

IBM
046HULHV��,QWHJUDWRU

6\VWHP�0DQDJHPHQW�*XLGH
9HUVLRQ����

 SC34-5505-01

Note: Before using this information, and the product it supports, be sure to read the general
information under Notices on page 265.

Second edition (June 1999)
This edition applies to IBM® MQSeries Integrator, Version 1.1 and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your
locality. Publications are not stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to
make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright New Era of Networks, Inc., 1998, 1999. All rights reserved.

© Copyright International Business Machines Corporation, 1999. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

&RQWHQWV

&KDSWHU����,QWURGXFWLRQ ������������������������������������
Product Documentation Set ...2
Summary of Changes ..3
Supported Platforms and Compilers ..5
Disk Space and Memory Requirements ...6

MQSeries Integrator Disk Space Requirements ...6
Library and Executable Disk Space Requirements..7

Year 2000 Readiness Disclosure...8
&KDSWHU����046HULHV�,QWHJUDWRU�2YHUYLHZ���������

MQSeries ...9
Formatter...10
Rules ..10
MQSeries Integrator Rules Daemon ...11

&KDSWHU����)RUPDWWHU ���������������������������������������
What is Formatter? ..13

Fields and Input Controls..14
Output Controls ...15
Formats ..15
Format Storage..16
Parsing and Reformatting ..17

Formatter Configuration...18
Shared Libraries/DLLs..18

Running NNWhich ...19
Replacing the Library ...20

sqlsvses.cfg File ..20
Encrypting the sqlsvses.cfg File ..21
Modifying the Location of the sqlsvses File ..21
Editing the sqlsvses.cfg File ..22
Changing the sqlsvses.cfg File ..23
Required Components..23
Operational Assumptions ..23

Importing and Exporting Formats ..23
MQSeries Integrator System Management Guide i

NNFie ..23
Syntax..24
Conflict Resolution..28
Conditional Branching..31
NNFie File Layout...31
NNFie Error and Format Error Messages..48

Testing Formats ...82
Formatter Test Executables ..82

The apitest Executable ...82
The msgtest Executable ...83
Configuration File ...84

&KDSWHU����5XOHV ��
Application Groups ...88
Message Types ...89
Rules ..89

Expressions, Arguments, Boolean,
and Rules Operators...89
Subscriptions, Actions, and Options ...90
Rule and Subscription Permissions ...90

APIs ...91
Rules Configuration ...92

DLLs/Shared Libraries..92
Running NNWhich ...93
Replacing the Library ...94

sqlsvses.cfg File ...94
Encrypting the sqlsvses.cfg File ..95
Modifying the sqlsvses File Location ...95
Editing the sqlsvses.cfg File ..96
Implementing sqlsvses.cfg File Changes ...97

System Enhancements for Rules ...97
Oracle ..97

Creating Users ...97
Granting Roles to Users ...98

Sybase/SQL Server ...98
Creating Login Accounts ...98
Assigning Users to a Database ...99
Defining User Groups ..99

Rule and Subscription Permissions...100
ii MQSeries Integrator System Management Guide

Contents
NNDBARuleOwnership..100
Syntax ...100
Configuration File...101
Operations ...101
Error Conditions ...109

No Rules for Owner: ...109
Invalid User: ...109

Migrating Rules ...110
Overview ...110
Preparation ..111

Environmental Dependencies ...111
Export ..112
Import..112

Migration Process ...112
Importing and Exporting Rules...113

NNRie ..113
Syntax..113
Operational Assumptions ..114
Parameters ..115
Import Syntax ..118
Export Syntax...118
Remarks ..120
Summary of New Command Line Functions120
NNRie File Layout ..126

Testing Rules ...137
Rules Test Programs...137

MQSIputdata and MQSIgetdata ..137
ruletest ..153
NNRTRace Rules Debugging Utility ...157

The Rules Engine Executable ..159
Rules Engine Processing ...159

Polling ..159
Timestamps ..160
Message Processing ..160
Rules Caching ..161
Subscription Execution ..161
Shutdown Messages..164
Failure Processing ..165
Rules Engine Daemon Error Codes ..166
MQSeries Integrator System Management Guide iii

Message Routing ..166
Configuration Prior to Using the Rules Engine Daemon167

Queues ...167
Rules ...168
Formats ..169

Running the Rules Engine...169
Running ruleng on UNIX...169
Running ruleng as an NT Service ...169

Using the Rules Engine..174
ruleng ...174
NNRSignalReload ...179

Testing Rules ...181
Rules Test Programs ..181

putdata and getdata ...181
ruletest ..189

NNRSignalShutdown Utility ...192
Syntax ...192
Description ..192
Parameters ...192
Example NNRSignalShutDown calls ..193

&KDSWHU����7KH�046HULHV�,QWHJUDWRU
5XOHV�'DHPRQ�����������������������������������

Configuration Prior to Using MQSeries Integrator Rules Daemon195
Queues ...196
Rules ..197

Putqueue...197
Formats ..198

Using the MQSeries Integrator Rules Daemon ...198
MQSIruleng ...198

Encrypting the Parameter File ..207
Running the Rules Daemon ..207

Running ruleng on UNIX...207
Running ruleng as an NT Service ...208
Rules Daemon Shutdown...212

MQSeries Integrator Rules Daemon Processing ..214
Message Processing ...214
Subscription Execution ...214

Reformat ...215
iv MQSeries Integrator System Management Guide

Contents
Failure Processing ..215
Message Routing ..216

Caching Output Queue Handles...216
Rules Caching..216

Sending a Reload Message...217
Rules Daemon Security..217
MQSeries Integrator Rules Daemon Error Messages................................219

&KDSWHU����&RQVLVWHQF\�&KHFNHU ����������������������
Starting the Consistency Checker From a Command Line241

Rules ...242
Formatter ...242
Reports ...242
Consistency Checker Report: Rules ...244
Consistency Checker Report: Formatter ..250

$SSHQGL[�$��'DWD�7\SHV ����������������������������������
$SSHQGL[�%��1RWLFHV ��

Trademarks and Service Marks ...267
,QGH[��
MQSeries Integrator System Management Guide v

vi MQSeries Integrator System Management Guide

&KDSWHU��

,QWURGXFWLRQ

The MQSeries Integrator System Management Guide is for those responsible
for MQSeries Integrator administration. The system administrator should
have an overall understanding of the MQSeries Integrator product and how it
works. It is assumed that the system administrator is responsible for
MQSeries Integrator setup, configuration, and testing. The system
administrator should be supported by a database administrator (DBA), who
administers the databases interacting with MQSeries Integrator, and a
network administrator, who ensures that network communications are
configured to include MQSeries Integrator.

The information in this guide explains how to set up, run, and test
NEONFormatter and NEONRules, and how to configure the MQSeries Integrator
Rules daemon.
MQSeries Integrator System Management Guide 1

Chapter 1
3URGXFW�'RFXPHQWDWLRQ�6HW

The MQSeries Integrator documentation set includes:

n MQSeries Integrator Installation and Configuration Guide helps end
users and engineers install and configure MQSeries Integrator.

n MQSeries Integrator User’s Guide helps MQSeries Integrator users
understand and apply the program through its graphical user
interfaces (GUIs).

n MQSeries Integrator System Management Guide is for system
administrators and database administrators who work with
MQSeries Integrator on a day-to-day basis.

n MQSeries Integrator Application Development Guide assists
programmers in writing applications that use MQSeries Integrator
APIs.

n Programming References are intended for users who build and
maintain the links between MQSeries Integrator and other
applications. The documents include:

– MQSeries Integrator Programming Reference for NEONFormatter
is a reference to Formatter APIs for those who write applications
to translate messages from one format to another.

– MQSeries Integrator Programming Reference for NEONRules

is a reference to Rules APIs for those who write applications to
perform actions based on message contents.

n Application Programming Reference assists programmers in writing
applications that use MQSeries Integrator APIs.

1RWH�
For information on message queuing, refer to the IBM MQSeries
documentation.
2 MQSeries Integrator System Management Guide

Introduction
6XPPDU\�RI�&KDQJHV

This document is a major revision in support of the functional changes
introduced with Version 1.1. This revision also includes maintenance and
editorial changes.

Formatter on page 13 has been updated to include the following new
functionality.

n NNFie readable file

n NNFie file header on export file

n NNFie smaller record sizes

n NNFie additional flexibility to resolve component conflicts when
importing formats

n NNFie ability to export conditional branching controls

n NNFie inventory export file

n Math Expression enhancements

n Formats can be migrated from an existing to a database to a new
database using NNFie.

Rules on page 87 has been updated to include the following new functionality.

n NNRie readable file

n NNRie export/import of orphan subscriptions

n NNRie additional flexibility to resolve component conflicts when
importing rules

n NNRie Optional trace (line-by-line status)

n NNRie Inventory export file

n NNRie enhanced error handling

n Tunable parameters as part of putdata.mpf and getdata.mpf. The
parameters allow you to customize control and performance of the
the putdata and getdata modules.
MQSeries Integrator System Management Guide 3

Chapter 1
n Rules can be migrated from an existing to a database to a new
database using NNRie.

The MQSeries Integrator Rules Daemon on page 195 has been updated to
include the following functionality:

n Definition of multiple input queues, each with its own set of default
values.

n Additional tunable parameters as part of the ruleng.mpf file. The
parameters allow you to customize control and performance of the
MQSI Rules Daemon to your environment.

n Encryption of the UserId and Password keys of the Rules Database
Connection parameter group using the MQSIencrypt utility.

n The MQSI Rules daemon can be run as an NT Service.

n Updated MQSI Rules daemon error messages, including information,
error, and fatal error messages that may result from use of the tunable
parameters for ruleng.mpf, putdata.mpf, and getdata.mpf. The error
message codes reflect change to a severity-based numbering scheme.
4 MQSeries Integrator System Management Guide

Introduction
6XSSRUWHG�3ODWIRUPV�DQG�&RPSLOHUV

2SHUDWLQJ�6\VWHP '%06 &RPSLOHU

AIX 4.2, 4.3 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

IBM C Set ++ version 3 or later

HP-UX 10.20 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

HP C++ version 10.40
(HP-UX 10.20)

Solaris 2.5.1, 2.6 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
Sybase 11.5
Sybase 11.9

Sparcworks C++ compiler
version 4.2

Windows NT 4.0 DB2 5.0
DB2 5.2
Oracle 7.3.4
Oracle 8.0.5
SQL Server 6.5
Sybase 11.5
Sybase 11.9

Microsoft Visual C++ version 6.0
MQSeries Integrator System Management Guide 5

Chapter 1
'LVN�6SDFH�DQG�0HPRU\�
5HTXLUHPHQWV

Required disk space is dependent on the number of queues, formats, and
rules. Recommended memory for satisfactory performance depends on
message rates, message sizes, and application-specific factors. For Windows
NT/SQLServer, the recommended memory is 128 MB; for other platforms,
the recommended memory is 256 MB.

046HULHV�,QWHJUDWRU�'LVN�6SDFH�
5HTXLUHPHQWV

For Solaris, the /var/tmp file system requires at least 250 MB of free space to
unpack the MQSeries and MQSeries Integrator products.

The minimum database allocation requires 20 MB.

MQSeries Integrator binaries require 150 MB.

MQSeries base code and server require a minimum of 25-30 MB of disk space
to be available for the product code and data.

MQSeries Integrator documentation requires 1550 MB of disk space (HTML
files: 35 MB, PDF files: MB).

The GUI requires 40 MB.
6 MQSeries Integrator System Management Guide

Introduction
/LEUDU\�DQG�([HFXWDEOH�'LVN�6SDFH�
5HTXLUHPHQWV

The following table contains library and executable disk space requirements.

2SHUDWLQJ�6\VWHP '%06 /LEUDULHV�	�([HFXWDEOHV

AIX 4.2, 4.3 DB2
Oracle
Sybase

50 MB
115 MB
120 MB

HP-UX 10.20, 11 DB2
Oracle
Sybase

80 MB
120 MB
85 MB

Solaris 2.51, 2.6 DB2
Oracle
Sybase

90 MB
85 MB
80 MB

Windows NT 4.0 DB2
Oracle
SQLServer
Sybase

75 MB
60 MB
60 MB
60 MB
MQSeries Integrator System Management Guide 7

Chapter 1
<HDU������5HDGLQHVV�'LVFORVXUH

MQSeries Integrator, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or
receiving date information within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with this IBM program properly exchange accurate date
information with it.

Customers should contact third party owners or vendors regarding the
readiness status of their products.

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:
http://www.software.ibm.com/ts/mqseries/platforms/supported.html

For the latest IBM statement regarding Year 2000 readiness, refer to:

http://www.ibm.com/ibm/year2000/
8 MQSeries Integrator System Management Guide

http://www.software.ibm.com/ts/mqseries/platforms/supported.html
http://www.ibm.com/ibm/year2000/

&KDSWHU��

046HULHV�,QWHJUDWRU�
2YHUYLHZ

MQSeries Integrator provides the flexibility and scalability that allows true
application integration. MQSeries Integrator consists of four components:

n MQSeries

n Formatter

n Rules

n MQSeries Integrator Rules daemon

046HULHV

MQSeries is message-oriented middleware that is ideal for high-value
message handling and high-volume applications because it guarantees each
message is delivered only once. Additionally, MQSeries supports
transactional messaging. Messages are grouped into units of work and either
all or none of the messages in a unit of work are processed. MQSeries
coordinates message work with other transaction work, like database
updates, so data integrity is always maintained.
MQSeries Integrator System Management Guide 9

Chapter 2
)RUPDWWHU

NEONFormatter translates messages from one format to another.
NEONFormatter handles multiple message format types from multiple data
value sources with the ability to convert and parse messages. Messages can be
converted from any described format to any other described format (if fields
in input data formats are missing, you can set up defaults for those fields on
output). When a message is provided as input to Formatter, the message is
parsed and data values are returned. Formatter can handle virtually any
message format, including fixed (for example, COBOL records), delimited
(for example, C null delimited strings), and variable, tagged, delimited,
repetitive, and recursive formats (for example, S.W.I.F.T. messages).

Defining message formats in NEONFormatter’s database is done through the
MQSeries Integrator graphical user interface (GUI). The GUI leads you
through the definitions of format components, for example, tags, delimiters,
and patterns, to the building of complete message definitions.

5XOHV

Use NEONRules to manage message destination IDs, receiver locations,
expected message formats, and any processes initiated upon message
delivery. The creation and dispatch of multiple messages to multiple
destinations from a single input message is supported, and different formats
and transport methods for each is allowed. The dynamic nature of the Rules
Engine means that rules can be effective immediately, staged over time, or
delayed, depending on how the reload messages are timed, allowing
flexibility in rapidly changing environments.

NEONRules can examine the value of any field or group of fields in a message
to make its determinations. It can aggregate conditions with the Boolean
10 MQSeries Integrator System Management Guide

MQSeries Integrator Overview
AND and OR operators without architectural limits as to the number or
complexity of the expressions.

1RWH�
For more in depth descriptions of the Formatter and Rules modules, see the
overviews in Chapter 3, Formatter, and Chapter 4, Rules, of the MQSeries
Integrator User’s Guide.

046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ

The MQSeries Integrator Rules daemon combines MQSeries, NEONFormatter,
and NEONRules in a generic server process. The MQSeries Integrator Rules
daemon processes messages from an MQSeries input queue, uses
NEONFormatter to parse messages, uses NEONRules to determine what
transformations to perform and where to route the messages, and then puts
the output messages on MQSeries queues for delivery to applications.
MQSeries Integrator System Management Guide 11

Chapter 2
12 MQSeries Integrator System Management Guide

&KDSWHU��

)RUPDWWHU

NEONFormatter is packaged as a library of C++ objects that have public
functions that constitute the Application Programming Interface (API), or
Software Development Kit (SDK). Application developers develop
applications that invoke public Formatter functions to parse and reformat
messages.

:KDW�LV�)RUPDWWHU"

NEONFormatter has two main functions: parsing and reformatting.

n Parsing separates input messages into individual fields.

n Reformatting transforms input messages into an output message
with a different format.

NEONFormatter uses format definitions that describe how to parse an input
message and how to format an output message. Format definition data
resides in a relational database. Users build and modify format definitions
using one of two methods: the NEONFormatter GUI tool or the Formatter
management API functions.

The NEONFormatter GUI tool is a program with a graphical user interface that
allows users to populate screens with format definition data and store the
information in a relational database.

NEONFormatter management API functions are a set of C functions that create
format definition data in a relational database. Users can write their own
applications that call the management API functions to build format
definitions.
MQSeries Integrator System Management Guide 13

Chapter 3
Two executables, apitest and msgtest, are delivered with NEONFormatter.
These two executables show how to invoke the public functions and serve as
tools for validating format definitions. The apitest executable parses an input
message and displays a hierarchical representation of the parse tree. The
msgtest executable reformats an input message into an output message.

NEONFormatter Consistency Checker checks the correctness of the format
definition data in the relational database. As users build and maintain format
definition data, they should run the consistency checker periodically to insure
the integrity of their data.

The NNFie tool is a command line tool that allows the user to export format
definitions from a database to an export file and to import from the export file
into a database. NNFie can import data from a MQSeries Integrator 1.0 export
file into a MQSeries Integrator 1.0 database. NNFie exports data from a
1.0database only.

The NEONFormatter GUI tool has its own import/export function as well. This
function uses an export file with a format different from the one used by
NNFie.

)LHOGV�DQG�,QSXW�&RQWUROV
Information contained within a structured input message can be broken into
individual fields using input controls. Input controls define how to parse an
individual field. Defined by a unique name and control information used to
define their beginning and end (input control), fields are cohesive parts of a
message representing some type of information.

Each field has an associated parse control that describes how to identify the
field in the message. Input control information includes the data type for the
field, tags preceding and/or following the field, the length of the field, the
number of times the field repeats within a message, and literals. Repetition
count indicates how many times a certain field will appear in a message.

NEONFormatter supports several data types including ASCII String, ASCII
Numeric, and Binary. See Data Types on page 259 for a complete list of
supported data types for this release.

Tags are sets of bits or characters explicitly defining a string of data. For
example, <DATE> and </DATE> might mark the beginning and end of a
date field in a message.
14 MQSeries Integrator System Management Guide

Formatter
Literals are symbols used in programming languages. For example, a literal
can represent numbers or strings that provide an actual value instead of
representing possible values. Literals might contain only ASCII values and
are often used as delimiters to separate fields in a message.

Regular Expressions (REs) are strings expressing rules for string pattern
matching. Within input parse controls, use REs to match ASCII field data in
input fields. Instead of searching for a defined literal, you can use a RE to
search for complex string patterns in field data. String-matching capabilities
comply with the POSIX 1003.2 standard for regular expressions.

For more information on literals and regular expressions, see the MQSeries
Integrator Programming Reference for NEONFormatter.

2XWSXW�&RQWUROV�
For each field in an input message you want to appear in an output message
or use to affect a resulting field in an output message, you must have a
matching output format control. Output controls specify how to get a starting
value for the output field, what data type transformation to perform, and
what formatting operations to perform (for example, prefix, suffix, trim).

Defined in much the same way as parse controls, output controls contain
additional information such as the type of mathematical operation, prefix and
suffix data, user exit routine, pad characters, and default value.

)RUPDWV�
Simple formats are defined by grouping fields and their parse or output
format controls. Messages are described to NEONFormatter using individual
data fields. However, there can be several layers of complexity in a format
definition before the actual field values within a message can be determined.

Formats can be one of two types: flat or compound. Flat formats only contain
fields and their input or output format controls. Compound formats contain
one or more formats, each of which can be either flat or compound.

Input formats (flat or compound) contain fields and their parse controls and
are used to parse messages so they can be reformatted according to output
formats (flat or compound).

Each format must be defined by the user. However, once a format is defined,
the format is available to be used during translation. Use either the
MQSeries Integrator System Management Guide 15

Chapter 3
NEONFormatter GUI or Formatter Management APIs to define and configure
format descriptions.

Using Reformat(), NEONFormatter can translate a message into a different
message using the descriptions for the input and output formats defined by
the user. During translation, NEONFormatter uses parse() to break the message
into individual fields.

)RUPDW�6WRUDJH
NEONFormatter uses user-defined format descriptions to recognize and parse
input messages and reformat output messages. NEONFormatter uses these
descriptions to interpret the values in incoming messages and to construct
outgoing messages.

Possible transformations NEONFormatter can handle include:

n Adding, removing, or rearranging data, literals, tags, and delimiters
(delimiters are logically cohesive sequences of characters forming a
field terminator or format terminator)

n Converting between data types

n Inserting literals into output

n Inserting headers and trailers (including control characters) around
any field

n Performing arithmetic operations on numeric data

n Executing user-written data translations functions

n Executing user-written callback functions for user-defined type input
field validation and other purposes
16 MQSeries Integrator System Management Guide

Formatter
3DUVLQJ�DQG�5HIRUPDWWLQJ�
NEONFormatter can parse a message (using Formatter::Parse()), breaking a
message down into its individual fields specified in its input control. When a
message is parsed, the intermediate field results can be used.

Alternatively, the parsed message can then be reformatted (using
Formatter::Reformat()) in a specified output message format. If the message
provided to Reformat() has not been pre-parsed using Parse(), Reformat()
calls Parse() before reformatting the message.

Message Formatting

Message

Message split into fields

Fields moved/
transformed and data

added/removed.

Output Message

Message
split into
individual

fileds.

Results.
MQSeries Integrator System Management Guide 17

Chapter 3
)RUPDWWHU�&RQILJXUDWLRQ

MQSeries Integrator Version 1.1 was developed using shared libraries and
DLLs; therefore, you do not have to recompile the binaries each time you
update the software with a change. For example, when NEON sends code
enhancements, the code is brought in at run time, so all you need to do is
replace the library.

The sqlsvses.cfg file contains information used by Rules and
NEONFormatter.The shared libraries and configuration files are explained in
the following sections.

1RWH�
MQSeries Integrator does not use sqlsvses.cfg. The MQSeries Integrator Rules
daemon uses a parameter file called MQSIruleng.mpf; however, test
programs do use sqlsvses.cfg.

For more information on MQSIruleng, refer to Rules on page 87.

6KDUHG�/LEUDULHV�'//V
In Windows NT, libraries are called Dynamic Link Libraries (DLLs). UNIX
refers to them as shared libraries (files with .so or .sl extensions), as does AIX
(files with .a extensions). With these shared libraries, binaries are smaller and
code changes are easier than using DLLs. Because the code is brought in at
run time, the binaries do not have to be recompiled to incorporate a change.
Another benefit of the shared libraries is the ability to create and add User
Exits to NEONFormatter without relinking the executables.

To use the shared libraries, MQSeries Integrator Version 1.1 is required. The
new libraries must be compatible with the current version of MQSeries
18 MQSeries Integrator System Management Guide

Formatter
Integrator. For example, if library names or APIs are different, the shared
libraries do not work.

1RWH�
This functionality is not compatible with earlier versions of MQSeries
Integrator.

:$51,1*�
Do not move the libraries. The executables search for them in a specific
directory or folder. If you move or delete the libraries, the executables are
rendered useless.

5XQQLQJ�11:KLFK
NNWhich displays version information along with the path specified in an
environment variable. This environment variable must include the directory
or folder containing the MQSeries Integrator shared libraries.

Environment variables vary according to the platform, which are shown in
the following list:

n Solaris: LD_LIBRARY_PATH

n AIX: LIBPATH

n HP-UX: SHLIB_PATH

n Windows NT: PATH

6\QWD[�DQG�([DPSOH�2XWSXW��81,;�

NNWhich librule.so
/usr/lib/Neonet/libnnrule.so(/usr/lib/Neonet/librule.so.1)
R4_0_56 1998/06/12 12:56

1RWH�
Because MQSeries Integrator does not provide pointers to the DLLs, only one
path is output when you run NNWhich.
MQSeries Integrator System Management Guide 19

Chapter 3
5HSODFLQJ�WKH�/LEUDU\
When you receive a code enhancement from Technical Support, follow these
steps to replace the library and update the code:

81,;

1. Verify that you have received the correct .so.x file (x indicates the
version).

2. Switch to the directory that contains the shared libraries.

3. Run the SharedLinker that is sent with the .so.x file.

This creates a .so file that points to the .so.x code enhancement file.
The executable will now link to the new code.

:LQGRZV�17

1. Verify that you have received the correct DLL version.

2. Switch to the directory that contains the DLLs.

3. Replace the old version with the new version.

VTOVYVHV�FIJ�)LOH�
The sqlsvses.cfg file is the default configuration file and contains information
about the database and database server used for MQSeries Integrator
executables. This file is created automatically when the libraries are installed
and is located in the bin subdirectory created during the installation process.
The password information in the sqlsvses.cfg file is exposed. An alternative is
to use the sqlsvses.crypt files.

1RWH�
The sqlsvses.cfg file must be in the same directory as an application using
MQSeries Integrator components.
20 MQSeries Integrator System Management Guide

Formatter
VTOVYVHV�FIJ�3DUDPHWHUV

1RWH�
The character length for the parameters in the sqlsvses.cfg file is dependent
on your server platform and operating system. Line size in the sqlsvses.cfg
file is limited to 1024 bytes. Each parameter is separated by a colon. For
Oracle and DB2, there must be a colon after the password even though the
last parameter is not used.

(QFU\SWLQJ�WKH�VTOVYVHV�FIJ�)LOH
To use the encryption version of sqlsvses.cfg, run the NNCryptCfg executable
against the current sqlsvses.cfg file, which generates a sqlsvses.crypt file. If
both a .cfg file and a .crypt file exist in the same directory, the .crypt file is
searched for and used first.

0RGLI\LQJ�WKH�/RFDWLRQ�RI�WKH�VTOVYVHV�)LOH
The default location of the sqlsvses file is the local directory in which the
executable is invoked. However, the location can be modified and centralized
to another location by setting an environment variable.

Set an environment variable (NN_CONFIG_FILE_PATH) to look for the
encrypted file. The file name is sqlsvses.crypt, but the default configuration
file can not be sqlsvses.crypt.

3DUDPHWHU 'HVFULSWLRQ

session name Database session name to be used by MQSeries Integrator
executables or daemons. This can be any string as long as it is
unique within the file.

server name Server where the MQSeries Integrator database resides.

user name (user id) Database user name.

password Database password.

database name Database name where the MQSeries Integrator tables reside
(if applicable). This is not used for Oracle or DB2.
MQSeries Integrator System Management Guide 21

Chapter 3
One copy of sqlsvses.cfg can be set so that all directories point to it,
eliminating the need for the file in every directory.

For example, on NT:

SET NN_CONFIG_FILE_PATH/home/smith

Or for ksh:

export NN_CONFIG_FILE_PATH=/home/smith

If the sqlsvses.crypt file is not found, then the sqlsvses.cfg file is used. If
neither file is found, an error message is displayed.

(GLWLQJ�WKH�VTOVYVHV�FIJ�)LOH�
To give MQSeries Integrator the database information it needs for
configuration, edit the sqlsvses.cfg file. This is an ASCII file that can be edited
using any text editor that can save the file in ASCII format.

Text lines in the sqlsvses.cfg file must follow this format:

<sessionname>:<servername>:<username>:<password>:
<databasename>

The following is a sample text line in the sqlsvses.cfg file for SQL Server and
Sybase servers:

new_format_demo:demo_server:demo_user:demo_password:demo_db:

For Oracle and DB2 servers, <databasename> is not necessary. The end colon
(:) must be included in the text line, even if the < database name> parameter is
not specified. Oracle servers also use instance names instead of server names.
DB2 servers use database names or aliases instead of server names.

The following is a sample text line in the sqlsvses.cfg file for an Oracle server:

new_format_demo:demo_instance:demo_user:demo_password:

1RWH�
If the <password> parameter is not specified, leave a blank space between
<username> and <databasename> or <instancename>.
22 MQSeries Integrator System Management Guide

Formatter
&KDQJLQJ�WKH�VTOVYVHV�FIJ�)LOH�
To implement changes to the sqlsvses.cfg file, restart any applications using
MQSeries Integrator components.

5HTXLUHG�&RPSRQHQWV
This utility requires the following:

1. Previously installed, supported RDBMS system.

2. Previously created Rules database schema.

3. Previously created NEONFormatter database schema.

2SHUDWLRQDO�$VVXPSWLRQV
n The file system supports long file names and can also accept the

command line syntax described here.

n The operating system supports the concept of standard input,
standard output, and standard error stream sources and sinks.

1. NEONFormatter/Rules data in the database created via the
NEONFormatter/Rules GUI or Formatter/Rules Management APIs.

2. Enough disk space to hold the output file.

,PSRUWLQJ�DQG�([SRUWLQJ�)RUPDWV

11)LH�
NNFie is a command that exports format definitions from a database to an
export file and imports from the export file into a database. The UNIX
command for running the NNFie script is as follows:
MQSeries Integrator System Management Guide 23

Chapter 3
NNFie.sh

1RWH�
To use NNFie, UNIX users must have write permissions to the current
directory.

The NT command for running NNFie.exe is as follows:

NNFie.cmd

The export file for NNFie is not interchangeable with the files created by the
GUI. NNFie can import data from a MQSeries Integrator Version 1.1 export
file into a MQSeries Integrator 1.1 database. NNFie 1.1 exports data only from
a MQSeries Integrator Version 1.1 database.

1RWH�
NNFie, NNRie, and sqlsvses.cfg must be in the same directory as NNFie.sh.

:$51,1*�
You cannot name components the same with only a change in case to identify
them. For example, you cannot name one format "f1" and another format "F1".
In a case-insensitive environment, you must make each item unique using
something other than case differences.

1RWH�
File names (including absolute paths) for both import and export must be no
longer than 255 characters.

6\QWD[
When entering NNFie related commands, maintain the order of options as
they are listed below.

NNFie
 ((-C <command file name>)
 (-i <import file name> [-T] [-o|-g|-n|-4]
 [-s <session name>])
 (-e <export file name> [-m <format name>+] [-q "comment"]
 [-Q <Comment file name>] [-w <number>] [-s <session name>])
24 MQSeries Integrator System Management Guide

Formatter
 (-t <import file name> [-s <session name>])
 (-I <import file name> [-s <session name>]))

[] represents optional
() represents grouping
| represents XOR
+ represents one or more
<> means replace with user-provided data

1RWH�
The options to NNFie are positionally important. The following command is
correct:

>nnfie -e myfile -m myformatname -s nnfie
The following command is positionally incorrect:

>nnfie -e my file -s nnfie -m myformatname

3DUDPHWHUV

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-C [<command
file>]

Optional Alternate command file name; default file
is NNFie.cmd. If this option is provided,
NNFie reads command line options from a
file instead of the command line.
WARNING:
Command line option -C puts import/
export command options in a text file. Do
not use quotation marks around names
(e.g., format name, session name, etc.) in
the text file. Also, do not use back slashes
in command lines.
MQSeries Integrator System Management Guide 25

Chapter 3
-i [<import file>] Mandatory for
Import

This parameter is required to import data
from the named file and is mutually
exclusive from -e. The named file default is
NNFie.exp. If you use the command line
option -i, then the following options are
available to you: [-T] [-o|-g|-n|-4]. These
additional options are described below the
parameters table.

-e [<export file>] Mandatory for
Export

This parameter is required to export data
from the named file and is mutually
exclusive from -i. The named file default is
NNFie.exp. If you use the command line
option -e, then the following options are
available to you: -q, -Q, -w, and -m. These
additional options are described below the
parameters table.

-s [<session
name>]

Optional Name of session in sqlsvses.cfg. Defaults
to NNFie.

 -I<import file
name>

Mandatory Writes description of all conflicts in import
file to NNFie.log.

-t <import file
name>

Mandatory Writes an inventory of the import file to
NNFie.log.

,PSRUW�
2SWLRQV�

0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-T Optional Loads import file as one transaction. If an
import failure for one component is
detected, then the entire import is rolled
back. The default behavior is a transaction
boundary for each component.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
26 MQSeries Integrator System Management Guide

Formatter
,PSRUW�6\QWD[

&DVH����,PSRUW�D�IRUPDW

-o Optional Overwrites all conflicts and replaces all
components of same name with those in
the export file.

-g Optional Ignores all conflicts and uses existing
component definitions.

-n Optional Implements the interactive conflict
resolution option. NNFie defaults to -n if
no options are selected.

-4 Optional Use R4_0 conflict resolution if a
component in the export file conflicts with
current data in the database. Do not import
the new component but flag it in the error
file and do not import any components
that rely on the conflicting component.

([SRUW�
2SWLRQV�

0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-q Optional Adds comments within quotes to top of
the export file.

-Q Optional Adds contents of <comment file> to top of
export file.

-w Optional Sets maximum line length in export file.
Default value is 80.

-m [<message
type>]

Optional Specifies the message type to export. By
default, exports all messages types within
the specified application group.

,PSRUW�
2SWLRQV�

0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 27

Chapter 3
$ NNFie -i [<file name>] [-s <session name>]

1RWH�
NNFie stores error messages in the NNFie.log file. If a component fails to
import, the line containing an error from the export file is written to
NNFie.err.

([SRUW�6\QWD[

&DVH����([SRUW�DQ�HQWLUH�GDWDEDVH

$ NNFie.sh -e [<export file name>] [-s <session name>]

&DVH����([SRUW�D�VLQJOH�IRUPDW

$ NNFie.sh -e [<export file name>] [-m <format name>]] [-s
<session name>]

&DVH����([SRUW�PRUH�WKDQ�RQH�IRUPDW

$ NNFie -e [<export file name>] [-m <format name> <format name>
...]] [-s <session name>]

1RWH�
NNFie.sh cannot be used to export formats from an earlier version to an
newer version.

&RQIOLFW�5HVROXWLRQ
A conflict occurs when an imported component does not match an existing
component in the database of the same name and type.

1RWH�
NNFie is not designed to import or export databases that are corrupt or have
unresolved issues with the data.
28 MQSeries Integrator System Management Guide

Formatter
,QYHQWRU\�&RPSRQHQWV

When a component is overwritten, the component definition within the
export file is imported into the database. To implement the batch overwrite
conflict resolution, type the following syntax:

NNFie -i <filename> -o

When a component is either ignored or skipped, the component in export file
is not imported into the database. To implement the batch Ignore/Skip
conflict resolution, type the following syntax:

NNFie -i <filename> -g

1RWH�
Components that are skipped may cause the import of supporting
components that will not be used. Overwriting existing components may
cause existing components not to be used. This does not affect the integrity of
the database, but requires use of a clean-up utility.

When the system identifies a conflict in interactive mode, it displays a
description of both the existing and import components, and you are
presented with three options: Overwrite, Ignore, and Rename the imported
component. If you select the Rename option, all references to this component
within the export file are updated.

To implement the interactive conflict resolution option, type the following
syntax:

NNFie -i <filename> -n

To implement conflict resolution used in release 4.0, where no conflicting
components are imported, type the following syntax:

NNFie -i <filename> -4

If you do not choose a conflict resolution option, the interactive resolution is
used as the default. All conflicts and their resolution are reported to the
NNFie.log file.

Example

Literal:"MyLiteral" conflicts with an existing Formatter
element!
MQSeries Integrator System Management Guide 29

Chapter 3
literalLength (existing=2 | incoming=3)
Overwrite, Ignore or Rename component (OIR): R
Please enter new component name: MyLiteral_NewValue

7URXEOHVKRRWLQJ�([SRUW�)DLOXUHV

You can take inventory of the components contained in an NNFie export file.
This inventory option produces a component inventory listing in the file
named NNFie.log. The command syntax is as follows:

NNFie -t <filename>

You have the option of identifying all conflicts without importing any data.
This test import function allows you to verify the contents of export files
within working databases, thus facilitating easy validation for archiving. Any
conflicts are recorded in the NNFie.log file. To use this conflict report, type the
following syntax:

NNFie -I <filename> -k

7URXEOHVKRRWLQJ�,PSRUW�)DLOXUHV

If NNFie fails to import from a given export file, view the NNFie.log to
determine the cause for import failure.

Two types of errors can cause an import to fail:

1. Conflict errors, i.e., data already exists in the database that conflicts
with imported data.

2. Nonconflict errors.

1RQFRQIOLFW�(UURU�0HVVDJH��QRW�FRPSRQHQW�VSHFLILF�

This error message should be complete without any specific component
information:

ERROR: <error message>

1RQFRQIOLFW�(UURU�0HVVDJH�IRU�D�6SHFLILF�)RUPDWWHU�(OHPHQW

This error message contains both formatter component identification and the
data that is being imported:

<Formatter element type>
<name of the Formatter element>: I/E failed!
30 MQSeries Integrator System Management Guide

Formatter
ERROR: <error message> [(Formatter management error code)]
<profile - contains all data items related to this Formatter
element>

&KHFNLQJ�&RPSRQHQW�'HILQLWLRQV

1. Run the NEONFormatter consistency checker.

2. Fix any problems in the current database.

3. Verify that is enough storage in memory for the new data.

&RQIOLFW�(UURU�0HVVDJH�IRU�D�6SHFLILF�)RUPDWWHU�(OHPHQW

In this case, the data being imported conflicts with data already existing in the
database. View the data and either remove the conflicting data in the
destination database, or fix the data in the originating database, re-export the
data, and import the newly exported data.

<Formatter element type>
<name of the Formatter element>: I/E failed!
ERROR: Import item conflicts with existing Formatter element
with the same name
<data item tag (e.g., optional indicator)> (existing = <value>
| incoming = <value>)

&RQGLWLRQDO�%UDQFKLQJ
When you use the Export by Name option during the export of formats, each
output control that uses conditional branching exports the output controls
associated with that output format, as defined by the rules entries.

11)LH�)LOH�/D\RXW
By removing NNFie encryption, you can access and interpret NNFie export
files through a text editor. In past releases, the only out-of-the-box access to
the Formatter database configurations have been through the NEONFormatter
GUI. Now, with the export files in a readable form, you can write or modify
scripts that create formatter components. Moreover, in prior releases, users
were required to use the NEONFormatter GUI to respond to an import error
MQSeries Integrator System Management Guide 31

Chapter 3
report. Because the import files generated from the current release of
MQSeries Integrator are not encrypted, you can navigate and modify them.

:$51,1*�
Although we recommended using the NEONFormatter GUI instead of
modifying the raw export files, this section provides the necessary
information for an advanced user who is experienced with NNFie import/
export formats to make changes.

1RWH�
Encryption has been removed from NNRie as well NNFie.

11)LH�+HDGHU

The first five lines of the file, which begin with hash marks (#), are used to
enter comments containing the following information:

1. GMT Time of creation

2. Version of NNFie

3. Database login data

4. Database server

5. OS data

Lines that begin with a number character (#) are interpreted as comments and
are ignored during import. If you want to add comments or file
concatenations to the header during export, type one of the following options
at the command prompt:

NNFie -e <filename> -q "additional comment between quotes"

NNFie -e <filename> -Q <comment file>

)RUPDW�RI�([SRUW�'DWD

1RWH�
Refer to the appropriate header files for the enumerated types.
32 MQSeries Integrator System Management Guide

Formatter
A continuation marker breaks the component definition into several lines
within the export file. If the last character on the line is a backslash (\), then
the next line will be concatenated by the export file reader. The default line
width is 80 characters, but you can specify an optional width by using the
following command line option:

NNFie -e <filename> -w 120

1RWH�
File names (including absolute paths) for both import and export must be no
longer than 255 characters.

&RPPRQ�)LHOGV

There are three fields at the beginning of each formatter component
definition.

The exclamation character (!) is used as a delimiter between the first three
fields.

)LUVW�)LHOG

This field contains a NEONFormatter marker F and is used to indicate the
beginning of a NEONFormatter component definition. F must appear at the
beginning of every line, with the exception of comment lines, in the file.

6HFRQG�)LHOG

This field holds the release number of the defined component. The use of the
version number to define components enables NNFie to support several
revisions of export files.

7KLUG�)LHOG�

The names of valid components for the integers in the third field are listed in
the table below with the recommended releases (See Second Field regarding
releases).
MQSeries Integrator System Management Guide 33

Chapter 3
&RPSRQHQWV�RI�WKH�)RUPDW�'HILQLWLRQ

Each NEONFormatter item export data takes up one line.

When a string is used as a field type it is typically 32 characters or less.

When an encoded hex is used as a field type it is typically up to 254
characters. The only valid characters in this field are 0x followed by [0-9A-F].

)LHOG�1DPH 5HOHDVH

1 Format 4.0

2 Input Control 4.0.1

3 Output Control – obsolete, use Output Master 3.x

4 Delimiter – obsolete, use Literal 3.x

5 Field 4.0

6 User Defined Type 4.0

7 Literal 4.0

8 Output Master 4.0

9 Default Control 4.0

10 User Exit Control 4.0

11 Fix Control 4.0

12 Length Control 4.0

13 Math Control 4.0

14 Substitution Control 4.0

15 Substring Control 4.0

16 Trim Control 4.0

17 Collection Control 4.0
34 MQSeries Integrator System Management Guide

Formatter
When an integer defines a code for an enumerated type, refer to fmtcodes.h in
the include directory for valid entries. All definitions using enumerated type
have the fixed type defined as enum.

NNFie uses the Management API to populate the database with Formatter
components. Refer to the Programming Reference for NEONFormatter for
explanation of field values. In almost all cases, NNFie uses the information in
the export file to populate the NNFMgr<Component Type>Info structure.

Refer to the Programming Reference for NEONFormatter for issues not covered
in this section.

In the component descriptions that follow, these conventions are used:

\: Continuation marker.

(…)+: Items within the parenthesis exist one or more times.

(…)*: Items within the parenthesis exist zero or more times.

)ODW�,QSXW�)RUPDW

F!<Version No — number>!1!\

1RWH�
The portion of the format below relates to the NNFMgrFormatInfo structure.

<Format Name — string>,\

1,\ // Input Indicator

0!\ // Compound Indicator

1RWH�
The portion of the format below relates to the NNFMgrFlatFormatInfo
structure.

<Decomposition ID — int>,\

<Length ID — int>,\

<Termination ID — int>,\

<Delimiter Name — string>!\
MQSeries Integrator System Management Guide 35

Chapter 3
<Number of Input Field/Control Pairs — integer>!\

(

1RWH�
The portion of the format below relates to the NNFMgrInFieldInfo structure.

<Format Name — string>,\

<Field Name — string>,\

<Control Name — string>!\

)+

Example

F!4.0!1!Flat_IF,1,0!1,0,0,NONE!2!Flat_IC,alpha,alpha_IC!Flat_IC,numeric,num
eric_IC!

)ODW�2XWSXW�)RUPDW

F!<Version No — number>!1!\

1RWH�
The portion of the format below relates to the NNFMgrFormatInfo structure.

<Format Name — string>,\

0,\ // Input Indicator

0!\ // Compound Indicator

1RWH�
The portion of the format below relates to the NNFMgrFlatFormatInfo
structure.

<Decomposition ID —int>,\

<Length ID — int>,\

<Termination ID — int>,\

<Delimiter Name — string>!\
36 MQSeries Integrator System Management Guide

Formatter
<Number of Output Field/Control Pairs — integer>!\

(

1RWH�
The portion of the format below relates to the NNFMgrOutFieldInfo
structure.

<Format Name — string>,\

<Field Name — string>,\

<Control Name — string>,\

<Access Mode — int>,\

<Subscript — integer>,\

<Infield Name — string>!\

)+

Example

F!4.0!1!Flat_OF,0,0!1,0,0,NONE!3!Flat_OC,alpha,alpha_OC,1,0,alpha!Flat_OC
,alpha,alpha_OC,1,0,alpha!Flat_OC,numeric,numeric_OC,4,0,numeric!

&RPSRXQG�)RUPDW

F!<Version No — number>!1!\

1RWH�
The portion of the format below relates to the NNFMgrFormatInfo structure.

<Format Name — string>,\

<Input Indicator ID —int>,\

1!\ // Compound Indicator

<Number of Child Formats — integer>!\

(

MQSeries Integrator System Management Guide 37

Chapter 3
1RWH�
The portion of the format below relates to the NNFMgrRepeatFormatInfo
structure.

<Parent Format Name — string>,\

<Child Format Name — string>,\

<Optional Indicator ID — integer>,\

<Repeat Indicator ID — integer>,\

<Repeat Termination ID — integer>,\

<Repeat Delimiter Name — string>,\

<Repeat Field Name — string>!

)+

Example

F!4.0!1!CompRep_IF,1,1!1!CompRep_IF,Flat_IC,0,1,1,=,0,NONE!

,QSXW�&RQWURO��������

F!4.0.1!2!\

1RWH�
The portion of the format below relates to the NNFMgrParseControlInfo
structure.

<Control Name — string>,\

<Optional Indicator ID —int>,\

<Field Type ID — int>,\

<Data Type Name — string>,\

<Base Data Type ID — int>,\

<Custom Date Time Format— string>,\

<Data Termination ID — int>,\

<Data Delimiter Name — string>,\
38 MQSeries Integrator System Management Guide

Formatter
<Data Length — number>,\

<Tag Type ID — int>,\

<Tag Termination ID — int>,\

<Tag Length — integer>,\

<Tag Literal Name — string>,\

<Tag Value — encoded hex>,\

<Tag Delimiter Name — string>,\

<Length Type ID —int>,\

<Length Termination ID —int>,\

<Length Length — integer>,\

<Length Delimiter Name — string>,\

<Decimal Location — integer>,\

<Year Cut Off — integer>,\

<Validation Parameter Name — string>!\

<Number of Name/Value Pairs — integer>!\

(

<Name — string>,\

<Value — string>!\

)+

Example

F!4.0.1!2!alpha_IC,0,2,String,0,,2,NONE,6,0,0,3,tag,0x544147,NONE,0,0,0,NO
NE,0,101,!0!
MQSeries Integrator System Management Guide 39

Chapter 3
)LHOG

F!<Version No — number>!5!\

1RWH�
The portion of the format below relates to the NNFMgrFieldtInfo structure.

<Field Name — string >,\

<Comment — string >!

Example

F!4.0!5!numeric,Numeric field!

8VHU�'HILQHG�7\SH

F!<Version No — number>!6!\

1RWH�
The portion of the format below relates to the NNFMgrUserDefTypeInfo
structure.

<Type Name — string >,\

<Native Type — string >,\

<Validation Routine Name — string>!

Example

F!4.0!6!Sample_UserDefinedType,String,UserDefinedTypeValidation!

/LWHUDO

F!4.0!7!\

<Literal Name — string >,\

1RWH�
The portion of the format below relates to the NNFMgrLiteralInfo structure.

<Value - ASCII — encoded hex >,\

<Value Length — integer>!
40 MQSeries Integrator System Management Guide

Formatter
Example

!F!4.0!7!tag,0x544147,3!

2XWSXW�0DVWHU�

F!4.0!8!\

1RWH�
The portion of the format below relates to the NNFMgrOutMstrCntlInfo
structure.

<Master Name — string>,\

<Optional Indicator ID —int>,\

<Field Type ID — int>,\

<Data Type Name — string>,\

<Data Attribute ID —int>,\

<Base Data Type ID — int>,\

<Tag Type ID — int>,\

<Tag Literal Name — string>,\

<Tag Value — ASCII-encoded hex>,\

<Tag Value Length — integer>,\

<Tag-before-Length Indicator ID — int>,\

<Length Type ID — int>,\

<Operation Type ID — int>,\

<Field Comparison Literal Name — string>,\

<Field Comparison Value — ASCII-encoded hex>,\

<Field Comparison Value Length — integer>,\

<Child Control Name — string>,\

<Child Control Type ID —enum NNCntlType>!
MQSeries Integrator System Management Guide 41

Chapter 3
Example

F!4.0!8!alpha_OC,1,1,String,,0,0,NONE,0x00,0,0,0,0,NONE,0x00,0,NONE,0!

'HIDXOW�&RQWURO

F!4.0!9!\

1RWH�
The portion of the format below relates to the NNFMgrDefaultCntlInfo
structure.

<Control Name — string>,\

<Literal Name — string>,\

<Value — ASCII-encoded hex>,\

<Value Length — integer>!

Example

F!4.0!9!Sample_DefaultCntl,Literal,0x4C69746572616C,7!

([LW�&RQWURO

F!4.0!10!\

1RWH�
The portion of the format below relates to the NNFMgrUserExitCntlInfo
structure.

<Control Name — string>,\

<Exit Routine Name — string>!

Example

F!4.0!10!Sample_UserExitCntl,ExitRoutineName!
42 MQSeries Integrator System Management Guide

Formatter
)L[�&RQWURO

F!4.0!11!\

1RWH�
The portion of the format below relates to the NNFMgrPrePostFixCntlInfo
structure.

<Control Name — string>,\

<Literal Name — string>,\

<Value — ASCII-encoded hex>,\

<Value Length — integer>,\

<Place ID — enum NNFPrePostFix>,

<NULL Action Indicator — int>!

Example

F!4.0!11!Sample_FixCntl,Space,0x20,1,1,0!

/HQJWK�&RQWURO

F!4.0!12!\

1RWH�
The portion of the format below relates to the NNFMgrLengthCntlInfo
structure.

<Control Name — string>,\

<Pad Literal Name — string>,\

<Pad Value — ASCII — encoded hex>,\

<Value Length — integer>!

Example

F!4.0!12!Sample_LengthCntl,12,Space,0x20,1!
MQSeries Integrator System Management Guide 43

Chapter 3
0DWK�&RQWURO�

F!4.0!13!\

1RWH�
The portion of the format below relates to the NNFMgrMathExpCntlInfo
structure.

<Control Name — string>,\

<Decimal Precision — integer>,\

<Rounding Mode ID —int>!\

<Math Segment Count — integer>!\

(<Expression — string>!)+

Example

F!4.0!13!Sample_MathCntl,2,0!1!Field_1 * Field_2!

6XEVWLWXWLRQ�&RQWURO

F!4.0!14!\

1RWH�
The portion of the format below relates to the NNFMgrSubstituteCntlInfo
structure.

<Control Name — string>,\

<Input Literal Name — string>,\

<Input Value — ASCII — encoded hex>,\

<Input Value Length — integer>,\

<Output Literal Name — string>,\

<Output Value — ASCII — encoded hex>,\

<Output Value Length — integer>,\

<Output Value Type ID —int>!\

<Substitute Count — integer >! \
44 MQSeries Integrator System Management Guide

Formatter
(
<Control Name — string>,\

<Input Literal Name — string>,\

<Input Value - ASCII-encoded hex>,\

<Input Value Length — integer>,\

<Output Literal Name — string>,\

<Output Value - ASCII-encoded hex>,\

<Output Value Length — integer>,\

<Output Value Type ID — int>!

)*

Example

F!4.0!14!Sample_SubstituteCntl,NONE,0x00,0,NONE,0x00,0,1!3!Sample_Subs
tituteCntl,Space,0x20,1,X,0x58,1,1!Sample_SubstituteCntl,-,0x2D,1,_,0x5F,1,1!

6XEVWULQJ�&RQWURO

F!4.0!15!\

1RWH�
The portion of the format below relates to the NNFMgrSubstringCntlInfo
structure.

<Control Name — string>,\

<Start — integer>,\

<Length — integer>,\

<Pad Literal Name — string>,\

<Pad Value — ASCII-encoded hex>,\

<Pad Value Length — integer>!

Example

F!4.0!15!Sample_SubstringCntl,5,6,NONE,0x00,0!
MQSeries Integrator System Management Guide 45

Chapter 3
7ULP�&RQWURO

F!4.0!16!\

1RWH�
The portion of the format below relates to the NNFMgrTrimCntlInfo
structure.

<Control Name — string>,\

<Trim Character Literal Name — string>,\

<Trim Character Value — ASCII-encoded hex>,\

<Trim Character Value Length — integer>,\

<Trim Location ID — enum NNFTrim>!

Example

F!4.0!16!Sample_TrimCntl,Space,0x20,1,2!

&ROOHFWLRQ�&RQWURO

F!4.0!17!\

<Control Name — string>,\

<Collection Count — integer>!\

(

<Child Control Name — string>,\

<Child Control Type — enum NNTcntlType>!\

)+
46 MQSeries Integrator System Management Guide

Formatter
6DPSOH�'DWD

F!4.0!5!alpha,!

F!4.0!5!numeric,!

F!4.0!7!=,0x3D000
00
00
000,1!
F!4.0!8!alpha_OC,1,1,String,,0,0,NONE,0x0000000000000000000000000000000
00
00
00
000000000000000000000,0,0,0,0,NONE,0x00000000000000000000000000000000
00
00
00
00000000000000000000,0,NONE,0!

F!4.0!8!numeric_OC,1,1,String,,0,0,NONE,0x00000000000000000000000000000
00
00
00
00000000000000000000000,0,0,0,0,NONE,0x000000000000000000000000000000
00
00
00
0000000000000000000000,0,NONE,0!

F!4.0.1!2!alpha_IC,0,1,String,0,,2,NONE,6,0,0,0,NONE,0x000000EFFFE860000
00000000A95DC00101E20000000000006B54C00000001EFFFF01400000101EFF
FF014EF3C7101000000010000000100101E20EFFFF0DCEFFFF0DCEFFFE85000
0B2E60EF07D6D800101E20EF3C717800000000EFFFE854000FA841EFFFF088E
FFFF088EFFFF01400000000EFFFF014EFFFF0DC0000000000,NONE,0,0,0,NO
NE,0,101,!0!

F!4.0.1!2!numeric_IC,0,1,Numeric,0,,2,NONE,8,0,0,0,NONE,0x000000EFFFE8
6000000000000A95DC00101E20000000000006B54C00000001EFFFF0140000010
1EFFFF014EF3C7101000000010000000100101E20EFFFF0DCEFFFF0DCEFFFE
850000B2E60EF07D6D800101E20EF3C717800000000EFFFE854000FA841EFFF
MQSeries Integrator System Management Guide 47

Chapter 3
F088EFFFF088EFFFF01400000000EFFFF014EFFFF0DC0000000000,NONE,0,0,
0,NONE,0,101,!0!

F!4.0!1!Flat_IC,1,0!1,0,0,NONE!2!Flat_IC,alpha,alpha_IC!Flat_IC,numeric,nu
meric_IC!F!4.0!1!Flat_OC,0,0!1,0,0,NONE!3!Flat_OC,alpha,alpha_OC,1,0,alph
a!Flat_OC,alpha,alpha_OC,1,0,alpha!Flat_OC,numeric,numeric_OC,4,0,nume
ric!F!4.0!1!CompRep_IF,1,1!1!CompRep_IF,Flat_IC,0,1,1,=,0,NONE!F!4.0!1!Co
mpRep_OF,0,1!1!CompRep_OF,Flat_OC,0,1,1,=,0,NONE!

11)LH�(UURU�DQG�)RUPDW�(UURU�0HVVDJHV

11)LH�(UURU�0HVVDJHV

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH

-4001 NNFIEE_FILE_EXISTS Given file
already exists
(so will not
replace it)

The specified
export file
name already
exists.

Remove the file
or specify a
different export
file name.

-4002 NNFIEE_NO_IMPORT
_FILE

No import files
by the given
name exist

The specified
import file
does not exist.

Create the file or
check the
accuracy of the
input file name.

-4003 NNFIEE_FAILED_TO_
READ_FROM_
IMPORT_FILE

Failed to read
from the
import file

The file cannot
be read.

Check for the
existence of the
file or possible
access problems.

 -4004 NNFIEE_FAILED_TO_
SEPARATE_INPUT_
DATA

Failed to
separate and
get/return a
piece of the
input data

The import file
has been
corrupted.

Restore or
recreate the file.

-4005 NNFIEE_BAD_FILE_
STREAM

Bad file stream Unable to
obtain the
required file
stream.

Check for the
existence of the
import/export
file.
48 MQSeries Integrator System Management Guide

Formatter
-4006 NNFIEE_NAME_
PROPERTY_
CONFLICT

Conflict with
the existing
Formatter
element with
the same name

A format
component
being
imported
conflicts with
an existing
component of
the same
name.

If importing into
a populated
format database,
rename the
existing
component and
import again, or
change the
incoming
component name
in the source
database and re-
export.

-4007 NNFIEE_INVALID_IE_
MODE

Invalid
import/export
mode (valid:
EXPORT_BY_
NAME,
EXPORT_ALL
, IMPORT)

An invalid
mode has been
specified on
the command
line or in the
command file.

Check the
arguments
passed to NNFie
for correctness.

-4008 NNFIEE_
ATTEMPTING_TO_
REEXPORT

Attempting to
re-export an
element that
has been
exported

A component
has been
defined that
references
itself.

Remove the
circular reference
to this
component.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 49

Chapter 3
-4009 NNFIEE_FAILED_TO_
IMPORT_
COMPONENTS

Components
have not been
imported

During
import, one or
more of the
components
required did
not import. All
components
that use the
failed
component
will not
import.

Determine why
the component
did not import
correctly.

-4010 NNFIEE_INVALID_
FORMATTER_
ELEMENT

Invalid
Formatter
element type

An unknown
format
component
has been
found. The file
was exported
from an
unsupported
version of
MQSeries
Integrator, or
the file is
corrupt.

Check the
version of
MQSeries
Integrator on
the source
machine.
Recover or
recreate the
export file.

-4011 NNFIEE_INVALID_
NNFIE_FILE

Invalid NNFie
file. Make sure
the file was
generated by
NNFie

The specified
file is
incompatible.

Recreate or
recover the
export file.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
50 MQSeries Integrator System Management Guide

Formatter
-4012 NNFIEE_INVALID_
VERSION_NO

Invalid NNFie
version
number

The version
number found
in the file is not
supported.

Recreate the file
using a
supported
version of
MQSeries
Integrator.

-4013 NNFIEE_FAILED_TO_
INVENTORY

Failed to add
to the I/E
inventory

NNFie was
unable to
register the
component as
exported or
imported.

Rerun the
import/export.

-4014 NNFIEE_NO_
FORMATS_TO_
EXPORT

No formats to
export

The format
database does
not contain
any valid
formats to
export.

Create valid
formats.

-4015 NNFIEE_NOTHING_
TO_IMPORT

Nothing to
import

The import file
does not
contain any
format
information.

Create an export
file from a
database that
contains formats.

-4016 NNFIEE_FAILED_TO_
ENCRYPT

Encryption
failed

NNFie was
unable to
encrypt the
export data
successfully.

Rerun the export.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 51

Chapter 3
-4017 NNFIEE_FAILED_TO_
DECRYPT

Decryption
failed

NNFie was
unable to
decrypt the
import file.
This is caused
by file
corruption.

Recreate of
recover the
export file.

-4018 NNFIEE_NNFIEERR_
ALREADY_EXISTS

NNFieerr
already exists

The error file
NNFie.err
exists.

Remove the file
NNFie.err and
rerun.

-4019 NNFIEE_IE_FILE_
ALREADY_EXISTS

I/E file already
exists

The specified
output file
already exists.

Use a new export
file name or
move/ rename
the existing
export file.

-4020 NNFIEE_FAILED_TO_
OPEN_DBMS_
SESSION

Failed to open
DBMS session

NNFie was
unable to
connect to the
database
specified in the
sqlsvses.cfg
file.

Check the entry
for NNFie or the
session name
specified with
the -s option in
the sqlsvses.cfg
file for
correctness.

-4021 NNFIEE_FAILED_TO_
OPEN_FMGR

Failed to
initialize
Formatter
Manager

NNFie was
unable to use
the Format
Manager
library.

Check the
correctness of the
installation of
MQSeries
Integrator.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
52 MQSeries Integrator System Management Guide

Formatter
11)LH�)RUPDW�(UURU�0HVVDJHV

-4022 NNFIEE_INVALID_
CNTL_TYPE

Invalid control
type

An unknown
format control
has been
found. The file
was exported
from an
unsupported
version of
MQSeries
Integrator, or
the file is
corrupt.

Check the
version of
MQSeries
Integrator on
the source
machine.
Recover or
recreate the
export file.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH

-4201 NNFIEE_GetFormat GetFormat
failed

The flat or
compound
format was not
accessible in
the database
through the
Formatter
Management
NNFMgr
GetFormat
API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 53

Chapter 3
-4202 NNFIEE_GetFirst
Format

GetFirst
Format failed

The first flat or
compound
format was not
accessible in
the database
through the
NNFMgr
GetFirst
Format API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

-4203 NNFIEE_GETNEXT
FORMAT

GetNext
Format failed

The next flat or
compound
format was not
accessible in
the database
through the
NNFMgr
GetNext
Format API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

-4204 NNFIEE_GetFirstFieldF
romInputFormat

GetFirstField
FromInput
Format failed

The first field
associated
with a flat
input format
was not
accessible in
the database
through the
NNFMgr
GetFirstField
FromInput
Format API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
54 MQSeries Integrator System Management Guide

Formatter
-4205 NNFIEE_GetNextField
FromInputFormat

GetNextField
FromInput
Format failed

The next field
associated
with a flat
input format
was not
accessible in
the database
through the
NNFMgr
GetNextField
FromInput
Format API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

-4206 NNFIEE_GetFirstField
FromOutputFormat

GetFirstField
FromOutput
Format failed

The first field
associated
with a flat
output format
was not
accessible in
the database
through the
NNFMgr
GetFirstField
FromOutput
Format API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

-4207 NNFIEE_GetNextField
FromOutputFormat

GetNextField
FromOutput
Format failed

The next field
associated
with a flat
output format
was not
accessible in
the database
through the
API NNFMgr
GetNextField
FromOutput
Format API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 55

Chapter 3
 -4208 NNFIEE_GetFirstChild
Format

GetFirstChild
Format failed

The first child
format of a
compound
format was not
accessible in
the database
through the
Formatter
Management
NNFMgr
GetFirstChild
Format API.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem.

-4209 NNFIEE_GetNextChild
Format

GetNextChild
Format failed

The next child
format of a
compound
format was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNextChild
Format.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

-4210 NNFIEE_GetOutput
Control

GetOutput
Control failed

The specified
output control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetOutput
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
56 MQSeries Integrator System Management Guide

Formatter
-4211 NNFIEE_GetFirst
OutputControl

GetFirst
OutputControl
failed

The first
output control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetFirst
Output
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

-4212 NNFIEE_GetNext
OutputControl

GetNext
OutputControl
failed

The next
output control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNext
Output
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

-4213 NNFIEE_GetParse
Control

GetParse
Control failed

The specified
parse/input
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetParse
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 57

Chapter 3
-4214 NNFIEE_GetFirstParse
Control

GetFirstParse
Control failed

The first
parse/input
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirstParse
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

-4215 NNFIEE_GetNextParse
Control

GetNextParse
Control failed

The next
parse/input
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNextParse
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

-4216 NNFIEE_GetDelimiter GetDelimiter
failed

The specified
delimiter was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetDelimiter.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
58 MQSeries Integrator System Management Guide

Formatter
-4217 NNFIEE_GetFirst
Delimiter

GetFirst
Delimiter
failed

The first
delimiter was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirst
Delimiter.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Formatter
Management
API error codes.

-4218 NNFIEE_GetNext
Delimiter

GetNext
Delimiter
failed

The next
delimiter was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNext
Delimiter.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4219 NNFIEE_GetField GetField failed The specified
field was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetField.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 59

Chapter 3
-4220 NNFIEE_GetFirstField GetFirstField
failed

The first field
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetFirst
Field.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4221 NNFIEE_GetNextField GetNextField
failed

The next field
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNext
Field.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4222 NNFIEE_Append
FormatToFormat

Append
FormatTo
Format failed

The attempt to
append one
flat or
compound
format into a
compound
format failed
using the
Formatter
Management
API NNFMgr
Append
FormatTo
Format.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
60 MQSeries Integrator System Management Guide

Formatter
-4223 NNFIEE_AppendField
ToInputFormat

AppendField
ToInput
Format failed

The attempt to
append a field
to a flat input
format failed
using the
Formatter
Management
API NNFMgr
Append
FieldToInput
Format.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4224 NNFIEE_AppendField
ToOutputFormat

AppendField
ToOutput
Format failed

The attempt to
append a field
to a flat output
format failed
using the
Formatter
Management
API NNFMgr
AppendField
ToOutput
Format.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4225 NNFIEE_AppendMath
Expression

AppendMath
Expression
failed

The attempt to
append a math
expression
detail entry to
an existing
math
expression
control failed
using the
Formatter
Management
API NNFMgr
AppendMath
Expression.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 61

Chapter 3
-4226 NNFIEE_Append
LookupEntry

Append
LookupEntry
failed

The attempt to
append a
lookup detail
entry to an
existing
lookup control
failed using
the Formatter
Management
API NNFMgr
Append
LookupEntry.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4227 NNFIEE_CreateFormat CreateFormat
failed

The attempt to
create a new
input/output
flat or
compound
format failed
using the
Formatter
Management
API NNFMgr
CreateFormat.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4228 NNFIEE_CreateParse
Control

CreateParse
Control failed

The attempt to
create a new
parse/input
control failed
using the
Formatter
Management
API NNFMgr
CreateParse
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
62 MQSeries Integrator System Management Guide

Formatter
-4229 NNFIEE_CreateOutput
Control

CreateOutput
Control failed

The attempt to
create a new
output control
failed using
the Formatter
Management
API NNFMgr
CreateOutput
Control.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4230 NNFIEE_Create
Delimiter

Create
Delimiter
failed

The attempt to
create a new
delimiter
failed using
the Formatter
Management
APINNFMgr
Create
Delimiter.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4231 NNFIEE_CreateField CreateField
failed

The attempt to
create a new
field failed
using the
Formatter
Management
API NNFMgr
CreateField.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 63

Chapter 3
-4232 NNFIEE_SERIOUS_
ERROR_POSSIBLY_
DB_RELATED

GetErrorNo
returned
serious error
number

General
database error
encountered
using the
Formatter
Management
APIs.

See Formatter
Management
API error code -
2604.

-4233 NNFIEE_GetDataType
Name

GetData
Typename
failed

The attempt to
retrieve the
formal name
for the data
type code
failed due to
an invalid data
type code
associated
control.

Run the
Formatter
database
consistency
verification
program to
verify data type
codes.

-4234 NNFIEE_GetDataType GetDataType
failed

The attempt to
retrieve the
data type code
associated
with the
formal data
type name
failed.

The NNFie
import file does
not contain the
correct formal
data type names.
The NNFie
import file is
corrupt or has
been exported
from a damaged
database.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
64 MQSeries Integrator System Management Guide

Formatter
-4235 NNFIEE_GetFirstUser
DefinedType

GetFirstUser
DefinedType
failed

The first user-
defined type
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetFirstUser
DefinedType.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4236 NNFIEE_GetNextUser
DefinedType

GetNextUser
DefinedType
failed

The next user-
defined type
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNextUser
DefinedType.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4237 NNFIEE_CreateUser
DefinedType

CreateUser
Defined
Type failed

The attempt to
create a new
user-defined
type failed
using the
Formatter
Management
API NNFMgr
CreateUser
DefinedType.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 65

Chapter 3
-4238 NNFIEE_GetFirst
Literal

GetFirstLiteral
failed

The first literal
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetFirst
Literal.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4239 NNFIEE_GetNext
Literal

GetNextLiteral
failed

The next literal
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNext
Literal.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4240 NNFIEE_GetLiteral GetLiteral
failed

The specified
literal was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetLiteral.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
66 MQSeries Integrator System Management Guide

Formatter
-4241 NNFIEE_GetFirstOut
MstrCntl

GetFirstOut
MstrCntl
failed

The first
output master
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirstOut
MstrCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4242 NNFIEE_GetFirst
DefaultCntl

GetFirst
DefaultCntl
failed

The first
default control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetFirst
DefaultCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4243 NNFIEE_GetFirstUser
ExitCntl

GetFirstUser
ExitCntl failed

The first user
exit control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetFirst
UserExitCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 67

Chapter 3
-4244 NNFIEE_GetFirstPre
PostFixCntl

GetFirstPre
PostFix
Cntl failed

The first
prefix/postfix
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirstPre
PostFixCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4245 NNFIEE_GetFirst
SegmentFromMathExp
Cntl

GetFirst
SegmentFrom
MathExpCntl
failed

The first
segment of the
math
expression
detail control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetFirst
SegmentFrom
MathExpCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
68 MQSeries Integrator System Management Guide

Formatter
-4246 NNFIEE_Append
SegmentToMathExp
Cntl

Append
SegmentTo
MathExpCntl
failed

The attempt to
append a math
expression
detail entry to
an existing
math
expression
failed using
the Formatter
Management
API NNFMgr
Append
SegmentMath
ExpCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4247 NNFIEE_GetFirst
SubstituteCntl

GetFirst
SubstituteCntl
failed

The first
substitute
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirst
SubstituteCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4248 NNFIEE_GetFirstSub
StringCntl

GetFirstSub
StringCntl
failed

The first
substring
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirstSub
StringCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 69

Chapter 3
-4249 NNFIEE_GetFirstTrim
Cntl

GetFirstTrim
Cntl failed

The first trim
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirstTrim
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4250 NNFIEE_GetFirst
CollectionCntl

GetFirst
CollectionCntl
failed

The first
output
collection
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirst
CollectionCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4251 NNFIEE_AppendCntl
ToCollectionCntl

AppendCntl
ToCollection
Cntl failed

The attempt to
append an
output
operation to an
output
operation
control failed
using the
Formatter
Management
API NNFMgr
AppendCntl
ToCollection
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
70 MQSeries Integrator System Management Guide

Formatter
-4252 NNFIEE_GetFirstCntl
FromCollection

GetFirstCntl
From
Collection
failed

The first
output
operation
collection
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirstCntl
From
Collection.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4253 NNFIEE_GetFirst
LengthCntl

GetFirst
LengthCntl
failed

The first length
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirst
LengthCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4254 NNFIEE_GetFirstMath
ExpCntl

GetFirstMath
ExpCntl failed

The first math
expression
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetFirstMath
ExpCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 71

Chapter 3
-4255 NNFIEE_GetNextOut
MstrCntl

GetNextOut
MstrCntl
failed

The next
output master
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNextOut
MstrCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4256 NNFIEE_GetOutMstr
Cntl

GetOutMstr
Cntl failed

The specified
output master
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetOutMstr
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4257 NNFIEE_GetNext
DefaultCntl

GetNext
DefaultCntl
failed

The next
default control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNext
DefaultCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
72 MQSeries Integrator System Management Guide

Formatter
-4258 NNFIEE_GetDefault
Cntl

GetDefault
Cntl failed

The specified
default control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetDefault
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4259 NNFIEE_GetNextUser
ExitCntl

GetNextUser
ExitCntl failed

The next user
exit control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNextUser
ExitCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4260 NNFIEE_GetUserExit
Cntl

GetUserExit
Cntl failed

The specified
user exit
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetUserExit
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 73

Chapter 3
-4261 NNFIEE_GetNextPre
PostFixCntl

GetNextPre
PostFixCntl
failed

The next
prefix/postfix
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNextPre
PostFixCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4262 NNFIEE_GetPrePostFix
Cntl

GetPrePostFix
Cntl failed

The specified
prefix/postfix
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetPrePostFix
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
74 MQSeries Integrator System Management Guide

Formatter
-4263 NNFIEE_GetNext
SegmentFromMathExp
Cntl

GetNext
SegmentFrom
MathExpCntl
failed

The next
segment of the
math
expression
detail controls
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNext
SegmentFrom
MathExpCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4264 NNFIEE_GetNext
SubstituteCntl

GetNext
SubstituteCntl
failed

The next
substitute
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetSubstitute
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 75

Chapter 3
-4265 NNFIEE_GetSubstitute
Cntl

GetSubstitute
Cntl failed

The specified
substitute
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetSubstitute
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4266 NNFIEE_GetNext
SubStringCntl

GetNextSub
StringCntl
failed

The next
substring
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNextSub
StringCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4267 NNFIEE_GetSubString
Cntl

GetSubString
Cntl failed

The specified
substring
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetSubString
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
76 MQSeries Integrator System Management Guide

Formatter
-4268 NNFIEE_GetNextTrim
Cntl

GetNextTrim
Cntl failed

The next trim
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNextTrim
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4269 NNFIEE_GetTrimCntl GetTrimCntl
failed

The specified
trim control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetTrimCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4270 NNFIEE_GetNextCntl
FromCollection

GetNextCntl
From
Collection
failed

The next
output
operation
collection
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetCntlFrom
Collection.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 77

Chapter 3
-4271 NNFIEE_GetNext
LengthCntl

GetNext
LengthCntl
failed

The next
length control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNext
LengthCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4272 NNFIEE_GetLength
Cntl

GetLengthCntl
failed

The specified
length control
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetLength
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4273 NNFIEE_GetNextMath
ExpCntl

GetNextMath
Exp
Cntl failed

The next math
expression
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNextMath
ExpCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
78 MQSeries Integrator System Management Guide

Formatter
-4274 NNFIEE_GetMathExp
Cntl

GetMathExp
Cntl failed

The specified
math
expression
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetMathExp
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4275 NNFIEE_GetNext
CollectionCntl

GetNext
CollectionCntl
failed

The next
output
collection
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNext
CollectionCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4276 NNFIEE_GetCollection
Cntl

GetCollection
Cntl failed

The specified
output
collection
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetCollection
Cntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 79

Chapter 3
-4277 NNFIEE_GetUser
DefinedType

GetUser
DefinedType
failed

The specified
user-defined
type was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetUser
DefinedType.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4278 NNFIEE_GetNextMath
Expression

GetNextMath
Expression
failed

The next math
expression
was not
accessible in
the database
through the
Formatter
Management
API NNFMgr
GetNextMath
Expression.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4279 NNFIEE_GetNextLook
upEntry

GetNext
LookupEntry
failed

The next
lookup entry
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNext
LookupEntry.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
80 MQSeries Integrator System Management Guide

Formatter
-4280 NNFIEE_GetNextEntry
FromSubstituteCntl

GetNextEntry
From
SubstituteCntl
failed

The next
substitute field
segment from
the substitute
control was
not accessible
in the database
through the
Formatter
Management
API NNFMgr
GetNext
EntryFrom
SubstituteCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4281 NNFIEE_AppendEntry
ToSubstituteCntl

AppendEntry
ToSubstitute
Cntl failed

The attempt to
create a
substitute field
segment for
the substitute
control failed
using the
Formatter
Management
API NNFMgr
Append
EntryToSubsti
tuteCntl.

Use the
secondary
Formatter
Management
API error code to
resolve the
problem. See the
Format
Management
API error codes.

-4500 Fatal internal
error

Processing
could not
continue.

See previous
error messages
for further
information.

&RGH (UURU�1DPH (UURU�
0HVVDJH

(UURU�
([SODQ�
DWLRQ

5HVSRQVH
MQSeries Integrator System Management Guide 81

Chapter 3
7HVWLQJ�)RUPDWV�

)RUPDWWHU�7HVW�([HFXWDEOHV�
The following testing executables are provided with NEONFormatter:

n apitest

n msgtest

These executables show how to invoke the public functions and serve as tools
for validating format definition.

The apitest executable parses an input message and displays a hierarchical
representation of the parse tree. Run apitest to validate input formats and to
view how NEONFormatter interpreted a message.

The msgtest executable reformats and input message into an output message.
Run msgtest to test input and output formats.

For more information on msgtest and apitest, refer to MQSeries Integrator
Programming Reference for NEONFormatter.

7KH�DSLWHVW�([HFXWDEOH�
The apitest executable outputs the structure and contents of a message parsed
by NEONFormatter. The apitest executable does not test output; it focuses on
the input and parse aspects of NEONFormatter.

The apitest command line parameters are:

Usage: apitest[-d[<filename>]]

-d :parse debug on

The -d [filename] parameter sets debugging mode to parse for this run of
apitest. [filename] specifies an optional file where debug information is
written. If [filename] is not specified, debug information is written to the
screen (STDOUT).
82 MQSeries Integrator System Management Guide

Formatter
8VLQJ�DSLWHVW

To run apitest:

1. At the command line prompt, type apitest.

2. At the prompt, Enter the input file name:, type the name of the file in
this directory that contains the message to be parsed and reformatted.

3. At the prompt, Enter the input format name:, type the name of the input
format that will be read from the NNF-FMT table in the database
identified in the sqlsvses.cfg file.

7KH�PVJWHVW�([HFXWDEOH�
The msgtest executable uses input and output formats, delimiters, and other
control information read from the database to parse and reformat an input
message read from a file. The information needed by msgtest must be placed
in the database using the GUI or an executable that uses Formatter
Management APIs.

The msgtest command line parameters are:

Usage: msgtest[-li][-lo][-if][-nv][-d[<filename>][-dcp]
[-dcm][-dco]]

-li: loud input
-lo: loud output
-lf: loud formatted value
-nv: no validation
-d: debug on (debug parse only if -dcp and -dcm
and

-dco not specified)
-dcp: debug parse on
-dcm: debug map on
-dco: debug output on

The -d [filename] parameter sets debugging mode to parse for this run of
msgtest. [filename] specifies an optional file where debug information is
written. If [filename] is not specified, debug information is written to the
screen (STDOUT).
MQSeries Integrator System Management Guide 83

Chapter 3
8VLQJ�PVJWHVW

To run msgtest:

1. At the command line prompt, type msgtest.

2. At the prompt, Enter the input file name:, type the name of the file in
this directory that contains the message to be parsed and reformatted.

3. At the prompt, Enter the output file name:, type the name of the file that
will contain the reformatted message.

4. At the prompt, Enter the input format name:, type the name of the input
format that will be read from the NNF-FMT table in the database
identified in the sqlsvses.cfg file.

5. At the prompt, Enter the output format name:, type the name of the
output format that will be read from the NNF_FMT table in the
database identified in $msgtest<myFormatterTest.txt>.

7LS�
To run msgtest more than once using the same information, create a text file.

The following example shows msgtest command line parameters read from a
UNIX file.

$ msgtest<myFormatterTest.txt>

The myFormatterTest.txt file contains:

ascii_string <the input file name containing the message>

output_AS1 <the output file name that will contain thetranslated
message>

AS_IF <the input format to be read from the database>

AS_NA1_OF <the output format to be read from the database>

&RQILJXUDWLRQ�)LOH
Before running Formatter test executables, verify that the sqlsvses.cfg file
includes the database name and server name information used to execute this
84 MQSeries Integrator System Management Guide

Formatter
program. This file must also be in the same directory as the executable
program.

1RWH�
For Formatter test executables, the session name to be entered in the
sqlsvses.cfg file is new_format_demo.

([DPSOH

new_format_demo:MyServerName:MyUserName:MyPasswordName:
MyDatabaseName
MQSeries Integrator System Management Guide 85

Chapter 3
86 MQSeries Integrator System Management Guide

&KDSWHU��

5XOHV

NEONRules is dependent on NEONFormatter to parse messages for evaluation
and has the following main functions:

n Evaluating messages — NEONFormatter parses the message and then
performs comparisons against individual fields.

n Reacting to evaluation results — NEONFormatter retrieves a list of rules
that hit (their evaluation criteria are true), as well as a list of subscriptions
(actions to perform with options used as parameters).

NEONRules enables you to evaluate a string of data (a message) and react to
the evaluation results. The following overview describes Rules components
and what types of APIs are available for rule processing.

NEONRules is packaged as a library of C++ objects that have public functions,
which constitute the application programming interface (API) or Software
Development Kit (SDK). Application developers design applications that
invoke these functions to evaluate messages and retrieve the evaluation
results.

Rule definitions describe how to parse a message using the format
parameters (specified in NEONFormatter) against the rules defined for the
message. The rules definitions include subscriptions and the actions to
perform if the rule hits. Rules definition data resides in a relational database.
Users build and modify rule definitions using either the Rules GUI or Rules
Management API functions.

The NEONRules graphical user interface (GUI) tool is a program used to
populate screens with rule definition data and store the information in a
relational database.

Rules Management API functions are a set of C functions that create rule
definition data in a relational database. Users can write their own interfaces
that call the Management API functions to build rule definitions.
MQSeries Integrator System Management Guide 87

Chapter 4
The primary executable for Rules is the MQSeries Integrator Rules daemon
(MQSIruleng). The MQSeries Integrator Rules daemon reads messages off a
queue, evaluates the messages, and, based on the results, performs the
required reformatting and routing.

The following test executables are delivered with Rules:

n MQSIputdata places a message on a queue with the needed queue
options for the MQSeries Integrator Rules daemon.

n MQSIgetdata retrieves all messages and options from a queue.

n NNRTrace evaluates a message against a single rule, displaying a
verbose view of each part of the evaluation criteria.

The NEONRules Consistency Checker utility checks the correctness of the rule
definition data in the relational database. As rule definition data is built and
maintained, users should run the consistency checker periodically to ensure
data integrity.

The NNRie tool delivered with Rules is a command line tool that can be used
to export rule definitions from a database to a file, and to import the exported
file into a database. NNRie can import from a NEONetMQ Integrator 3.X and
4.X export file into an NEONetMQSeries Integrator 1.14.1.x database. NNRie
Release 4.1.x exports data only from a 4.1.x database.

Remove encryption from the NNRie files to access and interpret these files
without using the NEONRules GUI and customer support.

$SSOLFDWLRQ�*URXSV

Application groups are logical divisions of rule sets for different business
needs. You can define unlimited application groups. For example, you might
want the rules for the accounting department and the application
development department separated into two groups. You could define
Accounting as one application group, Application Development as another,
and then associate rules with each group as appropriate.
88 MQSeries Integrator System Management Guide

Rules
0HVVDJH�7\SHV

Message types define the layout of a string of data. Each application group
can contain several message types, and a message type can be used with more
than one application group. Message types are defined by the user. When
using Formatter, a message type is the same as an input format name. This
format name is used by Formatter to parse input messages for Rules
evaluation.

5XOHV

When a rule is created, each rule is assigned a rule name and associated with
an application group and message type. Each rule is uniquely identified by its
application group/message type/rule name.

The following three items must be defined for each rule:

n Evaluation criteria — An expression that contains arguments and
operators

n Subscription information — Subscriptions, actions, and options

n Permission information

([SUHVVLRQV��$UJXPHQWV��%RROHDQ��
DQG�5XOHV�2SHUDWRUV

An expression (evaluation criteria) contains a list of fields, associated
operators, and associated comparison data (either static values or other fields)
connected with Boolean operators. An argument contains the combination of
a field name, Rules comparison operator, and static value or other field name.
Field names depend on the message type (input format name) and they are
defined using NEONFormatter. Rules comparison operators are already
defined within Rules. Field comparisons can be made against static data or
other field values. Arguments are linked together with Boolean operators ‘&’
MQSeries Integrator System Management Guide 89

Chapter 4
(AND) and ‘|’ (OR) and parentheses can be used to set the evaluation
priority. For more information on operators, refer to Programming Reference for
NEONRules.

6XEVFULSWLRQV��$FWLRQV��DQG�2SWLRQV
When a rule evaluates to true, it is considered a hit. If the rule does not
evaluate to true, it is considered a no-hit. When a rule hits, you can retrieve
associated subscriptions to be taken by the application. These subscriptions
are the actions or commands, and the associated parameters are the options to
execute them.

Subscriptions are lists of actions to take when a message evaluates to true.
Each rule must have at least one associated subscription. Subscriptions are
uniquely identified within an application group/message type pair by a user-
defined subscription name. Permissions must be defined for subscriptions in
the same way they are for rules. You can define as many subscriptions as you
need. Each action within a subscription is defined by an action name. The
action does not need to be unique, since all actions are intended to be
executed in sequence. A single subscription can be shared by multiple rules.
In this case, the shared subscription would be retrieved only once no matter
how many of its rules hit.

An action has a list of one or more associated options. An option consists of
an option name-value pair. The user defines all action names and option
name-value pairs.

5XOH�DQG�6XEVFULSWLRQ�3HUPLVVLRQV
Rule and Subscription permissions restrict user access to individual complete
rules or subscriptions or their components in the NEONRules database. The
rule is uniquely identified by its application group name, message type, and
rule name. A complete rule includes everything associated with it, including
an expression (arguments) and associated subscriptions. The subscription is
uniquely defined by its application group name, message type, and
subscription name. A complete subscription includes everything associated
with it including its actions and options. Permissions only apply to managing
rule and subscription contents, not rule evaluation.

The NEONRules component (rule or subscription) or subscription owner is the
user who created the component. When the rule or subscription is created,
90 MQSeries Integrator System Management Guide

Rules
owner information is determined by the software. Owners can update their
own permissions, create and update the PUBLIC user’s permissions, and
change ownership to another user.

Only read and update permissions are implemented. The owner is given both
read and update permission by default. All other users are grouped into a
public user group named PUBLIC and given read permissions by default.

1RWH�
Owners can change their own permissions at any time from Read to Update
and back again, but they must have update permission to change a rule or
subscription contents. Read permission cannot be denied.

$3,V�

The two types of Rules APIs are:

n Rules APIs — Evaluates rules and retrieves subscription, hit, and no-
hit information. Before you evaluate a rule, the rule must exist and
you must use CreateRulesEngine() to create a VRule object. After
that, you can do as many evaluations and subscription retrievals as
needed.

n Rules Management APIs — Maintains rule information. Add, Read,
and Update APIs are implemented and available as well as APIs to
delete an entire rule or subscription and all associated information.
MQSeries Integrator System Management Guide 91

Chapter 4
5XOHV�&RQILJXUDWLRQ�

NEONet Release 4.1.x was developed using shared libraries and DLLs.
Therefore, you do not have to recompile the binaries each time you update
the software with a change (for example, when NEON sends code
enhancements). The code is brought in at run time, so all you do is replace the
library.

The sqlsvses.cfg file contains information used by NEONRules and
NEONFormatter. The shared libraries and configuration files are explained in
the following sections.

1RWH�
MQSeries Integrator does not use sqlsvses.cfg. The MQSeries Integrator Rules
daemon uses a parameter file called MQSIruleng.mpf. However, test
programs do use sqlsvses.cfg.

'//V�6KDUHG�/LEUDULHV
Windows NT calls the libraries Dynamic Link Libraries (DLLs), Unix refers to
them as shared libraries (files with .so or .sl extensions), as does AIX (files
with .a extensions). With these shared libraries, binaries are smaller and code
changes are easier. Because the code is brought in at run time, the binaries do
not have to be recompiled to incorporate a change. Another benefit of the
shared libraries is the ability to create and add User Exits to Formatter
without relinking the executables.

To use the shared libraries, you must have NEONet Release 4.1.x installed.
The new libraries must be compatible with the current version of NEONet.
92 MQSeries Integrator System Management Guide

Rules
For example, if library names or APIs are different, the shared libraries do not
work.

1RWH�
This functionality is not compatible with earlier versions of NEONet

:$51,1*�
Do not move the libraries. The executables search for them in a specific
directory or folder. If you move or delete the libraries, the executables are
rendered useless.

5XQQLQJ�11:KLFK
NNWhich is an executable that can help you determine the version of your
libraries. When you run NNWhich, the version information is displayed,
along with the path, specified in an environment variable. This environment
variable must include the directory or folder containing the NEONet shared
libraries. Environment variables vary according to platform:

n Solaris: LD_LIBRARY_PATH

n AIX: LIBPATH

n HP-UX: SHLIB_PATH

n Windows NT: PATH

6\QWD[�DQG�([DPSOH�2XWSXW��8QL[�

NNWhich librule.so
/usr/lib/Neonet/libnnrule.so(/usr/lib/Neonet/librule.so.1)
R4_0_56 1998/06/12 12:56

1RWH�
Because NEONet does not provide pointers to the DLLs, only one path is
output when you run NNWhich on Windows NT.
MQSeries Integrator System Management Guide 93

Chapter 4
5HSODFLQJ�WKH�/LEUDU\
When you receive a code enhancement from NEON Technical Support,
complete the following steps to replace the library and update the code:

8QL[

1. Verify that you have received the correct .so.x file (x indicates the
version).

2. Switch to the directory that contains the shared libraries.

3. Run the shared linker script that accompanies the .so.x file.

SharedLinker .so.x

This creates a .so file that points to the .so.x code enhancement file.
The executable will now link to the new code.

:LQGRZV�17

1. Verify that you have received the correct DLL version.

2. Switch to the directory that contains the DLLs.

3. Replace the old version with the new version.

VTOVYVHV�FIJ�)LOH
The sqlsvses.cfg file is the default configuration file that contains information
about the database and database server used for NEONetMQSeries Integrator
executables. This file is created automatically when the libraries are installed
and is located in the bin subdirectory created during the installation process.
The password information in the sqlsvses.cfg file is exposed. An alternative is
to use the sqlsvses.crypt files.

1RWH�
The sqlsvses.cfg file must be in the same directory as an application using
NEONetMQSeries Integrator components.
94 MQSeries Integrator System Management Guide

Rules
VTOVYVHV�FIJ�3DUDPHWHUV

1RWH�
The character length for the parameters in the sqlsvses.cfg file is dependent
on your server platform and operating system. Line size in the sqlsvses.cfg
file is limited to 1024 bytes. Each parameter is separated by a colon (:). For
Oracle and DB2, there must be a colon after the password even though the
last parameter is not used.

(QFU\SWLQJ�WKH�VTOVYVHV�FIJ�)LOH
To use the encryption version of sqlsvses.cfg, run the NNCryptCfg executable
against the current sqlsvses.cfg file. A sqlsvses.crypt file is generated. The
sqlsvses.crypt file is searched for first. If both a .cfg file and a .crypt file exist
in the same directory, the .crypt file is used.

0RGLI\LQJ�WKH�VTOVYVHV�)LOH�/RFDWLRQ
The default location of the sqlsvses file is the local directory where the
executable is invoked. However, the location can be modified and centralized
to another location by setting an environment variable.

3DUDPHWHU 'HVFULSWLRQ

session name Database session name to be used by NEONetMQSeries
Integrator executables or daemons. This can be any string as
long as it is unique within the file.

server name Server where the NEONetMQSeries Integrator database is
resident.

user name (user id) Database user name.

password Database password.

database name Database name where the NEONetMQSeries Integrator
tables are resident (if applicable). This is not used for Oracle
or DB2.
MQSeries Integrator System Management Guide 95

Chapter 4
Set an environment variable (NN_CONFIG_FILE_PATH) to look for the
encrypted file. The file name is sqlsvses.crypt, and the default configuration
file is not sqlsvses.crypt.

One copy of sqlsvses.cfg can be set up for all directories to point to,
eliminating the need for the file in every directory. For example, on NT:

SET NN_CONFIG_FILE_PATH/home/smith

Or for ksh:

export NN_CONFIG_FILE_PATH=/home/smith

If the sqlsvses.crypt file is not found, then the sqlsvses.cfg file is used. If
neither file is found, an error condition occurs.

(GLWLQJ�WKH�VTOVYVHV�FIJ�)LOH�
To provide the messaging software with the database information it needs for
configuration, you must edit the sqlsvses.cfg file. This is an ASCII file that can
be edited using any text editor that can save the file in ASCII format.

Text lines in the sqlsvses.cfg file must follow this format:

<sessionname>:<servername>:<username>:<password>:
<databasename>

A sample text line in the sqlsvses.cfg file for SQL Server and Sybase servers is:

new_format_demo:demo_server:demo_user:demo_password:
demo_db:

For Oracle and DB2 servers, <databasename> is not necessary. The end colon
(:) must be included in the text line, even if the < database name> parameter is
not specified. Oracle servers also use instance names instead of server names.
DB2 servers use database names or aliases instead of server names.

A sample text line in the sqlsvses.cfg file for an Oracle server is:

new_format_demo:demo_instance:demo_user:demo_password: :
96 MQSeries Integrator System Management Guide

Rules
1RWH�
If the <password> parameter is not specified, leave a blank space between
<username> and <databasename> or <instancename>.

,PSOHPHQWLQJ�VTOVYVHV�FIJ�)LOH�&KDQJHV
To implement the changes made to the sqlsvses.cfg file, restart any
applications using NEONetMQSeries Integrator components for changes to be
recognized by the system.

1RWH�
Use the NNCryptCfg utility to encrypt the password in this file.

6\VWHP�(QKDQFHPHQWV�IRU�5XOHV�

2UDFOH�
1RWH�
To assign permissions to rules, you must create more than one user in your
database.

During installation, a role is created for NEONetMQSeries Integrator users:
NEONET_USER.

To access NEONetMQSeries Integrator databases, users must be created and
associated with the NEONET_USER role using the following procedures.

&UHDWLQJ�8VHUV�
After you install NEONetMQSeries Integrator, you must create user names or
assign NEONetMQSeries Integrator user roles in your database. User names
identify individual users to the database.

To create users, type the following command:
MQSeries Integrator System Management Guide 97

Chapter 4
create user USERNAME identified by PASSWORD;

USERNAME and PASSWORD are required parameters.

*UDQWLQJ�5ROHV�WR�8VHUV�
Users must be given permissions to access the database data. You can either
grant permissions to an individual user or create roles with certain
permissions and associate users with specific roles. NEONET_USER is a role
created by the NEONetMQSeries Integrator installation process.

Grant NEONET_USER role access to created users using the grant command.
Syntax for grant is as follows:

grant NEONET_USER to USERNAME;

The NEONET_USER role is granted to the user identified by USERNAME.

1RWH�
For rules permissions, all users must have only one role granted to them and
this role must be the same for all users.

6\EDVH�64/�6HUYHU�
The following procedures can be used with Sybase or Microsoft SQL Server.
The commands are run within the command line program isql. References to
SQL Server include both Sybase and SQL Server.

Except for changing passwords, these procedures are limited to either the
system administrator or database owner.

Users must have login accounts and a user name in each database they want
to access. Adding login accounts, database users, and object permissions can
be done by the system administrator, security officer, or database owner. A
single person can occupy one or more of these roles. Check with your
database administrator for information about your specific environment.

&UHDWLQJ�/RJLQ�$FFRXQWV�
Login accounts give users access to the SQL Server. They are created by the
system administrator or security officer using the sp_addlogin system
procedure. Syntax for sp_addlogin is as follows:
98 MQSeries Integrator System Management Guide

Rules
sp_login loginName, password [, defdb [, deflang [,
full-name]]]

loginName and password are required parameters. defdb is used to specify a
default database for the user. deflang is the name of the default language to
use. full-name can be used to enter the full name of the user that owns this
account.

Login accounts only give access to the SQL Server. To access a database, a
login must be assigned to a user name to the databases the user wants to
access.

$VVLJQLQJ�8VHUV�WR�D�'DWDEDVH�
To use a database, the server login must be associated with a user name in the
database. Users can be added to a database by the database owner (DBO)
using the sp_adduser system procedure.

This procedure must be run from the database in which the user is to be
added.

The syntax for sp_adduser is as follows:

sp_adduser loginName [, nameInDB] [, group]

loginName is the user’s server login account. The nameInDB parameter is the
name for the user in the database. nameInDB defaults to the loginName if it is
not specified. group enables the DBO to add the user to an existing group in
the database. If a group is not specified, the user is placed in the default
group, PUBLIC.

1RWH�
For rules permissions, all users must be added as users, not as aliases, and
they must be members of the same user group.

'HILQLQJ�8VHU�*URXSV�
Each user added to the database must be granted permissions to access
objects within that database, unless they are the database owner. During
installation, the group NEONetUser is created for NEONetMQSeries
MQSeries Integrator System Management Guide 99

Chapter 4
Integrator users. To access NEONetMQSeries Integrator databases, users
must be linked to the NEONetUser group.

Users can be added using either the sp_adduser or sp_changegroup system
procedures. The syntax for sp_adduser is discussed in the Assigning Users to a
Database section above.

The syntax for sp_changegroup is as follows:

sp_changegroup groupName, userName

groupName is the name of the group to which the user is added. userName is
the database user name.

5XOH�DQG�6XEVFULSWLRQ�3HUPLVVLRQV

1RWH�
You must first create users before you grant permissions. For more
information on creating users, refer to the System Enhancements section on
page 97.

11'%$5XOH2ZQHUVKLS
Permissions for Rules and Subscriptions should be managed through either
the NEONRules GUI or Rules Management APIs. However, a tool is provided
for System Administration. The NNRDBARuleOwnership utility allows the
NEONetMQSeries Integrator administrator to list and change the ownership
of rules and subscriptions. All rules and subscriptions owned by a specific
user can be changed to another user. When rule or subscription ownership is
changed, the owner’s permissions are transferred to the new owner and
previous permissions are overwritten.

6\QWD[
NNRDBARuleOwnership
100 MQSeries Integrator System Management Guide

Rules
&RQILJXUDWLRQ�)LOH
Before running this executable, verify that the sqlsvses.cfg file includes the
database name and server name information used to execute this program.
This file must also be in the same directory as the executable program. To use
the NNRDBARuleOwnership utility, edit the sqlsvses.cfg file to include
“rules” as the session name parameter so the utility can connect to the
NEONRules database.

2SHUDWLRQV
To use the utility, type NNRDBARuleOwnership at the command line with no
parameters.

The utility displays:

Function to perform:
1 List Rules Owned by a Certain Owner
2 Change All Rules owned by User A to be Owned By User B
3 List Subscriptions owned by a Certain User
4 Change All Subscriptions Owned by User A to be Owned by User
B
>

To list rules owned by a certain owner, type 1 at the prompt (shown as >). The
utility displays:

User Name for Owner of Rules (All caps for ORACLE)
>

If you select 1 List Rules Owned by a Certain User, the utility lists the
application group name, message type name and rule name of all rules
owned by the specified user.

If you select 2 Change All Rules owned by User A to be Owned by User B,
the utility does not display this rule information.

To change rule ownership, type 2 at the prompt.

The utility displays:

User Name for Current Owner for Rules (All caps for ORACLE)
>
User Name for New Owner of Rules (All caps for ORACLE)
>

MQSeries Integrator System Management Guide 101

Chapter 4
To list the subscriptions owned by a certain user, type 3 at the prompt.

The utility displays:

User Name for Owner of Subscriptions (All caps for ORACLE)

A list displays showing the Application Group, Message Type, and
Subscription Name for all the subscriptions owned by the specified user.

To change subscription ownership, type 4 at the prompt.

The utility displays:

User Name of Current Owner of Subscription (All caps ORACLE)
User Name for New Owner of Subscription (All caps for ORACLE)

The owner of the subscription is changed.

([DPSOHV

The following examples demonstrate uses of NNRDBARuleOwnership.

&DVH����/LVWLQJ�DOO�UXOHV�RZQHG�E\�5(/��1(21

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30NEON

Application Group: doc1
Message Type: rp
Rule Name: d1

Application Group: doc1
Message Type: rp
Rule Name: d5

Application Group: doc2
Message Type: m1
Rule Name: d8
102 MQSeries Integrator System Management Guide

Rules
&DVH����/LVWLQJ�DOO�UXOHV�RZQHG�E\�5(/��7(67��QRW�D�YDOLG�
XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30TEST

Error No: -5509
Error Msg: Unable to find user in database

&DVH����/LVWLQJ�DOO�UXOHV�RZQHG�E\�5(/��1(2186(5���QR�
UXOHV�RZQHG�E\�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2

Error No: -5519
Error Msg: No permissions were found.

&DVH����&KDQJLQJ�DOO�UXOHV�RZQHG�E\�5(/��1(21�WR�EH�RZQHG�
E\�5(/��1(2186(5�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30NEON
User Name for New Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2
MQSeries Integrator System Management Guide 103

Chapter 4
&DVH����/LVWLQJ�DOO�UXOHV�RZQHG�E\�5(/��1(2186(5���QRZ�
UXOHV�DUH�RZQHG�E\�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>1
User Name for Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2

Application Group: doc1
Message Type: rp
Rule Name: d1

Application Group: doc1
Message Type: rp
Rule Name: d5

Application Group: doc2
Message Type: m1
Rule Name: d8

&DVH����&KDQJLQJ�DOO�UXOHV�RZQHG�E\�5(/��7(67�WR�EH�RZQHG�
E\�5(/��1(21��QRW�D�YDOLG�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30TEST
User Name for New Owner of Rules (All caps for ORACLE)
>REL30NEON

Error No: -5509
Error Msg: Unable to find user in database
104 MQSeries Integrator System Management Guide

Rules
&DVH����&KDQJLQJ�DOO�UXOHV�RZQHG�E\�5(/��1(2186(5��WR�EH�
RZQHG�E\�5(/��7(67��QRW�D�YDOLG�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2
User Name for New Owner of Rules (All caps for ORACLE)
>REL30TEST

Error No: -5509
Error Msg: Unable to find user in database

&DVH����&KDQJLQJ�DOO�UXOHV�RZQHG�E\�5(/��1(21�WR�EH�RZQHG�
E\�5(/��1(2186(5���QR�UXOHV�RZQHG�E\�FXUUHQW�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
>2
User Name for Current Owner of Rules (All caps for ORACLE)
>REL30NEON
User Name for New Owner of Rules (All caps for ORACLE)
>REL30NEONUSER2

Error No: -5519
Error Msg: No permissions were found

&DVH����/LVWLQJ�DOO�VXEVFULSWLRQV�RZQHG�E\�5(/��86(5

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 List All subscriptions Owned by User A to be Owned By
User B
99 Quit
>3
MQSeries Integrator System Management Guide 105

Chapter 4
User Name for Owner of Subscriptions (All caps for ORACLE)
>RELNEON

Application Group: a1
Message Type: rp
Subscription Name: s1

Application Group: a1
Message Type: rp
Subscription Name: s2

Application Group: a1
Message Type: rp
Subscription Name: s3

&DVH�����/LVWLQJ�DOO�VXEVFULSWLRQV�RZQHG�E\�5(/��7(67��QRW�D�
YDOLG�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned By
User B
99 Quit
>3
User Name for Owner of Subscriptions (All caps for ORACLE)
>REL40TEST

Error No: -5509
Error Msg: Unable to find user in database

&DVH�����/LVWLQJ�DOO�VXEVFULSWLRQV�RZQHG�E\�5(/��86(5���1R�
VXEVFULSWLRQV�RZQHG�E\�WKLV�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned By
User B
106 MQSeries Integrator System Management Guide

Rules
99 Quit
>3
User Name for Owner of Subscriptions (All caps for ORACLE)
>REL40USER2

Error No: -5519
Error Msg: No permissions were found

&DVH�����&KDQJLQJ�DOO�VXEVFULSWLRQV�RZQHG�E\�5(/��86(5��WR�
5(/��86(5�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned By
User B
99 Quit
>4
User Name for Current Owner of Subscriptions (All caps for
ORACLE)
>REL40USER1
User Name for New Owner of Subscriptions (All caps for ORACLE)
>REL40USER2

Error No: -5519
Error Msg: No permissions were found

&DVH�����/LVWLQJ�DOO�VXEVFULSWLRQV�RZQHG�E\�5(/��86(5�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned By
User B
99 Quit
>3
User Name for Owner of Subscriptions (All caps for ORACLE)

Application Group: a1
MQSeries Integrator System Management Guide 107

Chapter 4
Message Type: rp
Subscription Name: s1

Application Group: a1
Message Type: rp
Subscription Name: s2

Application Group: a1
Message Type: rp
Subscription Name: s3

&DVH�����&KDQJLQJ�DOO�VXEVFULSWLRQV�RZQHG�E\�5(/��86(5��WR�
5(/��7(67��QRW�D�YDOLG�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned By
User B
99 Quit
>4
User Name for Current Owner of Subscriptions (All caps for
ORACLE)
>REL40USER2

User Name for New Owner of Subscriptions (All caps for ORACLE)
>REL40TEST

Error No: -5509
Error Msg: Unable to find user in database

&DVH�����&KDQJLQJ�DOO�VXEVFULSWLRQV�RZQHG�E\�5(/��86(5��WR�
5(/��86(5����QR�VXEVFULSWLRQV�RZQHG�E\�FXUUHQW�XVHU�

$NNRDBARuleOwnership
Function to perform:
 1 List Rules Owned by a Certain User
 2 Change All Rules Owned by User A to be Owned By User B
 3 List Subscriptions Owned by a Certain User
 4 Change All subscriptions Owned by User A to be Owned By
User B
108 MQSeries Integrator System Management Guide

Rules
99 Quit
>4
User Name for Current Owner of Subscriptions (All caps for
ORACLE)
>REL40USER1

User Name for New Owner of Subscriptions (All caps for ORACLE)
>REL40USER2

Error No: -5519
Error Msg: No permissions were found

(UURU�&RQGLWLRQV
For other errors related to rules and subscriptions, refer to the Programming
Reference for NEONRules.

1R�5XOHV�IRU�2ZQHU�
Error No: -5519

Error Msg: No permissions were found

,QYDOLG�8VHU�
Error No: -5509

Error Msg: Unable to find user in database
MQSeries Integrator System Management Guide 109

Chapter 4
0LJUDWLQJ�5XOHV�

:$51,1*�
This section explains how to migrate the rules data from a NEONet Release
3.1MQSeries Integrator 1.0 database to a MQSeries Integrator 1.1NEONet
Release 4.1.x database. It is critical that you migrate formats before migrating
rules; Rules uses format data for rule definitions. For information about
format migration. See Migrating Formats.

:$51,1*�
If you are using a database where case sensitivity is irrelevant, you cannot
name components the same with only a change in case to identify them. For
example, you cannot name one rule r1 and another rule R1. In this type of
environment, you must make each item unique using something other than
case differences.

If importing components into a case-insensitive database that were exported
from a case-sensitive database, these differences will cause NNRie to fail
during import because a conflict arises when two components are named the
same with only case differences.

2YHUYLHZ
Use the NEONRules Import/Export Utility, NNRie, to export existing rules
from a MQSeries IntegratorNEONet database and import them to a MQSeries
IntegratorNEONet releaseVersion 14.1 database.

:$51,1*�
You must use the NNRie release that matches the release of the database from
which you are exporting rules. For example, use NNRie release 3.x to export
formats from a Rules 3.x database. NNRie release 4.1. can export only from a
4.1 database. Your NEONet 4.1.1 product CD-ROM contains NNRIE releases
3.1, 4.0, and 4.1.

Using NNRie, you can:
110 MQSeries Integrator System Management Guide

Rules
n Export a single rule identified by its corresponding application name,
message type, and rule name.

n Export a single subscription identified by its corresponding
application name, message type, and subscription name.

n Export entire rule sets, rules, and subscriptions identified by
corresponding application group and message type names.

n Export all message types and their rule sets identified by the message
type’s application group name.

n Export all application groups and their associated message types and
rules.

n Import a file exported by any 3.x or 4.x release of the NNRie program.

This program creates an export file that can be interchanged between
platforms. All application groups and their associated message types and
rules should be exported. The exported file can then be imported to the 14.1.1
database using NNRie releaseVersion 14.1.1.

NNRie release 4.1.1 can import a file created by exporting from a NEONet
Rules database 3.0, 3.1, 3.2, 4.0, 4.1, and 4.1.1. NNRie skips inactive rule
arguments when importing from a pre-4.1 NEONet database. NNRie release
4.1.1 cannot export from a database created before release 4.1.1. You must use
NNRie from release 3.x to export from a 3.x database. If subscription Sub1 for
Rule1 is different than Sub1 for Rule2, you are prompted to rename the
second Sub1.

3UHSDUDWLRQ

(QYLURQPHQWDO�'HSHQGHQFLHV
This utility requires the following:

1. A supported RDBMS system previously installed.

2. The Rules database schema to have been previously created.

3. The Formatter database schema to have been previously created.
MQSeries Integrator System Management Guide 111

Chapter 4
([SRUW
Export requires the following:

1. Rules data in the database created via the Rules GUI or the Rules
Management APIs.

2. Enough disk space to hold the output file. This file can be re-directed
anywhere the system supports.

,PSRUW
Import requires the following:

1. Target database (MQSeries Integrator 1.1NEONet Release 4.1.x
database) has been created and is large enough for the imported data.

2. The formats have been created via the NEONFormatter GUI, Formatter
Management APIs, or NNFie.

0LJUDWLRQ�3URFHVV
The following steps are required to migrate your Rules from a 1.03.x or 4.0
database to a 1.14.1.x database.

1. Migrate your formats.

2. Set up your environment.

3. Check the consistency of your 1.03.x or 4.0 database using the
consistency checker version of the database from which you are
exporting.

4. Export your data from the 1.03.x or 4.0 database.

5. Modify your environment for import.

6. Import your formats into the 1.14.1.x database.

7. Check the consistency of your 1.14.1.x database using the consistency
checker releaseversion 1.14.1.x.

1RWH�
The following section provides specific details about NNRie, the Rules
import/export utility. The steps required to complete a full migration of
112 MQSeries Integrator System Management Guide

Rules
formats from a 1.03.x or 4.0 database to a 4.1.x database are discussed in
detail in the Installing NEONet MQSeries Integrator Installation and
Configuration guide.

,PSRUWLQJ�DQG�([SRUWLQJ�5XOHV

115LH�
NNRie is a command line tool that you can use to export rule definitions and
orphan subscriptions, which are subscriptions that are not associated with a
rule, from a database to a file and to import the exported file into a database.

NNRie can import a NEONet 3.x and 4.x export file into a NEONet 4.1.x
database. NNRie version 4.1.x exports data only from a NEONet 4.1.x
database.

1RWH�
To use NNRie, UNIX users must have write permissions to the current
directory.

6\QWD[
NNRie ((-C [<command file name>] |
 -V |
 (-i <import file name>|-e <export file name>
 [[[-a <appname> [...]] [-m <msgname>] [...]] [-r
 <rulename>] [...]] [-S <subsname>] [...]]
 [-T [<trace file name>]]
 [-l [<conflict report file name>]]
 [-t [<inventory report file name>]]
 [-f [<failure file name>]]
 [-s <session name>]
 [-o]
 [-c <database configuration file name>])))
MQSeries Integrator System Management Guide 113

Chapter 4
2SHUDWLRQDO�$VVXPSWLRQV
n The file system supports long file names and can accept the

command line syntax described here.

n The operating system supports the concept of standard input,
standard output, and standard error stream sources and sinks.
114 MQSeries Integrator System Management Guide

Rules
3DUDPHWHUV

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

-C [<command
file>]

Optional Alternate command file. The default is
NNRie.cmd. If this option is provided,
NNRie reads command line options from
a file instead of a command line. If -C is
present, NNRie expects the other
parameters to be in the command file
named in the same format as the command
line.

-V (version) Optional Shows program version information only
and does no processing.

-i [<import file>] Mandatory for
Import

Indicates the program should import data
from the named file. This parameter is
required to import data and is mutually
exclusive with -e. This parameter may be
followed by the name of a file that contains
the import data. The referenced file must
have been created with the NNRie -e
option for a 3.x to 4.x1.0 to 1.1database.
The default file name is NNRie.exp.

-e [<export file>] Mandatory for
Export

Indicates the program should export to the
named file. This parameter is required to
export data, and is mutually exclusive
with -i. This parameter may be followed
by the name of a file to hold the export
data. The default file name is NNRie.exp.

-s <session
name>

Optional The session name corresponding to the
session identifier in the NEONetMQSeries
Integrator configuration file (See the -c
option below). The default session tag is
“nnrmie”.
MQSeries Integrator System Management Guide 115

Chapter 4
-o (overwrite
flag)

Optional The default behavior is off (do not
overwrite). If this parameter is present
during export, it overwrites the export file.
If this parameter is present during import,
and a rule or subscription defined in the
import file already exists in the importing
database, the old rule is overwritten with
the new definition if you have update
permission. If you do not have update
permission, an error is noted and the rule
is replaced. If not overwriting rules, any
rule that cannot be processed because it
already exists in the importing database is
noted.

-c <config file> Optional Indicates the name of the
NEONetMQSeries Integrator
configuration file the program should read
to load its session data for access to a
database. The default configuration file is
sqlsvses.cfg.

-a <application
group>

Optional Identifies the application group to export.
If a value for this parameter is not
identified, all application groups are
exported. This parameter can be repeated
as many times as necessary to define
multiple application groups to export.

-m <message
type>

Optional Specifies the message type to export. This
parameter also requires the -a parameter
to be set. The default behavior is to export
all message types within the specified
application group. This parameter can be
repeated as many times as necessary to
define multiple message types within the
same application group.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
116 MQSeries Integrator System Management Guide

Rules
-S <subscription
name>

Optional Specifies the name of the subscription to
export. This parameter also requires the -
e, -a, and -m parameters to be set. This
parameter can be repeated as many times
as necessary to export multiple
subscriptions.

-r <rule name> Optional Specifies the name of the rule to export.
This parameter also requires the -a and -m
parameters to be set. The default behavior
is to export all rules within the specified
application group and message type. This
parameter can be repeated as many times
as necessary to define multiple rules
within the same application group and
message type.

-t [<inventory
filename>]

Optional Creates an inventory of an export file
in NNRie.log (does no processing).

-T [<trace file
name>]

Optional Specifies the name of the trace file.
Default trace file is NNRieT.log.

-O Optional Completely overwrites imported
message types (import only). The
default behavior is off (do not overwrite).

-l [<conflict
report
filename>]

Optional Reports on any import conflicts. The
default behavior is off (does no
processing). Default file is NNRie.log.

-g Optional Ignore and do not import any
conflicting rules and subscriptions.

-n Optional Implement interactive conflict
resolution. The default behavior is on.
MVS default is off.

-q <comments
in double
quotes>

Optional Includes comments in an export file.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 117

Chapter 4
1RWH�
If there are no -a, -m, -r, or -S options, the entire database exports.

,PSRUW�6\QWD[

&DVH����,PSRUW�D�5XOH

$ NNRie -i [<file name>] [-s <session name>]

If the file fails to import, an error message is generated and
NNRie errors out.

([SRUW�6\QWD[
Export functionality is based on the type of parameters that are passed into
the NNRie program. Each case listed below describes different ways to use
the parameters to export information.

&DVH����([SRUW�DQ�HQWLUH�GDWDEDVH

$ NNRie -e [<export file name>] [-s <session name>]

&DVH����([SRUW�D�VLQJOH�DSSOLFDWLRQ�JURXS

 $ NNRie -e [-a <app group name>]

The application group name exports and then each message type within the
application group exports. The message type export includes all subscriptions

-Q <comments
file name>

Optional Includes a file of comments in an
export file. No default.

-f [<failure file>] Optional Specifies the failure file that contains
lines not imported. The default file is
NNRie.err.

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ
118 MQSeries Integrator System Management Guide

Rules
and rules in the specific application group/message type. This procedure is
followed for each application group if multiple application group names are
given.

&DVH����([SRUW�D�PHVVDJH�W\SH�IRU�DQ�DSSOLFDWLRQ�JURXS

$ NNRie -e [-a <app group name>][-m <msgtype name>]

The application group name and message type name exports, then the rules
export with the links to subscriptions. All subscriptions in the application
group/message type export, whether they are linked to rules or not. If
multiple message type names are given, the subscriptions and rules for each
message type export.

&DVH����([SRUW�D�VLQJOH�UXOH

$ NNRie -e [-a <app group name>] [-m <msgtype name>] [-r <rule
name>]

The rule’s application group name and message type name exports. All
subscriptions linked to the rule export with permissions, actions, and options
and then the rule information exports with permissions, expressions, and
links to subscriptions. If multiple rule names are given, the subscriptions
linked to each rule export with no duplicates, and then the rules export.

&DVH����([SRUW�PRUH�WKDQ�RQH�UXOH

$ NNRie -e [-a <app group name>][-m <msgtype name>][-r <rule
name> <rule name>...]

&DVH����([SRUW�D�VLQJOH�VXEVFULSWLRQ

$ NNRie -e [-a <app group name>][-m <msgtype name>][-S
<subscription name>]

No rule information exports. The application group and message type name
information exports and then the subscription information exports without
the rule name. If multiple subscriptions are given, each subscription exports.
MQSeries Integrator System Management Guide 119

Chapter 4
5HPDUNV
NNRie shows a brief usage reminder if it is entered with no parameters. If the
-V parameter is used, only the version and copyright information displays.

The semantics of any file name are operating system dependent and can be
specified as a base name, a fully qualified path and file name, or any other
legal specification allowed by the operating system or its shell utility. If
specified as a simple base name, the program creates or reads the file relative
to the directory the user is in when the program was executed.

Subscriptions are added to an Application Group/Message Type (Rule Set),
and then they can be associated with multiple rules in the same Application
Group/Message Type. The rule name is no longer used to identify
subscriptions, so data migration may require subscription names to be
generated for uniqueness. The user is prompted to generate the new
subscription names.

:$51,1*�
If subscription conflicts exist, NNRie goes into interactive mode. Do not leave
NNRie running unattended, unless you specify to overwrite existing rules
and subscriptions with -o or message types with -O.

6XPPDU\�RI�1HZ�&RPPDQG�/LQH�)XQFWLRQV
All of the new functions below are optional.

To overwrite component by component, enter the following syntax:

NNRie -i <filename> -o

To run the batch Ignore/Skip conflict resolution, enter the following:

NNRie -i <filename> -g

To run the interactive conflict resolution option, enter the following:

NNRie -i <filename> -n

To run the “check only”, conflict reporting only option, enter the following:
120 MQSeries Integrator System Management Guide

Rules
NNRie -i <filename> -l (Writes to NNRie.log)
NNRie -i <filename> -l MyCLog.txt (Writes to MyCLog.txt)

To import and totally overwrite the application group message type pair in
the database, enter the following syntax:

NNRie –i NNRie.exp –O

To trace the command that is about to be executed and save to a log file, enter
the following:

NNRie –i NNRie.exp –T (Writes to NNRieT.log)
NNRie –i NNRie.exp –T trace.log (Writes to trace.log)

To produce an inventory of an export file, enter the following:

NNRie –t NNRie.exp (Writes to NNRie.log)
NNRie –i NNRie.exp –t inv.log (Writes to inv.log)

To add comments to the header of the Export file, enter the following:

NNRie -e <filename> -q "additional comment between quotes"

To add a file of comments to the header of the Export file, enter the following:

NNRie -e <filename> -Q <comment file>

&RQIOLFW�5HVROXWLRQ

The added conflict resolution functionality allows you more flexibility when
importing to a database already containing data. You can overwrite all or no
rules and subscriptions as with past release. The new functionality allows
you to go into an interactive mode, where you can choose to rename or
overwrite heterogeneous rules/subscriptions. You can change the overwrite
mechanism to overwrite the rule/ subscription as long as you have update
permission. Ownership will no longer be required.

To implement the batch Overwrite conflict resolution, enter:

NNRie -i <filename> -o

To implement the batch Ignore/Skip conflict resolution, the syntax is:

NNRie -i <filename> -g
MQSeries Integrator System Management Guide 121

Chapter 4
To implement the interactive conflict resolution option, the syntax is:

NNRie -i <filename> -n

To implement the conflict report option, the syntax is:

NNRie -i <filename> -l <optional filename>

If no conflict resolution option is chosen, the interactive resolution is used as
the default.

The user should be able to replace an entire application group/message type
pair by entering the following command:

Example: NNRie –i NNRie.exp –O

This command deletes each message type from the database that it
encounters in the import file and all the Rules and subscriptions under it
before importing new information. If it fails to delete because of rights
violations or other problems, it returns an error message and does not import
the new information.

1RWH�
If NNRie is not designed to import or export databases that are corrupt or
have unresolved issues with the data.

7URXEOHVKRRWLQJ�,PSRUWDWLRQ�3UREOHPV

If NNRie is unable to import an application group, message type, rule or
subscription, the corresponding import information is written to the
NNRie.err file. The NNRie.err file can be modified to fix the problem with
the component and then used for reimportation. The reason for the
component’s failure to import is written to the NNRie.log file.

Refer to the documentation on the import file format for instructions on
editing the NNRie.err file if it is version 1.14.1x. If the export file for
122 MQSeries Integrator System Management Guide

Rules
importation was released prior to version 4.1x, contact technical support to
resolve the import problem.

1RWH�
The information in NNRie.err is not guaranteed to resolve your importation
problem; rather, it should be viewed as a resource that will help you
determine where the problem is in your import file.

115LH�ORJ

All conflicts and resolutions are reported to the NNRie.log file.

Conflict with Subscription: ’S3’

 App Name: ’MsgTest’

 Msg Name: ’MsgTest’

 Subs in import file:

 Owner: 'Public’

 Comment: 'New Checking’

 Subs in Database:

 Owner: 'PUBLIC'

 Comment: ''

 Conflict Exists in : Comment

2SWLRQDO�7UDFH

This log file contains a progress report of the import. The Trace.log helps to
pinpoint import problems.

Example: NNRie –i NNRie.exp –T trace.log

This command shows, line by line, what will be imported. If a process fails,
the log stops within the errant process.
MQSeries Integrator System Management Guide 123

Chapter 4
7UDFH�/HWWHUV

The following letters define import and export components:

n A = Application group

n M = Message Type

n R = Rule

n n = permission (either rule or subscription)

n S = subscription - written to file or added to database

n C = action - written to file or added to database

n P = option - written to file or added to database

n s = subscription - read from file

n c = action - read from file

n p = option - read from file

n l =Subscription linked to a rule in the database

,QYHQWRU\�([SRUW�)LOH

The inventory export file provides a tool to determine the items contained
within an export file. The default log file is NNRie.log.

Example NNRie –t NNRie.exp (Writes to NNRie.log)
Example NNRie –i NNRie.exp –t MyInv.log (Writes to MyInv.log)

,QYHQWRU\�5HSRUW�RI�115LH�([SRUW�)LOH��QQULH�H[S�

App Group: App1 Msg Type: AccDataIn Eval Type: NEONET_FORMATTER

 Sub: SendFeeQ Comment:

 Action: reformat

 Option Name: INPUT_FORMAT Value: AccDataIn

 Option Name: TARGET_FORMAT Value: AccDataOut

 Action: putqueue

 Option Name: OPT_TARGET_QUEUE Value: FeeQ
124 MQSeries Integrator System Management Guide

Rules
 Option Name: OPT_MSG_TYPE Value: AccDataOut

 Owner: gfullerton

 Sub: SendPromoQ Comment:

 Action: reformat

 Option Name: INPUT_FORMAT Value: AccDataIn

 Option Name: TARGET_FORMAT Value: AccDataOut

 Action: putqueue

 Option Name: OPT_TARGET_QUEUE Value: PromoQ

 Option Name: OPT_MSG_TYPE Value: AccDataOut

 Owner: gfullerton

 Rule: MinBalCheck

 Owner: gfullerton

 Expr: (AccOpenDate DATETIME>= 19970601120000 | AccType STRING=
FEE) & Balance INT< 200

 Rule/Sub Link: Rule: MinBalCheck Sub: SendFeeQ

 Rule: NoMinCheck

 Owner: gfullerton

 Expr: AccType STRING= FREE & AccOpenDate DATETIME<
19970601120000 & Balance INT>= 200

 Rule/Sub Link: Rule: NoMinCheck Sub: SendFeeQ

 Rule: CrazyRule

 Owner: gfullerton

 Expr: AccType EXIST

 Rule/Sub Link: Rule: CrazyRule Sub: SendFeeQ

 Rule: RealCrazyRule

 Owner: gfullerton

 Expr: AccOpenDate EXIST
MQSeries Integrator System Management Guide 125

Chapter 4
 Rule/Sub Link: Rule: RealCrazyRule Sub: SendFeeQ

 Rule/Sub Link: Rule: RealCrazyRule Sub: SendPromoQ

App Group: App1 Msg Type: AccDataIn2 Eval Type:
NEONET_FORMATTER

 Rule: Rule1

 Owner: gfullerton

 Expr: AccType EXIST

App Group: MsgTest Msg Type: MsgTest Eval Type:
NEONET_FORMATTER

 Sub: AS1 Comment: "None"

 Action: reformat

 Option Name: INPUT_FORMAT Value: MsgTest

 Option Name: TARGET_FORMAT Value: F1out

 Action: putqueue

 Option Name: OPT_TARGET_QUEUE Value: Q2Out

 Option Name: OPT_MSG_TYPE Value: MsgTest

115LH�)LOH�/D\RXW

2YHUYLHZ

By removing NNRie encryption, you can access and interpret NNRie files
with a text editor without having to write an application or utility. In prior
releases, the only out-of-the-box access to the Rules database configurations
have been through the Rules GUI. Now, with the export files in a readable
form, you can write scripts that create Rules components.

Acting on NNRie error reports for imported Rules components had required
the use of the Rules GUI and customer support. Now, because the import files
126 MQSeries Integrator System Management Guide

Rules
are not encrypted, you can navigate and make changes within the NNRie
export files.

:$51,1*�
The Rules GUI should be used instead of modifying the raw export files.
However, this section provides the necessary information for users who are
experienced with import/export formats.

1RWH�
Encryption has been removed from NNFie as well.

115LH�)LOH�/D\RXW�*XLGHOLQHV�

The following items will help you understand and navigate through a typical
NNRie file layout.

n The first line must contain only an R for Rules.

n The second line must convey the version number, for example, 10001,
1.14.1.x.

n Each line after the first one must start with the Rule Component type
code defining the layout for the line.

n Commas are the field delimiters. Do not put spaces around commas.

n If a comma is used within a field, it needs to be prefaced with a
backslash.

n Components of an application group/message type must be
rendered in the following order:

– application group

– message type

– subscription definitions

– rules definitions

n Subscriptions must be listed before the rules in the file.

n All rules components must start with the definition (for example,
Rules 10004 and Subscriptions 10007).
MQSeries Integrator System Management Guide 127

Chapter 4
General Format:

R
Version
App1
Msg1 (in App1)
Sub1 (in App1/Msg1)
Action 1 (in Sub1)
Option1 (in Action1)
Permission1 (for Sub1)--only owner and update are listed
Sub2
Action1
Option1
Permission1--owner
Permission2--update
Rule1 (in App1/Msg1)
Permission1 (for Rule1)--only owner and update are listed
Expression (for Rule1)
SubscriptionLink 1 (for Rule1)
Msg2 (in Appl)
}
App2
Msg1 (in App2)
}

Msg2 (in App2)
}

�([DPSOH�RI�([SRUW�)LOH

)LHOG���)LHOG���)LHOG���)LHOG���)LHOG���)LHOG����

Rule
Component
type code

Application
group

Message
Type

 Rule name
or message
evaluation
type

Subscription
name or
property/
options for
rules

Properties
pertaining to
rule or
subscription
128 MQSeries Integrator System Management Guide

Rules
Format Example:

R

10001,4.1.x

10002,sja

10003,sja,InFlat, NEONET_FORMATTER

10007,sja,InFlat,,s1,,1998/07/14-09:44:43.0,1998/07/14-09:44:43.0,1

10008,sja,InFlat,,s1,putqueue,1

10009,sja,InFlat,,s1,putqueue,1,OPT_TARGET_QUEUE,1,HitQ

10009,sja,InFlat,,s1,putqueue,1,OPT_MSG_TYPE,2,InFlat

10012,sja,InFlat,,s1,RUL40RUTH,Owner,Granted

10012,sja,InFlat,,s1,RUL40RUTH,Update,Granted

10007,sja,InFlat,,s2,,1998/07/17-08:58:50.0,1998/07/17-08:58:50.0,1

10008,sja,InFlat,,s2,putqueue,1

10009,sja,InFlat,,s2,putqueue,1,OPT_TARGET_QUEUE,1,HitQ

10009,sja,InFlat,,s2,putqueue,1,OPT_MSG_TYPE,2,InFlat

10012,sja,InFlat,,s2,RUL40RUTH,Owner,Granted

10012,sja,InFlat,,s2,RUL40RUTH,Update,Granted

10004,sja,InFlat,r1,1,0,0,1

10010,sja,InFlat,r1,PUBLIC,Update,Granted

10010,sja,InFlat,r1,RUL40RUTH,Owner,Granted

10010,sja,InFlat,r1,RUL40RUTH,Update,Granted

10011,sja,InFlat,r1,F1 NOT_EXIST ,1998/07/17-08:59:19.0,1998/07/17-
08:59:19.0

10013,sja,InFlat,r1,s1

10004,sja,InFlat,r2,1,0,0,1

10010,sja,InFlat,r2,PUBLIC,Update,DenyAll
MQSeries Integrator System Management Guide 129

Chapter 4
10010,sja,InFlat,r2,RUL40RUTH,Owner,Granted

10010,sja,InFlat,r2,RUL40RUTH,Update,Granted

10011,sja,InFlat,r2,F1 EXIST ,1998/07/17-08:59:20.0,1998/07/17-08:59:20.0

10013,sja,InFlat,r2,s1

10013,sja,InFlat,r2,s2

5XOH�&RPSRQHQW�7\SHV

��������,PSRUW�([SRUW�9HUVLRQ

Example:

10001,1.14.1x

��������$SSOLFDWLRQ�*URXS

Example:

10002,sja

10001 Component type

1.14.1x Version number

10002 Component type

sja Application group
130 MQSeries Integrator System Management Guide

Rules
��������0HVVDJH

Example:

10003,sja,InFlat, NEONET_FORMATTER

��������6XEVFULSWLRQ

Example:

10007,sja,InFlat,,s2,,1998/07/17-08:58:50.0, 1998/07/17-08:58:50.0,1

10003 Component type

sja

Application group

InFlat Message type name

NEONET_FORMATTER Evaluation type. This message
type refers to a NEONet input
format. For 4.1.x this is the only
valid evaluation type.

10007 Component type

sja Application group

InFlat Message type

Null

s2 Subscription name, which
must be preceded and
followed by null values
delimited by commas.

Null

1998/07/17-08:58:50.0 Enable date
MQSeries Integrator System Management Guide 131

Chapter 4
��������$FWLRQ

Example:

10008,sja,InFlat,,s2,putqueue,1

��������2SWLRQ

Example:

10009,sja,InFlat,,s2,putqueue,1,OPT_TARGET_QUEUE,1,HitQ

 1998/07/17-08:58:50.0 Disable date

1 Active flag.
1 is active; 0 is inactive.

10008 Component type

sja Application group

InFlat Message type

Null

s2 Subscription name, which
must be preceded by a null
value delimited by commas.

putqueue Subscription action name

1 Action sequence number

10009 Component type

sja Application group

InFlat Message type

Null
132 MQSeries Integrator System Management Guide

Rules
��������5XOH�3HUPLVVLRQ

Example:

10010,sja,InFlat,r1,PUBLIC,Update,Granted

s2 Subscription name, which
must be preceded by a null
value delimited by commas.

putqueue Action name

1 Action sequence number

OPT_TARGET_QUEUE Option name

1 Option sequence number

HitQ Option value

10010 Component type

sja Application group

InFlat Message type

r1 Rule name

PUBLIC Permission user, may be
PUBLIC or individual user.

Update Permission assigned to user for
this instance.
(Update/Owner)

Granted Permissions assigned to
PUBLIC for this rule.
(Granted/Deny All)
MQSeries Integrator System Management Guide 133

Chapter 4
��������5XOH�([SUHVVLRQV

Example:

10011,sja,InFlat,r1,F1 NOT_EXIST ,1998/07/17-08:59:19.0, 1998/07/17-
08:59:19.0

10011 Component type

sja Application group

InFlat Message type

r1 Rule name

F1 NOT_EXIST Expression for r1

1998/07/17-08:59:19.0 Enable date

1998/07/17-08:59:19.0 Disable date
134 MQSeries Integrator System Management Guide

Rules
��������6XEVFULSWLRQ�3HUPLVVLRQ

Example:

10012,sja,InFlat,,s2,RUL40RUTH,Update,Granted

��������5XOH

Example:

10004,sja,InFlat,r1,1,0,0,1

10012 Component type

sja Application group

InFlat Message type

Null

s2 Subscription name

RUL40RUTH User, may be PUBLIC or
individual username

Update Permission assigned to
RUL40RUTH for this instance.
(Update/Owner)

Granted Permissions assigned to
RUL40RUTH for this instance.
(Granted/DenyAll)

10004 Component type

sja Application group

InFlat Message type

rl Rule name
MQSeries Integrator System Management Guide 135

Chapter 4
��������5XOH�±�6XEVFULSWLRQ�$VVRFLDWLRQ

Example:

10013,sja,InFlat,r1,s1

1 Number of arguments

0 This field is not used but must
exist.

0 This field is not used but must
exist.

1 Active flag.
1 is active; 0 is inactive.

10013 Component type

sja Application group

InFlat Message type

r1 Rule name

s1 Subscription name
136 MQSeries Integrator System Management Guide

Rules
7HVWLQJ�5XOHV�

5XOHV�7HVW�3URJUDPV�
The MQSIputdata, MQSIgetdata, and ruletest programs are provided for
testing the MQSeries Integrator Rules daemon program. In addition, the
NNRTrace program is supplied to provide a debugging utility for NEONRules.
These test programs are explained in this section.

046,SXWGDWD�DQG�046,JHWGDWD�
The putdata program can be used to put data onto a MQSeries Integrator
Rules daemon queue in such a way that the daemon can evaluate the
message. The getdata program can be used to get or retrieve messages from a
MQSeries Integrator Rules daemon output queue.

1RWH�
MQSIputdata and MQSIgetdata can be used with queues that are not related
to the MQSeries Integrator Rules daemon.

046,SXWGDWD

6\QWD[

MQSIputdata.exe -p <parameter file name>

1RWH�
The .exe extension in the preceding syntax appears only on Windows NT.

'HVFULSWLRQ

The MQSIputdata process reads messages from a file and puts the messages
on the queue specified in the parameter file with OPT_APP_GRP and
OPT_MSG_TYPE. Optional parameters for put control, such as
numRecordsToRead and recordSeparator, allow you to read multiple records
from a single file and control how the records are read and committed.

This process sets the two options on the message that the MQSeries Integrator
Rules daemon expects, specifically the application group and message type.
MQSeries Integrator System Management Guide 137

Chapter 4
Attributes, replytoQ and replyToQmgr, in the MQMD structure can be
explicitly set by specifying them in the mpf file. This allows you to bypass the
MQSeries Integrator Rules daemon and directs the reply messages to
replyToQ.

2SHUDWLRQDO�$VVXPSWLRQV

n Queue Manager is up and running.

n Queues have been created.

1RWH�
Error message descriptions and responses are located in MQSeries Integrator
Rules Daemon Error Messages on page 219.

3DUDPHWHUV

The parameters described in the following tables are used to configure
MQSIputdata via a parameter file. The parameters are tunable, meaning that
their values can be adjusted to customize control and performance to your
environment. The parameter file allows you to enable and disable optional
features and to set values of some required features. To view a tunable
parameter file example, see Example on page 144. A skeleton parameter file is
provided with MQSeries Integrator in /examples/MQSIputdata.mpf in your
MQSI directory.

The MQSIputdata parameters are divided into the following groups:
PutControl, PutMessage, and Put Options. Within the parameter file, the
parameters are presented in the same groupings. The group heading must be
displayed in the parameter file using square brackets.

3XW�&RQWURO

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

inputFileName Optional inputFileName is the file containing
the message data.

queueName Mandatory Name of the queue where the
message will by put.
138 MQSeries Integrator System Management Guide

Rules
queueManagerName Mandatory Name of the queue manager that
owns the queue.

replyToQ Optional Name of the queue where the reply
message is sent. Parameter is not
required when replyToQ is the same
as queueName.

replyToQmgr Optional Name of the queue manager that
owns the replyToQ. Not required
when replyToQmgr is the same as
queueManagerName.

logFileName Optional Name of the log file. If not specified,
messages are written to stderr.

logLevel Optional Amount of detail entered in the
LogFile.
Default = 0.
Values:
3-log only fatal
2-log errors and fatal errors
1-log warnings, errors, and fatals
0-log informationals, warning, errors,
and fatals

maxUserDataLength Mandatory Maximum message size.

messageCount Mandatory Number of messages to put. Default is
one (1).

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 139

Chapter 4
transCommitSize Optional The integer number of records to be
committed at one time. A value of
zero (0) indicates commit all records
at one time. If the value is zero (0) or
more than maxTransCommitSize (an
MQSeries queue manager setting), as
set for the queue manager, the value
defaults to maxTransCommitSize. For
additional information about setting
maxTransCommitSize, see the
MQSeries documentation.

variableLength
Record

Optional Value NO indicates fixed length
records are present. Value YES
indicates variable length records are
present in the file. If YES,
recordSeparator is a required
parameter and inputFileName must
be specified.

segmentation
Allowed

Optional Controls the segmentation of
messages being put. Value, YES,
allows segmentation. The default
value, NO, does not allow
segmentation. (Supported only for
MQSeries, version 5.0; not supported
for messages having header format
MQHRF)

If value is NO, make sure that the
message length does not exceed
maxUserDataLength.

recordSeparator Optional The ascii character string to be used to
determine the end of each record in a
file. Parameter is required if
variableLengthRecord is set to YES.
This parameter is ignored if
variableLengthRecord is set to NO.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
140 MQSeries Integrator System Management Guide

Rules
3XW�0HVVDJH

numRecordsToRead Optional The integer number of records to load
from the file. The default, ALL,
indicates that all records are to be
loaded.

showStatistics Optional Binary value indicating whether or
not statistical information should be
output. Value of one (1) indicates that
the message statistics should be
output; zero (0) indicates that the
message statistics should not be
output.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

format Mandatory Populate the format field of the
message descriptor with the indicated
value.

applIdentityData Optional Populate the applIdentityData field of
the message descriptor with the
indicated value. Use only when the
message descriptor contains an
applIdentityData field .

putApplName Optional Populate the putApplName field of
the message descriptor with the
indicated value. Use only when the
message descriptor contains a
putApplName field.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 141

Chapter 4
applOriginData Optional Populate the applOriginName field of
the message descriptor with the
indicated value. Use only when the
message descriptor contains an
applOriginName field.

expiry Optional Populate the expiry field of the
message descriptor with the indicated
value.

persistence Optional Populate the persistence field of the
message descriptor with the indicated
value.
Valid values:
MQPER_PERSISTENT = 1
MQPER_NOT_PERSISTENT = 0
MQPER_PERSISTENCE_AS_
Q_DEF = 2

messageType Optional Populate the messageType field of the
message descriptor with the indicated
value.
Valid values:
MQMT_REQUEST = 1
MQMT_REPLY = 2
MQMT_REPORT = 4
MQMT_DATAGRAM = 8

includeHeader Optional Specifies whether to include the RF
header with the inbound message.
Value of one (1) indicates that the RF
header should be included and Put
Options used; zero (0) indicates that
the RF header should not be included.

dataformat Optional Specifies how to populate the
MQRFH.format field. This parameter
is valid only if includeHeader = 1.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
142 MQSeries Integrator System Management Guide

Rules
3XW�2SWLRQV

5HPDUNV

MQSeries Integrator uses parameter files of the following structure:

1RWH�
You can not have trailing whitespace after a group identifier because the file
fails to parse correctly. You must have a return immediately following the
closing bracket of the group identifier. An example of a group identifier as
shown below is: [Group1]

[Group1]
field 1 = value 1
field 2 = value 2
.
.
.

[Group2]
field 1 = value 1
field 2 = value 2
.
.
.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

OPT_APP_GRP Optional Application group associated with the
message (128-byte maximum).

OPT_MSG_TYPE Optional Message type associated with the
message (128-byte maximum).

User-Defined
Option

Optional User-defined, application-specific
option value (128-byte maximum).

includeHeader must be set to a value other than zero (0) for these Put Option
settings to be used.
MQSeries Integrator System Management Guide 143

Chapter 4
[Group3]
field 1 = value 1
field 2 = value 2
.
.

1RWH�
The spaces before and after the "=" are required.

([DPSOH

[Put Control]
Name of the file which contains the message data
If not specified, an empty/null data file is assumed
inputFileName = putdata.input

Name of the queue where the message will be put
queueName = myqueue

Name of the queue manager that owns the queue
queueManagerName = myqmgr

Name of the queue where the reply message will be sent.
Comment the following line if the replyToQ is the same as
queueName
replyToQ = myrtq

Name of the queue manager that owns the replyToQ. Comment the
following line if the replyToQmgr is the same as
queueManagerName.
replyToQmgr = myrtqmgr

Name of the log file name. Comment the following line if the
error/warning information is to be logged into stderr.
logFileName = putdata.log

"log level" used to control message logging to the file.
Valid settings are:
3-log only fatal errors
2-log errors, and fatal errors
3-log warnings, errors and fatals
144 MQSeries Integrator System Management Guide

Rules
4-log informational, warnings, errors, and fatals
logLevel = 0

Maximum permissible record size in case of variable length
records. Record size in case of fixed length records.
maxUserDataLength = 40000

Number of times each message to put in the queue. An integer
value must be specified.
messageCount = 1

Transaction commit size, 0 indicates commit all the records
once
transCommitSize = 30

A value YES indicates variable length records are present in
the file. A value NO indicates fixed length records are
present in the file.
variableLengthRecord = YES

segmentationAllowed, YES if allowed, NO if not allowed
segmentationAllowed = YES

Record separator string (ascii). Used in conjunction with
variable length records to indicate the end of record. Its
value must be specified, if variableLengthRecord is YES.
Otherwise its value is ignored.
recordSeparator = xxxx

Number of records to load from the file, ALL if all records
are to be loaded
numRecordsToRead = ALL

Binary value indicating whether of not statistics information
should be output. 1 indicates yes, 0 indicates no.
showStatistics = 1

[Put Message]

Populate the format field of the message descriptor with this
value.
format = MQHRF
MQSeries Integrator System Management Guide 145

Chapter 4
Populate the ApplIdentityData field of the message descriptor
with this value. The following line to be commented if no
ApplIdentityData field is present in the message descriptor.
applIdentityData = xxx

Populate the PutApplName field of the message descriptor with
this value. The following line to be commented if no
PutApplName field is present in the message descriptor.
putApplName = MQSIputdata

Populate the ApplOriginData field of the message descriptor
with this value. The following line to be commented if no
ApplOriginData field is present in the message descriptor.
applOriginData = xxx

Populate the expiry field of the message descriptor with this
value.
expiry = -1

Populate the persistence field of the message descriptor with
this value.
Valid values for persistence
MQPER_PERSISTENT 1
MQPER_NOT_PERSISTENT 0
MQPER_PERSISTENCE_AS_Q_DEF 2
persistence = 0

Populate the message type field of the message descriptor
with this value.
Valid values for message type:
MQMT_REQUEST 1
MQMT_REPLY 2
MQMT_REPORT 4
MQMT_DATAGRAM 8
messageType = 8

Specify whether or not to include the RF header
with the inbound message 1 = yes, 0 = no
includeHeader = 1

Specify how to populate the MQRFH.Format field.
146 MQSeries Integrator System Management Guide

Rules
This parameter only takes effect if includeHeader == 1.
dataFormat = MQSTR

[Put Options]

This group defines the options which will be attached to the
to the message before it is sent. The parameters in this
group only take effect if includeHeader = 1.
OPT_APP_GRP = mqsiAG
OPT_MSG_TYPE = mqsiIF

046,JHWGDWD

6\QWD[

MQSIgetdata.exe -p <ParameterFileName>

1RWH�
The .exe extension in the preceding syntax appears only on Windows NT.

'HVFULSWLRQ

The getdata program retrieves messages and options from an MQSeries
Integrator Rules Daemon input queue and puts the message to an output file
specified in the tunable parameter file, MQSIputdata.mpf.

2SHUDWLRQDO�$VVXPSWLRQV

n Queue manager is up and running.

n Queues have been created. The MQSI getdata program expects that
the queue name defined in the tunable parameter file exists, is
enabled, and has messages on it.

1RWH�
Error message descriptions and responses are located in MQSeries Integrator
Rules Daemon Error Messages on page 219.
MQSeries Integrator System Management Guide 147

Chapter 4
3DUDPHWHUV

*HW�&RQWURO

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

outputFileName Optional Name of the file to contain messages.
Default is stderr. Required if
outputToFile is set to 1.

queueName Mandatory Name of the queue holding the
messages.

queueManagerName Mandatory Name of the queue manager that
owns the queue.

maxUserDataLength Mandatory Indicates the maximum message size
that the application can accept.

logFileName Optional Specifies the name of the log file for
error/warning/information
reporting. If not specified, logging
defaults to stderr.

logLevel Optional Amount of detail entered in the
LogFile.
Default = 0.
Values:
3-log only fatal
2-log errors and fatal errors
1-log warnings, errors, and fatals
0-log informationals, warning, errors,
and fatals

messageId Optional Identification of the message to get. If
this value and the correlID are not
defined, the application gets the next
available message from the queue.
This field uses an encoded hex
representation for the messageId.
148 MQSeries Integrator System Management Guide

Rules
correlId Optional Correlation ID of the message to get. If
this value and messageID are not
defined, the application gets the next
available message from the queue.
The correlID field uses an encoded
hex representation of a binary value.

messageCount Optional Maximum number of the messages to
get. The application runs until
messageCount messages have been
taken off the queue or until the queue
is empty.

commitSize Optional The integer number of records to be
committed at one time. Zero (0) value
causes all records to be committed at
one time.

getTimeout Optional The getTimeout value indicates the
maximum amount of time to wait for
a message to arrive before the
application reports that a queue is
empty. Upon such a report, the
application exits. getTimeout values
are measured in milliseconds.

showStatistics Optional Shows statistics about messages taken
of the queue. 1 indicates that this
feature is enabled; zero indicates that
this feature is disabled.

outputToFile Optional Indicates whether or not an output
should be sent to a file. Value of zero
(0) indicates that the output should be
sent to stderr. Value of one (1)
indicates that output should be sent to
the file specified by outputFileName .

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 149

Chapter 4
showDescriptor Optional Indicates whether or not the message
descriptor data should be output. 1
indicates that the message descriptor
data should be output; zero indicates
that the message descriptor data
should not be output.

showData Optional Indicates whether or not the message
data should be output. 1 indicates that
the message data should be output;
zero indicates that the message data
should not be output.

rollback Optional Indicates whether or not the messages
should be rolled back after the get
operation. 1 indicates that the
messages should be rolled back; zero
indicates that the messages should not
be rolled back.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
150 MQSeries Integrator System Management Guide

Rules
5HPDUNV

MQSeries Integrator uses parameter files of the following structure:

1RWH�
You can not have trailing whitespace after a group identifier because the file
fails to parse correctly. You must have a return immediately following the
closing bracket of the group identifier. An example of a group identifier as
shown below is: [Group1]

[Group1]
field 1 = value 1
field 2 = value 2
.
.
.

[Group2]
field 1 = value 1
field 2 = value 2
.
.
.

[Group3]
field 1 = value 1
field 2 = value 2
.
.

1RWH�
This spaces before and after the "=" are required.
MQSeries Integrator System Management Guide 151

Chapter 4
([DPSOH

[Get Control]
Name of the file to put the message in.
outputFileName = getdata.output

Name of the queue to get the message from.
queueName = myqueue

Name of the queue manager that owns the queue.
queueManagerName = myqmgr

Maximum message size that the application can get.
maxUserDataLength = 40000

Name of the log file. Comment the following line if the
error/warning information is to be logged into stderr.
logFileName = getdata.log

"log level" used to control message logging to the file.
Valid settings are:
3-log only fatal errors
2-log errors, and fatal errors
3-log warnings, errors and fatals
4-log informational, warnings, errors, and fatals
logLevel = 0

ID of the message to get. If this value is not defined
and correlID is not defined, the application gets the
next available message from the queue. Notice that this
field uses an encoded hex representation for the messageId.
messageId = 414D51205141514D202020202020202034EA17130000030D

Correlation ID of the message to get. If this value is
not defined and messageID is not defined, the application
gets the next available message from the queue. The
correlID field uses an encoded hex representation of a
binary value.
correlId =

Maximum number of messages to get. The application will
run until messageCount messages have been dequeued or
until the queue is empty.
152 MQSeries Integrator System Management Guide

Rules
messageCount = 3000

Transaction commit size, 0 indicates commit all the
records once
commitSize = 0

Maximum amount of time to wait for a message to arrive
before the application reports a queue empty and exits.
As of MQSeries version 5, the units of this timeout value
are milliseconds.
getTimeout = 0

The following entries are binary attribute indicators
1 indicates that the feature should be enabled. 0
indicates that the feature should be disabled.
Show statistics about dequeued messages.
showStatistics = 1

Should the output be sent to a file. 0 indicates that
output should be sent to stderr.
outputToFile = 1

Should the message descriptor data be output.
showDescriptor = 1

Should the message data be output.
showData = 1

UXOHWHVW�
The ruletest program reads a message from a file and evaluates the message
using the Rules APIs. This test program does not use Formatter to execute
subscriptions.

6\QWD[
ruletest -i <input file name> -m < message type> -a
<application group name> [-v] [-?]
MQSeries Integrator System Management Guide 153

Chapter 4
'HVFULSWLRQ

The ruletest program reads a message from a file and evaluates the message
using the application group/message type defined on the command line.
After evaluation, subscriptions are retrieved as they would normally be
retrieved and output to the screen, but not executed.

This program does not execute subscriptions using NEONFormatter.

2SHUDWLRQDO�$VVXPSWLRQV

n A complete and valid installation of MQSeries Integrator release 4.0
must exist prior to running the MQSeries Integrator Rules daemon.
The database must also be running in a stable state prior to running
the ruletest process.

n The ruletest program requires a connection to a database containing
both rules and formatter data. This data must reside within the same
database.

n The ruletest program uses NEONFormatter to evaluate messages only;
the ruletest program does not execute actions.

n The ruletest program uses rules for evaluating and retrieving
subscriptions.
154 MQSeries Integrator System Management Guide

Rules
3DUDPHWHUV

&RQILJXUDWLRQ�)LOH

Before running this executable, verify that the sqlsvses.cfg file includes the
database name and server name information used to execute this program.
The sqlsvses.cfg file must also be in the same directory as the executable
program.

The session name in the sqlsvses.cfg file is used by ruletest to locate the
appropriate line from which to retrieve connection data.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-i <input filename> Mandatory The input file from which ruletest will
read. The file must reside in the
directory that the process is run from or
the fully qualified path must be
provided.

-m <message type> Mandatory The ruletest program requires this
parameter to evaluate rules.

-a <application
group>

Mandatory The ruletest program requires this
parameter to evaluate rules.

-v (verbose) Optional The ruletest program logs to the screen if
this optional parameter is set. The
process defaults to no logging.

-? (usage) Optional The ruletest program will display all
usage parameters.
MQSeries Integrator System Management Guide 155

Chapter 4
([DPSOH

rules: MyServerName : MyUserName : MyPassword : MyDataBase

1RWH�
Unless otherwise specified, the ruletest program expects a session name of
rules for rules and formatter data.

ruletest can be executed using two methods:

1. ruletest evaluates the message using the specified application group/
message type if the user enters the parameters listed at the command
line.

2. In addition, ruletest can be used interactively by providing no
command line parameters.

When ruletest is invoked without command line parameters, it prompts the
user for the input file name, application group, message type, verbosity, and
whether to reload or not. In interactive mode, ruletest loops through the
prompt, optional reload, and evaluation steps.

The optional reload step enables the user to choose whether to refresh the
rules data from the database before proceeding.

1RWH�
If ruletest is run with no command line parameters, it prompts the user for
the required information.
156 MQSeries Integrator System Management Guide

Rules
11575DFH�5XOHV�'HEXJJLQJ�8WLOLW\�
NNRTrace is a rules debugging utility for testing rules. This utility evaluates
the rule and the message associated with the rule. When the utility completes
processing, it displays whether the rule will hit. If the rule hits, the active
actions that can be performed by the rule are displayed. If no actions exist, the
process fails while evaluating the message.

To use NNRTrace, create an input file for the test procedure, or use the getdata
rules test program to retrieve the messages to be tested from a queue.

6\QWD[
NNRTrace -i <input file name> -a <application group> -m
<message type -r <rule name> [-s <session name>] [-o <output
file name>] [-v]

&RQILJXUDWLRQ�)LOH

Before running this executable, first verify that the sqlsvses.cfg file includes
the database name and server name information to be used to execute this
program. This file must also be in the same directory as the executable
program.
MQSeries Integrator System Management Guide 157

Chapter 4
3DUDPHWHUV

1RWH�
If NNRTrace is run without any command line parameters, it prompts the
user for the required information.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-i <input filename> Mandatory The input file from which NNRTrace
will read from. The file must reside in
the directory that the process is run from
or the fully qualified path must be
provided.

-a <application
group>

Mandatory The NNRTrace program requires this
parameter to specify the rule.

-m <message type> Mandatory The NNRTrace program requires this
parameter to specify the rule.

-r <rule name> Mandatory The NNRTrace program requires this
parameter to specify the rule.

-s <rule session
name>

Optional The rules session name corresponding
to the session name in the sqlsvses.cfg
file. The session name defaults to
“rules.”

-o <output
filename>

Optional The output file to which results of the
NNRTrace program will be written. The
results are written to standard output by
default if this parameter is not specified.

-v (verbose) Optional The NNRTrace program logs to the
screen if this optional parameter is set.
The process defaults to no logging.
158 MQSeries Integrator System Management Guide

Rules
7KH�5XOHV�(QJLQH�([HFXWDEOH�

The Rules Engine executable is a content-based rules evaluation and routing
engine used to move data from one place to another, depending on the
contents of the data. The Rules Engine is a daemon that performs rule
evaluation against a specified message and attempts to execute actions for
rules that evaluate to true. Users can define rules using the GUIs (see Using
NEONet) or by using the Management APIs (see the Programmer’s Reference
for the Rules APIs). Application programmers can use the Rules APIs to
evaluate rules (see the Programmer’s Reference for Rules APIs).

5XOHV�(QJLQH�3URFHVVLQJ�
The Rules Engine daemon is built on top of the Rules APIs and performs
these procedures, in this order:

1. Polling

2. Message processing

3. Rules Caching

4. Action execution

5. Failure processing

3ROOLQJ�
Polling of a NEONet queue occurs based on the “wait time” parameter
specified by the Rules Engine command parameter. When message
processing, subscription execution, and failure processing are complete, the
polling process begins again. Polling performs these functions:

n Prior to polling, or reading a NEONet queue, the transaction
boundary is defined to ensure that no data is lost.

n If the queue is read successfully and a message is retrieved,
processing of the message begins. If the queue is empty, the Rules
Engine still attempts to read the queue.
MQSeries Integrator System Management Guide 159

Chapter 4
n If the queue is not read successfully or the queue is empty, the
transaction is rolled back and the transaction end is defined.

The Rules daemon checks the input queues consecutively, rather than
checking a single queue until it is empty. If it is specified, the Rules daemon
also checks the reload queue each pass before going through the rest of the
queues; starting with the queue after the previously read queue.

1RWH�
When running the Rules daemon, no other process should drain the input
queue(s). This destroys guaranteed delivery/guaranteed sequence and may
cause long waits and possible deadlocks.

7LPHVWDPSV
Timestamps make it easy to determine the timing of events in the Rules
daemon if there are problems processing messages. Timestamps are in a
universal (international) format and are added to the log file, if it exists, every
time a message is processed. Timestamps in the Rules daemon are in ISO
format of the local date/time: YYYYMMDDHHMMSS.

0HVVDJH�3URFHVVLQJ�
Message processing evaluates the message against the currently defined rule
set for the application group/message type pair. NEONet Formatter is called
to deconstruct (parse) the input message into component parts (fields).
NEONet Rules then evaluates these fields. If a message is successfully
evaluated, subscriptions are executed. (A subscription is a list of actions.)

If a failure occurs when rules are evaluated against a message, the transaction
is rolled back and the transaction end is defined. If a failure occurs during
message processing, failure processing begins.

Messages are evaluated against active rules only. If there are no active rules in
a rule set (application group/message type), the load fails (and the message is
sent to the Failure Queue). Only active subscriptions are retrieved for hit
rules. If there are no active subscriptions in a rule set (application group/
message type), the load fails (and the message is sent to the Failure Queue). If
none of the hit rules have active subscriptions, the first call of the
160 MQSeries Integrator System Management Guide

Rules
getsubscription() API returns nothing (and the message is sent to the NoHitQ
Queue).

5XOHV�&DFKLQJ
When users change data within a rule or rule set that is specified by an
Application Group/Message Type name pair, they need to signal a running
Rules Engine instance to reload the changes into memory. Users can also
change data for a single subscription without reloading the entire ruleset.

Ruleng can be configured to check a queue for reload notification messages
(see Using the Rules Engine for details about configuring Ruleng). Notification
messages are typically empty and have five options -- OPT_APP_GRP and
OPT_MSG_TYPE set to the application group and message type indicating
which rule set to reload, OPT_RELOAD set to TRUE indicating to the Rules
Engine to reload the specified rule component, or the OPT_COMPONENT_
TYPE set to SUB or MSG, and if reloading a subscription, the OPT_SUB_
NAME set to the appropriate subscription name. If the message contains data,
the message will process after the cache is reloaded.

You must decide whether to create a new queue for notification notices or use
an existing queue (such as the queue the Rules Engine uses to get messages).

NNRSignalReload is an executable provided to put an empty message onto a
queue with the correct Application Group/Message Type information,
OPT_RELOAD set to TRUE, and OPT_COMPONENT_TYPE set to MSG or
SUB. Use putdata to add the appropriate reload options to a data message put
on a queue.

6XEVFULSWLRQ�([HFXWLRQ�
After a message (field or fields) is successfully evaluated against its rules, all
subscriptions associated with those rules that evaluated to true are executed.
If a message is successfully evaluated and no subscriptions are executed (no
rules evaluate to true) or no active subscriptions exist for the hit rules, the
message is routed to the No Hit Queue.

By default, if the output queue (or no hit queue) is full or writing is disabled
on it, the Rules daemon rolls back and waits for the queue to become
available before processing additional messages from the input queue. The
wait time is the same as the wait time used for checking the input queue for
messages (the -w command line parameter). This default behavior puts the
MQSeries Integrator System Management Guide 161

Chapter 4
Rules daemon on hold so the input queue can become full while waiting for
the output queue to become writable. If logging is turned on, a note in the log
file notifies the user that the output queue is full or disabled and the system is
waiting. The user must then drain and enable the output queue so that
processing can continue. If the output queue does not exist or has any
problem other than the queue is full or disabled, the original message is
placed on the failure queue. If the daemon is unable to put to the failure
queue, the daemon rolls back and the rules engine stays on that message until
it can write to the failure queue after the wait time.

To override the default waiting, the user must set the queue option
OPT_NO_WAIT to TRUE when putting the original message on the input
queue. This option causes the message to be put to the failure queue if the
output or no-hit queue is full or disabled. NEONet’s putdata utility takes -n
parameter which sets this option to TRUE when putting a message to an
input queue. The Rules daemon passes on any options that are set in the input
message when it does a putqueue (overriding the OPT_MSG_TYPE based on
the subscription option), except for OPT_RELOAD. Therefore, if
OPT_NO_WAIT is set on the input message, the output queue has that option
set as well. To explicitly set the Rules daemon to wait, the OPT_NO_WAIT
option should be set to FALSE.

If at any time during subscription execution there is a failure, the transaction
is rolled back and the transaction end is defined. Once this rollback occurs,
failure processing begins.

The subscription actions that can be processed within the Rules Engine are
Reformat, Put Queue, and ReEval. Other actions defined require users to
write their own rules engine daemon to process those actions. The Rules
Engine does not execute generic actions. Subscriptions are not executed in a
specific order. If messages must be output in a certain order, the Put Queue
actions must be in a single subscription. Each subscription starts with the
original message.
162 MQSeries Integrator System Management Guide

Rules
5HIRUPDW

The Reformat action takes a message with an input format and re-formats the
message to a message adhering to the specified output format. The Reformat
action requires both an input and output format as options. Formatter APIs
are called to perform the reformat of messages. If using Rules Management
APIs to add the Reformat action, the action name should be reformat with the
option name: INPUT_FORMAT and TARGET_FORMAT (with case as
specified). If consecutive reformat actions occur in a subscription, the input
message to the second reformat is the output of the first reformat.

8VHU�([LW�&RQVWUDLQWV

The same database must be used for Messaging and Queuing, Formatter, and
Rules if database modifications are made in a user exit.

Furthermore, to insure database recovery in the event of a failure, user exits
should only perform updates and inserts to the same database used by
Messaging and Queuing, Formatter, and Rules. If the Messaging and
Queuing, Formatter, and Rules data reside in two different databases, the
modifications made during User Exits will lead to unpredictable behavior
and a possible loss of data integrity.

1R�'DWDEDVH�&RPPLWV�LQ�D�8VHU�([LW

To preserve the integrity of the transaction layer, users should not explicitly
commit database changes made in User Exits. If a single database is used for
Queuing and Formatter/Rules, then database modifications made during
User Exits will get committed by the Rules Engine when the transaction is
completed.

3XW4XHXH

The Put Queue action takes a message and puts it onto a specified destination
NEONet queue and sets the message type option, if it exists, to the message
format type specified. The Put Queue action requires a destination NEONet
queue name as an option. The queue name must exist in the NEONet
database. The message placed on the queue is either the original message or
the result of the last previous reformat action in the same subscription.
NEONet Messaging and Queuing APIs are called to perform the Put Queue
operation. The Put Queue does not perform formatting. If using Rules
MQSeries Integrator System Management Guide 163

Chapter 4
Management APIs to add the Put Queue action, the action name should be
“putqueue” with the option names: “OPT_TARGET_QUEUE” and
“OPT_MSG_TYPE” (with the case as specified).

For the MQSeries (MQDirect) version of NEONet, the Rules Engine uses
MQSeries to put to the output queues.

:$51,1*�
If a subscription does not include the Put Queue action, messages will not be
put onto any queue and can be lost. The Rules Consistency Checker can be
run to determine which subscriptions do not have a Put Queue.

1RWH�
While the Reformat and Put Queue subscription options are the only actions
that can be performed by the Rules Engine, the NEONet Rules APIs allow any
number of actions and associated options. An application programmer can
use NEONet APIs in conjunction with independently generated code, in
order to execute other types of actions. The size of your database and
performance requirements are the only limitations on the NEONet Rules
APIs.

5H(YDO

The ReEval action

The ReEval actions are performed after all other actions are done. The list of
ReEval actions is then traversed: the given message buffer is parsed and
evaluated, and the resulting actions are performed. If a re-eval action is
encountered at this time, the item is added to the list of re-evals to be
performed as was done previously. If the OPT_EVAL_ORDER is
CHILD_FIRST, the child re-eval will be done before any sibling re-evals. If the
OPT_EVAL_ORDER is SIBLING_FIRST or not specified, the child re-eval will
be placed at the end of the list re-evals.

6KXWGRZQ�0HVVDJHV
The Shutdown message supplies a graceful way to shutdown the Rules
daemon. A shutdown message has the option OPT_SHUT_DOWN set to
TRUE. If the message has no data, the daemon shuts down gracefully. If data
exists on the message, message processing is done before the daemon is
164 MQSeries Integrator System Management Guide

Rules
shutdown. If the rules do not hit, the message goes to the NoHit Queue before
the Rules daemon shuts down. If there is a failure, the Rules daemon shuts
down after the message is put on the Failure Queue. If an output queue is full
or disabled and OPT_NO_WAIT is NOT set, the message rolls back and the
daemon does not shut down until the message can be written to the output
queue.

The get from the queue commits so this message is not read again when the
Rules daemon is brought up. The user can put a shutdown message on any
queue that is read by the daemon. For more information, See
NNRSignalShutdown Utility on page 192. and See putdata on page 181.

)DLOXUH�3URFHVVLQJ�
Failure processing occurs when message processing or subscription execution
fails. Failure processing also occurs if there are no active rules or subscription
for the application group/message type. Failed messages are routed to the
NEONet Failure Queue specified in this process. Using the Rules Engine
daemon, you can write a process to manage the messages in the Failure
Queue.

The NEONet Rules Engine can be configured to set the OPT_ERR_CODE
and/or the OPT_ERR_MSG queue option each time a message is put to the
NEONet Failure Queue. Both options are intended to help users determine
why the Rules Engine sent the message to the Failure Queue. The
OPT_ERR_CODE queue option value will indicate which subsystem (i.e.,
Messaging and Queuing, Formatter, or Rules) encountered the failure and
provide the error code number. (For a complete listing of the NEONet error
codes, see Programmer’s Reference section Error Codes, Names and Messages.
The following prefixes will be added to the error code number to indicate the
subsystem:

n NNF (NEONet formatter)

n NNQ (NEONet Messaging and Queuing)

n NNR (NEONet Rules)

The OPT_ERR_MSG queue option value will provide the error message that
corresponds to the error code number.
MQSeries Integrator System Management Guide 165

Chapter 4
5XOHV�(QJLQH�'DHPRQ�(UURU�&RGHV

0HVVDJH�5RXWLQJ�
Based on the outcome of the Rules Engine procedures (message processing,
subscription execution and failure processing), messages can be routed to the
No Hit Queue, the Failure Queue, to a Log File, or to queues specified in a Put
Queue action.

n If no subscription actions are executed the message is routed to the
No Hits Queue.

n If failures occur at any time during processing, the message is routed
to the Failure Queue.

n If errors occur during execution, all errors are routed to the Log File
only if logging is specified.

&RGH (UURU�1DPH ([SODQDWLRQ 5HVSRQVH

-10000 RULENG_INVALID_
PUT_QUEUE_
ACTION_ERR

Putqueue action contains
invalid or missing
OPT_TARGET_QUEUE
option name and/or
value.

Correct the
options in the
Putqueue action.

-10001 QUEUE_CREATION_
FAILURE_ERR

Failure creating queue
specified in the Putqueue
actions’s OPT_TARGET_
QUEUE option.

Correct the
options in the
Putqueue action.

-10002 QUEUE_
INITIALIZATION_
FAILURE_ERR

Failure to initialize queue
specified in the Putqueue
action’s OPT_TARGET_
QUEUE option.

Verify that the
specified queue
exists.

-10003 RULENG_INVALID_
REFORMAT_ACTION
_ERR

Reformat action is
missing a value for the
INPUT_FORMAT <or>
the TARGET_FORMAT
value is missing.

Correct the
options in the
Reformat action.
166 MQSeries Integrator System Management Guide

Rules
n The Rules daemon will wait if the output queue or no-hit queue is
full or disabled, unless the incoming message had the
OPT_NO_WAIT option set to TRUE after the wait time.

&RQILJXUDWLRQ�3ULRU�WR�8VLQJ�WKH�5XOHV�
(QJLQH�'DHPRQ�

To successfully execute the NEONet Rules Engine, a complete and valid
installation of NEONet must exist prior to using Rules. In addition, all
NEONet queues, rules, and formats must be entered and saved before using
the Rules Engine. NEONet queues, rules and formats are used by the Rules
Engine as defined in this section.

4XHXHV�
The NEONet Rules Engine uses input and output NEONet queues. Input
queues are the queues specified by the -q parameter of the Rules Engine.
Output queues are: failure queue; no hits queue; and any queue(s) specified
by any Put Queue action.

To have a message successfully evaluated by the Rules Engine daemon, the
input message must have these two options set:

OPT_APP_GRP
OPT_MSG_TYPE

OPT_APP_GRP assigns the message to an application group and must match
the application group name in the Rules database. The OPT_MSG_TYPE must
match the message type in rule definitions and the input format name in the
format definitions. These two options on the message allow the Rules Engine
to evaluate the message against its rules and only its rules. These options can
be set using either the M&Q SetOpt and SetOptSet APIs or the NNHPutMsg
API. The queue may also have default OPT_APP_GRP and OPT_MSG_TYPE
options defined. If these options do not exist on the message, the default
OPT_APP_GRP and OPT_MSG_TYPE defined for the Rules daemon will be
used, if it is supplied. If the options are not set the evaluation will not occur
and failure processing will occur. (Refer to the Programmer’s Reference for
High-Level APIs and Messaging and Queuing APIs for information on using
these APIs.)
MQSeries Integrator System Management Guide 167

Chapter 4
To override the default waiting, the user must set the queue option
“OPT_NO_WAIT” to “TRUE” when putting the original message on the
input queue. This option will cause the message to be put to the failure queue
if the output or no-hit queue is full or disabled. If the -n parameter is specified
when invoking the putdata utility, then the OPT_NO_WAIT option will be set
to TRUE when putting a message to a queue. The Rules daemon passes on
any options that are set in the input message when it does a putqueue.
Therefore, if OPT_NO_WAIT is set on the input message, the output queue
will have that option set as well. To explicitly set the Rules daemon to wait,
the OPT_NO_WAIT option should be set to FALSE.

1RWH�
The OPT_MSG_TYPE specified on the input message will be overridden by
the OPT_MSG_TYPE option specified in the putqueue action.

5XOHV�
The Rules daemon checks incoming messages for the reload queue options.
The Rules daemon calls the Rules reload API for the component specified in
the OPT_COMPONENT_TYPE queue option. The Rules daemon reloads the
entire rule set (defined by application group/message type) if it encounters
messages with either the old OPT_RELOAD_RULE_SET option set to TRUE
or if the OPT_COMPONENT_TYPE option set to MSG and the
OPT_RELOAD option is set to TRUE. The Rules daemon reloads an
individual subscription if it encounters a message with OPT_RELOAD set to
TRUE, OPT_COMPONENT_TYPE set to SUB, and OPT_SUB_NAME set to
the appropriate subscription name. The subscription may have been added
to, updated in, or deleted from the database and the corresponding change is
done in the cache. If the reload message contains data, the reload is performed
and then the message is evaluated.

:$51,1*�
Unless Reload messages are used, the NEONet Rules daemon is not dynamic
with respect to rule definition (this also includes subscription definition).
Only rules defined prior to the Rules daemon startup are used. Any rules
added or changed after the Rules daemon startup are not used until the
reload message is read.
168 MQSeries Integrator System Management Guide

Rules
)RUPDWV�

:$51,1*�
All NEONet formats associated with any message put onto any input queue
must be entered and saved prior to putting that message onto the input
queue. All NEONet formats needed during a reformat action must be entered
and saved prior to starting the NEONet Rules daemon.

1RWH�
For information about entering queues, rules, and formats, refer to Using
NEONet and the Programmer’s Reference documents.

5XQQLQJ�WKH�5XOHV�(QJLQH
The following UNIX and NT Services sections provide information on how to
run the ruleng.

5XQQLQJ�UXOHQJ�RQ�81,;
To start the Rules engine, either pass in the commands on the command line
or follow the prompt for the parameters.

To close the Rule engine, send a shutdown message. To send a shutdown
message, complete the following steps:

1. Run:

 NNRSignalShutdown

2. To invoke putdata to send the shutdown message, type:

putdata -d putdata.mpf

5XQQLQJ�UXOHQJ�DV�DQ�17�6HUYLFH
You can run ruleng as a Service under Windows NT 3.5 or higher (NT 4.0 is
recommended). In addition, Messaging and Queuing daemons, XMIT and
RECV can also be run as NT Services. See Running neonXmit and neonRecv as
NT Services on page 31.
MQSeries Integrator System Management Guide 169

Chapter 4
The benefits of running ruleng as a service include the ability to:

n Start, stop, and pause the service from the service GUI provided by
NT, or from the command line.

n Run multiple services at one time.

n Schedule a service to start automatically when a machine is
unattended.

1DPLQJ�<RXU�6HUYLFHV

Before installing your services, you must determine a unique name for each
service to be installed. The service name points any service commands to the
appropriate messaging and queuing engine or the appropriate rules engine.

Consider the following:

n Uniquely name each entity in relation its function or component
rather than relying on case sensitivity to distinguish them. To prevent
potential database conflicts, use case sensitivity as a readability factor
but not as the sole differentiation between names. While TestCase,
TESTCASE, and testcase are each considered as unique names in a
case-sensitive database, they are duplicates within a database that is
not case sensitive.

n Choose short names that are meaningful to your systems and
organization.

n Capitalize each word in a name to make it more readable and to serve
as a consistency standard (such as TestImport.)

1RWHV�
The service names and corresponding executables are stored in your system’s
registry. It is not recommended that the registry executables be changed or
modified.

,QVWDOOLQJ�1(21HW�17�6HUYLFHV

Services are named and installed from the command line and must be
installed before you can run them. The following install syntax handles the
naming of your service and its installation.
170 MQSeries Integrator System Management Guide

Rules
ruleng -install <your service name> <options for ruleng>

When the installation is complete, a confirmation message appears. If
installation is unsuccessful, an error message appears.

To verify that the service is installed and is available, open the NT services
window, as described in the following section. To further check the status of
the service and display the default parameters/options, use the following
command:

ruleng -info <your service name>

([DPSOH�

To install a service named RulesWest for ruleng, type:

ruleng -install <RulesWest>

0DQDJLQJ�6HUYLFHV�IURP�WKH�17�*8,

From the Windows NT desktop, select Start→Settings→Control Panel.
Double-click Services in the Control Panel window.

The NT Services window appears. Installed Services are listed in the window.
For each Service, its current status and startup method is listed.

5XQQLQJ�D�6HUYLFH

1. From the NT Services window, highlight the Service you want to
start. Click Start. The Status changes to Started.

2. To Stop or Pause a Service, highlight the Service and click Stop or
Pause. The Status will reflect the change.

6FKHGXOLQJ�$XWRPDWLF�6WDUWXS�IRU�D�6HUYLFH

Services can be scheduled to start automatically according to parameters you
set. Highlight the service you want to schedule and click Startup.

1. Choose the Startup Type.

Automatic: Service runs automatically when the system starts. The
Service will start only if the computer has 12MB or more of random
access memory (RAM).
MQSeries Integrator System Management Guide 171

Chapter 4
Manual: Service runs only when started by a user or a dependent
service. Service remains running until it is stopped, even if the user
that started the service has logged off the system.

Disabled: Service is disabled and will not start.

2. Identify the Log On As parameters.

System Account: The Service logs on to a system account versus a
user account. Most Services log on to a system account.

This Account: The Service logs on to a specific user account with
corresponding password. Click the browse button to specify a user
account, and then type the password for the user account in both the
Password and Confirm Password boxes.

To provide a user interface on the desktop that can be used by
whoever is logged in when the service is started, select the Allow
Service to Interact with Desktop check box.

3. Click OK.

0DQDJLQJ�6HUYLFHV�IURP�WKH�&RPPDQG�/LQH

The command line can provide more detailed descriptions of errors when
they occur.

1RWHV�
The GUI does not automatically refresh after a command line operation is
performed affecting a service. Close and reopen the GUI to view the change to
the service.

6\QWD[

ruleng <service option> <service name> <standard option
(optional, as needed)>

6HUYLFH�2SWLRQV
172 MQSeries Integrator System Management Guide

Rules
([DPSOHV������������

6WDUWLQJ�D�6HUYLFH�LQ�UXOHQJ

To start a service named RulesWest in ruleng with no options:

ruleng -start RulesWest

By starting the service from the command line versus through the GUI, the
default startup options will be overridden by no options in this command.
This occurs for this service start only because the default startup parameters
are not permanently changed by the command line start.

7R�6HW�WKH�'HIDXOW�3DUDPHWHUV�IRU�UXOHQJ�6WDUWXS

To set parameters for the next time the RulesWest service is started for ruleng:

6HUYLFH�2SWLRQ 'HVFULSWLRQ

-install Installs the service with the <standard option> used as
startup defaults.

-remove or
-uninstall

Removes the service.

-start Starts the service. The <standard options> override
default startup parameters.

-stop Stops the service.

-pause Pauses the service if it is running.

-continue Continues the service if it is paused.

-info Prints service status and current default parameters.

-parameters Installs <standard options> as the default startup
parameters the next time the service is started. To
change parameters for one time only, use the GUI.

-? or -help Displays service usages and printing of usage text.
MQSeries Integrator System Management Guide 173

Chapter 4
ruleng -parameters RulesWest -s MySes -q Q1 -F FailQ -N NoHitQ

The next time ruleng starts, these parameters will be used, overriding the
parameters set for ruleng for this startup only.

7R�8QLQVWDOO�WKH�6HUYLFH�IURP�UXOHQJ

To uninstall RulesWest as a service for ruleng, type:

ruleng -uninstall RulesWest

RulesWest will no longer be available as a service and will not appear on the
NT Services window.

8VLQJ�WKH�5XOHV�(QJLQH�

UXOHQJ�

6\QWD[
ruleng -s <queue session name> [-r <rule session name>] [-l
<logfile name>] [-w <wait time seconds>] -F <failure queue
name> -N <NoHitQ queue name> [-v] [-R <queue to check for
reload notification>] [-p <wait time for empty reload queue>]
[-e] [-E] [-A <default application group name>][-M <default
message type name>] [-L]

&RQILJXUDWLRQ�)LOH

Before running the Rules Engine, first verify that the sqlsvses.cfg file includes
the database name and server name information to be used to execute this
program. This file must also be in the same directory as the executable
program. Specifically, a session name that is the same as the value specified
by the -s parameter for queues below; and, a session name that is the same as
the -r parameter below.
174 MQSeries Integrator System Management Guide

Rules
3DUDPHWHUV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-s <queue session
name>

Mandatory The queue session name corresponding
to the identifier in the NEONet
configuration file. This session should
connect to a database where the queues
are defined.

-r <rule session
name>

Optional The rules session name corresponding to
the identifier in the NEONet
configuration file. This session should
connect to a database where the rules and
formats are defined. If this parameter is
not present, the queue session will be
used. If the rules or queue session names
are the same, only one database session
will be used. This must be done if user
exits that change the database are
present.

-l <log file name> Optional The Rules Engine will log errors to this
file. To optimize performance, the
default is to do no logging. (This includes
error logging.)

-w <wait time
seconds>

Optional Specifies the time, in seconds, between
queue reads. Default is three (3) seconds.

-F <failure queue
name>

Mandatory Indicates the queue to route messages
that could not be evaluated or failed
during subscription execution. If, at any
time during rules evaluation or
subscription execution, there is a failure,
messages will be put on the failure queue
identified by this parameter.
MQSeries Integrator System Management Guide 175

Chapter 4
-N <no hit queue
name >

Mandatory The Rules Engine puts messages that
evaluated to false (if every rule in the
Application Group/Message Type was
false for the message), or messages that
do not have active subscriptions onto the
no hit queue.

-v (verbose) Optional Directs output to both the specified log
file and the user’s screen. To optimize
performance, the default is to do no
logging to the file or screen.

-R <queue to check
for reload
notification>

Optional Specifies what queue to check for reload
notifications. If the reload queue isn’t one
of the input queues, polling will only
occur at the interval (in seconds) set by
the -p option.

-p <wait time for
empty reload
queue>

Optional Number of seconds to wait after
processing all messages before polling
for messages again. (Default is set to the
time specific by the -w parameter.)

-e Optional Directs the Rules Engine daemon to set
the OPT_ERR_CODE queue option on all
messages put to the Failure Queue.

-E Optional Directs the Rules Engine daemon to set
the OPT_ERR_CODE and the OPT_ERR_
MSG queue options on all messages put
to the Failure Queue.

-A <default
application group
name>

Optional Specifies what application group name to
use when a message without the
OPT_APP_GRP queue option is read by
the Rules Engine daemon. “default” is
the default.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
176 MQSeries Integrator System Management Guide

Rules
1RWH�
If ruleng is run without any command line parameters, it will prompt the user
for the required information.

([DPSOH

&RPPDQG�OLQH�

ruleng -r rules -s queues -q inputQ -N NoHitQ -F FailureQ
-w 10 -v

VTOVYVHV�FIJ��6\EDVH�

rules:MyServerName:MyUserName:MyPassword:MyRulesDB:
queues:MyServerName:MyUserName:MyPassword:MyQueuesDB:

VTOVYVHV�FIJ��2UDFOH�

-M <default
message type
name>

Optional Specifies what message type name to use
when a message without the
OPT_MSG_TYPE queue option is read
by the Rules Engine daemon. “default” is
the default.

-L Optional Indicates when to reload messages.
If this option is not set, a flag to reload the
appropriate item is set when a reload
message is received and is reloaded
when the eval() is called. NEON
recommends this selection.
If this option is set, the data reloads every
time a reload message is received rather
than wait for it to be evaluated. For
subscription reloads, this requires the
daemon to load the entire set of rules for
an application group/message type if it
has not yet been loaded into cache.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 177

Chapter 4
rules:MyServerName:MyUserName:MyPassword:
queues:MyServerName:MyUserName:MyPassword:

1RWH�
For Oracle, when entering the server name, do not use @.
178 MQSeries Integrator System Management Guide

Rules
1156LJQDO5HORDG
NNRSignalReload is an executable provided to put an empty message onto a
queue with the options OPT_APP_GRP set to the application group,
OPT_MSG_TYPE set to the message type, OPT_SUB_NAME set to the
subscription name (for a subscription), OPT_COMPONENT_TYPE set to the
component to reload (MSG or SUB), and OPT_RELOAD set to TRUE. See
Rules Caching on page 161.

To signal a single subscription reload, users must provide a value for each of
the mandatory input parameters, the subscription to reload, and SUB as the
component type. An error and usage statement is displayed if the -S
parameter is not selected when the component type is set to SUB.

To signal a reload of an entire rule set, MSG must be the component type.

1RWH�
NNRSignalReload reloads an entire rule set if the -S and -C parameters are
not used. However, the -S parameter is ignored when MSG is specified as the
component type.

6\QWD[
NNRSignalReload -a <application group> -m <message type> [-S
<subscription name>] -q <queue name> [-s <session name>] [-C
(MSG | SUB)] [-v]

3DUDPHWHUV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-a <application
group>

Mandatory Sets an option on the OPT_APP_GRP
queue to the specified application group.
If the process is unable to set this option,
a failure occurs and the process
terminates.
MQSeries Integrator System Management Guide 179

Chapter 4
([DPSOH�1156LJQDO5HORDG�FDOOV

&DVH��

NNRSignalReload -a TestApp -m TestFmt -v -s rules -q InQ -r -C
SUB -S TestSub

Uses "rules" session to connect to database. Puts empty message
on "InQ" queue with OPT_APP_GRP and OPT_MSG_TYPE set.

-m <message type> Mandatory Sets an option on the OPT_MSG_TYPE
queue to the specified message type. If
the process is unable to set this option, a
failure occurs and the process terminates.

-S <subscription
name>

Optional Sets an option on the OPT_SUB_NAME
queue. If the process is unable to set this
option, a failure occurs and the process
terminates.

-q <queue name > Mandatory Sets the NEONet queue name where the
reload message is added. This should
match an input queue for ruleng or the
name specified with the -R option for
ruleng.

-s <session name> Optional Session name tag from the sqlsvses.cfg
file. The default session name is input.

-C <component
type>

Optional Assigns a value to the OPT_
COMPONENT_TYPE queue option
based on the component type value
specified in this argument. The
supported values include MSG and SUB.

-v (verbose) Optional Directs output to both the specified log
file and the user’s screen. To optimize
performance, this defaults to no logging
to the file or screen.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
180 MQSeries Integrator System Management Guide

Rules
OPT_RELOAD will be set to TRUE. OPT_COMPONENT_TYPE will be SUB
and OPT_COMPONENT_NAME will be TestSub. This signals the Rules
Daemon to reload the subscription.

&DVH��

NNRSignalReload -a TestApp -m TestFmt -v -s rules -q InQ -r -C
MSG

Uses "rules" session to connect to database. Puts empty message
on "InQ" queue with OPT_APP_GRP and OPT_MSG_TYPE set.
OPT_RELOAD will be set to TRUE. OPT_COMPONENT_TYPE will be MSG
and OPT_COMPONENT_NAME will be TestFmt. This signals the Rules
Daemon to reload the rule set. The -C MSG is not necessary for
this call

7HVWLQJ�5XOHV�

5XOHV�7HVW�3URJUDPV�
The putdata, getdata and ruletest programs are provided for testing the Rules
Engine program. These test programs are explained in this section.

SXWGDWD�DQG�JHWGDWD�
The putdata program can be used to put data onto a Rules daemon queue in
such a way that the daemon can evaluate the message. The getdata program
can be used to get (or retrieve) messages from a Rules daemon output queue.

SXWGDWD

6\QWD[

putdata -i <input filename> -a <application group> -m <message
type> [-v] [-n (set no wait)] [-r (set reload option) [-C (MSG
| SUB)] [-S <subscription name>]] [-q <queue name>] [-s
<session name>] [-d (set shutdown)]
MQSeries Integrator System Management Guide 181

Chapter 4
'HVFULSWLRQ

The NEONet putdata process reads a message from a file and puts the
message on the specified queue name if the -q parameter is used or on the
queue named RulesIn with the OPT_APP_GRP, the OPT_MSG_TYPE, and
possibly the OPT_NO_WAIT, OPT_RELOAD, or OPT_SHUT_DOWN options
set. The RulesIn queue is a possible input queue for the NEONet Rules
Engine Daemon and should be specified as such in the ruleng as "-q RulesIn".
The OPT_NO_WAIT option causes the Rules daemon to put messages on the
Failure Queue if the output queue is full or disabled. The OPT_RELOAD
option causes the Rules daemon to reload its cache before evaluating the
message. The OPT_SHUT_DOWN option causes the Rules daemon to shut
down after processing the message.

This process sets the two options on the message that the NEONet Rules
daemon expects, specifically the application group and message type. It may
also set the other specified options.

To reload the entire rule set, the -r parameter must be set. To reload a single
subscription, users must provide a value for each of the mandatory input
parameters, the subscription to reload, and SUB as the component type to
reload. An error and usage statement is displayed if the -S parameter is not
set when the component type is set to SUB.

1RWH�
The -S parameter is ignored when MSG is specified as the component type.

2SHUDWLRQDO�$VVXPSWLRQV

n A complete and valid installation of NEONet must exist prior to
running the NEONet Rules Engine Daemon. The database must also
be running in a stable state prior to running the NEONet putdata
process.

n Both the putdata and getdata programs require a connection to a
database containing NEONet queuing data.

n The NEONet putdata process expects that the specified queue exists,
and is enabled, and is defined in the -q parameter in the ruleng run.
182 MQSeries Integrator System Management Guide

Rules
&RQILJXUDWLRQ�)LOH

Before running this executable, you must first verify that the sqlsvses.cfg file
includes the database name and server name information to be used to
execute this program. This file must also be in the same directory as the
executable program.

The session name in the sqlsvses.cfg file is used by the Rules Engine to locate
the appropriate line from which to retrieve connection data. The putdata
program expects to have a session name of “input” (unless otherwise
specified). Using this connection data, the Rules Engine test programs can
make a connection to the appropriate database.

([DPSOH�&RQILJXUDWLRQ�)LOH

input:MyServerName:MyUserName:MyPassword:MyDB

3DUDPHWHUV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-i <input
filename>

Mandatory The input file from which putdata will read
from. The file must reside in the directory
that the process is run from or the fully
qualified path must be provided.

-a <application
group>

Mandatory The NEONet putdata program sets an option
on the queue called OPT_APP_GRP. If the
process is unable to set this option, a failure
occurs and the process terminates.

-m <message
type/format
name>

Mandatory The NEONet putdata program sets an option
on the queue called OPT_MSG_TYPE. If the
process is unable to set this option, a failure
occurs and the process terminates.

-v (Verbose) Optional The NEONet putdata program will log to the
screen if this optional parameter is set. The
process defaults to no logging.
MQSeries Integrator System Management Guide 183

Chapter 4
([DPSOH�SXWGDWD�FDOOV

&DVH��

putdata -i inputfile.txt -a TestApp -m TestFmt -v

Uses default session input to connect to database. Puts message
from inputfile.txt onto "RulesIn" queue with OPT_APP_GRP and
OPT_MSG_TYPE set. NOTE: The message will contain all data from

-n (Set
NoWait)

Optional If -n exists, the OPT_NO_WAIT option will
be set to TRUE on the specified queue when
the message is put.

-r (Set Reload) Optional Sets the queue option OPT_RELOAD_
RULE_SET to TRUE on the specified queue.

-C
<component
type>

Optional Assigns a value to the OPT_COMPONENT_
TYPE queue option based on the component
type value specified in this argument. The
supported values include MSG and SUB.

-S
<subscription
name>

Optional Sets an option on the queue called
OPT_SUB_NAME. If the process is unable to
set this option, a failure occurs and the
process terminates.

-q <queue
name >

Optional Sets the NEONet queue name where the
message will be added. This should match an
input queue for ruleng or the name specified
with the -R option for ruleng. The default
queue name is RulesIn.

-s <session
name>

Optional Session name tag from the sqlsvses.cfg file.
The default session name is input.

-d (Set
ShutDown)

Optional putdata puts the message on the named
queue with the option OPT_SHUT_DOWN
set to TRUE.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
184 MQSeries Integrator System Management Guide

Rules
inputfile.txt until the end of the file.

&DVH��

putdata -i inputfile.txt -a TestApp -m TestFmt -v -n

Uses default session input to connect to database. Puts message
from inputfile.txt onto "RulesIn" queue with OPT_APP_GRP and
OPT_MSG_TYPE set OPT_NO_WAIT is also set to TRUE.

&DVH��

putdata -i inputfile.txt -a TestApp -m TestFmt -v -s rules -q
InQ -r -C SUB -S TestSub

Uses "rules" session to connect to database. Puts message from
inputfile.txt onto "InQ" queue with OPT_APP_GRP and
OPT_MSG_TYPE set. OPT_RELOAD will be set to TRUE.
OPT_COMPONENT_TYPE will be SUB and OPT_COMPONENT_NAME will be
TestSub. This signals the Rules Daemon to reload the
subscription before evaluating this message.

&DVH��

putdata -i inputfile.txt -a TestApp -m TestFmt -v -s rules -q
InQ -r -C MSG

Uses "rules" session to connect to database. Puts message from
inputfile.txt onto "InQ" queue with OPT_APP_GRP and
OPT_MSG_TYPE set. OPT_RELOAD will be set to TRUE.
OPT_COMPONENT_TYPE will be MSG and OPT_COMPONENT_NAME will be
TestFmt. This signals the Rules Daemon to reload the rule set
before evaluating this message. The -C MSG is not necessary for
this call.

&DVH��

putdata -i inputfile.txt -a TestApp -m TestFmt -v -s rules -q
InQ -d

Uses "rules" session to connect to database. Puts message from
inputfile.txt onto "InQ" queue with OPT_APP_GRP and
MQSeries Integrator System Management Guide 185

Chapter 4
OPT_MSG_TYPE set. OPT_SHUT_DOWN will be set to TRUE. This
signals the Rules Daemon to shut down after evaluating this
message.
186 MQSeries Integrator System Management Guide

Rules
JHWGDWD

6\QWD[

getdata -o <output filename> -q <queue name> [-s <session
name>] [-p] [-v]

'HVFULSWLRQ

The NEONet getdata process reads a NEONet queue, retrieving messages
one at a time, and writing each message to the output file until the queue is
empty.

2SHUDWLRQDO�$VVXPSWLRQV

n A complete and valid installation of NEONet must exist prior to
running the NEONet Rules Engine Daemon. The database must also
be running in a stable state prior to running the NEONet getdata
program.

n The NEONet getdata program expects that the queue name defined
in the command line exists, is enabled, and has messages on it.

&RQILJXUDWLRQ�)LOH

Before running this executable, first verify that the sqlsvses.cfg file includes
the database name and server name information to be used to execute this
program. This file must also be in the same directory as the executable
program. The getdata program expects to have a session name of "output"
(unless otherwise specified). Using this connection data, the Rules Engine test
programs can make a connection to the appropriate database.

([DPSOH�&RQILJXUDWLRQ�)LOH

output:MyServerName:MyUserName:MyPassword:MyDB
MQSeries Integrator System Management Guide 187

Chapter 4
3DUDPHWHUV

([DPSOH�JHWGDWD�FDOOV

&DVH��

getdata -o outputfile.txt -q OutQ -v

Uses default session "output" to connect to database. Puts all
messages from "OutQ" queue to outputfile.txt. The message
(queue) options will be sent to standard out.

&DVH��

getdata -o outputfile.txt -q OutQ -v -s rules -p

Uses "rules" session to connect to database. Puts all messages
from "OutQ" queue to outputfile.txt. The message (queue)
options will be sent to outputfile.txt as well.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-o <output
filename>

Mandatory The output file to which each messages are
written. The user should have write privilege
in the directory in which the getdata program
is executed.

-q <queue
name>

Mandatory The NEONet queue name from which the
program reads messages.

-s <session
name>

Optional Session name tag from the sqlsvses.cfg file.
The default session name is output.

-p (write
options)

Optional Writes the queue options to the output file.
The default is to write the queue options to
the screen.

-v (verbose) Optional The NEONet getdata program logs to the
screen if this optional parameter is set. The
process defaults to no logging.
188 MQSeries Integrator System Management Guide

Rules
UXOHWHVW�
The ruletest program can be used to read a message from a file and evaluate
the message using the Rules APIs. This test program is useful in that it does
not use Messaging and Queuing or Formatter to execute subscriptions.

6\QWD[
ruletest -i <input file name> -a <application group name> -m <
message type> [-s <session name>] [-v] [-?]

'HVFULSWLRQ

The NEONet ruletest program reads a message from a file and evaluates the
message using the application group and message type defined on the
command line or by answering the prompts provided that parameters were
not used. After evaluation, subscriptions are retrieved as they would
normally be retrieved and output to the screen, but are not executed using
Messaging and Queuing and Formatter.

2SHUDWLRQDO�$VVXPSWLRQV

n A complete and valid installation of NEONet must exist prior to
running the NEONet Rules Engine Daemon. The database must also
be running in a stable state prior to running the NEONet ruletest
process.

n The ruletest program requires a connection to a database containing
both NEONet rules and formatter data and this data must reside
within the same database.

n The ruletest program uses NEONet Formatter to evaluate messages
only; the ruletest program does not execute actions.

n The ruletest program uses NEONet Rules for evaluating and
retrieving subscriptions.

&RQILJXUDWLRQ�)LOH

Before running this executable, first verify that the sqlsvses.cfg file includes
the database name and server name information to be used to execute this
program. This file must also be in the same directory as the executable
program.
MQSeries Integrator System Management Guide 189

Chapter 4
The session name in the sqlsvses.cfg file is used by ruletest to locate the
appropriate line from which to retrieve connection data. For rules and
formatter data, the ruletest program expects to have a session name of rules
(unless otherwise specified).

([DPSOH
rules:MyServerName:MyUserName:MyPassword:MyDataBase

3DUDPHWHUV

Ruletest can be executed using two methods:

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-i <input
filename>

Mandatory The input file from which ruletest
reads. The file must reside in the
directory that the process is run
from or the fully qualified path
must be provided.

-a <application
group>

Mandatory The NEONet ruletest program
requires this parameter in order to
evaluate rules.

-m <message
type>

Mandatory The NEONet ruletest program
requires this parameter in order to
evaluate rules.

-s <session
name>

Optional Session name tag from the
sqlsvses.cfg file. The default
session name is rules.

-v (verbose) Optional The NEONet ruletest program
logs to the screen if this optional
parameter is set. The process
defaults to no logging.

-? (usage) Optional The NEONet ruletest program
displays all usage parameters.
190 MQSeries Integrator System Management Guide

Rules
1. Ruletest evaluates the message using the specified application group
and message type if the user enters the parameters listed above at
command time.

2. In addition, ruletest can be used interactively by providing no
command line parameters.

When ruletest is invoked without command line parameters, it
prompts the user for the input file name, application group, message
type, verbosity, and whether to reload or not. In interactive mode,
ruletest loops through the prompt, optional reload, and evaluation
steps so many evaluations may be done using the same session.

The optional reload step enables the user to choose whether to refresh
the rules data from the database before proceeding.

1RWH�
If ruletest is run without any command line parameters, it prompts the user
for the required information.

([DPSOH�UXOHWHVW�FDOOV

&DVH��

ruletest -i inputfile.txt -a TestApp -m TestFmt -v

Uses default session "rules" to connect to database. Evaluates
message from inputfile.txt against rule set defined by TestApp
and TestFmt. Does not perform any subscription actions, just
lists them.

&DVH��

ruletest -i inputfile.txt -a TestApp -m TestFmt -v -s test

Uses "test" session to connect to database. Evaluates message
from inputfile.txt against rule set defined by TestApp and
TestFmt. Does not perform any subscription actions, just lists
them.
MQSeries Integrator System Management Guide 191

Chapter 4
&DVH��

ruletest

Prompts for the required input: session name, input filename,
application group name, message type name.
This will continue to evaluate messages until an empty line is
entered for the required input.

1156LJQDO6KXWGRZQ�8WLOLW\

6\QWD[
NNRSignalShutdown -q <queue name> [-s <session name>] [-v]

'HVFULSWLRQ
The NNRSignalShutdown Utility supplies a graceful way to shutdown the
Rules daemon. NNRSignalShutdown puts an empty message with the option
OPT_SHUT_DOWN set to TRUE on an input queue for the Rules daemon.

3DUDPHWHUV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

-q <queue
name >

Mandatory The NEONet queue name where the
shutdown message is added. This should
match an input queue for the ruleng or the
name specified with the -R option for the
Rules daemon.

-s <session
name>

Optional The session name tag from the sqlsvses.cfg
file. The default session name is input.
192 MQSeries Integrator System Management Guide

Rules
([DPSOH�1156LJQDO6KXW'RZQ�FDOOV

&DVH��

putdata -i inputfile.txt -a TestApp -m TestFmt -v -s rules -q
InQ -d

Uses "rules" session to connect to database. Puts message from
inputfile.txt onto "InQ" queue with OPT_APP_GRP and
OPT_MSG_TYPE set. OPT_SHUT_DOWN will be set to TRUE. This
signals the Rules Daemon to shut down after evaluating this
message.

&DVH��

NNRSignalShutDown -q InQ -v -s rules

Uses rules session to connect to database. Puts message on
"InQ" queue with OPT_SHUT_DOWN will set to TRUE. This signals
the Rules daemon to shut down.

-v (verbose) Optional The NEONet NNRSignalShutdown program
will log to the screen if this optional
parameter is set. The process defaults to no
logging.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 193

Chapter 4
194 MQSeries Integrator System Management Guide

&KDSWHU��

7KH�046HULHV�,QWHJUDWRU
5XOHV�'DHPRQ

The MQSeries Integrator Rules daemon is a content-based rules evaluation
and routing engine used to move data from one place to another, depending
on the contents of the data. The MQSeries Integrator Rules daemon performs
rule evaluations against a specified message and attempts to execute actions
for rules that evaluate to true. MQSeries Integrator users can define rules
using the GUIs (these are explained in MQSeries Integrator User’s Guide) or by
using the Management APIs (these are explained in MQSeries Integrator
Programming Reference for NEONRules). Application programmers can use the
Rules APIs to interface database calls to execute rules (these functions are also
explained in MQSeries Integrator Programming Reference for NEONRules).

&RQILJXUDWLRQ�3ULRU�WR�8VLQJ�
046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ�

To successfully execute MQSeries Integrator using the MQSeries Integrator
Rules Daemon, you must

n Complete a valid MQSeries installation

n Create all MQSeries queues

n Create a parameter file containing configuration information

n Enter and save rules and formats.
MQSeries Integrator System Management Guide 195

Chapter 5
Rules and formats are used by the MQSeries Integrator Rules daemon as
defined in this section. A utility is provided to allow you the option of
encrypting the UserId and Password for the parameter file.

4XHXHV�
The MQSeries Integrator Rules daemon uses input and output MQSeries
queues. Input queues are specified by name in the parameter file. Multiple
input queues can be defined, each with its own set of default values. Output
queues are: Failure queue, No Hit queue, and any queues specified by any
putqueue action. To create the queues, use the appropriate MQSeries
commands.

To have a message successfully evaluated by the MQSeries Integrator Rules
daemon, the input message should use an MQSI header with these two
options set:

OPT_APP_GRP
OPT_MSG_TYPE

OPT_APP_GRP assigns the message to an application group and must match
the application group name in the NEONRules database. The OPT_MSG_TYPE
must match the message type in rule definitions and the input format name in
the format definitions. These two message options allow the MQSeries
Integrator Rules daemon to evaluate the message against its rules and only its
rules. If the options and defaults are not set, the evaluation will not occur and
failure processing occurs.

When a MQSI header is not used, or these options are not set, the MQSeries
Integrator Rules daemon assigns defaults based on parameter settings from
the parameter file name specified on the command line at startup. The
DefaultMsgType parameter can be set to use the message’s MQMD field
value or any format defined in the NEONFormatter database.

The MQSIruleng.mpf is a parameter file sample provided to guide you in
creating your own parameter file. The parameter file contains required and
optional parameters, some of which can be tuned to customize control and
performance to your environment. See MQSIruleng on page 198.
196 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
5XOHV�
:$51,1*�
Unless Reload messages are used, the MQSeries Integrator Rules daemon is
not dynamic with respect to rule definition (this also includes subscription
definition). MQSeries Integrator 1.0 supports the Reload operation only for
reloading an entire application group. MQSeries Integrator 1.1 allows
individual components of an application group to be reloaded. Any rules
added or changed after the MQSeries Integrator Rules daemon startup are
not used until the Reload message is processed.

3XWTXHXH
The putqueue action takes a message and puts it onto a specified destination
MQSeries queue and sets the message type option as the message format type
specified. The putqueue action requires a destination MQSeries queue name
and a message format type as options. The message format type must exist in
the MQSeries Integrator database. The putqueue does not perform
formatting. If using Rules Management APIs to add the putqueue action, the
action name should be putqueue with the option names:
OPT_TARGET_QUEUE and OPT_MSG_TYPE (with the case as specified).

For the MQSeries Integrator version of MQSeries Integrator, the Rules
daemon uses MQSeries to put to the output queues.

:$51,1*�
If a subscription does not include the putqueue action, messages will not be
put onto any queue and can be lost. The NEONRules Consistency Checker can
be run to determine which subscriptions do not have a putqueue.

1RWH�
While the reformat and putqueue subscription options are the only actions
that can be performed by the Rules Engine, the MQSeries Integrator Rules
APIs allow any number of actions and associated options. An application
programmer can use MQSeries Integrator APIs in conjunction with
independently generated code, in order to execute other types of actions. The
size of your database and performance requirements are the only limitations
on the MQSeries Integrator Rules APIs.
MQSeries Integrator System Management Guide 197

Chapter 5
)RUPDWV�
:$51,1*�
All MQSeries Integrator formats associated with any message put onto any
input queue must be entered and saved prior to putting that message onto the
input queue. All MQSeries Integrator formats needed during a reformat
action must be entered and saved prior to starting the MQSeries Integrator
Rules daemon.

For information about entering rules and formats, refer to the MQSeries
Integrator User Guide and the Programming Reference documents. For
information on creating queues, refer to the MQSeries documentation.

8VLQJ�WKH�046HULHV�,QWHJUDWRU�5XOHV�
'DHPRQ

046,UXOHQJ�

6\QWD[

MQSIruleng -p <parameter file name>

3DUDPHWHUV

The parameters described in the following table are used to configure the
MQSIruleng via a parameter file. The parameters are tunable, meaning that
their values can be adjusted to customize control and performance to your
environment. The parameter file allows you to enable and disable optional
features and to set values of some required features.

The parameters are divided into five areas: Operations, Logging, Queues,
Queue Handle Cache, and Rules Database Connection. Within the parameter
file, the parameters are presented in the same groupings. The group heading
must be displayed in the parameter file using square brackets. To view a
tunable parameter file example, see Example on page 205.
198 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
2SHUDWLRQV

/RJJLQJ

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

AllocQuantum Optional Unit of memory allocation = 2048 bytes
(by default*)

ExtendQuantum Optional Unit of extension of previously allocated
memory block = 1024 bytes (by default*)

MaxBufferSize Optional Hard limit on growth of memory block
= 1048576 bytes (by default*).

* The default values for these parameters are recommended and are designed to be
more than adequate in most environments.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

LogFileName Optional LogFileName contains the file
specification for the daemon log file. By
default, log messages are written to
stdout.

LogLevel Optional Amount of detail entered in the LogFile.
Default = 0.
Values:
3-log only fatal
2-log errors and fatal errors
1-log warnings, errors, and fatals
0-log informationals, warning, errors,
and fatals
MQSeries Integrator System Management Guide 199

Chapter 5
4XHXHV

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

Credentials
Enabled

Optional Value determines whether messages are
put with alternate user authority. The
default is off (value is zero (0))
indicating that messages are put using
daemon authority. When turned on
(value is one (1)), messages are put using
the publisher’s authority.

QueueManager
Name

Optional Name of the local MQSeries Queue
Manager. If not specified, the MQSeries
default queue manager is used.

MaxBackoutCount Optional Indicates the number of replays before
the message is sent to a failure queue.
This value can be zero (0) to the
maximum imposed by MQSeries. Zero
(0) is the default value, and indicates
that no replay is allowed.

InputQueue
Name

Mandatory Name of queue used by the MQSeries
Integrator Rules daemon to process
inbound/input messages.

When multiple input queues are
specified, use "first,second,third..."
where first, second, and third are the
names of the queues. No white spaces
are used within the queue list.

ServiceScheme Optional Used with Input Queue Name to specify
the queue service scheme across
specified input queues. "RoundRobin"
(the default) processes the first message
from each queue in strict rotation.
"Drain" processes all messages in the
first queue before processing from the
next queue.
200 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
ServiceInterval Optional The integer number of seconds the
daemon sleeps when any input queue is
empty before continuing the
progression of the ServiceScheme. The
default is one (1) second.

NoHitQueue
Name

Mandatory Name of queue used by the MQSeries
Integrator Rules daemon to place
messages that do not satisfy any of the
defined rules. A NoHitQueueName
value must be supplied by the user; no
default value.

FailureQueue
Name

Mandatory Name of queue used by the MQSeries
Integrator Rules daemon to place a
message in the event where a failure
occurred. A FailureQueueName value
must be supplied by the user; no default
value.

DefaultApp
Group

Mandatory Indicates the default application group
to be used for messages without a MQSI
header. A DefaultAppGroup value
must be supplied by the user; no default
value.

Mapping of multiple default values for
multiple input queues is from left to
right. If insufficient default values are
specified, the value list is reprocessed
from the beginning until sufficient
values are assigned. Excess default
values are ignored

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
MQSeries Integrator System Management Guide 201

Chapter 5
DefaultMsgType Mandatory Indicates the message type value to be
used for messages without a MQSI
header. A DefaultMsgType value must
be supplied by the user; no default
value.

The special values: "$MQMD.Format",
"$MQMD.PutApplName", or
"$MQMD.ApplIdentityData" can be
specified. These values cause the
daemon to use the MQSeries Message
Descriptor (MQMD) values indicated at
runtime.

Mapping of multiple default values for
multiple input queues is from left to
right. If insufficient default values are
specified, the value list is reprocessed
from the beginning until sufficient
values are assigned. Excess default
values are ignored

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ
202 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
4XHXH�+DQGOH�&DFKH

1DPH 0DQGDWRU\�
2SWLRQDO

'HVFULSWLRQ

MaxHandles Optional Integer value specifying the maximum
number of entries allowed in the queue
handle cache. When this number of
handles has been stored in the cache, the
next attempt to insert a queue handle
into the cache initiates a cache purge
operation.

PurgeInterval Optional Integer number of seconds to wait
before attempting a cache purge
operation. This value is used only when
the MQSI rules daemon is sleeping. If
the input queues remain full,
MaxHandles dictates when a cache
purge occurs.

The Queue Handle Cache parameters described above are not required for the MQSI
Rules Daemon to run. However, use of these tunable parameters is recommended
to optimize performance. When MaxHandles and PurgeInterval are not specified,
the daemon default is to disable its cache. The cache is purged using a Least Recently
Used (LRU) algorithm.

If the cache is full, but no entries match the purge selection criteria, a random entry
is selected for removal from the cache.
MQSeries Integrator System Management Guide 203

Chapter 5
5XOHV�'DWDEDVH�&RQQHFWLRQ

5HPDUNV

MQSeries Integrator uses parameter files of the following structure:

1RWH�
You can not have trailing whitespace after a group identifier because the file
fails to parse correctly. You must have a return immediately following the
closing bracket of the group identifier. An example of a group identifier as
shown below is: [Group1]

[Group1]
field 1 = value 1
field 2 = value 2
.

1DPH 0DQGDWRU\��
2SWLRQDO

'HVFULSWLRQ

Server Name Mandatory The name of the server that you want to
connect to. For Oracle, this is optional.
For DB2, enter the database name here
and leave Database Instance as "???".

User ID Mandatory Your User ID. Can be encrypted using
the MQSIencrypt utility.

Password Mandatory Your password. Can be encrypted using
the MQSIencrypt utility.

Database Instance Mandatory The name of the database that you want
to connect to. Leave as "???" for DB2 or
Oracle.

Database Type Mandatory Type the number of the database type:
SYBASE with CTLIB = 1
SYBASE with DBLIB = 2
ORACLE 7.x = 3
MSSQL = 4
DB2 = 5
ODBC = 6
204 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
.

.
[Group2]

field 1 = value 1
field 2 = value 2
.
.
.

[Group3]
field 1 = value 1
field 2 = value 2
.
.
.

1RWH�
This spaces before and after the "=" are required.

([DPSOH

###
#
This is the tunable parameters file for MQSIruleng.
#
Comments must have a number sign(#) in the first
column. Trailing comments are forbidden.
#
Names must be separated from an equals sign by white
space, and the value also must be separated with white
space. No white space is allowed in the value string
itself, nor are trailing comments permitted.
#
Note that any values in this parameter file will
override defaults established by the daemon!
###

[Queues]

Parameters related to queues, MQSeries control, and rules
engine control
MQSeries Integrator System Management Guide 205

Chapter 5
Alternate User Authority flag
CredentialsEnabled = 0

MQSeries queue manager name...defaults to default queue
manager
#QueueManagerName = ???

number of replay/retry limit before failed message is sent to
failure queue (zero indicates no replays allowed)
MaxBackoutCount = 0

these three queue names are mandatory!
InputQueueName = ???
NoHitQueueName = ???
FailureQueueName = ???

rules default application group and message type values
(mandatory)
DefaultAppGroup = ???
DefaultMsgType = ???

[Queue Handle Cache]
parameters used to control the output queue handle cache...
MaxHandles = 25
PurgeInterval = 30

[Logging]
Log file control..."LogFileName" is the file specification
for
the log, and valid "LogLevel" settings are:
3 - log only fatal errors
2 - log errors, and fatal errors
1 - log warnings, errors, and fatals
0 - log informationals, warnings, errors, and fatals
LogFileName = mqsiruleng.log
LogLevel = 0

[Rules Database Connection]
#
Rules and Formatter database connection information
(mandatory)
206 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
Exceptions/notes:
- leave "DatabaseInstance" as "???" (Oracle and DB2 only)
- enter the database name as the value of "ServerName" (DB2
only)
#
ServerName = ???
UserId = ???
Password = ???
DatabaseInstance = ???
#
DatabaseType is a numeric with these values:
SYBASE (CTLIB bindings) = 1
SYBASE (DBLIB bindings) = 2
MSSQL = 4
DB2 = 5
ODBC = 6
ORACLE (version 7.x) = 8
ORACLE (version 8.x) = 9
DatabaseType = ???
#
end of file!
#

(QFU\SWLQJ�WKH�3DUDPHWHU�)LOH
After the parameter file is created, the MQSIencrypt utility can be used to
encrypt the UserId and Password keys of the Rules Database Connection
parameter group. The utility creates a copy of the parameters file with the
UserId and Password encrypted. Upon verification that the encrypted
parameter file is operational, the original plaintext file should be deleted.
Encryption does not affect the procedure used to start the daemon. The
parameters file can be edited after encryption to modify all other parameter
key/value pairs, provided you do not alter the encrypted values.

5XQQLQJ�WKH�5XOHV�'DHPRQ
MQSIruleng can be started and stopped in UNIX or as an NT Service.

5XQQLQJ�UXOHQJ�RQ�81,;
To start the MQSI Rules daemon, either pass in the commands on the
command line or follow the prompt for the parameters.
MQSeries Integrator System Management Guide 207

Chapter 5
5XQQLQJ�UXOHQJ�DV�DQ�17�6HUYLFH
You can run MQSIruleng as a Service under Windows NT 4.0.

The benefits of running ruleng as a service include the ability to:

n Start, stop, and pause the service from the service GUI provided by
NT, or from the command line.

n Run multiple services at one time.

n Schedule a service to start automatically when a machine is
unattended.

1DPLQJ�<RXU�6HUYLFHV

Before installing your services, you must determine a unique name for each
service to be installed. The service name points any service commands to the
appropriate messaging and queuing engine or the appropriate rules engine.

Consider the following:

n Uniquely name each entity in relation its function or component
rather than relying on case sensitivity to distinguish them. To prevent
potential database conflicts, use case sensitivity as a readability factor
but not as the sole differentiation between names. While TestCase,
TESTCASE, and testcase are each considered as unique names in a
case-sensitive database, they are duplicates within a database that is
not case sensitive.

n Choose short names that are meaningful to your systems and
organization.

n Capitalize each word in a name to make it more readable and to serve
as a consistency standard (such as TestImport.)

1RWHV�
The service names and corresponding executables are stored in your system’s
registry. It is not recommended that the registry executables be changed or
modified.
208 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
,QVWDOOLQJ�17�6HUYLFHV

Services are named and installed from the command line and must be
installed before you can run them. The following install syntax handles the
naming of your service and its installation.

MQSIruleng -install <your service name> <service options> -p
<parameterFileName>

Detailed information about available Service Options is found on page 211.
Upon installation, whenever the service is started, it will reference and run
using the parameters set in the parameter file.

When the installation is complete, a confirmation message appears. If
installation is unsuccessful, an error message appears.

To verify that the service is installed and is available, open the NT services
window, as described in the following section. To further check the status of
the service and display the default parameters/options, use the following
command:

MQSIruleng -info <your service name>

([DPSOH�

To install a service named RulesWest for MQSIruleng without service
options, type:

MQSIruleng -install RulesWest -p MQSIruleng.mpf

0DQDJLQJ�6HUYLFHV�IURP�WKH�17�*8,

From the Windows NT desktop, select Start→Settings→Control Panel.
Double-click Services in the Control Panel window.

The NT Services window appears. Installed Services are listed in the window.
For each Service, its current status and startup method is listed.

5XQQLQJ�D�6HUYLFH

1. From the NT Services window, highlight the Service you want to
start. Click Start. The Status changes to Started.
MQSeries Integrator System Management Guide 209

Chapter 5
2. To Stop or Pause a Service, highlight the Service and click Stop or
Pause. The Status will reflect the change.

6FKHGXOLQJ�$XWRPDWLF�6WDUWXS�IRU�D�6HUYLFH

Services can be scheduled to start automatically according to parameters you
set. Highlight the service you want to schedule and click Startup.

1. Choose the Startup Type.

Automatic: Service runs automatically when the system starts. The
Service will start only if the computer has 12MB or more of random
access memory (RAM).

Manual: Service runs only when started by a user or a dependent
service. Service remains running until it is stopped, even if the user
that started the service has logged off the system.

Disabled: Service is disabled and will not start.

2. Identify the Log On As parameters.

System Account: The Service logs on to a system account versus a
user account. Most Services log on to a system account.

This Account: The Service logs on to a specific user account with
corresponding password. Click the browse button to specify a user
account, and then type the password for the user account in both the
Password and Confirm Password boxes.

To provide a user interface on the desktop that can be used by
whoever is logged in when the service is started, select the Allow
Service to Interact with Desktop check box.

3. Click OK.
210 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
0DQDJLQJ�6HUYLFHV�IURP�WKH�&RPPDQG�/LQH

The command line can provide more detailed descriptions of errors when
they occur.

1RWHV�
The GUI does not automatically refresh after a command line operation is
performed affecting a service. Close and reopen the GUI to view the change
to the service.

6\QWD[

MQSIruleng <service option> <service name> <standard option
(optional, as needed)> -p <parameterFileName>

6HUYLFH�2SWLRQV

6HUYLFH�2SWLRQ 'HVFULSWLRQ

-install Installs the service with the <standard option> used as
startup defaults.

-remove or
-uninstall

Removes the service.

-start Starts the service. The <standard options> override
default startup parameters.

-stop Stops the service.

-pause Pauses the service if it is running.

-continue Continues the service if it is paused.

-info Prints service status and current default parameters.

-parameters Installs <standard options> as the default startup
parameters the next time the service is started. To
change parameters for one time only, use the GUI.

-? or -help Displays service usages and printing of usage text.
MQSeries Integrator System Management Guide 211

Chapter 5
([DPSOHV������������

6WDUWLQJ�D�6HUYLFH�LQ�UXOHQJ

To start a service named RulesWest in MQSIruleng with no options:

MQSIruleng -start RulesWest

By starting the service from the command line versus through the GUI, the
default startup options will be overridden by no options in this command.
This occurs for this service start only because the default startup parameters
are not permanently changed by the command line start.

7R�8QLQVWDOO�WKH�6HUYLFH�IURP�UXOHQJ

To uninstall RulesWest as a service for MQSIruleng, type:

MQSIruleng -uninstall RulesWest

RulesWest will no longer be available as a service and will not appear on the
NT Services window.

5XOHV�'DHPRQ�6KXWGRZQ

6HQGLQJ�D�6KXWGRZQ�0HVVDJH

To send a shutdown message:

1. Add the following line to the Put Option group in the
MQSIputdata.mpf file:

OPT_SHUTDOWN = SHUTDOWN

2. Modify the line:

inputFileName = null.dat

3. Create a null file named "null.dat"

4. To invoke putdata to send the shutdown message, type:

MQSIputdata -p MQSIputdata.mpf
212 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
8VLQJ�&WUO�F�WR�6KXW�'RZQ�5XOHV

If you run the Rules daemon interactively, you can exit Rules using Ctrl+c. If
you use Ctrl+c, a message is sent to the log, and Rules exits. If Ctrl+c is issued
during the processing of a message, the message is rolled back, and it will be
in the Failure queue when the Rules daemon is started again.

1RWHV�
Using Ctrl+c is the abrupt way to shut down Rules. It is better to send a
shutdown message, disable the rules input queue, or shut down the queue
manager to shutdown Rules. MQSeries connections, including all connections
to queues in the output queue handle cache, are not shutdown using Ctrl+c.
MQSeries Integrator System Management Guide 213

Chapter 5
046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ�
3URFHVVLQJ�

The MQSeries Integrator Rules daemon is built on top of the Rules, Formatter,
and MQSeries APIs and performs the following procedures in this order:

1. Message processing

2. Subscription execution

3. Failure processing

0HVVDJH�3URFHVVLQJ�
Message processing evaluates the message against the currently defined rule
set for the application group/message type pair. Formatter is called to
deconstruct (parse) the input message into component parts (fields). Rules
then evaluates these fields. If a message is successfully evaluated,
subscriptions are executed. (A subscription is a list of actions.)

If a failure occurs when rules are evaluated against a message, the transaction
is rolled back and the transaction end is defined. If a failure occurs during
message processing, failure processing begins.

Messages are evaluated against active rules only. If there are no active rules in
a rule set (application group/message type), the load will fail, and the
message will be sent to the Failure Queue. Only active subscriptions are
retrieved for hit rules. If there are no active subscriptions in a rule set, the load
will fail, and the message will be sent to the Failure Queue. If none of the hit
rules have active subscriptions, the first call of the get subscriptions returns
nothing, and the message is sent to the No Hit Queue.

6XEVFULSWLRQ�([HFXWLRQ�
After a message (field or fields) is successfully evaluated against its rules, all
subscriptions associated with those rules that evaluated to true are executed.
If a message is successfully evaluated, and no subscriptions are executed, i.e.,
no rules evaluate to true, the message is routed to the No Hit Queue.
214 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
If there is a failure at any time during subscription execution, the transaction
is rolled back, and the transaction end is defined. Once this rollback occurs,
failure processing begins.

The subscription actions that can be processed within the MQSeries
Integrator Rules daemon are Reformat and Put Queue. Other actions defined
require users to write their own daemon to process those actions. The
MQSeries Integrator Rules daemon does not execute generic actions.

1RWHV�
The MQSeries Integrator Rules daemon shuts down under the following
conditions:

n Failure Queue inaccessible

n No Hit Queue inaccessible

n Queue Manager shutdown or inaccessible

n Commit or rollback failure

n Internal error (for example, failure to allocate memory)

n Input queue inaccessible (get is disabled)

5HIRUPDW
The Reformat action takes a message with an input format and reformats the
message to a message adhering to the specified output format. The Reformat
action requires both an input and an output format as options. Formatter
APIs are called to perform the reformat of messages. If you are using Rules
Management APIs to add the Reformat action, the action name should be
“reformat” with the option name: “INPUT_FORMAT” and
“TARGET_FORMAT” (in uppercase).

)DLOXUH�3URFHVVLQJ�
Failure processing occurs when message processing or subscription execution
fails. Failure processing also occurs if there are no active rules or subscription
for the application group/message type. Failed messages are routed to the
MQSeries Integrator Failure Queue specified in the parameter file. Using the
MQSeries Integrator System Management Guide 215

Chapter 5
MQSeries Integrator Rules daemon, you can write a process to manage the
messages in the Failure Queue.

0HVVDJH�5RXWLQJ�
Based on the outcome of the MQSeries Integrator Rules daemon procedures
(message processing, subscription execution and failure processing),
messages can be routed to the No Hit Queue, Failure Queue, or to queues
specified in a Put Queue action.

n If no subscription actions are successfully executed, messages are
routed to the No Hit Queue.

n If failures occur at any time during processing, the message is routed
to the Failure Queue.

n If errors occur during execution, all errors are reported to the Log File
only if a log file is specified. If no log file is specified, errors appear on
the screen of the process which started the MQSI Rules Daemon.

&DFKLQJ�2XWSXW�4XHXH�+DQGOHV
Queue handle caching improves the performance of put queue actions
requested by rule subscriptions. Tunable parameters define the cache.

5XOHV�&DFKLQJ
When users change data within a rule or rule set specified by an Application
Group/Message Type pair, they must signal a running Rules Daemon
instance to load the changes into memory.

Notification messages do not contain a data segment (header and options
only) and have three options: OPT_APP_GRP and OPT_MSG_TYPE set the
application group and message type indicating which rule set to reload, and
OPT_RELOAD_RULE_SET set to TRUE indicating to the Rules Daemon to
reload the specified rule set.
216 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
6HQGLQJ�D�5HORDG�0HVVDJH
To send a reload message:

1. Modify the putdata parameter file: MQSIputdata.mpf.

2. Open your editor and go to the Put Option group in the
MQSIputdata.mpf parameter file.

3. Add the following line:

OPT_RELOAD_RULE_SET = TRUE

4. Modify the line:

inputFileName = null.dat

5. Exit the MQSIputdata.mpf parameter file.

6. Create a null file named "null.dat"

7. To send the reload message, type:

MQSIputdata -p MQSIputdata.mpf

5XOHV�'DHPRQ�6HFXULW\
The MQSeries Integrator Rules daemon can publish messages using one of
two methods:

1. With the authority of the user who started the daemon

2. With the authority the publisher

If the first method is used, a message is delivered to a queue with the
credentials of whoever originally started the daemon. However, using this
method, the rules daemon can be used to put messages to queues that the
publisher would not ordinarily be able to access because of security reasons.

If the second method, publisher security, is used, the publish operation fails if
a messages is put to a queue that the publisher cannot access because of its
security. The message is instead sent to the Rules daemon failure queue.
MQSeries Integrator System Management Guide 217

Chapter 5
By default, the Rules daemon uses method one, the security of the user who
started the daemon (CredentialsEnabled = 0). To enable method two,
publisher security, add the following line to the Rules daemon configuration
file:

CredentialsEnabled = 1
218 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
046HULHV�,QWHJUDWRU�5XOHV�'DHPRQ�(UURU�
0HVVDJHV

.H\�WR�0HVVDJH�&RGHV�DQG�6HYHULW\�

,QIRUPDWLRQDO�0HVVDJHV

0HVVDJH�7\SH (UURU�&RGH�5DQJH 6HYHULW\�&RGH

Information 10000 - 10099 0

Warning 10100 - 10199 1

Error 10200 - 10299 2

Fatal 10300 - 10399 3

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH

10000 Received the input message
with input queue: <insert
character string>
application group: <insert
character string>
message type: <insert
character string>

0 None. This is an
information message.

10001 A putqueue action has
begun.

0 None. This is an
information message.

10002 Putting message to Failure
queue.

0 None. This is an
information message.

10003 Performing a reformat
operation.
Input Message Type: <insert
character string>
Output Message Type:
<insert character string>

0 None. This is an
information message.
MQSeries Integrator System Management Guide 219

Chapter 5
10004 Message put to target queue
but not committed yet.
Target Queue Name: <insert
character string>

0 None. This is an
information message.

10005 Publish operation completed
successfully.

0 None. This is an
information message.

10006 Reformat operation
completed successfully.
Input Message Type: <insert
character string>
Output Message Type:
<insert character string>

0 None. This is an
information message.

10007 Rules evaluation succeeded.
Application Group: <insert
character string>
Message Type: <insert
character string>

0 None. This is an
information message.

10008 The Rules evaluation yielded
a subscription.
Application Group: <insert
character string>
Message Type: <insert
character string>

0 None. This is an
information message.

10009 Successfully created output
message group.
Input Message Type: <insert
character string>
Output Message Type:
<insert character string>

0 None. This is an
information message.

10010 Putting message to No Hit
queue.

0 None. This is an
information message.

10011 A putqueue action has
completed.

0 None. This is an
information message.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
220 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10012 Shutdown request detected. 0 None. This is an
information message.

10013 Reload of a rule set
completed successfully.
Application Group: <insert
character string>
Message Type: <insert
character string>

0 None. This is an
information message.

10014 A special control message
was detected.

0 None. This is an
information message.

10015 User requested abort via
signal.

0 None. This is an
information message.

10016 Buffer extended. 0 None. This is an
information message.

10017 Reload of rules component
completed successfully.
Application group: <insert
character string>
Message Type: <insert
character string>
Component Name: <insert
character string>

0 None. This is an
information message.

10018 Component not found or rule
set not currently in cache.
Reload request ignored.
Application group: <insert
character string>
Message Type: <insert
character string>
Component Name: <insert
character string>

0 None. This is an
information message.

10019 Reserved for use by IBM. 0 NA

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
MQSeries Integrator System Management Guide 221

Chapter 5
10020 Getqueue action normal
completion. No more
messages available.

0 None. This is an
information message.

10021 Getqueue action complete.
Actual number of messages
read: <insert number>
Number of messages
specified in parameters file:
<insert number>

0 None. This is an
information message.

10022 Encryption operation
completed successfully.

0 None. This is an
information message.

10023 Statistics at the end of the
message put operation:
Number of messages put:
<insert number>
Number of commits done:
<insert number>

0 None. This is an
information message.

10024 Start information related to
the put operation:
Queue name: <insert
character string>
Number of messages to be
put: <insert number or
"ALL">
Count of each messages to be
put: <insert number>
Commit size:<insert
number>

0 None. This is an
information message.

10025 Commit operation
succeeded.
Number of messages put/
committed: <insert number>
Target queue name: <insert
character string>

0 None. This is an
information message.

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
222 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
:DUQLQJ�0HVVDJHV

10026 Statistics at the end of
message get operation.
Number of messages got:
<insert number>
Number of commits done:
<insert number>

0 None. This is an
information message.

&RGH 0HVVDJHV 6HYHULW\ 5HVSRQVH

10100 No subscriptions found for
message with
application group: <insert
character string>
message type: <insert
character string>

1 Check the daemon’s No
Hit queue and verify
that no subscriptions
exist for that message.
This condition does not
necessarily represent
an error.

10101 Message being processed
exceeds current buffer size.
Message size: <insert
number>
Current buffer size: <insert
number>

1 Increase the
MaxBufferSize.

10102 Reserved for use by IBM. 1 NA

10103 The queue <insert character
string> is full. No more
messages can be put.

1 Check to make sure
messages are being read
from the queue so that
more messages can be
put. Consider
increasing MaxDepth
(see MQSeries
documentation for
information on setting
the MaxDepth queue
command).

&RGH 0HVVDJH� 0HVVDJH�
6HYHULW\

5HVSRQVH
MQSeries Integrator System Management Guide 223

Chapter 5
(UURU�0HVVDJHV

10104 The specified commit size
<insert number> exceeds the
maximum permissible
commit size <insert
number>. Setting the
commitSize to <insert
number>.

1 Reduce commitSize to a
value less that the
system constraint.

The commitSize is
changed to the system
constraint value as
indicated in the error
message.

10105 The current record size
<insert number> exceeds the
maximum permissible
record size <insert number>.
Cannot put the message into
the queue.

1 Set
maxUserDataLength in
MQSIputdata.mpf to a
value at least equal to
the message size of the
largest message
expected.

10106 Message segmentation not
allowed for messages having
header format <insert
character string>. Disabling
the message segmentation
feature.

1 Verify that the specified
format is supported for
message segmentation.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ

10200 Failed to create output
message group.
Input message type: <insert
character string>
Output message type:
<insert character string>
Formatter Error # : <insert
number>
Formatter Error Message:
<insert character string>

2 Refer to Formatter
documentation for more
information on the
Formatter error
described by this
message.

&RGH 0HVVDJHV 6HYHULW\ 5HVSRQVH
224 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10201 Failed to open target queue.
Target queue name: <insert
character string>
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

2 Verify that the target
queue exists. Refer to
the MQSeries
documentation for more
information on the
MQSeries error
described by this
message.

10202 Failed to put message to
target queue.
Target queue name:<insert
character string>
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

2 Verify that the target
queue exists. Refer to
the MQSeries
documentation for more
information on the
MQSeries error
described by this
message.

10203 Output type missing for
subscription <insert
number>.

2 Verify that the output
format is specified for
this subscription.

10204 Input type missing for
subscription <insert
number>.

2 Verify that the input
format is specified for
this subscription.

10205 Failed to reformat message.
Input message type: <insert
character string>
Output message type:
<insert character string>
Formatter Error #: <insert
number>
Formatter Error Message:
<insert character string>

2 Refer to the Formatter
documentation for more
information on the
Formatter error
described by this
message.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
MQSeries Integrator System Management Guide 225

Chapter 5
10206 Rules evaluation failed.
Application group: <insert
character string>
Message type: <insert
character string>
Rules Error # : <insert
number>
Rules Error Message: <insert
character string>

2 Refer to the Rules
documentation for more
information on the
Rules error described by
this message.

10207 Target queue not set for
putqueue action.

2 Verify that the
putqueue action in your
Rules subscription has a
target queue defined.

10208 Request-reply messages not
supported. Message
rejected.

2 Determine which
application is sending
request messages to the
MQSeries Integrator
Rules daemon and
change the message
type from request to
datagram.

This message applies to
releases of MQSI prior
to 1.1. With MQSI 1.1
messages are not
rejected.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
226 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10209 A corrupt message was
detected.

2 Determine which
application is sending
the corrupt message.
Verify that the
application is using the
method outlined in the
example programs to
construct the messages
it sends to the MQSeries
Integrator Rules
daemon.

10210 Cannot propagate RF
header.
No RF header on input
message.

2 Either change the
publishing application
to send messages to the
MQSeries Integrator
Rules daemon with an
RF header, or change
the subscription so that
the MQS_PROPAGATE
option is not set.

10211 No options found for
subscription.
Subscription Action: <insert
character string>
Subscription ID: <insert
number>

2 Verify that the
subscription is valid. A
subscription that
contains a putqueue
action should also
contain a target queue
option. A subscription
that contains a reformat
action should also
contain both an input
format option and a
target format option.

10212 Unknown action detected.
Action Name: <insert
character string>
Subscription ID: <insert
number>

2 Verify that the actions
specified for this
subscription are valid.
Valid actions are
putqueue and reformat.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
MQSeries Integrator System Management Guide 227

Chapter 5
10213 Putqueue action failed:
Subscription Action: <insert
character string>
Subscription ID: <insert
number>

2 Check the log for
additional details about
this error.

10214 The input message exceeded
the backout count.
The message will be sent to
the failure queue.

2 Check the log for
additional details about
this error. This error is
preceded in the log by
another message
indicating why the
input message was
originally backed out.

10215 A message descriptor
extension was detected on
the input message.
The message will be sent to
the failure queue.

2 This error is caused by a
version 5 MQSeries
application sending
messages to an
MQSeries Integrator
Rules daemon built
with version 2 libraries.
If possible, upgrade the
version of your
MQSeries Integrator
Rules daemon.
Otherwise, stop sending
version 5 messages to
the MQSeries Integrator
Rules daemon.

10216 The Publish operation failed. 2 Check the log for
additional information
about this error.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
228 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10217 A corrupt message options
segment was detected.

2 Determine which
application is sending
the corrupt message.
Verify that the
application is using the
method outlined in the
example programs to
construct the messages
it sends to the MQSeries
Integrator Rules
daemon.

10218 The input message
conversion failed. The
message will be sent to the
failure queue.

2 Check the Log file for
details.

10219 Reload of rule set failed.
Application group: <insert
character string>
Message Type: <insert
character string>
Rules Error # : <insert
number>
Rules Error Message: <insert
character string>

2 Check the Log file for
details.

10220 Subscription name missing
from reload message.

2 Check the reload
message.

10221 Invalid reload component
specified in reload message.

2 Check the Log file for
details.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
MQSeries Integrator System Management Guide 229

Chapter 5
10222 Reload of rule set failed.
Application group: <insert
character string>
Message Type: <insert
character string>
Rules Error # : <insert
number>
Rules Error Message: <insert
character string>

2 Check the Log file for
details.

10223 Cannot obtain output queue
handle from cache for queue.

2 Internal error. Refer to
the MQSI log file for
details. Contact product
support.

10224 Encryption algorithm cannot
process specified string.

2 Re-encrypt a plaintext
.mpf to determine if
error is corrected. Refer
to the MQSI log file for
details. Contact product
support.

10225 Failed during encryption
operation.
File Name: <insert character
string>
Line Number: <insert
number>

2 Contact product
support.

10226 The record separator string
is not specified in the tunable
parameter file. It is
mandatory for variable
length record.

2 Verify that
recordSeparator is set as
an ascii string in
MQSIputdata.mpf.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
230 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
)DWDO�(UURU�0HVVDJHV

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ

10300 Bad condition code detected. 3 Internal error. Contact
product support.

10301 Unrecognized output type in
failure message.
Message: <insert character
string>

3 Contact product
support.

10302 A Null Log File handle was
detected.

3 Internal error. Contact
product support.

10303 Failed to put message on
failure queue.
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

3 Verify that the failure
queue exists and is put
enabled. Refer to the
MQSeries
documentation for more
information about the
MQSeries error
described by this
message.

10304 Failed to put message on
nohit queue.
MQSeries condition code:
<insert number>
MQSeries reason code:
<insert number>

3 Verify that the queue
exists and is put
enabled. Refer to the
MQSeries
documentation for more
information about this
MQSeries error.

10305 Failure queue not specified. 3 Verify that a failure
queue is defined by the
MQSeries Integrator
Rules daemon
configuration file.

10306 No input queues were
specified.

3 Verify that an input
queue is defined by the
MQSeries Integrator
Rules daemon
configuration file.
MQSeries Integrator System Management Guide 231

Chapter 5
10307 No Hit queue not specified. 3 Verify that a No Hit
queue is defined by the
MQSeries Integrator
Rules daemon
configuration file.

10308 Unexpected argument:
<insert character string>

3 Verify the syntax of the
command used to run
the MQSeries Integrator
Rules daemon.

10309 Error connecting to Queue
Manager.
Queue Manager Name:
<insert character string>
MQSeries Completion Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 Verify that the queue
manager is running.
Refer to the
MQSeries
documentation for more
information about this
MQSeries error.

10310 Queue Manager Shutdown
detected.

3 The MQSeries
Integrator Rules
daemon shuts down in
response to a queue
manager shutdown.
Restart the queue
manager and then
restart the MQSeries
Integrator Rules
daemon.

10311 Failed to commit publish
operation.
MQSeries completion code:
<insert number>
MQSeries reason code:
<insert number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and restart
the
MQSeries Integrator
Rules daemon.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
232 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10312 Failed to rollback publish
operation.
MQSeries completion code:
<insert number>
MQSeries reason code:
<insert number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and restart
the
MQSeries Integrator
Rules daemon.

10313 Failed to open rules session. 3 Check the log for
additional information
about this error. Make
sure that the rules
database exists and is
available to the
MQSeries Integrator
Rules daemon. Verify
that the database user
name and password are
valid.

10314 Failed to allocate memory.
File Name: <insert character
string>
Line Number: <insert
number>

3 Verify that buffer sizes
defined by the
MQSeries Integrator
configuration file do not
exceed system limits.
Adjust buffer sizes and
restart the daemon.

Check with your System
Administrator to verify
that the operating
system is correctly
configured.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
MQSeries Integrator System Management Guide 233

Chapter 5
10315 Message being processed
exceeded maximum allowed
size.
Message size: <insert
number>
Required buffer size: <insert
number>
Maximum allowed size:
<insert number>

3 Increase the
MaxBufferSize
parameter in the
MQSeries Integrator
configuration file
to be greater than or
equal to the Received
message size given in
this error and then
restart the daemon.

10316 Error opening a queue.
Queue Name: <insert
character string>
MQSeries Completion Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and restart
the
MQSeries Integrator
Rules daemon.

10317 Failed to get a message from
an input queue.
Input queue name: <insert
character string>
Completion Code: <insert
number>
Reason Code: <insert
number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and restart
the
MQSeries Integrator
Rules daemon.

10318 Could not create formatter
object.

3 Check the log for
additional information.
Refer to the Formatter
documentation for
additional information
on causes of this error.

10319 Could not create rules object. 3 Refer to the rules
documentation for
additional information
on causes of this error.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
234 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10320 Could not access parameter
file. Parameter file name:
<insert character string>

3 Verify that the
MQSeries Integrator
Rules daemon
parameter file exists.

10321 The parameter file has an
invalid format.
Parameter file name: <insert
character string>

3 Verify that the
MQSeries Integrator
Rules daemon
parameter file has the
correct format.

10322 Failed to open rules session.
Error #: <insert number>
Error Message: <insert
character string>

3 Diagnose problem
based on Error # and
Error Message.

10323 Usage: <insert character
string> -p filename

3 Check the command
line invocation of the
MQSeries Integrator
Rules daemon.

10324 Default application group
and/or message type not
specified.

3 Define the
DefaultAppGroup and
DefaultMsgType
parameters in the Rules
daemon configuration
file.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
MQSeries Integrator System Management Guide 235

Chapter 5
10325 Failed to complete inquiry.
Target Object Name: <insert
character string>
Inquiry Code: <insert
number>
MQSeries Conditions Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 The MQSeries
Integrator Daemon was
unable to inquire about
the character set ID and
encoding used by the
Queue Manager.
Change the security in
the Queue Manager
object so that the user
who started the
MQSeries Integrator
Daemon has the right to
make an inquiry to
the Queue Manager
about its properties.

10326 Cannot initialize default
parameters.

3 Check the MQSI log file
and/or screen for
additional messages
with more
detail.Correct described
errors in the parameters
file. Restart the daemon.

10327 Unknown internal error
encountered. File Name:
<insert character string>
Line Number: <insert
number>

3 Contact product
support.

10328 Error disconnecting from
queue manager. Queue
Manager Name: <insert
character string>
Completion Code: <insert
number>
Reason Code: <insert
number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and restart
the MQSeries Integrator
Rules daemon.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
236 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10329 Insufficient space for
options.
File Name: <insert character
string>
Line Number: <insert
number>

3 Set
"MaxUserDataLength"
to a larger value in
MQSIputdata.mpf and
retry the message put.

10330 Error closing queue.
Queue Name: <insert
character string>
Completion Code: <insert
character string>
Reason Code: <insert
number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and restart
the
MQSeries Integrator
Rules daemon.

10331 No output queues specified
in the parameters file.

3 Specify the output
target queue name in
MQSIputdata.mpf.

10332 The parameter file has an
invalid or unsupported
value. Parameter File Name:
<insert character string>
Parameter Value: <insert
character string>

3 Correct the value
indicated and restart the
MQSI Rules Daemon.

10333 Error opening a queue
manager for inquire
operation.
Queue manager name:
<insert character string>
MQSeries Completion Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and retry
the MQSIputdata
operation.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
MQSeries Integrator System Management Guide 237

Chapter 5
10334 Error closing a queue
manager after inquire
operation.
Queue manager name:
<insert character string>
MQSeries Completion Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and retry
the MQSIputdata
operation.

10335 Error during inquire of an
MQSeries object.
Object type: <insert
character string>
Object name: <insert
character string>
MQSeries Completion Code:
<insert number>
MQSeries Reason Code:
<insert number>

3 Refer to the MQSeries
documentation for more
information about this
MQSeries error. Correct
the problem and retry
the MQSIputdata
operation.

10336 No input file name specified. 3 Verify that
inputFileName is set in
MQSIputdata.mpf.

10337 No output file name
specified.

3 Verify that
outputFileName is set
in MQSIgetdata.mpf.
outputFileName is
required when
outputToFile is set to a
value of one (1).

10338 Failed to open the specified
file <insert character string>
for input.

3 Verify that
inputFileName is set in
MQSIgetdata.mpf to a
valid file containing
messages.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
238 MQSeries Integrator System Management Guide

The MQSeries Integrator Rules Daemon
10339 Failed to open the specified
file <insert character string>
for output.

3 Verify that
outputFileName is set
in MQSIputdata.mpf to
a valid file.

10340 Rules object creation error.
Error number: <insert
number>
Error message: <insert
character string>

3 Based on the error
message text, correct the
error and retry, or
contact product
support.

10341 Formatter object creation
error.
Error number: <insert
number>
Error message: <insert
character string>

3 Based on the error
message text, correct the
error and retry, or
contact product
support.

&RGH 0HVVDJH 6HYHULW\ 'HVFULSWLRQ
MQSeries Integrator System Management Guide 239

Chapter 5
240 MQSeries Integrator System Management Guide

&KDSWHU��

&RQVLVWHQF\�&KHFNHU

MQSeries Integrator Consistency Checker provides a utility to check the
consistency of MQSeries Integrator components. The Consistency Checker
lists the objects as invalid that are out of synchronization because of a
recovery or bad migration (or for any other reason). It checks whether the
records have the corresponding features in the database. All formats and
rules in an inconsistent state generate a report indicating the problem. There
are no checks across databases; only the specified database is checked.

Most of the items checked verify the internal structure of the rules to confirm
that they were properly created; however, some checks verify that user-typed
data was correctly entered.

6WDUWLQJ�WKH�&RQVLVWHQF\�&KHFNHU�
)URP�D�&RPPDQG�/LQH

The Consistency Checker Command Line is a UNIX/Korn Shell command.
You must have Oracle SQLPlus, Sybase ISQL, or Informix DB Access installed
to run the Consistency Checker using UNIX/Korn Shell commands.
Microsoft SQL Server is also a supported DBMS type.

To run the Consistency Check in either NEONRules or NEONFormatter, change
to your CD-ROM drive and access the bin directory on the MQSeries
Integrator CD-ROM.
MQSeries Integrator System Management Guide 241

Chapter 6
5XOHV
To run the Consistency Checker for NEONRules, type the following UNIX/
Korn Shell command:

rulecc.ksh <user id> <password> <server name> <database name>

1RWHV�

n The database name is not needed for Oracle.

n The file rulecc.sql must be in the same directory as rulecc.ksh, and
the user must be able to create new files to run the Consistency
Checker.

)RUPDWWHU
To run the Consistency Checker for NEONFormatter, type the following UNIX/
Korn Shell command:

formatcc.ksh <user id> <password> <server name> <database name>

5HSRUWV
The Consistency Checker for NEONFormatter and NEONRules generates a
report similar to the following:

5HSRUW�7LWOH

The report title describes the purpose of the report and each row in the data
represents one problem of the same type. For example, the NEONRules
Consistency Checker checks message types that are associated with specific

)LUVW�)LHOG�
1DPH

6HFRQG�)LHOG�
1DPH

QWK�)LHOG�1DPH

Field Value 1 Field Value 1 Field Value 1

Field Value 2 Field Value 2 Field Value 2
242 MQSeries Integrator System Management Guide

Consistency Checker
application groups to see if the application group actually exists (this is the
third report in the rulecc.ksh output). If an application group is missing, the
offending message type is output to the Message Type field. If there are no
problems, only the report title appears (and possibly a message that no rows
were found will be printed as well).

Example: Problem Output

The following example shows a test of the Consistency Checker for NEONRules
where data was forcibly corrupted.

Message types referring to nonexistent application group:

046115SXWT&&��5XOHV�3XWTXHXH�$FWLRQ�&RQVLVWHQF\�&KHFNHU��

This utility, used with both NT and UNIX, goes through all putqueue
(PutMessage) actions and checks that queue names specified in putqueue
actions exist. The utility lists queue names that do not exist.

Use MQSNNRputqCC from the command line on the machine hosting the
MQSeries Integrator Rules daemon and MQSeries queue manager

MQSNNRputqCC
Rules Putqueue Consistency Checker (MQSNNRputqCC)

usage: MQSNNRputqCC<rules session name> <queue session OR queue
manager name>

For IBM MQSeries, the second parameter is the queue manager name.

0HVVDJH�7\SH 0HVVDJH�,G $SSOLFDWLRQ�,G

CCFlat 1 50 150
MQSeries Integrator System Management Guide 243

Chapter 6
&RQVLVWHQF\�&KHFNHU�5HSRUW��5XOHV
The NEONRules Consistency Checker report provides the following
information:

&RQVLVWHQF\�&KHFNHU�
5HSRUW

([SODQDWLRQ

Arguments that refer to nonexistent
Boolean operators

Boolean operator does not exist for the
argument. This will cause load failures.

Arguments that refer to nonexistent
operations

The argument’s operation does not exist.
This may cause load or evaluation failure.

Arguments that refer to nonexistent
operators

The operator does not exist for the
argument. This will cause evaluation
failure.

Arguments that refer to nonexistent
rules

The rule does not exist for the argument.
This may cause load failures.

Arguments with static values with
invalid lengths

The argument length must be between 0
and 64. This situation may cause load
failure or it can cause the rule to never
evaluate to true.

Boolean operators that have an
Argument Count of Zero

A Boolean operator must always have at
least two (2) child arguments and/or
Boolean operators. This may cause load or
evaluation failure.

Boolean operators that recurse more
than 5 times and maybe infinitely

This expression has many nested
expressions, which is okay. However, it
can also mean that the expression has a
circular reference, which will cause the
evaluation failure.

Boolean operators that refer to
nonexistent parent Boolean operators

Children Boolean operators must refer to
an existing parent Boolean operator. This
may cause load or evaluation failure.

Boolean Operators that refer to
nonexistent rules

The rule does not exist for the argument.
This may cause load failures.
244 MQSeries Integrator System Management Guide

Consistency Checker
Field Name2 (Comparison Value) in
Arguments that refer to nonexistent
fields in Formatter

A field name was entered in an argument
as a comparison value and the field name
is not a valid field in the Formatter.
Evaluation may fail or not hit.

Field Name2 (Comparison Value) in
Arguments that refer to nonexistent
Flat Fields in Formatter

A field name was entered in an argument
as a comparison value and the field name
is not a valid field in the flat input format
referred to by the Message Type of the
rule. Evaluation may fail or not hit.
(NOTE: Currently, the Rules Consistency
Checker does not check fields in
compound formats.)

Field Names in Arguments that refer
to nonexistent Flat Fields in Formatter

A field name was entered in an argument
and the field name is not a valid field in the
flat input format referred to by the
Message Type of the rule. Evaluation may
fail or not hit. (NOTE: Currently, the Rules
Consistency Checker does not check fields
in compound formats.)

Fields Names in Arguments that refer
to nonexistent fields in Formatter

A field name was entered in an argument
and the field name is not a valid field in the
Formatter. Evaluation may fail or not hit.

Hierarchy definitions that are not
complete for Rule/Subscription
Permissions

The hierarchy definitions must be
complete during the installation of
NEONRules with Permissions.

Message types in Rules that do not
match a Format in Formatter

The message type does not correspond to
any input format in the NEONFormatter.
The format may have been deleted in
Formatter. Do not use Rules in this
Message Type.

&RQVLVWHQF\�&KHFNHU�
5HSRUW

([SODQDWLRQ
MQSeries Integrator System Management Guide 245

Chapter 6
Message types in Rules that do not
match a Format in Formatter

The message type does not correspond to
any input format in the NEONFormatter.
The format may have been deleted in
Formatter. Do not use Rules in this
Message Type.

Number of arguments in a Boolean
AND Term does not match the
Argument Count indicated for the
Boolean Operator

A Boolean AND operator needs the same
number of children arguments and/or
Boolean operators as is indicated. This will
cause evaluation to work incorrectly.

Number of Arguments in a Boolean
OR Term is Incorrect

If the expression uses OR, it should have a
specific argument count of I. A Boolean
OR operator needs a certain number of
children arguments and/or Boolean
operators as is indicated. This will cause
evaluation to work incorrectly.

Number of Arguments in a Rule does
not match the Argument Count
indicated for the Rule

The arguments listed in the Argument
table do not match the number of
arguments in the Rule table. This rule will
not work correctly.

Operations that refer to nonexistent
message types

The application group/message type pair
does not exist for the argument
(operation). You cannot access these rules.

Permission Access and/or Grants that
are not valid for Rules

Current valid Rule permission names are:
‘Owner,’ ‘Read,’ and ‘Update.’ Permission
values can be: ‘Granted’ or ‘DenyAll.’

Permission Access and/or Grants that
are not valid for Subscription

Current valid Subscription permission
names are: ‘Owner,’ ‘Read,’ and ‘Update.’
Permission values can be: ‘Granted’ or
‘DenyAll.’

3HUPLVVLRQ�&KHFNV

Permissions granted to nonexistent
Item

Rule/Subscription permissions must refer
to a valid item name.

&RQVLVWHQF\�&KHFNHU�
5HSRUW

([SODQDWLRQ
246 MQSeries Integrator System Management Guide

Consistency Checker
Permissions granted to nonexistent
Subscriptions

Subscription permissions must refer to a
valid subscription name.

Permissions granted to nonexistent
Users

Rules permissions need both a valid user
and rule subscription to be complete.

Permissions that are not complete Rule/Subscription permissions must
include Node, Application Group,
Message Type, and Rule/Subscription
Name to be complete.

Permissions that do not exist in the
hierarchy

Rule/Subscription permissions must refer
to valid hierarchy information.

Permissions that refer to nonexistent
Application Groups

Rule/Subscription permissions must refer
to a valid application group.

Permissions that refer to nonexistent
Message Types

Rule/Subscription permissions must refer
to a valid message type/format name.

Permissions that refer to nonexistent
Nodes

Rule/Subscription permissions must refer
to the current node.

Permissions that refer to nonexistent
Rules

Rule permissions must refer to a valid rule
name.

Rules that have Argument Count of
Zero

A rule must always have at least one
argument associated with it. This report
identifies any rules that have a zero (0)
argument count. This may cause load or
evaluation failure.

Rules that refer to nonexistent
message types

The associated application group/
message type pair does not exist for the
rule. You cannot access these rules.

&RQVLVWHQF\�&KHFNHU�
5HSRUW

([SODQDWLRQ
MQSeries Integrator System Management Guide 247

Chapter 6
Rules Unique Sequence Generator
with no match on Message Type

These message type/application group
pairs do not have the capability to generate
unique identifiers for new rules,
arguments, subscriptions, or actions. It
should be okay to use the database as long
as those message types are not used.

Rules with multiple owners Rules can only have one owner. If
‘PUBLIC’ is the rule owner, every user has
de facto ownership.

Rules with No Active Subscriptions All rules must have at least one
subscription. This report displays rules
with no subscriptions. This may cause
evaluation failure.

Rules with no Owners Each rule must have a single owner. A rule
with ‘PUBLIC’ as its owner is basically
owned by everyone.

Subscription Action (Reformat) Input
Format does not exist in the Formatter

The input format entered in a reformat
action does not match an input format
name in the Formatter. This may cause the
daemon to fail reformatting a message.

Subscription Action (Reformat)
Target Format does not exist in the
Formatter Tables

The target format entered in a reformat
action does not match an output format
name in the Formatter. This may cause the
daemon to fail reformatting a message.

Subscription actions that refer to
nonexistent subscriptions

The subscription does not exist for the
action. This may cause load failure.

Subscription Master that refers to
nonexistent subscriptions in
Subscription List

The subscription does not exist in the
subscription list. This may cause load
failure.

Subscription with multiple owners Subscription can only have one owner. If
‘PUBLIC’ is the rule owner, every user has
de facto ownership.

&RQVLVWHQF\�&KHFNHU�
5HSRUW

([SODQDWLRQ
248 MQSeries Integrator System Management Guide

Consistency Checker
1RWH�
When running the MQSeries Integrator Rules daemon, subscriptions for rules that hit
should end with a Put Message action to route the message. This might not be needed
if users provide their own daemon and generic actions.

Subscription with no Owners Each Subscription must have a single
owner. A subscription with ‘PUBLIC’ as its
owner is basically owned by everyone.

Subscriptions in the subscription list
that refer to nonexistent message
types

The message type/application group pair
does not exist for the subscription. You
cannot access this subscription.

Subscriptions that refer to nonexistent
rules

The rule does not exist for the
subscription. This may cause load failure.

Subscriptions with No Actions All subscriptions must have at least one
action. This report displays subscriptions
with no actions. This may cause evaluation
failure.

Unique Sequence Generator invalid
for Permission Users

The system cannot add additional users
for permissions because it cannot generate
a unique identifier.

Unique Sequence Generator invalid
for Rules/Subscription for
Permissions

The system cannot add a new Rule/
Subscription permission because it cannot
generate a unique identifier.

Users that have no NEONet Rules
Data Access

Users for permissions must both have
access to the database instance and be in
the MQSeries Integrator user group
(unless your system is set up in a different
way).

&RQVLVWHQF\�&KHFNHU�
5HSRUW

([SODQDWLRQ
MQSeries Integrator System Management Guide 249

Chapter 6
&RQVLVWHQF\�&KHFNHU�5HSRUW��)RUPDWWHU�
The NEONFormatter Consistency Checker report provides the following
information:

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV

Case operations that refer to nonexistent
case choices

Choose valid choices for case
operations.

Case operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Code table entries that refer to nonexistent
user defined data types

Extraneous data in the database.
Database integrity may be
compromised.

Collection operation components that
refer to nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Collection operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Collection type output operations that
have no collection components

Choose at least one component
operation to insert into a collection.

Compound format components that refer
to nonexistent component formats

Choose valid component formats to
insert into compound formats.

Compound format components that refer
to nonexistent parent formats

Deletion of compound format may
not have occurred successfully.
Database integrity may be
compromised.

Compound format components that refer
to nonexistent repeat delimiters

Choose valid literals for repeat
delimiters for component formats.

Compound format components that refer
to nonexistent repeat fields

Choose valid fields for "Field contains
repeat count" repeat termination.
250 MQSeries Integrator System Management Guide

Consistency Checker
Compound formats that have no
component formats

Insert at least one component format
into compound format.

Default operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Default operations that refer to
nonexistent padding characters

Choose valid literals to use as default.

Exit operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Flat formats that refer to nonexistent
decompositions

Choose valid decomposition (ordered
or unordered) for flat formats.

Flat formats that refer to nonexistent
format delimiters

Choose valid delimiters for flat
formats.

Flat formats that refer to nonexistent
formats

A deleted flat format has not been
deleted correctly. Database integrity
may be compromised.

Flat formats that refer to nonexistent
terminations

Choose valid termination types for
flat formats.

Flat input formats that have no fields Insert at least one field into format.

Flat output formats that have no fields Insert at least one field into format.

Incomplete input format fields that refer to
field NONE and/or input control NONE

Choose fields other than "NONE" to
insert into input flat format.
Choose input parse controls other
than "NONE" for input fields.

Incomplete output format fields that refer
to field NONE and/or output control
NONE

Choose fields other than "NONE" to
insert into output flat format.
Choose output format controls other
than "NONE" for output fields.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
MQSeries Integrator System Management Guide 251

Chapter 6
Input compound format components that
refer to nonexistent repeat terminations

Choose valid repeat termination types
for component formats.

Input controls of data type custom date/
time with data lengths not equal to length
of custom date/time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default date
and time with data lengths not equal to
length of default date and time format
string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default date
with data lengths not equal to length of
default time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type default time
with data lengths not equal to length of
default time format string

These are fixed length controls that
should have a length equal to the
length of the specified format string.

Input controls of data type endian 2 with
data lengths not equal to 2

These are fixed length controls that
should have a length of 2.

Input controls of data type endian 4 with
data lengths not equal to 4

These are fixed length controls that
should have a length of 4.

Input controls of length data type endian 2
with length lengths not equal to 2

These are fixed length controls that
should have a length of 2.

Input controls of length data type endian 4
with length lengths not equal to 4

These are fixed length controls that
should have a length of 4.

Input controls that have invalid default
date and time format strings

Date and time data type refers to a
date/time format string that is not the
legitimate default.

Input controls that have invalid default
date format strings

Date data type refers to a time format
string that is not the legitimate
default.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
252 MQSeries Integrator System Management Guide

Consistency Checker
Input controls that have invalid default
time format strings

Time data type refers to a time format
string that is not the legitimate
default.

Input controls that refer to nonexistent
custom date/time format strings

Choose valid custom date/time
format strings for input parse
controls.

Input controls that refer to nonexistent
data delimiters

Choose valid literals for data
delimiters of input parse controls.

Input controls that refer to nonexistent
data termination types

Choose valid data termination types
for input parse controls.

Input controls that refer to nonexistent
data types

Choose valid data types for data
portion of input parse control.

Input controls that refer to nonexistent
input control types

Choose valid types for input parse
controls.

Input controls that refer to nonexistent
length data types

Choose valid data types for length
portion of input parse control.

Input controls that refer to nonexistent
length delimiters

Choose valid literals for length
delimiters of input parse controls.

Input controls that refer to nonexistent
length locations

Choose valid length locations for
input parse controls.

Input controls that refer to nonexistent
length termination types

Choose valid length termination
types for input parse controls.

Input controls that refer to nonexistent tag
data types

Choose valid data types for tag
portion of input parse control.

Input controls that refer to nonexistent tag
delimiters

Choose valid literals for tag delimiters
of input parse controls.

Input controls that refer to nonexistent tag
or literal values

Choose valid literals for input parse
controls that are literals or that have a
tag value.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
MQSeries Integrator System Management Guide 253

Chapter 6
Input controls that refer to nonexistent tag
termination types

Choose valid tag termination types
for input parse controls.

Input format fields that refer to
nonexistent fields

Choose valid fields to insert into flat
input formats.

Input format fields that refer to
nonexistent flat formats

A deleted input format has not been
properly removed, there should be no
impact.

Input format fields that refer to
nonexistent input controls

Choose valid input parse controls for
the fields.

Input parse controls with 2-digit year
date/time format strings with invalid year
cutoff values

Enter a valid year cutoff value (0 to 99
inclusive) for year cutoff value.

Justify operations that refer to nonexistent
justify choices

Choose valid choices for justify
operations.

Justify operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Length operations that refer to nonexistent
output operations

Database integrity is compromised.

Length operations that refer to nonexistent
padding characters

Choose valid literals for padding
character.

Math expression components that refer to
nonexistent math expression operations

Extraneous data in the database.
Database integrity may be
compromised.

Math expression operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Math expression operations that refer to
nonexistent rounding modes

Choose valid rounding modes for
math expressions.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
254 MQSeries Integrator System Management Guide

Consistency Checker
Output compound format components
that refer to nonexistent repeat
terminations

Choose valid repeat termination types
for component formats.

Output controls that have invalid default
date and time format strings

Date and time data type refers to a
date/time format string that is not the
legitimate default.

Output controls that have invalid default
date format strings

Date data type refers to a date format
string that is not the legitimate
default.

Output controls that have invalid default
time format strings

Time data type refers to a time format
string that is not the legitimate
default.

Output controls that refer to nonexistent
calculation operations

Choose valid calculation operations
for output format controls.

Output controls that refer to nonexistent
custom date/time format strings

Custom date/time data type refers to
a custom date/time format string that
is not the legitimate default.

Output controls that refer to nonexistent
data types

Choose valid data types for data
portion of output format controls.

Output controls that refer to nonexistent
field comparison values

Choose valid literals for output
format controls of type "Input field
value =".

Output controls that refer to nonexistent
length data types

Choose valid data types for length
portion of output format controls.

Output controls that refer to nonexistent
output control types

Choose valid types for output format
controls.

Output controls that refer to nonexistent
output operations

Choose valid output operations for
output format controls.

Output controls that refer to nonexistent
tag data types

Choose valid data types for tag
portion of output format controls.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
MQSeries Integrator System Management Guide 255

Chapter 6
Output controls that refer to nonexistent
tag or literal values

Choose valid literals for output
format controls of type "Literal" or
"Data Field Tag Search".

Output format fields that refer to
nonexistent access modes

Choose valid access modes for fields
in flat output formats.

Output format fields that refer to
nonexistent fields

Choose valid fields to insert into flat
output formats.

Output format fields that refer to
nonexistent flat formats

A deleted output format has not been
properly removed. There should be
no impact.

Output format fields that refer to
nonexistent input fields

Choose valid mapped input fields to
insert into flat output formats.

Output format fields that refer to
nonexistent output controls

Choose valid output format controls
for the fields.

Output operations that refer to nonexistent
case operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
collection operations

Database integrity is compromised.
Delete collection and re-enter it.

Output operations that refer to nonexistent
default operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
justify operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
length operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
math expression operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
operation types

Database integrity is compromised.
Delete operation and re-enter it.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
256 MQSeries Integrator System Management Guide

Consistency Checker
Output operations that refer to nonexistent
prefix/suffix operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
substitute operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
substring operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
trim operations

Database integrity is compromised.
Delete operation and re-enter it.

Output operations that refer to nonexistent
user exit operations

Database integrity is compromised.
Delete operation and re-enter it.

Prefix/suffix operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Prefix/suffix operations that refer to
nonexistent prefix/suffix choice

Choose valid choice for prefix/suffix
operation.

Prefix/suffix operations that refer to
nonexistent prefixes or suffixes

Choose valid literals for prefixes or
suffixes.

Substitute operations that refer to
nonexistent input values

Choose valid literals for substitute
input value.

Substitute operations that refer to
nonexistent output data types

Choose valid data types for substitute
output value.

Substitute operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Substitute operations that refer to
nonexistent output values

Choose valid literals for substitute
output value.

Substring operations that have invalid
substring parameters

Choose a substring start position >= 0
and a substring length > 0.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
MQSeries Integrator System Management Guide 257

Chapter 6
Substring operations that refer to
nonexistent output operations

Extraneous data in the database.
Database integrity may be
compromised.

Trim operations that refer to nonexistent
output operations

Extraneous data in the database.
Database integrity may be
compromised.

Trim operations that refer to nonexistent
trim characters

Choose valid literals for trim
character.

Trim operations that refer to nonexistent
trim choices

Choose valid type for trim operation.

User defined data type name/value pairs
that refer to nonexistent input controls

A deleted input user-validation has
not been properly removed. There
should be no impact.

User defined data type name/value pairs
with invalid types

Database integrity is compromised.

User defined data types that refer to
nonexistent data types

Extraneous data in the database.
Database integrity may be
compromised.

User defined data types that refer to
nonexistent native data types

Choose valid base data types for user
defined data types.

User defined data types with invalid data
type identifiers

Extraneous data in the database.
Database integrity may be
compromised.

&RQVLVWHQF\�&KHFNHU�5HSRUW ([SODQDWLRQV
258 MQSeries Integrator System Management Guide

$SSHQGL[�$

'DWD�7\SHV

The following table both lists and describes supported data types.

Data Type Field Value Description

Not Applicable No data type is assumed.

 String A string of standard ASCII characters. Note that non-printable
characters are valid as long as they are in the ASCII character
set. (EBCDIC characters outside the valid ASCII String range
are not valid ASCII String characters. During a reformat from
ASCII to EBCDIC if a character being converted is not in the
EBCDIC character set the conversion results in a EBCDIC space
(hexadecimal 40).

Numeric A string of standard ASCII numeric characters.
MQSeries Integrator System Management Guide 259

Appendix A
Binary Data The Binary data type is used to parse any value and transform
that value to an ASCII representation of the value internally in
the Formatter. The internal representation takes each byte of
the input value and converts it to a readable form. An example
of this is parsing a byte whose value is (hexadecimal) 0x9C and
transforming that to the internal ASCII representation of 9C,
which is the hexadecimal value 0x3943. If this value is used in
an output format with the output control’s data type set to
String, the value placed in the message is ASCII 0x9C. If this
value is again placed in an output message with the data type
Binary, the ASCII value is not printable and occupies one byte
with the value of (hexadecimal) 0x9C.
Conversely, an input value of ASCII 3B7A parsed with the
String data type can be output using the Binary data type. The
output value is (hexadecimal) 0x37BA and occupies 2 bytes in
the output message. Valid characters that can be converted to
Binary from the String data type are 0 through 9 and A through
F. All other characters are invalid.

EBCDIC Data A string of characters encoded using the EBCDIC (Extended
Binary Coded Decimal Interchange Code) encoding used on
larger IBM computers. During a reformat from EBCDIC to
ASCII, if a character being converted is not in the EBCDIC
character set, the conversion results in a space (hexadecimal
20).

IBM Packed Integer Data type on larger IBM computers used to represent integers
in compact form. Each byte represents two decimal digits, one
in each nibble of the byte. The final nibble is always a
hexadecimal F. For example, the number 1234 is stored as a 3-
byte value: 01 23 4F (the number pairs show the hexadecimal
values of the nibbles of each byte). The number 12345 is stored
as a 3-byte value: 12 34 5F. There is no accounting for the sign
of a number, so all numbers are assumed to be positive.

Data Type Field Value Description
260 MQSeries Integrator System Management Guide

Data Types
IBM Signed Packed
Integer

Data type on larger IBM computers used to represent integers
in compact form. This data type takes into account the sign
(positive or negative) of a number. Each byte represents two
decimal digits, one in each nibble of the byte. The final nibble is
a hexadecimal C if the number is positive, and a hexadecimal D
if the number is negative.
An example of how to generate a default value for an IBM
Packed Integer is:
Data Type: IBM Signed Packed Decimal
Default Value: -12345 (default value in ASCII)
Data Length: (Null - use the numbers in this field.)
The control is optional and there is no corresponding field in
the input message, so Formatter uses the default value,
converts it to IBM Signed Packed Decimal, and generates the
following output: 12 34 5D. Each pair of numbers represents the
two nibbles of a byte. The result is three bytes long.

IBM Zoned Integer Data type on larger IBM computers used to represent integers.
Each decimal digit is represented by a byte. The left nibble of
the byte is a hexadecimal F. The right nibble is the hexadecimal
value of the digit. For example, 1234 is represented as F1 F2 F3
F4 (the number pairs show the hexadecimal values of the
nibbles of each byte).

IBM Signed Zoned Integer Data type on larger IBM computers used to represent integers.
Each decimal digit is represented by a byte. The left nibble of
each byte, except the last byte, is a hexadecimal F. The left nibble
of the last byte is a hexadecimal C if the number is positive, and
a hexadecimal D if the number is negative. The right nibble of
each byte is the hexadecimal value of the digit. For example,
1234 is represented as F1 F2 F3 C4 (the number pairs show the
hexadecimal values of the nibbles of each byte). -1234 is
represented as F1 F2 F3 D4.

Little Endian 2 Two-byte integer where the bytes are ordered with the
rightmost byte being the high order or most significant byte.
For example, the hexadecimal number 0x0102 is stored as 02 01
(where the number pairs show the hexadecimal values of the
nibbles of a byte).

Data Type Field Value Description
MQSeries Integrator System Management Guide 261

Appendix A
Little Swap Endian 2 Two-byte integer where the two bytes are swapped with
respect to a Little Endian 2 value. For example, the hexadecimal
number 0x0102 is stored as 01 02.

Little Endian 4 Four-byte integer where the bytes are ordered with the
rightmost byte being the high order or most significant byte.
For example, the hexadecimal number 0x01020304 is stored as
04 03 02 01 (where the number pairs show the hexadecimal
values of the nibbles of a byte).

Little Swap Endian 4 Four-byte integer where the two bytes of each word are
swapped with respect to a Little Endian 4 value. For example,
the hexadecimal number 0x01020304 is stored as 03 04 01 02.

Big Endian 2 Two-byte integer where the bytes are ordered with the leftmost
byte being the high order or most significant byte. For example,
the hexadecimal number 0x0102 is stored as 01 02 (where the
number pairs show the hexadecimal values of the nibbles of a
byte).

Big Swap Endian 2 Two-byte integer where the two bytes are swapped with
respect to a Big Endian 2 value. For example, the hexadecimal
number 0x0102 is stored as 02 01.

Big Endian 4 Four-byte integer where the bytes are ordered with the leftmost
byte being the high order or most significant byte. For example,
the hexadecimal number 0x01020304 is stored as 01 02 03 04
(where the number pairs show the hexadecimal values of the
nibbles of a byte).

Big Swap Endian 4 Four-byte integer where the two bytes of each word are
swapped with respect to a Big Endian 4 value. For example, the
hexadecimal number 0x01020304 is stored as 02 01 04 03.

Decimal, International Data type where every third number left of the decimal point is
preceded by a period. The decimal point is represented by a
comma. Numbers right of the decimal point represent a fraction
of one unit. For example, the number 12345.678 is represented
as 12.345,678. Decimal international data types can contain
negative values.

Data Type Field Value Description
262 MQSeries Integrator System Management Guide

Data Types
Decimal, U.S. Data type where every third number left of the decimal point is
preceded by a comma. The decimal point is represented by a
period. Numbers right of the decimal point represent a fraction
of one unit. For example, the number 12345.678 is represented
as 12,345.678. Decimal US data types can contain negative
values.

Unsigned Little Endian 2 Like Little Endian 2, except that the value is interpreted as an
unsigned value.

Unsigned Little Swap
Endian 2

Like Little Swap Endian 2, except that the value is interpreted
as an unsigned value.

Unsigned Little Endian 4 Like Little Endian 4, except that the value is interpreted as an
unsigned value.

Unsigned Little Swap
Endian 4

Like Little Swap Endian 4, except that the value is interpreted
as an unsigned value.

Unsigned Big Endian 2 Like Big Endian 2, except that the value is interpreted as an
unsigned value.

Unsigned Big Swap
Endian 2

Like Big Swap Endian 2, except that the value is interpreted as
an unsigned value.

Unsigned Big Endian 4 Like Big Endian 4, except that the value is interpreted as an
unsigned value.

Unsigned Big Swap
Endian 4

Like Big Swap Endian 4, except that the value is interpreted as
an unsigned value.

Date and Time* Based on the international ISO-8601:1988 standard datetime
notation: YYYYMMDDhhmmss. See the first paragraph of each
of the Date and Time type descriptions for details on
representing Date and Time components.
Combined dates and times may be represented in any of the
following list of base data types. For some data types, a
minimum of 8 bytes is required. The list includes: Numeric,
String, and EBCDIC.

Data Type Field Value Description
MQSeries Integrator System Management Guide 263

Appendix A
Time* Based on the international ISO-8601:1988 standard time
notation: hhmmss where hh represents the number of complete
hours that have passed since midnight (between 00 and 23),
mm is the number of minutes passed since the start of the hour
(between 00 and 59), and ss is the number of seconds since the
start of the minute (between 00 and 59). Times are represented
in 24-hour format.
Times may be represented in any of the following list of base
data types. For some data types, a minimum of 4 bytes is
required. The list includes: Numeric, String, and EBCDIC.

Date* Based on the international ISO-8601:1988 standard date
notation: YYYYMMDD where YYYY represents the year in the
usual Gregorian calendar, MM is the month between 01
(January) and 12 (December), and DD is the day of the month
with a value between 01 and 31.Dates may be represented in
any of the following list of base data types. For some data types,
a minimum of 4 bytes is required. The list includes: Numeric,
String and EBCDIC.

Custom Date and Time* Custom Date and Time enables users to specify different
formats of dates, times, and combined dates and times.
Date/Time formats may include:
1) Variations in year (2- or 4-digit year representation: YY or
YYYY).
2) Variations in month –use of a month number (01-12) or three-
letter abbreviation (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC).
3) Variations in the day of the month – use of a day of the month
number (01-31).
4) Variations in hour – 12-hour or 24-hour representation, with
or without a meridian indicator (AM or PM.)
5) Custom date/time formats are available in the Format drop-
down list. Custom date/time formats must have a base data
type of Numeric, String, or EBCDIC.

Data Type Field Value Description
264 MQSeries Integrator System Management Guide

$SSHQGL[�%

1RWLFHV

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
MQSeries Integrator System Management Guide 265

Appendix B
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this document to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
266 MQSeries Integrator System Management Guide

Notices
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

7UDGHPDUNV�DQG�6HUYLFH�0DUNV

The following, which appear in this book or other MQSeries Integrator books,
are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

MQSeries
AIX
DB2
IBM

NEONFormatter and NEONRules are trademarks of New Era of Networks, Inc.
in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.
MQSeries Integrator System Management Guide 267

,QGH[

$
actions 90
AND operator 89
APIs 13, 91
apitest 13, 82
application groups 88
arguments 89
assigning users to a database 99

%
Boolean operators

AND 89
OR 89

&
caching Rules 161, 216
command line options

NNFie 24
compound formats 15
configuration files

sqlsvses.cfg 20, 94
configuration prior to using Rules Engine Daemon

formats 169
queues 167
Rules 168

configuring
Formatter 18
prior to using MQSeries Integrator Rules

Daemon 195
Rules 92

configuring prior to using Rules Engine Daemon
167

Consistency Checker 13, 88, 110
Formatter 242
MQSNNRputqCC 243
Reports 242
Rules 242

starting from command line 241
Consistency Checker reports

Formatter 250
Rules 244

'
debugging utility (Rules) 157
defining formats 15
defining user groups 99
diskspace requirements 6

(
editing sqlsvses.cfg 22, 96
encrypting sqlsvses.cfg 21, 95
environment variables 21, 95
error codes (Rules Engine Daemon) 166
error conditions 109
executing subscriptions 161, 214
Export 112
expressions 89

)
failure processing 165, 215
fields 14
flat formats 15
format definitions 13
formats 198

configuring prior to using Rules Engine
Daemon 169

defining 15
NNFie 23
storing 16
testing 82

Formatter 10
apitest 13, 82
apitest executable 82
compound formats 15
MQSeries Integrator System Management Guide 269

configuring 18
Consistency Checker 13, 242
Consistency Checker reports 250
defining formats 15
encrypting sqlsvses.cfg 21
fields 14
flat formats 15
format definitions 13
format storage 16
Formatter GUI 13
Formatter Management API functions 13
input controls 14
msgtest 13, 82
msgtest executable 83
output controls 15
parsing messages 13, 17
reformatting messages 13, 17
sqlsvses.cfg 20
test executables 82
testing formats 82

*
getdata 181

,
implementing changes to sqlsvses.cfg 23, 97
Import 112
input controls 14

/
literals 14
Login accounts

creating 98

0
Management APIs 91
memory requirements 6
message types 89
messages

parsing 17
processing 160, 214
reformatting 17, 163, 215
routing 166, 216

migrating Rules 110
environmental dependencies 111
Export 112
Import 112
NNRie 110
overview 110

MQIntegrator Rules daemon 147
MQSeries Integrator

configuring prior to use 195
disk space requirements 6
executing subscriptions 214
failure processing 215
formats 198
message processing 214
message routing 216
MQSeries queues 196
Reformat action 215
Reload messages 197
Rules 197
subscriptions 214

MQSeries Integrator Rules daemon 195
error messages 219
processing 214
using 198

MQSeries queues 196
MQSIgetdata 88, 147
MQSIputdata 88, 137
MQSIruleng 88, 198
MQSNNRputqCC 243
msgtest 13, 82, 83

1
NEONet

data migration 110
Formatter 10
Rules 10

NNCryptCfg 21, 97
NNFie 23

command line options 24
exporting format definitions 13
troubleshooting failures 30

NNRie 88, 110, 113
NNRSignalReload 179
NNRTrace 88, 157
270 MQSeries Integrator System Management Guide

2
options 90
OR operator 89
Oracle system enhancements 97

creating users 97
granting roles to users 98

output controls 15
overview

migrating Rules 110

3
parsing messages 13, 17
permissions 90

error conditions 109
polling 159
processing messages 160, 214
putdata 181
PutQueue 163, 164, 197

4
queues

configuring prior to using Rules Engine
Daemon 167

5
Reformat action 163, 215
reformatting messages 13, 17, 163, 215
Reload messages 197
repetition count 14
requirements

diskspace 6
memory 6
MQSeries Integrator disk space 6

routing messages 166, 216
ruleng 174
Rules 10

actions 90
application groups 88
arguments 89
associating 89
Boolean operators 89
caching 216
configuring 92
configuring prior to using Rules Engine

Daemon 168
Consistency Checker 88, 242
Consistency Checker reports 244
Consistency Checker Utility 243
debugging utility 157
editing sqlsvses.cfg 96
encrypting sqlsvses.cfg 95
error conditions 109
exporting rule definitions 88
exporting Rules 110
expressions 89
implementing changes to sqlsvses.cfg 97
importing exported files 88
Management APIs 91
message types 89
migrating Rules 110

environmental dependencies 111
Export 112
Import 112
overview 110

MQIntegrator Rules daemon 88
MQSIgetdata 88, 147
MQSIputdata 88
MQSIruleng 88
naming rules 89
NNRie 88, 113
NNRTrace 88
options 90
Oracle system enhancements 97
rule names 89
Rules APIs 91
Rules Engine executable 159

database commits in user exits 163
message processing 160
polling 159
Rules caching 161
using Rules Engine 174

Rules operators 89
ruletest 88
SIGRELOD 216
sqlsvses.cfg 94
Subscription permissions 90
subscription permissions 90
subscriptions 90
Sybase/SQL Server system enhancements 98
system enhancements 97
testing 157
MQSeries Integrator System Management Guide 271

testing Rules 181
testing rules 137

Rules caching 161
Rules Engine 174
Rules Engine Daemon

configuring 167, 195
Rules Engine executable 159, 197

database commits in user exits 163
message processing 160
polling 159
Rules caching 161
Rules Engine processing 159

configuration prior to using Rules En-
gine Daemon 167

error codes 166
failure processing 165
message routing 166
PutQueue 163, 164
Reformat action 163
user exits 163

subscription execution 161
using Rules Engine 174

NNRSignalReload 179
Rules Engine processing 197

configuration prior to using Rules Engine
Daemon 167

formats 169
queues 167
Rules 168

error codes 166
failure processing 165
message routing 166
PutQueue 163, 164
Reformat action 163
user exits 163

Rules operators 89
Rules test programs 181

getdata 181
putdata 181
ruletest 189

ruletest 88, 153, 189

6
SIGRELOD 216
SQL Server system enhancements 98
sqlsvses.cfg

configuring 20, 94
default location 21, 95
editing 22, 96
encrypting 21, 95
implementing changes 23, 97
setting environment variable 21, 95

sqlsvses.crypt 21, 95
starting Consistency Checker 241
storing formats 16
subscription

executing 214
subscription execution 161
Subscriptions 90
subscriptions 90
Sybase/SQL Server system enhancements 98
Sybase/SQL system enhancements

assigning users to a database 99
creating Login accounts 98
defining user groups 99

system enhancements 97
Oracle 97
Sybase/SQL Server 98

7
tags 14
test executables 82
testing formats 82
testing MQIntegrator Rules daemon 137
testing Rules 157

MQSIputdata 137
NNRTrace 157
Rules test programs 181

getdata 181
putdata 181
ruletest 189

ruletest 153
testing rules 137
troubleshooting import failures 30

8
user exits 163

database commits 163
users

assigning to a database 99
creating 97
272 MQSeries Integrator System Management Guide

defining groups 99
granting roles 98

using MQSeries Integrator Rules daemon 198
using Rules Engine 174

NNRSignalReload 179
ruleng 174
MQSeries Integrator System Management Guide 273

Sending your comments to IBM
MQSeries Integrator
System Management Guide
SC34-5505-01

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.
Please limit your comments to the information in this book only and the way
in which the information is presented.

To request additional publications or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

n By mail, use the Readers’ Comment Form

n By fax:

– From outside the U.K., use your international access code
followed by 44 1962 870229

– From within the U.K., use 01962 870229

Electronically, use the appropriate network ID:

n IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

n IBMLink: HURSLEY(IDRCF)

n Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

n The publication number and title

n The page number or topic number to which your comment applies

n Your name/address/telephone number/fax number/network ID

Readers’ Comments
MQSeries Integrator
System Management Guide
SC34-5505-01

Use this form to tell us what you think about this manual. If you have found
errors in it, or if you want to express your opinion about it (such as
organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer. This form is provided
for comments about the information in this manual and the way it is
presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate without
incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or organization

Telephone Email

MQSeries Integrator System Management Guide SC34-5505-01 IBM

IBM

Printed in U.S.A

SC34-5505-01

	System Management Guide
	Contents
	Introduction
	Product Documentation Set
	Summary of Changes
	Supported Platforms and Compilers
	Disk Space and Memory Requirements
	MQSeries Integrator Disk Space Requirements
	Library and Executable Disk Space Requirements

	Year 2000 Readiness Disclosure

	MQSeries Integrator Overview
	MQSeries
	Formatter
	Rules
	MQSeries Integrator Rules Daemon

	Formatter
	What is Formatter?
	Fields and Input Controls
	Output Controls
	Formats
	Format Storage
	Parsing and Reformatting

	Formatter Configuration
	Shared Libraries/DLLs
	Running NNWhich
	Replacing the Library

	sqlsvses.cfg File
	Encrypting the sqlsvses.cfg File
	Modifying the Location of the sqlsvses File
	Editing the sqlsvses.cfg File
	Changing the sqlsvses.cfg File
	Required Components
	Operational Assumptions

	Importing and Exporting Formats
	NNFie
	Syntax
	Conflict Resolution
	Conditional Branching
	NNFie File Layout
	NNFie Error and Format Error Messages

	Testing Formats
	Formatter Test Executables
	The apitest Executable
	The msgtest Executable
	Configuration File

	Rules
	Application Groups
	Message Types
	Rules
	Expressions, Arguments, Boolean, and Rules Operators
	Subscriptions, Actions, and Options
	Rule and Subscription Permissions

	APIs
	Rules Configuration
	DLLs/Shared Libraries
	Running NNWhich
	Replacing the Library

	sqlsvses.cfg File
	Encrypting the sqlsvses.cfg File
	Modifying the sqlsvses File Location
	Editing the sqlsvses.cfg File
	Implementing sqlsvses.cfg File Changes

	System Enhancements for Rules
	Oracle
	Creating Users
	Granting Roles to Users

	Sybase/SQL Server
	Creating Login Accounts
	Assigning Users to a Database
	Defining User Groups

	Rule and Subscription Permissions
	NNDBARuleOwnership
	Syntax
	Configuration File
	Operations
	Error Conditions
	No Rules for Owner:
	Invalid User:

	Migrating Rules
	Overview
	Preparation
	Environmental Dependencies
	Export
	Import

	Migration Process

	Importing and Exporting Rules
	NNRie
	Syntax
	Operational Assumptions
	Parameters
	Import Syntax
	Export Syntax
	Remarks
	Summary of New Command Line Functions
	NNRie File Layout

	Testing Rules
	Rules Test Programs
	MQSIputdata and MQSIgetdata
	ruletest
	NNRTRace Rules Debugging Utility

	The Rules Engine Executable
	Rules Engine Processing
	Polling
	Timestamps
	Message Processing
	Rules Caching
	Subscription Execution
	Shutdown Messages
	Failure Processing
	Rules Engine Daemon Error Codes
	Message Routing

	Configuration Prior to Using the Rules Engine Daemon
	Queues
	Rules
	Formats

	Running the Rules Engine
	Running ruleng on UNIX
	Running ruleng as an NT Service

	Using the Rules Engine
	ruleng
	NNRSignalReload

	Testing Rules
	Rules Test Programs
	putdata and getdata
	ruletest

	NNRSignalShutdown Utility
	Syntax
	Description
	Parameters
	Example NNRSignalShutDown calls

	The MQSeries Integrator Rules Daemon
	Configuration Prior to Using MQSeries Integrator Rules Daemon
	Queues
	Rules
	Putqueue

	Formats

	Using the MQSeries Integrator Rules Daemon
	Encrypting the Parameter File
	Running the Rules Daemon
	Running ruleng on UNIX
	Running ruleng as an NT Service
	Rules Daemon Shutdown

	MQSeries Integrator Rules Daemon Processing
	Message Processing
	Subscription Execution
	Reformat

	Failure Processing
	Message Routing
	Caching Output Queue Handles

	Rules Caching
	Sending a Reload Message

	Rules Daemon Security
	MQSeries Integrator Rules Daemon Error Messages

	Consistency Checker
	Starting the Consistency Checker From a Command Line
	Rules
	Formatter
	Reports
	Consistency Checker Report: Rules
	Consistency Checker Report: Formatter

	Data Types
	Notices
	Trademarks and Service Marks

	Index

