLength() const ;
Returns the original length .

void setOriginalLength(const MQLONG length);
Sets the original length .

MQLONG persistence() const ;
Returns the persistence .

void setPersistence(const MQLONG persistence);
Sets the persistence .

MQLONG priority() const ;
Returns the priority .

void setPriority(const MQLONG priority);
Sets the priority .

ImqString putApplicationName() const ;
Returns a copy of the put application name .

void setPutApplicationName(const char * name = 0);
Sets the put application name .

MQLONG putApplicationType() const ;
Returns the put application type .

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type .

ImqString putDate() const ;
Returns a copy of the put date .

void setPutDate(const char * date = 0);
Sets the put date .

ImqString putTime() const ;
Returns a copy of the put time .

void setPutTime(const char * time = 0);
Sets the put time .

ImqBoolean readItem(ImqItem & item);
Reads into the item object from the message buffer, using the ImqItem
pasteIn method. Returns TRUE if successful.

ImqString replyToQueueManagerName() const ;
Returns a copy of the reply-to queue manager name .

void setReplyToQueueManagerName(const char * name = 0);
Sets the reply-to queue manager name .

48 MQSeries using C++

 ImqMessage class

ImqString replyToQueueName() const ;
Returns a copy of the reply-to queue name .

void setReplyToQueueName(const char * name = 0);
Sets the reply-to queue name .

MQLONG report() const ;
Returns the report .

void setReport(const MQLONG report);
Sets the report .

MQLONG sequenceNumber() const ;
Returns the sequence number .

void setSequenceNumber(const MQLONG number);
Sets the sequence number .

| size_t totalMessageLength() const ;
| Returns the total message length .

ImqString userId() const ;
Returns a copy of the user id .

void setUserId(const char * id = 0);
Sets the user id .

ImqBoolean writeItem(ImqItem & item);
Writes from the item object into the message buffer, using the ImqItem
copyOut method. Writing may take the form of insertion, replacement
or an append: this depends on the class of the item object. Returns
TRUE if successful.

Object data (protected)
MQMD omqmd

The MQMD data structure.

 Reason codes
 MQRC_ENCODING_ERROR
 MQRC_STRUC_ID_ERROR
 MQRC_INCONSISTENT_FORMAT
 MQRC_INSUFFICIENT_BUFFER
 MQRC_INSUFFICIENT_DATA

 Chapter 3. MQSeries C++ classes 49

 ImqMessageTracker class

 ImqMessageTracker

Error

A

Message
Tracker

A

This abstract class encapsulates those attributes of an ImqMessage or ImqQueue
object that can be associated with either object.

Other relevant classes
ImqBinary (see “ImqBinary” on page 23)
ImqError (see “ImqError” on page 33)
ImqMessage (see “ImqMessage” on page 45)
ImqQueue (see “ImqQueue” on page 62)

 Object attributes
accounting token

A binary value (MQBYTE32) of length
MQ_ACCOUNTING_TOKEN_LENGTH. The initial value is
MQACT_NONE.

correlation id
A binary value (MQBYTE24) of length MQ_CORREL_ID_LENGTH
assigned by the user for the purpose of correlating messages. The initial
value is MQCI_NONE.

feedback Feedback information to be sent with a message. The initial value is
MQFB_NONE.

group id A binary value (MQBYTE24) of length MQ_GROUP_ID_LENGTH unique
within a queue. The initial value is MQGI_NONE.

message id
A binary value (MQBYTE24) of length MQ_MSG_ID_LENGTH unique
within a queue. The initial value is MQMI_NONE.

 Constructors
ImqMessageTracker();

The default constructor.

ImqMessageTracker(const ImqMessageTracker & tracker);
The copy constructor. See the operator = method for details.

50 MQSeries using C++

 ImqMessageTracker class

Object methods (public)
void operator = (const ImqMessageTracker & tracker);

Instance data is copied from tracker, replacing the existing instance
data.

ImqBinary accountingToken() const ;
Returns a copy of the accounting token .

ImqBoolean setAccountingToken(const ImqBinary & token);
Sets the accounting token . The data length of token must be either
zero or MQ_ACCOUNTING_TOKEN_LENGTH. Returns TRUE if
successful.

void setAccountingToken(const MQBYTE32 token = 0);
Sets the accounting token . token may be zero, which is the same as
specifying MQACT_NONE. If token is non-zero, then it must address
MQ_ACCOUNTING_TOKEN_LENGTH bytes of binary data. When using
predefined values such as MQACT_NONE, it may be necessary to
make a cast to ensure a signature match, for example
(MQBYTE *)MQACT_NONE.

ImqBinary correlationId() const ;
Returns a copy of the correlation id .

ImqBoolean setCorrelationId(const ImqBinary & token);
Sets the correlation id . The data length of token must be either zero
or MQ_CORREL_ID_LENGTH. Returns TRUE if successful.

void setCorrelationId(const MQBYTE24 id = 0);
Sets the correlation id . id may be zero, which is the same as
specifying MQCI_NONE. If id is non-zero, then it must address
MQ_CORREL_ID_LENGTH bytes of binary data. When using
pre-defined values such as MQCI_NONE, it may be necessary to make
a cast to ensure a signature match, for example
(MQBYTE *)MQCI_NONE.

MQLONG feedback() const ;
Returns the feedback .

void setFeedback(const MQLONG feedback);
Sets the feedback .

ImqBinary groupId() const ;
Returns a copy of the group id .

ImqBoolean setGroupId(const ImqBinary & token);
Sets the group id . The data length of token must be either zero or
MQ_GROUP_ID_LENGTH. Returns TRUE if successful.

void setGroupId(const MQBYTE24 id = 0);
Sets the group id . id may be zero, which is the same as specifying
MQGI_NONE. If id is non-zero, it must address
MQ_GROUP_ID_LENGTH bytes of binary data. When using
pre-defined values such as MQGI_NONE, it may be necessary to make
a cast to ensure a signature match, for example
(MQBYTE *)MQGI_NONE.

ImqBinary messageId() const ;
Returns a copy of the message id .

 Chapter 3. MQSeries C++ classes 51

 ImqMessageTracker class

ImqBoolean setMessageId(const ImqBinary & token);
Sets the message id . The data length of token must be either zero or
MQ_MSG_ID_LENGTH. Returns TRUE if successful.

void setMessageId(const MQBYTE24 id = 0);
Sets the message id . id may be zero, which is the same as specifying
MQMI_NONE. If id is non-zero, it must address MQ_MSG_ID_LENGTH
bytes of binary data. When using pre-defined values such as
MQMI_NONE, it may be necessary to make a cast to ensure a
signature match, for example (MQBYTE *)MQMI_NONE.

 Reason codes
 MQRC_BINARY_DATA_LENGTH_ERROR

52 MQSeries using C++

 ImqObject class

 ImqObject

Error

A

Object

A

This class is abstract. When an object of this class is destroyed, it is automatically
closed, and its ImqQueueManager connection severed.

Other relevant classes
ImqError (see “ImqError” on page 33)
ImqQueueManager (see “ImqQueueManager” on page 73)
ImqString (see “ImqString” on page 82)

 Object attributes
alternate user id

Up to MQ_USER_ID_LENGTH characters. The initial value is a null
string.

close options
The initial value is MQCO_NONE. This attribute is ignored during
implicit reopen operations, where a value of MQCO_NONE is always
used.

connection reference
A reference to an ImqQueueManager object that provides the required
connection to a (local) queue manager. For an ImqQueueManager
object, it will be the object itself. Initially null.

Note: Do not confuse this with the ImqQueue queue manager name
that identifies a queue manager (possibly remote) for a named
queue.

description
This attribute is read-only. The descriptive name (up to 64 characters)
of the queue manager, queue or process.

name The name (up to 48 characters) of the queue manager, queue or
process, as appropriate. The initial value is a null string. The name of a
model queue changes after an open to the name of the resulting
dynamic queue. An actual queue manager name is always returned in
place of a null queue manager name.

next managed object
This is the next object of this class, in no particular order, having the
same connection reference as this object. Initially zero.

 Chapter 3. MQSeries C++ classes 53

 ImqObject class

open options
The initial value is MQOO_INQUIRE. There are two ways to set
appropriate values:

1. Do not set the open options and do not use the open method.
MQSeries automatically adjusts the open options and automatically
opens, reopen and closees objects as required. This may result in
unnecessary reopen operations, because MQSeries uses the
openFor method, and this adds open options incrementally only.

2. Set the open options as appropriate before using any methods that
result in an MQI call (see Appendix B, “MQI cross-reference” on
page 95). This ensures that unnecessary reopen operations do not
occur. It is strongly recommended that the open options be set
explicitly if any of the potential reopen (see “Reopen” on page 15)
problems are likely to occur.

If you use the open method, you must ensure that the open
options are appropriate first. However, using the open method is
not mandatory; MQSeries still exhibits the same behavior as in case
1, but in this circumstance the behavior is efficient.

Zero is not a valid value, and so the appropriate value must be set
before attempting to open the object. This can be done either using
setOpenOptions (lOpenOptions) followed by open (), or by using
openFor (lRequiredOpenOption).

open status
This attribute is read-only. Indicates whether the object is open (TRUE)
or closed (FALSE). Initially FALSE.

previous managed object
This is the previous object of this class, in no particular order, having the
same connection reference as this object. Initially zero.

 Constructors
ImqObject();

The default constructor.

ImqObject(const ImqObject & object);
The copy constructor. The open status will be FALSE.

Object methods (public)
void operator = (const ImqObject & object);

Performs a close if necessary, and then copies the instance data from
object. The open status will be FALSE.

ImqString alternateUserId() const ;
Returns a copy of the alternate user id .

ImqBoolean setAlternateUserId(const char * id);
Sets the alternate user id . The alternate user id can only be set while
the open status is FALSE. Returns TRUE if successful.

ImqBoolean close();
Sets the open status to FALSE. Returns TRUE if successful.

MQLONG closeOptions() const ;
Returns the close options .

54 MQSeries using C++

 ImqObject class

void setCloseOptions(const MQLONG options);
Sets the close options .

ImqQueueManager * connectionReference() const ;
Returns the connection reference .

void setConnectionReference(ImqQueueManager & manager);
Sets the connection reference .

void setConnectionReference(ImqQueueManager * manager = 0);
Sets the connection reference .

virtual ImqBoolean description(ImqString & description) = 0 ;
Provides a copy of the description . Returns TRUE if successful.

ImqString description();
Returns a copy of the description without any indication of possible
errors.

virtual ImqBoolean name(ImqString & name);
Provides a copy of the name . Returns TRUE if successful.

ImqString name();
Returns a copy of the name without any indication of possible errors.

ImqBoolean setName(const char * name = 0);
Sets the name . The name can only be set while the open status is
FALSE, and, for an ImqQueueManager, while the connection status is
FALSE. Returns TRUE if successful.

| ImqObject * nextManagedObject() const ;
| Returns the next managed object .

ImqBoolean open();
Changes the open status to TRUE by opening the object as necessary,
using amongst other attributes the open options and the name . Uses
the connection reference information and the ImqQueueManager
connect method if necessary to ensure that the ImqQueueManager
connection status is TRUE. Returns the open status .

ImqBoolean openFor(const MQLONG required-options = 0);
Attempts to ensure that the object is open with open options that
include the required-options specified.

If required-options is zero, it is assumed that input is required, and that
any input option will suffice. So, if the open options already contain
one of:

 MQOO_INPUT_AS_Q_DEF
 MQOO_INPUT_SHARED
 MQOO_INPUT_EXCLUSIVE

then the open options are already satisfactory and will not be changed;
if the open options do not already contain any of the above, then
MQOO_INPUT_AS_Q_DEF will be set in the open options .

If required-options is non-zero, then the required options are added to
the open options ; if required-options is any of the above, then the
others are reset.

 Chapter 3. MQSeries C++ classes 55

 ImqObject class

If any of the open options are changed and the object is already open,
then the object will be closed temporarily and reopened in order to
adjust the open options .

Returns TRUE if successful. Success indicates that the object is open
with appropriate options.

MQLONG openOptions() const ;
Returns the open options .

ImqBoolean setOpenOptions(const MQLONG options);
Sets the open options . The open options can only be set while the
open status is FALSE. Returns TRUE if successful.

ImqBoolean openStatus() const ;
Returns the open status .

ImqObject * previousManagedObject() const ;
Returns the previous managed object .

Object methods (protected)
virtual ImqBoolean closeTemporarily();

Closes an object safely prior to reopening. Returns TRUE if successful.

Note: This method assumes that the open status is TRUE.

MQHCONN connectionHandle() const ;
Returns the MQHCONN associated with the connection reference .
This value will be zero if there is no connection reference or if the
ImqQueueManager is not connected.

ImqBoolean inquire(const MQLONG int-attr, MQLONG & value);
Returns an integer value, the index of which is an MQIA_* value. In
case of error, the value is set to MQIAV_UNDEFINED.

ImqBoolean inquire(const MQLONG char-attr, char * & buffer, const size_t
length);

Returns a character string, the index of which is an MQCA_* value.

Note: Both of the above methods return only a single attribute value. If
a “snapshot” is required of more than one value, where the
values are consistent with each other for an instant, MQSeries
C++ does not provide this facility and it is necessary to use the
MQINQ call with appropriate parameters.

virtual void openInformationDisperse();
Disperses information from the variable section of the MQOD data
structure immediately after an MQOPEN call.

virtual ImqBoolean openInformationPrepare();
Prepares information for the variable section of the MQOD data
structure immediately prior to an MQOPEN call. Returns TRUE if
successful.

ImqBoolean set(const MQLONG int-attr, const MQLONG value);
Sets an MQSeries integer attribute.

ImqBoolean set(const MQLONG char-attr, const char * buffer, const size_t
required-length);

Sets an MQSeries character attribute.

56 MQSeries using C++

 ImqObject class

void setNextManagedObject(const ImqObject * object = 0);
Sets the next managed object .

void setPreviousManagedObject(const ImqObject * object = 0);
Sets the previous managed object .

Object data (protected)
MQHOBJ ohobj

The MQSeries object handle (only valid when open status is TRUE).

MQOD omqod
The embedded MQOD data structure.

 Reason codes
 MQRC_ATTRIBUTE_LOCKED
 MQRC_INCONSISTENT_OBJECT_STATE
 MQRC_NO_CONNECTION_REFERENCE
 MQRC_STORAGE_NOT_AVAILABLE

(reason codes from MQCLOSE)
(reason codes from MQCONN)
(reason codes from MQINQ)
(reason codes from MQOPEN)
(reason codes from MQSET)

 Chapter 3. MQSeries C++ classes 57

 ImqProcess class

 ImqProcess

Object

A

Process

This class encapsulates an application process (an MQSeries object or type
MQOT_PROCESS) that can be triggered by a trigger monitor.

Other relevant classes
ImqObject (see “ImqObject” on page 53)

 Object attributes
application id

This attribute is read-only. This is the identity of the application process.

application type
This attribute is read-only. This is the type of the application process.

environment data
This attribute is read-only. This is the environment information for the
process.

user data
This attribute is read-only. This is user data for the process.

 Constructors
ImqProcess();

The default constructor.

ImqProcess(const ImqProcess & process);
The copy constructor. The ImqObject open status will be FALSE.

ImqProcess(const char * name);
Sets the ImqObject name .

Object methods (public)
void operator = (const ImqProcess & process);

Performs a close if necessary, and then copies instance data from
process. The ImqObject open status will be FALSE.

ImqBoolean applicationId(ImqString & id);
Provides a copy of the application id . Returns TRUE if successful.

ImqString applicationId();
Returns the application id without any indication of possible errors.

58 MQSeries using C++

 ImqProcess class

ImqBoolean applicationType(MQLONG & type);
Provides a copy of the application type . Returns TRUE if successful.

MQLONG applicationType();
Returns the application type without any indication of possible errors.

ImqBoolean environmentData(ImqString & data);
Provides a copy of the environment data . Returns TRUE if successful.

ImqString environmentData();
Returns the environment data without any indication of possible errors.

ImqBoolean userData(ImqString & data);
Provides a copy of the user data . Returns TRUE if successful.

ImqString userData();
Returns the user data without any indication of possible errors.

 Chapter 3. MQSeries C++ classes 59

 ImqPutMessageOptions class

 ImqPutMessageOptions

Error

A

Put Message
Options

This class encapsulates the MQPMO data structure (see Appendix B, “MQI
cross-reference” on page 95).

Other relevant classes
ImqError (see “ImqError” on page 33)
ImqMessage (see “ImqMessage” on page 45)
ImqQueue (see “ImqQueue” on page 62)
ImqString (see “ImqString” on page 82)

 Object attributes
context reference

An ImqQueue that provides a context for messages. Initially there is no
reference.

options These are the put message options. The initial value is
MQPMO_NONE.

record fields
These are the flags that control the inclusion of put message records
when a message is put. The initial value is MQPMRF_NONE.

ImqMessageTracker attributes are taken from the ImqQueue object for
any field that is specified. ImqMessageTracker attributes are taken from
the ImqMessage object for any field that is not specified.

resolved queue manager name
This attribute is read-only. This is the name of a destination queue
manager determined during a put. Initially null.

resolved queue name
This attribute is read-only. This is the name of a destination queue
determined during a put. Initially null.

sync-point participation
TRUE when messages are put under sync-point control.

60 MQSeries using C++

 ImqPutMessageOptions class

 Constructors
ImqPutMessageOptions();

The default constructor.

ImqPutMessageOptions(const ImqPutMessageOptions & pmo);
The copy constructor.

Object methods (public)
void operator = (const ImqPutMessageOptions & pmo);

Instance data is copied from pmo, replacing the existing instance data.

ImqQueue * contextReference() const ;
Returns the context reference .

void setContextReference(const ImqQueue & queue);
Sets the context reference .

void setContextReference(const ImqQueue * queue = 0);
Sets the context reference .

MQLONG options() const ;
Returns the options .

void setOptions(const MQLONG options);
Sets the options , including the sync-point participation value.

MQLONG recordFields() const ;
Returns the record fields .

void setRecordFields(const MQLONG fields);
Sets the record fields .

ImqString resolvedQueueManagerName() const ;
Returns a copy of the resolved queue manager name .

ImqString resolvedQueueName() const ;
Returns a copy of the resolved queue name .

ImqBoolean syncPointParticipation() const ;
Returns the sync-point participation value, which is TRUE if the
options include MQPMO_SYNCPOINT.

void setSyncPointParticipation(const ImqBoolean sync);
| Sets the sync-point participation value. If sync is TRUE, the options
| are altered to include MQPMO_SYNCPOINT, and to exclude
| MQPMO_NO_SYNCPOINT. If sync is FALSE, the options are altered
| to include MQPMO_NO_SYNCPOINT, and to exclude
| MQPMO_SYNCPOINT.

Object data (protected)
MQPMO omqpmo

The MQPMO data structure.

 Reason codes
 MQRC_STORAGE_NOT_AVAILABLE

 Chapter 3. MQSeries C++ classes 61

 ImqQueue class

 ImqQueue

Object

A

Queue

Message
Tracker

A

This class encapsulates a message queue (an MQSeries object or type MQOT_Q).

Other relevant classes
ImqCache (see “ImqCache” on page 25)
ImqDistributionList (see “ImqDistributionList” on page 31)
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 35)
ImqMessage (see “ImqMessage” on page 45)
ImqMessageTracker (see “ImqMessageTracker” on page 50)
ImqObject (see “ImqObject” on page 53)
ImqPutMessageOptions (see “ImqPutMessageOptions” on page 60)
ImqQueueManager (see “ImqQueueManager” on page 73)
ImqString (see “ImqString” on page 82)

 Object attributes
backout requeue name

This attribute is read-only. This is the excessive backout requeue name.

backout threshold
This attribute is read-only. This is the backout threshold.

base queue name
This attribute is read-only. This is the name of the queue that the alias
resolves to.

creation date
This attribute is read-only. This is the queue creation data.

creation time
This attribute is read-only. This is the queue creation time.

current depth
This attribute is read-only. This is the number of messages on the
queue.

default input open option
This attribute is read-only. This is the default open-for-input option.

default persistence
This attribute is read-only. This is the default message persistence.

default priority
This attribute is read-only. This is the default message priority.

62 MQSeries using C++

 ImqQueue class

definition type
This attribute is read-only. This is the queue definition type.

depth high event
This attribute is read-only. This is the control attribute for queue depth
high events.

depth high limit
This attribute is read-only. This is the high limit for the queue depth.

depth low event
This attribute is read-only. This is the control attribute for queue depth
low events.

depth low limit
This attribute is read-only. This is the low limit for the queue depth.

depth maximum event
This attribute is read-only. This is the control attribute for queue depth
maximum events.

distribution list reference
An optional reference to an ImqDistributionList that can be used to
distribute messages to more than one queue, including this one. Initially
null.

Note: When an ImqQueue object is opened, any open
ImqDistributionList object that it references is automatically
closed.

distribution lists
This attribute is read-only. This is the capability of a transmission queue
to support distribution lists.

dynamic queue name
This is the dynamic queue name. The initial value is “AMQ.*” for all
Personal Computer and UNIX platforms.

harden get backout
This attribute is read-only. This determines whether to harden the
backout count.

inhibit get
This determines whether get operations are allowed. The initial value is
dependent on the queue definition. Only valid for an alias or local
queue.

inhibit put
This determines whether put operations are allowed. The initial value is
dependent on the queue definition.

initiation queue name
This attribute is read-only. This is the name of the initiation queue.

maximum depth
This attribute is read-only. This is the maximum number of messages
allowed on the queue.

maximum message length
This attribute is read-only. The maximum length for any message on
this queue, which may be less than the maximum for any queue
managed by the associated queue manager.

 Chapter 3. MQSeries C++ classes 63

 ImqQueue class

message delivery sequence
This attribute is read-only. This determines whether message priority is
relevant.

next distributed queue
This is the next object of this class, in no particular order, having the
same distribution list reference as this object. Initially zero.

open input count
This attribute is read-only. This is the number of ImqQueue objects that
are open for input.

open output count
This attribute is read-only. This is the number of ImqQueue objects that
are open for output.

previous distributed queue
This is the previous object of this class, in no particular order, having the
same distribution list reference as this object. Initially zero.

process name
This attribute is read-only. This is the name of the process definition.

queue manager name
This is the name of the queue manager (possibly remote) where the
queue actually resides. The queue manager named here should not be
confused with the ImqObject connection reference which references
the (local) queue manager providing a connection. Initially null.

queue type
This attribute is read-only. This is the queue type.

remote queue manager name
This attribute is read-only. This is the name of the remote queue
manager.

remote queue name
This attribute is read-only. This is the name of the remote queue as
known on the remote queue manager.

retention interval
This attribute is read-only. This is the queue retention interval.

scope This attribute is read-only. This is the scope of the queue definition.

service interval
This attribute is read-only. This is the service interval.

service interval event
This attribute is read-only. This is the control attribute for service
interval events.

shareability
This attribute is read-only. This determines whether the queue can be
shared.

transmission queue name
This attribute is read-only. This is the name of the transmission queue.

trigger control
This is the trigger control. The initial value depends on the queue
definition. Only valid for a local queue.

64 MQSeries using C++

 ImqQueue class

trigger data
This is the trigger data. The initial value depends on the queue
definition. Only valid for a local queue.

trigger depth
This is the trigger depth. The initial value depends on the queue
definition. Only valid for a local queue.

trigger message priority
This is the threshold message priority for triggers. The initial value
depends on the queue definition. Only valid for a local queue.

trigger type
This is the trigger type. The initial value depends on the queue
definition. Only valid for a local queue.

usage This attribute is read-only. This is the usage.

 Constructors
ImqQueue();

The default constructor.

ImqQueue(const ImqQueue & queue);
The copy constructor. The ImqObject open status will be FALSE.

ImqQueue(const char * name);
Sets the ImqObject name .

Object methods (public)
void operator = (const ImqQueue & queue);

Performs a close if necessary, and then copies instance data from
queue. The ImqObject open status will be FALSE.

ImqBoolean backoutRequeueName(ImqString & name);
Provides a copy of the backout requeue name . Returns TRUE if
successful.

ImqString backoutRequeueName();
Returns the backout requeue name without any indication of possible
errors.

ImqBoolean backoutThreshold(MQLONG & threshold);
Provides a copy of the backout threshold . Returns TRUE if
successful.

MQLONG backoutThreshold();
Returns the backout threshold value without any indication of possible
errors.

ImqBoolean baseQueueName(ImqString & name);
Provides a copy of the base queue name . Returns TRUE if successful.

ImqString baseQueueName();
Returns the base queue name without any indication of possible errors.

ImqBoolean creationDate(ImqString & date);
Provides a copy of the creation date . Returns TRUE if successful.

ImqString creationDate();
Returns the creation date without any indication of possible errors.

 Chapter 3. MQSeries C++ classes 65

 ImqQueue class

ImqBoolean creationTime(ImqString & time);
Provides a copy of the creation time . Returns TRUE if successful.

ImqString creationTime();
Returns the creation time without any indication of possible errors.

ImqBoolean currentDepth(MQLONG & depth);
Provides a copy of the current depth . Returns TRUE if successful.

MQLONG currentDepth();
Returns the current depth without any indication of possible errors.

ImqBoolean defaultInputOpenOption(MQLONG & option);
Provides a copy of the default input open option . Returns TRUE if
successful.

MQLONG defaultInputOpenOption();
Returns the default input open option without any indication of
possible errors.

ImqBoolean defaultPersistence(MQLONG & persistence);
Provides a copy of the default persistence . Returns TRUE if
successful.

MQLONG defaultPersistence();
Returns the default persistence without any indication of possible
errors.

ImqBoolean defaultPriority(MQLONG & priority);
Provides a copy of the default priority . Returns TRUE if successful.

MQLONG defaultPriority();
Returns the default priority without any indication of possible errors.

ImqBoolean definitionType(MQLONG & type);
Provides a copy of the definition type . Returns TRUE if successful.

MQLONG definitionType();
Returns the definition type without any indication of possible errors.

ImqBoolean depthHighEvent(MQLONG & event);
Provides a copy of the enablement state of the depth high event .
Returns TRUE if successful.

MQLONG depthHighEvent();
Returns the enablement state of the depth high event without any
indication of possible errors.

ImqBoolean depthHighLimit(MQLONG & limit);
Provides a copy of the depth high limit . Returns TRUE if successful.

MQLONG depthHighLimit();
Returns the depth high limit value without any indication of possible
errors.

ImqBoolean depthLowEvent(MQLONG & event);
Provides a copy of the enablement state of the depth low event .
Returns TRUE if successful.

MQLONG depthLowEvent();
Returns the enablement state of the depth low event without any
indication of possible errors.

66 MQSeries using C++

 ImqQueue class

ImqBoolean depthLowLimit(MQLONG & limit);
Provides a copy of the depth low limit . Returns TRUE if successful.

MQLONG depthLowLimit();
Returns the depth low limit value without any indication of possible
errors.

ImqBoolean depthMaximumEvent(MQLONG & event);
Provides a copy of the enablement state of the depth maximum event .
Returns TRUE if successful.

MQLONG depthMaximumEvent();
Returns the enablement state of the depth maximum event without any
indication of possible errors.

ImqDistributionList * distributionListReference() const ;
Returns the distribution list reference .

void setDistributionListReference(ImqDistributionList & list);
Sets the distribution list reference .

void setDistributionListReference(ImqDistributionList * list = 0);
Sets the distribution list reference .

ImqBoolean distributionLists(MQLONG & support);
Provides a copy of the distribution lists value. Returns TRUE if
successful.

MQLONG distributionLists();
Returns the distribution lists value without any indication of possible
errors.

ImqBoolean setDistributionLists(const MQLONG support);
Sets the distribution lists value. Returns TRUE if successful.

ImqString dynamicQueueName() const ;
Returns a copy of the dynamic queue name .

ImqBoolean setDynamicQueueName(const char * name);
Sets the dynamic queue name . The dynamic queue name can only
be set while the ImqObject open status is FALSE. Returns TRUE if
successful.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options);
| Retrieves a message from the queue, using the specified options. The
| ImqObject openFor method is invoked if necessary to ensure that the
| ImqObject open options include either (a) one of the MQOO_INPUT_*
| values, or (b) the MQOO_BROWSE value, depending on the options. If
| the msg object has an ImqCache automatic buffer , then the buffer will
| grow to accommodate any message retrieved. The clearMessage

method is invoked against the msg object prior to retrieval. Returns
TRUE if successful.

| Note: The result of the method invocation is FALSE if the ImqObject
| reason code is MQRC_TRUNCATED_MSG_FAILED, even
| though this reason code is classified as a warning. If a

truncated message is accepted, then the ImqCache message
| length reflects the truncated length. In either event, the
| ImqMessage total message length indicates the number of
| bytes that were available.

 Chapter 3. MQSeries C++ classes 67

 ImqQueue class

ImqBoolean get(ImqMessage & msg);
| As for the above method, except that default get message options are
| used.

| ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options, const
| size_t buffer-size);
| As for the above methods, except that an overriding buffer-size is
| indicated. If the msg object employs an ImqCache automatic buffer ,
| then the resizeBuffer method is invoked on the msg object prior to
| message retrieval, and the buffer will not grow further to accommodate
| any larger message.

| ImqBoolean get(ImqMessage & msg, const size_t buffer-size);
| As for the above method, except that default get message options are
| used.

ImqBoolean hardenGetBackout(MQLONG & harden);
Provides a copy of the harden get backout value. Returns TRUE if
successful.

MQLONG hardenGetBackout();
Returns the harden get backout value without any indication of
possible errors.

ImqBoolean inhibitGet(MQLONG & inhibit);
Provides a copy of the inhibit get value. Returns TRUE if successful.

MQLONG inhibitGet();
Returns the inhibit get value without any indication of possible errors.

ImqBoolean setInhibitGet(const MQLONG inhibit);
Sets the inhibit get value. Returns TRUE if successful.

ImqBoolean inhibitPut(MQLONG & inhibit);
Provides a copy of the inhibit put value. Returns TRUE if successful.

MQLONG inhibitPut();
Returns the inhibit put value without any indication of possible errors.

ImqBoolean setInhibitPut(const MQLONG inhibit);
Sets the inhibit put value. Returns TRUE if successful.

ImqBoolean initiationQueueName(ImqString & name);
Provides a copy of the initiation queue name . Returns TRUE if
successful.

ImqString initiationQueueName();
Returns the initiation queue name without any indication of possible
errors.

ImqBoolean maximumDepth(MQLONG & depth);
Provides a copy of the maximum depth . Returns TRUE if successful.

MQLONG maximumDepth();
Returns the maximum depth without any indication of possible errors.

ImqBoolean maximumMessageLength(MQLONG & length);
Provides a copy of the maximum message length . Returns TRUE if
successful.

68 MQSeries using C++

 ImqQueue class

MQLONG maximumMessageLength();
Returns the maximum message length without any indication of
possible errors.

ImqBoolean messageDeliverySequence(MQLONG & sequence);
Provides a copy of the message delivery sequence . Returns TRUE if
successful.

MQLONG messageDeliverySequence();
Returns the message delivery sequence value without any indication
of possible errors.

ImqQueue * nextDistributedQueue() const ;
Returns the next distributed queue .

ImqBoolean openInputCount(MQLONG & count);
Provides a copy of the open input count . Returns TRUE if successful.

MQLONG openInputCount();
Returns the open input count without any indication of possible errors.

ImqBoolean openOutputCount(MQLONG & count);
Provides a copy of the open output count . Returns TRUE if
successful.

MQLONG openOutputCount();
Returns the open output count without any indication of possible
errors.

ImqQueue * previousDistributedQueue() const ;
Returns the previous distributed queue .

ImqBoolean processName(ImqString & name);
Provides a copy of the process name . Returns TRUE if successful.

ImqString processName();
Returns the process name without any indication of possible errors.

ImqBoolean put(ImqMessage & msg);
Places a message onto the queue, using default put message options.
Uses the ImqObject openFor method if necessary to ensure that the
ImqObject open options include MQOO_OUTPUT. Returns TRUE if
successful.

ImqBoolean put(ImqMessage & msg, ImqPutMessageOptions & pmo);
Places a message onto the queue, using the specified pmo. Uses the
ImqObject openFor method as necessary to ensure that the ImqObject
open options include MQOO_OUTPUT, and (if the pmo options
include any of MQPMO_PASS_IDENTITY_CONTEXT,
MQPMO_PASS_ALL_CONTEXT, MQPMO_SET_IDENTITY_CONTEXT
or MQPMO_SET_ALL_CONTEXT) corresponding MQOO_*_CONTEXT
values. Returns TRUE if successful.

Note: If the pmo includes a context reference , then the referenced
object will be opened if necessary to provide a context.

ImqString queueManagerName() const ;
Returns the queue manager name .

 Chapter 3. MQSeries C++ classes 69

 ImqQueue class

ImqBoolean setQueueManagerName(const char * name);
Sets the queue manager name . The queue manager name can only
be set while the ImqObject open status is FALSE. Returns TRUE if
successful.

ImqBoolean queueType(MQLONG & type);
Provides a copy of the queue type value. Returns TRUE if successful.

MQLONG queueType();
Returns the queue type without any indication of possible errors.

ImqBoolean remoteQueueManagerName(ImqString & name);
Provides a copy of the remote queue manager name . Returns TRUE
if successful.

ImqString remoteQueueManagerName();
Returns the remote queue manager name without any indication of
possible errors.

ImqBoolean remoteQueueName(ImqString & name);
Provides a copy of the remote queue name . Returns TRUE if
successful.

ImqString remoteQueueName();
Returns the remote queue name without any indication of possible
errors.

ImqBoolean retentionInterval(MQLONG & interval);
Provides a copy of the retention interval . Returns TRUE if successful.

MQLONG retentionInterval();
Returns the retention interval without any indication of possible errors.

ImqBoolean scope(MQLONG & scope);
Provides a copy of the scope . Returns TRUE if successful.

MQLONG scope();
Returns the scope without any indication of possible errors.

ImqBoolean serviceInterval(MQLONG & interval);
Provides a copy of the service interval . Returns TRUE if successful.

MQLONG serviceInterval();
Returns the service interval without any indication of possible errors.

ImqBoolean serviceIntervalEvent(MQLONG & event);
Provides a copy of the enablement state of the service interval event .
Returns TRUE if successful.

MQLONG serviceIntervalEvent();
Returns the anablement state of the service interval event without any
indication of possible errors.

ImqBoolean shareability(MQLONG & shareability);
Provides a copy of the shareability value. Returns TRUE if successful.

MQLONG shareability();
Returns the shareability value without any indication of possible errors.

ImqBoolean transmissionQueueName(ImqString & name);
Provides a copy of the transmission queue name . Returns TRUE if
successful.

70 MQSeries using C++

 ImqQueue class

ImqString transmissionQueueName();
Returns the transmission queue name without any indication of
possible errors.

ImqBoolean triggerControl(MQLONG & control);
Provides a copy of the trigger control value. Returns TRUE if
successful.

MQLONG triggerControl();
Returns the trigger control value without any indication of possible
errors.

ImqBoolean setTriggerControl(const MQLONG control);
Sets the trigger control value. Returns TRUE if successful.

ImqBoolean triggerData(ImqString & data);
Provides a copy of the trigger data . Returns TRUE if successful.

ImqString triggerData();
Returns a copy of the trigger data without any indication of possible
errors.

ImqBoolean setTriggerData(const char * data);
Sets the trigger data . Returns TRUE if successful.

ImqBoolean triggerDepth(MQLONG & depth);
Provides a copy of the trigger depth . Returns TRUE if successful.

MQLONG triggerDepth();
Returns the trigger depth without any indication of possible errors.

ImqBoolean setTriggerDepth(const MQLONG depth);
Sets the trigger depth . Returns TRUE if successful.

ImqBoolean triggerMessagePriority(MQLONG & priority);
Provides a copy of the trigger message priority . Returns TRUE if
successful.

MQLONG triggerMessagePriority();
Returns the trigger message priority without any indication of possible
errors.

ImqBoolean setTriggerMessagePriority(const MQLONG priority);
Sets the trigger message priority . Returns TRUE if successful.

ImqBoolean triggerType(MQLONG & type);
Provides a copy of the trigger type . Returns TRUE if successful.

MQLONG triggerType();
Returns the trigger type without any indication of possible errors.

ImqBoolean setTriggerType(const MQLONG type);
Sets the trigger type . Returns TRUE if successful.

ImqBoolean usage(MQLONG & usage);
Provides a copy of the usage value. Returns TRUE if successful.

MQLONG usage();
Returns the usage value without any indication of possible errors.

 Chapter 3. MQSeries C++ classes 71

 ImqQueue class

Object methods (protected)
void setNextDistributedQueue(ImqQueue * queue = 0);

Sets the next distributed queue .

void setPreviousDistributedQueue(ImqQueue * queue = 0);
Sets the previous distributed queue .

 Reason codes
 MQRC_CONTEXT_OBJECT_NOT_VALID
 MQRC_CONTEXT_OPEN_ERROR
 MQRC_CURSOR_NOT_VALID
 MQRC_NO_BUFFER
 MQRC_REOPEN_EXCL_INPUT_ERROR
 MQRC_REOPEN_INQUIRE_ERROR
 MQRC_REOPEN_SAVED_CONTEXT_ERR
 MQRC_REOPEN_TEMPORARY_Q_ERROR

(reason codes from MQGET)
(reason codes from MQPUT)

72 MQSeries using C++

 ImqQueueManager class

 ImqQueueManager

Object

A

Queue
Manager

managed by

1

n

This class encapsulates a queue manager (an MQSeries object or type
MQOT_Q_MGR).

Other relevant classes
ImqObject (see “ImqObject” on page 53)

 Object attributes
authority event

This attribute is read-only. This controls authority events.

begin options
These are the options that apply to the begin method. Initially
MQBO_NONE.

character set
This attribute is read-only. This is the coded character set identifier.

command input queue name
This attribute is read-only. This is the system command input queue
name.

command level
This attribute is read-only. This is the command level supported by the
queue manager.

connect options
These are the options that apply to the connect method. Initially
MQCNO_NONE.

connection status
This attribute is read-only. This is TRUE when connected to the queue
manager.

dead-letter queue name
This attribute is read-only. This is the name of the dead-letter queue.

default transmission queue name
This attribute is read-only. This is the default transmission queue name.

 Chapter 3. MQSeries C++ classes 73

 ImqQueueManager class

distribution lists
This attribute is read-only. This is the capability of the queue manager
to support distribution lists.

first managed object
The first of one or more objects of class ImqObject, in no particular
order, in which the ImqObject connection reference addresses this
object. Initially zero.

inhibit event
This attribute is read-only. This controls inhibit events.

local event
This attribute is read-only. This controls local events.

maximum handles
This attribute is read-only. This is the maximum number of handles.

maximum message length
This attribute is read-only. This is the maximum possible length for any
message on any queue managed by this queue manager.

maximum priority
This attribute is read-only. This is the maximum message priority.

maximum uncommitted messages
This attribute is read-only. This is the maximum number of uncommitted
messages within a unit or work.

performance event
This attribute is read-only. This controls performance events.

platform This attribute is read-only. This is the platform on which the queue
manager resides.

remote event
This attribute is read-only. This controls remote events.

start-stop event
This attribute is read-only. This controls start-stop events.

sync-point availability
| This attribute is read-only. This is the availability3 of sync-point
| participation.

trigger interval
This attribute is read-only. This is the trigger interval.

 Constructors
ImqQueueManager();

The default constructor.

ImqQueueManager(const ImqQueueManager & manager);
The copy constructor. The connection status will be FALSE.

| 3 Although the begin , backout and commit methods will all fail with MQRC_ENVIRONMENT_ERROR on the AS/400 platform,
| sync-point can be programmed using the “_Rcommit” and “_Rback” native system calls. Starting a unit of work is achieved by
| starting the MQSeries application program under commitment control using the STRCMTCTL command. See “Syncpoints in
| MQSeries for AS/400 applications” of the MQSeries Application Programming Guide for further details.

74 MQSeries using C++

 ImqQueueManager class

ImqQueueManager(const char * name);
Sets the ImqObject name to name.

 Destructors
When an ImqQueueManager object is destroyed, it is automatically disconnected.

Object methods (public)
void operator = (const ImqQueueManager & mgr);

Disconnects if necessary, and then copies instance data from mgr. The
connection status will be FALSE.

ImqBoolean authorityEvent(MQLONG & event);
Provides a copy of the enablement state of the authority event .
Returns TRUE if successful.

MQLONG authorityEvent();
Returns the enablement state of the authority event without any
indication of possible errors.

ImqBoolean backout();
Backs out uncommitted changes. Returns TRUE if successful.

ImqBoolean begin();
Begins a unit of work. The begin options affect the behavior of this
method. Returns TRUE if successful.

MQLONG beginOptions() const ;
Returns the begin options .

void setBeginOptions(const MQLONG options = MQBO_NONE);
Sets the begin options .

ImqBoolean characterSet(MQLONG & ccsid);
Provides a copy of the character set . Returns TRUE if successful.

MQLONG characterSet();
Returns a copy of the character set , without any indication of possible
errors.

ImqBoolean commandInputQueueName(ImqString & name);
Provides a copy of the command input queue name . Returns TRUE if
successful.

ImqString commandInputQueueName();
Returns the command input queue name without any indication of
possible errors.

ImqBoolean commandLevel(MQLONG & level);
Provides a copy of the command level . Returns TRUE if successful.

MQLONG commandLevel();
Returns the command level without any indication of possible errors.

ImqBoolean commit();
Commits uncommitted changes. Returns TRUE if successful.

ImqBoolean connect();
Connects to the queue manager with the given ImqObject name , the
default being the local queue manager. Use the ImqObject setName
method before connection if you wish to connect to a specific queue

 Chapter 3. MQSeries C++ classes 75

 ImqQueueManager class

manager. The connect options affect the behavior of this method.
Sets the connection status to TRUE. Returns TRUE if successful.

Note: More than one ImqQueueManager object can be connected to
the same queue manager, and all will use the same MQHCONN

MQLONG connectOptions() const ;
Returns the connect options .

void setConnectOptions(const MQLONG options = MQCNO_NONE);
Sets the connect options .

ImqBoolean connectionStatus() const ;
Returns the connection status .

ImqBoolean deadLetterQueueName(ImqString & name);
Provides a copy of the dead-letter queue name . Returns TRUE if
successful.

ImqString deadLetterQueueName();
Returns a copy of the dead-letter queue name , without any indication
of possible errors.

ImqBoolean defaultTransmissionQueueName(ImqString & name);
Provides a copy of the default transmission queue name . Returns
TRUE if successful.

ImqString defaultTransmissionQueueName();
Returns the default transmission queue name without any indication
of possible errors.

ImqBoolean disconnect();
Disconnects from the queue manager and sets the connection status
to FALSE. All ImqProcess and ImqQueue objects associated with this
object are closed and their connection reference severed prior to
disconnection. If more than one ImqQueueManager object is connected
to the same queue manager, then only the last to disconnect will
perform a physical disconnection; others will perform a logical
disconnection. Uncommitted changes are committed (on physical
disconnection only). Returns TRUE if successful.

ImqBoolean distributionLists(MQLONG & support);
Provides a copy of the distribution lists value. Returns TRUE if
successful.

MQLONG distributionLists();
Returns the distribution lists value without any indication of possible
errors.

ImqObject * firstManagedObject() const ;
Returns the first managed object .

ImqBoolean inhibitEvent(MQLONG & event);
Provides a copy of the enablement state of the inhibit event . Returns
TRUE if successful.

MQLONG inhibitEvent();
Returns the enablement state of the inhibit event without any indication
of possible errors.

76 MQSeries using C++

 ImqQueueManager class

ImqBoolean localEvent(MQLONG & event);
Provides a copy of the enablement state of the local event . Returns
TRUE if successful.

MQLONG localEvent();
Returns the enablement state of the local event without any indication
of possible errors.

ImqBoolean maximumHandles(MQLONG & number);
Provides a copy of the maximum handles . Returns TRUE if
successful.

MQLONG maximumHandles();
Returns the maximum handles without any indication of possible
errors.

ImqBoolean maximumMessageLength(MQLONG & length);
Provides a copy of the maximum message length . Returns TRUE if
successful.

MQLONG maximumMessageLength();
Returns the maximum message length without any indication of
possible errors.

ImqBoolean maximumPriority(MQLONG & priority);
Provides a copy of the maximum priority . Returns TRUE if successful.

MQLONG maximumPriority();
Returns a copy of the maximum priority , without any indication of
possible errors.

ImqBoolean maximumUncommittedMessages(MQLONG & number);
Provides a copy of the maximum uncommitted messages . Returns
TRUE if successful.

MQLONG maximumUncommittedMessages();
Returns the maximum uncommitted messages without any indication
of possible errors.

ImqBoolean performanceEvent(MQLONG & event);
Provides a copy of the enablement state of the performance event .
Returns TRUE if successful.

MQLONG performanceEvent();
Returns the enablement state of the performance event without any
indication of possible errors.

ImqBoolean platform(MQLONG & platform);
Provides a copy of the platform . Returns TRUE if successful.

MQLONG platform();
Returns the platform without any indication of possible errors.

ImqBoolean remoteEvent(MQLONG & event);
Provides a copy of the enablement state of the remote event . Returns
TRUE if successful.

MQLONG remoteEvent();
Returns the enablement state of the remote event without any
indication of possible errors.

 Chapter 3. MQSeries C++ classes 77

 ImqQueueManager class

ImqBoolean startStopEvent(MQLONG & event);
Provides a copy of the enablement state of the start-stop event .
Returns TRUE if successful.

MQLONG startStopEvent();
Returns the enablement state of the start-stop event without any
indication of possible errors.

ImqBoolean syncPointAvailability(MQLONG & sync);
Provides a copy of the sync-point availability value. Returns TRUE if
successful.

MQLONG syncPointAvailability();
Returns a copy of the sync-point availability value, without any
indication of possible errors.

ImqBoolean triggerInterval(MQLONG & interval);
Provides a copy of the trigger interval . Returns TRUE if successful.

MQLONG triggerInterval();
Returns the trigger interval without any indication of possible errors.

Object methods (protected)
void setFirstManagedObject(const ImqObject * object = 0);

Sets the first managed object .

Object data (protected)
MQHCONN ohconn

The MQSeries connection handle (only meaningful while the
connection status is TRUE).

 Reason codes
(reason codes for MQBACK)
(reason codes for MQBEGIN)
(reason codes for MQCMIT)
(reason codes for MQCONNX)
(reason codes for MQDISC)

78 MQSeries using C++

 ImqReferenceHeader class

 ImqReferenceHeader

Header

A

Reference
Header

This class encapsulates specific features of the MQRMH data structure.

Other relevant classes
ImqBinary (see “ImqBinary” on page 23)
ImqHeader (see “ImqHeader” on page 38)
ImqItem (see “ImqItem” on page 43)
ImqMessage (see “ImqMessage” on page 45)
ImqString (see “ImqString” on page 82)

 Object attributes
destination environment

This is the environment for the destination. Initially a null string.

destination name
This is the name of the data destination. Initially a null string.

instance id
This is a binary value (MQBYTE24) of length
MQ_OBJECT_INSTANCE_ID_LENGTH. The initial value is
MQOII_NONE.

logical length
This is the logical, or intended, length of message data that follows this
header. Initially zero.

logical offset
This is a logical offset for the message data that follows, to be
interpreted in the context of the data as a whole, at the ultimate
destination. Initially zero.

logical offset 2
This is a high-order extension to the logical offset . Initially zero.

reference type
This is the reference type. Initially a null string.

source environment
This is the environment for the source. Initially a null string.

source name
This is the name of the data source. Initially a null string.

 Chapter 3. MQSeries C++ classes 79

 ImqReferenceHeader class

 Constructors
ImqReferenceHeader();

The default constructor.

ImqReferenceHeader(const ImqReferenceHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQRMH data structure into the message buffer at the
beginning, moving existing message data further along. Sets the msg
format to MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQRMH data structure from the message buffer.

To be successful, the ImqMessage format must be
MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description for further details.

Object methods (public)
void operator = (const ImqReferenceHeader & header);

Instance data is copied from header, replacing the existing instance
data.

ImqString destinationEnvironment() const ;
Returns a copy of the destination environment .

void setDestinationEnvironment(const char * environment = 0);
Sets the destination environment .

ImqString destinationName() const ;
Returns a copy of the destination name .

void setDestinationName(const char * name = 0);
Sets the destination name .

ImqBinary instanceId() const ;
Returns a copy of the instance id .

ImqBoolean setInstanceId(const ImqBinary & id);
Sets the instance id . The data length of token must be either 0 or
MQ_OBJECT_INSTANCE_ID_LENGTH. Returns TRUE if successful.

void setInstanceId(const MQBYTE24 id = 0);
Sets the instance id . id may be zero, which is the same as specifying
MQOII_NONE. If id is non-zero, then it must address
MQ_OBJECT_INSTANCE_ID_LENGTH bytes of binary data. When
using pre-defined values such as MQOII_NONE, it may be necessary to
make a cast to ensure a signature match, for example (MQBYTE
*)MQOII_NONE.

MQLONG logicalLength() const ;
Returns the logical length .

void setLogicalLength(const MQLONG length);
Sets the logical length .

80 MQSeries using C++

 ImqReferenceHeader class

MQLONG logicalOffset() const ;
Returns the logical offset .

void setLogicalOffset(const MQLONG offset);
Sets the logical offset .

MQLONG logicalOffset2() const ;
Returns the logical offset 2 .

void setLogicalOffset2(const MQLONG offset);
Sets the logical offset 2 .

ImqString referenceType() const ;
Returns a copy of the reference type .

void setReferenceType(const char * name = 0);
Sets the reference type .

ImqString sourceEnvironment() const ;
Returns a copy of the source environment .

void setSourceEnvironment(const char * environment = 0);
Sets the source environment .

ImqString sourceName() const ;
Returns a copy of the source name .

void setSourceName(const char * name = 0);
Sets the source name .

Object data (protected)
MQRMH omqrmh

The MQRMH data structure.

 Reason codes
 MQRC_BINARY_DATA_LENGTH_ERROR
 MQRC_STRUC_LENGTH_ERROR

 Chapter 3. MQSeries C++ classes 81

 ImqString class

 ImqString

Item

A

String

This class provides character string storage and manipulation for null-terminated
strings. An ImqString can be used in place of a char * in most situations where a
parameter calls for a char * .

Other relevant classes
ImqItem (see “ImqItem” on page 43)
ImqMessage (see “ImqMessage” on page 45)

 Object attributes
characters Those characters in the storage which precede a trailing null.

length The number of bytes in the characters . If there is no storage ,
then the length is zero. Initially zero.

storage A volatile array of bytes of arbitrary size. A trailing null must
always be present in the storage after the characters , so that the
end of the characters can be detected. Methods ensure that this
situation is maintained, but care must be taken, when setting bytes
in the array directly, to ensure that a trailing null exists after
modification. Initially there is no storage .

 Constructors
ImqString();

The default constructor.

ImqString(const ImqString & string);
The copy constructor.

ImqString(const char c);
The characters comprise c.

ImqString(const char * text);
The characters are copied from text.

ImqString(const void * buffer, const size_t length);
Copies length bytes starting from buffer and assigns them to the
characters . Substitution is made for any null characters copied. The
substitution character is a period (.). No special consideration is given
to any other non-printable or non-displayable characters copied.

82 MQSeries using C++

 ImqString class

Class methods (public)
static ImqBoolean copy(char * destination-buffer, const size_t length, const
char * source-buffer, const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the
number of characters in source-buffer is insufficient, then the remaining
space in destination-buffer is filled with pad characters. source-buffer
may be zero. destination-buffer may be zero if length is also zero.
Returns TRUE if successful.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the characters to the message buffer, replacing any existing
content. Sets the msg format to MQFMT_STRING.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Sets the characters by transferring the remaining data from the
message buffer, replacing the existing characters .

To be successful, the encoding of the msg object should be
MQENC_NATIVE. It is recommended that messages be retrieved with
MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_STRING.

See the parent class method description for further details.

Object methods (public)
char & operator [] (const size_t offset) const ;

References the character at offset offset in the storage . It is the user’s
responsibility to ensure that the relevant byte exists and is addressable.

ImqString operator () (const size_t offset, const size_t length = 1) const ;
Returns a sub-string by copying bytes from the characters starting at
offset. If length is zero, then the rest of the characters are returned. If
the combination of offset and length does not produce a reference within
the characters , then an empty ImqString is returned.

void operator = (const ImqString & string);
Instance data is copied from string, replacing the existing instance data.

ImqString operator + (const char c) const ;
Returns the result of appending c to the characters .

ImqString operator + (const char * text) const ;
Returns the result of appending text to the characters . This may also
be inverted. For example:

strOne + “string two”4 ;

“string one” + strTwo ;

ImqString operator + (const ImqString & string1) const ;
Returns the result of appending string1 to the characters .

4 Although most compilers accept strOne + “string two”; Microsoft Visual C++ requires strOne + (char *)“string two” ;

 Chapter 3. MQSeries C++ classes 83

 ImqString class

ImqString operator + (const double number) const ;
Returns the result of appending number to the characters after
conversion to text.

ImqString operator + (const long number) const ;
Returns the result of appending number to the characters after
conversion to text.

void operator += (const char c);
c is appended to the characters .

void operator += (const char * text);
Appends text to the characters .

void operator += (const ImqString & string);
Appends string to the characters .

void operator += (const double number);
Appends number to the characters after conversion to text.

void operator += (const long number);
Appends number to the characters after conversion to text.

void operator char * () const ;
Returns the address of the first byte in the storage . May be zero, and
is volatile.

ImqBoolean operator < (const ImqString & string) const ;
ImqBoolean operator > (const ImqString & string) const ;
ImqBoolean operator <= (const ImqString & string) const ;
ImqBoolean operator >= (const ImqString & string) const ;
ImqBoolean operator == (const ImqString & string) const ;
ImqBoolean operator != (const ImqString & string) const ;

Compares the characters with those of string using the compare
method. Returns either TRUE or FALSE.

short compare(const ImqString & string) const ;
Compares the characters with those of string. The result is zero if the
characters are equal, negative if “less than” and positive if “greater
than”. Comparison is case-sensitive. A null ImqString is regarded as
“less than” a non-null ImqString.

ImqBoolean copyOut(char * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the characters to the buffer. If the
number of characters is insufficient, then the remaining space in buffer
is filled with pad characters. buffer may be zero if length is also zero.
Returns TRUE if successful.

size_t copyOut(long & number) const ;
Sets number from the characters after conversion from text. Returns
the number of characters involved in the conversion. If this is zero, then
no conversion has been performed and number is not set. A convertible
character sequence must begin with:

<blank(s)>
<+│->

digit(s)

Figure 11. Format for string text to integer conversion

84 MQSeries using C++

 ImqString class

size_t copyOut(ImqString & token, const char c = ‘ ’) const ;
If the characters contain one or more characters different to c, then a
token is identified as the first contiguous sequence of such characters.
In this case token is set to that sequence, and the value returned is the
sum of the number of leading characters c and the number of bytes in
the sequence. Otherwise, zero is returned and token is not set.

size_t cutOut(long & number);
Sets number as for the copy method, but also removes from
characters the number of bytes indicated by the return value. For
example, the following string may be cut into three numbers by using
cutOut (number) three times:

strNumbers = “-1 ð +55 ”;

while (strNumbers.cutOut(number));
number becomes -1, then ð, then 55
leaving strNumbers == “ ”

Figure 12. Retrieving integers from string text

size_t cutOut(ImqString & token, const char c = ‘ ’);
Sets token as for the copyOut method, and removes from characters
the strToken characters and also any characters c which preceed the
token characters. If c is not a blank, then characters c which directly
succeed the token characters are also removed. Returns the number of
characters removed. For example, the following string may be cut into
three tokens by using cutOut (token) three times:

strText = “ Program Version 1.1 ”;

while (strText.cutOut(token));

// token becomes “Program”, then “Version”,
// then “1.1” leaving strText == “ ”

Figure 13. Retrieving tokens from string text

Another example shows how a DOS path name might be parsed as
follows:

strPath = “C:\OS2\BITMAP\OS2LOGO.BMP”

strPath.cutOut(strDrive, ':');
strPath.stripLeading(':');
while (strPath.cutOut(strFile, '\'));

// strDrive becomes “A”.
// strFile becomes “OS2”, then “BITMAP”,
// then “OS2LOGO.BMP” leaving strPath empty.

Figure 14. Parsing a path in a string

 Chapter 3. MQSeries C++ classes 85

 ImqString class

ImqBoolean find(const ImqString & string);
Searches for an exact match for string anywhere within the characters .
If no match is found, returns FALSE. Otherwise, returns TRUE. If string
is null, returns TRUE.

ImqBoolean find(const ImqString & string, size_t & offset);
Searches for an exact match for string somewhere within the
characters from offset offset onwards. If string is null, returns TRUE
without updating offset. If no match is found, returns FALSE; note that
the value of offset may have been increased. If a match is found,
returns TRUE and updates offset to the offset of string within the
characters .

size_t length() const ;
Returns the length .

ImqBoolean pasteIn(const double number, const char * format = “%f”);
number is appended to the characters after conversion to text. Returns
TRUE if successful.

The specification format is used to format the floating point conversion.
If specified, it should be one suitable for use with printf and floating
point numbers, for example “%.3f” .

ImqBoolean pasteIn(const long number);
number is appended to the characters after conversion to text. Returns
TRUE if successful.

ImqBoolean pasteIn(const void * buffer, const size_t length);
Appends length bytes from buffer to the characters , and adds a final
trailing null. A substitution is made for any null characters copied. The
substitution character is a period (.). No special consideration is given to
any other non-printable or non-displayable characters copied. Returns
TRUE if successful.

ImqBoolean set(const char * buffer, const size_t length);
Sets the characters from a fixed-length character field, which may or
may not contain a null. A null is appended to the characters from the
fixed-length field if necessary. Returns TRUE if successful.

size_t storage() const ;
Returns the number of bytes in the storage .

ImqBoolean setStorage(const size_t length);
(Re)allocates the storage and returns the number of bytes currently
allocated. Any original characters , including any trailing null, are
preserved if there is still room for them, but any additional storage is not
initialized.

Returns TRUE if successful.

size_t stripLeading(const char c = ‘ ’);
Strips leading characters c from the characters and returns the number
removed.

size_t stripTrailing(const char c = ‘ ’);
Strips trailing characters c from the characters and returns the number
removed.

ImqString upperCase() const ;
Returns an uppercase copy of the characters .

86 MQSeries using C++

 ImqString class

Object methods (protected)
ImqBoolean assign(const ImqString & string);

Equivalent to the equivalent operator = method, but non-virtual.

Returns TRUE if successful.

 Reason codes
 MQRC_DATA_TRUNCATED
 MQRC_NULL_POINTER
 MQRC_STORAGE_NOT_AVAILABLE

 Chapter 3. MQSeries C++ classes 87

 ImqTrigger class

 ImqTrigger

Item

A

Trigger

This class encapsulates the MQTM data structure (see Appendix B, “MQI
cross-reference” on page 95). Objects of this class are typically used by a trigger
monitor program, whose task is to wait for these particular messages and act on
them to ensure that other MQSeries applications are started when messages are
waiting for them.

See the IMQSTRG sample program for a usage example.

Other relevant classes
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 35)
ImqItem (see “ImqItem” on page 43)
ImqMessage (see “ImqMessage” on page 45)
ImqString (see “ImqString” on page 82)

 Object attributes
application id

This is the identity of the application that sent the message. The initial
value is a null string.

application type
This is the type of application that sent the message. The initial value is
zero.

environment data
This is environment data for the process. The initial value is a null string.

process name
This is the process name. The initial value is a null string.

queue name
This is the name of the queue to be started. The initial value is a null
string.

trigger data
This is trigger data for the process. The initial value is a null string.

user data
This is user data for the process. The initial value is a null string.

88 MQSeries using C++

 ImqTrigger class

 Constructors
ImqTrigger();

The default constructor.

ImqTrigger(const ImqTrigger & trigger);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Writes an MQTM data structure to the message buffer, replacing any
existing content. Sets the msg format to MQFMT_TRIGGER.

See the ImqItem class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQTM data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_TRIGGER.

See the ImqItem class method description for further details.

Object methods (public)
void operator = (const ImqTrigger & trigger);

Instance data is copied from trigger, replacing the existing instance data.

ImqString applicationId() const ;
Returns a copy of the application id .

void setApplicationId(const char * id);
Sets the application id .

MQLONG applicationType() const ;
Returns the application type .

void setApplicationType(const MQLONG type);
Sets the application type .

ImqBoolean copyOut(MQTMC2 * ptmc2);
This class encapsulates the MQTM data structure which is the one
received on initiation queues. This method fills in an equivalent
MQTMC2 data structure provided by the caller, and sets the QMgrName
field (which is not present in the MQTM data structure) to all blanks.
The MQTMC2 data structure is traditionally used as a parameter to
applications started by a trigger monitor. Returns TRUE if successful.

ImqString environmentData() const ;
Returns a copy of the environment data .

void setEnvironmentData(const char * data);
Sets the environment data .

ImqString processName() const ;
Returns a copy of the process name .

void setProcessName(const char * name);
Sets the process name .

ImqString queueName() const ;
Returns a copy of the queue name .

void setQueueName(const char * name);
Sets the queue name .

 Chapter 3. MQSeries C++ classes 89

 ImqTrigger class

ImqString triggerData() const ;
Returns a copy of the trigger data .

void setTriggerData(const char * data);
Sets the trigger data .

ImqString userData() const ;
Returns a copy of the user data .

void setUserData(const char * data);
Sets the user data .

Object data (protected)
MQTM omqtm

The MQTM data structure.

 Reason codes
 MQRC_NULL_POINTER

90 MQSeries using C++

 Compiling and linking

Appendix A. Compiling and linking

| The compilers for each platform are listed in “Compilers for MQSeries platforms,”
| together with the switches and link libraries to use.

| If you are writing programs for the AS/400 platform, see “Compiling C++ sample
| programs for the AS/400” on page 92.

| If you are writing programs for the Windows 95 and Windows NT platforms, see
| “Compiling VisualAge C++ sample programs for Windows 95 and NT” on page 94.

| Compilers for MQSeries platforms
| The compilers can be used on both the MQSeries client and the MQSeries server,
| unless indicated otherwise in the table.

Table 3. MQSeries C++ switches and link libraries

Platform Compiler Switches Libraries

AIX IBM C Set++ Version 3.1 for AIX xlC[_r] -qchars=signed
-I/usr/lpp/mqm/inc

-limqb23ia[_r]
-limq{c│s}23ia[_r]

| AS/400
| (server only)
| IBM VisualAge for C++ for
| AS/400
| iccas /C /J-| bndsrvpgm(qmqm/imqb23i4
| qmqm/imqs23i4
| qmqm/amqzstub)

HP-UX HP C++ Version 3.1 CC -w -limqb23ch[_r]
-limq{c│s}23ch[_r]

OS/2 IBM VisualAge for C++ Version
3.0 for OS/2

icc /Gd /Gm /Gs /J- imqb23i2 imq{c│s}23i2

Sun Solaris Sun SPARCompiler C++ Release
4.1

CC -mt -limqb23ss -limq{c│s}23ss
{-lmqic│-lmqm} -lmqmcs
-lmqmzse -lsocket -lnsl -ldl

Windows 3.1
(16-bit client
only)

Microsoft Visual C++ Version 1.5
for Windows 3.1

cl -ALw imqb23vw imqc23vw mqic

Windows 95,
Windows NT

IBM VisualAge for C++ for
Windows Version 3.5 for
Windows 95 and NT

icc /Gd /Gm /Gs /J- imqb23in imq{c│s}23in

Windows 95,
Windows NT

Microsoft Visual C++ Version 4.0
for Windows 95 and NT

cl -MT imqb23vn imq{c│s}23vn

 Copyright IBM Corp. 1997,1998 91

 Compiling on AS/400

| Compiling C ++ sample programs for the AS/400
| This section is aimed at the C++ programmer who wishes to write programs that will
| run on the AS/400 platform.

| There is no native AS/400 compiler for C++ programs. A cross-compiler is required
| that will produce an object module that can be linked by the AS/400 binder.
| VisualAge for C++ for AS/400 is the cross-compiler that runs on the OS/2 platform.
| Use of this cross-compiler allows a C++ programmer to use the rich graphical
| development environment of OS/2 to develop the program, whilst being able to
| build the AS/400 executable transparently on the target AS/400.

| Setting up on the OS/2 platform
| Set up the C++ development environment on the OS/2 platform as follows:

| 1. Install the VisualAge for C++ for OS/2 compiler, either from the VisualAge for
| C++ for OS/2 media, or from the target AS/400, if available5.

| To install the compiler from the AS/400 machine you can use the IBM Client
| Access program to give access to the AS/400 shared directories. Move to
| directory QDLS\QCTT\MRI2924\QCTTOS and type install.

| Verify installation by compiling a sample application.

| Further details can be found in the VisualAge for C++ for OS/2 manual.

| 2. Ensure that the VisualAge for C++ for AS/400 OS/2 Client is available5 on the
| target AS/400.

| To install the cross-compiler from the AS/400 machine you can use the IBM
| Client Access program to give access to the AS/400 shared directories. Move
| to directory QDLS\QCTT\MRI2924\QCTTAS and type install.

| This results in a new folder on the OS/2 desktop entitled “VisualAge for C++ for
| AS/400”. This folder contains project templates, and help documentation
| specific to building AS/400 executables.

| Further details can be found in the VisualAge for C++ for AS/400 User's Guide.

| The above installation allows two modes of operation:

| � Fully automatic mode. The VisualAge C++ graphical front end is used to
| edit the source and compile the source into object code. The object code
| is transferred automatically to the target AS/400 to be linked into an AS/400
| executable by the AS/400 binder.

| � Disconnected mode. The object code is left on the OS/2 platform as an
| intermediate file with a .qwo extension.

| You then have to transfer the intermediate object code across to the target
| AS/400, and invoke the AS/400 binder with appropriate options in order to
| produce an AS/400 native executable.

| Further details on the above modes, and AS/400 related restrictions, can be
| found in the “C++ User's Guide” in the “VisualAge for C++ for AS/400” folder on
| the OS/2 desktop.

| 5 Availability can be checked by using the AS/400 command “go licpgm” and option 10 “display installed licensed programs”.

92 MQSeries using C++

 Compiling on AS/400

| 3. Install the MQSeries for AS/400 C++ toolkit for OS/2 onto the OS/2 platform as
| follows:

| Use the IBM Client Access/400 program to give access to the AS/400 shared
| directories. Move to QDLS\QMQM\QIMQOS2\EN_US (for US English) and type
| install.

| The above installation provides local copies of the MQSeries C++ and C header
| files, and the C++ sample programs, for use with the cross-compiler. The
| environment variable INCLUDE_ASV3R6 is set up for use by the
| cross-compiler to locate the header files, so as not to interfere with regular
| OS/2 native compilations that use the INCLUDE environment variable.

| Programming
| Once all the software is installed, then you can begin programming.

| The following compilation takes the module source code from the OS/2 platform
| and produces object code in the target AS/400 object-library:

| iccas /ASlobject-library /ASi- /C /J- /Lf /Ls /Q /Ti
| module.cpp

| The following link-edit binds the AS/400 module object code into an executable
| program using the MQSeries C++ binding. The link-edit is performed remotely from
| the OS/2 platform using ctthcmd: the same command, without ctthcmd, can be
| executed natively on the AS/400 platform:

| ctthcmd CRTPGM PGM(executable-library/program)
| MODULE(object-library/module)
| BNDSRVPGM(QMQM/IMQB23I4 QMQM/IMQS23I4)

| TEXT(‘Sample Program’)

| The following native AS/400 command executes a program from the
| executable-library. The MQSeries C++ sample executables can be found, along with
| the MQSeries C++ service programs, in the QMQM library:

| CALL PGM(executable-library/program)
| PARM(“parameter-1” “parameter-2“)

| The following command executes the HELLO WORLD sample program, which uses
| SYSTEM.DEFAULT.LOCAL.QUEUE:

| CALL PGM(QMQM/IMQWRLDS)

 Appendix A. Compiling and linking 93

 Compiling on Windows 95 and NT

| Compiling VisualAge C ++ sample programs for Windows 95 and NT
| This section is aimed at the C++ programmer, who wishes to write VisualAge
| programs that will run on the Windows 95 and Windows NT platforms.

| The IBM VisualAge for C++ for Windows run-time library cppwm35i.dll is used by
| MQSeries C++ and is redistributed, using the DLLRNAME utility from the VisualAge
| product, under the name imqwm35i.dll. Using DLLRNAME, you and your
| customers can also use the redistributed file, rather than supplying a redistribution
| copy of your own.

| To use the MQSeries redistributed file, you need to process your executables after
| construction. Build your executable application in the normal way, whether it is a
| dynamic link library or a program, and then type:

| dllrname applicname cppwm35i=imqwm35i

| to rebind the application applicname.

94 MQSeries using C++

 Cross-reference to MQI

 Appendix B. MQI cross-reference

Read this information together with the MQSeries Application Programming
Reference.

Table 4. Data structure, class, and file cross-reference

Data Structure Class Include file

 ImqBinary imqbin.hpp

 ImqCache imqcac.hpp

MQDLH ImqDeadLetterHeader imqdlh.hpp

MQOR ImqDistributionList imqdst.hpp

 ImqError imqerr.hpp

MQGMO ImqGetMessageOptions imqgmo.hpp

 ImqHeader imqhdr.hpp

MQIIH ImqImsBridgeHeader imqiih.hpp

 ImqItem imqitm.hpp

MQMD ImqMessage imqmsg.hpp

 ImqMessageTracker imqmtr.hpp

MQOD, MQRR ImqObject imqobj.hpp

MQPMO, MQPMR, MQRR ImqPutMessageOptions imqpmo.hpp

 ImqProcess imqpro.hpp

 ImqQueue imqque.hpp

MQBO, MQCNO ImqQueueManager imqmgr.hpp

MQRMH ImqReferenceHeader imqrfh.hpp

 ImqString imqstr.hpp

MQTM ImqTrigger imqtrg.hpp

MQTMC

MQTMC2 ImqTrigger imqtrg.hpp

MQXQH

Table 5 (Page 1 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqCache automatic
buffer

 MQGET

ImqCache buffer
length

 MQGET

ImqCache buffer
pointer

 MQGET,
MQPUT

ImqCache data length MQGET

ImqCache data offset MQGET

 Copyright IBM Corp. 1997,1998 95

 Cross-reference to MQI

Table 5 (Page 2 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqCache data
pointer

 MQGET

ImqCache message
length

 MQGET,
MQPUT

ImqDeadLetterHeader dead-letter
reason
code

MQDLH Reason

ImqDeadLetterHeader destination
queue
manager
name

MQDLH DestQMgrName

ImqDeadLetterHeader destination
queue
name

MQDLH DestQName

ImqDeadLetterHeader put
application
name

MQDLH PutApplName

ImqDeadLetterHeader put
application
type

MQDLH PutApplType

ImqDeadLetterHeader put date MQDLH PutDate

ImqDeadLetterHeader put time MQDLH PutTime

ImqError completion
code

 MQBACK,
MQBEGIN,
MQCLOSE,
MQCMIT,
MQCONNX,
MQDISC,
MQGET,
MQINQ,
MQOPEN,
MQPUT,
MQSET

ImqError reason
code

 MQBACK,
MQBEGIN,
MQCLOSE,
MQCMIT,
MQCONNX,
MQDISC,
MQGET,
MQINQ,
MQOPEN,
MQPUT,
MQSET

ImqGetMessageOptions group
status

MQGMO GroupStatus

ImqGetMessageOptions match
options

MQGMO MatchOptions

ImqGetMessageOptions options MQGMO Options

96 MQSeries using C++

 Cross-reference to MQI

Table 5 (Page 3 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqGetMessageOptions resolved
queue
name

MQGMO ResolvedQName

ImqGetMessageOptions segmentation MQGMO Segmentation

ImqGetMessageOptions segment
status

MQGMO SegmentStatus

ImqGetMessageOptions MQGMO Signal1

ImqGetMessageOptions MQGMO Signal2

ImqGetMessageOptions sync-point
participation

MQGMO Options

ImqGetMessageOptions wait
interval

MQGMO WaitInterval

ImqHeader character
set

MQDLH,
MQIIH

CodedCharSetId

ImqHeader encoding MQDLH,
MQIIH

Encoding

ImqHeader format MQDLH,
MQIIH

Format

ImqHeader header
flags

MQIIH,
MQRMH

Flags

ImqImsBridgeHeader authenticator MQIIH Authenticator

ImqImsBridgeHeader commit
mode

MQIIH CommitMode

ImqImsBridgeHeader logical
terminal
override

MQIIH LTermOverride

ImqImsBridgeHeader message
format
services
map name

MQIIH MFSMapName

ImqImsBridgeHeader reply-to
format

MQIIH ReplyToFormat

ImqImsBridgeHeader security
scope

MQIIH SecurityScope

ImqImsBridgeHeader transaction
instance id

MQIIH TranInstanceId

ImqImsBridgeHeader transaction
state

MQIIH TranState

ImqItem structure
id

 MQGET

ImqMessage application
id data

MQMD ApplIdentityData

ImqMessage application
origin data

MQMD ApplOriginData

 Appendix B. MQI cross-reference 97

 Cross-reference to MQI

Table 5 (Page 4 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqMessage backout
count

MQMD BackoutCount

ImqMessage character
set

MQMD CodedCharSetId

ImqMessage encoding MQMD Encoding

ImqMessage expiry MQMD Expiry

ImqMessage format MQMD Format

ImqMessage message
flags

MQMD MsgFlags

ImqMessage message
type

MQMD MsgType

ImqMessage offset MQMD Offset

ImqMessage original
length

MQMD OriginalLength

ImqMessage persistence MQMD Persistence

ImqMessage priority MQMD Priority

ImqMessage put
application
name

MQMD PutApplName

ImqMessage put
application
type

MQMD PutApplType

ImqMessage put date MQMD PutDate

ImqMessage put time MQMD PutTime

ImqMessage reply-to
queue
manager
name

MQMD ReplyToQMgr

ImqMessage reply-to
queue
name

MQMD ReplyToQ

ImqMessage report MQMD Report

ImqMessage sequence
number

MQMD MsgSeqNumber

| ImqMessage| total
| message
| length

| | DataLength| MQGET

ImqMessage user id MQMD UserIdentifier

ImqMessageTracker accounting
token

MQMD AccountingToken

ImqMessageTracker correlation
id

MQMD CorrelId

ImqMessageTracker feedback MQMD Feedback

ImqMessageTracker group id MQMD GroupId

98 MQSeries using C++

 Cross-reference to MQI

Table 5 (Page 5 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqMessageTracker message id MQMD MsgId

ImqObject alternate
user id

MQOD AlternateUserId

ImqObject close
options

 MQCLOSE

ImqObject connection
reference

ImqObject description MQCA_Q_DESC, MQCA_Q_MGR_DESC,
MQCA_PROCESS_DESC

MQINQ

ImqObject name MQOD ObjectName, MQCA_Q_MGR_NAME,
MQCQ_Q_NAME,
MQCA_PROCESS_NAME

MQINQ

ImqObject next
managed
object

ImqObject open
options

 MQOPEN

ImqObject open
status

 MQOPEN,
MQCLOSE

ImqObject previous
managed
object

ImqProcess application
type

 MQIA_APPL_TYPE MQINQ

ImqProcess application
id

 MQCA_APPL_ID MQINQ

ImqProcess environment
data

 MQCA_ENV_DATA MQINQ

ImqProcess user data MQCA_USER_DATA MQINQ

ImqPutMessageOptions context
reference

MQPMO Context

ImqPutMessageOptions MQPMO InvalidDestCount

ImqPutMessageOptions MQPMO KnownDestCount

ImqPutMessageOptions options MQPMO Options

ImqPutMessageOptions record
fields

MQPMO PutMsgRecFields

ImqPutMessageOptions resolved
queue
manager
name

MQPMO ResolvedQMgrName

ImqPutMessageOptions resolved
queue
name

MQPMO ResolvedQName

ImqPutMessageOptions MQPMO Timeout

 Appendix B. MQI cross-reference 99

 Cross-reference to MQI

Table 5 (Page 6 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqPutMessageOptions MQPMO UnknownDestCount

ImqPutMessageOptions sync-point
participation

MQPMO Options

ImqQueue backout
requeue
name

 MQCA_BACKOUT_REQ_Q_NAME MQINQ

ImqQueue backout
threshold

 MQIA_BACKOUT_THRESHOLD MQINQ

ImqQueue base
queue
name

 MQCA_BASE_Q_NAME MQINQ

ImqQueue creation
date

 MQCA_CREATION_DATE MQINQ

ImqQueue creation
time

 MQCA_CREATION_TIME MQINQ

ImqQueue current
depth

 MQIA_CURRENT_Q_DEPTH MQINQ

ImqQueue default
input open
option

 MQIA_DEF_INPUT_OPEN_OPTION MQINQ

ImqQueue default
persistence

 MQIA_DEF_PERSISTENCE MQINQ

ImqQueue default
priority

 MQIA_DEF_PRIORITY MQINQ

ImqQueue definition
type

 MQIA_DEFINITION_TYPE MQINQ

ImqQueue depth high
event

 MQIA_Q_DEPTH_HIGH_EVENT MQINQ

ImqQueue depth high
limit

 MQIA_Q_DEPTH_HIGH_LIMIT MQINQ

ImqQueue depth low
event

 MQIA_Q_DEPTH_LOW_EVENT MQINQ

ImqQueue depth low
limit

 MQIA_Q_DEPTH_LOW_LIMIT MQINQ

ImqQueue depth
maximum
event

 MQIA_Q_DEPTH_MAX_LIMIT MQINQ

ImqQueue distribution
list
reference

ImqQueue distribution
lists

 MQIA_DIST_LISTS MQINQ,
MQSET

ImqQueue dynamic
queue
name

MQOD DynamicQName

100 MQSeries using C++

 Cross-reference to MQI

Table 5 (Page 7 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqQueue harden get
backout

 MQIA_HARDEN_GET_BACKOUT MQINQ

ImqQueue inhibit get MQIA_INHIBIT_GET MQINQ,
MQSET

ImqQueue inhibit put MQIA_INHIBIT_PUT MQINQ,
MQSET

ImqQueue initiation
queue
name

 MQCA_INITIATION_Q_NAME MQINQ

ImqQueue maximum
depth

 MQIA_MAX_Q_DEPTH MQINQ

ImqQueue maximum
message
length

 MQIA_MAX_MSG_LENGTH MQINQ

ImqQueue message
delivery
sequence

 MQIA_MSG_DELIVERY_SEQUENCE MQINQ

ImqQueue next
distributed
queue

ImqQueue open input
count

 MQIA_OPEN_INPUT_COUNT MQINQ

ImqQueue open
output
count

 MQIA_OPEN_OUTPUT_COUNT MQINQ

ImqQueue previous
distributed
queue

ImqQueue process
name

 MQCA_PROCESS_NAME MQINQ

ImqQueue queue
manager
name

MQOD ObjectQMgrName

ImqQueue queue type MQIA_Q_TYPE MQINQ

ImqQueue remote
queue
manager
name

 MQCA_REMOTE_Q_MGR_NAME MQINQ

ImqQueue remote
queue
name

 MQCA_REMOTE_Q_NAME MQINQ

ImqQueue retention
interval

 MQIA_RETENTION_INTERVAL MQINQ

ImqQueue scope MQIA_SCOPE MQINQ

ImqQueue service
interval

 MQIA_Q_SERVICE_INTERVAL MQINQ

 Appendix B. MQI cross-reference 101

 Cross-reference to MQI

Table 5 (Page 8 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqQueue service
interval
event

 MQIA_Q_SERVICE_INTERVAL_EVENT MQINQ

ImqQueue shareability MQIA_SHAREABILITY MQINQ

ImqQueue transmission
queue
name

 MQCA_XMIT_Q_NAME MQINQ

ImqQueue trigger
control

 MQIA_TRIGGER_CONTROL MQINQ,
MQSET

ImqQueue trigger
data

 MQCA_TRIGGER_DATA MQINQ,
MQSET

ImqQueue trigger
depth

 MQIA_TRIGGER_DEPTH MQINQ,
MQSET

ImqQueue trigger
message
priority

 MQIA_TRIGGER_MSG_PRIORITY MQINQ,
MQSET

ImqQueue trigger
type

 MQIA_TRIGGER_TYPE MQINQ,
MQSET

ImqQueue usage MQIA_USAGE MQINQ

ImqQueueManager authority
event

 MQIA_AUTHORITY_EVENT MQINQ

ImqQueueManager begin
options

MQBO Options MQBEGIN

ImqQueueManager character
set

 MQIA_CODED_CHAR_SET_ID MQINQ

ImqQueueManager command
input
queue
name

 MQCA_COMMAND_INPUT_Q_NAME MQINQ

ImqQueueManager command
level

 MQIA_COMMAND_LEVEL MQINQ

ImqQueueManager connect
options

MQCNO Options MQCONNX

ImqQueueManager connection
status

 MQCONNX,
MQDISC

ImqQueueManager dead-letter
queue
name

 MQCA_DEAD_LETTER_Q_NAME MQINQ

ImqQueueManager default
transmission
queue
name

 MQCA_DEF_XMIT_Q_NAME MQINQ

ImqQueueManager distribution
lists

 MQIA_DIST_LISTS MQINQ

102 MQSeries using C++

 Cross-reference to MQI

Table 5 (Page 9 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqQueueManager first
distributed
queue

ImqQueueManager inhibit
event

 MQIA_INHIBIT_EVENT MQINQ

ImqQueueManager local event MQIA_LOCAL_EVENT MQINQ

ImqQueueManager maximum
handles

 MQIA_MAX_HANDLES MQINQ

ImqQueueManager maximum
message
length

 MQIA_MAX_MSG_LENGTH MQINQ

ImqQueueManager maximum
priority

 MQIA_MAX_PRIORITY MQINQ

ImqQueueManager maximum
uncommitted
messages

 MQIA_MAX_UNCOMMITTED_MSGS MQINQ

ImqQueueManager performance
event

 MQIA_PERFORMANCE_EVENT MQINQ

ImqQueueManager platform MQIA_PLATFORM MQINQ

ImqQueueManager remote
event

 MQIA_REMOTE_EVENT MQINQ

ImqQueueManager start-stop
event

 MQIA_START_STOP_EVENT MQINQ

ImqQueueManager sync-point
availability

 MQIA_SYNCPOINT MQINQ

ImqQueueManager trigger
interval

 MQIA_TRIGGER_INTERVAL MQINQ

ImqReferenceHeader destination
environment

MQRMH DestEnvLength, DestEnvOffset

ImqReferenceHeader destination
name

MQRMH DestNameLength, DestNameOffset

ImqReferenceHeader instance id MQRMH ObjectInstanceId

ImqReferenceHeader logical
length

MQRMH DataLogicalLength

ImqReferenceHeader logical
offset

MQRMH DataLogicalOffset

ImqReferenceHeader logical
offset 2

MQRMH DataLogicalOffset2

ImqReferenceHeader reference
type

MQRMH ObjectType

ImqReferenceHeader source
environment

MQRMH SrcEnvLength, SrcEnvOffset

ImqReferenceHeader source
name

MQRMH SrcNameLength, SrcNameOffset

 Appendix B. MQI cross-reference 103

 Cross-reference to MQI

Table 5 (Page 10 of 10). Object attribute cross-reference

Object Attribute Data
Structure

Field/Inquiry Call

ImqTrigger application
id

MQTM ApplId

ImqTrigger application
type

MQTM ApplType

ImqTrigger environment
data

MQTM EnvData

ImqTrigger process
name

MQTM ProcessName

ImqTrigger queue
name

MQTM QName

ImqTrigger trigger
data

MQTM TriggerData

ImqTrigger user data MQTM UserData

104 MQSeries using C++

 Reason codes

 Appendix C. Reason codes

The following reason codes can occur in addition to those documented for the
MQSeries MQI.

MQRC_REOPEN_EXCL_INPUT_ERROR (6100 or X'17D4')
An open object does not have the correct ImqObject open options and
requires one or more additional options. An implicit reopen (see “Reopen” on
page 15) is required but closure has been prevented.

Closure has been prevented because the queue is open for exclusive input
and closure might result in the queue being accessed by another process or
thread, before the queue is reopened by the process or thread that presently
has access.

Corrective action: Set the open options explicitly to cover all eventualities so
that implicit reopening is not required.

MQRC_REOPEN_INQUIRE_ERROR (6101 or X'17D5')
An open object does not have the correct ImqObject open options and
requires one or more additional options. An implicit reopen (see “Reopen” on
page 15) is required but closure has been prevented.

Closure has been prevented because one or more characteristics of the
object need to be checked dynamically prior to closure, and the open options
do not already include MQOO_INQUIRE.

Corrective action: Set the open options explicitly to include
MQOO_INQUIRE.

MQRC_REOPEN_SAVED_CONTEXT_ERR (6102 or X'17D6')
An open object does not have the correct ImqObject open options and
requires one or more additional options. An implicit reopen (see “Reopen” on
page 15) is required but closure has been prevented.

Closure has been prevented because the queue is open with
MQOO_SAVE_ALL_CONTEXT, and a destructive get has been performed
previously. This has caused retained state information to be associated with
the open queue and this information would be destroyed by closure.

Corrective action: Set the open options explicitly to cover all eventualities so
that implicit reopening is not required.

MQRC_REOPEN_TEMPORARY_Q_ERROR (6103 or X'17D7')
An open object does not have the correct ImqObject open options and
requires one or more additional options. An implicit reopen (see “Reopen” on
page 15) is required but closure has been prevented.

Closure has been prevented because the queue is a local queue of the
definition type MQQDT_TEMPORARY_DYNAMIC, that would be destroyed by
closure.

Corrective action: Set the open options explicitly to cover all eventualities so
that implicit reopening is not required.

MQRC_ATTRIBUTE_LOCKED (6104 or X'17D8')
An attempt has been made to change the value of an attribute of an object
while that object is open, or, for an ImqQueueManager object, while that
object is connected. Certain attributes cannot be changed in these

 Copyright IBM Corp. 1997,1998 105

 Reason codes

circumstances. Close or disconnect the object (as appropriate) before
changing the attribute value.

An object may have been connected and/or opened unexpectedly and
implicitly in order to perform an MQINQ call. Check the attribute
cross-reference table (see Appendix B, “MQI cross-reference” on page 95) to
determine whether any of your method invocations result in an MQINQ call.

Corrective action: Include MQOO_INQUIRE in the ImqObject open options
and set them earlier.

MQRC_CURSOR_NOT_VALID (6105 or X'17D9')
The browse cursor for an open queue has been invalidated since it was last
used by an implicit reopen (see “Reopen” on page 15).

Corrective action: Set the ImqObject open options explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_ENCODING_ERROR (6106 or X'17DA')
The encoding of the (next) message item needs to be MQENC_NATIVE for
pasting.

MQRC_STRUC_ID_ERROR (6107 or X'17DB')
The structure id for the (next) message item, which is derived from the 4
characters beginning at the data pointer, is either missing or is inconsistent
with the class of object into which the item is being pasted.

MQRC_NULL_POINTER (6108 or X'17DC')
A null pointer has been supplied where a non-null pointer is either required or
implied.

MQRC_NO_CONNECTION_REFERENCE (6109 or X'17DD')
The connection reference is null. A connection to an ImqQueueManager
object is required.

MQRC_NO_BUFFER (6110 or X'17DE')
No buffer is available. For an ImqCache object, one cannot be allocated,
denoting an internal inconsistency in the object state that should not occur.

MQRC_BINARY_DATA_LENGTH_ERROR (6111 or X'17DF')
The length of the binary data is inconsistent with the length of the target
attribute. Zero is a correct length for all attributes.
MQ_ACCOUNTING_TOKEN_LENGTH is the correct length for an
accounting token . MQ_CORREL_ID_LENGTH is the correct length for a
correlation id . MQ_GROUP_ID_LENGTH is the correct length for a group
id . MQ_MSG_ID_LENGTH is the correct length for a message id .
MQ_OBJECT_INSTANCE_ID_LENGTH is the correct length for an instance
id . MQ_TRAN_INSTANCE_ID_LENGTH is the correct length for a
transaction instance id .

MQRC_BUFFER_NOT_AUTOMATIC (6112 or X'17E0')
A user-defined (and managed) buffer cannot be resized. A user-defined
buffer can only be replaced or withdrawn. A buffer must be automatic
(system-managed) before it can be resized.

MQRC_INSUFFICIENT_BUFFER (6113 or X'17E1')
There is insufficient buffer space available after the data pointer to
accommodate the request. This might be because the buffer cannot be
resized.

106 MQSeries using C++

 Reason codes

MQRC_INSUFFICIENT_DATA (6114 or X'17E2')
There is insufficient data after the data pointer to accommodate the request.

MQRC_DATA_TRUNCATED (6115 or X'17E3')
Data has been truncated when copying from one buffer to another. This
might be because the target buffer cannot be resized, or because there is a
problem addressing one or other buffer, or because a buffer is being
downsized with a smaller replacement.

MQRC_ZERO_LENGTH (6116 or X'17E4')
A zero length has been supplied where a positive length is either required or
implied.

MQRC_INCONSISTENT_FORMAT (6119 or X'17E7')
The format of the (next) message item is inconsistent with the class of object
into which the item is being pasted.

MQRC_INCONSISTENT_OBJECT_STATE (6120 or X'17E8')
There is an inconsistency between this object, which is open, and the
referenced ImqQueueManager object, which is not connected.

MQRC_CONTEXT_OBJECT_NOT_VALID (6121 or X'17E9')
The ImqPutMessageOptions context reference does not reference a valid
ImqQueue object. The object has been previously destroyed.

MQRC_CONTEXT_OPEN_ERROR (6122 or X'17EA')
The ImqPutMessageOptions context reference references an ImqQueue
object that could not be opened to establish a context. This may be because
the ImqQueue object has inappropriate open options . Inspect the referenced
object reason code to establish the cause.

MQRC_STRUC_LENGTH_ERROR (6123 or X'17EB')
The length of a data structure is inconsistent with its content. For an
MQRMH, the length is insufficient to contain the fixed fields and all offset
data.

 Appendix C. Reason codes 107

 Reason codes

108 MQSeries using C++

 Notices

 Appendix D. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, MP151, IBM
United Kingdom Laboratories, Hursley Park, Winchester, Hampshire, England SO21
2JN. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

Programming interface information
This book is intended to help you to write application programs that run under
MQSeries C++. This book documents General-use Programming Interface and
Associated Guidance Information provided by MQSeries C++.

General-use programming interfaces allow the customer to write program that
obtain the services of MQSeries.

 Copyright IBM Corp. 1997,1998 109

 Notices

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AIX AS/400 BookManager
Client Access Client Access/400 CICS
FFST First Failure Support

Technology
IBM

IMS MQ MQSeries
MQSeries Three Tier MVS/ESA OS/2
OS/400 RACF VisualAge
VSE/ESA

110 MQSeries using C++

 abstract class � overloading

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
abstract class . A class that can only be instantiated
as a derivation.

attribute . A property of an object or class, which can
be distinguished distinctly from any other properties.
Attributes often describe state information.

B
behavior . The functionality embodied within a method.

C
class . An abstract model of behavior; a collection of
methods. A class typically provides some unique
behavior, in addition to other, common, behavior. The
distinction between unique and common behavior is
effected using either inheritance, or multiple interfaces.

class hierarchy . Classes related by inheritance.

class library . A bundled collection of classes, usually
related.

constructor . A special method used to initialize an
object.

D
derivation . The refinement or extension of one class
from another.

E
encapsulation . The restriction whereby class behavior
may only be observed using the methods of that class.

exclusive method . A method that is not intended to
exhibit polymorphism; one with specific effect.

F
friend class . A class that is regarded as being derived
from another, while this is not the case, for the purpose
of accessing protected methods and instance data.

function . A classic function call such as is supported
by the C programming language.

I
inheritance . The ability of a class to include the
behavior of another through refinement and extension;
only refined and extended methods are defined in the
derived class, thereby preserving encapsulation.

instance . An object.

instance data . State information associated with an
object.

interface . An abstract model of behavior; a collection
of functions or methods.

M
marshalling . The serialization of data.

method . A means of invoking a particular behavior in
an object or class.

O
object . In C an object is an instance of a class.

overloading . The existence of more than one flavor of
method with the same name or operator, but with
different signatures, within a class; while the name or
operator remains the same, the method parameters
differ, each signature requiring a separate
implementation. Such methods usually exhibit the
same behavior, despite differences in signature.

 Copyright IBM Corp. 1997,1998 111

 parent class � virtual method

P
parent class . A class from which another is derived.

polymorphism . The characteristic whereby a method
can be applied to a variety of classes, with consequent
various effects: for example, an “open” method could be
applied equally to “book” and “door” class objects.

private methods and instance data . Methods and
instance data that are only accessible to the
implementation of the same class.

protected methods and instance data . Methods and
instance data that are only accessible to the
implementations of the same or derived classes, or from
friend classes.

public methods and instance data . Methods and
instance data that are accessible to all classes.

S
serialization . The writing of data in sequential fashion
to a communications medium from program memory.

signature . A distinct combination of method name or
operator, and parameters.

streaming . The marshalling of class information and
object instance data.

T
this . The reserved word that represents a pointer to
the current object.

type . A fundamental data type of computer
architecture, including for example character string and
integer.

V
virtual method . A method that exhibits polymorphism.

112 MQSeries using C++

 Index

 Index

A
AS/400 74

sync-point control 74

B
bibliography vi
BookManager x
buffers 4

C
C Set ++ 91
classes 21

ImqBinary 23
ImqCache 25
ImqDeadLetterHeader 28
ImqDistributionList 31
ImqError 33
ImqGetMessageOptions 35
ImqHeader 38
ImqImsBridgeHeader 40
ImqItem 43
ImqMessage 45
ImqMessageTracker 50
ImqObject 53
ImqProcess 58
ImqPutMessageOptions 60
ImqQueue 62
ImqQueueManager 73
ImqReferenceHeader 79
ImqString 82
ImqTrigger 88

compiling and linking 91
connection, secondary 76
constants, manifest 14

MQCA_* 56
MQIA_* 56
MQIAV_UNDEFINED 56
MQOO_BROWSE 67
MQOO_INPUT_* 67
MQOO_OUTPUT 69
MQOO_PASS_ALL_CONTEXT 69
MQOO_PASS_IDENTITY_CONTEXT 69
MQOO_SET_ALL_CONTEXT 69
MQOO_SET_IDENTITY_CONTEXT 69
MQPMO_PASS_ALL_CONTEXT 69
MQPMO_PASS_IDENTITY_CONTEXT 69
MQPMO_SET_ALL_CONTEXT 69
MQPMO_SET_IDENTITY_CONTEXT 69
MQRC_TRUNCATED_MSG_FAILED 67

cppwm35i 94

D
data types 18
DLLRNAME 94

E
environment variables 93

INCLUDE_ASV3R6 93

F
features of MQSeries C++ 1

G
glossary 111

H
header files 21

IMQI.HPP 21
HTML (Hypertext Markup Language) x
Hypertext Markup Language (HTML) x

I
IMS bridge 40
Information Presentation Facility (IPF) x
initial state for objects 19
IPF (Information Presentation Facility) x
item 5

M
manipulating 15

binary strings 15
character strings 15

message buffers 4
application (manual) 4
system (automatic) 4

message data preparation 4
message items 5

formats 47
identification 43

method signatures 17
MQIIH data structure 40
MQMD 45
MQSeries Object Model 2
MQSeries publications vi

 Copyright IBM Corp. 1997,1998 113

 Index

Multi-threaded program 22

O
open options 15
operating systems 1

P
platforms 1
PostScript format x
products 1
publications

MQSeries vi

Q
queue manager name 53

actual 53
null 53

queue name 53
dynamic 53
model 53

R
RACF password 40
reason codes 105

MQRC_ATTRIBUTE_LOCKED 105
MQRC_BINARY_DATA_LENGTH_ERROR 105
MQRC_BUFFER_NOT_AUTOMATIC 105
MQRC_CONTEXT_OBJECT_NOT_VALID 105
MQRC_CONTEXT_OPEN_ERROR 105
MQRC_CURSOR_NOT_VALID 105
MQRC_DATA_TRUNCATED 105
MQRC_ENCODING_ERROR 105
MQRC_INCONSISTENT_FORMAT 105
MQRC_INCONSISTENT_OBJECT_STATE 105
MQRC_INSUFFICIENT_BUFFER 105
MQRC_INSUFFICIENT_DATA 105
MQRC_NO_BUFFER 105
MQRC_NO_CONNECTION_REFERENCE 105
MQRC_NULL_POINTER 105
MQRC_REOPEN_EXCL_INPUT_ERROR 105
MQRC_REOPEN_INQUIRE_ERROR 105
MQRC_REOPEN_SAVED_CONTEXT_ERR 105
MQRC_REOPEN_TEMPORARY_Q_ERROR 105
MQRC_STRUC_ID_ERROR 105
MQRC_STRUC_LENGTH_ERROR 105
MQRC_ZERO_LENGTH 105

S
sample programs 10

imqdput 14
imqsget 13
imqsput 13

sample programs (continued)
imqwrld 10

searching for a substring 86
secondary connection 76
single header file 21
softcopy books x
structure id 43

T
terminology used in this book 111
threads 22

multiple 22
queue manager connections 76

truncated data handling 5

U
unit of work 36

AS/400 74
back-out 75
begin 75
commit 75
sync-point message retrieval 36
sync-point message sending 61
uncommitted messages (maximum number) 74

uppercase 86
using C from C++ 19

V
Visual C++ 91
VisualAge C++ 91

W
Windows Help x

114 MQSeries using C++

Sending your comments to IBM
MQSeries

Using C ++

SC33-1877-01

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries

Using C ++

SC33-1877-01
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries

MQSeries using C ++ SC33-1877-01

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1877-ð1

