.||I

MQSeries for Tandem NonStop Kernel

System Management Guide

Version 2 Release 2

GC33-1893-00

.||I

MQSeries for Tandem NonStop Kernel

System Management Guide

Version 2 Release 2

GC33-1893-00

Note!

Before using this information and the product it supports, ensure you read the general information under Appendix P, “Notices”
on page 399.

First Edition (October 1997)

This edition applies to the following product:
* |BM MQSeries for Tandem NonStop Kernel, Version 2 Release 2
and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England,
S0O21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

About this book Xi
Who this book is for Xi
What you need to know to understand this book Xi
How to use thisbook Xi
Using the appendixes Xi
MQSeries publications Xii
MQSeries cross-platform publications Xii
MQSeries platform-specific publications Xiv
MQSeries Level 1 product publications XVi
Softcopy books XVi
Related publications XVil
Information about MQSeries on the Internet XVii
Part 1. Guidance 1
Chapter 1. Introduction 3
MQSeries and message queuing 3
Messages and qUEUES 3
Objects 5
MQSeries qUEUES 7
Process definitions 10
Channels 10
System default objects 10
Administration 10
Clients and servers 11
Extending queue manager facilites 12
SeCUrity 12
MQSeries for Tandem NSK and related products 13
Chapter 2. Installing MQSeries for Tandem NSK Version 2.2 15
Preparing for installation 15
Installation on NonStop Kernel D3x, D4x, and GO2 releases 16
TACL environment variables 20
Configuration of other NonStop Kernel resources 20
Files that exist after installation 21
Verifying your installation oL 23
Troubleshooting 25
Chapter 3. Customizing your system 27
What you can customize 27
Specifying volumes for queue manager objects 30
Sharing queues using the name service 31
Configuring a queue manager 31
Specifying the location of the machine-wide INI file 31
Specifying the location of the MQSeries executables 32
Chapter 4. Using administration command sets 33
Control commands 33
MQSC commands 34

© Copyright IBM Corp. 1995, 1997 ili

Contents

PCF commands 34
Comparing command sets 35
TS/MP (Pathway) administration 38
Chapter 5. Managing queue managers a7
Getting started 47
Guidelines for creating a queue manager 47
Volume structure L 56
Working with queue managers 58
Managing the command server for remote administration 62
Using the Message Queue Management (MQM) facility 63
Chapter 6. Administering local MQSeries objects 83
Supporting application programs that use the MQI 83
Issuing MQSC commands for administration 83
Running MQSCs from textfiles 86
Troubleshooting MQSC 90
Working with local queues 92
Displaying default object attributes 93
Copying a local queue definition 94
Changing local queue attributes 94
Changing the volume of a local queue 95
Clearing a local queue 95
Deleting a local queue 96
Browsing queues 96
Working with alias queues 99
Defining an alias queue 100
Using other commands with queue aliases 101
Working with model queues 101
Defining a model queue 101
Using other commands with model queues 102
Managing objects for triggering 102
Defining an application queue for triggering 103
Defining an initiation queue 104
Creating a process definiton 104
Displaying your process definition 105
Chapter 7. Administering remote MQSeries objects 107
Understanding channels and remote queuing 107
Administering a remote queue manager 108
If you have problems using MQSC remotely 113
Creating a local definition of a remote queue 114
An alternative way of putting messages on a remote queue 115
Using other commands with remote queues 116
Creating a transmission queue 116
Using remote queue definitions as aliases 117
Chapter 8. Implementing security control 119
Understanding user IDs in the MQM usergroup 119
Protecting MQSeries resources 120
Understanding the Object Authority Manager (OAM) 120
Using the Object Authority Manager (OAM) commands 122
Access authorizations 124
Display authority command 124

iv MQSeries for Tandem NSK V2R2 System Management Guide

Contents

Part 2. Reference

Object Authority Manager (OAM) guidelines 125
Understanding the authorization specification tables 128
Understanding authorization files 134
Managing authorization files L 136
Chapter 9. MQSeries dead-letter queue handler 139
Invoking the DLQ handler 139
DLQ handler rulestable 140
Rules table conventions 145
How the rules table is processed 146
Example DLQ handler rulestable 148
Chapter 10. Instrumentation and EMS events 151
MQSeries instrumentation events 151
Event Management Service (EMS) events 153
Chapter 11. Understanding transactional support and messaging ... 157
Using the NonStop TM/MP (Transaction Manager) 157
Configuration requirements for TM/MP and MQSeries for Tandem NSK . . . 158
Chapter 12. Recovery and restart 161
Fault tolerance and recovery 161
Backing up and restoring 162
Chapter 13. Configuration files 163
What are configuration files? 163
MQSeries configuration file (MQSINI) 163
Queue manager configuration file (QMIND 165
Editing configuration files 172
Chapter 14. Determining Problems 173
Making a preliminary check 173
Common programming errors 176
Whattodonext 177
Application design considerations L. 180
Incorrect output 181
Errorlogs 185
Dead-letter queues 188
Configuration files and problem determination 188
Using MQSeries trace L 188
First Failure Support Technology (FFST) 190

... 193
Chapter 15. The MQSeries control commands 195
Control commands summary 195
Using names L 196
How to read syntax diagrams 196
altmgfls (Alter queue volume) 198
cleangm (Perform housekeeping on a queue manager) 200
cnv1520 (Convert V1.5.1 definitions to V2.2) 201
cnvmsgs (Convert V1.5.1 messages to V2.2) 203
cnvclchl (Convert client channel definitions) 206

Contents V

Contents

crtmgcvx (Data conversion) 207
crtmgm (Create queue manager) 209
ditmgm (Delete queue manager) 212
dspmgaut (Display authority) 214
dspmgcsv (Display command server) 218
dspmqfls (Display MQSeries files) 219
dspmgtrc (Display MQSeries formatted trace output) 221
endmgcsv (End command server) L 222
endmgm (End queue manager) 224
endmqtrc (End MQSeriestrace) 226
instmgm (Install MQSeries for Tandem NSK) 227
runmgchi (Run channel initiator) 228
runmgchl (Runchannel) 229
runmgdlq (Run dead-letter queue handler) 230
runmglsr (Run listener) 231
runmgsc (Run MQSeries commands) 232
runmgtrm (Start trigger monitor) 235
setmqgaut (Set/reset authority) 236
strmgcsv (Start command server) 242
strmgm (Start queue manager) 243
strmqtrc (Start MQSeries trace) 244
Part 3. Appendixes 247
Appendix A. MQSeries for Tandem NSK ata glance 249
Program and part number o 249
Hardware requirements 249
Software requirements 249
SeCurity . . . e 249
Maintenance functions 250
Compatibility 250
License management 250
Language selection 251
Message persistence 251
Internationalization 251
Appendix B. PAK file installation example 255
Appendix C. System defaults 259
Appendix D. Stopping and removing queue managers manually ... 261
Stopping a queue manager manually 261
Removing queue managers manually L. 261
Appendix E. MQSC supported by MQSeries for Tandem NSK 263
Attributes of MQSC 264
Appendix F. Code page conversion tables 265
Code-page conversiontables 267
Appendix G. Application Programming Reference 293
Elementary data types — TAL programming language 293
Structure data types — TAL programming language 293

Vi MQSeries for Tandem NSK V2R2 System Management Guide

Contents

MQI calls — TAL programming language 299
Attributes of MQSeries objects 305
Reasoncodes 305
Appendix H. Building and running applications 307
Writing applications 307
Compiling and binding applications 310
Running applications 310
Appendix I. MQSeries for Tandem NSK sample programs 311
Building C sample programs 312
Building COBOL sample programs 312
Building TAL sample programs 313
Building and using data-conversion exit functions 313
Building and using channel exit functions 314
Appendix J. User exits 315
Channel exit programs 315
Data-conversion exit programs 316
Appendix K. Setting up communications 319
SNA channels 319
TCP/IP channels 320
Communications examples 321
Appendix L. MQSeries clients 333
Client support 333
Appendix M. Programmable System Management 335
Instrumentation events 335
Programmable command formats (PCFs) 338
Installable services 342

Appendix N. EMS event template used by MQSeries for Tandem NSK . 343

Appendix O. Messages 347
Message format 347
Structure of messages 347
MQSeries messages 347
Appendix P. Notices 399
Trademarks 399
Part 4. Glossary and index 401
Glossary of terms and abbreviations L 403
Index 411

Contents Vil

Contents

viii MQSeries for Tandem NSK V2R2 System Management Guide

Figures

Tables

© Copyright IBM Corp. 1995, 1997

CeNoO~ONE

WWWWWWWRNRNRNNNNNNNNRERRERRERRERRR
NohrwWDMPOOONOUORWNREPOOONGOAMWDNPEO

Noop,rwbhpE

Tables

Installing MQSeries for Tandem NSK 17
Example PATHWAY configuration 40
The MQSeries for Tandem NSK MQM Main Menu 63
The Queue Manager Menu panel 64
The QUEUE MANAGER TRACEMENU 65
The Search Criteria panel (queue) 66
The Queue Menu 67
The Create Queue panel 68
The Create Local Queue panel 69
The Create Remote Queue panel 69
The Copy Queue panel 70
The Display/Modify Local Queue panel 71
The Monitor Local Queues panel 72
The Search Criteria panel (channel) 73
The Channel Menu 73
The Display/Modify Sender Channel panel (1) 74
The Display/Modify Sender Channel panel (2) 75
The Create Channel panel 75
The Create Sender Channel panel 76
The Create Receiver Channel panel, 77
The Create Server Connection Channel panel 77
The Monitor Channels panel 78
The Channel Status panel 79
The Start/Stop Channel panel 79
The Reset Channel panel, 80
The Resolve Channel panel 81
The Copy Channel panel 82
Example output for QMGR ALL 85
Extract from the MQSC command file, mymqgscin 88
Extract from the MQSC report file, mymgscou 89
Remote administration oo 109
Setting up channels and queues for remote administration 110
Examplerule 142
Example MQSeries configuration file (MQSINI) 164
Example queue manager configuration file (QMINI) 168
Sampletrace 189
Sample First Failure Symptom Report 190
Commands for queue manager administration 35
Commands for command server administration 36
Commands for queue administration 36
Commands for process administration 36
Commands for channel administration 37
Other control commands 37
Security authorization needed for MQl calls 129

Tables

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.

MQSC commands and security authorization needed 132
PCF commands and security authorization needed 133
How to read syntax diagrams 197
Security authorities from the dspmgaut command 215
Specifying authorizations for different object types 238
Objects included in amgscoma 259
Conversion support: US ENGLISH 267
Conversion support: GERMAN 268
Conversion support: DANISH and NORWEGIAN 269
Conversion support: FINNISH and SWEDISH 270
Conversion support: ITALIAN 271
Conversion support: SPANISH 272
Conversion support: UK ENGLISH / GAELIC 273
Conversion support: FRENCH 274
Conversion support: MULTILINGUAL 275
Conversion support: PORTUGUESE 276
Conversion support: ICELANDIC 277
Conversion support: EASTERN EUROPEAN Languages 278
Conversion support: CYRILLIC 279
Conversion support: GREEK 280
Conversion support: TURKISH 281
Conversion support: HEBREW 282
Conversion support: ARABIC 283
Conversion support: JAPANESE LATINSBCS 284
Conversion support: JAPANESE KATAKANA SBCS 285
Conversion support: JAPANESE KANJI / LATIN MIXED 286
Conversion support: JAPANESE KANJI / KATAKANA MIXED 287
Conversion support: KOREAN 288
Conversion support: SIMPLIFIED CHINESE 289
Conversion support: TRADITIONAL CHINESE 290
Code setnamesand CCSIDs 291
Using the correct version of the MQl library 310
Event types supported by MQSeries for Tandem NSK 335
MQMD structure of an event message 336
Event header structure (MQCFH) 337
PCF message descriptor 338
PCF header 339
PCF string parameter 339
PCFinteger list 340
PCFinteger 340
PCF string list 340
PCF commands supported by MQSeries for Tandem NSK 341

X MQSeries for Tandem NSK V2R2 System Management Guide

About this book

About this book

MQSeries for Tandem NonStop Kernel, Version 2 Release 2—referred to in this
book as MQSeries for Tandem NSK V2.2 or MQSeries, as the context permits—is
part of the MQSeries family of products. These products provide application
programming services that enable application programs to communicate with each
other using message queues. This form of communication is referred to as
commercial messaging. The applications involved can exist on different nodes on a
wide variety of machine and operating system types. They use a common
application programming interface, called the Message Queuing Interface or MQI,
so that programs developed on one platform can readily be transferred to another.

This book describes the system administration aspects of MQSeries for Tandem
NSK, Version 2 Release 2, and the services it provides to support commercial
messaging in a Tandem NSK environment. This includes managing the queues
that applications use to receive their messages, and ensuring that applications have
access to the queues that they require.

Who this book is for

Primarily, this book is for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book

To use this book, you should have a good understanding of the Tandem NSK
operating system and associated utilities. You do not need to have worked with
message queuing products before, but you should have an understanding of the
basic concepts of message queuing.

How to use this book
The body of this book:
¢ Introduces MQSeries
» Describes how to install and configure MQSeries for Tandem NSK

e Describes day-to-day management of an MQSeries for Tandem NSK system,
addressing topics such as administration of local and remote MQSeries objects,
security, transactional support, and problem determination

Using the appendixes
The appendixes provide reference material. Some include information that will be
incorporated in other MQSeries books at the next opportunity. Those appendixes
are:

e Appendix E, “MQSC supported by MQSeries for Tandem NSK” on page 263.
e Appendix F, “Code page conversion tables” on page 265.

e Appendix G, “Application Programming Reference” on page 293.

e Appendix H, “Building and running applications” on page 307.

© Copyright IBM Corp. 1995, 1997 Xi

MQSeries publications

e Appendix I, “MQSeries for Tandem NSK sample programs” on page 311.
e Appendix J, “User exits” on page 315.

e Appendix K, “Setting up communications” on page 319.

e Appendix L, “MQSeries clients” on page 333.

e Appendix M, “Programmable System Management” on page 335.

MQSeries publications

This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications

Xii

Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

e MQSeries for AIX V5.0

e MQSeries for AT&T GIS UNIX V2.2

e MQSeries for Digital OpenVMS V2.2

e MQSeries for HP-UX V5.0

e MQSeries for MVS/ESA V1.2

e MQSeries for OS/2 Warp V5.0

e MQSeries for 0S/400 V3R2

e MQSeries for 0S/400 V3R7

e MQSeries for SINIX and DC/OSx V2.2
¢ MQSeries for SunOS V2.2

e MQSeries for Sun Solaris V5.0

* MQSeries for Tandem NonStop Kernel V2.2
e MQSeries Three Tier

¢ MQSeries for Windows V2.0

e MQSeries for Windows V2.1

e MQSeries for Windows NT V5.0

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xvi. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure

The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing

MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide

The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries for Tandem NSK V2R2 System Management Guide

MQSeries publications

MQSeries Intercommunication

The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration

The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, the
dead-letter queue handler, and the MQSeries links for Lotus Notes**. It also
includes the syntax of the MQSeries control commands.

This book applies to the following MQSeries products only:

e MQSeries for AIX V5.0

¢ MQSeries for HP-UX V5.0

e MQSeries for OS/2 Warp V5.0
e MQSeries for Sun Solaris V5.0
e MQSeries for Windows NT V5.0

MQSeries Command Reference

The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management

The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
programmable command formats (PCFs), and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

e MQSeries for AIX V5.0

e MQSeries for HP-UX V5.0

e MQSeries for OS/2 Warp V5.0
¢ MQSeries for Sun Solaris V5.0
e MQSeries for Windows NT V5.0
e MQSeries for Windows V2.0

e MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide

The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

About this book Xiii

MQSeries publications

MQSeries Application Programming Reference

The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary

The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by V5.0 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and by MQSeries clients supplied with those
products and installed in the following environments:

e AIX

e HP-UX

e 0S/2

e Sun Solaris
e Windows NT
e Windows 3.1
e Windows 95

MQSeries platform-specific publications

Xiv

Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX
MQSeries for AIX V5.0 Quick Beginnings, GC33-1867.
MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2.2 System Management Guide,
GC33-1791

MQSeries for HP-UX
MQSeries for HP-UX V5.0 Quick Beginnings, GC33-1869
MQSeries for MVS/ESA

MQSeries for MVS/ESA Version 1 Release 2 Licensed Program Specifications,
GC33-1350

MQSeries for MVS/ESA Version 1 Release 2 Program Directory

MQSeries for MVS/ESA Version 1 Release 2 System Management Guide,
SC33-0806

MQSeries for MVS/ESA Version 1 Release 2 Messages and Codes,
GC33-0819

MQSeries for Tandem NSK V2R2 System Management Guide

MQSeries publications

MQSeries for MVS/ESA Version 1 Release 2 Problem Determination Guide,
GC33-0808

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.0 Quick Beginnings, GC33-1868

MQSeries for 0S/400

MQSeries for OS/400 Version 3 Release 2 Licensed Program Specifications,
GC33-1360 (softcopy only)

MQSeries for OS/400 Version 3 Release 2 Administration Guide, GC33-1361

MQSeries for OS/400 Version 3 Release 2 Application Programming Reference
(RPG), SC33-1362

Note: The MQSeries for OS/400 Version 3 Release 2 publications apply also to
MQSeries for OS/400 Version 3 Release 7.

MQSeries link for R/3

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SUnOS

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.0 Quick Beginnings, GC33-1870

MQSeries for Tandem NSK

MQSeries for Tandem NSK Version 2.2 System Management Guide,
GC33-1893

MQSeries Three Tier

MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452

MQSeries for Windows

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822
MQSeries for Windows Version 2.1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.0 Quick Beginnings, GC33-1871

About this book XV

MQSeries publications

MQSeries Level 1 product publications

Softcopy books

For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for Digital VMS VAX Version 1.5 User’s Guide, SC33-1144
MQSeries for SCO UNIX Version 1.4 User’s Guide, SC33-1378
MQSeries for UnixWare Version 1.4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

BookManager format

The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

PostScript format

The MQSeries library is provided in PostScript (.PS) format with many MQSeries
products, including all MQSeries V5.0 products. Books in PostScript format can be
printed on a PostScript printer or viewed with a suitable viewer.

HTML format
The MQSeries documentation is provided in HTML format with these MQSeries
products:

e MQSeries for AIX V5.0

e MQSeries for HP-UX V5.0

e MQSeries for OS/2 Warp V5.0
¢ MQSeries for Sun Solaris V5.0
e MQSeries for Windows NT V5.0

The MQSeries books are also available from the MQSeries software-server home
page at:

http://www.software.ibm.com/ts/mgseries/

XVi MQSeries for Tandem NSK V2R2 System Management Guide

MQSeries on the Internet

Information Presentation Facility (IPF) format
In the OS/2 environment, the MQSeries documentation is supplied in IBM IPF
format on the MQSeries product CD-ROM.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

Related publications

SNAX/APC Planning and Configuration Manual, (Tandem Part No. 098289)

SNAX/APC provides LU 6.2 support for the Tandem implementation of SNA.
This guide explains how to install and configure SNAX/APC.

SCF Reference Manual for SNAX/APC, (Tandem Part No. 064525)

SNAX/APC provides LU 6.2 support for the Tandem implementation of SNA.
This guide explains the Subsystem Control Facility (SCF) interactive interface
that lets operators and network managers configure and control SNAX/APC.

Pathway System Management Guide, (Tandem Part No. 096881)

This guide presents guidelines for configuring and controlling Pathway
transaction processing systems.

Introduction to NonStop Transaction Managet/MP (TM/MP), (Tandem Part No.
085812)

This guide describes how to use the TMF subsystem to protect your business
transactions and the integrity of your databases.

Introduction to Tandem Networking and Data Communications, (Tandem Part
No. 093148)

This guide provides an overview of Tandem networking and data
communications concepts, tasks, products, and manuals.

Intersystem Communications Environment (ICE) Installation Guide, (Version 2
Release 2, December 1995)

This guide describes how to install ICE and configure the ICE start-up
parameters. (ICE provides LU 6.2 support for Insessions’s implementation of
SNA)

Intersystem Communications Environment (ICE) Administrator's Guide, (Version
2 Release 2, January 1996)

This guide describes how to configure and operate ICE, its interfaces, and its
utilities.

Information about MQSeries on the Internet

—— MQSeries URL

The URL of the MQSeries product family home page is:

http://www.software.ibm.com/ts/mqseries/

About this book XVii

MQSeries on the Internet

XViii MQSeries for Tandem NSK V2R2 System Management Guide

Part 1. Guidance

© Copyright IBM Corp. 1995, 1997

2 MQSeries for Tandem NSK V2R2 System Management Guide

Messages and queues

Chapter 1. Introduction

This chapter introduces MQSeries for Tandem NSK, Version 2 Release 2
(MQSeries for Tandem NSK, V2.2) from an administrator’'s perspective. It
describes the basic concepts of MQSeries and messaging. It contains these
sections:

* “MQSeries and message queuing”’

* “Messages and queues”

e “Objects” on page 5

e “MQSeries queues” on page 7

* “Process definitions” on page 10

e “Channels” on page 10

e “System default objects” on page 10

e “Administration” on page 10

e “Clients and servers” on page 11

e “Extending queue manager facilities” on page 12
e “Security” on page 12

e “MQSeries for Tandem NSK and related products” on page 13

MQSeries and message queuing

MQSeries for Tandem NSK, V2.2 lets Tandem NSK applications use message
gueuing to participate in message-driven processing. Your applications can
communicate across different platforms by using message queuing functionality.

MQSeries for Tandem NSK, V2.2 implements a common application programming
interface called the Message Queue Interface (MQI). The MQI is explained in
detail in the MQSeries Application Programming Reference manual.

Time-independent applications

With message queuing, the exchange of messages between a sending and
receiving application is time independent. Time independence lets the sending
application continue processing without having to wait for the receiving application
to acknowledge the receipt of the message. The receiving application does not
need to be running when the sending application sends the message. The
message can be retrieved after the receiving application starts.

Message-driven processing
Applications can be automatically started by messages arriving on a queue using a
mechanism called triggering. You can stop the applications when messages are
processed.

Messages and queues

Messages and queues are the basic components of a message queuing system.

© Copyright IBM Corp. 1995, 1997 3

Messages and queues

What are messages?

Data that is transferred by the MQSeries system is in the form of a message. A
message is exchanged between cooperating distributed applications (or between
different parts of the same application). The applications can be running on
homogeneous platforms or on heterogeneous platforms.

MQSeries messages comprise two parts: the application data and a message
descriptor. The content and structure of the application data are defined by the
applications that use them. The message descriptor identifies the message and
contains other control information, such as the type of message and the priority
assigned to the message by the sending application.

The format of the message descriptor is defined by MQSeries for Tandem NSK.
For a complete description of the message descriptor, see the MQSeries
Application Programming Reference

Message lengths
In MQSeries for Tandem NSK, the maximum message length is 4 MB (where, 1
MB equals 1 048 576 bytes). The message length can be limited by:

¢ The maximum message length defined for the receiving queue.
* The maximum message length defined for the queue manager.

e The maximum message length defined by either the sending or receiving
application.

e The amount of storage available for the message.

It might take several messages to send all the information that an application
requires.

What are queues?

Messages are exchanged between applications via queues, which use calls from
the Message Queuing Interface (MQI). Queues belong to a queue manager. A
gueue manager puts received messages on the appropriate queues.

For example, an application can put a message on a queue, and another
application can retrieve the message from the same queue. The sending
application opens the queue for PUT operations by making an MQOPEN call, and
then issues an MQPUT call to put the message onto that queue. The receiving
application opens the same queue for GET, and retrieves the message from the
gueue by issuing an MQGET call.

Message queues are classified as local or remote. A local queue is any queue
located on the same message queuing system. A local queue that is used to hold
messages to be transmitted to another system is called a transmission queue. An
alias queue is a logical naming capability that lets an alias queue name be resolved
to another local or remote queue.

For more information about MQI calls, see the MQSeries Application Programming
Reference manual.

4 MQSeries for Tandem NSK V2R2 System Management Guide

Objects

Predefined and dynamic queues
You can create predefined and dynamic queues as follows:

Predefined queue
Use an MQSC command. For example, the MQSC command DEFINE QLOCAL
lets you create a predefined local queue. A predefined local queue is permanent
and exists independently of the applications using it. A predefined queue is not
altered if you restart MQSeries for Tandem NSK.

Dynamic queue
Use an MQSC command. For example, the MQSC command DEFINE
QMODEL. The attributes of a model queue (for example, the maximum number
of messages that can be stored) are inherited by any dynamic queue that is
created from a model queue. The queue created is based on a template queue
definition, which is the model queue. A model queue has an attribute that
specifies whether the dynamic queue is to be permanent or temporary. A
permanent queue is not altered when you restart an application or the queue
manager. A temporary queue can be lost or damaged upon restart.

For more information about MQSeries commands (MQSC), see the MQSeries
Command Reference book.

Retrieving messages from queues
In MQSeries for Tandem NSK, authorized applications can retrieve messages from
a queue using these methods:

e First-in-first-out (FIFO) is a queuing technique in which the next item to be
retrieved is the item that has been in the queue for the longest time.

* Message priority, as defined in the message descriptor. Messages that have
the same priority are retrieved on a FIFO basis.

* A program request for a specific message.

A combination of the MQGET, MQOPEN, and the queue object attributes
determines the method used.

Objects

Object names

Many of the tasks described in this guide involve manipulating MQSeries objects.
There are four types of object, which you can manipulate as follows:

e Queue manager; see “Queue manager’ on page 6.

e Queues; see “MQSeries queues” on page 7.

e Process definition; see “Process definitions” on page 10.
e Channel; see “Channels” on page 10.

Each instance of a queue manager has an object name. This object name must be
unigue within the network of queue managers for proper identification of the target
gueue manager to which a message is sent.

The object name must be unique within a queue manager and object type. For

example, you can have a queue and a process with the same name; however, you
cannot have two queues with the same name.

Chapter 1. Introduction 5

Objects

An object name can have a maximum of 48 characters, with the exception of
channels. Channel objects can have a maximum of 20 characters. For more
information about names see “Using hames” on page 196.

Managing objects
MQSeries provides facilities for creating, altering, displaying, and deleting objects.
These include:

¢ MQSC commands (MQSC), which can be entered from the keyboard or read
from a file

¢ MQM (screen-based interface)
e Programmable Command Format (PCF) commands, which a program can use.

e Control commands, which you can enter interactively from the operating-system
command line.

For more information, see Chapter 4, “Using administration command sets” on
page 33.

Object attributes

The properties of an object are defined by its object attributes. You can specify or
change some object attributes, but only view others. For example, the maximum
message length that a queue can accommodate is defined by its MaxMsgLength
attribute. You can specify this object attribute when you create a queue. The
DefinitionType attribute specifies how the queue was created. You can only
display the DefinitionType attribute.

In MQSeries, there are two ways of referring to an object attribute:

e Using its PCF name, for example, MaxMsgLength. The PCF name is the formal
name of an attribute.

¢ Using its MQSC name, for example, MAXMSGL. This book uses the MQSC
name rather than the formal PCF name.

Queue manager
A gueue manager provides message queuing services to applications. It ensures
that:

» Object attributes are changed according to the commands received.

e Special events, such as trigger events or instrumentation events, are generated
when the appropriate conditions are met.

e Messages are put on the correct queue, as requested by the application
making the MQPUT call. The application is informed if this task is not
accomplished, and you are provided with the appropriate reason code.

Each queue belongs to a single queue manager and is referred to as a local queue
to that queue manager. The queue manager to which an application is connected
is the local queue manager for that application. For the application, the queues
that belong to its local queue manager are called local queues. A remote queue is
a queue that belongs to another queue manager. A remote queue manager can
exist on a remote system across the network or it can exist on the same system as
the local queue manager. MQSeries for Tandem NSK supports multiple queue
managers on the same system.

6 MQSeries for Tandem NSK V2R2 System Management Guide

MQI calls

MQSeries queues

A queue manager object can be used for various MQI calls. For example, you can
inquire about object attributes using the MQINQ MQI call.

Note: Messages are always put on queue objects, not on queue manager objects.
You cannot put a message on a queue manager object.

MQSeries queues

Queues are defined to MQSeries for Tandem NSK using the MQSC DEFINE
commands, the Message Queue Management (MQM) facility of MQSeries for
Tandem NSK, or the PCF command Create Queue. These commands specify the
type of queue and its object attributes. For example, a local queue has object
attributes that specify when the applications reference that queue in MQI calls.
Examples of object attributes are:

Whether applications can retrieve messages from the queue (GET enabled)
Whether applications can put messages on the queue (PUT enabled)

Whether access to the queue is exclusive to one application or shared among
applications

The maximum number of messages that can be stored on the queue at the
same time (maximum queue depth)

The maximum length of messages that can be put on the queue

For further information:

About MQSC, see the MQSeries Command Reference book

About MQM, see “Using the Message Queue Management (MQM) facility” on
page 63

About PCF commands, see the MQSeries Programmable System Management
book

Using queue objects
MQSeries for Tandem NSK has the following four types of queue object:

1.

A local queue object is any queue that resides on the same message queuing
system as the application.

. A remote queue object is any queue residing on another message queuing

system. This queue must be defined as a local queue to that queue manager.
The information that you specify when you define a remote queue object lets
the local queue manager find the remote queue manager, which allows any
messages destined for the remote queue to go to the correct queue manager.

You must also define a transmission queue and channels between the queue
managers, before applications can send messages to a queue on another
gueue manager.

. An alias queue object lets applications access a queue by referring to it

indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This process lets you change the queues that an application uses without
changing the application in any way. You change the alias queue definition to
reflect the name of the new queue to which the alias resolves.

Chapter 1. Introduction 7

MQSeries queues

An alias queue is not a queue, but an object that you can use to access
another queue.

4. A model queue object defines a set of queue attributes that are used as a
template for creating a dynamic queue. Dynamic queues are created by the
gueue manager when an application issues an MQOPEN request specifying a
gueue name that is the name of a model queue. The dynamic queue that is
created is a local queue whose attributes are taken from the model queue
definition. The dynamic queue name can be specified by the application, or the
gueue manager can generate the name and return it to the application.

Dynamic queues defined in this way can be temporary queues, which can be
lost or damaged by restarts, or permanent queues, which are not altered by
restarts.

Local queues used by MQSeries

MQSeries uses various local queues for specific purposes related to its operation.
You must define them before MQSeries can use them. You can create all default
objects for a queue manager by running the supplied command file amgscoma,
which is in subvolume $SYSTEM.ZMQSSMPL by default.

Application queues

A queue that is used by an application (through the MQI) is referred to as an
application queue. This queue can be a local queue on the queue manager to
which an application is connected, or it can be a remote queue that is owned by
another queue manager.

Applications can put messages on local or remote queues. However, they can get
messages from a local queue only.

Initiation queues

Initiation queues are queues that are used in triggering. A queue manager puts a
trigger message on an initiation queue when a trigger event occurs. A trigger event
is a logical combination of conditions that is detected by a queue manager. For
example, a trigger event can be generated when the number of messages on a
gueue reaches a predefined depth. This event causes the queue manager to put a
trigger message on a specified initiation queue. This trigger message is retrieved
by a trigger monitor, a special application that monitors an initiation queue. The
trigger monitor then starts up the application program that was specified in the
trigger message.

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

See “Managing objects for triggering” on page 102. For more information about
triggering, see the MQSeries Application Programming Guide.

Transmission queues

A transmission queue temporarily stores messages that are destined for a remote
gueue manager. You must define at least one transmission queue for each remote
gueue manager to which the local queue manager is to send messages directly.
These queues are also used in remote administration. See “Administering a
remote queue manager” on page 108. For information about the use of

8 MOQSeries for Tandem NSK V2R2 System Management Guide

MQSeries queues

transmission queues in distributed queuing, see the MQSeries Intercommunication
book.

Dead-letter queues

A dead-letter queue stores messages that cannot be routed to their correct
destinations. For example, this event occurs when the destination queue is full.
The supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE. These
queues are also referred to as undelivered-message queues on other platforms.

For distributed queuing, you should define a dead-letter queue on each active
gueue manager.

Command queues

The command queue, named SYSTEM.ADMIN.COMMAND.QUEUE, is a local
gueue to which suitably authorized applications can send MQSeries for Tandem
NSK commands for processing. These commands are then retrieved by an
MQSeries component called the command server. The command server validates
the commands, passes valid commands to the queue manager for processing, and
returns any responses to the appropriate reply-to queue.

Reply-to queues

When an application sends a request message, the application that receives the
message can send a reply message to the sending application. This message is
put on a queue, called a reply-to queue, which is normally a local queue to the
sending application. The name of the reply-to queue is specified by the sending
application as part of the message descriptor.

Event queues

MQSeries for Tandem NSK supports instrumentation events, which can be used to
monitor queue managers independently of MQI applications. Instrumentation
events can be generated in several ways, for example:

e An application attempting to put a message on a queue that is not available or
does not exist

e A queue becoming full

e A channel being started
When an instrumentation event occurs, the queue manager puts an event message
on an event queue. This message can then be read by a monitoring application

that can inform an administrator or initiate remedial action if the event indicates a
problem.

Note: Trigger events are different from instrumentation events in that trigger
events are not caused by the same conditions, and do not generate event
messages.

For more information about instrumentation events, see the MQSeries
Programmable System Management manual.

Chapter 1. Introduction 9

Administration

Process definitions

A process definition object defines an application that is to be started in response
to a trigger event on an MQSeries for Tandem NSK queue manager. See
“Initiation queues” on page 8 for more information.

The process definition attributes include the application ID, the application type, and
data specific to the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create
Process to create a process definition.

Channels

Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. Channels shield applications from the
underlying communications protocols. The queue managers can exist on the same
or different platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages,
and another channel object at the queue manager that is to receive them.

For information on channels and how to use them, see the MQSeries
Intercommunication book, and also “Preparing channels and transmission queues
for remote administration” on page 109.

System default objects

The system default objects are a set of object definitions that you can create for
each queue manager, using the command file amgscoma, which is supplied with
MQSeries. You can copy and modify any of these object definitions for use in
applications at your installation. Default object names have the stem
SYSTEM.DEF; for example, the default local queue is
SYSTEM.DEFAULT.LOCAL.QUEUE; the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of
these names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
gueue, the attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

Administration

In MQSeries, you execute administration tasks by issuing commands. Four
command sets are provided. Which set you use depends on the tasks you want to
perform and how you want to perform them. The command sets are described in
Chapter 4, “Using administration command sets” on page 33. Administration tasks
include:

e Starting and stopping queue managers.

e Creating objects, particularly queues, for applications.

10 MQSeries for Tandem NSK V2R2 System Management Guide

Clients and servers

* Working with channels to create communication paths to queue managers on
other (remote) systems. This process is explained in detail in the MQSeries
Intercommunication book.

Local and remote administration

Local administration entails executing administration tasks on a queue manager you
have defined on your local system. In MQSeries, this process is known as local
administration because no channels are involved, that is, the communication is
managed by the operating system.

MQSeries supports administration from a single point using remote administration.
This process lets you issue commands from your local system, which are
processed on another system. You do not have to log on to that system; however,
you need to have the appropriate channels defined. The queue manager and
command server on the target system must be running. For example, you can
issue a remote command to change a queue definition on a remote queue
manager.

Various commands cannot be issued in this way, in particular, creating or starting
gueue managers and starting command servers. To perform this type of task, you
must either log on to the remote system and then issue commands, or create a
process that can issue the commands for you.

Clients and servers

MQSeries for Tandem NSK supports client-server configurations for MQI
applications. There are no MQSeries for Tandem NSK clients, only an MQSeries
for Tandem NSK server; however, clients on other platforms can connect to the
MQSeries for Tandem NSK server.

An MQI client is part of the MQSeries product that is installed on a machine to
accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects (for example, queues) exist only on the queue
manager system, that is, on the MQI server machine. A server can support normal,
local MQI applications as well.

For more information, see the MQSeries Intercommunication book and the
MQSeries Clients book.

MQI applications in a client-server environment

When linked to a server, MQI client applications can issue MQI calls in the same
way as local applications. The client application issues the MQCONN call to
connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
gueue manager. You must link your applications to the appropriate client libraries.
See the MQSeries Application Programming Guide for further information. No MQI
client is currently provided for Tandem NSK; however, since Tandem NSK is an
MQI Server, it accepts connections from any MQSeries MQI client running on other
platforms.

Chapter 1. Introducton 11

Security

Extending queue manager facilities

User exits

The facilities provided by a queue manager can be extended by:

e User exits
¢ |nstallable services

User exits let you insert your own programming code into a queue manager
function. Two types of user exit are supported:

e Channel exits, which change the way that channels operate.

e Data conversion exits, which can be used by application programs to convert
data from one format to another.

For more information about these exits, see Appendix J, “User exits” on page 315.

Installable services

Installable services are more extensive than user exits in that they have a
formalized Application Programming Interface (API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with the product, or you can write your own
component to perform the functions that you require. Currently, the following
installable services are provided:

The authorization service, which lets you build your own security facility. The
default service component that implements the service is the Object Authority
Manager (OAM), which is supplied with the product. By default, the OAM is
enabled. You can use the authorization service interface to create other
components to replace or augment the OAM.

The name service, which allows queue managers to share queues. You must write
your own component to carry out this task, which enables a queue manager to
determine the owner of a queue.

See the MQSeries Programmable System Management manual for more
information.

Security

Authorization for using MQI calls, commands, and access to objects is provided by
the Object Authority Manager (OAM), which by default is enabled. Access to
MQSeries entities is controlled through MQSeries for Tandem NSK user groups
and the OAM. The user and group names that OAM supports are based on
Tandem NSK user and group names. A command-line interface is provided to
enable administrators to grant or revoke authorizations as required. In addition,
NSK security facilities can be used to control access to MQSeries commands and
database files. If SAFEGUARD is installed, MQSeries is compatible with, and can
take advantage of, some of the extended facilities that it provides. For more
information, see Chapter 8, “Implementing security control” on page 119.

12 MQSeries for Tandem NSK V2R2 System Management Guide

Installation prerequisites

MQSeries for Tandem NSK and related products

The following products are required for the operation of MQSeries for Tandem
NSK:

¢ NonStop TM/MP (TMF)

¢ NonStop TS/MP (PATHWAY)
* SNA LU 6.2 or TCP/IP

e ENSCRIBE

« EMS

EMS, ENSCRIBE, NonStop TM/MP (TMF), and NonStop TS/MP (PATHWAY) are
included with the Tandem NSK operating system.

For SNA LU 6.2 functionality, either SNAX/APC or Insession** ICE can be used.

Migration from MQSeries for Tandem NSK V1.5.1

If you are a user of MQSeries for Tandem NSK V1.5.1, you can convert your
existing MQSeries configuration files and messages to work with MQSeries for
Tandem NSK V2.2 using the following two conversion utilities:

CNV1520 Converts MQSeries for Tandem NSK Version 1.5.1 queue and
channel definitions into MQSC scripts.

CNVMSGS Transfers messages from MQSeries for Tandem NSK Version 1.5.1
message queues to Version 2.2 message queues after the queue
definitions have been established using CNV1520.

Both utilities reside in the ZMQSEXE subvolume.

Migrating applications

To migrate your MQSeries for Tandem NSK V1.5.1 applications, you must
recompile and rebind them with V2.2 header files and libraries. Stubs have been
provided for MQI calls that are not present or required in MQSeries for Tandem
NSK V2.2, so code changes relating to MQSeries (other than including the correct
header files) are not required. However, MQSeries for Tandem NSK V2.2 requires
that you compile C programs with the WIDE model. MQSeries for Tandem NSK
V1.5.1 required LARGE: if your programs contain code that relies on LARGE data
representation, the code may have to be changed before it functions correctly
under the WIDE model.

Software requirements
Minimum software requirements are:

e Tandem NSK operating system version D3x, D4x, or GO2 with TMF and
PATHWAY

e Either:
— TCP/IP, installed and properly configured

or
— SNAX/APC (over SNAX/XF or SNAX/APN), or Insession ICE, as
appropriate, installed and properly configured

* At least one of the following language compilers, installed and properly
configured: C, COBOL-85, or TAL

Chapter 1. Introducton 13

Installation prerequisites

Hardware requirements

Specific hardware in support of user-selected network transport protocols must be
available.

You are also recommended to have mirrored data disks with specified space
requirements for TMF audit space as well as the MQSeries database.

Compilation and binding issues
MQSeries for Tandem NSK, V2.2 is built using the Common Runtime Environment
(CRE) to link all objects. This method imposes the following requirements on users
of versions of the MQI prior to Version 2.2:

1.

All pre-D30 COBOL and C object code must be recompiled with the D30 (or
later) compiler to integrate the CRE linkage.

. All pre-D30 TAL object code must be recompiled with a D30 (or later) compiler

and you must ensure that the TAL program is compliant with the special
programming considerations specified in the Common Run-time Environment
Programmer’s Guide. More detailed information on each of these programming
considerations is provided in the TAL Programmer's Guide.

. For object code produced with native compilers on D40, a separate binding is

provided.

. C programs must use the WIDE memory model (32-bit integers).
. COBOL programs must conform to the requirements of the CRE.

. In TAL programs, all integers passed to the MQI functions must be 32 bits (or

be cast to 32 bit with the $INT32() macro).

14 MQSeries for Tandem NSK V2R2 System Management Guide

Preparing for installation

Chapter 2. Installing MQSeries for Tandem NSK Version 2.2

This chapter explains how to install MQSeries for Tandem NSK V2.2 and how to
verify that your installation is successful. It contains the following topics:

* “Preparing for installation”

¢ ‘“Installation on NonStop Kernel D3x, D4x, and G02 releases” on page 16
» “Configuration of other NonStop Kernel resources” on page 20

* “Files that exist after installation” on page 21

e “Verifying your installation” on page 23

e “Troubleshooting” on page 25

The installation of the product consists of the following steps:

1. Preparing and planning

2. Loading the installation utility software from tape
3. Running the installation utility

4. Verifying installation

The default installation subvolumes (or ISVs — where the software is initially
loaded from tape) are:

$SYSTEM.ZMQSCONV Data conversion tables
$SYSTEM.ZMQSEXE Product executables
$SYSTEM.ZMQSLIB Libraries and header files
$SYSTEM.ZMQSSMPL Sample code
$SYSTEM.ZMQSSYS Product configuration files

Preparing for installation

This section guides you through some of the steps you must perform before you
install MQSeries for Tandem NSK V2.2.

Before you can install MQSeries for Tandem NSK V2.2 you must:

e Create a user ID in the MQM user group to use for the installation. For
example, you could define the user ID MQM.MANAGER for installation
purposes. The user ID (MQM.MANAGER in our examples) is the user ID:

— Under which all queue managers are created and run
— Under which all product executables (rather than applications) are run
— By which all product data files and databases are owned

e Decide which national language to use for the installation from the supported
national languages. The national language is determined on a system-wide
basis at the time of installation. All queue managers on a system use the
same national language.

e Determine the location of the installation subvolumes (ISVs) if different from the
default location ($.SYSTEM).

» Verify that the disk space available on the installation volume is sufficient.

© Copyright IBM Corp. 1995, 1997 15

Installation procedure

Disk storage

These are the approximate storage requirements:

¢ Base code and runtime: 150 MB

TMF audit trail

For each queue manager and for each MQSeries application that uses a queue
manager, there needs to be an allowance for the space used in the TMF audit trail
volume. For more information, see Chapter 11, “Understanding transactional
support and messaging” on page 157.

Installation on NonStop Kernel D3x, D4x, and GO2 releases
To install MQSeries for Tandem NSKV2.2:

1. Logon as the user in group MQM created for the installation process (for

example, MQM.MANAGER).

. Run the RESTORE command to restore the installation utility from tape into the

installation subvolume. For example:

RESTORE <tape device>, $*.x.INSTMQM, map names
$x.%.% TO $DATAO.*.*,NOUNLOAD, LISTALL, MYID

After the RESTORE command is complete, verify that there are no errors and
that INSTMQM is correctly restored.

. Run the installation utility by entering instmgm at the TACL prompt. (For a

description of the instmgm command, see “instmgm (Install MQSeries for
Tandem NSK)” on page 227.) The installation utility loads the remaining
software from tape.

On tape, the files are structured as follows:

$X.ZMQSCONV.* Data conversion tables

$X.ZMQSEXE.* Product executables
$x.ZMQSLIB.* Libraries and header files
$X.ZMQSSMPL.* Sample code
$X.ZMQSSYS.* Product configuration files

Figure 1 on page 17 shows the sequence of prompts (with example responses)
that appear during the installation process, beginning with the RESTORE command.

For a PAK file installation example, see Appendix B, “PAK file installation example”

on page 255.

16 MQSeries for Tandem NSK V2R2 System Management Guide

Installation procedure

$DATAO MQMMAN 3> restore $maral, $x.*.instmgm, map names $*.*.* to $datad.*.*, n

ounload, Tistall, myid

File Mode RESTORE Program - T9074ACU (15DEC95)

Copyright Tandem Computers Incorporated 1981-1994

Drives: ($MARA1)

System: \HURSLEY Operating System: D30 Tape Version: 3

Backup options: NO AUDITED, BLOCKSIZE 8, NO IGNORE, NO OPEN, PARTONLY OFF,
INDEXES IMPLICIT

Restore time: 14Sep97 14:55 Backup time: 14Sep97 14:41 Page: 1
Tape: 1 Code EOF Last modif Owner RWEP Type Rec Block
$DATAO.ZMQSEXE

INSTMQM 100 1122304 13Sep97 6:25 20,255 NCNC

Summary Information

Files restored = 1 Files not restored = 0
$DATAO MQMMAN 4> volume zmgsexe
$DATAO ZMQSEXE 5> instmqm

IBM MQSeries for Tandem NSK, Version 2
Installation and License update program.

@(#) Licensed Materials - Property of IBM 83H8731,5697-A17 (C) Copyright IBM Co
rp. 1993, 1997 A1l Rights Reserved US Government Users Restricted Rights - Use,

duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Product installation selected...

You may stop the installation by entering

"quit" at any prompt.

Where there is a default for a parameter, you may
select it by pressing the Enter key on its own.

Phase 1: Collection of license information

License information

Enter the system type that you are licensed for.
The following system types are recognized:
CLX/R

CLX800

K100

K200

CYCLONE

K1000

K2000

S7000

K10000

K20000

S70000

There is no default value for this parameter.

Figure 1 (Part 1 of 3). Installing MQSeries for Tandem NSK

Chapter 2. Installing MQSeries for Tandem NSK Version 2.2

17

Installation procedure

Please enter your selection: K2000

Enter the number of CPUs that you are licensed for.
The valid range for this parameter is 2 to 16.
There is no default value for this parameter.

Please enter the number: 4

Will you be installing from tape or from an archive file?
Enter TAPE or ARCHIVE.
The default value for this parameter is "TAPE"

Please enter the selection: TAPE

Enter either a local or remote tape device name.

The device name entered will be validated by opening it.
If the device cannot be opened you will be given the
opportunity to correct the name.

There is no default value for this parameter.

Please enter the tape device: $MARA1

Enter the name of your spooler process.

The name entered will be validated by opening it.

If the spooler cannot be opened you will be given the
opportunity to correct the name.

The default value for this parameter is "$S"

Please enter the spooler name: $S

Enter the volume that you will use for installation.
Enter the volume name in the format "$VVVVVVV".
The default value for this parameter is "$SYSTEM"

Please enter the volume: $DATAO

Enter the default volume that you want Queue Managers to
be created on.

Note that the default Queue Manager volume may be changed
at any time after installation by editing the MQSINI file.
Enter the volume name in the format "§VVvvvvv".

The default value for this parameter is "$DATAQ"

Please enter the volume: $DATAO
Enter the subvolume on $DATAO that you will use for executables.

Enter the subvolume name in the format "VVVVVVVV",
The default value for this parameter is "ZMQSEXE"

Figure 1 (Part 2 of 3). Installing MQSeries for Tandem NSK

18 MQSeries for Tandem NSK V2R2 System Management Guide

Installation procedure

Please enter the subvolume: ZMQSEXE

Select the language to be used for administration messages.
The following languages are available:

ENUS - US English

ESES - Spanish

The default value for this parameter is "ENUS"

Please enter the Tanguage: ENUS

License verified.

You have selected the following parameters for installation:

Tape device for installation: $MARA1
Spooler name: $S
Volume for installation: $DATAO
Default Queue Manager volume: $DATAO
Subvolume for executables: ZMQSEXE
Language for messages: ENUS

Beginning to restore files to $DATAO.

Verify that the installation media is present and online
in device $MARA1. Enter "YES" when ready.

Ready to restore? (yes or quit): yes

Restoring product to $DATAO...
Summary Information

Files restored = 557 Files not restored = 0

Finished restoring files.

If the summary information indicates a potential error,
review the spooler job #instmgm, and if necessary, repeat
the installation.

Securing files...

Finished securing files.

Creating MQSINI file...

Finished creating MQSINI file.

Creating message file...

Finished creating message file.

Installation complete.

Figure 1 (Part 3 of 3). Installing MQSeries for Tandem NSK

Notes:

1. As shown in Figure 1 on page 17, the default installation volume is $SYSTEM.
That value ($SYSTEM) is used in examples throughout this book. You should
replace the value $SYSTEM with the identifier of your own installation volume

wherever appropriate.

2. After a fresh install of MQSeries or a cold load of the Tandem NSK system,
MQSeries executables might take longer to run than expected when they are
first invoked. This is because the Tandem NSK operating system goes through
a “fixup” phase, during which it ensures that all external declarations are

resolved.

Chapter 2. Installing MQSeries for Tandem NSK Version 2.2

19

Kernel configuration

TACL environment variables

The following environment variables, or PARAMSs, are recognized by MQSeries for
Tandem NSK.

PARAM name Description

MQDEFAULTPREFIX
The name of the volume containing the installed subvolume, ZMQSSYS. This
PARAM must be correctly defined in all environments.

MQMACHINIFILE
The location of the MQSINI file for the installation. The default value is
MQDEFAULTPREFIX.ZMQSSYS.MQSINI. This PARAM is required only if a
nondefault location is required.

MQSNOAUT
If this PARAM is set to 1 when crtmgm is run, the new queue manager is
created with the OAM disabled.

SAVE-ENVIRONMENT ON
Required when running application programs to ensure the Common
Run-Time Environment (CRE) passes PARAMs from the environment to the
application program.

The MQDEFAULTPREFIX and MQMACHINIFILE PARAMs should be present in
the environment of all programs. The TS/MP (Pathway) configuration established
automatically by the crtmgm command ensures that these PARAMS are set
correctly for any queue manager server processes. Users of MQSeries
applications and control commands must ensure that the TACLs and TS/MP
configurations used also specify these variables.

You are recommended to include the PARAM statements in your TACLCSTM files
so that, when you log on, these PARAMSs are created correctly, and any programs
run from the TACL inherit the correct values. The following environment variable
should also be modified to allow location of MQSeries executables:

#SET #PMSEARCH $SYSTEM.ZMQSEXE [#PMSEARCH]

Configuration of other NonStop Kernel resources

TM/MP (TMF)
The configuration of the TM/MP (TMF) product is critical to the correct operation
of MQSeries queue managers. All volumes that hold queue manager data files
must be TMF audited. The TMF subsystem must be configured with sufficient
audit-trail space for the operation of all queue managers covered by that audit
trail.

TS/MP (PATHWAY)
The Transaction Services TS/MP (PATHWAY) product must be available. Each
MQSeries queue manager runs under its own PATHWAY configuration.

Communications
SNAX, ICE, or TCP/IP must be installed and configured appropriately to use
MQSeries queue managers to communicate between systems (known as
distributed queuing).

20 MQsSeries for Tandem NSK V2R2 System Management Guide

ISV contents

Files that exist after installation
After loading from tape, the following files exist in the ISVs:
Product executables (ZMQSEXE)

altmgfls Alter queue volume.

cleangm Housekeeper.

cnv1520 Convert V1.5.1 queues and channels for use with V2.2.
cnvmsgs Convert V1.5.1 messages for use with V2.2,

cnvclchl Convert client channel definition table.
crtmgcvx Data conversion utility.

crtmgm Create queue manager command.
ditmgm Delete queue manager command.

dspmgaut Display MQSeries authorities command.
dspmgcsv Display command server.

dspmgfls Display MQ files.

dspmgqtrc Display trace.

endmgcsv End command server.

endmgm Stop queue manager command.
endmgqtrc End trace.

instmgm Install MQSeries for Tandem NSK.
mgcmdsvr Command server.
mgec EC.

mgecboss Execution Controller (EC) boss.
mqglgmag Local queue manager agent (LQMA).
mqlu6res MCA SNA Responder.

mgmcacal Message channel agent (MCA) caller.

mgmsvr MQM server.

mgqtcpres MCA TCP/IP Responder.

pobjcod MQM screen requestor code.
pobjdir MQM screen requestor directory file.

runmgchi Run channel initiator.

runmgchl Start an MQSeries channel.
runmaqdiq Dead-letter queue (DLQ) handler.
runmglsr Run a TCP/IP listener.

runmgsc MQSC command processor.
runmgtrm Run trigger monitor.

setmgaut Set MQSeries authorities command.
strmqcsv Start command server.

strmgm Start queue manager command.
strmqtrc Start trace.

Product configuration files (ZMQSSYS)

mgsini Machine-wide initialization database.

SMQSTMPL EMS template file.

ZMQSC EMS event template file - C.

ZMQSCOB EMS event template file - COBOL.

ZMQSDDL EMS event template file - Data Definition Language schema.
ZMQSPAS EMS event template file - Pascal.

ZMQSTACL EMS event template file - TACL.

ZMQSTAL EMS event template file - TAL.

ZMQSTMPL EMS event template file - Generic template.

msg Installed copy of message file in selected language.
msgenus American English message file.

Chapter 2. Installing MQSeries for Tandem NSK Version 2.2 21

ISV contents

msgeses
ccsid
uccsid
mgerrigl
mqlmd
mqsyslog

Spanish message file.

CCsSID file.

Internal form of the CCSID file.
Early error log.

License file.

Global index for FFSTs.

Libraries and header files (ZMQSLIB)

magmlibc
mgmlibt
magmlibnc
magmlibnt
cmqch
cmqcfch
cmaxch
cmgzch
cmgxcdh
cmqctal
cmqcobol
mqgsvmhth

C MQI library.

TAL and COBOL MQI library.

Native C MQI library.

Native TAL and COBOL MQI library.
Standard C header file for MQI interface.
MQCFH, MQCXP structures.

MQCD structure.

Installable services structure.

MQXDX structure.

TAL header file for the MQI.

COBOL copy file for the MQI.

Sample data conversion macro for use with crtmqcvx.

Sample code (ZMQSSMPL)

amgscoma
amqgscos0

partit

Default object MQSC command file.
Sample object MQSC command file.

TACL macro that partitions queue files across disk
volumes.

Sample programs (COBOL)

AMQOECH
AMQOECHO
AMQOGBR
AMQOGBRO
AMQOGET
AMQOGETO
AMQOINQ
AMQOINQO
AMQOPUT
AMQOPUTO
AMQOREQ
AMQOREQO
AMQOSET
AMQOSETO

Sample programs (C)

AMQSBCGO
AMQSBCG
AMQSECHA
AMQSECH
AMQSGBRO
AMQSGBR
AMQSGETO
AMQSGET
AMQSINQA

22 MQSeries for Tandem NSK V2R2 System Management Guide

Sample programs (TAL)

Sample build scripts

AMQSINQ
AMQSPUTO
AMQSPUT
AMQSREQO
AMQSREQ
AMQSSETA
AMQSSET
AMQSTRGO
AMQSTRG
AMQSVFCN
AMQSVCHN

ZMQREAD
ZMQREADT
ZMQWRIT
ZMQWRITT

BCBSMPLS
BINDALL
BSAMP
BTLSMPLS
BUILDC
BUILDCOB
BUILDTAL
CCBSMPLS
COMPALL
CSAMP
CTLSMPLS

Data conversion tables (ZMQSCONYV)
See Appendix F, “Code page conversion tables” on page 265 for information
about conversions supported by MQSeries for Tandem NSK.

Verifying your installation

Verifying your installation

When you have installed MQSeries for Tandem NSK V2.2 and its samples
components, you should verify that the installation has completed successfully.
The following steps explain how to verify your installation using the MQSC
command file amgscoma. The commands in this file initialize your MQSeries
gueue manager and set up the default objects that your queue manager requires.
The objects that amgscoma creates for you are listed in Appendix C, “System

defaults” on page 259.

When you have completed the verification, you should delete the queue manager to
leave a ‘clean’ system, that is, a system with no objects, including queue

managers, defined.

Note: Deleting the queue manager does not delete the installation. You can use
this procedure even if you have previously performed it.

Chapter 2. Installing MQSeries for Tandem NSK Version 2.2

23

Verifying your installation

Follow these steps to verify your installation

The following instructions use the name QMNAME for the queue manager. When
creating your own queue manager, replace each occurrence of QMNAME with the
appropriate name. A queue manager name must be unique within your network.
The commands in these steps are case sensitive.

1. Create a queue manager called QMNAME using the crtmgm command. For
example:

crtmgm -n $QMNA -o $TRMO QMNAME

The crtmgm command requires the process name of a PATHMON process to
use for the queue manager. This process name must be unique on the
system. For example:

$QMNA

It also requires the name of a home terminal, which must be paused.
You must enter the following options before the name of the queue manager:

-n PATHMON process name
-0 home terminal (must be paused)

For a detailed description of the crtmgm command and options see “crtmgm
(Create queue manager)” on page 209

2. Start the queue manager using the strmgm command. For example:

strmgm QMNAME

The strmgm command returns control when the queue manager has started
and is ready to accept connect requests.

3. Create the default objects for this queue manager. For example:

runmgsc -i $SYSTEM.ZMQSSMPL.AMQSCOMA -o defobjou QMNAME

The file amgscoma contains a sequence of MQSC commands that define the
system default objects for the queue manager QMNAME. Note that you must
specify a fully qualified file name for amgscoma if you are not in the subvolume
ZMQSSMPL. The output from the MQSC commands is sent to a report file
defobjou. Examine the last two lines of the output file to verify that all
commands were processed without error. If errors have occurred, you should
examine the rest of this file, checking the confirmation messages for each
MQSC command. For example:

AMQ8006 MQSeries queue created

If no errors are indicated, all commands were successful and you have verified
that your installation was successful.

24 MQSeries for Tandem NSK V2R2 System Management Guide

4.

Troubleshooting

You might want to modify a copy of amgscoma to meet your own requirements
for system defaults.

Stop the queue manager using the command:

endmgm QMNAME

5.

Delete the queue manager using the command:

d1tmgm QMNAME

This command deletes the queue manager and its associated objects including
the system default objects that you created.

Troubleshooting

If your installation was not successful or commands (including those run from
amgscoma) failed to run properly, consider the following:

Did you enter the commands correctly?

Try running one or more of the commands again. These commands and most
parameters are case sensitive. If you create a queue manager with an
uppercase name, you must specify the name in uppercase on any commands
referring to that queue manager. For example, if you create a queue manager
called QMNAME, you cannot use ‘gmname’ or ‘QMname’.

Do you have enough disk space or memory to run the verification?

Check any error messages for an indication. If error message AMQ7065
Insufficient space on disk is returned, use the dsap utility to display the free
space on the target volume. If there is insufficient free space, choose a
different volume on which to create the queue manager, or free some space on
the existing volume.

Do the required subvolumes for the installed product exist?

If they do not exist, attempt to reinstall.

Do you have the required authority to run the commands?

Check that you are still logged in as a member of the MQM group.

Is the home terminal you specified on the crtmgm command correct?
Is the home terminal paused?

Is the PATHMON process name you specified for the crtmgm command unique
in your system?

Is TM/MP (TMF) running?

Chapter 2. Installing MQSeries for Tandem NSK Version 2.2 25

Troubleshooting

26 MQSeries for Tandem NSK V2R2 System Management Guide

Customizable entities

Chapter 3. Customizing your system

This chapter lists the tasks involved in customizing a queue manager to meet your
requirements.

Do | need to customize?

When

When you have installed the product, you can use it without having to
customize it in any way. The default configuration provides all the facilities
you need to build a working system that can participate in message queuing
with other MQSeries systems.

However, you must have set up the required Tandem NSK user and group
IDs.

do | customize?

Some customization tasks must be performed before you create a queue
manager; others require you to stop and restart the queue manager. Check
each task in turn, to see when you need to perform it.

What are configuration files?

There are two types of configuration file. One contains information about the
way your MQSeries system is set up or configured; this file is created when
MQSeries is installed. The other contains information about the attributes of
an individual queue manager. This file is generated when a queue manager
is created.

“What you can customize” specifies which of these files to modify for each
relevant configuration task. For more information about the files themselves,
see Chapter 13, “Configuration files” on page 163.

What do | do now?

Check each item in the list in “What you can customize” to see whether any
of the things that you can customize apply to you. If not, you do not need to
do anything else at this time and you can go on to the next chapter.

What you can customize

Read through the following list to determine if any of the following aspects apply to
systems within your enterprise:

» Configuring an authorization service component; see “Configuring an
authorization service component” on page 28

* Enabling communications support; see “Enabling communications support” on
page 28

* Implementing data conversion; see “Implementing data conversion” on page 29

» Defining the default and system objects; see “Defining the default and system
objects” on page 29

e Specifying a default prefix for queue manager objects; see “Specifying volumes
for queue manager objects” on page 30

e Configuring a queue manager; see “Configuring a queue manager” on page 31

© Copyright IBM Corp. 1995, 1997

27

Customizable entities

The terms in this list are explained in the following sections.

Configuring an authorization service component
e This task is not required on your first pass through this book.
* By default, authority checking is switched on.

The authorization service supports authority checking on commands and MQI calls
for the user ID associated with the command or call. The names of the
authorization service and the component that implements the service are specified
in the queue manager configuration file (QMINI).

By default, the active authorization service component is the Object Authority
Manager (OAM), which is supplied with MQSeries for Tandem NSK.

Changing the authorization service component
You can edit the configuration file for a specific queue manager to:

* Remove the OAM and therefore all security checking.
* Replace the OAM with a user-written authorization service component.
¢ Add a user-written authorization service component to augment the OAM.

These tasks are not required, unless you have specific security requirements that
cannot be accommodated by the OAM.

For more information about the queue manager configuration file, see “Queue
manager configuration file (QMINI)” on page 165. For information about writing
your own authorization service component, refer to the MQSeries Programmable
System Management manual.

Note: You can change the configuration file QMINI after you have created and
started the queue manager to which it relates. This has no effect until the queue
manager is stopped and restarted. However, you should not create or change
objects when the authorization service is off and then turn authorization back on
again. If you do, you may compromise the security of your system.

Enabling communications support

e This task is required before you can communicate with
other queue managers.

You must specify the name of the communications protocol and other parameters
that are to be used for communication with other queue managers. This includes
the LAN protocol name, which must be one the following:

e SNA LU 6.2
* TCP/IP

By default, these protocols are enabled. For general information about setting up
communications, see the MQSeries Intercommunication book.

28 MQsSeries for Tandem NSK V2R2 System Management Guide

Customizable entities

Implementing data conversion

e This task is not normally required on your first pass
through this book.

e You do not need data conversion to communicate between
similar nodes.

If you are using MQSeries with systems that have different encodings, you might
need to use a data conversion exit. The conversion of a message is based on the
message format (MQFMT), specified in the message descriptor. All IBM message
formats are converted automatically. However, user-defined formats are not
converted automatically, so that even ASCII-to-EBCDIC conversion must be done
using a data-conversion exit (one per format).

You can use the supplied conversion exit utility if you wish to communicate with
gueue managers using MQI calls or remote commands, where the systems
involved have formats outside those supported by MQSeries. The conversion exit
utility lets you create the required conversions as C source code. Refer to the
MQSeries Application Programming Guide for more information. You can leave this
task until run time. However, if you do, you may not be able to communicate
between the two different machines until then.

Supported code sets

MQSeries for Tandem NSK supports the code sets identified in
“Internationalization” on page 251.

Defining the default and system objects

e This task is required, but is part of the standard
administration procedures.
See Chapter 5, “Managing queue managers” on page 47 .

MQSeries for Tandem NSK provides an MQSC command file that you can use to
set up the default and system objects. Typically, when you define an object, you
do not define all the possible attributes. Those you do not specify are inherited
from the corresponding default object. The supplied command file amgscoma,
when used with the runmgsc command, creates a set of default and system
objects. See “Creating the default and system objects” on page 59 for information
about running this sample.

If you change the attributes of the default object, any objects of the same type you
create inherit the new values. Do not attempt to change these attributes if you are
not familiar with the various command sets provided with MQSeries for Tandem
NSK.

Chapter 3. Customizing your system 29

Volumes for queue managers

Modifying the amgscoma command file
You should consider modifying the command file amgscoma if, for example:

¢ You have a large number of objects to create that have similar, but not
identical, values to those in the amgscoma file.

¢ You have some specific requirements or limitations on the size of some
resources.

To modify amgscoma, make a backup copy, make the required changes, then use
the new version of the file to create the default objects.

Specifying volumes for queue manager objects

e This task is not normally required on your first pass
through this book.

e By default, the volumes are already set.

Each queue manager is created on a specific volume. The queue manager
subvolumes are all created on this volume. The default volume for the creation of
gueue managers is set in the AlT1QueueManagers stanza of the MQSINI file. The
entry QMDefaultVolume is the default volume for the creation of queue managers for
the installation.

The crtmgm command can override the default volume. For more information, see
“crtmgm (Create queue manager)” on page 209.

Once a queue manager has been created on a volume, there are no facilities
provided for moving an entire queue manager to a different volume, without
deleting and recreating.

There are limited facilities for altering the volume on which a queue is stored, on a
gueue-by-queue basis. See the description of the altmqfls command in “altmqfls
(Alter queue volume)” on page 198 for more information. However, there are no
facilities for moving other queue manager objects: even if all queues are moved to
alternative volumes, the queue manager’s “home” location is unaltered.

In addition to the facility for moving queues, the Tandem NSK ENSCRIBE file
system can partition queue files across volumes. Partitioning can be used to
overcome disk-space problems on specific volumes, or to distribute the physical 1/0
activity across multiple volumes.

The partitioning used on the queue files is “intelligent.” That is, the key used for
partitioning purposes is constructed dynamically, thereby distributing the messages
randomly across the available partitions. An example TACL macro that partitions a
gueue file across two disk volumes is supplied with MQSeries for Tandem NSK.
The partitioning macro, called partit in the samples subvolume ZMQSSMPL, can be
adapted to support more than two disk volumes.

30 MQsSeries for Tandem NSK V2R2 System Management Guide

INI file location

Specifying a default volume for queue managers

You can specify a default volume, so that when you create a new queue manager
its volume is taken from the default. The default volume is specified in the
QMDefaultVolume stanza in the MQSINI file. Unless you have changed it, the
default volume is as specified at install time.

Sharing queues using the name service

e This task is not normally required on your first pass
through this book.

e You must stop and restart the queue manager to perform
this task.

The name service is an installable service that enables an application to access a
gueue on another queue manager as if it were a local queue. For MQI requests,
applications can then treat this queue like a local queue, without being aware of its
exact location.

The service name and the component to be invoked for that service are specified
by stanzas in the QMINI configuration file. By default, this service is not active.
For information about configuration file stanzas, see Chapter 13, “Configuration
files” on page 163. For information about writing your own name service, see the
MQSeries Programmable System Management manual.

Configuring a queue manager

e This task is required, but is part of the standard
administration procedures.
See Chapter 5, “Managing queue managers” on page 47.

When you create a queue manager, using the crtmgm command, you can specify
certain properties for that queue manager. For example, you can specify the name
of the dead-letter queue, and the default transmission queue.

Once you have created a queue manager, you might need to modify its properties.
For more information, see “Guidelines for creating a queue manager” on page 47
and Chapter 13, “Configuration files” on page 163.

Specifying the location of the machine-wide INI file

The PARAM MQMACHINIFILE, if defined, overrides the default location of the
MQSINI file for all administration commands.

Chapter 3. Customizing your system 31

Location of MQSeries executables

Specifying the location of the MQSeries executables

Edit the stanza MQSExePath in the MQSINI file for your installation to change the
location of the executables for the installation. MQSExePath is updated
automatically during installation of MQSeries for Tandem NSK.

32 MQSeries for Tandem NSK V2R2 System Management Guide

Control commands

Chapter 4. Using administration command sets

This chapter describes the commands you can use for performing system
administration tasks on MQSeries objects. Administration tasks include creating,
starting, altering, viewing, stopping, and deleting queue managers, queues,
processes, and channels. To perform these tasks, you must select the appropriate
command.

MQSeries for Tandem NSK V2.2 provides the following administration command
sets for performing administrative tasks:

¢ MQSC (MQSeries commands)
e PCF (Programmable Command Format) commands
e Control commands

In addition:
e Some TS/MP (Pathway) commands are used for administration purposes.

e The MQM (Message Queue Management) facility supports some administration
tasks. The MQM is described in “Using the Message Queue Management
(MQM) facility” on page 63.

This chapter introduces the MQSC, PCF, and control command sets, and provides
a summary of the functions supported by each command set in “Comparing
command sets” on page 35. How to use TS/MP commands is described in
“TS/MP (Pathway) administration” on page 38.

Control commands
The following types of control command are available:
e Commands for creating, starting, stopping, and deleting queue managers
e Commands for starting, stopping, and displaying command servers

¢ Utility commands associated with, for example, running MQSC commands,
managing access to MQSeries objects, starting and stopping an MQSeries
trace, and running trigger monitors

Using control commands
You run control commands from the Tandem TACL prompt. Command names are
not case sensitive. (Note, however, that queue manager names are case
sensitive.) For example:

runmqgsc

Chapter 15, “The MQSeries control commands” on page 195 explains the syntax
and purpose of each command.

© Copyright IBM Corp. 1995, 1997 33

PCF commands

MQSC commands

Running MQSC

You can use the MQSC commands to manage queue manager objects including
the queue manager, channels, queues, and process definitions. For example, you
can define, alter, display, and delete a specified queue using MQSC commands.

When you display a queue, using the DISPLAY QUEUE command, you display the
queue attributes. For example, the MAXMSGL attribute specifies the maximum
length of a message that can be put on the queue. The command does not show
you the messages on the queue. These commands are summarized in “Comparing
command sets” on page 35. For detailed information about each MQSC
command, see the MQSeries Command Reference.

commands

You can run MQSC interactively by invoking the control command runmgsc from
the Tandem TACL prompt or running a script when a local queue manager is
running.

You can run the runmgsc command itself in three modes, depending on the flags
set on the command:

» Verification mode, where the MQSC commands are verified on a local queue
manager, but are not run.

» Direct mode, where the MQSC commands are run on a local queue manager.
e Indirect mode, where the MQSC commands are run on a remote queue
manager.

For more information about using the MQSC facility and text files, see “Entering
MQSC interactively” on page 84. For more information about the runmgsc
command, see “runmgsc (Run MQSeries commands)” on page 232.

PCF commands

PCF commands let you program administrative tasks into your applications or an
administration program. PCF commands cover the same range of functions that
are provided by the MQSC facility. You can write a program to issue PCF
commands to any queue manager in the network from a single node. You can also
centralize and automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue
manager using the MQI function MQPUT. The command server on the queue
manager receiving the message interprets it as a command message and runs the
command. To get the replies, the application issues an MQGET call and the reply
data is returned as a data structure in the application data part of the MQSeries
message. The application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

You must specify the following items to create a PCF command message:

34 MQsSeries for Tandem NSK V2R2 System Management Guide

Comparing command sets

Message descriptor
This is a standard MQSeries message descriptor, in which:

Message type (MsgType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type (Type) specifies MQCFT_COMMAND.
The command identifier specifies the command, for example, ChangeQueue
(MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,
see the MQSeries Programmable System Management book.

Attributes in MQSC and PCFs

Object attributes specified in MQSC are in uppercase (for example, RQOMNAME),
although they are not case sensitive. These attribute names are limited to eight
characters (for example, QDPHIEV). Object attributes in PCF are shown in italics,
and are not limited to eight characters. The PCF equivalent of RQOMNAME is
RemoteQMgrName and of QDPHIEV is QDepthHighEvent.

Escape PCFs

Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see the MQSeries Programmable
System Management book.

Comparing command sets

Table 1 through Table 6 on page 37 compare the facilities available from the
different administration command sets.

Note: Only those MQSC commands that apply to MQSeries for Tandem NSK are

shown.
Table 1. Commands for queue manager administration
PCF MQSC Control
Change Queue Manager ALTER QMGR -
(Create queue manager)* - crtmgm
(Delete queue manager)* - ditmgm
Inquire Queue Manager DISPLAY QMGR -
(Stop queue manager)* - endmgm
Ping Queue Manager PING QMGR -
(Start queue manager)* - strmgm
Note: * Not available as PCF commands.

Chapter 4. Using administration command sets 35

Comparing command sets

Table 2. Commands for command server administration

Description Control
Display command server dspmqcsv
Stop command server endmgcsv
Start command server strmgcsv

Note: As an alternative to the control commands, you may use PATHCOM commands, as
described in “TS/MP (Pathway) administration” on page 38. There are no MQSC or PCF
equivalents of commands in this group.

Table 3. Commands for queue administration

PCF MQSC

Change Queue ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL

ALTER QREMOTE

Clear Queue CLEAR QLOCAL

Copy Queue DEFINE QLOCAL(x) LIKE(y)
DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)

DEFINE QREMOTE(X) LIKE(y)

Create Queue DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL

DEFINE QREMOTE

Delete Queue DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL

DELETE QREMOTE

Inquire Queue DISPLAY QUEUE

Inquire Queue Names DISPLAY QUEUE

Note: There are no control commands for these functions.

Table 4. Commands for process administration

PCF MQSC

Change Process ALTER PROCESS

Copy Process DEFINE PROCESS(x) LIKE(y)

Create Process DEFINE PROCESS

Delete Process DELETE PROCESS

Inquire Process DISPLAY PROCESS

DISPLAY PROCESS

Inquire Process Names

Note:

There are no control commands for these functions.

36 MQsSeries for Tandem NSK V2R2 System Management Guide

Comparing command sets

Table 5. Commands for channel administration

PCF MQSC Control
Change Channel ALTER CHANNEL -

Copy Channel DEFINE CHANNEL(x) LIKE(y) -

Create Channel DEFINE CHANNEL -

Delete Channel DELETE CHANNEL -

Inquire Channel DISPLAY CHANNEL -

Inquire Channel Names DISPLAY CHANNEL -

Inquire Channel Status DISPLAY CHSTATUS -

Ping Channel PING CHANNEL -

Reset Channel RESET CHANNEL -
Resolve Channel RESOLVE CHANNEL -

Start Channel START CHANNEL runmgchl
Start Channel Initiator - runmgchi
Start Channel Listener - runmg|lsr
Stop Channel STOP CHANNEL -

Note:

on page 38 and “runmglsr (Run listener)” on page 231.

In MQSeries for Tandem NSK, use TS/MP or the control command runmgqlsr to start
TCP/IP channel listeners. For more information, see “Specifying and controlling TCP/IP listeners

Table 6. Other control commands

Description Control
Alter queue volume altmqfls
Perform housekeeping on a queue manager cleangm
Convert V1.5.1 queues and channels to V2.2 cnv1520
Convert V1.5.1 messages to V2.2 cnvmsgs
Convert client channel definition table cnvclchl
Create MQSeries conversion exit crtmgcvx
Display authority dspmgaut
Display files used by objects dspmqfls
Display MQSeries formatted trace output dspmagtrc
End MQSeries trace endmatrc
Install MQSeries for Tandem NSK instmgm
Run dead-letter queue handler runmqdlq
Run MQSC commands runmgsc
Run trigger monitor runmgtrm
Run TCP/IP listener runmg|sr
Set or reset authority setmgaut
Start MQSeries trace strmqtrc

Note: As an alternative to the control command runmgtrm , you may use PATHCOM commands,
as described in “TS/MP (Pathway) administration” on page 38. There are no MQSC or PCF
equivalents of commands in this group.

Chapter 4. Using administration command sets 37

TS/MP administration

TS/MP (Pathway) administration

Most operations on the queue manager are accomplished by running MQSeries
control commands from TACL. Some operations, however, require the use of
PATHCOM to operate directly on the TS/MP server classes. Also, because of
system-configuration changes, you might need to perform some administration
actions on the TS/MP configuration itself.

This section summarizes these activities.

Specifying and controlling TCP/IP listeners

To start TCP/IP listeners, you can use the MQSeries control command runmglsr
(described in “runmglsr (Run listener)” on page 231), or you can use the
PATHCOM commands THAW SERVER and START SERVER. To stop TCP/IP
listeners, use the PATHCOM commands FREEZE SERVER and STOP SERVER.
Use the PATHCOM command STATUS SERVER to display the number of TCP/IP
listeners running, and their process names.

By default, each queue manager has one listener that is in server class
MQS-TCPLIS00. Use the PATHCOM command ADD SERVER to create additional
TCP/IP listener server classes to service more than one TCP/IP port. Each TCP/IP
listener should be configured in its own TS/MP server class for maximum flexibility.
If you add TCP/IP listeners, you must also add TCP/IP port definitions to the queue
manager initialization file (QMINI), as described in “TCP/IP ports listened on by the
gueue manager” on page 55. The first listener to be started uses the first listener
port defined in QMINI, the second listener uses the second listener port, and so on.

Controlling the command server

The command server is created as the TS/MP server class MQS-CMDSERV00. As
an alternative to the control commands strmqcsv , endmqcsv , and dspmqgcsv , you
can use the PATHCOM commands THAW SERVER, START SERVER, FREEZE
SERVER, STOP SERVER, and STATUS SERVER.

Specifying and controlling channel initiators

The default channel initiator is created as the TS/MP server class
MQS-CHANINITOO0. As an alternative to using the runmqgchi control command
(described in “runmqchi (Run channel initiator)” on page 228), you can use the
PATHCOM commands THAW SERVER, START SERVER, FREEZE SERVER,
STOP SERVER, and STATUS SERVER to control and display the status of the
channel initiator. The default channel initiator processes the default channel
initiation queue, SYSTEM.CHANNEL.INITQ.

Specifying and controlling trigger monitors

A single default trigger monitor is created as the TS/MP server class
MQS-TRIGMONOO. You can use the PATHCOM commands THAW SERVER,
START SERVER, FREEZE SERVER, STOP SERVER, and STATUS SERVER to
administer this server class. If you need additional trigger monitors, you can
configure them as additional server classes, using MQS-TRIGMONOO as a
template. You are recommended to use separate server class objects for
maximum flexibility. You do not have to use TS/MP to control trigger monitors. For
example, you can run the trigger monitor from TACL using the control command
runmgtrm .

38 MQsSeries for Tandem NSK V2R2 System Management Guide

TS/MP administration

The default trigger monitor processes the default initiation queue,
SYSTEM.DEFAULT.INITIATION.QUEUE. You can change this by adding or
changing the STARTUP message for the server class that holds the trigger monitor.
You need to do this if more than one trigger monitor is configured for the queue
manager. Use the PATHCOM ALTER SERVER command to add or change the
STARTUP attribute.

Specifying the distribution of processes across CPUs

The key to the distribution of work among CPUs is the CPU assigned to each EC in
the queue manager. Each EC creates and manages a set of agent processes in its
own CPU only. Consequently, if the EC processes are distributed among the
CPUs of the system, the agent processes are similarly distributed.

By default, the EC processes (each a separate server class) are distributed as
evenly as possible among the available CPUs on the system. There is no built-in
limit to the number of EC processes in a queue manager: the number required
depends entirely on the load to be handled by the queue manager. The default is
to have one EC process in the queue manager.

The default EC server class is called MQS-ECO00. Specify the -e flag of the
crtmgm command to create a queue manager with more than one EC. The
number of EC processes may be changed after the queue manager has been
created by adding or deleting EC process server classes, and making a
corresponding modification to the ExpectedNumECs entry in the ECBoss stanza in the
QMINI file.

Each EC process must be in its own server class. Use the MQS-ECO0O0 server
class as a template if you need to create additional EC processes manually.

The default assignment of CPUs to EC processes, or any other server class, may
be changed using the PATHCOM ALTER SERVER command on the CPU attribute.

Specifying the refresh frequency of MQM monitor panels

The MQMQMREFRESHINT pathway parameter for MQS-MQMSVRO00 determines
the frequency with which monitor screens for channels and queues are refreshed.
The default frequency is every 30 seconds. To change the frequency to every 10
seconds, for example, enter:

alter server mgs-mgmsvr00, param mgmgmrefreshint 10

from the pathway for your queue manager.

PATHWAY configuration for a queue manager
Here is an example PATHWAY configuration for a queue manager:

Chapter 4. Using administration command sets 39

TS/MP administration

SET PATHWAY MAXASSIGNS 20

SET PATHWAY MAXDEFINES 100

SET PATHWAY MAXEXTERNALTCPS 0

SET PATHWAY MAXLINKMONS 16

SET PATHWAY MAXPARAMS 100

SET PATHWAY MAXPATHCOMS 10

SET PATHWAY MAXPROGRAMS 100

SET PATHWAY MAXSERVERCLASSES 100
SET PATHWAY MAXSERVERPROCESSES 100
SET PATHWAY MAXSPI 10

SET PATHWAY MAXSTARTUPS 100

SET PATHWAY MAXTCPS 100

SET PATHWAY MAXTELLQUEUE 4

SET PATHWAY MAXTELLS 32

SET PATHWAY MAXTERMS 100

SET PATHWAY MAXTMFRESTARTS 5

SET PATHWAY OWNER \HURSLEY.20,255
SET PATHWAY SECURITY "N"

RESET TCP

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

AUTORESTART 0
CHECK-DIRECTORY OFF
CODEAREALEN 80000

CPUS 0:1

DEBUG OFF

DUMP OFF

HIGHPIN ON

HOMETERM \HURSLEY.$T0.#A
INSPECT OFF
MAXINPUTMSGLEN 6000
MAXINPUTMSGS 0
MAXPATHWAYS 0

MAXREPLY 32000
MAXSERVERCLASSES 1
MAXSERVERPROCESSES 10
MAXTERMDATA 500000
MAXTERMS 10

NONSTOP 0
POWERONRECOVERY ON

PRI 175

PROGRAM \HURSLEY.$SYSTEM.SYSTEM.PATHTCP2
SERVERPOOL 32000

STATS OFF

TCLPROG \HURSLEY.$DATA®.ZMQSEXE.P0BJ
TERMBUF 1500

TERMPOOL 10000

ADD TCP MQS-TCP-01

Figure 2 (Part 1 of 5). Example PATHWAY configuration

40 MQSeries for Tandem NSK V2R2 System Management Guide

TS/MP administration

RESET PROGRAM

PROGRAM ERROR-ABORT OFF

PROGRAM OWNER \HURSLEY.20,255

PROGRAM SECURITY "N"

PROGRAM TCP MQS-TCP-01

PROGRAM TMF ON

PROGRAM TYPE T16-6520 (BREAK OFF,ECHO ON,EXCLUSIVE OFF,

SET
SET
SET
SET
SET
SET

INITIAL MAINC,IOPROTOCOL O,MAXINPUTMSGS 0,TRAILINGBLANKS ON)

ADD PROGRAM MQMC

RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER

PROCESSTYPE GUARDIAN
AUTORESTART 10

CPUS (0)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS
HIGHPIN ON

HOMETERM \HURSLEY.$TO.#A
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \HURSLEY.$T0.#A
OWNER \HURSLEY.20,255
PARAM MQQUEMGRNAME "TEST"
PARAM MQMACHINIFILE "$DATAQ.TESTD.UMQSINI"

PARAM MQDEFAULTPREFIX "$DATAQ"

PRI 175

PROGRAM \HURSLEY.$DATAO.ZMQSEXE.RUNMQCHI
SECURITY "N"

TMF ON

VOLUME \HURSLEY.$DATAQ.TESTD

ADD SERVER MQS-CHANINITOO

Figure 2 (Part 2 of 5). Example PATHWAY configuration

Chapter 4. Using administration command sets

41

TS/MP administration

RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER

PROCESSTYPE GUARDIAN
AUTORESTART 10

CPUS (0)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \HURSLEY.$TO.#A
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \HURSLEY.$T0.#A

OWNER \HURSLEY.20,255

PARAM MQQUEMGRNAME "TEST"
PARAM MQMACHINIFILE "$DATAQ.TESTD.UMQSINI"
PARAM MQDEFAULTPREFIX "$DATAQ"
PRI 175

PROGRAM \HURSLEY.$DATAO.ZMQSEXE.MQCMDSVR
SECURITY "N"

TMF ON

VOLUME \HURSLEY.$DATAQ.TESTD

ADD SERVER MQS-CMDSERVOO
RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER

PROCESSTYPE GUARDIAN
AUTORESTART 10

CPUS (0)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \HURSLEY.$TO.#A
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \HURSLEY.$T0.#A

OWNER \HURSLEY.20,255

PARAM MQQUEMGRNAME "TEST"
PARAM MQMACHINIFILE "$DATAQ.TESTD.UMQSINI"
PARAM MQDEFAULTPREFIX "$DATAQ"
PRI 175

PROGRAM \HURSLEY.$DATAO.ZMQSEXE.MQEC
SECURITY "N"

TMF ON

VOLUME \HURSLEY.$DATAQ.TESTD

ADD SERVER MQS-EC00

Figure 2 (Part 3 of 5). Example PATHWAY configuration

42 MQSeries for Tandem NSK V2R2 System Management Guide

TS/MP administration

RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER

PROCESSTYPE GUARDIAN
AUTORESTART 10

CPUS (0)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \HURSLEY.$TO.#A
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \HURSLEY.$T0.#A

OWNER \HURSLEY.20,255

PARAM MQQUEMGRNAME "TEST"
PARAM MQMACHINIFILE "$DATAQ.TESTD.UMQSINI"
PARAM MQDEFAULTPREFIX "$DATAOQ"
PRI 175

PROGRAM \HURSLEY.$DATAO.ZMQSEXE.MQECBOSS
SECURITY "N"

TMF ON

VOLUME \HURSLEY.$DATAQ.TESTD

ADD SERVER MQS-ECBOSS
RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER

PROCESSTYPE GUARDIAN
AUTORESTART 0

CPUS (0)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS
HIGHPIN ON

HOMETERM \HURSLEY.$TO.#A
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \HURSLEY.$T0.#A
OWNER \HURSLEY.20,255
PARAM MQQUEMGRNAME "TEST"

PARAM MQMACHINIFILE "$DATAQ.TESTD.UMQSINI"
PARAM MQDEFAULTPREFIX "$DATAQ"

PARAM MQMPAGESTORETRIEVE "20"

PRI 175

PROGRAM \HURSLEY.$DATAO.ZMQSEXE.MQMSVR
SECURITY "N"

TMF ON

VOLUME \HURSLEY.$DATAQ.TESTD

ADD SERVER MQS-MQMSVR0O

Figure 2 (Part 4 of 5). Example PATHWAY configuration

Chapter 4. Using administration command sets

43

TS/MP administration

RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER

PROCESSTYPE GUARDIAN
AUTORESTART 10

CPUS (0)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \HURSLEY.$TO.#A
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \HURSLEY.$T0.#A

OWNER \HURSLEY.20,255

PARAM MQQUEMGRNAME "TEST"
PARAM MQMACHINIFILE "$DATAQ.TESTD.UMQSINI"
PARAM MQDEFAULTPREFIX "$DATAQ"
PRI 175

PROGRAM \HURSLEY.$DATAO.ZMQSEXE.RUNMQLSR
SECURITY "N"

TMF ON

VOLUME \HURSLEY.$DATAQ.TESTD

ADD SERVER MQS-TCPLIS00
RESET SERVER

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER
SERVER

PROCESSTYPE GUARDIAN
AUTORESTART 10

CPUS (0)

CREATEDELAY 1 MINS

DEBUG OFF

DELETEDELAY 10 MINS

HIGHPIN ON

HOMETERM \HURSLEY.$TO.#A
LINKDEPTH 255

MAXSERVERS 1

NUMSTATIC 1

OUT \HURSLEY.$T0.#A

OWNER \HURSLEY.20,255

PARAM MQQUEMGRNAME "TEST"
PARAM MQMACHINIFILE "$DATAQ.TESTD.UMQSINI"
PARAM MQDEFAULTPREFIX "$DATAQ"
PRI 175

PROGRAM \HURSLEY.$DATAO.ZMQSEXE.RUNMQTRM
SECURITY "N"

TMF ON

VOLUME \HURSLEY.$DATAQ.TESTD

ADD SERVER MQS-TRIGMONOO

Figure 2 (Part 5 of 5). Example PATHWAY configuration

44 MQSeries for Tandem NSK V2R2 System Management Guide

TS/MP administration

Changing the parameters of Pathway server classes
To alter the parameters of Pathway server classes:

1.

8.

Stop the queue manager by issuing the endmgm command. This also stops
the Pathmon process.

. Go to the subvolume queue managerD, which contains the PATHCTL file. For

example:
>VOLUME $DATA2.MTO1D

. Start a Pathmon with the same name as the queue manager’s Pathmon and

with the NOWAIT option. For example:
>PATHMON /NAME $MTO1, NOWAIT/

. Start a Pathcom against the new Pathmon. For example:

>PATHCOM $MTO1

. Load the existing Pathway configuration for the queue manager by issuing the

following command from the PATHCOM prompt:
>START PATHWAY COOL

. Make the required changes using PATHCOM commands.

. Shut down the Pathway system by issuing the following command:

>SHUTDOWN2

Start the queue manager using the strmgm command.

Adding user-defined server classes to an MQSeries pathway

You can add your own server class definitions to the MQSeries Pathway
configuration using Pathcom. However, this is not recommended: servers must be
well behaved, or endmgm does not function correctly. Note also that user-defined
server class definitions are lost when a queue manager is deleted. To minimize
inconvenience, you are recommended to create a reusable script.

Chapter 4. Using administration command sets 45

TS/MP administration

46 MQSeries for Tandem NSK V2R2 System Management Guide

Creating queue managers

Chapter 5. Managing queue managers

This chapter describes all aspects of the management of MQSeries queue
managers.

The following sections are in this chapter:

e “Getting started”

e “Guidelines for creating a queue manager”

e “Volume structure” on page 56

e “Working with queue managers” on page 58

¢ “Managing the command server for remote administration” on page 62

Getting started

Before you use messages and queues, you must create at least one queue
manager. Once you complete the installation process, you can use the MQSeries
control commands to create a queue manager and start it.

You can then use MQSC commands to create the required default objects and
system objects. Default objects form the basis of any object definitions that you
make; system objects are required for queue manager operation. You must create
these objects for each queue manager you create. The supplied command file
amgscoma, when used with the runmgsc command, creates a set of default and
system objects. See “Creating the default and system objects” on page 59 for
information about running this sample.

See Chapter 4, “Using administration command sets” on page 33 for more
information about commands that you can use with MQSeries for Tandem NSK,
and the different methods of invoking them.

Guidelines for creating a queue manager

A queue manager manages the resources associated with it, such as the queues
that it owns. A queue manager provides queueing services to applications for
Message Queuing Interface (MQI) calls and commands to create, modify, display,
and delete MQSeries objects. You create a queue manager using the crtmgm
command. Here is a list of items to consider when creating a queue manager:

¢ Specify a unique queue manager name.

e Limit the number of queue managers.

e Specify a default queue manager.

e Specify a dead-letter queue.

e Specify a default transmission queue.

e Back up configuration files after creating a queue manager.

The tasks in this list are explained in the following sections.

e Specify the PATHMON process name.
e Specify the home terminal name.
e Distribute the processing load across CPUs.

© Copyright IBM Corp. 1995, 1997 47

Creating queue managers

Specifying a unigue queue manager name
When you create a queue manager, you must ensure that no other queue manager
has the same name in your network. Queue manager names are not checked at
create time, and nonunique names prevent you from creating channels for
distributed queuing.

You can ensure uniqueness by prefixing each queue manager name with its own
node name. For example, if a node is called accounts, you can name your queue
manager accounts.saturn.queue.manager, where saturn identifies a particular
gueue manager and queue.manager is an extension you can give to all queue
managers. Alternatively, you can omit this extension; however, accounts.saturn
and accounts.saturn.queue.manager are different queue manager names.

Note: Queue manager names in control commands are case sensitive. For
example, you can create two queue managers with the names.
jupiter.queue.manager and JUPITER.queue.manager.

Limiting the number of queue managers
In MQSeries for Tandem NSK, you can create as many queue managers as
resources allow. However, because each queue manager requires its own
resources, it is often more efficient to have one queue manager with 100 queues
than ten queue managers with ten queues each. Many nodes can be run with a
single queue manager; however, larger servers can run with multiple queue
managers. There can be special requirements of either performance, or
functionality that would require multiple queue managers.

Specifying the default queue manager

Each node should have a default queue manager, though it is possible to configure
MQSeries on a node without one.

To create a default queue manager, specify the -q flag on the crtmgm command.
For a detailed description of this command and its parameters, see “crtmgm
(Create queue manager)” on page 209.

What is a default queue manager?
The default queue manager is the queue manager that applications connect
to if they do not specify a queue manager name in an MQCONN call. Itis
also the queue manager that processes MQSC commands when you invoke
the runmgsc command without specifying a queue manager name.

How do you specify a default queue manager?
You include the -q flag on the crtmgm command to specify that the queue
manager you are creating. This is the default queue manager. Omit this
flag if you do not want to create a default queue manager.

Specifying a queue manager as the default replaces any existing default
gueue manager specification for the node.

What happens if | make another queue manager the default?
If you change the default queue manager it can affect other users or
applications. The change has no effect on currently-connected applications
because they can use the handle from their original connect call in any
further MQI calls. This handle ensures that the calls are directed to the
same queue manager. Any applications connecting after the change
connect to the new default queue manager.

48 MQSeries for Tandem NSK V2R2 System Management Guide

Creating queue managers

Specifying and controlling the queue manager housekeeper

The cleangm command performs housekeeping on the queue manager, running as
a background server process and correcting queue depth and open counts that are
incorrect due to abnormally ended TM/MP transactions.

Housekeeping is important, because applications may depend on some aspects of
gueue depth and open counts. Applications that require exclusive access to
gueues will not be able to open queues unless the open count is zero, for example.

The cleangm command can be run interactively from TACL, or as a batch process
scheduled using the Tandem NETBATCH product, or a TACL macro. You are
recommended to run the housekeeper regularly at off-peak times in order to
minimize performance degradation on the normal processing of the queue
manager.

For a description of cleangm , see “cleangm (Perform housekeeping on a queue
manager)” on page 200.

Specifying a dead-letter queue
The dead-letter queue is a local queue where messages are put if they cannot be
routed to their correct destination.

Attention: You should have a dead-letter queue on each queue manager in your
network. Failure to do so can result in application programs errors, which causes
channels to be closed and causes replies to administration commands to fail. For
example, if an application attempts to put a message on a queue on another queue
manager, but the wrong queue name is given, the channel is stopped, and the
message remains on the transmission queue. Other applications cannot then use
this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues.
The undelivered message is put on the dead-letter queue at the receiving end,
leaving the channel and its transmission queue available.

Therefore, when you create a queue manager you should use the -u flag to specify
the name of the dead-letter queue. You can also use an MQSC command to alter
the attributes of a queue manager and specify the dead-letter queue to be used.
See “"Altering queue manager attributes” on page 86 for an example of an MQSC
ALTER command.

A sample dead-letter queue definition is provided with the supplied sample
amgscoma. The queue is called SYSTEM.DEAD.LETTER.QUEUE. See “Creating
the default and system objects” on page 59 for information about running this
sample. When you find messages on a dead-letter queue, you can use the
dead-letter queue handler, which is supplied with MQSeries, to process these
messages. See Chapter 9, “MQSeries dead-letter queue handler” on page 139 for
further information about the dead-letter queue handler, and how to reduce the
number of messages that might otherwise be placed on the dead-letter queue.

Chapter 5. Managing queue managers 49

Creating queue managers

Specifying a default transmission queue
A transmission queue is a local queue on which messages in transit to a remote
gueue manager are queued pending transmission. The default transmission queue
is the queue that is used when no transmission queue is explicitly defined. Each
gueue manager can be assigned a default transmission queue.

When you create a queue manager you should use the -d flag. to specify the
name of the default transmission queue. The -d flag does not actually create the
gueue, which you have to create at a later time. See “Working with local queues”
on page 92 for more information.

Backing up configuration files after creating a queue manager
There are two configuration files to back up, MQSINI and QMINI:

1. The MQSeries configuration file (MQSINI) is created when you install
MQSeries. This file contains a list of queue managers that is updated each
time you create or delete a queue manager. There is one MQSINI file per
installation. By default, MQSINI is located in $SYSTEM.ZMQSSYS.

2. A queue manager configuration file (QMINI) is automatically created when you
create a new queue manager. This file contains configuration parameters for
the queue manager.

You should make a backup of these files. If you create another queue manager
that causes problems, you can reinstate the backups when you have removed the
source of the problem. You should back up your configuration files each time you
create a new queue manager.

For more information about configuration files, see Chapter 13, “Configuration files
on page 163.

Configurable queue-manager properties
Many of the properties of a queue manager can be modified when the queue
manager is created. Some properties can also be modified after the queue
manager is created, though you are usually required to stop and restart the queue
manager before the changes can take effect.

The remainder of this section describes some queue-manager properties that you
might want to change.

Home volume of the queue manager

This is the volume where all databases, including queues, are created. (However,
individual queues may be moved to a different volume after creation using the
altmgfls control command, as described in “altmgfls (Alter queue volume)” on
page 198.)

The default value is taken from the QMDefaultVolume entry of the AT1QueueManagers
stanza in the MQSINI file. It is overridden by the -p DefaultPrefix parameter of
the crtmgm command, if specified.

The home volume can be specified only when a queue manager is created. It
cannot be changed after creation.

50 MQsSeries for Tandem NSK V2R2 System Management Guide

Creating queue managers

Number of EC processes per queue manager

By default, there is one EC process per queue manager. You specify the number
of EC processes for a queue manager on the -e NumECs parameter of the crtmgm
command.

Each EC is responsible for a subset of the server processes that perform
messaging and queuing for applications and channels in the same CPU as the EC
itself. You are recommended to have 1 EC per CPU, unless the number of
applications per EC is large, in which case having an additional EC running on the
CPU would be beneficial. For large installations, for example, more EC processes
are desirable (often distributed across multiple CPUs) so that large numbers of
applications and channels can be handled concurrently.

During queue manager creation, a TS/MP server class is created for each EC
specified on the crtmgm command. The specified EC server classes are
distributed across all CPUs in the system, in a round-robin fashion. For example,
specifying eight EC processes in a four-CPU system would result in two EC
processes per CPU by default.

The ExpectedNumECs field of the ECBoss stanza in the QMINI file of the queue
manager is set to the number of EC processes specified on creation. This value
must be consistent with the TS/MP configuration at all times.

It is possible to change the number of EC processes in a queue manager after
creation by adding or deleting TS/MP server classes, and modifying the
ExpectedNumECs entry of the ECBoss stanza in the QMINI file. This can be done
only while the queue manager is stopped.

System load balancing: The EC Boss is responsible for distributing the workload
of a queue manager among the ECs. The processing load of a queue manager
can be distributed among multiple CPUs in a balanced way, given an appropriate
configuration of ECs.

When a new connection request arrives from a local application, or when a channel
is to be started, the EC Boss allocates the request to the EC with the smallest
number of active LQMAs and MCAs.

Home terminal of the queue manager

All Tandem NSK processes, including the queue manager server processes, have
a home terminal. The terminal must exist and be in the paused state. In general,
the queue manager home terminal is not used for output. The home terminal can
be any valid terminal device, including the Tandem Virtual Hometerm Service
(VHS) product.

You identify a queue manager’'s home terminal on the -o HomeTerminalName
parameter of the crtmgm command. There is no default; this parameter is
mandatory.

The HOMETERM and OUT attributes of all TS/MP server classes are set to the
specified terminal device. These attributes may be altered at any time when server
classes are in the stopped state, normally when the queue manager is stopped.

The HomeTerminalName entry in the Configuration stanza in the QMINI file must
also be modified in order to change the home terminal of a queue manager.

Chapter 5. Managing queue managers 51

Creating queue managers

The PATHMON process name for the queue manager

Each queue manager runs under its own TS/MP (Pathway) configuration. The
controlling process for this is the PATHMON process. A unique name must be
specified for each queue manager. Furthermore, the name must be unique within
the system.

You specify the PATHMON process name on the -n PATHMONProcessName parameter
of the ctmgm command. There is no default; this parameter is mandatory.

Specify a process name that is unique in the system, and is easy to associate with

the queue manager it controls.

You can change the PATHMON process name for a queue manager, as follows:
1. Stop the queue manager.

2. Set your default volume and subvolume to the location of the queue manager
data files (normally <QMgr name>D).

3. Modify the PathmonProcName entry in the queue manager’s QMINI file to specify
the new process name.

4. Run PATHMON up for the queue manager, using the new process name.
From TACL, execute the following command:
PATHMON /name $<newname>, nowait/
5. Run PATHCOM against the newly named PATHMON.
From TACL, execute the following command:
PATHCOM $<newname>

6. Load the queue manager Pathway configuration and confirm the change of
name of the PATHMON process.

From PATHCOM, execute the following command:
START PATHWAY COOL

As the configuration is loading, you will be warned that the name of the new
PATHMON process is different from the one stored in the configuration file.
After this, you will be asked to confirm whether you want to proceed. Type y at
the prompt, and the configuration loading will complete.

7. Save the new pathway configuration information back to the database.

From PATHCOM, execute the following commands:

SHUTDOWN2
EXIT

The PathmonProcName entry in the Configuration stanza of the QMINI file must also
be changed.

The PATHMON process name change is now complete. The next strmgm will
start the queue manager using the new PATHMON process name.

52 MQsSeries for Tandem NSK V2R2 System Management Guide

Creating queue managers

The CCSID of the Queue Manager
This is the Coded Character Set ID of the character set that is used by the queue
manager to store information about messages.

You specify the CCSID on the -| CCSID parameter of the crtmgm command. The
default is 819.

The CCSID of the queue manager can be specified only at creation. It cannot be
modified at any other time.

The EMS Collector for the queue manager

The queue manager can be configured to use an alternative collector if required.
EMS Events are sent to $0 by default. The EMSCollectorName entry in the
Configuration stanza in the QMINI file specifies the name of the EMS Collector for
this queue manager.

The EMS collector can be changed at any time by modifying the value of this entry,
though it does not take effect until the queue manager has been restarted.

The pool of agents kept ready by each EC in the queue manager
For each of the four basic types of agent, an EC can maintain a pool of idle agent
processes, ready to be assigned to new work. The size of these pools can be
configured in order to achieve an appropriate balance between response time to
new work and resource utilization. The values of the following fields of the
Configuration stanza in the QMINI file can be modified to specify a different
number of processes to be kept idle:

MinldleMCALUG62Responders
Specifies the minimum number of SNA LU 6.2 responder MCAs to maintain in an
idle state. The default value is O.

MinldleMCATCPResponders
Specifies the minimum number of TCP/IP responder MCAs to maintain in an idle
state. The default value is O.

MinldleMCACallers
Specifies the minimum number of caller MCAs (not protocol specific) to maintain
in an idle state. The default value is 0.

MinldleLQMAgents
Specifies the minimum number of local queue manager agents (LQMAS) to
maintain in an idle state. The default value is 1.

Note that the number of processes specified in these fields applies to each EC, not
to each queue manager. Therefore, for a two-EC queue manager, there is a
minimum of two idle LQMAs by default.

These values can be changed at any time, though the change does not take effect
until the queue manager is restarted.

Chapter 5. Managing queue managers 53

Creating queue managers

Process priority of queue manager processes

The priorities may need to be changed to balance resources between MQSeries
and other applications. The process priorities of the TS/MP server classes may be
changed by ALTERIng the TS/MP objects when the queue manager is stopped.

The process priorities of the agent processes may be changed by editing the
MCAAgentPriority and LQMAgentPriority fields of the EC stanza of the QMINI file.

By default, all TS/MP configured processes (including EC Boss and EC) have a
process priority of 175. By default, both MCAs and LQMAs have a process priority
of 165.

Ensure that the EC Boss and EC receive a higher process priority than the MCAs
and LOMAs.

Maximum number of channels for the queue manager

There is a limit to the number of channels that may be controlled at any one time
for a queue manager. If the limit is too high, performance may be affected as this
parameter dictates the size of the channel status table, on which numerous search
operations are performed. If the limit is too low, you may not be able to control
enough channels for your application. The MaxChannels field of the Channels
stanza in the QMINI file defines the maximum number of channels that can be
controlled simultaneously.

The default on creation is 10. There is no way to override the default on creation.

The MaxChannels entry in the Channels stanza of the QMINI file can be changed at
any time, though the change does not take effect until the queue manager is
restarted.

Maximum number of active channels for the queue manager

There is a limit to the number of concurrently active (running) channels in a queue
manager. This may be used to control the peak demand on system resources by
channels. The MaxActiveChannels entry in the Channels stanza in the QMINI file
defines the maximum number of active channels for the Queue Manager.

The default on creation is 10. There is no way to override the default on creation.

The MaxActiveChannels entry in the QMINI file can be changed at any time, though
the change does not take effect until the queue manager is restarted.

Channel initiator disconnect interval

This parameter determines the frequency of waited gets on the
SYSTEM.CHANNEL.INITQ or whichever initiation queue the channel initiator is
processing. Its default value is 10 seconds. Also, under normal channel operating
conditions, it determines the interval between scans of the channel status table,
which is used to establish when a channel needs to be started. Once it is decided
that a channel requires action, a time is calculated for the next scan. If this
parameter is made too high, although CPU usage will decrease, channel triggering
will not occur as quickly, so a compromise must be reached.

54 MQsSeries for Tandem NSK V2R2 System Management Guide

Creating queue managers

Default TCP/IP port

The TCPPort entry in the TCPConfig stanza in QMINI defines the default port
number for outgoing channels. By default, port number 1414 is used. This default
is overridden by port-number values specified in the CONNAME field for a channel.

TCP/IP ports listened on by the queue manager

A queue manager with TCP/IP channels may be configured to listen for incoming
connections on one or more TCP/IP ports. The TCPNumListenerPorts and
TCPListenerPort entries in the TCPConfig stanza in the QMINI file define how many
ports to listen on, and the numbers of the ports assigned to this queue manager.

There can be multiple queue managers on a single system. Each queue manager
on a system must be assigned nonoverlapping sets of TCP/IP ports to listen on.
The set of TCP/IP ports for each queue manager may be just one port, where the
rate of incoming TCP/IP connect requests is low, or may be more than one port for
large configurations. The default TCP/IP port is 1414 and, by default, a queue
manager is created to listen on only this port.

The list of listening ports may be changed by editing the TCPConfig stanza in the
QMINI file and restarting the queue manager. In order to listen on more than one
port, a queue manager must also be configured with additional TCP/IP listener
server classes using TS/MP. This operation is performed manually using
PATHCOM. Alternatively, a port number can be specified on the runmgqlsr
command (described in “runmglsr (Run listener)” on page 231).

TCP/IP process used by the queue manager

The interface to the Tandem TCP/IP product is via a server process, known as the
TCPI/IP process. A queue manager can be configured to use a specific TCP/IP
process, if the system default is not sufficient. The TS/MP server class
configuration must be manually changed if the system default TCP/IP process,
$ZTCO, is not sufficient or correct.

Server classes MQS-TCPLIS00 and MQS-EC00 must have the DEFINE
TCPIP*"PROCESS™NAME added to reference the required alternative TCP/IP
process name. Note that, if you have multiple ECs, you must update all of them.
Refer to the Tandem NSK TCP/IP product manuals for further information.

By default, the system default, $ZTCO, is used. There is no way to override this
default on creation.

The change to the TS/MP server classes can be made only when the queue
manager is stopped.

Reconfiguring a queue manager for a nondefault TCP/IP process
Follow the general instructions in “Changing the parameters of Pathway server
classes” on page 45. To specify a nondefault TCP/IP process, use the following
Pathcom commands:

ALTER SERVER mgs-ec00, (define=TCPIP“PROCESS"NAME, FILE $7777)
ALTER SERVER mgs-tcplis00, (define=TCPIP“PROCESS"NAME, FILE $7777)

where $7777 is the name of your TCP/IP process.

Chapter 5. Managing queue managers 55

Volume structure

Volume structure

Files for MQSeries for Tandem NSK are distributed over several subvolumes. The
volume in which these subvolumes reside is selected when you create the queue
manager: it is either taken from the default volume value in MQSINI or specified on
the -p DefaultPrefix parameter of the crtmgm command.

There are six subvolumes per queue manager. The contents of the subvolumes
are determined by the final character of the subvolume name. For example, for a
gueue manager called QMGR resident on a volume $DATA, the following
subvolumes would be present;

$DATA.QMGR FFST subvolume

$DATA.QMGRD Queue manager data files subvolume
$DATA.QMGRL Queue manager error logs subvolume
$DATA.QMGRM Message queue subvolume
$DATA.QMGRS Channel synchronization subvolume
$DATA.QMGRX OAM subvolume

If the queue manager name is more than seven characters, the subvolume names
are transformed or shortened. The MQSINI file stanzas QMVolume and QMSubvolume
for the queue manager are used to record the locations and names of these
subvolumes.

Queue manager FFST subvolume

The FFST subvolume contains first failure support files. These files are all prefixed
with the letters FD. They indicate serious problems with the MQSeries system,
such as resource shortage, internal MQSeries errors, or problems with the NSK
system.

Queue manager data files subvolume

PATHCTL Is the PATHWAY control file.
QMINI Is the queue manager initialization file.

OBJCAT Is the object catalog. AOBJCAT and BOBJCAT are the key files that
store indexes.

OBJADM Is the Admin object file.

TXXXXXXX Are the Touch files. If an object is altered, the Touch files change the
object date stamp. Txxxxxxx is derived from the object name,
otherwise it is a generated value.

STATABLE Is the channel status table file. This file holds dynamic information
associated with channel status.

STATABLO Is the alternate key file associated with the channel status table file.
CCHDEFS Is the client connection channel definition file.

CHDEFS Is the channel definition file. This file contains configuration
information for the channels that are defined for a queue manager.

TRACEOPT The TRACEOPT file contains the current trace settings for a queue
manager in the form of an unformatted bit-map record. The control
commands strmqgtrc and endmgtrc modify the contents of the file,

56 MQsSeries for Tandem NSK V2R2 System Management Guide

Volume structure

using the CONTROL 27 mechanism to notify all processes of the
update.

OBJSTAT Contains information on statistics.

Queue manager error log subvolume
The error log subvolume contains the error and trace logging files. The TR prefix
identifies trace files. (You can change the prefix by editing the TracePrefix entry in
the QMINI file.) Trace files contain diagnostic information, and are created only if
tracing is switched on using either the MQM facility or the strmgtrc control
command.

The error logs have names in the format MQERRLGnN, where n is 1, 2, or 3.
MQERRLGL1 is always the current error log. Its contents are moved to MQERRLG2
when MQERRLGL1 is full; MQERRLG?2 is moved to MQERRLG3 when MQERRLG1
is next emptied. MQERRLGS3 is overwritten if necessary. There are never more
than three error logs, so they must be sized correctly to avoid loss of useful error
information.

Queue manager message gueue subvolume

The message subvolume contains queue files and queue overflow files. The file
names are in the following format:

Qxxxxxxx Is the queue file. Files starting with the letter A, B, or C and having
the same xxxxxxx suffix as the queue file are alternate key files
belonging to the queue file QXXXXXxx.

OXXXXXXX Is the overflow file.

XXXXXXX May be the queue name if it is a unique, short name; otherwise it is a
generated value.

Queue manager channel synchronization subvolume
The queue manager synchronization subvolume contains internal databases that
record the status of units of work (or batches of messages) transmitted or received
over the channels that are owned by the queue manager.

Once channels have been used on a queue manager, the subvolume contains the
following files:

SYNCHIDX (file code 0)
The synchronization index file. Contains an entry for each synchronization file
created by the queue manager.

Sxxxxxxx (file code 0)
Individual synchronization files. There is one file for each unique combination of
local and remote channel that has been used in the queue manager. These files
record the identities of the messages that have been transmitted or received
within a batch of messages. The information is used in the resynchronization of
channels following failure and the resolution of in-doubt channels.

Chapter 5. Managing queue managers 57

Working with queue managers

Queue manager OAM subvolume

The queue manager OAM subvolume contains authorization files for a queue
manager. For more information, see “Authorization subvolumes” on page 134.

Object name transformation

Object names are not necessarily valid file system names. Therefore, the object
names might need to be transformed. The method used is different from that used
for queue-manager names because, although there may be only a few
gueue-manager names per system, there can be a large number of other objects
for each queue manager. Only process definitions and queues are represented in
the file system; channels are not affected by these considerations. Queues have
five files, starting with Q, A, B, C, and O respectively, as described in “Queue
manager message queue subvolume” on page 57.

When a new name is generated by the transformation process there is no
relationship with the original object name. You can use the dspmgfls command to
convert between real and transformed object names: dspmqfls displays the names
of the main files associated with an MQSeries object.

Working with queue managers

MQSeries provides control commands for creating, starting, ending, and deleting
gueue managers. You can also display a queue manager’s attributes using the
MQSC command DISPLAY QMGR and change them using ALTER QMGR. See
“Displaying queue manager attributes” on page 85 and “Altering queue manager
attributes” on page 86.

Ensure that the environment variable PMSEARCHLIST (described in “TACL
environment variables” on page 20) specifies the location of your MQSeries
executables before you attempt to use the control commands.

Creating a default queue manager
The following command creates a default queue manager called
saturn.queue.manager and specifies the names of both its default transmission
gueue and its dead-letter queue:

crtmgm -q -d MY.DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE -n $PMON -o $TRMO saturn.queue.manager

where:
-q Indicates that this queue manager is the default queue manager.

-d MY.DEFAULT.XMIT.QUEUE
is the name of the default transmission queue.

-u SYSTEM.DEAD.LETTER.QUEUE
Is the name of the dead-letter queue.

-n $PMON
Is the process name of PATHMON for the queue manager.

-0 $TRMO1
Is the home terminal name (must be paused).

58 MQseries for Tandem NSK V2R2 System Management Guide

Working with queue managers

saturn.gueue.manager
Is the name of this queue manager. For crtmgm , this name must be the
last parameter in the command.

Starting a queue manager

Although you have created a queue manager, it cannot process commands or MQI
calls until it is started. Start the queue manager by entering this command:

strmgm saturn.queue.manager

The strmgm command does not return control until the queue manager has started
and is ready to accept connect requests.

Creating the default and system objects

You must create a set of default and system objects for each queue manager you
create by using the runmgsc command to specify both the name of the queue
manager and the name of the command file containing the commands. (You can
specify amqgscoma, which is supplied with MQSeries for Tandem NSK and resides
in the ZMQSSMPL subvolume.) The following command creates the default and
system objects:

runmgsc -1 $SYSTEM.ZMQSSMPL.AMQSCOMA -o defobj QMNAME

You can run this command immediately after the strmgm command has
completed.

The file defobj is created, if it does not already exist. When the command has
completed, defobj contains the output from the MQSC file. You should check that
all the commands ran successfully before continuing.

For more information about running the MQSC facility (runmgsc), see “Running
MQSCs from text files” on page 86.

Looking at object files
Each MQSeries queue, queue manager, or process object is represented by a file.
Because the names of these objects are not necessarily valid file names, the queue
manager converts the object name into a valid file name, where necessary. This
process is described in “Object name transformation” on page 58.

Stopping a queue manager

To stop a queue manager, use the endmgm command. For example, to stop a
gueue manager called saturn.queue.manager use this command:

endmgm saturn.queue.manager

Chapter 5. Managing queue managers 59

Working with queue managers

By default, this command performs a controlled or quiesced shutdown of the
specified queue manager. This process might take a while to complete—a
controlled shutdown waits until all connected applications have disconnected and
until all running channels have stopped.

“Immediate and preemptive queue manager shutdowns” describes optional flags for
the endmgm command that specify how the shutdown is to be carried out.

If you have problems
Problems in shutting down a queue manager are often caused by applications. For
example, when applications:

* Do not check MQI return codes properly.
* Do not request a notification of a quiesce.

Immediate and preemptive queue manager shutdowns

If a shutdown of a queue manager is slow, or the queue manager does not stop,
you can terminate the endmgm command using BREAK followed by STOP. You
can then issue another endmgm command, but this time with a flag specifying
either an immediate or a preemptive shutdown.

For an immediate shutdown any current MQI calls are allowed to complete, but any
new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager. For an immediate shutdown, the command is:

endmgm -i saturn.queue.manager

If an immediate shutdown does not work, try a preemptive shutdown by specifying
the -p flag. For example:

endmgm -p saturn.queue.manager

Attention: Do not use this method unless all other attempts to stop the queue
manager using the endmgm command have failed. This method can have
unpredictable consequences for connected applications.

If this method still does not work, see “Stopping a queue manager manually” on
page 261 for an alternative.

For a detailed description of the endmgm command and its options, see “endmgm
(End queue manager)” on page 224.

Restarting a queue manager
To restart a queue manager, use the command:

strmgm saturn.queue.manager

60 MQsSeries for Tandem NSK V2R2 System Management Guide

Working with queue managers

Making an existing queue manager the default

When you create a default queue manager, the name of the default queue
manager is inserted in the DefaultQueueManager stanza in the MQSeries
configuration file (MQSINI). The stanza and its contents are automatically created
if they do not exist.

You might need to edit this stanza:

¢ To make an existing queue manager the default. To perform this task you
have to change the queue manager name in this stanza to the name of the
new default queue manager. You must perform this step manually using a text
editor.

e |If you do not have a default queue manager on the node, and you want to
make an existing queue manager the default. To perform this task, you must
create the DefaultQueueManager stanza—with the required name—yourself.

 If you accidentally make another queue manager the default and want to revert
to the original default queue manager. To perform this task, edit the
DefaultQueueManager stanza in the MQSeries configuration file, replacing the
name of the unwanted default queue manager with that of the one you do
want.

See Chapter 13, “Configuration files” on page 163 for information about
configuration files.

When the stanza contains the required information, stop the queue manager and
restart it.

Deleting a queue manager
To delete a queue manager, first stop it, then use the following command:

dTtmgm saturn.queue.manager

Attention: Use caution if deleting a queue manager as you also delete all the
resources associated with it, including all queues and their messages and all object
definitions. Also, all files in the queue manager subvolumes might be purged (even
if they were not created by MQSeries).

For a description of the ditmgm command and its options, see “ditmgm (Delete
gueue manager)” on page 212. You should ensure that only trusted administrators
have the authority to use this command.

If the usual methods for deleting a queue manager do not work, see “Removing
gueue managers manually” on page 261 for an alternative.

Chapter 5. Managing queue managers 61

Command server remote administration

Managing the command server for remote administration

Each queue manager has a command server associated with it. A command
server processes any incoming commands from remote queue managers or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command. There are separate control commands for starting and
stopping the command server.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
gueue manager from which they are issued. Instead, these messages are queued
in the local transmission queue that serves the remote queue manager.

Starting the command server

To start the default command server for queue manager saturn.queue.manager,
use this command:

strmgcsv saturn.queue.manager

Displaying the status of the command server

For remote administration, you must ensure that the command server on the target
gueue manager is running. If it is not running, no remote commands can be
processed. Any messages containing commands are queued in the target queue
manager's command queue.

To display the status of the command server for a local queue manager, called
here saturn.queue.manager, the command is:

dspmgcsv saturn.queue.manager

Stopping a command server
To end a command server, the command, using the previous example, is:

endmgcsv saturn.queue.manager

62 MQSeries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

Using the Message Queue Management (MQM) facility

The Message Queue Management (MQM) facility of MQSeries for Tandem NSK
V2.2 runs as a PATHWAY SCOBOL requester under the Terminal Control Process
(TCP). It uses an MQM SERVERCLASS server, which invokes the C language
API.

There is a separate instance of the MQM for each queue manager configured on a
system, because each queue manager is controlled under its own PATHWAY
configuration. Consequently, MQM is limited to the management of the queue
manager to which it belongs.

Note: By default, a maximum of 10 users may use the MQM facility concurrently.
To change this limit to 20, for example, enter:

alter tcp mgs-tcp-01, maxterms 20

from the PATHWAY of the queue manager. For more information, see Chapter 4,
“Using administration command sets” on page 33.

To invoke MQM, enter run mgmc from the queue manager's PATHCOM prompt.

The MQM Main Menu is as follows:

IBM MQSeries for Tandem NonStop Kernel Version 2

*x Main Menu **

Enter Choice:
1. Queue Manager
2. Queues

3. Channels

F1 - Enter F16 - Return

83H8731,5697-A17 (C) Copyright IBM Corp. 1993, 1997 A1l Rights Reserved.

Figure 3. The MQSeries for Tandem NSK MQM Main Menu

You can select the following submenus from the MQM Main Menu:

1. Queue Manager
2. Queues
3. Channels

Chapter 5. Managing queue managers 63

Message Queue Management (MQM)

These submenus are described in the remainder of this chapter. You can return to
the MQM Main Menu at any time by pressing Alt+F6. You can return to the
previous screen by pressing the Return key (F16). When selected from the MQM
Main Menu, F16 exits from the MQM facility.

Using the Queue Manager Menu

To select the Queue Manager option, type 1 in the Enter Choice field on the MQM
Main Menu, then press the Enter key (F1). The Queue Manager Menu panel is

displayed:
IBM MQSeries for Tandem NonStop Kernel Version 2
** Queue Manager Menu *=

Name : MTO1

Description :

Command Level : 220 Trigger Interval : 999999999
Coded Char Set : 819 Platform : TANDEM__
Max Handles : 256 Max Uncommitted Msg: 10000
Max Message : 4194304 Max Priority : 9

Dead Letter Queue Name : SYSTEM.DEAD.LETTER.QUEUE
Command Input Queue Name : SYSTEM.ADMIN.COMMAND.QUEUE
Default Xmit Queue Name

Authority Event Enabled Y/N? : N Inhibit Event Enabled Y/N? : N

Local Event Enabled Y/N? : N Remote Event Enabled Y/N? : N

Start/Stop Event Enabled Y/N?: N Performance Event Enabled Y/N?: N
FORCE Y/N? _

F1 - Modify F2 - Trace F16 - Return

Figure 4. The Queue Manager Menu panel

You can use the Queue Manager Menu panel to:

e Alter some attributes of the queue manager
e Control tracing of MQSeries objects

Altering Queue Manager attributes

Overtype those values you want to alter on the Queue Manager Menu panel, and
press the Modify key (F1). You are prevented from overtyping those values that
cannot be modified.

64 MQSeries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

Tracing MQSeries objects
Press the Trace key (F2) to display the QUEUE MANAGER TRACE MENU:

IBM MQSeries for Tandem NonStop Kernel Version 2

** QUEUE MANAGER TRACE MENU **
_ API MQI.
_ COMMS Communications networks processing flow.
_ CSFLOWS Common services processing flow.
_ LQMFLOWS : Local queue manager processing flow.
_ REMOTEFLOWS : Communications component processing flow.
_ ADMINFLOW Administrative processing flow.
_ OTHERFLOWS Other components processing flow.
_ CSDATA Common services data buffers.
_ LQMDATA Local queue manager internal data buffers.
_ REMOTEDATA Communications component internal data buffers.
_ ADMINDATA Administrative internal data buffers.
_ OTHERDATA : Other components internal data buffers.
_ VERSIONDATA : Output version of MQSeries running.
_ COMMENTARY Qutput program comments in the MQSeries components.
_ A Select all options.

F1-Start Trace F2-Stop Trace F16-Return

Figure 5. The QUEUE MANAGER TRACE MENU

The following trace options are available:

API

COMMS

CSFLOWS

LQMFLOWS

REMOTEFLOWS

ADMINFLOW

OTHERFLOWS

CSDATA

LQMDATA

REMOTEDATA

Output data for trace points associated with the MQI and
major queue manager components.

Output data for trace points associated with data flowing over
communications networks.

Output data for trace points associated with processing flow
in common services.

Output data for trace points associated with processing flow
in the local queue manager.

Output data for trace points associated with processing flow
in the communications component.

Output data for trace points associated with administrative
internal data buffers.

Output data for trace points associated with other
components’ processing flow.

Output data for trace points associated with internal data
buffers in common services.

Output data for trace points associated with internal data
buffers in the local queue manager.

Output data for trace points associated with internal data
buffers in the communications component.

Chapter 5. Managing queue managers 65

Message Queue Management (MQM)

ADMINDATA Output data for trace points associated with internal data
buffers in the communications component.

OTHERDATA Output data for trace points associated with other
components’ internal data buffers.

VERSIONDATA Output data for trace points associated with the version of
MQSeries that is running.

COMMENTARY Output data for trace points associated with comments in the
MQSeries components.

ALL Trace points are enabled and a full trace is generated.

Type any character against the names of the components for which you want to
start (or stop) tracing.

To start tracing of the selected components, press the Start Trace key (F1). To
stop tracing of the selected components, press the Stop Trace key (F2).

Using the Queues menu

To select the Queues option, type 2 in the Enter Choice field on the MQM Main
Menu, then press the Enter key (F1). The Search Criteria panel is displayed:

IBM MQSeries for Tandem NonStop Kernel Version 2

*x Search Criteria **

Queue Name:
Enter a queue name or part of one:

Queue Type: _
choose one or leave blank: 1. Local
2. Model
3. Remote
4. Alias
F1 - Enter F16 - Return

Figure 6. The Search Criteria panel (queue)

In the Queue Name field of the Search Criteria panel, type a partial or complete
gueue name. You may also provide a Queue Type identifier if you wish to limit
your search to queues of one type. Press the Enter key (F1). The Queue menu,
which you use to display, modify, create, copy, delete, and monitor MQSeries
queues, is displayed.

66 MQSeries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

Queue Name
ANNE.
ANNE.
ANNE.
ANNE.
ANNE.
ANNE.
ANNE.

ANNE

IBM MQSeries for Tandem NonStop Kernel Version 2

ETO1.
ETOL.
ETOL.

ETO1

ETO1.
ETOL.
M401.
.M401
ANNE.
ANNE.
ANNE.
ANNE.

M401.
M401.
M401.
M401.

RQSD.
RQSD.
RQSV.
.RQSV.
SDRC.
SDRC.
RQSD.
.RQSD.
RQSV.
RQSV.
SDRC.
SDRC.

LOCAL
REMOTE
LOCAL
REMOTE
LOCAL
REMOTE
LOCAL
REMOTE
LOCAL
REMOTE
LOCAL
REMOTE

F1 - Enter/Display/Modify

F5 - Monitor

** Queue Menu **

Type
QLOCAL
QREMOTE
QLOCAL
QREMOTE
QLOCAL
QREMOTE
QLOCAL
QREMOTE
QLOCAL
QREMOTE
QLOCAL
QREMOTE

F2 - Create F3 - Copy F4 - Delete
PGDN PGUP F16 - Return

Figure 7. The Queue Menu

Note: You can create, modify, and delete queues only on the queue manager

associated with the MQM requester that you are using.

Use the PGUP and PGDN keys to scroll the list of queues.

Chapter 5. Managing queue managers

67

Message Queue Management (MQM)

Creating a queue
From the Queue Menu, press the Create key (F2) to display the Create Queue

panel:
IBM MQSeries for Tandem NonStop Kernel Version 2
*% Create Queue **
Queue Type: _ 1l=Local, 2=Model, 3=Remote, 4=Alias,
Name:
Replace [Y/N]: _
F1 - Enter F16 - Return

Figure 8. The Create Queue panel

To create a new queue definition;

1. Type 1 (for a local queue), 2 (for a model queue), 3 (for a remote queue), or 4
(for an alias queue) in the Queue Type field.

2. Type the queue manager name in the Name field.

3. If the queue is to replace an existing queue of the same name and type, type Y
in the Replace field.

4. Press the Enter key (F1).

If you create a local queue, the Create Local Queue panel is displayed:

68 MQseries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

IBM MQSeries for Tandem NonStop Kernel Version 2
** Create Local Queue *=*
Queue Name : TEST

Description:

Default Msg Priority : 0 Put Enabled [Y/N] _
Default Persistency : _ Get Enabled [Y/N]

Retention Interval 0 Queue Definition Type

Max Queue Depth 0 Priority/FIFO [P/F]

Max Message Length 0 Share [Y/N] B
Backout Threshold 0 Usage [N/X] B
Backout Requeue Name

Init. Queue

Process Name :

Trigger Type [N/E/F/D]: _ Trigger/NoTrigger [Y/N]

Trigger Depth : 0 Trigger Priority : 0
Trig. Data :

Q Depth Max Event T Q Serv. Int. Event[H/O/N]: _

Q Depth High Limit 0 Q Depth High Event T

Q Depth Low Limit 0 Q Depth Low Event

Q Service Interval 0 Scope HE
F1 - Enter F16 - Return

Figure 9. The Create Local Queue panel
Complete the panel, and press the Enter key (F1).

If you create a remote queue, the Create Remote Queue panel is displayed:

IBM MQSeries for Tandem NonStop Kernel Version 2
*x Create Remote Queue **

Queue Name : TEST_REMOTE
Description:
Default Msg Priority : 0O Put Enabled [Y/N]
Default Persistency

Scope

Remote Queue Name
Remote Queue Manager
Transmit Queue Name

F1 - Enter F16 - Return

Figure 10. The Create Remote Queue panel

Complete the panel, and press the Enter key (F1).

Chapter 5. Managing queue managers 69

Message Queue Management (MQM)

Copying a queue
From the Queue Menu, press the Copy key (F3) to define a new queue by copying
an existing definition. The Copy Queue panel is displayed:

IBM MQSeries for Tandem NonStop Kernel Version 2
** Copy Queue #*x

Name: ANNE.ETO1.RQSD.LOCAL.2

Replace [Y/N]: _
Like Queue: ANNE.ETO1.RQSD.LOCAL

Queue Type: QLOCAL__

F1 - Enter F16 - Return

Figure 11. The Copy Queue panel

Type the name of the new queue definition in the Name field; type Y in the Replace
field if the new queue is to replace an existing queue of the same name and type;
type the name of the definition you are copying in the Like Queue field; type the
gueue type in the Queue Type field. Press the Enter key (F1).

70 MQSeries for Tandem NSK V2R2 System Management Guide

Modifying a queue

Message Queue Management (MQM)

From the Queue Menu, press the Modify key (F1) to display the Display/Modify

Local Queue panel:

Default Msg Priority
Default Persistency

Retention Interval
Max Queue Depth

Max Message Length
Backout Threshold
Backout Requeue Name
Init. Queue

Process Name

Trigger Depth
Trig. Data :

Trigger Type [N/E/F/D]:

IBM MQSeries for Tandem NonStop Kernel Version 2
x* Display/Modify Local Queue **

Queue Name : ANNE.ETO1.RQSD.LOCAL
Description: Local queue ETOl receiver

Q Depth Max Event
Q Depth High Limit
Q Depth Low Limit
Q Service Interval
F1 - Modify

: 0 Put Enabled [Y/N] : Y

: N Get Enabled [Y/N] Y
: 999999999 Queue Definition Type : PREDEFINED

: 5000 Priority/FIFO [P/F] : P

1024 Share [Y/N] A

0 Usage [N/X] : N

F Trigger/NoTrigger [Y/N] N

1 Trigger Priority : 0

Y Q Serv. Int. Event[H/O/N]: N

80 Q Depth High Event : N

: 20 Q Depth Low Event : N

: 999999999 Scope : QMGR

F16 - Return

Figure 12. The Display/Modify Local Queue panel

Overtype those values you want to modify, and press the Modify key (F1). You are
prevented from overtyping those values that cannot be modified.

Deleting a queue

On the Queue Menu, enter any character against the name of the queue that you
want to delete. Press the Delete key (F4), then press F4 again to confirm deletion.

Chapter 5. Managing queue managers /1

Message Queue Management (MQM)

Monitoring a queue
Press the Monitor key (F5) from the Queue Menu to display the Monitor Local
Queues panel:

IBM MQSeries for Tandem NonStop Kernel Version 2
*%x Monitor Local Queues *x
Queue OPEN INPUT OPEN OUTPUT DEPTH

ANNE_M401_RQSD_LOCAL
ANNE_M401_RQSV_LOCAL
ANNE_M401_SDRC_LOCAL
ANNE_MAG2_RQSD_LOCAL
ANNE_MAO2_RQSV_LOCAL
ANNE_MAO2_SDRC_LOCAL
ANNE_MDO1_RQSD_LOCAL
ANNE_MDO1_RQSV_LOCAL
ANNE_MDO1_SDRC_LOCAL
ANNE_MDO1_SVRC_LOCAL
ANNE_MEG2_RQSD_LOCAL
ANNE_MEG2_RQSV_LOCAL
ANNE_MEO2_SDRC_LOCAL 10
ANNE_MEO2_SVRC_LOCAL

F12 - Refresh PGDN PGUP F16 - Return

Figure 13. The Monitor Local Queues panel

In this example, the queues are open neither for input nor for output. One queue,
ANNE_MEO02_SDRC_LOCAL, contains 10 messages.

The MOMQMREFRESHINT pathway parameter for MQS-MQMSVRO00 determines
the frequency with which monitor screens for channels and queues are refreshed.
The default frequency is every 30 seconds. To change the frequency to every 10
seconds, for example, enter:

alter server mgs-mgmsvr00, param mgmgmrefreshint 10

from the pathway for your queue manager.

Using the Channels menu

To select the Channels option, type 3 in the Enter Choice field on the MQM Main
Menu, then press the Enter key (F1). The channel Search Criteria panel is
displayed:

72 MQSeries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

IBM MQSeries for Tandem NonStop Kernel Version 2

Channel Name:

*% Search Criteria **

Enter a channel name

Channel Type:

choose one or leave blank:

F1 - Enter

or part of one:

Sender
Server
Receiver
Requester
SvrConn

Gl WN =

F16 - Return

Figure 14. The Search Criteria panel (channel)

In the Channel Name field, type a partial or complete channel name. In the
Channel Type field, you may enter a number between 1 and 5 to identify the type
of channel you are interested in. Press the Enter key (F1) to display the Channel

Menu:
IBM MQSeries for Tandem NonStop Kernel Version 2
**% Channel Menu **
Channel Name TYPE STATUS
_ MAG2.MTO1.SDRC.0001 RECEIVER
_ MAO2_MTO1_RQSD_0001 REQUESTER
_ MAO2_MTO1_RQSV_0001 REQUESTER
_ MAG2_MTO1_SDRC_0001 RECEIVER
_ MDO1_MTO1_RQSD_06001 REQUESTER
_ MDO1_MTO1_RQSV_0001 REQUESTER
_ MDO1_MTO1_SDRC_0001 RECEIVER
_ MDO1 _MTO1 SVRC 0001 RECEIVER
_ MEO2_MTO1_RQSD_0001 REQUESTER
_ MEO2_MTO1_RQSV_0001 REQUESTER
_ MEO2_MTO1_SDRC_0001 RECEIVER
_ MEG2_MTO1_SVRC_0001 RECEIVER
F1 - Enter/Display/Modify F2 - Create F3 - Copy F4 - Delete
F5 - Monitor F6 - Resolve F7 - Reset MSN F8 - Start/Stop F10 - Status

F12 - Refresh

PGDN PGUP

F16 - Return

Figure 15. The Channel Menu

Chapter 5. Managing queue managers

73

Message Queue Management (MQM)

The Channel Menu displays a list of channels that match your search criteria.
From the Channel Menu you can:

* Display and modify channel status.

e Create a new channel definition.

e Copy a channel definition.

e Delete a channel definition.

e Monitor channel status.

e Resolve a channel.

¢ Reset a message sequence number (MSN).
e Start or stop a channel.

Modifying a channel

On the Channel Menu, type any character against the channel you want to modify,
and press the Enter/Display/Modify key (F1). The appropriate panel is displayed.
For example, if you select a sender channel, the Display/Modify Sender Channel
panel is displayed:

IBM MQSeries for Tandem NonStop Kernel Version 2
*x Display/Modify Sender Channel **
: MTO1.M401.SDRC.0001_
: Sender to M401

Channel Name
Description

Xmit Queue Name : M401.7Q.SDRC.0001

Data Conversion Y/N:

N

User Id PassWord

MCA Name MCA UserID

Batch Size 50 Max Message Size 4194304
MSN Wrap Count 9999999 Disconnect Interval: 60
Short Retry Count 10 Short Timer : 60
Long Retry Count 9999999 Long Timer 1200
Transport Protocol : 1 (1=Lu6.2/ 2=TCP/IP) TCP/IP Port Number :

TCP/IP Address :

Lu62 AutoStart Y/N : N APC/ICE Process : $BPO1_

Local LU Name : IYAHT080 Remote LU Name : IYAFT110
Local TP Name : INTCRS6A Mode Name ¢ LU62PS__
Remote TP Name

F1 - Modify PGDN - Exits F16 - Return

Figure 16. The Display/Modify Sender Channel panel (1)

Press the PGDN key to display the second panel of information:

74 MQSeries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

Message
Message

Receive
Receive

Scrty
Scrty

Send
Send

Data:
Exit:

Data:
Exit:

Data:
Exit:

Data:
Exit:

IBM MQSeries for Tandem NonStop Kernel Version 2
x*x Display/Modify Sender Channel *x

PGUP - Return

Figure 17. The Display/Modify Sender Channel panel (2)

Overtype those values you want to modify, and press the Modify key (F1). You are
prevented from overtyping those values that cannot be modified.

Creating a channel definition
From the Channel Menu, press the Create key (F2) to display the Create Channel

panel:
IBM MQSeries for Tandem NonStop Kernel Version 2
*x Create Channel #**
Channel Type: 1 1=Sender, 2 = Server, 3=Receiver,
4=Requester, 5 = Server Connection
Name:
Replace [Y/N]: _
F1 - Enter F16 - Return

Figure 18. The Create Channel panel

Chapter 5. Managing queue managers

75

Message Queue Management (MQM)

To create a new channel definition:

1. Type 1 (for a sender channel), 2 (for a server channel), 3 (for a receiver
channel), 4 (for a requester channel), or 5 (for a server connection) in the
Channel Type field.

2. Type the name of the channel definition in the Name field.

3. Press the Enter key (F1).

4. Type Y in the Replace field if the definition is to replace an existing definition of
the same name and type.

If you enter a 1 in the Channel Type field, the Create Sender Channel panel is
displayed:

IBM MQSeries for Tandem NonStop Kernel Version 2
** Create Sender Channel *=
Channel Name : TANDEM_TO_SOLARIS___
Description :

Xmit Queue Name
Data Conversion Y/N:

User Id : PassWord

MCA Name : MCA UserID :

Batch Size : 50 Max Message Size : 4194304
MSN Wrap Count : 999999999 Disconnect Interval: 6000
Short Retry Count : 999999 Short Timer : 60
Long Retry Count : 999999 Long Timer : 1200
Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP) TCP/IP Port Number :

TCP/IP Address :

Lu62 AutoStart Y/N : _ APC/ICE Process

Local LU Name : Remote LU Name

Local TP Name : Mode Name

Remote TP Name

F1 - Enter PGDN - Exits F16 - Return

Figure 19. The Create Sender Channel panel

If you enter a 3 in the Channel Type field, the Create Receiver Channel panel is
displayed:

76 MQSeries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

IBM MQSeries for Tandem NonStop Kernel Version 2
** Create Receiver Channel #**

Channel Name : SOLARIS TO _TANDEM

Description :

Put Authority D/C : _ MSN Wrap Count : 999999999
User Id : MCA UserID :

Batch Size : 50 Max Message Size : 4194304
Retry Count : 10 Retry Interval : 1000
Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP)

Lu62 AutoStart Y/N : _ APC/ICE Process
Local LU Name :
Local TP Name

F1 - Enter PGDN - Exits F16 - Return

Figure 20. The Create Receiver Channel panel

If you enter a 5 in the Channel Type field, the Create Server Connection Channel
panel is displayed:

IBM MQSeries for Tandem NonStop Kernel Version 2
** Create Server Connection Channel *=

Channel Name : WINDOWS_CLIENT
Description :

MCA UserID :

Max Message Size : 4194304
Transport Protocol : _ (1=Lu6.2/ 2=TCP/IP)

Lu62 AutoStart Y/N : _ APC/ICE Process
Local LU Name :
Local TP Name

F1 - Enter PGDN - Exits F16 - Return

Figure 21. The Create Server Connection Channel panel

To create a new channel definition, complete the requested panel and press the
Enter key (F1).

Chapter 5. Managing queue managers ({

Message Queue Management (MQM)

Monitoring a channel
Press the Monitor key (F5) from the Channel Menu panel to display the Monitor
Channels panel:

IBM MQSeries for Tandem NonStop Kernel Version 2
% Monitor Channels **
Channel Name Status Curr MSN Last MSN MCA Status Stop
MTO1.MHO1.SDRC.0002 BINDING RUNNING NO
MTO1.VM03.SDRC.0002 RUNNING 6266 6266 RUNNING NO
F12 - Refresh PGDN PGUP F16 - Return
Refreshing..........

Figure 22. The Monitor Channels panel

The MQMQMREFRESHINT pathway parameter for MQS-MQMSVRO00 determines
the frequency with which monitor screens for channels and queues are refreshed.
The default frequency is every 30 seconds. To change the frequency to every 10
seconds, for example, enter:

alter server mgs-mgmsvr00, param mgmgmrefreshint 10

from the pathway for your queue manager.

Deleting a channel

On the Channel Menu, select a channel to delete by typing any character against
the channel name. Press the Delete key (F4) to delete the channel, then press F4
again to confirm the deletion request.

Displaying channel status

Press the Status key (F10) from the Channel Menu panel to display the Channel
Status panel:

78 MQsSeries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

IBM MQSeries for Tandem NonStop Kernel Version 2
Channel Status

Channel Name : MTO1.VM0O3.SDRC.0002_
Xmit Queue Name: VMO3NCM.TQ.SDRC.0001
Connection Name: $BPO1.IYAHTO80.IYCNVMO3

Channel Status : RUNNING__ In Doubt : NO_

Start Date : 1997-09-09 Start Time : 15.07.14
Last Msg Date : 1997-09-08 Last Msg Time : 16.34.04
MCA Job Name : 000069AA

Current LUW ID . 03544240E28B0277

Last LUW ID : 03544240E28B0277 Current Messages : 0
MCA Status ¢ RUNNING___ Current Seq Num : 6266
Stop Requested : NO_ Last Seq Num : 6266
Number of Batches : 6 Number of Messages : 6
Number of Buffers Sent: 14 Number of Buffers Recvd: 7
Number of Bytes Sent : 3204 Number of Bytes Recvd : 196
Num of Long Retry Left: 9999999 Num of Short Retry Left: 10
F12 - Refresh F16 - Return

Figure 23. The Channel Status panel

Starting and stopping a channel
Press the Start/Stop key (F8) from the Channel Menu to display the Start/Stop
Channel panel:

IBM MQSeries for Tandem NonStop Kernel Version 2
Start/Stop Channel

Name: MTO1_MAG2_SDRC_0001_

Status:
Action: _ choose one of the following:
1. Start Channel
2. Stop Immediate
3. Stop Quiesce
F1 - Enter F16 - Return

Figure 24. The Start/Stop Channel panel

Type the name of the channel in the Name field, and type a number between 1 and
3 in the Action field. Press the Enter key (F1).

Chapter 5. Managing queue managers 79

Message Queue Management (MQM)

Resetting a Message Sequence Number (MSN)
From the Channel Menu, press the Reset MSN key (F7) to display the Reset

Channel panel:

IBM MQSeries for Tandem NonStop Kernel Version 2
Reset Channel

Name: MTO1_M401_RQSD_0001
Sequence Number: 1

F1 - Enter F16 - Return

Figure 25. The Reset Channel panel

The MSN ensures nonduplication of messages, and ensures that messages are
stored in the same order as they are transmitted. This screen lets you reset the
sequence number of a channel if necessary.

80 MQseries for Tandem NSK V2R2 System Management Guide

Message Queue Management (MQM)

Resolving a channel
From the Channel Menu, press the Resolve key (F6) to display the Resolve
Channel panel.

IBM MQSeries for Tandem NonStop Kernel Version 2
Resolve Channel

Name: MTO1_MDO1_RQSV_0001_
Commit or Backout In Doubt Msg: [C/B] _

F1 - Enter F16 - Return

Figure 26. The Resolve Channel panel

You can:

e Backout the in-doubt message batch (B)
¢ Commit the in-doubt message batch (C)

Chapter 5. Managing queue managers 81

Message Queue Management (MQM)

Copying a channel
On the Channel Menu, press the Copy key (F3). The Copy Channel panel is
displayed:

IBM MQSeries for Tandem NonStop Kernel Version 2
% Copy Channel #

Name:

Replace [Y/N]: _

Like Name: MTO1_M401_RQSV_0001_

Channel Type: SERVER

F1 - Enter F16 - Return

Figure 27. The Copy Channel panel

Type the name of the new channel in the Name field; type the name of the channel
definition you are copying in the Like Name field; type the channel type in the
Channel Type field. Press the Enter key (F1) to copy the channel definition.

82 MQsSeries for Tandem NSK V2R2 System Management Guide

Issuing MQSC commands

Chapter 6. Administering local MQSeries objects

This chapter explains how to administer local MQSeries objects to support
application programs that use the Message Queuing Interface (MQI). The MQI lets
application programs access message queuing services.

Local administration is when you create, display, change, copy, and delete
MQSeries objects.

This chapter contains these sections:

e “Supporting application programs that use the MQI”
e ‘“Issuing MQSC commands for administration”

e “Running MQSCs from text files” on page 86

e “Troubleshooting MQSC” on page 90

e “Working with local queues” on page 92

e “Working with alias queues” on page 99

e “Working with model queues” on page 101

e “Managing objects for triggering” on page 102

Supporting application programs that use the MQI

MQI application programs need specific objects before they can run successfully.
An MQI application can remove messages from a queue, process them, and send
the results to another queue on the same queue manager.

Whereas applications can put (using MQPUT) messages on local or remote
gueues, they can only get (using MQGET) messages directly from local queues.

Before this application can be run, these conditions must be satisfied:

e The queue manager must exist and be running.

» The first application queue, from which the messages are to be removed, must
be defined.

e The second queue, on which the application puts the messages, must also be
defined (unless it is a dynamic queue).

e The application must be able to connect to the queue manager. To perform
this task, it must be linked to the product code. See Appendix H, “Building and
running applications” on page 307 for more information.

* The applications that put the messages on the first queue must also connect to
a queue manager. If they are remote, they must also be set up with
transmission queues and channels.

Issuing MQSC commands for administration
MQSeries commands (MQSC) let you manipulate MQSeries objects. You can
issue commands using the runmgsc command at the command prompt.

See Appendix E, “MQSC supported by MQSeries for Tandem NSK” on page 263
for more information about using MQSC in the MQSeries for Tandem NSK
environment.

© Copyright IBM Corp. 1995, 1997 83

Issuing MQSC commands

Before you start

Before you begin, you must create and then start the queue manager, which runs
the MQSC commands. See “Creating a default queue manager” on page 58 for
more information.

MQSeries object names

When you are issuing MQSC commands, you must specify the local names of
gueue objects. For example: ORANGE.LOCAL.QUEUE, where LOCAL.QUEUE signifies
that this queue is a local queue. This naming convention is not required for the
names of all local queues.

In this section, the name saturn.queue.manager is used as a queue manager
name.

Note that queue manager names are case sensitive.

Object names on MQSC commands

MQSC commands and their attributes can be in uppercase or lowercase letters.
Object names in MQSC commands are folded (that is, QUEUE and queue are not
differentiated), unless the names are put in single quotation marks. If quotation
marks are not used, uppercase letters are used for the object name. See the
MQSeries Command Reference book for more information.

However, some arguments of the runmgsc command, which invokes the MQSC
facility, are case sensitive; see “Using control commands” on page 33.

Entering MQSC interactively

To enter commands interactively, open a TACL session and enter:

runmgsc

In this example, a queue manager name has not been specified, therefore the
MQSCs are processed by the default queue manager. You can enter any MQSC
command. For example:

MQSC>DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

Getting feedback from MQSCs

When you issue MQSCs, the queue manager provides confirmation or error
messages. For example:

AMQ8006: MQSeries queue created

AMQ8405: Syntax error detected at or near end of command segment below:-

84 MQsSeries for Tandem NSK V2R2 System Management Guide

Issuing MQSC commands

The first message confirms that a queue has been successfully created. The
second message indicates that you have made a syntax error. If you have not
entered the command correctly, refer to the MQSeries Command Reference
manual for the correct syntax.

Ending interactive input to MQSC

If you are using MQSC interactively, you can exit by entering the EOF character
CTRL+Y, or by typing exit or quit and pressing Enter.

If you are redirecting input from other sources, such as a text file, MQSC
terminates when the end of file is reached.

Displaying queue manager attributes

To display the attributes of the queue manager specified on the runmqgsc
command, use the following MQSeries command:

MQSC>DISPLAY QMGR ALL

An example output is as follows:

1 : display gmgr all
AMQ8408: Display Queue Manager details.
DESCR()
DEADQ(SYSTEM.DEAD.LETTER.QUEUE)
DEFXMITQ(MY.DEFAULT.XMIT.QUEUE)
COMMANDQ(SYSTEM. ADMIN.COMMAND. QUEUE)
QMNAME (saturn.queue.manager)
TRIGINT(999999999)
MAXHANDS (256)
MAXUMSGS (10000)
AUTHOREV (DISABLED)
INHIBTEV (ENABLED)
LOCALEV (DISABLED)
REMOTEEV (DISABLED)
PERFMEV (DISABLED)
STRSTPEV (ENABLED)
MAXPRTY (9)
CCSID(819)
MAXMSGL (4194304)
CMDLEVEL (220)
PLATFORM(NSK)
SYNCPT

Figure 28. Example output for QMGR ALL

The ALL parameter on the DISPLAY QMGR command causes all the queue
manager attributes to be displayed. The output tells us the queue manager name
(saturn.queue.manager), and the names of the dead-letter queue
(SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE). Both these queues are created when you
run the sample MQSC input file, amgscoma; see “Creating the default and system

Chapter 6. Administering local MQSeries objects 85

Running MQSC commands

objects” on page 59. Note that, if you do not specify the name of a dead-letter
gueue on the crtmgm command, you must alter the queue manager to associate a
dead-letter queue with the queue manager.

You should confirm that these queues are created by entering the command:
DISPLAY QUEUE (%)

Using a nondefault queue manager

You can specify a queue manager name when executing the runmgsc command
to run MQSCs on a local queue manager (other than the default). For example, to
run MQSCs on queue manager named jupiter.queue.manager, use this command:

runmgsc jupiter.queue.manager

All the MQSCs you enter are processed by this queue manager providing the
gueue manager is on the same node and is already running.

You can also run MQSC commands on a remote queue manager; see “Issuing
MQSC commands remotely” on page 112.

Altering queue manager attributes
To alter the attributes of the queue manager specified with the runmgsc command,
use the MQSC ALTER QMGR, specifying the attributes and values that you want to
change. For example, use the following commands to alter the attributes of
jupiter.queue.manager:

runmgsc jupiter.queue.manager

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

Running MQSCs from text files

Running MQSCs interactively is appropriate for quick tests; however, if you have
long commands, or commands that you want to repeat, you should take input from
a text file.

To perform this task, create a text file containing the MQSCs using your text editor.
When you use the runmgsc command, use the TACL IN and OUT redirection
operators, or the flags -i and -0 on runmgsc . For example, the following command
runs a sequence of commands contained in the text file mymgscin:

86 MQsSeries for Tandem NSK V2R2 System Management Guide

Running MQSC commands

runmgsc /IN mymgscin/

or

runmgsc -i mymgscin

Similarly, you can redirect the output to a file. A file containing the MQSCs for
input is called an MQSC file. The output file containing replies from the queue
manager is called the report file.

To redirect both input and output on the runmgsc command, use this command:

runmgsc /IN mymgscin, OUT mymgscou/

or

runmgsc -i mymgscin -0 mymgscou

This command invokes the MQSC commands contained in the file mymgscin.
Because a queue manager name is not specified, the MQSC commands are run
against the default queue manager. The output is sent to the report file mymgscou.
Figure 29 on page 88 shows an extract from the MQSC command file mymgscin,
and Figure 30 on page 89 shows the corresponding extract of the output in
mymgscou.

To redirect input and output on the runmgsc command for a queue manager
(saturn.queue.manager) that is not the default, use the command:

runmgsc /IN mymgscin, OUT mymgscou/ saturn.queue.manager

or

runmgsc -i mymgscin -o mymgscou saturn.queue.manager

Using MQSC files
MQSC command files are written as EDIT files (Tandem file type code 101).
Figure 29 on page 88 is an extract from an MQSC file showing an MQSeries
command (DEFINE QLOCAL) with its attributes. The MQSeries Command
Reference manual contains a description of each MQSC command and its syntax.

Chapter 6. Administering local MQSeries objects 87

Running MQSC commands

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) REPLACE +
DESCR(' ') +
PUT (ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET (ENABLED) +
MAXDEPTH (5000) +
MAXMSGL (1024) +
DEFSOPT (SHARED) +
NOHARDENBO +
USAGE (NORMAL) +
NOTRIGGER

Figure 29. Extract from the MQSC command file, mymgscin

You must limit lines to a maximum of 72 characters. The plus sign (+) indicates
that the command is continued on the next line. Note that the plus sign must be
preceded by a space.

Using MQSC reports
The runmgsc command returns a report, which is sent to the current OUT stream
The report contains:

¢ A header identifying MQSC as the source of the report:
Starting MQSeries Commands.

¢ An optional numbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 30 on page 89. However,
you can use the -e flag on the runmgsc command to suppress the output.

e A syntax error message for any commands found to be in error.

* An operator message indicating the outcome of running each command. For
example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8006: MQSeries queue created.
¢ Other messages resulting from general errors when running the script file.

* A brief statistical summary of the report indicating the number of commands
read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager attempts to process only those commands that
have no syntax errors.

88 MQseries for Tandem NSK V2R2 System Management Guide

Running MQSC commands

Starting MQSeries Commands.

12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +
: DESCR(' ') +
PUT (ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET (ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT (SHARED) +
USAGE (NORMAL) +
: NOTRIGGER
AMQ8006: MQSeries queue created.

15 MQSC commands read.
© commands have a syntax error.
0 commands cannot be processed.

Figure 30. Extract from the MQSC report file, mymqscou

Running the supplied MQSC command files
When you install MQSeries for Tandem NSK, these MQSC files are supplied:

amgscoma Default and system objects.

amgscos0 Definitions of objects used by sample programs.
The files are located in the samples subvolume, by default $SYSTEM.ZMQSSMPL.

You should already have run runmgsc against the command file amgscoma. If you
have not performed this step, or if you have deleted any of the objects created from
it, run it again by entering:

runmgsc -i $SYSTEM.ZMQSSMPL.AMQSCOMA

The DEFINE commands in amgscoma specify the REPLACE option, which
overwrites the existing definitions, if possible. See the MQSeries Command
Reference manual for more information about REPLACE.

Using runmgsc to verify commands
You can use the runmgsc command to verify MQSC commands on a local default
gueue manager without actually running them. To perform this step, set the -v flag
on the runmgsc command. For example:

runmgsc -i mymgscin -0 mymgscou -v

Chapter 6. Administering local MQSeries objects 89

Troubleshooting

When you invoke runmgsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This action lets you check the syntax of all the commands in your
command file. This step is important if you are:

¢ Running a large number of commands from a command file

e Using an MQSC command file many times over
This report is similar to that shown in Figure 30 on page 89.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:

runmgsc -i mymgscin -o mymgscou -w 30 -v jupiter.queue.manager

the -w flag is ignored, and the command is run locally.

Troubleshooting MQSC
If MQSCs do not run properly, use the following checklist to see if any of these
common problems apply to you.
When you use the runmgsc command:
e Check that $SYSTEM.ZMQSEXE is in PMSEARCH in TACLCSTM.

¢ Remember to specify a fully qualified file name for amgscoma on input to
runmgsc if you are not in the subvolume ZMQSSMPL.

e Use the IN operator or the -i flag when redirecting input from a file. Otherwise,
the queue manager interprets the file name as a queue manager name. For
example:

runmgsc amgscoma

5697-A17 (C) Copyright IBM Corp. 1997. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

AMQ8118: MQSeries queue manager does not exist.
© MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

¢ |f you redirect output to a file, use the OUT operator or the -0 flag. By default,
the output file is created using the TACL defaults in effect at the time the
command was issued. Specify a fully qualified file name to send your output to
a specific file. For example:

runmgsc -i $SYSTEM.ZMQSSMPL.AMQSCOMA -o $DATAO.OUTPUT.MYFILE

90 MQsSeries for Tandem NSK V2R2 System Management Guide

Troubleshooting

* Check that you successfully created the queue manager that is going to run the
commands. To do this, look in the configuration file MQSINI, which by default
is located in the installation subvolume, $SYSTEM.ZMQSSYS. This file
contains the names of the queue managers and the name of the default queue
manager, if you have one.

¢ The queue manager should already be started; if it is not, start it, as described
in “Starting a queue manager” on page 59. You get an error message if the
gueue manager is already started.

e Specify a queue manager name on the runmgsc command if you have not
defined a default queue manager, otherwise you get this error:

runmgsc -1 $SYSTEM.ZMQSSMPL.AMQSCOMA

5697-A17 (C) Copyright IBM Corp. 1997. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

AMQ8146: MQSeries queue manager not available.
© MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

For information about correcting this type of problem, see “Making an existing
gueue manager the default” on page 61.

¢ You cannot specify an MQSC command as a runmgsc parameter:

runmgsc DEFINE QLOCAL(FRED)

¢ You cannot enter MQSC commands from TACL before you issue the runmqgsc
command. For example:

DEFINE QLOCAL(QUEUEL)

* Error Name of Variable, built-in, or file needed.

e You cannot run control commands from runmgsc . For example, you cannot
start a queue manager once you are running MQSC interactively:

runmqsc
5697-A17 (C) Copyright IBM Corp. 1997. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

strmgm saturn.queue.manager
1 : strmgm saturn.queue.manager
AMQ8405: Syntax error detected at or near end of command segment below:

See also “If you have problems using MQSC remotely” on page 113.

Chapter 6. Administering local MQSeries objects 91

Working with local queues

Working with local queues

This section contains examples of MQSCs that you can use. Refer to the
MQSeries Command Reference for a complete description of these commands.

Defining a local queue

For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager
are local to that queue manager.

Use the MQSC DEFINE QLOCAL to create a definition of a local queue and also to
create the data structure that is called a queue. You can also modify the queue
characteristics from those of the default local queue.

In this example, ORANGE.LOCAL.QUEUE is specified to have these
characteristics:

e |t is enabled for gets, disabled for puts, and operates on a first-in-first-out
(FIFO) basis.

e |tis an ‘ordinary’ queue. That is, it is not an initiation queue or a transmission
queue, and it does not generate trigger messages.

e The maximum queue depth is 1000 messages; the maximum message length
is 2000 bytes.

The following MQSC command performs this action:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +
DESCR('Queue for messages from other systems') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFQ) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL)

Notes:

1. Most of these attributes are the defaults as supplied with the product.
However, they are shown here for purposes of illustration. You can omit them
if you are sure that the defaults are what you want or have not been changed.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.

3. If you already have a local queue on the same queue manager with the name
ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if
you want to overwrite the existing definition of a queue, but see also “Changing
local queue attributes” on page 94.

92 MQSeries for Tandem NSK V2R2 System Management Guide

Displaying default object attributes

Defining a dead-letter queue

Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval.

You must tell the queue manager about the dead-letter queue. You can do this by
specifying a dead-letter queue on the crtmgm command or you can use the
ALTER QMGR command to specify one later. You must also define the dead-letter
gueue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product in the file amgscoma. This queue is automatically created when
you run the sample. You can modify this definition, if required. There is no need
to rename it.

A dead-letter queue has no special requirements except that it must be a local
gueue and its MAXMSGL (maximum message length) attribute must enable the
gueue to accommodate the largest messages that the queue manager has to
handle.

MQSeries provides a dead-letter queue handler that lets you specify how messages
found on a dead-letter queue are to be processed or removed. For further
information, see Chapter 9, “MQSeries dead-letter queue handler” on page 139.

Displaying default object attributes

When you define an MQSeries object, it takes any attributes that you do not specify
from the default object. For example, when you define a local queue, the queue
inherits any attributes that you omit in the definition from the default local queue,
which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what these
attributes are, use the following command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE) ALL

Note: The syntax of this command is different from that of the corresponding
DEFINE command.

You can selectively display attributes by specifying them individually. For example:

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
MAXDEPTH +
MAXMSGL +
CURDEPTH

This command displays the three specified attributes as follows:

Chapter 6. Administering local MQSeries objects 93

Changing local queue attributes

AMQ8409: Display Queue details.
QUEUE (ORANGE . LOCAL.QUEUE)
MAXDEPTH (1000)

MAXMSGL (2000)
CURDEPTH(0)

CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition

You can copy a queue definition using the LIKE attribute on the DEFINE command.
For example:

DEFINE QLOCAL (MAGENTA.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE)

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition, but
substituting one or more changes to the attributes of the original. For example:

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL (1024)

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
gueue THIRD.QUEUE, but specifies that the maximum message length on the new
gueue is to be 1024 bytes, rather than 2000.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes

You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 92, we defined the queue
ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the
maximum message length on this queue to 10 000 bytes.

e Using the ALTER command:

94 MQsSeries for Tandem NSK V2R2 System Management Guide

Clearing a local queue

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

This command changes a single attribute, that of the maximum message
length; all the other attributes remain the same.

e Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

This command changes not only the maximum message length, but all the
other attributes, which are given their default values. The queue is now put
enabled, whereas previously it was put inhibited. Put enabled is the default, as
specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have
changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Changing the volume of a local queue

Use the altmqgfls command to change the volume on which a local, predefined
gueue is stored. This might be necessary to spread disk I/0O across volumes to
balance the system for optimum performance. The queue manager must have
been started before this command is issued, and the queue itself must not be open.
Only one queue may be named on any altmgfls command.

Clearing a local queue

To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:

CLEAR QLOCAL (MAGENTA.QUEUE)

You cannot clear a queue if:

e There are uncommitted messages that have been put on the queue under
syncpoint.

e An application currently has the queue open.

Chapter 6. Administering local MQSeries objects 95

Browsing queues

Deleting a local queue

Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages, and no uncommitted messages, it can only be
deleted if you specify the PURGE option. For example:

DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

Browsing queues

MQSeries for Tandem NSK provides a sample queue browser to enable you to look
at the contents of the messages on a queue. The browser is supplied both as
source and as a module that can be run. By default, the file names and paths are:

Source $SYSTEM. ZMQSSMPL .MQSBCGOC
Executable $SYSTEM. ZMQSSMPL .MQSBCGOE

The sample takes two parameters:

Queue manager name For example, snooker.
Queue name For example, SYSTEM.ADMIN.RESPQ.tpp0O1.

For example:
MQSBCGOE snooker SYSTEM.ADMIN.RESPQ.tpp0O1

There are no defaults; both parameters are required. Typical results from this
command are:

MQSBCGOE - starts here

kkkhkkhkkkhkhkkhkkhkhkkhkkkikkk

MQCONN to snooker
MQOPEN - 'SYSTEM.ADMIN.RESPQ.tpp0O1'

MQGET of message number 1
*x**x*Message descriptorsx*x

Strucld : 'MD ' Version : 1

Report : 0 MsgType : 8

Expiry : -1 Feedback : 0

Encoding : 273 CodedCharSetId : 850

Format : 'AMQMRESP'

Priority : 5 Persistence : 1

Msgld : X'414D5120736E6F6F6B657220202020202ED47690071A6D00
Correlld : X'00'
BackoutCount : 0

ReplyToQ ! '
ReplyToQMgr : 'snooker
*x Identity Context
UserIdentifier : 'tpp0Ol

96 MQSeries for Tandem NSK V2R2 System Management Guide

Browsing queues

AccountingToken :
X'043730373000 '

ApplldentityData :

*#% Origin Context

PutApplType :'6!
PutApp1Name !
PutDate : '19941124' PutTime : '11184015'
ApplOriginData : ' :
*kkk Message *hkK

length - 268 bytes

00000000: 736E 6F6F 6B65 7220 2020 2020 2020 2020 'snooker '
00000010: 2020 2020 2020 2020 2020 2020 2020 2020 ' '
00000020: 2020 2020 2020 2020 2020 2020 2020 2020 ' '
00000030: 534E 4F4F 4B45 522E 5749 4748 542E 5443 'SNOOKER.WIGHT.TC'
00000040: 5020 2020 2020 2020 2020 2020 2020 2020 'P '
00000050: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000000D0: 2066 726F 6D20 736E 6F6F 6B65 7220 746F
000000EO: 2077 6967 6874 2076 6961 2074 6370 2F69
000000F0: 7020 2020 2020 2020 2020 2020 2020 2020
00000100: 2020 2020 2020 2020 2000 0000

from snooker to'
wight via tcp/i'

00000060: 0000 0001 0000 0024 0000 0001 0OGO 0015 '....... St
00000070: 0000 0001 0000 0001 0OOO 0OBO 0OOO 0OOO '................
00000080: 0000 0003 0000 0004 0000 0028 0OBO ODAD '........... (....
00000090: 0000 0000 0000 0014 534E 4F4F 4B45 522E '........ SNOOKER.
000000A0: 5749 4748 542E 5443 5020 2020 0000 0003 'WIGHT.TCP

000000BO: 0000 0010 0000 O5E7 0000 OOOL 0OOO 0OO4 '................
000000CO: 0000 0050 0000 ODAE 0000 0000 0000 0039 '...P........... 9!

MQGET of message number 2
*x*x*xMessage descriptorxx#x

Strucld : 'MD ' Version : 1

Report : 0 MsgType : 2

Expiry : -1 Feedback : 0

Encoding : 273 CodedCharSetId : 850

Format : 'MQADMIN '

Priority : 8 Persistence : 1

MsgId : X'414D5120736E6F6F6B657220202020202ED476901524D200"
Correlld : X'414D5120736E6F6F6B657220202020202ED47690071A6D00"
BackoutCount : 0

ReplyToQ 2! '
ReplyToQMgr : 'snooker

*% Identity Context
Userldentifier : 'tppOl

AccountingToken :
X'043730373000

ApplldentityData :

*#% Origin Context

PutApplType :'6!
PutApp1Name !
PutDate : '19941124' PutTime : '11184035'
ApplOriginData : ' :
*kkk Message *hkK

Chapter 6. Administering local MQSeries objects

97

Browsing queues

length - 36 bytes

00000000: 0000 0002 0000 0024 0000 0001 00GO 0015 '....... $oviinnn '
00000010: 0000 0001 0000 0001 OOOO OOOO 0OBO BOOO '................ '
00000020: 0000 0000 e :

MQGET of message number 3
x*x*Message descriptorx+x

Strucld : 'MD ' Version : 1

Report : O MsgType : 8

Expiry : -1 Feedback : 0

Encoding : 273 CodedCharSetId : 850

Format : 'AMQMRESP'

Priority : 5 Persistence : 1

MsgId : X'414D5120736E6F6F6B657220202020202ED477D62A9EALQ0"
Correlld : X'00'
BackoutCount : 0

ReplyToQ ! '
ReplyToQMgr : 'snooker
*x Identity Context
Userldentifier : 'trevor

AccountingToken :
X'043730373000 '

ApplIdentityData : '

*% Origin Context

PutAppl1Type : '6!
PutApp1Name : !
PutDate : '19941124' PutTime : '11240678'
ApplOriginData : ' '
*kkk Message *hkk

length - 188 bytes

00000000: 736E 6F6F 6B65 7220 2020 2020 2020 2020 'snooker
00000010: 2020 2020 2020 2020 2020 2020 2020 2020 '

00000020: 2020 2020 2020 2020 2020 2020 2020 2020 '

00000030: 534E 4F4F 4B45 522E 5749 4748 542E 5443 'SNOOKER.WIGHT.TC
00000040: 5020 2020 2020 2020 2020 2020 2020 2020 'P

00000050: 2020 2020 2020 2020 2020 2020 2020 2020 '
00000060: 0000 0001 0000 0024 0000 0001 0000 0015 '
00000070: 0000 0001 00OO 0001 OOOO 0OBO 0OBO 0OOO '..........ccuu..
00000080: 0000 0002 0000 0004 0000 0028 0OGO ODAD '........... (vvn.
00000090: 0000 0000 0000 0014 534E 4FAF 4B45 522E '........ SNOOKER.
000000A0: 5749 4748 542E 5443 5020 2020 0000 0003 'WIGHT.TCP
000000BO: 0000 0010 0000 O5E7 0000 0001 N

MQGET of message number 4
**x*xMessage descriptorxx*x

Strucld : 'MD ' Version : 1
Report : 0 MsgType : 2

Expiry : -1 Feedback : 0

Encoding : 273 CodedCharSetId : 850
Format : 'MQADMIN '

98 MQseries for Tandem NSK V2R2 System Management Guide

Working with alias queues

Priority : 8 Persistence : 1

Msgld : X'414D5120736E6F6F6B657220202020202ED477D63826C000"

Correlld : X'414D5120736E6F6F6B657220202020202ED477D62A9EA1GO"
BackoutCount : 0

ReplyToQ ! !
ReplyToQMgr : 'snooker
*x [dentity Context
Userldentifier : 'tiger

AccountingToken :
X'043730373000'
ApplIdentityData : ' '

% Origin Context

PutAppl1Type : '6!
PutApp1Name 2!
PutDate : '19941124' PutTime : '11240694'
ApplOriginData : ' '
*k kK Message *kkKk

length - 36 bytes

00000000: 0000 0002 0000 0024 0000 0001 00GO 0015 '....... A '
00000010: 0000 0001 0000 0001 OOOO OOOO 0OOO 0OOO '................ '
00000020: 0000 0000 el '

No more messages
MQCLOSE
MQDISC

Working with alias queues

An alias queue (also known as a queue alias) provides a method of redirecting MQI
calls. An alias queue is not a real queue but a definition that resolves to a real
gueue. The alias queue definition contains a target queue name which is specified
by the TARGQ attribute (BaseQName in PCF). When an application specifies an
alias queue in an MQI call, the queue manager resolves the real queue name at
run time.

For example, an application has been developed to put messages on a queue
called MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an
MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for
maintenance, migration, and load-balancing.

Chapter 6. Administering local MQSeries objects 99

Defining an alias queue

Defining an alias queue

The following command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls that specify MY.ALIAS.QUEUE, to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE) REPLACE

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear
to have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:

e Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed
to get messages from it.

» Application BETA can get messages from YELLOW.QUEUE, but is not allowed
to put messages on it.

You can perform this action using the following commands:

* This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

* This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use them with local queues.

100 MQsSeries for Tandem NSK V2R2 System Management Guide

Defining a model queue

Using other commands with queue aliases

You can use the appropriate MQSC commands to display or alter queue alias
attributes, or delete the queue alias object. For example:

* Display the queue alias' attributes
* ALL = Display all attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE) ALL
* ALTER the base queue name, to which the alias resolves.
* FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

* Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete a queue alias if, for example, an application currently has the
gueue open or has a queue open that resolves to this queue. See the MQSeries
Command Reference manual for more information about this and other queue alias
commands.

Working with model queues

A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue

You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not). For example:

Chapter 6. Administering local MQSeries objects 101

Managing objects for triggering

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues

You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or delete the model queue object. For example:

* Display the model queue's attributes
* ALL = Display all attributes

DISPLAY QUEUE (GREEN.MODEL.QUEUE) ALL
* ALTER the model to enable puts on any
* dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

* Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Managing objects for triggering

MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called
triggering and is described in detail in the MQSeries Application Programming
Guide. This section describes how to set up the required objects to support
triggering on MQSeries for Tandem NSK.

102 MQsSeries for Tandem NSK V2R2 System Management Guide

Application queue for triggering

Defining an application queue for triggering

An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of
priority five or greater on the local queue MOTOR.INSURANCE.QUEUE, as follows:

DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

Where:

QLOCAL (MOTOR.INSURANCE.QUEUE)
Specifies the name of the application queue being defined.

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGL (2000)
Specifies the maximum length of messages on the queue.

DEFPSIST (YES)
Specifies that messages are persistent on this queue.

INITQ (MOTOR.INS.INIT.QUEUE)
Is the name of the initiation queue on which the queue manager is to put the
trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRIMPRI) reaches the number specified in TRIGDPTH.

TRIGDPTH (100)
Specifies the number of messages required to generate a trigger event.

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority 5
or higher are counted.

Chapter 6. Administering local MQSeries objects 103

Creating a process definition

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues have
no special settings, but you can use the following definition of the local queue
MOTOR.INS.INIT.QUEUE for guidance:

DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +
GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (10)

Creating a process definition

Use the DEFINE PROCESS command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command
defines the required process, MOTOR.INSURANCE.QUOTE.PROCESS, identified
in this example:

DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
DESCR ('Insurance request message processing') +
APPLTYPE (NSK) +
APPLICID ('$DATA1.TEST.IRMPO1') +
USERDATA ('open, close, 235')

Where:

MOTOR. INSURANCE.QUOTE.PROCESS
Is the name of the process definition.

DESCR (‘'Insurance request message processing’)
Is the descriptive text of the application program to which the definition
relates, following the keyword. This text is displayed when you use the
DISPLAY PROCESS command. This can help you to identify what the
process does. If you use spaces in the string, you must enclose the string in
single quotes.

APPLTYPE(NSK)
Is the type of the application that runs on Tandem NSK

APPLICID ('$DATAL.TEST.IRMPOL1")
Is the name of the application executable program on the local system.

USERDATA (‘open, close, 235")
Is user-defined data, which can be used by the application.

104 wmQsSeries for Tandem NSK V2R2 System Management Guide

Displaying your process definition

Displaying your process definition

Use the DISPLAY PROCESS command, with the ALL keyword, to examine the
results of your definition. For example:

DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL
AMQ8407: Display Process details.

DESCR (Insurance request message processing)

APPLICID ($DATA1.TEST.IRMPO1)

ENVRDATA ()

USERDATA (open, close, 235)

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

APPLTYPE (NSK)

USERDATA is a string representing the arguments passed to the triggered application.
See the sample programs MQSTRGOC and MQSINQAC (in ZMQSSMPL
subvolume) for examples of how to write trigger monitors and triggered
applications.

You can also use the MQSC ALTER PROCESS to alter an existing process
definition and DELETE PROCESS to delete a process definition.

Chapter 6. Administering local MQSeries objects 105

Displaying your process definition

106 MQsSeries for Tandem NSK V2R2 System Management Guide

Channels and remote queuing

Chapter 7. Administering remote MQSeries objects

This chapter explains how to administer MQSeries objects on another queue
manager. It also explains how you can use remote queue objects to control the
destination of messages and reply messages.

It contains these sections:

e “Understanding channels and remote queuing”

e “Administering a remote queue manager” on page 108

e “Creating a local definition of a remote queue” on page 114
e “Using remote queue definitions as aliases” on page 117

For more information about channels, their attributes, and how to set them up, refer
to the MQSeries Intercommunication book.

Understanding channels and remote queuing

Queue managers communicate with each other using channels. For example, if an
application is to put a message on a queue managed by a remote queue manager,
a channel must be set up between the two queue managers. The channel is
defined to the queue managers at each end of the connection. Each channel is
named and has a number of attributes that define, for example, the type of channel
and the protocol to be used for communication.

Channels are used for sending messages between queue managers. These
messages may originate from:
e User-written application programs that transfer data from one node to another.
* User-written administration applications that use PCFs.
* Queue managers sending:
— Instrumentation event messages to another queue manager.
— MQSC commands issued from a runmgsc command in indirect mode —

where the commands are run on another queue manager.

Channels are unidirectional; that is, messages can be sent in one direction only.
Channel definitions are made in complementary pairs, one at each end of the
connection. For example, if one end is a sender, the other must be a receiver or a
requester.

Channels are ‘linked’ to queue managers (and therefore the applications they
serve) by transmission queues and remote queue definitions. A transmission queue
is used to forward messages (through a channel) to another queue manager. A
remote queue definition identifies a queue on another queue manager. To give you
an idea of how these things can fit together:

* A remote queue definition specifies a transmission queue.

¢ A channel serves a transmission queue, which is specified when the channel is
defined.

“Preparing channels and transmission queues for remote administration” on
page 109 shows how to use these definitions to set up remote administration.

© Copyright IBM Corp. 1995, 1997 107

Administering a remote queue manager

You define a channel using the DEFINE CHANNEL MQSC command. Channels,
their attributes, and how you use them in distributed queuing, are discussed at
length in the MQSeries Intercommunication book. In this section, the examples
concerned with channels use the default channel attributes unless otherwise
specified.

Administering a

remote queue manager

This section explains how to administer a remote queue manager from a local
gueue manager. You can implement remote administration from a local node
using:

¢ MQSC commands
e PCF commands

Preparing the queues and channels is essentially the same for both methods. In
this book, the examples show MQSC commands, because they are easier to
understand. However, you can convert the examples to PCFs if you wish. For
more information about writing administration programs using PCFs, see the
MQSeries Programmable System Management.

In remote administration you send MQSC commands to a remote queue
manager—either interactively or from a text file containing the commands. The
remote queue manager may be on the same machine or, more typically, on a
different machine. You can remotely administer queue managers in different
MQSeries environments, including UNIX, Tandem NSK, AS/400, MVS/ESA, and
0Ss/2.

To implement remote administration, you must create certain objects. Unless you
have specialized requirements, you should find that the default values (for example,
for message length) are sufficient.

Preparing queue managers for remote administration

Figure 31 on page 109 shows the configuration of queue managers and channels
that are required for remote administration. source.queue.manager is the source
gueue manager from which you can issue MQSC commands and to which the
results of these commands (operator messages) are returned, if possible.
target.queue.manager is the destination queue manager, which processes the
commands and generates any operator messages.

Note: source.queue.manager must be the default queue manager on the machine
you are using. For further information on creating a queue manager, see “crtmgm
(Create queue manager)” on page 209.

108 MQsSeries for Tandem NSK V2R2 System Management Guide

Administering a remote queue manager

1
1
source.queue.manager | target.queue.manager
1
1

runmgsc
MQSC commands
L . >
Process commands
| for example:
replies DEFINE QLOCAL
<= <

Local system Remote system

Figure 31. Remote administration

On both systems, if you have not already done so, you must:

» Create the queue manager, using the crtmgm command.
e Start the queue manager, using the strmgm command.
¢ Run the sample amgscoma, using the runmgsc command.

See “Creating the default and system objects” on page 59 for more information
about these steps. You have to run these commands locally or over a network
facility, for example Telnet.

On the destination queue manager:

e The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.
This queue is created by the sample MQSC command amgscoma.
e The command server must be started, using the strmgcsv command.

Preparing channels and transmission queues for remote

administration

To run MQSC commands remotely, you must set up two channels, one for each
direction, and their associated transmission queues. This example assumes that
TCPI/IP is being used as the transport type and that you know the TCP/IP address
involved.

The channel source.to.target is for sending MQSC commands from the source
gueue manager to the destination. Its sender is at source.queue.manager and its
receiver is at queue manager target.queue.manager. The channel
target.to.source is for returning the output from commands and any operator
messages that are generated to the source queue manager. You must also define
a transmission queue for each sender. This queue is a local queue that is given
the name of the receiving queue manager. Figure 32 on page 110 summarizes
this configuration. However, you should be aware that the
SYSTEM.MQSC.REPLY.QUEUE is the name of the model queue in amgscoma

Chapter 7. Administering remote MQSeries objects 109

Administering a remote queue manager

that is used by MQSC to develop its own dynamic reply queue. This queue name
varies and is internal to MQSC.

commands
—— |:j>’ source.to.target ‘I:::>

1
1
source.queue.manager | target.queue.manager
1
runmgsc !

XMITQ=target.queue.manager | SYSTEM.ADMIN.COMMAND.QUEUE
replies !
e —— <,‘::|’ target.to.source ‘<}:|
SYSTEM.MQSC.REPLY.QUEUE | XMITQ=source.queue.manager

Local system Remote system

Figure 32. Setting up channels and queues for remote administration

See the MQSeries Intercommunication book for more information about setting up
remote channels.

Defining channels and transmission queues

On the source queue manager, issue these MQSC commands to define the
channels and the transmission queue:

* Define the sender channel at the source queue manager
DEFINE CHANNEL ('source.to.target') +

CHLTYPE(SDR) +

CONNAME ('198.210.60.37(1414)') +

XMITQ ('target.queue.manager') +

TRPTYPE(TCP)

CONVERT(YES)

* Define the receiver channel at the source queue manager
DEFINE CHANNEL ('target.to.source') +

CHLTYPE(RCVR) +

TRPTYPE(TCP)

* Define the transmission queue on the source

DEFINE QLOCAL ('target.queue.manager') +
USAGE (XMITQ)

Issue these commands on the destination queue manager (target.queue.manager),
to create the channels and the transmission queue there:

110 MQsSeries for Tandem NSK V2R2 System Management Guide

Administering a remote queue manager

* Define the sender channel on the destination queue manager

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(SDR) +
CONNAME ('198.210.60.37(1414)"') +
XMITQ ('source.queue.manager') +
TRPTYPE(TCP)

* Define the receiver channel on the destination queue manager
DEFINE CHANNEL ('source.to.target') +

CHLTYPE(RCVR) +

TRPTYPE(TCP)

* Define the transmission queue on the destination queue manager

DEFINE QLOCAL ('source.queue.manager') +
USAGE (XMITQ)

Notes:

1. The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the IP address or
network name of the machine at the other end of the connection. Use the
values appropriate for your network.

2. On the sender channel, set the CONVERT attribute to YES if MQSeries for
Tandem NSK is to exchange data with systems using different code pages.
CONVERT(YES) specifies that the required data conversion between the
systems is performed at the Tandem NSK end.

Starting the channels
The following description assumes that both ends of the channel are running on
MQSeries for Tandem NSK. If this is not the case, refer to the relevant
documentation for the non-Tandem NSK end of the channel.

To start the two channels, first ensure that the Tandem NSK TCP listener process
has been configured for MQSeries on both nodes and are running at both ends of
the connections. Then start the channels in runmgsc.

» On the source queue manager, enter:

start channel ('source.to.target')

* On the destination queue manager, enter:

start channel ('target.to.source')

Chapter 7. Administering remote MQSeries objects 111

Administering a remote queue manager

Issuing MQSC commands remotely

The command server must be running on the destination queue manager, if it is
going to process MQSC commands remotely. (This is not necessary on the source
gueue manager.)

¢ On the destination queue manager, type:

strmqcsv target.queue.manager

¢ On the source queue manager, you can then run MQSC interactively in queued
mode by entering:

runmgsc -w 30 target.queue.manager

This form of the runmgsc command— with the -w flag—runs the MQSC
commands in gueued mode, where commands are put (in a modified form) on the
command-server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if
a reply is not received within 30 seconds, the following message is generated on
the local (source) queue manager:

AMQ8416: MQSC timed out waiting for a response from the command server.

At the end of the MQSC session, the local queue manager displays any timed-out
responses that have arrived. When the MQSC session is finished, any further
responses are discarded.

In qgueued mode, you can also run an MQSC command file on a remote queue
manager. For example:

runmgsc /IN mycmds, OUT report/ -w 60 target.queue.manager

where mycmds is a file containing MQSC commands and report is the report file.

Working with queue managers on MVS/ESA

You can issue MQSC commands to an MVS/ESA queue manager from an
MQSeries for Tandem NSK queue manager. However, to do this, you must modify
the runmgsc command and the channel definitions at the sender.

In particular, you add the -x flag to the runmgsc command on a Tandem NSK
node:

runmgsc -w 30 -x QMRI

112 MQsSeries for Tandem NSK V2R2 System Management Guide

Problems using MQSC remotely

The channel definition is as follows:

* Define the sender channel at the source
queue manager on Tandem NSK

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME ('198.210.60.37(1414)') +
XMITQ (QMRI) +
TRPTYPE(TCP) +
CONVERT (YES)

You must also define the receiver channel and the transmission queue at the
source queue manager as before. Again, this example assumes that TCP/IP is the
transmission protocol being used.

Recommendations for remote queuing
When you are implementing remote queuing:

1. Put the MQSC commands to be run on the remote system in a command file.

2. Verify your MQSC commands locally, by specifying the -v flag on the runmqgsc
command.

You cannot use runmgsc to verify MQSC commands on another queue
manager.

3. Check, as far as possible, that the command file runs locally without error.

4. Finally, run the command file against the remote system.

If you have problems using MQSC remotely

If you have difficulty in running MQSC commands remotely, use the following
checklist to see if you have:

e Started the command server on the destination queue manager.
» Defined a valid transmission queue.
e Defined the two ends of the message channels for both:

— The channel along which the commands are being sent.
— The channel along which the replies are to be returned.

e Specified the correct connection name (CONNAME) in the channel definition.
e Started the listeners before you started the message channels.

» Checked that the disconnect interval has not expired, for example, if a channel
started but then shut down after some time. This is especially important if you
start the channels manually.

See also “Troubleshooting MQSC” on page 90.

Chapter 7. Administering remote MQSeries objects 113

Creating a local definition of remote queue

Creating a local definition of a remote queue

You can use a remote queue definition as a local definition of a remote queue. You
create a remote queue object on your local queue manager to identify a local
gueue on another queue manager.

Understanding how local definitions of remote queues work

An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of
the destination queue, the destination queue manager, and optionally, a
transmission queue. To put a message on the remote queue, the application issues
an MQPUT call, specifying the handle returned from the MQOPEN call. The queue
manager appends the remote queue name and the remote queue manager name
to a transmission header in the message. This information is used to route the
message to its correct destination in the network.

As administrator, you can control the destination of the message by altering the
remote queue definition.

Example
An application is required to put a message on a queue owned by a remote queue
manager.

How it works
The application connects to a queue manager, for example, saturn.queue.manager.
The destination queue is owned by another queue manager.

On the MQOPEN call, the application specifies these fields in the MQOD:

Field value Description
ObjectName Specifies the local name of the remote
CYAN.REMOTE.QUEUE gueue object. This defines the destination
gueue and the destination queue manager.
ObjectType Identifies this object as a queue.
(Queue)
ObjectQmgrName This field is optional.
Blank

If blank, the name of the local queue
manager is assumed. (This is the queue
manager on which the remote queue
definition was made and to which the
application is connected).

or
saturn.queue.manager

If not blank, the name of the local queue
manager must be specified.

After this, the application issues an MQPUT call to put a message on to this queue.

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

114 wmQsSeries for Tandem NSK V2R2 System Management Guide

Putting messages on a remote queue

DEFINE QREMOTE ('CYAN.REMOTE.QUEUE') +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME ('AUTOMOBILE.INSURANCE.QUOTE.QUEUE') +
RQMNAME ('jupiter.queue.manager') +
XMITQ ('INQUOTE.XMIT.QUEUE")

Where:

QREMOTE ('CYAN.REMOTE.QUEUE")
Is the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the MQOPEN
call to open the queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the
remote queue manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Is additional text that describes the use of the queue.

RNAME ('AUTOMOBILE.INSURANCE.QUOTE.QUEUE')
Is the name of the destination queue on the remote queue manager. This is
the real destination queue for messages that are sent by applications that
specify the queue name 'CYAN.REMOTE.QUEUE'. The queue
'AUTOMOBILE.INSURANCE.QUOTE.QUEUE' must be defined as a local
gueue on the remote queue manager.

RQMNAME ('jupiter.queue.manager')
Is the name of the remote queue manager that owns the destination queue
'AUTOMOBILE.INSURANCE.QUOTE.QUEUE".

XMITQ ('INQUOTE.XMIT.QUEUE')
Is the name of the transmission queue. This is optional; if the name is not
specified, a queue with the same name as the remote queue manager is
used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMITQ) in MQSC).

An alternative way of putting messages on a remote queue

Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, which includes
the remote queue manager name, as part of the MQOPEN call. In this case, a
local definition of a remote queue is not required. However, this alternative means
that applications must either know or have access to the name of the remote queue
manager at run time.

Chapter 7. Administering remote MQSeries objects 115

Creating a transmission queue

Using other commands with remote queues

You can use the appropriate MQSC commands to display or alter the attributes of a
remote queue object, or you can delete the remote queue object. For example:

* Display the remote queue's attributes.
* ALL = Display all attributes

DISPLAY QUEUE (CYAN.REMOTE.QUEUE) ALL

* ALTER the remote queue to enable puts.
* This does not affect the destination queue,
* only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

* Delete this remote queue
* This does not affect the destination queue
* only its local definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: If you delete a remote queue, you only delete the local representation of the
remote queue. You do not delete the remote queue itself or any messages on it.

Creating a transmission queue

A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel. The
channel provides a one-way link to the remote queue manager. Messages are
gueued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues
Optionally, you can specify a transmission queue in a remote queue object, using
the XmitQName attribute (XMITQ in MQSC). If no transmission queue is defined, a
default is used. When applications put messages on a remote queue, if a
transmission queue with the same name as the destination queue manager exists,
that queue is used. If this queue does not exist, the queue specified by the
DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager

116 MQsSeries for Tandem NSK V2R2 System Management Guide

Aliases

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target gm') +
USAGE (XMITQ)

Applications can put messages directly on a transmission queue, or they can be put
there indirectly, for example, through a remote queue definition. See also “Creating
a local definition of a remote queue” on page 114.

Using remote queue definitions as aliases

In addition to locating a queue on another queue manager, you can also use a
local definition of a remote queue for both:

e Queue manager aliases
¢ Reply-to queue aliases

Both types of alias are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the
message is to arrive at its destination.

Queue manager aliases

An alias is the process by which the name of the destination queue manager—as
specified in a message—is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see the MQSeries
Intercommunication book.

Reply-to queue aliases

Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue. If the application that processes the message
extracts the name of the reply-to queue, it knows where to send the reply message,
if required.

A reply-to queue alias is the process by which a reply-to queue — as specified in a
request message — is altered by a queue manager on the message route. The
sending application is not aware that the reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
gueues, see the MQSeries Application Programming Reference. For more
information about reply-to queue aliases, see the MQSeries Intercommunication
book.

Chapter 7. Administering remote MQSeries objects 117

Aliases

118 MQsSeries for Tandem NSK V2R2 System Management Guide

Understanding user IDs

Chapter 8.

Implementing security control

This chapter explains the features of security control in MQSeries for Tandem N
and how you can implement security control.

This chapter contains these sections:

e “Understanding user IDs in the MQM user group”

* “Protecting MQSeries resources” on page 120

e “Understanding the Object Authority Manager (OAM)” on page 120

e “Using the Object Authority Manager (OAM) commands” on page 122
e “Object Authority Manager (OAM) guidelines” on page 125

* “Understanding the authorization specification tables” on page 128

e “Understanding authorization files” on page 134

SK,

Understanding user IDs in the MQM user group

All queue manager resources run with the group ID MQM.

If your user ID belongs to the MQM group in Tandem NSK, you have all authorities
to all MQSeries resources. Your user ID must belong to the MQM group to be able
to use all the MQSeries for Tandem NSK control commands (except crtmgcvx). In

particular, you need this authority to:

e Use the runmgsc command to run MQSCs.
* Administer authorities on MQSeries for Tandem NSK using the setmgaut
command.

If you are sending channel commands to queue managers on a remote Tandem
NSK system, you must ensure that your user ID is a member of Tandem NSK
group MQM on the target system. For a list of PCF and MQSC channel
commands, see “Channel command security” on page 127

It is not essential for your user ID to belong to group MQM for issuing:

e PCF commands— including Escape PCFs—from an administration program
e MQI calls from an application program

Getting additional information

For more information about:

e MQSeries for Tandem NSK command sets, see Chapter 4, “Using
administration command sets” on page 33

e MQSeries for Tandem NSK control commands, see Chapter 15, “The
MQSeries control commands” on page 195

e PCF commands and Escape PCFs, see the MQSeries Programmable System

Management manual

e MQI calls, see the MQSeries Application Programming Guide and MQSeries

Application Programming Reference manuals

© Copyright IBM Corp. 1995, 1997

119

Object authority manager

Protecting MQSeries resources

Because MQSeries queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This step
ensures that the resources that a queue manager owns and manages are protected
from unauthorized access, which could lead to the loss or disclosure of the
information. In a secure system, it is essential that none of the following are
accessed or changed by any unauthorized user or application:

» Connections to a queue manager.
e Access to MQSeries objects such as queues, channels, and processes.

e Commands for queue manager administration, including MQSCs and PCF
commands.

e Access to MQSeries messages.
* Context information associated with messages.

You should develop your own policy with respect to which users have access to
which resources.

Understanding the Object Authority Manager (OAM)

By default, access to queue manager resources is controlled through an
authorization service installable component. The authorization service component
supplied with MQSeries for Tandem NSK 2.2 is called the OAM and is
automatically installed and enabled for each queue manager you create, unless you
specify otherwise. In this chapter, the term OAM is used to denote the Object
Authority Manager supplied with this product.

The OAM is an installable component of the authorization service. Providing the
OAM as an installable component gives you the flexibility to:

* Replace the supplied OAM with your own authorization service component
using the interface provided.

e Augment the facilities supplied by the OAM with those of your own
authorization service component, again using the interface provided.

¢ Remove or disable the OAM and run with no authorization service at all.

For more information on installable services, see the MQSeries Programmable
System Management manual.

The OAM manages users’ authorizations to manipulate MQSeries objects, including
gueues, process definitions, and channels. It also provides a command interface
through which you can grant or revoke access authority to an object for a specific
group of users. The decision to allow access to a resource is made by the OAM,
and the queue manager follows that decision. If the OAM cannot make a decision,
the queue manager prevents access to that resource.

120 MQsSeries for Tandem NSK V2R2 System Management Guide

Object authority manager

How the OAM works

The OAM uses the user and group IDs and security features of the Tandem NSK
operating system. Users can access queue manager objects only if they have the
required authority.

Managing access through user groups

Managing access permissions to MQSeries resources is based on Tandem NSK
groups. The OAM maintains authorizations at the group level.

When a user belongs to more than one user group

The authorization that a user has is the union of the authorizations of all the groups
to which the user belongs and the default authorization for all users. You can use
the control command setmqgaut to set the authorizations for a specific group.

Note: Any changes made using the setmgaut command take immediate effect,
unless the object is in use. In this case, the change occurs when the object is next
opened.

The group authorizations are cached when they are computed by the OAM. Any
changes made to a group's authorizations after it is cached are not recognized until
the queue manager is restarted. Avoid changing any authorizations while the
gueue manager is running.

Protecting resources with the OAM
Through OAM you can control:

* Access to MQSeries objects through the MQI. When an application program
attempts to access an object, the OAM checks if the user ID making the
request has the authorization (through its user group) for the operation
requested.

In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

¢ Permission to use MQSC commands; only members of user group mgm, or
those authorized via setmgaut , can execute queue manager administration
commands, for example, to create a queue.

e Permission to use control commands; only members of user group mgm can
execute control commands, for example, creating a queue manager or starting
a command server.

e Permission to use PCF commands.

Different groups of users can be granted different kinds of access authority to the
same object. For example, for a specific queue, one group might be allowed to
perform both put and get operations; another group can only be allowed to browse
the queue (MQGET with browse option). Similarly, some groups might have get
and put authority to a queue, but are not allowed to alter or delete the queue.

Chapter 8. Implementing security control 121

Using OAM commands

Using groups for authorizations
Using groups, rather than individual users, for authorization reduces the amount of
administration required. Typically, a particular kind of access is required by more
than one user. For example, you might define a group consisting of end users who
want to run a particular application. New users can be given access by adding the
appropriate group to their Tandem NSK user ID. Unless MQSeries is installed on a
system using SAFEGUARD to create data sharing groups, each user ID can be
associated with a single, primary group only.

You should keep the number of groups as small as possible. For example, you
can divide users into one group for application users and one for administrators.

Disabling the Object Authority Manager (OAM)
By default, the OAM is enabled. You can disable the OAM by setting the Tandem
NSK environment variable MQSNOAUT before the queue manager is created, as
follows:

PARAM MQSNOAUT 1

However, if you disable the OAM for a queue manager, you cannot restart the OAM
later. You might want to have the OAM enabled and ensure that all users and
applications have access through an appropriate user ID. You can also disable the
OAM for testing purposes only by removing the authorization service stanza in the
gueue manager configuration file (QMINI).

Note: Specifying PARAM MQSNOAUT O does not enable the OAM. The environment
variable must not exist in the environment if the OAM is to be reenabled.

Using the Object Authority Manager (OAM) commands

The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be authorized— your user ID must
belong to the Tandem NSK MQM group. This group should have been set up
before you installed the product. (See “Preparing for installation” on page 15 for
more information.)

If your user ID is a member of group MQM, you have a ‘super user’ authority to the
gueue manager. You are now authorized to issue any MQI request or control
command from your user ID.

The OAM provides two commands that you can invoke from TACL to manage the
authorizations of users. These are:

e setmgaut (Set or reset authority)
e dspmgaut (Display authority)

Authority checking occurs in the following calls; MQCONN, MQOPEN, MQPUT1,
and MQCLOSE. Authority checking is only performed at the first instance of any of
these calls, and authority is not amended until you reset (that is, close and reopen)
the object. Therefore, any changes made to the authority of an object using
setmgaut do not take effect until you reset the object.

122 MQSeries for Tandem NSK V2R2 System Management Guide

Using OAM commands

What to specify when using the OAM commands

The OAM commands apply to the specified queue manager; if you do not specify a
gueue manager, the default queue manager is used. On these commands, you
must specify the object uniquely, that is, you must specify the object name and its
type. You also have to specify the user or group name to which the authority
applies.

Authorization lists

You specify a list of authorizations with setmgaut command. This is a quick way of
specifying whether authorization is to be granted or revoked, and which resources
in which the authorization applies. Each authorization in the list is specified as a
lowercase keyword, prefixed with a plus sign (+) or a minus sign (-). You can use
a plus sign to add the specified authorization or a minus sign to remove the
authorization. You can specify any humber of authorizations in a single command.
For example:

tbrowse -get +put

Using the setmgaut command

Provided you have the required authorization, you can use the setmgaut command
to grant or revoke authorization of a user group to access a particular object. The
following example shows how the setmgaut command is used:

setmgaut -m saturn.

queue.manager -t queue -n RED.LOCAL.QUEUE -g GroupA +browse -get +put

In this example:

This term.... Specifies the....

saturn.queue.manager Queue manager name

gqueue Object type

RED.LOCAL.QUEUE Object name

GroupA ID of the group to be given the authorizations

+browse -get +put Authorization list for the specified queue. There must be no

spaces between the "+" or "-" signs and the keyword.

The authorization list specifies the authorizations to be given, where:

This term... Specifies...

+browse Add authorization to browse (MQGET with browse option)

-get Remove authorization to get (MQGET) messages from the
queue.

+put Add authorization to put (MQPUT) messages on the queue.

Applications started with user IDs that belong to Tandem NSK user group GroupA
have these authorizations.

Chapter 8. Implementing security control ~ 123

Display authority command

The following command revokes put authority on the queue MyQueue to groups
GroupA and GroupB.

setmgaut -m saturn.queue.manager -t queue -n MyQueue -g GroupA -g GroupB -put

For a formal definition of the command and its syntax, see “setmqaut (Set/reset
authority)” on page 236

Authority commands and installable services

The setmgaut command takes an additional parameter that specifies the name of
the authorization service component to which the update applies. You must specify
this parameter if you have multiple authorization components running at the same
time. By default, this is not the case. If the parameter is omitted, the update is
made to the first authorization component it finds, if one exists. By default, this is
the supplied OAM.

Access authorizations

Authorizations defined by the authorization list associated with the setmgaut
command can be categorized as follows:

Authorizations related to MQI calls

Authorization related administration commands

e Context authorizations

e General authorizations, that is, for MQI calls, for commands, or both

Each authorization is specified by a keyword used with the setmgaut and dspmqgaut
commands. These are described in “setmgaut (Set/reset authority)” on page 236

Display authority command

You can use the command dspmqaut to view the authorizations that a specific
user or group has for a particular object. The flags have the same meaning as
those in the setmgaut command. Authorization can be displayed for only one
group or user at a time. See “dspmgaut (Display authority)” on page 214 for a
formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager
QueueManl.

dspmgaut -m QueueManl -t process -n Annuities -g GpAdmin

The keywords displayed as a result of this command identify the authorizations that
are active.

124 mQsSeries for Tandem NSK V2R2 System Management Guide

OAM guidelines

Object Authority Manager (OAM) guidelines

User IDs

Some operations are particularly sensitive and should be limited to privileged users.
For example:

e Creating, deleting, starting, and stopping queue managers

e Accessing certain special queues, such as transmission queues or the
command queue SYSTEM.ADMIN.COMMAND.QUEUE

e Programs that use full MQI context options

e Creating and copying application queues

The special group called MQM that you create is intended for use by product
administrators only. It should never be available to nonprivileged users.

Queue manager volumes

Queues

The volume containing queues and other queue manager data is private to the
product. Obijects in this directory have Tandem NSK user authorizations that relate
to their OAM authorizations. Standard Tandem NSK commands cannot be used to
grant or revoke authorizations to MQI resources because:

* MQSeries objects are not necessarily the same as the corresponding system
object name. See “Volume structure” on page 56 for more information about
this.

e MQSeries objects do not necessarily map to the object’'s NSK security settings.

The authority to access a dynamic queue is based on—but not necessarily the
same as—that of the model queue from which it is derived.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user ID to access an alias queue that resolves to a local queue to
which the user ID has no access permissions.

You should limit the authority to create queues to privileged users. If you do not
limit this authority, users can bypass the normal access control by creating an alias.

Alternate user authority

Alternate user authority controls whether one user ID can use the authority of
another user ID when accessing an MQSeries object. This method is essential
when a server receives requests from a program and the server needs to ensure
that the program has the required authority for the request. The server can have
the required authority, but it needs to know whether the program has the authority
for the actions it has requested.

For example:

e A server program running under user ID PAYSERYV retrieves a request
message from a queue that was put on the queue by user ID USERL1.

Chapter 8. Implementing security control 125

OAM guidelines

e When the server program gets the request message, it processes the request
and puts the reply back into the reply-to queue specified with the request
message.

* Instead of using its own user ID (PAYSERV) to authorize opening the reply-to
gueue, the server can specify some other user ID, in this case, USER1. In this
example, you can use alternate user authority to control whether PAYSERYV is
allowed to specify USER1 as an alternate user ID when it opens the reply-to
gueue.

The alternate user ID is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate user IDs on any MQSeries object. Use of an
alternate user ID does not affect the user ID used by any other resource managers.

Context authority

Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section This part specifies who the message came from. It consists
of the following fields:

e Userldentifier
e AccountingToken
e ApplidentityData

Origin section This section specifies where the message came from, and
when it was put onto the queue. It consists of the following
fields:

e PutApplType

e PutApplName

e PutDate

e PutTime

e ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data can be generated by the application, it can be passed on
from another message, or it can be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application, running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user.

You use context authorization to control whether the user can specify any of the
context options on any MQOPEN or MQPUT1 call. For information about the
context options, see the MQSeries Application Programming Guide. For
descriptions of the message descriptor fields relating to context, see the MQSeries
Application Programming Reference manual.

126 MQsSeries for Tandem NSK V2R2 System Management Guide

OAM guidelines

Remote security considerations
For remote security, you should consider:

Put authority

For security across queue managers you can specify the put
authority that is used when a channel receives a message sent
from another queue manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. The user ID that the message channel
agent is running under.

CTX The user ID in the message context.

Transmission queues

Channel exits

Queue managers automatically put remote messages on a
transmission queue; no special authority is required. However,
putting a message directly on a transmission queue requires
special authorization; see Table 7 on page 129

Channel exits can be used for added security.

For more information, see the MQSeries Intercommunication book.

Channel command security

Channel commands can be issued as PCF commands, MQSC commands, and

control commands

PCF commands

You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote Tandem NSK system. The user
ID, as specified in the message descriptor of the PCF message, must belong to the
mgm group on the target system. These commands are:

e ChangeChannel
e (CopyChannel

e (CreateChannel
e peleteChannel
e PingChannel

e ResetChannel
e StartChannel

e StartChannellnitiator

e StopChannel

e ResolveChannel

See the MQSeries Programmable System Management manual for the PCF
security requirements.

Chapter 8. Implementing security control 127

Authorization specification tables

MQSC channel commands

You can issue MQSC channel commands to a remote Tandem NSK system either
by sending the command directly in a PCF escape message or by issuing the
command using runmgsc in indirect mode. The user ID as specified in the
message descriptor of the associated PCF message must belong to group mgm on
the target system. (PCF commands are implicit in MQSC commands issued from
runmgsc in indirect mode.) These commands are:

e ALTER CHANNEL

e DEFINE CHANNEL

e DELETE CHANNEL

* PING CHANNEL

e RESET CHANNEL

e START CHANNEL

e START CHINIT

* STOP CHANNEL

e RESOLVE CHANNEL

For MQSC commands issued from the runmgsc command, the user ID in the PCF
message is normally that of the current user.

Understanding the authorization specification tables

The authorization specification tables starting on page 129 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:

e Applications that issue MQI calls.
e Administration programs that issue MQSC commands as escape PCFs.
e Administration programs that issue PCF commands.

In this section, the information is presented as a set of tables that specify the

following:

Action to be performed MQI option, MQSC command, or PCF command.
Access control object Queue, process, or queue manager.
Authorization required Expressed as an ‘MQZAOQO ' constant.

In the tables, the constants prefixed by MQZAO _ correspond to the keywords in the
authorization list for the setmgaut command for the particular entity. For example,
MQZAO_BROWSE corresponds to the keyword +browse; similarly, the keyword
MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall and so on.
These constants are defined in the header file CMQZCH in subvolume ZMQSLIB,
which is supplied with the product. See “What the authorization files contain” on
page 135 for more information.

MQI authorizations

An application is allowed to issue certain MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

128 MQsSeries for Tandem NSK V2R2 System Management Guide

Authorization specification tables

For MQOPEN and MQPUT1, the authority check is made on the name of the object
being opened, and not on the name, or names, resulting after a name has been
resolved. For example, an application may be granted authority to open an alias
gueue without having authority to open the base queue to which the alias resolves.
The rule is that the check is carried out on the first definition encountered during
the process of name resolution that is not a queue-manager alias, unless the
gueue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority—which is obtained through an authorization for the queue-manager
object—is required.

Table 7 summarizes the authorizations needed for each call.

Table 7 (Page 1 of 2). Security authorization needed for MQI calls

Authorization required for :

Queue object (1)

Process object

Queue manager object

MQCONN option

Not applicable

Not applicable

MQZAO_CONNECT

MQOPEN Option

MQOO_INQUIRE

MQZAO_INQUIRE (2)

MQZAO_INQUIRE (2)

MQZAO_INQUIRE (2)

MQOO_BROWSE

MQZAO_BROWSE

Not applicable

No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_ ALL_CONTEXT (3) MQZAOQO_INPUT Not applicable No check

MQOO_OUTPUT (Normal queue) (4) MQZAO_OUTPUT Not applicable No check

MQOO_PASS_ IDENTITY_CONTEXT (5) MQZAO_PASS_ Not applicable No check
IDENTITY_ CONTEXT

MQOOQO_PASS_ ALL_CONTEXT (5, 6) MQZAO_PASS Not applicable No check
_ALL_CONTEXT

MQOO_SET_ IDENTITY_CONTEXT (5, MQZAO_SET_ Not applicable MQZAO_SET_

6) IDENTITY_ CONTEXT IDENTITY_ CONTEXT

(7)

MQOO_SET_ ALL_CONTEXT (5, 8) MQZAO_SET_ Not applicable MQZAO_SET_
ALL_CONTEXT ALL_CONTEXT (7)

MQOO_OUTPUT (Transmission queue) MQZAO_SET_ Not applicable MQZAO_SET_

9) ALL_CONTEXT ALL_CONTEXT (7)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_ (10) (10) MQZAO_ALTERNATE_

USER_AUTHORITY USER_ AUTHORITY

(10, 11)

MQPUT1 Option

MQPMO_PASS_ IDENTITY_CONTEXT MQZAO_PASS_ Not applicable No check
IDENTITY_ CONTEXT
(12)

MQPMO_PASS_ ALL_CONTEXT MQZAO_PASS_ Not applicable No check
ALL_CONTEXT (12)

MQPMO_SET_ IDENTITY_CONTEXT MQZAO_SET_ Not applicable MQZAO_SET_

IDENTITY_ CONTEXT
(12)

IDENTITY_ CONTEXT
@)

MQPMO_SET_ ALL_CONTEXT MQZAO_SET_ Not applicable MQZAO_SET_
ALL_CONTEXT (12) ALL_CONTEXT (7)
(Transmission queue) (9) MQZAQO_SET_ Not applicable MQZAO_SET_

ALL_CONTEXT

ALL_CONTEXT (7)

Chapter 8. Implementing security control ~ 129

Authorization specification tables

Table 7 (Page 2 of 2). Security authorization needed for MQI calls

MQPMO_ALTERNATE_ (23) Not applicable MQZAO_ALTERNATE_

USER_AUTHORITY USER_ AUTHORITY
(11

MQCLOSE Option

MQCO_DELETE MQZAO_DELETE (14) Not applicable Not applicable

MQCO_DELETE_PURGE MQZAO_DELETE (14) Not applicable Not applicable

10.

11.
12.

Specific notes:
1.

If a model queue is being opened:

¢ MQZAO_DISPLAY authority is needed for the model queue, in addition to
whatever other authorities (also for the model queue) are required for the
open options specified.

e MQZAO_CREATE authority is not needed to create the dynamic queue.

e The user identifier used to open the model queue is automatically granted
all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

. Either the queue, process, or queue manager object is checked, depending on

the type of object being opened.

. MQOO_INPUT_* must also be specified. This is valid for a local, model, or

alias queue.

. This check is performed for all output cases, except the case specified in note

9.

. MQOO_OUTPUT must also be specified.
. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.

. This authority is required for both the queue manager object and the particular

queue.

. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.

. This check is performed for a local or model queue that has a Usage queue

attribute of MQUS_TRANSMISSION, and is being opened directly for output. It
does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

This authorization allows any AlternateUserld to be specified.

An MQZAO_OUTPUT check is also carried out, if the queue does not have a
Usage queue attribute of MQUS_TRANSMISSION.

130 MQseries for Tandem NSK V2R2 System Management Guide

Authorization specification tables

13. The check carried out is as for the other options specified, using the supplied
alternate user identifier for the specific-named queue authority, and the current
application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following are true:
e A permanent dynamic queue is being closed and deleted.

¢ The queue was not created by the MQOPEN which returned the object

handle being used.

Otherwise, there is no check.

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that

are relevant to the object type:

« MQZAO_CONNECT
« MQZAO_INQUIRE

« MQZAO_SET

« MQZAO_BROWSE

« MQZAO_INPUT

« MQZAO_OUTPUT

« MQZAO_PASS_IDENTITY_CONTEXT

« MQZAO_PASS_ALL_CONTEXT

« MQZAO_SET_IDENTITY_CONTEXT

« MQZAO_SET_ALL_CONTEXT

« MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14 on page 131) and MQZAO_DISPLAY are
classed as administration authorizations. They are not therefore included in

MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.

4. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot issue an MQPUT call to a process object.

Administration authorizations

These authorizations allow a user to issue administration commands. This can be

an MQSC command as an escape PCF message or as a PCF command itself.

These methods allow a program to send an administration command as a message

to a queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs

Table 8 on page 132 summarizes the authorizations needed for each MQSC

command that is contained in Escape PCF.

Chapter 8. Implementing security control

131

Authorization specification tables

Table 8. MQSC commands and security authorization needed

(2) Authorization required for:

Queue object

Process object

Queue manager object

MQSC command

ALTER object

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

CLEAR QLOCAL

MQZAO_CLEAR

Not applicable

Not applicable

DEFINE object NOREPLACE (3)

MQZAO_CREATE (4)

MQZAO_CREATE (4)

Not applicable

DEFINE object REPLACE (3, 5)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

DELETE object

MQZAO_DELETE

MQZAO_DELETE

Not applicable

DISPLAY object

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

Specific notes:

1. The user identifier, under which the program (for example, runmgsc) which

submits the command is running, must also have MQZAO_CONNECT authority
to the queue manager.

. Either the queue, process, or queue manager object is checked, depending on

the type of object.

. For DEFINE commands, MQZAQO_DISPLAY authority is also needed for the

LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT .xxx
object if LIKE is omitted.

. The MQZAO_CREATE authority is not specific to a particular object or object

type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

. This applies if the object to be replaced does in fact already exist. If it does

not, the check is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
gqueue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

Authorizations for PCF commands
Table 9 on page 133 summarizes the authorizations needed for each PCF

command.

132 MQseries for Tandem NSK V2R2 System Management Guide

Authorization specification tables

Table 9. PCF commands and security authorization needed

(2) Authorization required for:

Queue object

Process object

Queue manager object

PCF command

Change object

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

Clear Queue

MQZAO_CLEAR

Not applicable

Not applicable

Copy object (without replace) (3)

MQZAO_CREATE (4)

MQZAO_CREATE (4)

Not applicable

Copy object (with replace) (3, 6)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

Create object (without replace) (5)

MQZAO_CREATE (4)

MQZAO_CREATE (4)

Not applicable

Create object (with replace) (5, 6)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

Delete object

MQZAO_DELETE

MQZAO_DELETE

Not applicable

Inquire object

MQZAO_DISPLAY

MQZAQO_DISPLAY

MQZAO_DISPLAY

Inquire object names

No check

No check

No check

Reset queue statistics

MQZAO_DISPLAY and

Not applicable

Not applicable

MQZAO_CHANGE

Specific notes:

1.

The user identifier under which the program submitting the command is running
must also have authority to connect to its local queue manager, and to open
the administration command queue for output.

. Either the queue, process, or queue-manager object is checked, depending on

the type of object.

. For Copy commands, MQZAQO_DISPLAY authority is also needed for the From

object.

. The MQZAO_CREATE authority is not specific to a particular object or object

type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the SETMQAUT command.

. For Create commands, MQZAO_DISPLAY authority is also needed for the

appropriate SYSTEM.DEFAULT.* object.

. This applies if the object to be replaced already exists. If it does not, the check

is as for Copy or Create without replace.

General notes:

1.

2.

To perform any PCF command, you must have DISPLAY authority on the
gqueue manager.

The special authorization MQZAO_ALL_ADMIN includes all of the following that
are relevant to the object type:

« MQZAO_CHANGE
MQZAO_CLEAR

« MQZAO_DELETE
MQZAO_DISPLAY

MQZAO_CREATE is not included, because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.

. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot use a Clear Queue command on a
process object.

Chapter 8. Implementing security control ~ 133

Authorization files

Understanding authorization files

Note: The information in this section is given for problem determination. Under
normal circumstances, use authorization commands to view and change
authorization information.

MQSeries for Tandem NSK uses a specific file structure to implement security.
You do not have to do anything with these files, except to ensure that all the
authorization files are themselves secure.

Security is implemented by authorization files. From this perspective, there are
three types of authorization:

e Authorizations applying to single object, for example, the authority to put a
message on an queue.

¢ Authorizations applying to a class of objects, for example, the authority to
create a queue.

e Authorizations applying across all classes of objects, for example, the authority
to perform operations on behalf of different users.

Authorization file paths

The path to an authorization file depends on its type. When you specify an
authorization for an object, for example, the queue manager creates the appropriate
authorization files. It puts these files into a volume, the path of which is defined by
the queue manager name, the type of authorization, and where appropriate, the
object name.

Not all authorizations apply directly to instances of objects. For example, the
authorization to create an object applies to the class of objects rather than to an
individual instance. Also, some authorizations apply across the entire queue
manager, for example, alternate user authority means that a user can assume the
authorities associated with another user.

Authorization subvolumes
By default, the authorization subvolume for a queue manager is:
$VOL.<QmgrSubVol>M

On this subvolume, the following file names contain the authorization for:

e all classes: ACLASS

e queue class: QDCLASS

e queue: gueue name (internal)

e process class: PRCLASS

e queue manager class: QMCLASS

e gueue manager: queue manager name (internal)
In the object directories, the class files hold the authorizations related to the entire
class.

For example, if the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:
$VOL.SUBVOLM.QORRJOIM

134 MQsSeries for Tandem NSK V2R2 System Management Guide

the name and path of the corresponding authorization file is:
$VOL.SUBVOLX.XORRJOIM (internal)

Authorization files

Note: In this case, the actual names of the files associated with the queue are not
the same as the name of the queue itself. See “Volume structure” on page 56 for

details.

What the authorization files contain

The authorizations of a particular group are defined by a set of stanzas in the
authorization file. See “Understanding authorization files” on page 134 for more
information. The authorizations apply to the object associated with this file. For

example:

groupB:

Authority=0x00040007

This stanza defines the authority for the group groupB. The authority specification
is the union of the individual bit patterns based on the following assignments:

keyword

connect
browse
get
put
ing
set
passid
passall
setid
setall
altusr
allmgqi
crt
dit
dsp
chg
clr
chgaut
alladm
none
all

Authorization

Formal name

MQZAO_CONNECT

MQZAO_BROWSE

MQZAO_INPUT

MQZAO_OUTPUT

MQZAO_INQUIRE

MQZAO_SET
MQZAO_PASS_IDENTITY CONTEXT
MQZAO_PASS_ALL_CONTEXT
MQZAO_SET_IDENTITY_CONTEXT
MQZAO_SET ALL_CONTEXT
MQZAO_ALTERNATE_USER_AUTHORITY
MQZAO_ALL_MQI

MQZAO_CREATE

MQZAO_DELETE

MQZAO_DISPLAY

MQZAO_CHANGE

MQZAO_CLEAR
MQZAO_AUTHORIZE
MQZAO_ALL_ADMIN

MQZAO_NONE

MQZAO_ALL

Hexadecimal
Value

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x000007FF
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00800000
0x009E0000
0x00000000
O0x009EO7FF

These definitions are made in the header file cmgzc h. In the following example,
groupB has been granted authorizations based on the hexadecimal number
0x40007. This corresponds to:

Chapter 8. Implementing security control

135

Managing authorization files

MQZAO_CONNECT 0x00000001
MQZAO_BROWSE 0x00000002
MQZAO_INPUT 0x00000004
MQZAO_DISPLAY 0x00040000
Authority is: 0x00040007

These access rights mean that anyone in groupB can issue the MQI calls:

e MQCONN
e MQGET (with browse)
e MQPUT

They also have DISPLAY authority for the object associated with this authorization
file.

Class authorization files

The class authorization files hold authorizations that relate to the entire class.
These files are called gdclass — queue, prclass — processes, gmclass — queue
manager, and exist in the same subvolume as the files for specific objects. The
entry MQZAO_CRT in the class file gives authorization to create an object in the
class. This is the only class authority.

All class authorization files

The all class authorization file holds authorizations that apply to an entire queue
manager. This file is called “aclass” and exists in the authorization subvolume of
the queue manager.

The following authorizations apply to the entire queue manager and are held in the
all class authorization file.

Entry... Gives authorization to...
MQZAO_ALTUSER Assume the identity of another user when
interacting with MQSeries objects.
MQZAO_SET_ALL_CONTEXT Set the context of a message when issuing
MQPUT.
MQZAO_SET_IDENTITY_CONTEXT Set the identity context of a message when

issuing MQPUT.

Managing authorization files

Here are some pointers that you need to take into consideration when managing
your authorization files:

1. You must ensure that the authorization files are secure and not write-accessible

by nontrusted general users. See “Authorizations to authorization files” on
page 137.

2. To be able to reproduce your file authorizations, ensure that you do at least
one of the following:

e Back up the authorization subvolume after any significant updates

136 MQseries for Tandem NSK V2R2 System Management Guide

Managing authorization files

e Retain TACL scripts containing the commands used

3. You can copy and edit authorization files. However, you should not normally
have to create or repair them manually. Should an emergency occur, you can
use the information given here to recover lost or damaged authorization files.

Authorizations to authorization files

Authorization files must be readable by any user. However, only user IDs in group
MQM should be allowed to update these files.

The permissions on authorization files, created by the OAM, are:

Owner RWEP
User ID in group MQM NCNC

Do not alter these permissions without reviewing carefully whether there are any
security exposures.

To alter authorizations using the command supplied with MQSeries for Tandem
NSK, your Tandem NSK user ID must belong to the MQM group.

Chapter 8. Implementing security control 137

Managing authorization files

138 MQsSeries for Tandem NSK V2R2 System Management Guide

Invoking the DLQ handler

Chapter 9. MQSeries dead-letter queue handler

MQSeries for Tandem NonStop Kernel, Version 2 Release 2 provides a dead-letter
gueue (DLQ), also known as an undelivered-message queue, which is a holding
gueue for messages that cannot be delivered to their destination queues. Every
gueue manager in a network should have a DLQ.*

Messages are put on the DLQ by queue managers, message channel agents
(MCAs), and applications. All messages on the DLQ should be prefixed with the
dead-letter header structure MQDLH. Messages put on the DLQ by a queue
manager or by a message channel agent always have this header structure.
Applications putting messages on the DLQ should also supply an MQDLH. The
Reason field of the MQDLH structure contains a reason code that identifies why the
message is on the DLQ.

You should have a routine that runs regularly to process messages on the DLQ.
MQSeries supplies a default routine called the dead-letter queue handler (the DLQ
handler), which you invoke using the runmqdlg command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler
by means of a user-written rules table. That is, the DLQ handler matches
messages on the DLQ against entries in the rules table. When a DLQ message
matches an entry in the rules table, the DLQ handler performs the action
associated with that entry.

This chapter contains the following sections:

¢ “Invoking the DLQ handler”

e “DLQ handler rules table” on page 140

e “How the rules table is processed” on page 146
e “Example DLQ handler rules table” on page 148

Invoking the DLQ handler

You invoke the DLQ handler using the runmqgdlq command. You can name the
DLQ that you want to process and the queue manager that you want to use as
follows:

e From the command prompt using parameters. For example:

runmgdlq /IN qrule/ ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER

¢ In the rules table. For example:

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

1 For information about the use of DLQs, see the MQSeries Application Programming Guide.

© Copyright IBM Corp. 1995, 1997 139

Rules table

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

If you do not specify the DLQ or the queue manager as shown above, the default
gueue manager for the installation is used along with the DLQ belonging to that
gueue manager.

The runmqdlg command reads input from the rules table, supplied to the standard
IN file. You associate the rules table with runmqdlq by redirecting IN to the rules
file.

To run the DLQ handler, you must be authorized to access both the DLQ itself and
any message queues to which messages on the DLQ are forwarded. Furthermore,
if the DLQ handler is to be able to put messages on queues with the authority of
the user ID in the message context, you must be authorized to assume the identity
of other users.

For more information about the runmgdlg command, see “runmqdlq (Run
dead-letter queue handler)” on page 230

DLQ handler rules table

Control data

The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:

e The first entry in the table, which is optional, contains control data.

¢ All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is
matched against, and an action to be taken when a message on the DLQ
matches the specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

This section explains the keywords that you can include in a control-data entry in a
DLQ handler rules table. Please note the following:

e The default value for a keyword, if any, is underlined.
e The vertical line (|) separates alternatives, only one of which can be specified.
¢ All keywords are optional.

INPUTQ (QueueName|'_")
This keyword is the name of the DLQ to which the rules table applies. It
lets you name the DLQ you want to process:

1. If you specify a QName parameter on the runmqdlq command, it
overrides any INPUTQ value in the rules table.

2. If you do not specify a QName parameter on the runmqdlg command,
but you specify a value in the rules table, the INPUTQ value in the
rules table is used.

3. If you do not specify a DLQ or you specify INPUTQ(" ") in the rules
table, the DLQ belonging to the queue manager whose name is
supplied on the QMgrName parameter on the runmqgdlq command or on
the INPUTQM keyword in the rules table is processed.

140 MQsSeries for Tandem NSK V2R2 System Management Guide

Rules table

INPUTQM (QueueManagerName|'_")
This keyword is the name of the queue manager that owns the DLQ. It
lets you name the queue manager that owns the DLQ named on the
INPUTQ keyword:

1. If you specify a QMgrName parameter on the runmgdlg command, it
overrides any INPUTQM value in the rules table.

2. If you do not specify a QMgrName parameter on the runmaqdiq
command, the INPUTQM value in the rules table is used.

3. If no queue manager is specified or you specify INPUTQM(' ') in the
rules table, the default queue manager for the installation is used.

RETRYINT (Interval|60)
This keyword is the interval (in seconds) at which the DLQ handler should
attempt to reprocess messages on the DLQ that could not be processed at
the first attempt, and for which repeated attempts are requested. By
default, the retry interval is 60 seconds.

WAIT (YES|NOJ|nnn)
This keyword indicates whether the DLQ handler should wait for further
messages to arrive on the DLQ when it detects that there are no further
messages that it can process.

YES This keyword causes the DLQ handler to wait indefinitely.

NO This keyword causes the DLQ handler to terminate when it
detects that the DLQ is either empty or contains no messages
that it can process.

nnn This keyword causes the DLQ handler to wait for nnn seconds
for new work to arrive before terminating, after it detects that
the queue is either empty or contains no messages that it can
process.

You should specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT
(nnn) for DLQs that have a low level of activity. If the DLQ handler is
allowed to terminate, you should reinvoke it by using triggering.

As an alternative to including control data in the rules table, you can supply the
names of the DLQ and its queue manager as input parameters of the runmqdiq
command. If any value is specified both in the rules table and on input to the
runmgdlg command, the value specified on the runmqdlg command takes
precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Figure 33 on page 142 shows an example rule from a DLQ handler rules table.
This rule instructs the DLQ handler to make three attempts to deliver to its
destination queue any persistent message that was put on the DLQ because
MQPUT and MQPUT1 were inhibited.

Chapter 9. MQSeries dead-letter queue handler 141

Rules table

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

Figure 33. Example rule

All keywords that you can use on a rule are explained in the remainder of this
section. Please note the following:

¢ The default value for a keyword, if any, is underlined. For most keywords, the
default value is * (asterisk), which matches any value.

e The vertical line (|) separates alternatives, only one of which can be specified.

e All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then explains the action
keywords (those that determine how the DLQ handler is to process a matching
message).

Pattern-matching keywords

The pattern-matching keywords that you use to specify values against matched
messages on the DLQ are explained below. All pattern-matching keywords are
optional.

APPLIDAT (ApplldentityData| *)
This keyword is the ApplidentityData value specified in the message
descriptor (MQMD) of the message on the DLQ.

APPLNAME (PutApp/Name|*)
This keyword is the name of the application that issued the MQPUT or
MQPUT1 call, as specified in the PutAppIName field of the message
descriptor (MQMD) of the message on the DLQ.

APPLTYPE (PutApplTypel*)
This keyword is the PutApplType value specified in the message
descriptor (MQMD) of the message on the DLQ.

DESTQ (QueueNamel*)
This keyword is the name of the message queue for which the message is
destined.

DESTQM (QueueManagerName|*)
This keyword is the name of the queue manager of the message queue
for which the message is destined.

FEEDBACK (Feedback|*)
If the MsgType value is MQFB_REPORT, the keyword Feedback
describes the nature of the report.

Symbolic names can be used. For example, you can use the symbolic
name MQFB_COA to identify those messages on the DLQ that require
confirmation of their arrival on their destination queues.

FORMAT (Format*)
This keyword is the name that the sender of the message uses to describe
the format of the message data.

142 MQsSeries for Tandem NSK V2R2 System Management Guide

Rules table

MSGTYPE (MsgType|*)
This keyword is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQMT_REQUEST to identify those messages on the DLQ that
require replies.

PERSIST (Persistencel*)
This keyword is the persistence value of the message. (The persistence
of a message determines whether it survives restarts of the queue
manager.)

Symbolic names can be used. For example, you can use the symbolic
name MQPER_PERSISTENT to identify those messages on the DLQ that
are persistent.

REASON (ReasonCode[*)

This keyword is the reason code that describes why the message was put
to the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQRC_Q_FULL to identify those messages placed on the DLQ
because their destination queues were full.

REPLYQ (QueueNamel*)
This keyword is the name of the reply-to queue specified in the message
descriptor (MQMD) of the message on the DLQ.

REPLYQM (QueueManagerName|*)
This keyword is the name of the queue manager of the reply-to queue, as
specified in the message descriptor (MQMD) of the message on the DLQ.

USERID (Userldentifien*)
This keyword is the user ID of the user who originated the message on the
DLQ, as specified in the message descriptor (MQMD).

Action keywords

The action keywords that you use to describe how a matching message is to be
processed are detailed as follows:

ACTION (DISCARD|IGNORE|RETRY|FWD)
This keyword is the action to be taken for any message on the DLQ that
matches the pattern defined in this rule.

DISCARD This keyword causes the message to be deleted from the
DLQ.

IGNORE This keyword causes the message to be left on the DLQ.

RETRY This keyword causes the DLQ handler to try again to put the
message on its destination queue.

FWD This keyword causes the DLQ handler to forward the
message to the queue named on the FWDQ keyword.

You must specify the ACTION keyword. The number of attempts made to
implement an action is governed by the RETRY keyword. The interval
between attempts is controlled by the RETRYINT keyword of the control
data.

Chapter 9. MQSeries dead-letter queue handler 143

Rules table

FWDQ (QueueName|&DESTQ|&REPLYQ)
This keyword is the name of the message queue to which the message
should be forwarded when ACTION (FWD) is requested.

QueueName This keyword is the name of a message queue. FWDQ(' ')
is not valid.

&DESTQ This keyword causes the queue name to be taken from the
DestQName field in the MQDLH structure.

&REPLYQ This keyword causes the name to be taken from the
ReplyToQ field in the message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ
(&REPLYQ) matches a message with a blank ReplyToQ
field, you can specify REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM| '_")
This keyword identifies the queue manager of the queue to which a
message is to be forwarded.

QueueManagerName
This keyword is the name of the queue manager of the queue to
which a message is to be forwarded when ACTION (FWD) is
requested.

&DESTQM
This keyword causes the queue manager name to be taken from
the DestQMgrName field in the MQDLH structure.

&REPLYQM
This keyword causes the name to be taken from the
ReplyToQ@Mgr field in the message descriptor (MQMD).

FWDQM(' ') is the default value and identifies the local queue
manager.

HEADER (YES|NO)
This keyword specifies whether the MQDLH should remain on a message
for which ACTION (FWD) is requested. By default, the MQDLH remains
on the message. The HEADER keyword is not valid for actions other than
FWD.

PUTAUT (DEF|CTX)
This keyword defines the authority with which messages should be put by
the DLQ handler:

DEF This keyword causes messages to be put with the authority of the
DLQ handler itself.

CTX This keyword causes the messages to be put with the authority of
the user ID in the message context. If you specify PUTAUT
(CTX), you must be authorized to assume the identity of other
users.

RETRY (RetryCount|1)
RETRY is the number of times, in the range 1-999, that an action should
be attempted (at the interval specified on the RETRYINT keyword of the
control data).

144 wmQsSeries for Tandem NSK V2R2 System Management Guide

Rules table conventions

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If the DLQ handler is restarted, the
count of attempts made to apply a rule is reset to zero.

Rules table conventions

The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:

A rules table must contain at least one rule.
Keywords can occur in any order.

A keyword can be included once only in any rule.
Keywords are not case-sensitive.

A keyword and its parameter value must be separated from other keywords by
at least one blank or comma.

Any number of blanks can occur at the beginning or end of a rule, and between
keywords, punctuation, and values.

Each rule must begin on a new line.

For reasons of portability, the significant length of a line should not be greater
than 72 characters.

Use the plus sign (+) as the last nonblank character on a line to indicate that
the rule continues from the first nonblank character in the next line. Use the
minus sign (-) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

Blank lines are ignored.

Each entry in the DLQ handler rules table comprises one or more keywords
and their associated parameters. The parameters must follow these syntax
rules:

— Each parameter value must include at least one significant character. The
delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT (ABC) 3 significant characters
FORMAT('A") 1 significant character
FORMAT (A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant
characters:

FORMAT (')

FORMAT()

FORMAT ()
FORMAT

Chapter 9. MQSeries dead-letter queue handler 145

Rules table processing

Wildcard characters are supported: you can use the question mark (?) in
place of any single character, except a trailing blank; you can use the
asterisk (*) in place of zero or more adjacent characters. The asterisk (*)
and the question mark (?) are always interpreted as wildcard characters in
parameter values.

Wildcard characters cannot be included in the parameters of these
keywords: ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard
matches. However, leading and embedded blanks within strings in
guotation marks are significant to wildcard matches.

Numeric parameters cannot include the question mark (?) wildcard
character. The asterisk (*) can be used in place of an entire numeric
parameter, but cannot be included as part of a numeric parameter. For
example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE (*) Any message type is eligible
MSGTYPE('+') Any message type is eligible

However, MSGTYPE('2x"') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

Numeric parameters must be in the range 0-999. If the parameter value is
in this range, it is accepted, even if it is not currently valid in the field to
which the keyword relates. Symbolic names can be used for humeric
parameters.

If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character
field:

"ABCDEFGH' 8 characters
"AxC*E*Gx' 5 characters excluding asterisks
'*AxC*ExG*[*KxM*0+' 8 characters excluding asterisks

Strings that contain blanks, lowercase characters, or special characters
other than period (.), forward slash (/), underscore (), and percent sign (%)
must be enclosed in single quotation marks. Lowercase characters not
enclosed in quotation marks are folded to uppercase. If the string includes
a quotation, two single quotation marks must be used to denote both the
beginning and the end of the quotation. When the length of the string is
calculated, each occurrence of double quotation marks is counted as a
single character.

How the rules table is processed

The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table and
continues sequentially through the table. When a rule with a matching pattern is
found, the action from that rule is attempted. The DLQ handler increments the retry
count for a rule by one whenever it attempts to apply that rule. If the first attempt
fails, the attempt is repeated until the count of attempts made matches the number

146 MQsSeries for Tandem NSK V2R2 System Management Guide

Rules table processing

specified on the RETRY keyword. If all attempts fail, the DLQ handler searches for
the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is
successful. When each matching rule has been attempted the number of times
specified on its RETRY keyword, and all attempts have failed, ACTION (IGNORE)
is assumed. ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule can consist of
an action only. However, action-only rules are applied to all messages on the
gueue that have MQDLHs and that have not already been processed in
accordance with other rules in the table.

3. The rules table is validated when the DLQ handler is started, and errors are
flagged at that time. (Error messages issued by the DLQ handler are
described in Appendix O, “Messages” on page 347.) You can make changes
to the rules table at any time, but those changes do not take effect until the
DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
gueues with the message option MQPMO_PASS ALL CONTEXT.

5. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

6. Multiple instances of the DLQ handler could run concurrently against the same
gueue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed

The DLQ handler keeps a record of all messages on the DLQ that have been
viewed but not removed. If you use the DLQ handler as a filter to extract a small
subset of the messages from the DLQ, the DLQ handler still has to keep a record
of those messages on the DLQ that it did not process. Also, the DLQ handler
cannot guarantee that new messages arriving on the DLQ are viewed, even if the
DLQ is defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a
periodic rescan of the DLQ is performed to check all messages. For these
reasons, you should ensure that the DLQ contains as few messages as possible. If
messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, do not use ACTION (IGNORE), which leaves messages on the DLQ.
ACTION (IGNORE) is assumed for messages that are not explicitly addressed by
other rules in the table. Instead, for those messages that you would otherwise
ignore, use an action that moves the messages to another queue. For example:

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Chapter 9. MQSeries dead-letter queue handler 147

Example rules table

Similarly, the final rule in the table should process messages that have not been
addressed by earlier rules in the table. For example, the final rule in the table
could be:

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This action causes messages that fall through to the final rule in the table to be
forwarded to the queue REALLY.DEAD.QUEUE, where they can be processed
manually. If you do not have such a rule, messages are likely to remain on the
DLQ indefinitely.

Example DLQ handler rules table

The following is an example rules table that contains a single control-data entry and
several rules:

kkhkkkkkhkkhkhkkhkhkkhkkhhkkhhkhkhkkhhkkhhkhkhkkhhkkhkkhkhkkhkhkkhkkhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkkkkkkkkx*
* An example rules table for the runmgdlg command *
kkhkkkkkkhkkhkkhkkhkhkkhkkhhkkhkhkhkhkkhhkkhkkhkhkkhhkkhkkhkhkkhhkkhkkhkhkkhkhkkhkkhkhkkhkkkhkkhkhkkkkkkkkkx*
* Control data entry

X mmmmm e e e ————————

If no queue manager name is supplied as an explicit parameter to
runmqdlq, use the default queue manager for the machine.

If no queue name is supplied as an explicit parameter to runmqdiq,

use the DLQ defined for the local queue manager.

el G I

nputgm(' ') dinputq(' ')

* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.

If a message is placed on the DLQ because its destination
queue is full, attempt to forward the message to its
destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

* X ok X

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

If a message is placed on the DLQ because of a put inhibited
condition, attempt to forward the message to its

destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

* X F X

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

The AAAA corporation are always sending messages with incorrect
addresses. When we find a request from the AAAA corporation,

we return it to the DLQ (DEADQ) of the reply-to queue manager
(&REPLYQM) .

The AAAA DLQ handler attempts to redirect the message.

* 0% ok X %

148 MQseries for Tandem NSK V2R2 System Management Guide

Example rules table

MSGTYPE (MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdgm(bbbb.2) header(no)

The CCCC corporation considers itself very security

conscious, and believes that none of its messages

will ever end up on one of our DLQs.

Whenever we see a message from a CCCC queue manager on our

DLQ, we send it to a special destination in the CCCC organization
where the problem is investigated.

LR T

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

Messages that are not persistent run the risk of being
lost when a queue manager terminates. If an application
is sending nonpersistent messages, it should be able

to cope with the message being Tost, so we can afford to
discard the message.

* % F X F

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

For performance and efficiency reasons, we like to keep
the number of messages on the DLQ small.

If we receive a message that has not been processed by
an earlier rule in the table, we assume that it
requires manual intervention to resolve the problem.
Some problems are best solved at the node where the
problem was detected, and others are best solved where
the message originated. We don't have the message origin,
but we can use the REPLYQM to identify a node that has
some interest in this message.

Attempt to put the message onto a manual intervention
queue at the appropriate node. If this fails,

put the message on the manual intervention queue at
this node.

E o S B T S R R

REPLYQM('?+') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

Chapter 9. MQSeries dead-letter queue handler

149

Example rules table

150 MQsSeries for Tandem NSK V2R2 System Management Guide

Instrumentation events

Chapter 10. Instrumentation and EMS events

This chapter:

e Provides a brief introduction to MQSeries instrumentation events, which you
can use to monitor the operation of queue managers. For detailed information
about instrumentation events, see the MQSeries Programmable System
Management manual.

e Describes the use of Event Management Service (EMS) events by MQSeries
for Tandem NSK.

MQSeries instrumentation events

Instrumentation events cause event messages to be generated when a queue
manager detects a predefined set of conditions. For example, a Queue Full event
results from the following conditions:

e Queue Full events are enabled for a specified queue.
e An application issues an MQPUT call to put a message on that queue, but the
call fails because the queue is full.
Other conditions that can cause instrumentation events include:
¢ A limit on the number of messages on a queue being reached
e A queue not being serviced within a specified time
e A channel instance being started or stopped
* An application attempting to open a queue specifying a user ID that is not

authorized

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

The event message contains information about the conditions resulting in the event.
It is put onto an event queue. An application can retrieve the event message from
this queue for analysis.

If you define event queues as remote queues, you can put all the event queues on
a single queue manager (for those nodes that support instrumentation events).
You can then use the events generated to monitor a network of queue managers
from a single node.

Types of event
There are four types of instrumentation event:
Queue manager events
Queue manager events are related to the definitions of resources within queue

managers. For example, a queue manager event could be generated when an
application attempts to put a message to a queue that does not exist.

© Copyright IBM Corp. 1995, 1997 151

Instrumentation events

Performance events
Performance events are notifications that a threshold has been reached by a
resource. For example, a performance event could be generated when a

queue-depth limit has been reached or, following an MQGET call, if a queue
has not been serviced within a predefined time.

Channel events

Channel events are reported by channels as a result of conditions detected

during their operation. For example, a channel event could be generated when
a channel instance is stopped.

Trigger events
A trigger event can occur when a queue manager detects that the conditions for
the trigger event have been met. For example, a queue can be configured to

generate a trigger event each time a message arrives. (The conditions for
trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and,
optionally, an application program is started.

Event notification through event queues

When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:

¢ Gets the message from the queue.

e Processes the message to extract the event data. For a description of event

message formats, see the MQSeries Programmable System Management
manual.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

This event quevue... Contains messages from...
SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events

Using triggered event queues

You can set up the event queues with triggers so that, when an event is generated,
the event message put onto the event queue starts a user-written monitoring
application. This application can process the event messages and take appropriate
action. For example, some events can require that an operator be informed, and

others can start an application that performs various administration tasks
automatically.

Enabling instrumentation events
How you enable an instrumentation event depends on the event type:

¢ Queue manager events are enabled by setting attributes on the queue
manager.

e Performance events as a whole must be enabled on the queue manager. You
must also enable specific performance events by setting the appropriate queue

152 MQsSeries for Tandem NSK V2R2 System Management Guide

EMS events

attribute, and identify the conditions, such as a queue-depth-high limit, that will
result in the event.

e Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can put-inhibit the channel event
queue.

You enable and disable the generation of instrumentation events using either of the
following:

¢ MQSC commands. For more information, see the MQSeries Command
Reference manual.

¢ PCF commands for queue managers. For more information, see the MQSeries
Programmable System Management manual.

Event messages

Event messages contain information relating to the origin of an event, including the
type of event, the name of the application that caused the event, and, for
performance events, a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from event messages by user-written administration
programs using the data structures described in the MQSeries Programmable
System Management manual.

Event Management Service (EMS) events

MQSeries for Tandem NSK generates Event Management Service (EMS) event
messages that correspond to the MQSeries queue-manager events, channel
events, and performance events. EMS messages may also be generated that
correspond to the message entries in the MQSeries logs and to FFSTs. These
event messages can alert system operators and administrators to software
conditions that could have an adverse effect on the MQSeries operating
environment.

EMS template files supplied with MQSeries for Tandem NSK
The following files are supplied in subvolume ZMQSSYS:

ZMQSTMPL (file code 839)
An EMS template object file containing the formatting templates for the EMS
events generated by MQSeries.

ZMQSDDL (file code 101)
The Data Definition Language schema for the EMS events generated by
MQSeries.

ZMQSC (file code 101)
Compiled output (C) from the DDL compiler of definitions of the EMS events
generated by the product.

ZMQSCOB (file code 101)
Compiled output (COBOL) from the DDL compiler of definitions of the EMS
events generated by the product.

Chapter 10. Instrumentation and EMS events 153

EMS events

ZMQSPAS (file code 101)
Compiled output (PASCAL) from the DDL compiler of definitions of the EMS
events generated by the product.

ZMQSTACL (file code 101)
Compiled output (TACL) from the DDL compiler of definitions of the EMS events
generated by the product.

ZMQSTAL (file code 101)
Compiled output (TAL) from the DDL compiler of definitions of the EMS events
generated by the product.

The subvolume ZMQSSYS contains the EMS template file SMQSTMPL, from which
the template file ZMQSTMPL is generated. The file ZMQSTMPL is ready for
integration with your system'’s event templates using COUP and SYSGEN. The
source of the event templates is supplied, so that you can modify the formatting of
the events when they are used in your environment.

For example, you might not be interested in displaying all of the information that is
contained in an event, or you might want to add or change text that is displayed
along with the information in the event. See the Tandem documentation for a
description of the EMS event template source language, and for the procedures
used to compile the definitions to produce an alternative ZMQSTMPL file.

Integrating the MQSeries EMS event templates

The template object file must be integrated into your system’s resident and
nonresident EMS template files, so that programs such as VIEWPOINT and
EMSDIST can format and display MQSeries EMS events.

A procedure for integrating the MQSeries EMS templates into the system templates
is described in the remainder of this section. Note that different procedures might
be preferred in your installation.

1. Determine the names of the current system templates using the COUP
command INFO ALLPROCESSORS: note the values displayed for the
EMSATEMPLATES parameter. For example:

$DEV2 ZMQSSYS 425> coup
CONFIGURATION UTILITY PROGRAM - T9023D30 - (26MAY95) SYSTEM
\RAPTOR

COPYRIGHT TANDEM COMPUTERS INCORPORATED 1987-1994

CONFIG $SYSTEM.SYS06.0SCONFIG

1) info allprocessors
EMSATEMPLATES (RESIDENT $SYSTEM.EMS.NEWRES,

NONRESIDENT $SYSTEM.EMS.NEWNRES)

SYSTEMAID (NAME \RAPTOR, NUMBER 001)
SYSTEM*TIME (GMTMOFFSET -05:00, DST USA66)
DP2_UPSOPTION (OFF)

2) exit

154 mQsSeries for Tandem NSK V2R2 System Management Guide

2.

3.

EMS events

Run the TEMPLI compiler to create new system template files combining the
current system templates with the new MQSeries templates. This is a two-step
process:

a. Create a text file containing the following commands:

FILE <current NONRESIDENT system template file>
FILE <MQSeries install volume>.ZMQSSYS.ZMQSTMPL
EXIT

For example:

FILE $SYSTEM.SYS06.TEMPLATE
FILE $DEV2.ZMQSSYS.ZMQSTMPL
EXIT

b. Run the TEMPLI compiler, specifying the new text file as input:

TEMPLI /IN <command file>/<new resident template file>, <new
nonresident template file>

For example, if the command file you created is called TEMGUIDE and you
are creating new template files in $SYSTEM.EMS:

TEMPLI /IN TEMGUIDE/$SYSTEM.EMS.NEWRES, $SYSTEM.EMS.NEWNRES

The compilation of the new template files can take several minutes, as all
the EMS event templates required on your system are processed.

Using the COUP command, configure your system to use the new EMS event
templates in place of the current templates:

ASSUME ALLPROCESSORS

ALTER EMS~TEMPLATES(RESIDENT <new resident template file>,
NONRESIDENT <new nonresident template file>)

EXIT

Note: In order to make this change permanent, you must update the system
using SYSGEN.

For further information about EMS templates, see the Tandem DSM Template
Services Manual. This manual also describes how to use SYSGEN to perform
this task.

Defining the PARAM MQEMSEVENTS

To complete the enablement of MQSeries EMS events, you must ensure that the
PARAM MQEMSEVENTS is correctly defined. The value is a four-character string
interpreted as a bit map, as follows:

EMS message Bit-map entry MQEMSEVENT value
FFST 0x00000001 1

START / STOP 0x00000002 2
PERFORMANCE 0x00000004 4
CHANNEL 0x00000008 8
QUEUE MANAGER 0x00000010 16
MESSAGE 0x00000020 32
ERROR 0x00000040 64

ALL 0x0000007F 127

Chapter 10. Instrumentation and EMS events 155

EMS events

Thus, to switch on all EMS events for MQSeries, you must define the following
PARAM in the TACL environment from which any administration commands are
issued:

PARAM MQEMSEVENTS 127

This definition is also required in server class definitions of all server classes for
MQSeries. Each server class may be configured with different options. See
“Changing the parameters of Pathway server classes” on page 45 for more
information.

By default, no EMS events are generated (that is, the PARAMs are not defined).

Using an alternative collector

On a Tandem system, the default EMS event collector is called $0, and is always
present. All EMS events generated by an MQSeries queue manager are sent to
the default collector. If you want a different collector to collect EMS events for a
gueue manager, modify the EMSColTector entry in the Configuration stanza in the
QMINI file, and restart the queue manager. You may specify a different EMS event
collector for each queue manager.

Writing programs to process MQSeries EMS events

You can write an application to monitor an MQSeries queue manager by
processing EMS event messages. Such an application could also affect the
operation of the queue manager by issuing PCF commands in response to the
EMS event messages generated.

The files ZMQSC, ZMQSTAL, ZMQSCOB, ZMQSPAS, and ZMQSTACL supplied
with MQSeries for Tandem NSK in the ZMQSSYS subvolume define the tokens
contained in the MQSeries EMS event messages in C, TAL, COBOL, PASCAL, and
TACL. These definitions could be used by an administration program to
understand the format of the messages.

For further information about the EMS events generated by MQSeries, see

Appendix N, “EMS event template used by MQSeries for Tandem NSK” on
page 343.

156 MQsSeries for Tandem NSK V2R2 System Management Guide

Using TM/MP

Chapter 11. Understanding transactional support and
messaging

Applications that use the Message Queue Interface (MQI) let you execute put and
get operations under syncpoint control. In MQSeries for Tandem NSK, there are
two transactional operations as follows:

e Commit — the act of completing a transaction so that changes to the database
are recorded and stable. Protected resources are released after the
transaction is committed.

e Back out— an operation that reverses all the changes made during the current
unit of recovery or unit of work. After the operation is complete, a new unit of
recovery or unit of work begins.

Commit and back out are provided as part of the TM/MP (or TMF) Transaction
environment on Tandem NSK. On MQSeries for Tandem NSK, MQPUT, MQGET,
and MQPUTL1 are syncpointed operations by default. That is, unless no
syncpointing is requested explicitly by an application, a TMF transaction must be in
progress or the MQI call fails.

Using the NonStop TM/MP (Transaction Manager)

MQSeries for Tandem NSK 2.2 relies on the transaction management facilities of
Tandem’s NonStop TM/MP to maintain transaction integrity.

The NonStop TM/MP transaction system provides transactional protection and
concurrency, and object-catalog and message integrity.

MQSeries handles TM/MP transactions transparently. If you have a TM/MP
transaction in progress when an MQI function is called, any put and get operations
with the syncpoint option become part of the same transaction. That is, the
updates to the queues occur when the transaction is committed. In the event of
volume recovery, all committed transactions are applied to the database files, and
uncommitted transactions are backed out. A transaction backout reapplies
before-images to database records to undo the effects of a cancelled transaction.
Changes do not occur until a commit operation is complete.

If the user application has a transaction in progress and attempts an MQI call out of
syncpoint, MQSeries suspends the current, inherited transaction, starts one of its
own, commits that transaction, and resumes the original transaction prior to
returning control to the user application. Updates to queues resulting from put and
get operations occur immediately.

© Copyright IBM Corp. 1995, 1997 157

TM/MP configuration requirements

Syncpointing limits
A TMF transaction can have a maximum of 5000 locks. This limitation restricts the
number of messages that can be MQPUT or MQGET in a single TMF transaction.
To calculate the number of messages (N) of length (LEN) within a single
transaction, use the following formula:

N = INT(5000/(4 + INT (LEN/4)))

That is, for:

1 KB messages, N = 1250
10 KB messages, N = 833
100 KB messages, N = 172
1 MB messages, N = 19

4 MB messages, N = 4

If N is exceeded, error 2024 (MQRC_SYNCPOINT_LIMIT_REACHED) is returned
and the the transaction is backed out: no messages are put or got. If an
application started the transaction, it must cancel the transaction.

For complex operations, the effective value of N will be smaller. For example,
when 4 MB messages are being sent, the batch size for the channel should be no
larger than 2 MB to allow for messages to be dequeued and possibly enqueued to
the dead letter queue in the event of failure.

Configuration requirements for TM/MP and MQSeries for Tandem NSK

Your Tandem system needs to be configured with TMF (TM/MP) auditing enabled
for all volumes that are to contain queue managers or queues. Use the TMFCOM
command status datavols to determine the status of auditing on any volume on
your system. (Note that you have to be SUPER.SUPER to use TMFCOM.) In
addition, the TMF audit trails configured for the data volumes that support queue
managers must be large enough to allow for the peak rate and size of message
traffic expected on all queue managers that use these volumes.

Since misbehaved applications can cause long-running transactions, the TMF
system should be configured automatically to cancel long-running transactions.
The size of the audit trail, and the time limit on long-running transactions, are
application-dependent tuning parameters. The audit trail configured for MQSeries
does not need to be configured for dumping to tape.

Monitoring

Use the TMFCOM interface to monitor the status of TMF, with MQSeries running.
Use the status tmf and status datavols commands to investigate the general
status of TMF, and the status of individual data volumes.

158 MQsSeries for Tandem NSK V2R2 System Management Guide

TM/MP configuration requirements

Audit-trail size

Approximate TM/MP audit-trail sizings can be calculated using the following
formula. This provides TM/MP audit-trail usage in bytes for a message of a given
length:

(message-data length + 2 KB + [1 KB] + (message-data length - 2 KB) / 4 KB x 40) x 2

where:
* message-data length is the length of the MQSeries message.

¢ 2 KB represents the cumulative size of MQSeries headers, file structures,
object catalogue, and key lengths.

e 1 KB is optional and represents the transmission header (required only if
messages are to be sent across a channel).

e (message data length - 2KB) / 4KB x 40 represents the overhead incurred if
the overflow file is used. For this to occur, the message length must be greater
than 2 KB. (If this value is negative, ignore it; do not subtract it.)

e x 2 represents the TMF pre-image and post-image audit-trail-space usage.

Troubleshooting

EMS events or FFST reports indicating that BEGINTRANSACTION commands
have been disabled by TMF usually mean that the audit trail is filled. This can
occur because the audit trail is too small, or because a badly behaved application
has held a long-running transaction and TMF has not terminated it in time.

In this instance:

* Increase the size of the audit trail.
or
 |dentify the cause of the long-running transaction and correct it.
or
* Reconfigure TMF to terminate long-running transactions after a shorter period.

EMS events and FFST reports indicating that TMF is not running indicate a
configuration problem with TMF that must be corrected before running the queue
manager again. In general, the MQSeries queue manager requires TMF to be
running correctly to operate in any capacity. Although messages are not lost or
corrupted, the queue manager is not able to operate without TMF.

Chapter 11. Understanding transactional support and messaging 159

TM/MP configuration requirements

160 MQsSeries for Tandem NSK V2R2 System Management Guide

Fault tolerance

Chapter 12. Recovery and restart

A messaging system ensures that messages entered into the system are delivered
to their destination. A messaging system must also provide a method of tracking
the messages in the system, and of recovering messages if the system fails for any
reason.

MQSeries for Tandem NSK ensures that messages are not lost by using the
Tandem NonStop Transaction Manager (TM/MP). TM/MP provides transaction
protection, queue-file consistency, and queue-file recovery.

The TM/MP subsystem manages the complex operations for current transactions
and database consistency, both user operations and MQSeries operations, making
these operations transparent to both users and application programs.

A recovery restores the queue manager to the state it was in when the queue
manager stopped. Any transactions that are in process are rolled back, removing
from the queues any messages that were not committed at the time the queue
manager stopped. Recovery restores all persistent messages; nonpersistent
messages are lost during the process.

The remainder of this chapter introduces the concepts of recovery and restart in
more detail and explains how to recover if you experience any problems. It covers
the following topics:

e “Fault tolerance and recovery”
e “Backing up and restoring” on page 162

Fault tolerance and recovery

If you properly configure the MQSeries Version 2.2 product and the NSK system
software and hardware (for example, all components are configured as redundant
or mirrored devices or process pairs as prescribed by Tandem), the failure of any
single hardware or software component does not result in loss, duplication or
corruption of data or the permanent loss (that is, requiring outside intervention to
restore) of any function of the system. MQSeries for Tandem NSK, Version 2.2
can recover from a single point of failure while maintaining data integrity as
specified above.

Repeated consecutive failures (for example, fail-recovery looping) of the same
software component is trapped once a configured maximum number of failures is
exceeded. In such instances, or in the case of multiple-point failure, the MQSeries
product cannot preserve gueue integrity.

© Copyright IBM Corp. 1995, 1997 161

Backup and restore

Backing up and restoring

Periodically, you might want to make a backup of your queue manager data to
provide protection against possible corruption due to hardware failures.

Backing up MQSeries

To back up a queue manager’'s data, you must:

1.

Ensure that the queue manager is not running.
If your queue manager is running, stop it with the endmgm command.

Note: If you try to make a backup of a running queue manager, the backup
might not be consistent due to updates in progress when the files were copied.

. Locate the volumes and subvolumes under which the queue manager stores its

data

You can use the information in the configuration files to determine these
directories. For more information, see Chapter 13, “Configuration files” on
page 163.

Note: If you have difficulty understanding the names that appear in the
directory it is because the names are transformed to ensure that they are
compatible with the platform on which you are using MQSeries. For more
information about name transformations, see “Volume structure” on page 56.

. Make copies of all the queue manager’s data and log file subvolumes.

Ensure that you do not overlook any of the files.

Restoring MQSeries

To restore a backup of a queue manager’'s data, you must:

1.
2.

Ensure that the queue manager is not running.

Locate the subvolumes under which the queue manager stores its data. This
information is located in the configuration file.

3. Empty the subvolumes into which you are going to place the backed up data.

4,

Copy the backed up queue manager data into the correct places.

Check the resulting directory structure to ensure that you have all of the required
directories.

Check that the MQSeries and queue manager configuration files are consistent so
that MQSeries can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager starts.

162 MQsSeries for Tandem NSK V2R2 System Management Guide

MQSeries configuration file

Chapter 13. Configuration files

MQSeries for Tandem NSK uses configuration files to hold basic product
configuration information. This chapter describes what configuration files are and
how you can use them to change the way that queue managers operate. It
contains the following sections:

e “What are configuration files?”

» “MQSeries configuration file (MQSINI)”

¢ “Queue manager configuration file (QMINI)” on page 165
e “Editing configuration files” on page 172

What are configuration files?

Configuration files define optional values for individual queue managers and for
MQSeries on the node as a whole. These files are referred to as ini files or stanza
files. A configuration file contains one or more stanzas, where a stanza is a group
of lines in the file that together have a common function or define part of a system.
For example, there are stanzas associated with logs, channels, and installable
services.

Configuration files can be modified automatically by commands that change the
configuration of queue managers on the node and also by editing them manually.
In general, however, configuration files should not be modified manually while
gueue managers are running.

There are two types of configuration file:

» The MQSeries configuration file, MQSINI, which specifies values for MQSeries
on the node as a whole. There is normally one MQSeries configuration file per
node.

* Queue manager configuration files, QMINI, which specify values for specific
gueue managers. There is one queue manager configuration file for each
gueue manager on the node.

MQSeries configuration file (MQSINI)

The MQSeries configuration file, MQSINI, contains information relevant to all the
gueue managers on an MQSeries installation node. It is created automatically
during installation. In particular, the MQSeries configuration file is used to locate
the data associated with each queue manager. The MQSeries configuration file is
located in the ZMQSSYS subvolume, by default $SYSTEM.ZMQSSYS.MQSINI. An
environment variable, MQMACHINIFILE, is provided for use on systems where the
MQSeries configuration file does not have the default name or location.

© Copyright IBM Corp. 1995, 1997 163

MQSeries configuration file

What the MQSeries configuration file contains

The MQSINI file contains installation-wide defaults, the names of the queue
managers, the name of the default queue manager, and the location of the files
associated with each of them. The following stanzas can appear in MQSINI:

AllQueueManagers
Specifies values for installation-wide file locations and volumes.

DefaultQueueManager
Specifies the default queue manager for the installation. This queue manager
processes MQSC commands when a queue manager name is not explicitly
specified. The stanza is automatically updated if you create a new default
queue manager. If you inadvertently create a default queue manager and then
want to revert to the original, you must alter this stanza manually.

QueueManager
There is one such stanza for each queue manager. The QueueManager stanza
specifies the queue manager name and the location of the files associated with
that queue manager. The names of these files are based on the queue
manager name but are transformed if the queue manager name is not a valid
file name.

Figure 34 shows an example MQSINI file.

#***#

#* Module Name: MQSINI *#
#* Type : MQSeries machine-wide ini file *
Function : Define configuration data for all queue managers =*#
#* *#

#***#

#* Notes

*#

#+* 1) This file defines configuration data for all queue managers x#

#*

*#

#***#

Al1QueueManagers:
MQSVoTlume=$DATAQ

/Volume for the installation

MQSExePath=$DATAO.ZMQSEXE /Location of product executables

QMDefaultVolume=$DATAO /Default volume for queue manager creation
QueueManager:

Name=MT01 /A queue manager called MTO1

QMVolume=$DATAOQ

QMSubvoTlume=MTO1
DefaultQueueManager:

Name=MT0O1

/Volume of the queue manager
/Subvolume prefix for the queue manager

/Name of the default queue manager (optional)

Figure 34. Example MQSeries configuration file (MQSINI). The MQSINI file is initialized during installation with the
volume and subvolume information you provide.

Note: Because the MQSeries configuration file is used to locate the data
associated with queue managers, a nonexistent or incorrect configuration file can
cause some or all MQSeries commands to fail. Also, applications cannot connect
to a queue manager that is not defined in the MQSeries configuration file.

164 MQsSeries for Tandem NSK V2R2 System Management Guide

Queue manager configuration file

Queue manager configuration file (QMINI)

A queue manager configuration file, QMINI, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
gueue manager. It is created automatically when the queue manager with which it
is associated is created.

The file is held in the subvolume of the queue manager. For example, the path
and name for a configuration file for a queue manager called QMNAME could be
$VOLUME .QMNAMED . QMINI.

Note: The queue manager name can be up to 48 characters in length. A
subvolume name is generated based on the queue manager name. This process
is known as name transformation, and ensures the name is both valid and unique.

What the queue manager configuration file contains

The stanzas that can appear in a queue manager configuration file, QMINI, are as
follows:

Configuration
This stanza defines the global configurations for the queue manager.

The following entries can be modified:

HomeTerminalName
PathmonProcName
EMSCoTlectorName
MinId1eMCALU62Responders
MinId1eMCATCPResponders
MinIdleMCACallers
MinIdleLQMAgents

For more information about these entries, see “Configurable queue-manager
properties” on page 50. Other entries in this stanza must not be changed.

DefaultProcess
This stanza defines the default values used for MQSeries processes. Entries in
this stanza must not be changed.

ECBoss
This stanza defines the configuration of the MQSeries EC Boss process. The
ExpectedNumECs entry defines the number of EC processes for this queue
manager. This value must correspond with the PATHWAY configuration for the
queue manager. For more information, see “Configurable queue-manager
properties” on page 50. Other entries in this stanza must not be changed.

EC
The MCAAgentPriority and LQMAgentPriority entries of the EC stanza, which
control the process priorities of agent processes, can be modified. For more
information, see “Configurable queue-manager properties” on page 50. Other
entries in this stanza must not be modified.

Chapter 13. Configuration files 165

Queue manager configuration file

The following stanzas define the specific operating parameters for each MQSeries
process type. Typically, you do not need to change the values of these
parameters. However, see “Minimizing resource usage for remote operations” on
page 167.

MCACaller
MCATCPResponder
MCALU62Responder
MQIServer
LQMAgent
Channellnitiator
TCPListener

TuningParameters
This stanza defines internal tuning parameters used by the local queue manager
agents. You should not change these values.

Service
Specifies the name of one of the installable services, and the number of entry
points to that service. There is one stanza for each service. These services
are available:

¢ Authorization service
* Name service

The Object Authority Manager (OAM) is enabled by default: the authorization
service stanza and its associated ServiceComponent stanza are present in
QMINI by default.

You can disable the OAM only by:
1. Deleting the queue manager (using the ditmgm command)

2. Creating the queue manager again (using the crtmgm command) with the
MQSNOAUT environment variable set.

3. Deleting the authorization service stanzas from QMINI.

The name service stanza must be added manually to QMINI if you want to
enable the supplied name service.

ServiceComponent
These stanzas define the service component associated with a particular
service. There can be more than one service component stanza for each
service, but each service component stanza must match the corresponding
service stanza. See the MQSeries Programmable System Management manual
for more information.

Channels
This stanza contains information about the channels. As well as defining the
maximum number of channels (MaxChannels) that can be defined for the queue
manager, a second entry (MaxActiveChannels) limits the number of channels
that can be active simultaneously. MaxActiveChannels must not be greater than
MaxChannels. The channels stanza also contains an entry
(ChanInitDiscInterval) that can be used to tune the performance of the
channel initiator. For more information about these entries, see “Configurable
queue-manager properties” on page 50. Other entries in this stanza must not
be modified.

166 MQsSeries for Tandem NSK V2R2 System Management Guide

Queue manager configuration file

See the MQSeries Intercommunication book for more information about
channels.

TCPConfig
Specifies network-protocol configuration parameters. These stanzas override
the default parameters for channels. Only stanzas representing changed default
values are actually present.

TCPKeepAlive, if specified, causes TCP/IP periodically to check that the other
end of the connection is still available. If it is not, the channel is closed.

See the MQSeries Intercommunication book for more information.

For information about modifying the TCPPort, TCPNumListenerPorts, and
TCPListenerPort entries, see “Configurable queue-manager properties” on
page 50.

Minimizing resource usage for remote operations

If a queue manager is known to be required to deal only with messages smaller
than 4 MB, some resource can be saved by altering the ExtPoo1Size parameter for
the components used in remote operations.

These components are:

MCACaller
MCATCPResponder
MCALU62Responder
MQIServer

The default value of ExtPoolSize for these process types is 5000000. If these are
reduced to 256000, for example, memory-resource usage by these processes is
significantly decreased. However, messages greater than 256 KB will not be able
to be sent over channels.

Care should be exercised when altering these parameters. The queue manager
must be stopped and started before any changes take effect.

Chapter 13. Configuration files 167

Queue manager configuration file

#***#

#* Module Name: QMINI *#
#*x Type : MQSeries queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* *f
#***#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#* *

#***#

Configuration:
PathmonProcName=$TEST
ServerClassName=MQS-ECBOSS
EMSCollectorName=$0
HomeTerminalName=$T0. #a
ShutdownFileName=SHUTDOWN
TraceOptionsFileName=TRACEOPT
RuntimeFileName=RUNTIME
StatableFileName=STATABLE
ChannelDefFileName=CHDEFS
DefaultCCSID=819
DefaultTraceOptions=0
MaxIdleAgents=10
MinId1eMCALU62Responders=0
MinId1eMCATCPResponders=0
MinId1eMCACallers=0
MinIdleLQMAgents=1
MaxIdleAgentReuse=10

DefaultProcess:
ExeFileName=DEFAULT
TraceVolSubvol=$DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$§DATAO.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPool1Size=256000
IniPoo1Size=256000
Priority=175

ECBoss:
ExeFileName=MQECBOSS
TraceVolSubvol=§DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$DATAQ.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPool1Size=5000000
IniPoo1Size=256000
Priority=175
ExpectedNumECs=1

Figure 35 (Part 1 of 4). Example queue manager configuration file (QMINI)

168 MQseries for Tandem NSK V2R2 System Management Guide

Queue manager configuration file

EC:
ExeFileName=MQEC
TraceVolSubvol=§DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$DATAO.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175
LQMAgentExe=MQLQMAG
MCACallerExe=MQMCACAL
MCATCPResponderExe=MQTCPRES
MCALU62ResponderExe=MQLU6RES
MCAAgentPriority=165
LQMAgentPriority=165
StopProcessTimer=3000
Id1eProcessTimer=3000

MCACaller:
ExeFileName=MQMCACAL
TraceVolSubvol=$DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$§DATAO.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=5000000
IniPoo1Size=256000
Priority=175

MCATCPResponder:
ExeFileName=MQTCPRES
TraceVolSubvol=§DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$DATAO.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=5000000
IniPoo1Size=256000
Priority=175

Figure 35 (Part 2 of 4). Example queue manager configuration file (QMINI)

Chapter 13. Configuration files 169

Queue manager configuration file

MCALU62Responder:
ExeFileName=MQLU6RES
TraceVolSubvol=§DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$DATAO.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=5000000
IniPoo1Size=256000
Priority=175

MQIServer:
ExeFileName=MQMQISER
TraceVolSubvol=$DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$DATAO.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=5000000
IniPoo1Size=256000
Priority=175

LQMAgent:

ExeFileName=MQLQMAG
TraceVolSubvol=$DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$§DATAO.TESTL
ErrorPrefix=ER

DebugMode=0

IPCCTimeOut=50
IPCCMemSetSize=32000
MemSetSize=16000
ExtPool1Size=5000000
IniPoo1Size=256000
Priority=175

ChannelInitiator:

ExeFileName=MQCHIN

TraceVolSubvol=$DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$DATAQ.TESTL
ErrorPrefix=ER

DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175

Figure 35 (Part 3 of 4). Example queue manager configuration file (QMINI)

170 MQsSeries for Tandem NSK V2R2 System Management Guide

Queue manager configuration file

TCPListener:
ExeFileName=MQTCPLIS
TraceVolSubvol=§DATAO.TESTL
TracePrefix=TR
ErrorVolSubvol=$DATAO.TESTL
ErrorPrefix=ER
DebugMode=0
IPCCTimeOut=10000
IPCCMemSetSize=32000
MemSetSize=16000
ExtPoo1Size=256000
IniPoo1Size=256000
Priority=175

Service:
Service=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.TANDEM.auth.service
Module=MQOAM
ComponentDataSize=0
ComponentID=0

TuningParameters:
KerneTMemSetSize=32000
ObjCatMemSetSize=32000
QueueMemSetSize=16000
MQGETActiveQPol11=50
MQGETInactiveQPo11=1000

Channels:

RetryAll=1
MaxChannels=10
MaxActiveChannels=10
MaxTries=3
MaxTriesInterval=10
ChanInitDiscInterval=10

TCPConfig:

TCPPort=1414
TCPNumListenerPorts=1
TCPListenerPort=1414
TCPKeepAlive=1

Figure 35 (Part 4 of 4). Example queue manager configuration file (QMINI)

Chapter 13. Configuration files 171

Editing configuration files

Editing configuration files

You can edit the default configuration files to alter the system defaults. However,
before editing any configuration file, ensure that you have a backup that you can
restore if necessary, and that any affected queue managers are stopped.

You might have to edit your configuration files if, for example:
* You lose a configuration file (recover from backup, if possible).

* You need to change the distribution of your queue manager across CPUs.

* You need to change your default queue manager (for example, if you
accidentally delete the existing queue manager).

* You are advised to do so by your IBM Support Center.

For more information, see “Configurable queue-manager properties” on page 50.

Implementing changes to configuration files
If you edit a configuration file, the changes are not implemented immediately by the
gueue manager. Changes made to the MQSeries configuration file (MQSINI) take
effect only when MQSeries queue managers are created or started. Changes
made to a queue manager configuration file (QMINI) take effect when the queue
manager is started. If the queue manager is running when you make the changes,
you must stop and then restart the queue manager for any changes to be
recognized by the system.

Recommendations for configuration files
When you create a new queue manager, you should:

e Back up the MQSeries configuration file
e Back up the new queue manager configuration file

172 MQSeries for Tandem NSK V2R2 System Management Guide

Preliminary checks

Chapter 14. Determining Problems

This chapter provides troubleshooting information for MQSeries for Tandem NSK.
To determine a problem, you should list the symptoms and then trace them back to
the cause.

Performance problems caused by the limitations of your hardware cannot be solved
immediately. If you believe that the cause of the problem is in the MQSeries code,
contact your IBM Support Center. This chapter contains these sections:

e “Making a preliminary check”

e “Common programming errors” on page 176

e “What to do next” on page 177

e “Application design considerations” on page 180

» “Effect of message length” on page 180

e “Error logs” on page 185

e “Dead-letter queues” on page 188

e “Configuration files and problem determination” on page 188
e “Using MQSeries trace” on page 188

e “First Failure Support Technology (FFST)” on page 190

Making a preliminary check
The cause of a problem can be in:

* MQSeries

e Your network

e An application

e The Tandem system software

The sections that follow provide questions that you might want to consider. Answer
the questions and make a note of any issues that might be relevant to the problem.

Has MQSeries run successfully previously?
If MQSeries has not successfully run previously, you might not have set it up
correctly. See Chapter 2, “Installing MQSeries for Tandem NSK Version 2.2” on
page 15 to check that you have carried out all the steps correctly.

Are there any error messages?

MQSeries uses error logs to capture messages concerning the operation of
MQSeries itself, any queue managers that you start, and error data coming from
the channels that are in use. Check the error logs for any messages have been
recorded that are associated with your problem.

See “Error logs” on page 185 for information about the contents of the error logs
and their locations.

© Copyright IBM Corp. 1995, 1997 173

Preliminary checks

Are there any return codes explaining the problem?
If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, refer to the MQSeries Application Programming Reference
manual for a description of that return code.

Can you reproduce the problem?
If you can reproduce the problem, consider the following questions:

* Is the problem caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

* |s the problem caused by a program?

e Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application for errors.

Have any changes been made since the last successful run?
When you are considering changes that might recently have been made, think
about the MQSeries system, and also about the other programs it interfaces with,
the hardware, and any new applications. Consider also the possibility that a new
application that you are not aware of might have been run on the system.

* Have you changed, added, or deleted any queue definitions?

e Have you changed or added any channel definitions? Changes may have
been made to either MQSeries channel definitions or any underlying
communications definitions required by your application.

» Do your applications deal with return codes that they might get as a result of
any changes you have made?

Has the application run successfully before?

If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Consider the following questions:
e Have any changes been made to the application since it last ran successfully?

If so, can the error exist in the new or modified part of the application. Check
the changes and see if you can find an obvious reason for the problem. Is it
possible to retry using a back level of the application?

e Have all the functions of the application been fully exercised previously?

Does the problem occur when part of the application that has never been
invoked before is used for the first time? If so, the error might exist in that part
of the application. Analyze what the application was doing when it failed, and
check the source code in that part of the program for errors.

If a program has run successfully on previous occasions, check the current
gueue status, and the files that were being processed when the error occurred.
It is possible that they contain some unusual data value that causes a rarely
used path in the program to be invoked?

174 wMQsSeries for Tandem NSK V2R2 System Management Guide

Preliminary checks

e Does the application check all return codes?

Has your MQSeries system been changed, such that your application does not
check the return codes it receives as a result of the change. For example,
does your application assume that the queues it accesses can be shared? If a
gueue has been redefined as exclusive, can your application deal with return
codes indicating that it can no longer access that queue?

¢ Does the application run on other MQSeries systems?

Is there a difference in the way that this MQSeries system is set up which is
causing the problem? For example, have the queues been defined with the
same message length or priority?

If the application has not run successfully previously

If your application has not yet run successfully, you should examine it carefully for
any errors.

Before you look at the code, and depending upon which programming language the
code is written in, examine the output from the translator, or the compiler and
linkage editor, if applicable, to see if any errors are reported.

If your application fails to translate, compile, or link-edit into the load library, it
cannot run. See the MQSeries Application Programming Reference manual for
information about building your application.

If the documentation shows that each of these steps was accomplished without
error, you should consider the coding logic of the application. Do the symptoms of
the problem indicate the function that is failing and, therefore, the piece of code in
error? See “Common programming errors” on page 176 for some examples of
common errors that cause problems with MQSeries applications.

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of MQSeries has been started.

Check that messages are reaching the transmission queue, and check the local
gueue definition of the transmission queue and any remote queues.

Have you made any network-related changes, or changed any MQSeries
definitions, that might account for the problem?

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon, so these are the times when load-dependent problems are most
likely to occur. (If your MQSeries network extends across more than one time zone,
peak system loading might seem to occur at some other time of day.)

Chapter 14. Determining Problems 175

Common programming errors

Is the problem intermittent?

An intermittent problem could be caused by failing to take into account the fact that
processes can run independently of each other. For example, a program may
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. An intermittent problem may also be seen if your application tries to
get a message from a queue while the call that put the message is in-doubt (that is,
before it has been committed or backed out).

Have you applied any service updates?

If a service update has been applied to MQSeries, check that the update action
completed successfully and that no error message was produced.

Did the update have any special instructions?

Was any test run to verify that the update had been applied correctly and
completely?

Does the problem still exist if MQSeries is restored to the previous service
level?

If the installation was successful, check with the IBM Support Center for any
patch error.

If a patch has been applied to any other program, consider the effect it might
have on the way MQSeries interfaces with it.

Common programming errors

The errors in the following list illustrate the most common causes of problems
encountered while running MQSeries programs. You should consider the possibility
that the problem with your MQSeries system could be caused by one or more of
these errors:

Assuming that queues can be shared, when they are in fact exclusive.
Passing incorrect parameters in an MQI call.

Passing insufficient parameters in an MQI call. This may mean that MQI
cannot set up completion and reason codes for your application to process.

Failing to check return codes from MQI requests.
Passing variables with incorrect lengths specified.
Passing parameters in the wrong order.

Failing to initialize MsgId and Correlld correctly.

Failing to issue BEGINTRANSACTION when MQPMO_NO_SYNCPOINT is
specified on the MQPUT command.

Problems with commands

You should be careful when including special characters, such as back slash (\)
and double quotation marks (), in descriptive text for some commands. If you use
either of these characters in descriptive text, precede them with a\. That is, enter
\\ or \” if you want \ or " in your text.

176 MQsSeries for Tandem NSK V2R2 System Management Guide

What next

What to do next

When you have established that no changes have been made to your system, and
that there are no problems with your application programs, choose the option that
best describes the symptoms of your problem.

e “Have you obtained incorrect output?”

e “Have you failed to receive a response from a PCF command?”

¢ “Does the problem affect only remote queues?” on page 179

* “Is your application or MQSeries for Tandem NSK running slowly?” on
page 179

Have you obtained incorrect output?
In this book, “incorrect output” refers to your application:

* Not receiving a message that it was expecting.
e Receiving a message containing unexpected or corrupted information.

¢ Receiving a message that it was not expecting, for example, one that was
destined for a different application.

In all cases, check that any queue or queue manager aliases that your applications
are using are correctly specified and accommodate any changes that have been
made to your network.

If an MQSeries error message is generated, all of which are prefixed with the
letters “AMQ,” you should look in the error log. See “Error logs” on page 185 for
further information.

Have you failed to receive a response from a PCF command?

If you have issued a command but you have not received a response, consider the
following questions:

e Is the command server running?

Work with the dspmqgcsv command to check the status of the command
server. If the response to this command indicates that the command server is
not running, use the strmgcsv command to start it. If the response to the
command indicates that the SYSTEM.ADMIN.COMMAND.QUEUE is not
enabled for MQGET requests, enable the queue for MQGET requests.

e Has a reply been sent to the dead-letter queue?

The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the MQSeries Application Programming
Reference manual for information about the dead-letter queue header structure
(MQDLH).

If the dead-letter queue contains messages, you can use the supplied browse
sample application (MQSBCGOE) to browse the messages using the MQGET
call. The sample application steps through all the messages on a named
gueue for a named queue manager, displaying both the message descriptor
and the message context fields for all the messages on the named queue.

e Has a message been sent to the error log?

See “Error logs” on page 185 for further information.

Chapter 14. Determining Problems 177

What next

Are the queues enabled for put and get operations?
Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the
MQSeries Application Programming Reference manual for information about
the WaitInterval field, and completion and reason codes from MQGET.)

If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to commit a transaction?

Unless you have specifically excluded your request message from syncpoint,
you need to commit a transaction before attempting to receive reply messages.

Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

Are you using the Correlld and MsgId fields correctly?

Set the values of MsgId and CorrellId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with the queue manager.
Try stopping the queue manager and then restarting. If the problem still occurs
after restart, contact your IBM Support Center for help.

Are some of your queues failing?

If you suspect that the problem occurs with only a subset of queues, check the
local queues that you think are having problems:

1. Display the information about each queue. You can use the MQSC command

DISPLAY QUEUE to display the information.

2. Use the data displayed to do the following checks:

e If CURDEPTH is at MAXDEPTH, this indicates that the queue is not being
processed. Check that all applications are running normally.

e If CURDEPTH is not at MAXDEPTH, check the following queue attributes
to ensure that they are correct:

— If triggering is being used:

- Is the trigger monitor running?

- Is the trigger depth too great? That is, does it generate a trigger
event often enough?

- Is the process name correct?

- Is the process available and operational?

— Can the queue be shared? If not, another application could already
have it open for input.

— Is the queue enabled appropriately for GET and PUT?

 |f there are no application processes getting messages from the queue,
determine why this is so. It could be because the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed
for some reason.

178 MQsSeries for Tandem NSK V2R2 System Management Guide

What next

Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a
value is zero, it indicates that no operations of that type can occur. Note
that the values may have changed and that the queue was open but is now
closed.

You need to check the status at the time you expect to put or get a
message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:

» Check that required channels have been started and are triggerable, and that
any required initiators are running.

e Check that the programs that should be putting messages to the remote
gueues have not reported problems.

e If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the trigger monitor is
running.

» Check the error logs for messages indicating channel errors or problems.

 If necessary, start the channel manually. See the MQSeries
Intercommunication book for information about how to do this.

For information about how to define channels, see Appendix K, “Setting up
communications” on page 319 and the MQSeries Intercommunication book.

Is your application or MQSeries for Tandem NSK running slowly?

If your application is running slowly, this could indicate that it is in a loop, or waiting
for a resource that is not available.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity. This type of problem is probably
worst at peak system load times, typically at mid-morning and mid-afternoon. (If
your network extends across more than one time zone, peak system load might
seem to occur at some other time.)

Examine the priority of application and queue manager processes using the
STATUS command. A loop causes the priority of the process to be reduced
gradually to zero by NSK.

Check that each of the CPUs in the NSK system is being utilized fully. If some
processors are only lightly loaded, your NSK system needs balancing. Consider
adding ECs to other processors to distribute MQSeries workload.

A performance problem may be caused by a limitation of your hardware.

Note: After a fresh install of MQSeries or a cold load of the Tandem NSK system,
MQSeries executables might take longer to run than expected when they are first
invoked. This is because the Tandem NSK operating system goes through a
“fixup” phase, during which it ensures that all external declarations are resolved.

Chapter 14. Determining Problems 179

Application design considerations

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
application program is probably to blame. This could manifest itself as a problem
that only occurs when certain queues are accessed.

The following symptoms might indicate that MQSeries is running slowly:

e Your system is slow to respond to MQSeries commands.

¢ Repeated displays of the queue depth indicate that the queue is being
processed slowly for an application with which you would expect a large
amount of queue activity.

If the performance of your system is still degraded after reviewing the above
possible causes, the problem may lie with MQSeries for Tandem NSK itself. If you
suspect this, you need to contact your IBM Support Center for assistance.

Application design considerations

There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making MQSeries calls are discussed in the following sections.

For more information about application design, see the MQSeries Application
Programming Guide.

Effect of message length

Although MQSeries allows messages to hold up to 4 MB of data, the amount of
data in a message affects the performance of the application that processes the
message. To achieve the best performance from your application, you should send
only the essential data in a message; for example, in a request to debit a bank
account, the only information that may need to be passed from the client to the
server application is the account number and the amount of the debit.

Searching for a particular message

The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and Correlld) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths

If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

180 MQsSeries for Tandem NSK V2R2 System Management Guide

Incorrect output

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
gueue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLength attribute of the queue. This
method could use large amounts of storage, however, because the value of this
gueue attribute could be as high as 4 MB, the maximum allowed by MQSeries for
Tandem NSK.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with
messages that are currently inaccessible, while other tasks might be waiting to get
these messages. This has implications in terms of: storage; TMF audit trail usage;
and processes tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series
of MQPUT calls and a single MQCLOSE call.

Incorrect output
The term “incorrect output” can be interpreted in many different ways. For the
purpose of problem determination within this book, the meaning is explained in
“Have you obtained incorrect output?” on page 177.
Two types of incorrect output are discussed in this section:
e Messages that do not appear when you are expecting them

* Messages that contain the wrong information, or information that has been
corrupted

Additional problems that you might find if your application includes the use of
distributed queues are also discussed.

Messages that do not appear on the queue
If messages do not appear when you are expecting them, check for the following:

* Has the message been put on the queue successfully?

* Has the queue been defined correctly. For example, is MAXMSGL sufficiently
large?

* Is the queue enabled for putting?

* |s the queue already full? This could mean that an application was unable to
put the required message on the queue.

* Are you able to get any messages from the queue?
¢ Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not available
to other tasks until the unit of recovery has been committed.

 Is your wait interval long enough?

Chapter 14. Determining Problems 181

Incorrect output

You can set the wait interval as an option for the MQGET call. You should
ensure that you are waiting long enough for a response.

* Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or Correlld)?

Check that you are waiting for a message with the correct MsgId or Correlld.
A successful MQGET call sets both these values to that of the message
retrieved, so you may need to reset these values in order to get another
message successfully.

Also, check whether you can get other messages from the queue.
e Can other applications get messages from the queue?
* Was the message you are expecting defined as persistent?
If not, and MQSeries has been restarted, the message has been lost.
e Has another application got exclusive access to the queue?
If you are unable to find anything wrong with the queue, and MQSeries is running,

make the following checks on the process that you expected to put the message on
to the queue:

¢ Did the application get started?
If it should have been triggered, check that the correct trigger options were
specified.

¢ Did the application stop?

e |s a trigger monitor running?

* Was the trigger process defined correctly?

e Did the application complete correctly?
Look for evidence of an abnormal end in the job log.

¢ Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multiserver environment must be designed to cope
with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information” on page 183.

182 MQsSeries for Tandem NSK V2R2 System Management Guide

Incorrect output

Messages that contain unexpected or corrupted information

If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:

» Has your application, or the application that put the message onto the queue,
changed?

Ensure that all changes are simultaneously reflected on all systems that need
to be aware of the change.

For example, the format of the message data may have been changed, in
which case, both applications must be recompiled to pick up the changes. If
one application has not been recompiled, the data will appear corrupt to the
other.

* |s an application sending messages to the wrong queue?

Check that the messages your application is receiving are not really intended
for an application servicing a different queue. If necessary, change your
security definitions to prevent unauthorized applications from putting messages
on to the wrong queues.

If your application has used an alias queue, check that the alias points to the
correct queue.

¢ Has the trigger information been specified correctly for this queue?
Check that your application should have been started; or should a different
application have been started?

If these checks do not enable you to solve the problem, you should check your
application logic, both for the program sending the message, and for the program
receiving it.

Problems with incorrect output when using distributed queues

If your application uses distributed queues, you should also consider the following
points:

e Has MQSeries been correctly installed on both the sending and receiving
systems, and correctly configured for distributed queuing?

¢ Are the links available between the two systems?

Check that both systems are available, and connected to MQSeries. Check
that the connection between the two systems, and the channels between the
two queue managers, are active.

¢ |s triggering set on in the sending system?

* |s the message you are waiting for a reply message from a remote system?
Check that triggering is activated in the remote system.

* |s the queue already full?

This could mean that an application was unable to put the required message
onto the queue. If this is so, check if the message has been put onto the
dead-letter queue.

The dead-letter queue header contains a reason or feedback code explaining
why the message could not be put onto the target queue. See the MQSeries

Chapter 14. Determining Problems 183

Incorrect output

Application Programming Reference manual for information about the
dead-letter queue header structure.

* |s there a mismatch between the sending and receiving queue managers?

For example, the message length could be longer than the receiving queue
manager can handle.

¢ Are the channel definitions of the sending and receiving channels compatible?

For example, a mismatch in sequence number wrap stops the distributed
gueuing component. See the MQSeries Intercommunication book for more
information about distributed queuing.

e Have you started a TCP/IP listener?

If you are using TCP/IP as a communications protocol for MQSeries
communications to the Tandem, a TCP/IP listener process must be running.
See “Specifying and controlling TCP/IP listeners” on page 38 for more
information.

* |s the TCP/IP listener listening on the correct TCP/IP port?

The TCP/IP listener listens on a port defined on a TCPListenerPort entry in the
TCPConfig stanza of the QMINI file for your queue manager. See “TCP/IP ports
listened on by the queue manager” on page 55 for more information.

* |s the TCP/IP process name correct ?

If you are using the TCP/IP communications protocol, is your Tandem system
using the default process name ($ztc0) for the TCP/IP process? If not, you
must alter some of the server classes in your MQSeries pathway to enable the
correct process name to be used by MQSeries channels. See “Reconfiguring a
gueue manager for a nondefault TCP/IP process” on page 55 for more
information.

¢ |s the SNA channel defined with AUTOSTART(ENABLED)?
If:

— You are running MQSeries channels using SNA as a communications
protocol.

and

— The channel type on Tandem is one that is waiting to be initiated from a
remote MQSeries system (for example, a RECEIVER).

and
— The remote system is having problems starting the channel.

an LU 62 responder process might not be running for your channel. Check that
the channel is defined with AUTOSTART(ENABLED). See “SNA channels” on
page 319 for more information.

¢ |s data conversion involved? If the data formats between the sending and
receiving applications differ, data conversion is necessary. Automatic
conversion occurs when the MQGET is issued if the format is recognized as
one of the built-in formats.

If the data format is not recognized as a built-in format, a data conversion exit
can be used to allow you to perform the translation with your own routines.
Check that your routine is being loaded correctly.

184 mQsSeries for Tandem NSK V2R2 System Management Guide

Error logs

See the MQSeries Application Programming Guide for more information about
data conversion.

Error logs

Log files

MQSeries for Tandem NSK uses a number of error logs to capture messages
concerning the operation of MQSeries itself, any queue managers that you start,
and error data coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.

 If the queue manager name is known and the queue manager is available:
<QMVOL>.<SUBVOL>L.MQERRLG1

» |f the queue manager is not available:
<MQSVOL>.ZMQSSYS .MQERRLG1

e First Failure Symptom Trap (FFST) in
<QMVOL>.<SUBVOL>.FDnnnnn

e see “How to examine the FFSTs” on page 190.

The error log subvolume can contain up to three error log files named:

« MQERRLG1
¢ MQERRLG2
¢ MQERRLG3

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files are called MQERRLG1,
MQERRLG2, and MQERRLG3, and are placed in the subvolume of each queue
manager that you create.

As error or log messages are generated they are placed in MQERRLG1. When
MQERRLGL is filled it is copied to MQERRLG2. Before the copy, MQERRLG2 is
copied to MQERRLG3. The previous contents, if any, of MQERRLGS3 are
discarded.

The latest error messages are thus always placed in MQERRLG1, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files unless the name of their queue manager is unknown or the
gueue manager is unavailable. When the queue manager name is unavailable or
its name cannot be determined, channel-related messages are placed in the
system error log (ZMQSSYS.MQERRLGL1).

To examine the contents of any error log file, you can use either the fup copy

command or your usual Tandem NSK editor in read-only mode. (If you open the
error log in update mode, error messages might be lost.)

Chapter 14. Determining Problems 185

Error logs

Early errors

There are a number of special cases where the above error logs have not yet been
established and an error occurs. MQSeries attempts to record any such errors in an
error log. The location of the log depends on how much of a queue manager has
been established.

If, due to a corrupt configuration file for example, no location information can be
determined, errors are logged to an error file that is created at installation time on
the ZMQSSYS subvolume in the file MQERRLG1.

For further information about configuration files, see Chapter 13, “Configuration
files” on page 163.

Operator messages

In MQSeries for Tandem NSK, operator messages identify normal errors, typically
caused directly by users doing things like using parameters that are not valid on a
command. These messages are written to the associated window, if any, and are
also written to a file in the queue manager subvolume.

Errors that can be associated with a particular queue manager are logged to
MQERRLG1 in the queue manager’'s log subvolume. Those that cannot be linked
to a defined and operational queue manager are logged in the MQERRLGL1 file
located in subvolume ZMQSSYS.

186 MQsSeries for Tandem NSK V2R2 System Management Guide

Error logs

Example error log
This example shows part of an MQSeries for Tandem NSK error log:

08/01/95 11:41:56 AMQ8003: MQSeries queue manager started.
EXPLANATION: MQSeries queue manager janet started.

ACTION: None.

08/01/95 11:56:52 AMQ9002: Channel program started.
EXPLANATION: Channel program 'JANET' started.

ACTION: None.

08/01/95 11:57:26 AMQ9208: Error on receive from host 'camelot
(9.20.12.34)".

EXPLANATION: An error occurred receiving data from 'camelot
(9.20.12.34) " over TCP/IP. This may be due to a communications failure.
ACTION: Record the TCP/IP return code 232 (X'E8') and tell the
systems administrator.

08/01/95 11:57:27 AMQ9999: Channel program ended abnormally.
EXPLANATION: Channel program 'JANET' ended abnormally.

ACTION: Look at previous error messages for channel program
"JANET' in the error files to determine the cause of the failure.
08/01/95 14:28:57 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

08/02/95 15:02:49 AMQ9002: Channel program started.
EXPLANATION: Channel program 'JANET' started.

ACTION: None.

08/02/95 15:02:51 AMQ9001: Channel program ended normally.
EXPLANATION: Channel program 'JANET' ended normally.

ACTION: None.

08/02/95 15:09:27 AMQ7030: Request to quiesce the queue manager
accepted. The queue manager will stop when there is no further
work for it to perform.

EXPLANATION: You have requested that the queue manager end when
there is no more work for it. In the meantime, it will refuse
new applications that attempt to start, although it allows those
already running to complete their work.

ACTION: None.

08/02/95 15:09:32 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

EMS events

An EMS event is generated for each error entry made in the MQERRLG1 file. For
more information about EMS events, see “Event Management Service (EMS)
events” on page 153.

Chapter 14. Determining Problems 187

Using MQSeries trace

Dead-letter queues

Messages that cannot be delivered for some reason are placed on the dead-letter
gueue. You can check whether the queue contains any messages by issuing an
MQSC DISPLAY QUEUE command. If the queue contains messages, you can use
the provided browse sample application (MQSBCGOE) to browse messages on the
gueue using the MQGET call. The sample application steps through all the
messages on a named queue for a named queue manager, displaying both the
message descriptor and the message context fields for all the messages on the
named queue.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems may occur if you do not have a dead-letter queue on each queue
manager you are using. The supplied file amgscoma (located in subvolume
ZMQSSMPL), which you use as input to the runmgsc command, creates the default
objects for a queue manager, including a dead-letter queue called
SYSTEM.DEAD.LETTER.QUEUE. When you have created this dead-letter queue,
you must alter the DEADQ attribute of the queue manager using runmgsc .

Configuration files and problem determination
Configuration file errors typically prevent queue managers from being found and
result in “queue manager unavailable” type errors.
There are several checks you can make on the configuration files:
» Ensure that the configuration files exist.
e Ensure that they have appropriate permissions.

e Ensure that the MQSeries configuration file references the correct queue
manager and directories.

Using MQSeries trace
MQSeries for Tandem NSK uses the following commands for the trace facility:

e strmqgtrc — see “strmgtrc (Start MQSeries trace)” on page 244

e dspmgtrc — see “dspmqtrc (Display MQSeries formatted trace output)” on
page 221

e endmqtrc — see “endmgqtrc (End MQSeries trace)” on page 226

The trace facility uses one file for each entity being traced, with the trace
information being recorded in the appropriate file.

Trace options are specified in the QMINI file.

Note: With MQSeries for Tandem NSK, tracing can also be controlled via the
Queue Manager menu of the Message Queue Management (MQM) facility.

188 MQsSeries for Tandem NSK V2R2 System Management Guide

Using MQSeries trace

Trace file names

Trace file names are constructed in the error log subvolume as follows:

TRccpppp

where ccpppp is the process identifier (PID) of the process producing the trace.
The PID is made up of:

cc CPU number.
ppPpp Process number.

If the tracing utility encounters a trace file of an identical process identifier that has
not been deleted, it replaces the final character of the process number with a letter,
giving 26 processes of the same PID the opportunity to write output. For example,
the first trace file for PID 00, 0315 would be TR000315. For a second process
started on completion of process 00, 0315 with the same PID, the trace file would
be TROOO31A.

Note: Because of this restriction, trace files should be purged from the system as
soon as they have been examined.

Sample trace data

The following sample is an extract from a trace:

30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d
30d

ID

ELAPSED MSEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

NN R PR PR PP OOOO

MQS CEI Exit!. 12484.1 xcsWaitEventSem rc=10806020
MQS CEI Exit! 12484.1 zcpReceiveOnLink rc=20805311
MQS FNC Entry 12484.1 zxcProcessChildren

MQS CEI Entry. 12484.1 xcsRequestMutexSem

MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR

MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=00000000
MQS FNC Entry.. 12484.1 x11SemGetVal

MQS FNC Exit... 12484.1 x11SemGetVal rc=00000000

MQS FNC Entry.. 12484.1 x11SemReq

MQS FNC Exit... 12484.1 x11SemReq rc=00000000

MQS CEI Exit.. 12484.1 xcsRequestMutexSem rc=00000000
MQS CEI Entry. 12484.1 xcsReleaseMutexSem

MQS CEI Entry.. 12484.1 xcsHSHMEMBtoPTR

MQS CEI Exit... 12484.1 xcsHSHMEMBtoPTR rc=00000000
MQS FNC Entry.. 12484.1 x11SemRel

MQS FNC Exit... 12484.1 x11SemRel rc=00000000

MQS CEI Exit.. 12484.1 xcsReleaseMutexSem rc=00000000
MQS CEI Entry. 12484.1 xcsHSHMEMBtoPTR

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoMNo)

Figure 36. Sample trace

Notes:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

Chapter 14. Determining Problems 189

FFST

First Failure Support Technology (FFST)

FFEST errors are normally severe, and indicate either a configuration problem with
the system or an MQSeries internal error. In most cases, the queue manager
remains operational, though there may be a brief interruption of service to some or
all applications. FFSTs are referenced in the file ZMQSSYS.MQSYSLOG.

How to examine the FFSTs
The files are named FDnnnnn, where:

nnnnn Is the process ID reporting the error
When a process creates an FFST report, it also generates an EMS event.

A typical FFST report is shown in Figure 37.

oo e o e e ————————_————————————
MQSeries First Failure Symptom Report
Date/Time :- September 16 12:23:26 1997
Host Name :- \HURSLEY
PIDS :- 5697A17
LVLS :- 221
Product Long Name :- MQSeries Version 2 for TANDEM NSK
Vendor IBM
Probe Id RM020011
Application Name MQM
Component rrx0OpenSync
Build Date Sep 12 1997
Exe File Name \HURSLEY.$DATAO.ZMQSEXE .MQMCACAL
UserID :- MQM.MANAGER
Process File Name :- \HURSLEY.$Z734:15441941
Node number 1
CPU 0
PIN 339
QueueManager MTO1
Major Errorcode xecF_E_UNEXPECTED_RC
Minor Errorcode Unknown (A)
Probe Type MSGAMQ6118
Probe severity Severity 2: error
Probe Description :- AMQ6118: An internal MQSeries error has occurred.
Text Error creating synch file
Arithl 10 (Oxa)
Commentl error 0000000010 in function 0000000020
o e e e e o

Figure 37. Sample First Failure Symptom Report

However, there is one set of problems that they may be able to solve. If the FFST
shows “out of resource” or “out of space on device” descriptions, it is likely that the
relevant system limit is exceeded.

190 MQsSeries for Tandem NSK V2R2 System Management Guide

FFST

To resolve the problem, increase the appropriate limit and restart the queue
manager. See “Configuration of other NonStop Kernel resources” on page 20 for
further details.

Chapter 14. Determining Problems 191

FFST

192 MQsSeries for Tandem NSK V2R2 System Management Guide

Part 2. Reference

© Copyright IBM Corp. 1995, 1997 193

194 mQsSeries for Tandem NSK V2R2 System Management Guide

Control commands

Chapter 15. The MQSeries control commands

This chapter contains reference material for the control commands used with
MQSeries for Tandem NSK.

Control commands summary

The following control commands are supported by MQSeries for Tandem NSK via
TACL macros and compiled programs:

altmgfls (alter queue volume)

cleangm (perform housekeeping on a queue manager)
cnv1520 (convert V1.5.1 definitions to V2.2)
cnvclchl (convert client channel definitions)
cnvmsgs (convert V1.5.1 messages to V2.2)
crtmqgcvx (data conversion)

crtmgm (create queue manager)

ditmgm (delete queue manager)

dspmgaut (display authority)

dspmgcsv (display command server)
dspmgfls (show translated file names)
dspmgtrc (display MQSeries formatted trace output)
endmqcsv (end comand server)

endmgm (end queue manager)

endmqtrc (end MQSeries trace)

instmgm (install MQSeries for Tandem NSK)
runmgchi (run channel initiator)

runmgchl (run channel)

runmgdlq (run dead-letter queue handler)
runmglsr (run TCP/IP listener)

runmgsc (run MQSeries commands)
runmgtrm (start trigger monitor)

setmgaut (set/reset authority)

strmqcsv (start command server)

strmgm (start queue manager)

strmqtrc (start MQSeries trace)

Detailed descriptions of these commands are provided in the remainder of this
chapter.

Notes:

1.

Flags, which are single-character identifiers preceded by a dash (for example,
-v on the runmgsc command), must be specified in lowercase.

. Usage messages are displayed if control commands are invoked with -?, ?, or

with no parameters when parameters are expected.

© Copyright IBM Corp. 1995, 1997 195

Reading syntax diagrams

Using names
The names for the following MQSeries objects can be a maximum of 48 characters:

¢ Queue managers
e Queues
* Process definitions

The maximum length of channel names is 20 characters.

The characters that can be used for all MQSeries names are:

e Uppercase A -Z
e Lowercase a - z
e Numerics0-9

e Period (.)

e Underscore ()
e Forward slash (/)
e Percent sign (%)

Notes:

1. Forward slash and percent are special characters. If you use either of these
characters in a hame, the name must be enclosed in double quotation marks
whenever it is used.

2. Leading or embedded blanks are not allowed.
3. National language characters are not allowed.

4. Names may be enclosed in double quotation marks, but this is essential only if
special characters are included in the name.

How to read syntax diagrams
This chapter contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and left
arrow pair. Lines beginning with a single right arrow are continuation lines. You
read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

196 MQsSeries for Tandem NSK V2R2 System Management Guide

Reading syntax diagrams

Table 10. How to read syntax diagrams

Convention

Meaning

»—A—B—C—>

You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

You may specify value A. Optional values are shown below the main
line of a syntax diagram.

Values A, B, and C are alternatives, one of which you must specify.

»> A >
B
C
> > Values A, B, and C are alternatives, one of which you may specify.
A
C
, You may specify one or more of the values A, B, and C. Any
> i > required separator for multiple or repeated values (in this example,
A the comma (,)) is shown on the arrow.
R.
D
C
You may specify value A multiple times. The separator in this
L,—J example is optional.
> LA >
A Values A, B, and C are alternatives, one of which you may specify. If
> > you specify none of the values shown, the default A (the value
B shown above the main line) is used.
»—] Name —» The syntax fragment Name is shown separately from the main syntax
diagram.
Name:
= |
.

Punctuation and
uppercase values

Specify exactly as shown.

Lowercase values
(for example, name)

Supply your own text in place of the name variable.

Chapter 15. The MQSeries control commands 197

altmqfls

altmqfls (Alter queue volume)

Purpose

Syntax

If the volume on which a queue manager resides becomes full or 1/O bound, you
can either:

e Partition one or more of the message files that belong to permanent local
queues.

or

¢ Use the altmgfls command to move one or more of the message files that
belong to permanent local queues to a different volume.

You can use the dspmgfls command to identify the volume on which the
messages files currently reside. When a message file is moved to a different
volume, the same subvolume name is used. You are recommended not to move
message files to volumes or subvolumes that are currently in use by a different
gueue manager or product.

»»—altmqfls -v VolumeName———

L -m OMngame—l L -t 0bjec7.‘Type—I

A\
A

»—QObjectName

Required parameters

-v VolumeName
Is a Tandem volume name (for example, $DEV).

ObjectName
Is the name of the permanent local queue whose message files are to be
relocated. The queue must not be open, nor must it contain uncommitted
messages.

Optional parameters

Return codes

-m QMgriName
Is the name of the queue manager to which the local queue belongs. The
gueue manager must have been started. If no queue manager name is
specified, the default queue manager is used.

-t ObjectType
Identifies a permanent local queue. 0ObjectType may be qgl, glocal, QL, or
QLOCAL.

0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

198 MQsSeries for Tandem NSK V2R2 System Management Guide

altmgfls

Examples

In the following example, message files belonging to the local queue flint.queue,
owned by queue manager target.queue.manager, are moved to volume $DATA3.

altmqfls -m target.queue.manager -t gl -v $DATA3 flint.queue

Related commands
dspmqfls Display MQSeries files

Chapter 15. The MQSeries control commands 199

cleangm

cleangm (Perform housekeeping on a queue manager)

Purpose
During queue manager operation, queue-depth counts and object-open counts can
become inaccurate. The cleangm command, which can be run at any time during
normal queue manager operation, can be used to correct inaccurate counts.

Note that the utility invoked by cleangm traverses the entire object catalog and

message database, so some degradation of performance is likely to occur while the
utility is running.

Syntax

\ 4
A

»»—cTleanqm—QMgrName

Required parameters

QMgrName
Specifies the name of the queue manager to which the cleangm utility is to
be applied.

Return codes

0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

200 MQsSeries for Tandem NSK V2R2 System Management Guide

chv1520

cnv1520 (Convert V1.5.1 definitions to V2.2)

Purpose

Syntax

Use the cnv1520 command to convert MQSeries for Tandem NSK Version 1.5.1
gueue and channel definitions for use with MQSeries for Tandem NSK Version 2.2.
The output from this command is a file of MQSeries commands that you can supply
as input to runmgsc .

»»—cnv1520

L -C ChdefFile—l L -q ()defFileJ L -0 (.‘ommandFiZeJ

Optional parameters

Examples

-C ChdefFile
Identifies the file containing the channel definitions to be converted. The
default file-name is CHANDESC.

-q QdefFile
Identifies the file containing the queue definitions to be converted. The
default file-name is QDESC.

-0 CommandFile
Identifies the output file of MQSeries commands (MQSC) created by
cnv1520. The default file-name is CNVMQSC.

The following command converts MQSeries for Tandem NSK V1.5.1 channel and
gueue definitions from their V1.5.1 representations in the fles CHANDESC and
QDESC to an MQSC definition file (in this case, CNVMQSC by default), which can
be input to a V2.2 queue manager via runmgsc :

Chapter 15. The MQSeries control commands 201

chv1520

$DATAO MQSDATA 96> cnv1520 -c CHANDESC -q QDESC

**/

* */
* CHANNEL DEFINITIONS */
* */

**/
MQSC file CNVMQSC opened
Opened file CHANDESC

Processing channel - VSE2.ETO1.SDRC.0001

Channel processing completed normally

**/

* */
* QUEUE DEFINITIONS */
* */

**/
MQSC file CNVMQSC opened
Opened file QDESC

- ANNE.VSE2.SDRC.LOCAL
- DEAD.QUEUE

Queue processing completed normally

Related commands

cnvmsgs Convert V1.5.1 messages to V2.2.

202 MQsSeries for Tandem NSK V2R2 System Management Guide

cnvmsgs

cnvmsgs (Convert V1.5.1 messages to V2.2)

PUI‘DOSG
Use the cnvmsgs command to move messages from queues belonging to an
MQSeries for Tandem NSKV1.5.1 queue manager to equivalent queues belonging
to an MQSeries for Tandem NSK V2.2 queue manager.

Note: Before running cnvmsgs , you must run the cnv1520 command, and supply
its output on input to runmgsc , in order to make the relevant queue definitions
available to the V2.2 queue manager.

Syntax

A\

»>—Cnvmsgs
L -m QMngameJ L -q ()DefFileJ L -v 1 L -d ll

Optional parameters
-m QMgriName
Is the name of the Version 2.2 queue manager that owns the target queue.

-q QDefFile
Is the name of the queue descriptor file containing the V1.5.1 queue
definitions.

-v Turns verbose mode on.

-d Indicates that messages that have been marked for logical deletion should
also be processed.

Examples
In the following example, messages on queues defined in the queue descriptor file
QDESC are moved to equivalent queues belonging to the queue manager MTO1.
Verbose mode is switched on.

Chapter 15. The MQSeries control commands 203

cnvmsgs

¢DATAO MQSDATA 111> cnvmsgs -m MTO1 -g QDESC -v

**/

*

* PROCESSING MESSAGES

*

*/
*/
*/

**/

Opened file QDESC
-- Connect to Queue Manager MTO1
QDESC

Queue - ANNE.VSE2.SDRC.LOCAL

Queue has 1 available messages
Queue has 0 delivered messages
Process queue? (y/n): y

Process deleted messages? (y/n): n
Opened file ¢DATAG.MQSDATA.QFILE

--- Opening queue ANNE.VSE2.SDRC.LOCAL
--- Closing queue ANNE.VSEZ2.SDRC.LOCAL

MESSAGE SUMMARY:
total messages read from file: 1
available messages:
deleted messages: 0
total messages expected: 1
messages converted: 1
messages failed: 0

=

Queue - DEAD.QUEUE

Queue has 0 available messages
Queue has 0 delivered messages
Process queue? (y/n): n

Queue - VM03.TQ.SDRC.0002
Queue has 0 available messages
Queue has 0 delivered messages
Process queue? (y/n): n

-- Disconnect from Queue Manager MTO1
QDESC

Message processing completed normally
¢DATA® MQSDATA 112>

204 MQsSeries for Tandem NSK V2R2 System Management Guide

cnvmsgs

Related commands
cnv1520 Convert V1.5.1 definitions to V2.2

Chapter 15. The MQSeries control commands 205

cnvclchl

cnvclchl (Convert client channel definitions)

Purpose
Use the cnvclchl command to convert the client channel definition file, created for
CLNTCONN channels by MQSC, from a Tandem structured file to an unstructured
format acceptable to MQSeries clients.

Syntax

A\
A

»»—cnvclchl— -m QMgriName B a
-0 OutputFile

Required parameters
-m QMgriName
Identifies the queue manager that owns the channel definitions file
(CCHDEFS) to be converted. This value is required.

Optional parameters

-0 QutputFile
Identifies the file that will contain the converted definitions. The default
file-name is AMQCLCHL.

Examples

The following command converts the Tandem structured client channel definition
file for queue manager MTO1 to an unstructured file. Two client connection channel
definitions are contained in the output file AMQCLCHL, SYSTEM.DEF.CLNTCONN
and SOLARIS_TO_TANDEM:

$DATAO ZMQSEXE 91> cnvclchl -m MTO1

MQSeries client channel table being converted
Opening TANDEM v2.0 CLNTCONN table

Opening UNIX v2.0 CLNTCONN table AMQCLCHL for output

Writing UNIX v2.0 CLNTCONN table entry for SOLARIS_TO_TANDEM
Writing UNIX v2.0 CLNTCONN table entry for SYSTEM.DEF.CLNTCONN

Closing TANDEM v2.0 CLNTCONN table
Closing UNIX v2.0 CLNTCONN table
MQSeries client channel table conversion complete.

206 MQsSeries for Tandem NSK V2R2 System Management Guide

crtmacvx

crtmgcvx (Data conversion)

Purpose

Syntax

Use the crtmgcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert your C structures.

The command reads an input file containing a structure or structures to be
converted. It then writes an output file containing a code fragment or fragments to
convert those structures.

For further information about this command and how to use it, refer to the
MQSeries Application Programming Guide.

A\
A

»»—crtmqcvx—Sourcefile—TargetFile

Required parameters

Return codes

Examples

SourcefFile
Specifies the input file containing the C structures to be converted.

TargetFile
Specifies the output file containing the code fragments generated to convert
the structures.

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

The following example shows the results of using the data conversion command
against a source C structure. The command issued is:

crtmqcvx source target

The input file, source looks like this:

Chapter 15. The MQSeries control commands 207

crtmgcvx

/* This is a test C structure which can be converted by the x/
/* crtmgcvx utility */

struct my_structure

{

int code;
MQLONG value;
}s

The output file, target, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, you should understand that the fragment uses macros supplied in the
MQSeries header file MQSVMHTH in subvolume ZMQSLIB.

MQLONG Convertmy structure(
PMQBYTE =*in_cursor,
PMQBYTE =out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_Tastbyte,
MQHCONN hConn,
MQLONG opts,

MQLONG MsgEncoding,
MQLONG RegEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

MQLONG ReturnCode = MQRC_NONE;
ConvertLong(1l); /* code */

AlignLong();
ConvertLong(1); /* value =/

Fail:
return(ReturnCode) ;
}

208 MQsSeries for Tandem NSK V2R2 System Management Guide

crtmgm

crtmgm (Create queue manager)

Purpose

Use the crtmgm command to create a local queue manager. Once a queue
manager has been created, use the strmgm command to start it.

Syntax

»>—Ccrtmgm >
|— -C TextJ |— -d DefaultTransmissionQueue—l

A\

L -e NumECsJ L -h MaximumHandleLimitJ L -1 CCSIDJ

\ 4

v

L -m Ma'chIniFiZe—I L -p DefaultPrefixJ L -q il

\ 4
v

L -t IntervaZValue—J L -u DeadLe7.‘ter()ueue—J

> -n PATHMONProcessName——»
L -X MaximumUncommitt’edMessagesJ L -z ll

»— -0 HomeTerminalName—QMgrName

\ 4
A

Required parameters
-n PATHMONProcessName
The process name of the TS/MP PATHMON process for the queue manager.
This process name must be unique in the system.

-0 HomeTerminalName
Home terminal device name. ($DDDD.#SS). For example, $TRM1.#A.

QMgrName
The name of the queue manager to be created. The name can contain up to
48 characters. This must be the last item in the command.

Optional parameters

-c Text
Some text (up to 64 characters) that describes this queue manager. The
default is all blanks.

If special characters are required, the description must be enclosed in double
quotation marks.

-d DefaultTransmissionQueue
The name of the local transmission queue that remote messages are placed
on if a transmission queue is not explicitly defined for their destination. There
is no default.

-e NumECs
The number of EC processes in the queue manager. The default is 1.

-h MaximumHandlelLimit
The maximum number of handles that any one application can have open at
the same time.

Specify a value in the range 1 through 999 999 999. The default value is
256.

Chapter 15. The MQSeries control commands 209

crtmgm

-l ¢CSID
Qmgr CCSID. The default value is 819. The CCSID value must be correct
on creation: it cannot be changed afterwards.

-m MachIniFile
Overrides the default MQSINI file location and that specified in the
environment variable MOQMACHINIFILE.

-p DefaultPrefix
The volume for the queue manager. Overrides the QMDefaultVolume entry in
the MQSINI file.

-q Specifies that this queue manager is to be made the default queue manager.
The new queue manager replaces any existing queue manager as the default.

If you accidentally use this flag and wish to revert to an existing queue
manager as the default queue manager, you can edit the
DefaultQueueManager stanza in the MQSeries configuration file. See
Chapter 13, “Configuration files” on page 163 for information about
configuration files.

-t IntervalValue
The trigger-time interval in milliseconds for all queues controlled by this queue
manager. This value specifies the time after the receipt of a
trigger-generating message when triggering is suspended. That is, if the
arrival of a message on a queue causes a trigger message to be put on the
initiation queue, any message arriving on the same queue within the specified
interval does not generate another trigger message.

You can use the trigger time interval to ensure that your application is allowed
sufficient time to deal with a trigger condition before it is alerted to deal with
another on the same queue. You may wish to see all trigger events that
happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is

999 999 999 milliseconds, a time of more than 11 days. Allowing the default
to be taken effectively means that triggering is disabled after the first trigger
message. However, triggering can be reenabled by an application servicing
the queue using an alter queue command to reset the trigger attribute.

-U DeadLetterQueue
The name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they cannot
be routed to their correct destination.

By default, there is no dead-letter queue.

-X MaximumUncommittedMessages
Specifies the maximum number of uncommitted messages under any one
syncpoint. That is, the sum of:

e The number of messages that can be retrieved from queues
e The number of messages that can be put on queues
e Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside
syncpoint control.

Specify a value in the range 1 through 10 000. The default value is 1000
uncommitted messages.

210 MQsSeries for Tandem NSK V2R2 System Management Guide

Return codes

49
69
70
71
72
111

Examples

crtmgm

Suppresses error messages.

This flag is normally used within MQSeries to suppress unwanted error
messages. As use of this flag could result in loss of information, you are
recommended not to use it when entering commands on a command line.

Queue manager created
Queue manager already exists
Queue manager stopping
Storage not available

Queue space not available
Unexpected error

Queue manager name error

Queue manager created. However, there was a problem processing the
default queue manager definition in the product configuration file. The default
gqueue manager specification may be incorrect.

1. This command creates a default queue manager named Paint.queue.manager,

which is given a description of Paint Shop.

crtmgm -c "Paint Shop" -n $PANT -o $TRM1.#A Paint.queue.manager

2. In this example, another queue manager, travel, is created. The trigger

interval is defined as 5000 milliseconds (or 5 seconds) and its dead-letter
gueue is specified as SYSTEM.DEAD.LETTER.QUEUE.

crtmgm -t 5000 -u SYSTEM.DEAD.LETTER.QUEUE -n $TRAV -0 $TRM1.#A travel

Related commands

Once a trigger event is generated, further trigger events are disabled for five
seconds.

strmgm Start queue manager

endmgm End queue manager

ditmgm Delete queue manager

Chapter 15. The MQSeries control commands 211

ditmgm

ditmgm (Delete queue manager)

PUI‘DOSG
Use the ditmgm command to delete a specified queue manager. All objects
associated with this queue manager are also deleted. Before you can delete a
gueue manager you must end it using the endmgm command.

Syntax

A\
A

»»—d1tmgm Mg rName
q |_ S _J QMg

Required parameters

QMgrName
Specifies the name of the queue manager to be deleted.

Optional parameters
-Z Suppresses error messages.

Return codes
0 Queue manager deleted

5 Queue manager running

16 Queue manager does not exist
69 Storage not available

71 Unexpected error

72 Queue manager name error

112 Queue manager deleted. However, there was a problem processing the
default queue manager definition in the product configuration file. The default
queue manager specification may be incorrect.

Examples
1. The following command deletes the queue manager saturn.queue.manager.

dltmgm saturn.queue.manager

2. The following command deletes the queue manager travel and also
suppresses any messages caused by the command.

dltmgm -z travel

212 MQSeries for Tandem NSK V2R2 System Management Guide

ditmgm

Related commands
crtmgm Create queue manager

strmgm Start queue manager

endmgm End queue manager

Chapter 15. The MQSeries control commands 213

dspmqaut

dspmqaut (Display authority)

Purpose

Syntax

Use the dspmgaut command to display the current authorizations to a specified
object. Only one group may be specified.

If a user ID is a member of more than one group, examine the authorizations of
each group to determine all the authorizations that apply to the user ID.

»»—dspmqaut

»— -g GroupName

-t ObjectType———>»
L -m QMngame—I L -n 0bjectName—I

>
> <

L -s Servit:eComponent—l

Required parameters

-g GroupName

Specifies the name of the user group on which the inquiry is to be made.
You can specify only one name, which must be the name of an existing user
group.

-t ObjectType

Specifies the type of object on which the inquiry is to be made. Possible
values are:

queue or @ A queue or queues matching the object type parameter
gmgr A queue manager object

process or prcs A process

Optional parameters

-m QMgrName

Specifies the name of the queue manager on which the inquiry is to be made.

-n ObjectName

Specifies the name of the object on which the inquiry is to be made.
This is a required parameter unless it is the queue manager itself.

You must specify the name of a queue manager, queue, or process definition.

-s ServiceComponent

This parameter applies only if you are using installable authorization services,
otherwise it is ignored.

If installable authorization services are supported, this parameter specifies the
name of the authorization service to which the authorizations apply. This
parameter is optional; if it is not specified, the authorization update is made to
the first installable component for the service.

214 MQSeries for Tandem NSK V2R2 System Management Guide

Returned parameters

dspmaqaut

This command returns an authorization list, which can contain none, one, or more
authorization parameters. Each authorization parameter returned means that any
user ID in the specified group has the authority to perform the operation defined by
that parameter.

Table 11 shows the authorities that can be given to the different object types.

Table 11. Security authorities from the dspmgaut command

Authority Queue Process Qmagr
all v v v
alladm v v v
allmqi v v v
altusr v
browse v

chg v v v
chgaut v v v
clr v

connect v
cpy v v v
crt v v v
dit v v v
dsp v v v
get v

ing v v v
passall v

passid v

put v

set v v v
setall v v
setid v v

The following list defines the authorizations associated with each parameter:

all
alladm
allmqi
altusr

browse

chg

Use all operations relevant to the object.

Perform all administration operations relevant to the object.

Use all MQI calls relevant to the object.

Specify an alternate user ID on an MQI call.

Retrieve a message from a queue by issuing an MQGET call with the

BROWSE option.

Change the attributes of the specified object, using the appropriate

command set.

Chapter 15. The MQSeries control commands 215

dspmqaut

chgaut

clr

connect

cpy

crt

dit

dsp

get

ing
passall
passid
put

set
setall

setid

Specify authorizations for other groups of users on the object, using
the setmgaut command.

Clear a queue (PCF command Clear queue only).

Connect the application to the specified queue manager by issuing an
MQCONN call.

Copy the definition of an object, for example, the PCF Copy queue
command.

Create objects of the specified type, using the appropriate command
set.

Delete the specified object, using the appropriate command set.

Display the attributes of the specified object, using the appropriate
command set.

Retrieve a message from a queue by issuing an MQGET call.
Make an inquiry on a specific queue by issuing an MQINQ call.
Pass all context.

Pass the identity context.

Put a message on a specific queue by issuing an MQPUT call.
Set attributes on a queue from the MQI by issuing an MQSET call.
Set all context on a queue.

Set the identity context on a queue.

The authorizations for administration operations, where supported, apply to these
command sets:

e Control commands
¢ MQSC commands
e PCF commands

Return codes

0 Successful operation

36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available

71 Unexpected error

72 Queue manager name error
133 Unknown object name

145 Unexpected object name
146 Object name missing

147 Object type missing

148 Invalid object type

149 Entity name missing

216 MQsSeries for Tandem NSK V2R2 System Management Guide

dspmaqaut

Examples

The following example shows a command to display the authorizations on queue
manager saturn.queue.manager associated with user group staff:

dspmgaut -m saturn.queue.manager -t gmgr -g staff

The results from this command are:

Entity staff has the following authorizations for object :
get
browse
put
ing
set
connect
altusr
passid
passall
setid

Related commands
setmgaut Set or reset authority

Chapter 15. The MQSeries control commands 217

dspmqcsv

dspmqcsv (Display command server)

Purpose

Use the dspmqgcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:

e Starting

e Running

¢ Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets
e Ending

e Stopped

Syntax

»»—dspmqcsv—=_QMgriName

\ 4
A

Required parameters
QMgrName

Specifies the name of the local queue manager for which the command
server status is being requested.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

The following command displays the status of the command server associated with
venus.q.mgr:

dspmgcsv venus.q.mgr

Related commands
SterCSV Start a command server

endmqcsv End a command server

218 MQSeries for Tandem NSK V2R2 System Management Guide

dspmqfls

dspmqfls (Display MQSeries files)

Purpose
Use the dspmqgfls command to display the real file system name for all MQSeries
objects that match a specified criterion. You can use this command to identify the
files associated with a particular MQSeries object. This is useful for backing up
specific objects. See “Volume structure” on page 56 for further information about
name transformation.

Syntax

»»—dspmqfls

GenericObjName————— >«

L -m QMngame—I L -t 0bJ TypeJ

Required parameters

GenericObjName
Specifies the name of the MQSeries object. The name is a string with no flag
and is a required parameter. If the name is omitted an error is returned.

This parameter supports a wild card character * at the end of the string.

Optional parameters
-m QMgrName
Specifies the name of the queue manager for which files are to be examined.
If this parameter is omitted, the command operates on the default queue
manager.

-t ObjType
Specifies the MQSeries object type. The following list shows the valid object
types. The abbreviated name is shown first followed by the full name.

* or all All object types; this is the default

g or queue A queue or queues matching the object name parameter
gl or glocal A local queue

ga or galias An alias queue

gr or gremote A remote queue

gm or gmodel A model queue

gmgr A queue manager object

prcs or process A process

Note: The dspmqfls command displays the directory containing the queue, not
the name of the queue itself.

Chapter 15. The MQSeries control commands 219

dspmqfls

Return codes

0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

Examples

1. The following command displays the details of all objects with names beginning
SYSTEM.ADMIN that are defined on the default queue manager.

dspmqfls SYSTEM.ADMIN=

2. The following command displays file details for all processes with hames
beginning PROC defined on queue manager RADIUS.

dspmgfls -m RADIUS -t prcs PROC*

Related commands
altmqfls Alter queue volume

220 MQsSeries for Tandem NSK V2R2 System Management Guide

dspmaqtrc

dspmaqtrc (Display MQSeries formatted trace output)

PUI‘DOSG
Use the dspmqgtrc command to display MQSeries formatted trace output. For
more information about using MQSeries trace, see “Using MQSeries trace” on
page 188.
Syntax
»»—dspmqtrc InputFileName ><

L -t ForrnatTemplmte—J

Required parameters

InputFileName
Specifies the name of the file containing the unformatted trace. For example
$DATA.MQTRACE.AMQ12345..

Optional parameters

-t FormatTemplate
Specifies the name of the template file containing details of how to display the
trace. A sample trace format file called AMQTRC, which is used by default, is
provided in subvolume ZMQSSMPL.

Related commands
endmqtrc End MQSeries trace

strmqtrc Start MQSeries trace

Chapter 15. The MQSeries control commands 221

endmaqcsv

endmqcsv (End command server)

Purpose

Use the endmqgcsv command to stop the command server on the specified queue
manager.

Syntax

A\
A

-C
»—enqucsvH—OMngamc
-i

Required parameters

QMgrName
Specifies the name of the queue manager for which the command server is to
be ended.

Optional parameters

-c Specifies that the command server is to be stopped in a controlled manner.
The command server is allowed to complete the processing of any command
message that it has already started. No new message is read from the
command queue.

This is the default.

-i Specifies that the command server is to be stopped immediately. Actions
associated with a command message currently being processed may not be
completed.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

1. The following command stops the command server on queue manager
saturn.queue.manager:

endmgcsv -c saturn.queue.manager

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in
the command queue until the command server is restarted.

222 MQSeries for Tandem NSK V2R2 System Management Guide

endmgqcsv

2. The following command stops the command server on queue manager pluto
immediately:

endmgcsv -i pluto

Related commands
SterCSV Start a command server

dspmqcsv Display the status of a command server

Chapter 15. The MQSeries control commands 223

endmgm

endmgm (End queue manager)

Purpose

Use the endmgm command to end (stop) a specified local queue manager. This
command stops a queue manager in one of three modes:

e Normal or quiesced shutdown
¢ Immediate shutdown
e Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmgm (Start queue
manager) command.

To delete a queue manager, you must stop it and then use the ditmgm (Delete
gueue manager) command.

Syntax

»>—endmgm]
t -i j L -z il |—QMgr'NameJ
-p

C

A\
A

Optional parameters

QMgrName

Is the name of the message queue manager to be stopped. If no name is
specified, the default queue manager is stopped.

Controlled (or quiesced) shutdown. The queue manager stops but only after
all applications have disconnected. Any MQI calls currently being processed
are completed. This is the default.

Immediate shutdown. The queue manager stops after it has completed all the
MQI calls currently being processed. Any MQI requests issued after the
command has been issued fail. Any incomplete units of work are rolled back
when the queue manager is next started.

Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For
example, when a queue manager does not stop as a result of a normal
endmgm command.

The queue manager stops without waiting for applications to disconnect or for
MQI calls to complete. This can give unpredictable results for MQI
applications. All processes in the queue manager that fail to stop are
terminated 30 seconds after the command is issued.

Suppresses error messages on the command.

224 MQSeries for Tandem NSK V2R2 System Management Guide

endmgm

Return codes
0 Queue manager ended
16 Queue manager does not exist
36 Invalid arguments
40 Queue manager not available
69 Storage not available
71 Unexpected error
72 Queue manager name error

Examples
The following examples show commands that end (stop) the specified queue
managers.

1. This command ends the default queue manager in a controlled way. All
applications currently connected are allowed to disconnect.

endmgm

2. This command ends the queue manager named saturn.queue.manager

immediately. All current MQI calls complete, but no new ones are allowed.

endmgm -i saturn.queue.manager

Related commands

crtmgm Create a queue manager
strmgm Start a queue manager
ditmgm Delete a queue manager

Chapter 15. The MQSeries control commands

225

endmgqtrc

endmgqtrc (End MQSeries trace)

Purpose
Use the endmgtrc command to end tracing for a specified queue manager.
For more information about using MQSeries trace, see “Using MQSeries trace” on
page 188.

Syntax

A\
A

-a

-m OMngamej_—_'—
-e

»—endmqtrc |:

Optional parameters
-m QMgriName
Is the name of the queue manager for which tracing is to be ended. If no
name is specified, tracing is ended on the default queue manager.

A gueue manager name can be specified on the same command as the -e
flag.

-e If this flag is specified, early tracing is ended.

-a If this flag is specified all tracing is ended.

This flag must be specified alone.

Return codes

AMQ5611
This message is issued if arguments that are not valid are supplied to the
command.

Examples
This command ends tracing of data for a queue manager called QM1.

endmgtrc -m QM1

Related commands
dspmgqtrc Display formatted trace output

strmqtrc Start MQSeries trace

226 MQSeries for Tandem NSK V2R2 System Management Guide

instmgm

instmgm (Install MQSeries for Tandem NSK)

Purpose

Use the instmgm command to install MQSeries for Tandem NSK or update
licenses.

Syntax

\ 4
A

»>—instmgm
A

Optional parameters
-l Invokes instmgm for license updates.

Chapter 15. The MQSeries control commands 227

runmgchi

runmgqchi (Run channel initiator)

PUI‘DOSG
Use the runmgchi command to run a channel initiator process. For more
information about the use of this command, refer to the MQSeries
Intercommunication book.

Syntax

»>—runmqchi

A\
A

L -q Initiation()Name—J L -m OMngarne—J

Optional parameters
-gq InitiationQName
Specifies the name of the initiation queue to be processed by this channel
initiator. If no value is specified, SYSTEM.CHANNEL.INITQ is used.

-m QMgriName
Specifies the name of the queue manager on which the initiation queue
exists. If the name is omitted, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, you should review the
gueue manager error log that the channel is associated with for the error
messages. You should also review the system error log, as problems that occur
before the channel is associated with the queue manager are recorded there. For
more information about error logs, see “Error logs” on page 185.

228 MQsSeries for Tandem NSK V2R2 System Management Guide

runmgchl

runmqchl (Run channel)

PUI‘DOSG
Use the runmgchl command to start either a sender (SDR), requester (RQSTR), or
fully qualified server channel. On MQSeries for Tandem NSK, runmgchl can also
be used to start LU 6.2 responder processes for listening-type SNA channels that
are not AUTOSTART(ENABLED) or that have just been defined.

The channel runs asynchronously. To stop the channel, issue the MQSC
command STOP CHANNEL.

Syntax

\ 4
A

»»>—runmqchl— -c ChannelName B n
-m QMgrName

Required parameters

-C ChannelName
Specifies the name of the channel to start.

Optional parameters
-m QMgrName
Specifies the name of the queue manager with which this channel is
associated. If no name is specified, the default queue manager is used.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages. You should also review the @SYSTEM error log
because problems that occur before the channel is associated with the queue
manager are recorded there.

Chapter 15. The MQSeries control commands 229

runmqdiq

runmqdlqg (Run dead-letter queue handler)

Purpose

Use the runmqdlg command to start the dead-letter queue (DLQ) handler, a utility
that processes messages on a dead-letter queue.

Syntax

»»—runmqdlq

\ 4
A

L QName | L RuZesTable—I
L QMgrName ll

Optional parameters
QName

QMgrName

Is the name of the dead-letter queue to be processed.

If you specify a QName value, it overrides any INPUTQ value specified in a
rules table. If no (nonblank) name is specified either on input to
runmgdlg or in the rules table, the dead-letter queue associated with the
gueue manager hamed on the QMgrName parameter is processed.

Is the name of the queue manager that owns the queue to be processed.

If you specify a QMgrName value, it overrides any INPUTQM value specified
in a rules table. If no (nonblank) name is specified either on input to
runmqdlq or in the rules table, the queue is assumed to belong to the
default queue manager.

RulesTable

Is the name of the file containing the rules table, which must contain at
least one rule.

By default, the runmqdlq command takes its input from the standard IN
file. When the command is processed, the results and a summary are put
into a report that is sent to the standard OUT file. Alternatively, by
redirecting the input from a file, you can apply a rules table to the specified
queue.

If no rules table is specified on input to runmqdlq , rules and actions must
be specified interactively.

In this case, the DLQ handler:

¢ Reads its input from the keyboard.

¢ Does not start to process the named queue until it receives an
end_of file (ctrl-Y) character.

The MQSC rules for comment lines and for joining lines also apply to
the DLQ handler input parameters.

For more information about rules tables and how to construct them, see
“DLQ handler rules table” on page 140.

230 MQSeries for Tandem NSK V2R2 System Management Guide

runmglsr

runmglsr (Run listener)

Purpose
The runmaglsr (Run listener) command runs a TCP/IP listener process.

Syntax

\4
A

»>—runmglsr
L -t 'ccpJ L -p PortJ L -m ()MngameJ

Optional parameters
-p Port Port number for TCP/IP. If a value is not specified, the port number
specified on a TCPListenerPort entry in the TCPConfig stanza in the
QMINI file is used. The default value is 1414. If multiple listener ports are
defined in QMINI, the next available port is used.

If none of the ports specified in QMINI is free, or the port specified on the
runmglsr command is not available, runmglsr fails.

-m QMgrName
Specifies the name of the queue manager. If no name is specified, the
command operates on the default queue manager.

-ttcp Identifies TCP/IP as the transmission protocol. This is the only valid value
(and the default) in MQSeries for Tandem NSK.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Chapter 15. The MQSeries control commands 231

runmgsc

runmgsc (Run MQSeries commands)

PUI‘DOSG
Use the runmgsc command to issue MQSC commands to a queue manager.
MQSC commands enable you to perform administration tasks, for example defining,
altering, or deleting a local queue object. MQSC commands and their syntax are
described in the MQSeries Command Reference.
Syntax
»>—runmqsc ' |] >«
-e LOMngame
-i
-0
-V
-W WaitTirne—L—_l—
-X
Description

You can invoke the runmgsc command in three modes:

Verify mode MQSC commands are verified but not actually run. An output
report is generated indicating the success or failure of each
command. This mode is only available on a local queue
manager.

Direct mode MQSC commands are sent directly to a local queue manager.

Indirect mode MQSC commands are run on a remote queue manager. These
commands are put on the command queue on a remote queue
manager and are run in the order in which they were queued.
Reports from the commands are returned to the local queue
manager.

The runmgsc command takes its input from the standard IN file. When the
commands are processed, the results and a summary are put into a report that is
sent to the standard OUT file.

By taking the standard IN file from the keyboard, you can enter MQSC commands
interactively.

By redirecting the input from a file you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

Note: To run this command, your user ID must belong to user group mgm.

232 MQSeries for Tandem NSK V2R2 System Management Guide

Optional parameters

Return codes

runmgsc

Prevents source text for the MQSC commands from being copied into a
report. This is useful when you enter commands interactively.

Input file name
Output file name

Specifies verification mode; this verifies the specified commands without
performing the actions. This mode is available locally only. The -w and -x
flags are ignored if they are specified at the same time.

-W WaitTime

Specifies indirect mode, that is, the MQSC commands are to be run on
another queue manager. You must have the required channel and
transmission queues set up for this. See “Preparing channels and
transmission queues for remote administration” on page 109 for more
information.

WaitTime Specifies the time, in seconds, that runmqgsc waits for replies.
Any replies received after this are discarded, however, the
MQSC commands are still run. Specify a time between 1 and
999 999 seconds.

Each command is sent as an Escape PCF to the command
queue (SYSTEM.ADMIN.COMMAND.QUEUE) of the target
gqueue manager.

The replies are received on queue
SYSTEM.MQSC.REPLY.QUEUE and the outcome is added to
the report. This can be defined as either a local queue or a
model queue.

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the -v flag is specified.

Specifies that the target queue manager is running under MVS/ESA. This
flag applies only in indirect mode. The -w flag must also be specified. In
indirect mode, the MQSC commands are written in a form suitable for the
MQSeries for MVS/ESA command queue.

QMgrName

00
10

20

Specifies the name of the target queue manager on which the MQSC
commands are to be run. If omitted, the MQSC commands run on the default
gueue manager.

MQSC command file processed successfully.

MQSC command file processed with errors-report contains reasons for failing
commands.

Error-MQSC command file not run.

Chapter 15. The MQSeries control commands 233

runmgsc

Examples
1. Enter this command at the TACL prompt:

runmgsc

Now you can enter MQSC commands directly. No queue manager name was
specified, therefore the MQSC commands are processed on the default queue
manager.

2. The following example shows how to specify that MQSC commands are verified
only:

runmgsc -1 $SYSTEM.CONFIG.MQSCIN -v BANK

This verifies the MQSC command file $SYSTEM.CONFIG.MQSCIN. The
gueue manager name is BANK. The output is displayed in the current window.

3. This command runs an MQSC command file against the queue manager called
BANK.

runmgsc -i MQSCFILE -o $TEST.MQ.MQSCOUT BANK

In this example, the output is directed to file $TEST.MQ.MQSCOUT. The input
file is MQSCFILE in the current subvolume.

234 MQSeries for Tandem NSK V2R2 System Management Guide

runmqgtrm

runmgqtrm (Start trigger monitor)

PUI‘DOSG
Use the runmgtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to the MQSeries Application Programming
Guide.
Syntax
»>—runmqtrm ><

|— -m QMngame——| |— -q Ini1.‘1'(71&1'0nQName—J

Optional parameters
-m QMgriName
Specifies the name of the queue manager on which the trigger monitor
operates. If this parameter is omitted, the trigger monitor operates on the
default queue manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If this parameter
is omitted, SYSTEM.DEFAULT.INITIATION.QUEUE is used.

Return codes

0 Not used. The trigger monitor is designed to run continuously and therefore
not to end. Hence a value of 0 would not be seen. The value is reserved.

10 Trigger monitor interrupted by an error.

20 Error—trigger monitor not run.

Chapter 15. The MQSeries control commands 235

setmgaut

setmqgaut (Set/reset authority)

Purpose
Use the setmgaut command to change the authorizations to an object or to a class
of objects. Authorizations can be granted to, or revoked from, any number of
groups.

Syntax

\4

»»—setmqaut— -m QMgriName -t ObjectType

L -n 0bjectName——|
v |

-g GroupName >

»
>

L -S ServiceComponentJ

MQI authorizations | |

Context authorizations ——

Administration authorizations
Generic authorizations

v
A

MQI authorizations:

- +get | |
— —get
— +browse —
— —browse —
— +put
= —put —
- +-inq R
- —ing —
— +set ——
= —set
— +connect —
— —connect —
— +altusr —
— —altusr —

Context authorizations:

}—*—— +passid | I
— —passid —
— +passall —
— —passall —
— +setid —
— —setid —
— +setall —
— —setall —

236 MQSeries for Tandem NSK V2R2 System Management Guide

Description

setmqaut

Administration authorizations:

4 rert —1 |
— —crt —
— +d1t —
— —dit —
— +Chg —
— —Chg —
— +dsp —
— —dSp —
— —cpy -
— +clr —
— —clr —

Generic authorizations:

+allmqi |
-allmqi —
+alladm —
—alladm —
+all
—-all ——

You can use this command both to set an authorization, that is, give a user group
permission to perform an operation, and to reset an authorization, that is, remove
the permission to perform an operation. You must specify the user groups to which
the authorizations apply and also the queue manager, object type, and object name
of the object. You can specify any number of groups in a single command.

The authorizations that can be given are categorized as follows:

» Authorizations for issuing MQI calls

e Authorizations for MQI context

e Authorizations for issuing commands for administration tasks
* Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by ‘+" or ‘-’. For example, if
you include +put in the authorization list, you are giving authority to issue MQPUT
calls against a queue. Alternatively, if you include —-put in the authorization list, you

are removing the authorization to issue MQPUT calls.

Authorizations can be specified in any order provided that they do not clash. For
example, specifying allmgi with set causes a clash.

You can specify as many groups or authorizations as you require in a single
command.

If a user ID is a member of more than one group, the authorizations that apply are
the union of the authorizations of each group to which that user ID belongs.

Chapter 15. The MQSeries control commands 237

setmgaut

Required parameters
-g GroupName
Specifies the name of the user group whose authorizations are to be
changed. You can specify more than one group name, but each name must
be prefixed by the -g flag.

-m QMgrName
Specifies the name of the queue manager of the object for which the
authorizations are to be changed. The name can contain up to 48 characters.

-t ObjectType
Specifies the type of object for which the authorizations are to be changed.

Possible values are:

e (or queue
* prcs or process
* gmgr

Optional parameters
-n ObjectName
Specifies the name of the object for which the authorizations are to be
changed.

This is a required parameter unless it is the queue manager itself. You
must specify the name of a queue manager, queue, or process, but must
not use a generic hame.

-s ServiceComponent
This parameter applies only if you are using installable authorization
services, otherwise it is ignored.

If installable authorization services are supported, this parameter specifies
the name of the authorization service to which the authorizations apply.
This parameter is optional; if it is not specified, the authorization update is
made to the first installable component for the service.

Authorizations
Specifies the authorizations to be given or removed. Each item in the list
is prefixed by a ‘+’ indicating that authority is to be given, or a ‘-,
indicating that authorization is to be removed. For example, to give
authority to issue an MQPUT call from the MQI, specify +put in the list.
To remove authority to issue an MQPUT call, specify —put.

Table 12 shows the authorities that can be given to the different object

types.

Table 12 (Page 1 of 2). Specifying authorizations for different object types
Authority Queue Process Qmagr
all v v v
alladm v v v
allmgi v v v
altusr v
browse v

238 MQSeries for Tandem NSK V2R2 System Management Guide

setmqaut

Table 12 (Page 2 of 2). Specifying authorizations for different object types
Authority Queue Process Qmagr
chg v v v
clr v

connect v
crt v v v
dit v v v
dsp v v v
put v

ing v v v
get v

passall v

passid v

set v v v
setall v v
setid v v

Authorizations for MQI calls

altusr

browse

connect

get
ing
put

set

Use an alternate user ID in a message.

See the MQSeries Application Programming Guide for more
information about alternate user IDs.

Retrieve a message from a queue by issuing an MQGET call with
the BROWSE option.

Connect the application to the specified queue manager by issuing
an MQCONN call.

Retrieve a message from a queue by issuing an MQGET call.
Make an inquiry on a specific queue by issuing an MQINQ call.
Put a message on a specific queue by issuing an MQPUT call.

Set attributes on a queue from the MQI by issuing an MQSET call.

Note: If you open a queue for multiple options, you have to be authorized for
each of them.

Chapter 15. The MQSeries control commands 239

setmgaut

Authorizations for context

passall

passid

setall

setid

Pass all context on the specified queue. All the context fields are
copied from the original request.

Pass identity context on the specified queue. The identity context
is the same as that of the request.

Set all context on the specified queue. This is used by special
system utilities.

Set identity context on the specified queue. This is used by
special system utilities.

Authorizations for commands

chg

clr

cpy

crt
dit

dsp

Change the attributes of the specified object.
Clear the specified queue (PCF Clear queue command only).

Copy the attributes of the specified object (PCF Copy commands
only).

Create objects of the specified type.
Delete the specified object.

Display the attributes of the specified object.

Authorizations for generic operations

all
alladm

allmqi

Return codes

Use all operations applicable to the object.
Perform all administration operations applicable to the object.

Use all MQI calls applicable to the object.

0 Successful operation

36 Invalid arguments supplied

40 Queue manager not available
49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error

133 Unknown object name

145 Unexpected object name

146 Object name missing

147 Object type missing

148 Invalid object type

149 Entity name missing

150 Authorization specification missing
151 Invalid authorization specification

240 MQsSeries for Tandem NSK V2R2 System Management Guide

setmqaut

Examples
1. This example shows a command that specifies that the object on which
authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager.

setmgaut -m saturn.queue.manager -n orange.queue -t queue -g tango +ing +alladm

The authorizations are being given to user group tango and the associated
authorization list specifies that user group tango:

e Can issue MQINQ calls.
e Has authority to perform all administration operations on that object.

2. In this example, the authorization list specifies that user group foxy:

e Cannot issue any calls from the MQI to the specified queue.
e Has authority to perform all administration operations on the specified
gueue.

setmgaut -m saturn.queue.manager -n orange.queue -t queue -g foxy -allmgi +alladm

Related commands
dspmaqgaut Display authority

Chapter 15. The MQSeries control commands 241

strmqcsv

strmqgcsv (Start command server)

PUI‘DOSG
Use the strmgcsv command to start the command server for the specified queue
manager. This enables MQSeries to process commands sent to the command
gueue.

Syntax

»»—strmqcsv—_QMgriame

A\
A

Required parameters

QMgrName
Specifies the name of the queue manager for which the command server is to
be started.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
The following command starts a command server for queue manager earth:

strmgcsv earth

Related commands
endmqgcsv End a command server

dspmgcsv Display the status of a command server

242 MQSeries for Tandem NSK V2R2 System Management Guide

strmgm

strmgm (Start queue manager)

Purpose

Use the strmgm command to start a local queue manager.

Syntax

»—strmgm
L -z J |—QMngame—l

\4
A

Optional parameters

QMgrName

Return codes

16
49
69
71
72

Examples

Specifies the name of a local queue manager to be started. If omitted, the
default queue manager is started.

Suppresses error messages.

This flag is used within MQSeries to suppress unwanted error messages.
Because using this flag could result in loss of information, you should not use
it when entering commands on a command line.

Queue manager started
Queue manager being created
Queue manager running
Queue manager does not exist
Queue manager stopping
Storage not available
Unexpected error

Queue manager name error

The following command starts the queue manager account:

strmgm account

Related commands

crtmgm Create a queue manager

ditmgm Delete a queue manager

endmgm End a queue manager

Chapter 15. The MQSeries control commands 243

strmqtrc

strmgtrc (Start MQSeries trace)

Purpose

Use the strmgtrc command to enable tracing. This command can be run whether
tracing is enabled or not. If tracing is already enabled, the trace options in effect
are modified to those specified on the latest invocation of the command.

For more information about using MQSeries trace, see “Using MQSeries trace” on
page 188.

Syntax

»»—strmqgtrc v | >

A

L -m QMngame——| L -e] L -t TraceType—J

Optional parameters

-m QMgriName

Is the name of the queue manager to be traced. If no name is specified, the
default queue manager is used.

The specified queue manager does not have to be running or even to exist.
Consequently, it is possible to trace the creation or startup of a queue
manager.

A gueue manager name can be specified on the same command as the -e
flag. If more than one trace specification applies to a given entity being
traced, the trace includes all of the specified options.

If this flag is specified, early tracing is requested. This involves trace
information being written, before the processes know to which MQSeries
component they belong. Any process, belonging to any component of any
gueue manager, traces its early processing if this flag is specified. The
default, if this flag is not specified, is not to perform early tracing.

-t TraceType

Defines which points during processing can be traced. One or more of the
following options can be supplied:

all Output data for every trace point in the system. This is also the default
if the -t flag is not specified.

api Output data for trace points associated with the MQI and major queue
manager components.

comms
Output data for trace points associated with data flowing over
communications networks.

csflows
Output data for trace points associated with processing flow in common
services.

Igmflows
Output data for trace points associated with processing flow in the local
gueue manager.

244 MQSeries for Tandem NSK V2R2 System Management Guide

Return codes

Examples

strmqtrc

remoteflows
Output data for trace points associated with processing flow in the
communications component.

otherflows
Output data for trace points associated with processing flow in other
components.

csdata
Output data for trace points associated with internal data buffers in
common services.

Igmdata
Output data for trace points associated with internal data buffers in the
local queue manager.

remotedata
Output data for trace points associated with internal data buffers in the
communications component.

otherdata
Output data for trace points associated with internal data buffers in other
components.

versiondata
Output data for trace points associated with the version of MQSeries
running.

commentary
Output data for trace points associated with comments in the MQSeries
components.

If this flag is omitted, all trace points are enabled and a full trace generated.

Note: If multiple trace types are supplied, each must have its own -t flag. Any
number of -t flags can be specified, provided that each has a valid trace
type associated with it.

It is not an error to specify the same trace type on multiple -t flags.

AMQ7024

This message is issued if arguments that are not valid are supplied to the
command.

AMQ8304

The maximum number of nine concurrent traces is already running.

This command enables tracing of data from common services and the local queue
manager, for a queue manager called QM1.

strmgtrc -m QM1 -t csdata -t lgmdata

Chapter 15. The MQSeries control commands 245

strmqtrc

Related commands
dspmgqtrc Display formatted trace output

endmqtrc End MQSeries trace

246 MQsSeries for Tandem NSK V2R2 System Management Guide

Part 3. Appendixes

© Copyright IBM Corp. 1995, 1997 247

248 MQsSeries for Tandem NSK V2R2 System Management Guide

Security

Appendix A. MQSeries for Tandem NSK at a glance

Program and part number

e 5697-A17 MQSeries for Tandem NSK, Version 2 Release 2, part number
83H8731.

Hardware requirements
Minimum hardware requirements are:

e Any of the Tandem NSK range of machines supported by Tandem NSK D3x,
D4x, or G02

e Specific hardware in support of user-selected network transport protocols.

You are also recommended to have one or more mirrored data disks with specified
space requirements for TMF audit space and the MQSeries database.

Software requirements
Minimum software requirements are:

e Tandem NSK D3x, D4x, or GO2 operating systems, including TM/MP (TMF),
ENSCRIBE, and EMS.

e TS/MP (PATHWAY) to match operating system.
e SCF for configuration, command, and control of TCP and SNA network
transports.
For SNA connectivity:
e SNAX/APC and SNAX/XF or SNAX/APN to match operating system
or

¢ Insession ICE to match operating system

For TCP/IP connectivity:
e TCP/IP to match operating system.

Transaction logging is maintained with the Tandem TM/MP (TMF) product.

Security

MQSeries for Tandem NSK uses the security features of the NSK file system,
which provide file-level access control to USER and GROUP for read, write,
execute, and purge operations. SAFEGUARD is not required for the use of
MQSeries for Tandem NSK; however, the product is compatible with a
SAFEGUARD environment.

© Copyright IBM Corp. 1995, 1997 249

License management

All MQSeries resources are owned by a single user ID in group MQM. To
administer MQSeries with either the SCOBOL menus or runmgsc , you must be
logged in with a user ID assigned or linked to the MQM group.

Maintenance functions
MQSeries functions with:

* The Message Queue Management (MQM) facility using SCOBOL requester
configuration screens in a PATHWAY environment.

e The runmgsc command-line interface.

e SCEF utility for configuration, command and control functionality to maintain
TCP/IP and SNA environments for Tandem network protocol offerings.

e |CE utilities provided with that product for control of ICE LU 6.2 interface.

Compatibility

The MQI for MQSeries for Tandem NSK, V2.2, is compatible with existing
applications running V1.5.1.

Supported compilers
MQSeries for Tandem NSK V2.2 is built using the Common Runtime Environment
(CRE) to link all objects. This method imposes the following requirements on users
of versions of the MQI prior to Version 2.2:

1. All pre-D30 COBOL and C object code must be recompiled with the D30 (or
later) compiler to integrate the CRE linkage.

2. All pre-D30 TAL object code must be recompiled with a D30 (or later) compiler
and you must ensure that the TAL program is compliant with the special
programming considerations specified in the Common Run-time Environment
Programmer’s Guide. More detailed information on each of these programming
considerations is provided in the TAL Programmer's Guide.

3. For object code produced with native compilers on D40, a separate binding is
provided.

4. C programs must use the WIDE memory model (32—bit integers).
5. COBOL programs must conform to the requirements of the CRE.

6. In TAL programs, all integers passed to the MQI functions must be 32 bits (or
be cast to 32 bit with the $INT32() macro).

License management

You must enter the system type and the number of CPUs to define the program
entittement. These parameters can be entered at installation time or at any
subsequent time in the event of a license upgrade being purchased. At startup
these values are checked against the physical Tandem machine configuration. If
the license registration and program entitlement are insufficient, a warning message
is issued.

250 MQsSeries for Tandem NSK V2R2 System Management Guide

Internationalization

Language selection

A supplied message text file is encoded in the 7-bit character set that is native to
the Tandem NSK operating system. MQSeries for Tandem NSK lets the national
language be specified when the product is installed. The message language
defaults to U.S. English.

Message persistence

Persistent messages are defined as messages that, once committed, survive a
system restart. Nonpersistent messages are messages that do not survive a
system restart. To take advantage of the scalability provided by Tandem NSK
platforms, all message queues are file based. Both persistent and nonpersistent
messages are supported, though there is no performance advantage in using
nonpersistent messages.

Internationalization

MQSeries for Tandem NSK lets the CCSID be specified when the queue manager
instance is created. The queue manager CCSID defaults to 819. MQSeries for
Tandem NSK supports character-set conversion into the configured CCSID of the
gueue manager. The following code sets are supported by this conversion:

CCsSID Code set Description
37 EBCDIC US-ENGLISH PORTUGUESE
273 EBCDIC GERMAN
277 EBCDIC DANISH NORWEGIAN
278 EBCDIC FINNISH SWEDISH
280 EBCDIC ITALIAN
284 EBCDIC SPANISH
285 EBCDIC UK-ENGLISH
297 EBCDIC FRENCH
420 EBCDIC ARABIC
424 EBCDIC HEBREW
437 PC-ASCII US-ENGLISH GERMAN FINNISH

SWEDISH ITALIAN SPANISH
UK-ENGLISH FRENCH MULTILINGUAL

500 EBCDIC MULTILINGUAL PORTUGUESE
813 1ISO8859 GREEK
819 1ISO8859 US-ENGLISH GERMAN DANISH

NORWEGIAN FINNISH SWEDISH ITALIAN
SPANISH UK-ENGLISH FRENCH
MULTILINGUAL PORTUGUESE
ICELANDIC

850 PC-ASCII US-ENGLISH GERMAN DANISH
NORWEGIAN FINNISH SWEDISH ITALIAN
SPANISH UK-ENGLISH FRENCH
MULTILINGUAL PORTUGUESE
ICELANDIC

Appendix A. MQSeries for Tandem NSK at a glance 251

Internationalization

CCSID Code set Description

852 PC-ASCII EASTERN-EUROPEAN

855 PC-ASCII CYRILLIC

856 PC-ASCII HEBREW

857 PC-ASCII TURKISH

860 PC-ASCII PORTUGUESE

861 PC-ASCII ICELANDIC

862 PC-ASCII HEBREW

863 PC-ASCII French-Canadian

864 PC-ASCII ARABIC

865 PC-ASCII DANISH NORWEGIAN FINNISH SWEDISH

866 PC-ASCII CYRILLIC

869 PC-ASCII GREEK

870 EBCDIC EASTERN-EUROPEAN

871 EBCDIC ICELANDIC

875 EBCDIC GREEK

880 EBCDIC CYRILLIC

912 1ISO8859 EASTERN-EUROPEAN

915 1ISO8859 CYRILLIC

916 1SO8859 HEBREW

920 1ISO8859 TURKISH

930 EBCDIC-multibyte JAPANESE KANJI / KATAKANA MIXED
JAPANESE KANJI/KATAKANA MIXED

932 PC-ASCII-multibyte JAPANESE KANJI / LATIN MIXED
JAPANESE KANJI /KATAKANA MIXED

933 EBCDIC-multibyte KOREAN

935 EBCDIC-multibyte SIMPLIFIED CHINESE

937 EBCDIC-multibyte TRADITIONAL CHINESE

938 PC-ASCII-multibyte TRADITIONAL CHINESE

939 EBCDIC-multibyte JAPANESE KANJI / LATIN MIXED
JAPANESE KANJI / KATAKANA MIXED

942 PC-ASCII-multibyte JAPANESE KANJI / LATIN MIXED
JAPANESE KANJI / KATAKANA MIXED

948 PC-ASCII-multibyte TRADITIONAL CHINESE

949 PC-ASCII-multibyte KOREAN

950 PC-ASCII-multibyte TRADITIONAL CHINESE

954 euc-multibyte JAPANESE KANJI / LATIN MIXED
JAPANESE KANJI /KATAKANA MIXED

964 euc-multibyte TRADITIONAL CHINESE

970 euc-multibyte KOREAN

1025 EBCDIC CYRILLIC

1026 EBCDIC TURKISH

252 MQSeries for Tandem NSK V2R2 System Management Guide

Internationalization

CCSID Code set Description

1046 PC-ASCII ARABIC

1051 1ISO8859 US-ENGLISH GERMAN DANISH
NORWEGIAN FINNISH SWEDISH ITALIAN
SPANISH UK-ENGLISH FRENCH
MULTILINGUAL PORTUGUESE
ICELANDIC

1089 1ISO8859 ARABIC

1381 PC-ASCII-multibyte SIMPLIFIED CHINESE

1383 euc-multibyte SIMPLIFIED CHINESE

Appendix A. MQSeries for Tandem NSK at a glance 253

Internationalization

254 MQsSeries for Tandem NSK V2R2 System Management Guide

PAK file installation

Appendix B. PAK file installation example

For information about the availability of the Tandem UNPAK utility, see the
README file supplied with MQSeries for Tandem NSK.
$DATAO MQBETA 10> unpak drvr26, $*.*.instmgm, map names $*.*.instmgm to $data0.=
$DATAO MQBETA 10..
UNPAK - File decompression program (Kari Kujansuu/Tandem Finland 1996)
Compression routines: 'zlib' by Jean-loup Gailly and Mark Adler.
(ftp://ftp.uu.net/pub/archiving/zip/z1ib/)

Archive version: 1

File Mode RESTORE Program - T9074ACU (15DEC95)

Copyright Tandem Computers Incorporated 1981-1994

Drives: ($X849)

System: \RAPTOR Operating System: D30 Tape Version: 3

Backup options: NO AUDITED, BLOCKSIZE 28, NO IGNORE, OPEN, PARTONLY OFF,
INDEXES IMPLICIT

Restore time: 30Aug97 13:59 Backup time: 29Aug97 15:33 Page: 1

Tape: 1 Code EOF Last modif Owner RWEP Type Rec Block

$DATAO.ZMQSEXE
INSTMQM 100 1124352 29Aug97 15:24 20,255 NCNC

Summary Information

Files restored = 1 Files not restored = 0
$DATAO MQBETA 11> v zmgsexe

$DATAO ZMQSEXE 12> files

$DATAO.ZMQSEXE

INSTMQM
$DATAO ZMQSEXE 13> instmgm

IBM MQSeries for Tandem NSK, Version 2
Installation and License update program.

@(#) Licensed Materials - Property of IBM 83H8731,5697-A17 (C) Copyright IBM Co
rp. 1993, 1997 A1l Rights Reserved US Goverment Users Restricted Rights - Use,
duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Product installation selected...

You may stop the installation by entering

"quit" at any prompt

Where there is a default for a parameter, you may
select it by pressing the Enter key on its own.

Phase 1: Collection of Ticense information
License information
Enter the system type that you are licensed for.

The following system types are recognized:
CLX/R

© Copyright IBM Corp. 1995, 1997 255

PAK file installation

CLX800

K100

K200

CYCLONE

K1000

K2000

S7000

K10000

K20000

There is no default value for this parameter.

Please enter your selection: K2000

Enter the number of CPUs that you are licensed for.
The valid range for this parameter is 2 to 16.
There is no default value for this parameter.

Please enter the number: 4

Will you be installing from tape or from an archive file?
Enter TAPE or ARCHIVE.
The default value for this parameter is "TAPE"

Please enter the selection: archive

Enter the name of the archive file to be used for installation.
The file name entered will be validated by opening it.

If the file cannot be opened you will be given the

opportunity to correct the name.

Note: if you are using an archive file, you MUST have
installed the "unpak" utility in a location that is

in the default search path for this user.

There is no default value for this parameter.

Please enter the file name: $data®.mgbeta.drvr26

Enter the name of your spooler process.

The name entered will be validated by opening it.

If the spooler cannot be opened you will be given the
opportunity to correct the name.

The default value for this parameter is "$S"

Please enter the spooler name:

Enter the volume that you will use for installation.
Enter the volume name in the format "$VVVVVVV".
The default value for this parameter is "$SYSTEM"

Please enter the volume: $datad

Enter the default volume that you want Queue Managers to
be created on.

Note that the default Queue Manager volume may be changed
at any time after installation by editing the MQSINI file.
Enter the volume name in the format "§VVVvvvy".

The default value for this parameter is "$DATAQ"

Please enter the volume: $data0d

256 MQsSeries for Tandem NSK V2R2 System Management Guide

Enter the subvolume on $DATAO that you will use for executables.

Enter the subvolume name in the format "VVVVVVVV".
The default value for this parameter is "ZMQSEXE"

Please enter the subvolume:

Select the language to be used for administration messages.
The following languages are available:

ENUS - US English

ESES - Spanish

The default value for this parameter is "ENUS"

Please enter the language:

License verified.

You have selected the following parameters for installation:

Archive file for installation: $DATAO.MQBETA.DRVR26
Spooler name: $S

Volume for installation: $DATAQ

Default Queue Manager volume: $DATAQ

Subvolume for executables: ZMQSEXE

Language for messages: ENUS

Beginning to restore files to $DATAO.
Ready to restore? (yes or quit): yes

Restoring product to $DATAO...

Finished restoring files.

If the summary information indicates a potential error,
review the spooler job #instmgm, and if necessary, repeat
the installation.

Securing files...

Finished securing files.

Creating MQSINI file...

Finished creating MQSINI file.

Creating message file...

Finished creating message file.

Installation complete.

PAK file installation

Appendix B. PAK file installation example 257

PAK file installation

258 MQsSeries for Tandem NSK V2R2 System Management Guide

Appendix C. System defaults

System defaults

The sample MQSC command file amgscoma contains definitions for the MQSeries
for Tandem NSK default and system objects. The default object definitions contain
a complete set of attributes for that object. When you create an object, its
attributes are inherited from the default object, except the ones you explicitly
specify. The system objects are required for the operation of a queue manager or
channel. Table 13 lists the objects defined in amgscoma.

You should create these objects for each queue manager on a given node. To
create these objects, see “Running the supplied MQSC command files” on

page 89.

Table 13. Objects included in amgscoma

Object Name

Description

SYSTEM.DEFAULT.ALIAS.QUEUE

Default alias queue

SYSTEM.DEFAULT.LOCAL.QUEUE

Default local queue

SYSTEM.DEFAULT.MODEL.QUEUE

Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE

Default remote queue.

SYSTEM.DEAD.LETTER.QUEUE

Sample dead-letter (undelivered-message)
queue

SYSTEM.DEFAULT.PROCESS

Default process definition

SYSTEM.DEF.SENDER

Default sender channel

SYSTEM.DEF.SERVER

Default server channel

SYSTEM.DEF.RECEIVER

Default receiver channel

SYSTEM.DEF.REQUESTER

Default requester channel

SYSTEM.DEF.SVRCONN

Default server connection channel

SYSTEM.DEF.CLNTCONN

Default client connection channel

SYSTEM.CHANNEL.INITQ

Channel initiation queue

SYSTEM.CHANNEL.SYNCQ

Channel synchronization queue

SYSTEM.DEFAULT.INITIATION.QUEUE

Default initiation queue

SYSTEM.CICS.INITIATION.QUEUE

Default CICS initiation queue

SYSTEM.ADMIN.COMMAND.QUEUE

Administration command queue. Used for
remote MQSC commands, and PCF
commands.

SYSTEM.MQSC.REPLY.QUEUE

MQSC reply-to-queue. This a model queue
that creates a temporary dynamic queue for
replies to remote MQSC commands.

SYSTEM.ADMIN.QMGR.EVENT

Event queue for queue manager events.

SYSTEM.ADMIN.PERFM.EVENT

Event queue for performance events.

SYSTEM.ADMIN.CHANNEL.EVENT

© Copyright IBM Corp. 1995, 1997

Event queue for channel events.

259

System defaults

260 MQsSeries for Tandem NSK V2R2 System Management Guide

Removing queue managers manually

Appendix D. Stopping and removing queue managers
manually

If the normal methods for stopping and removing queue managers fail, you can
resort to the more drastic methods described here.

Stopping a queue manager manually

The normal method of stopping queue managers, using the endmgm command,
should work even in the event of failures within the queue manager. In exceptional
circumstances, if this method of stopping a queue manager fails, use the following
procedure to stop it manually:

1. Find the process IDs of the queue manager programs that are still running.

2. FUP LISTOPENS on the TRACEOPT file in the queue manager’s data
subvolume gives CPU, PIN of processes belonging to the queue manager.

3. End the queue manager processes that are still running. Use the STOP
command, together with the process IDs discovered in the previous step.

End the processes in the following order:

a. MQECBOSS — EC Boss
b. MQEC — ECs
c. Any other processes that are still running

Note: Manual ending of the queue manager may result in FFSTs being taken, and
the production of FD files. This should not be regarded as a defect in the queue
manager.

The queue manager should restart normally, even if it was ended by using the
preceding method.

If you want to delete the queue manager after stopping it manually, use the

ditmgm command as normal. If, for some reason, this command fails to delete the
gueue manager, the manual process detailed in “Removing queue managers
manually” can be used.

Removing queue managers manually
To remove queue managers manually:

1. Ensure that there are no queue manager processes running for the queue
manager you want to remove.

2. Edit the MQSINI file to remove the queue manager stanza and if necessary,
modify the default queue manager stanza. Note the location of the queue
manager files before deleting the stanza.

3. Delete all files in all subvolumes of the queue manager using the FUP PURGE
command. For example, FUP PURGE $VOL.QMSVOL*.*,

© Copyright IBM Corp. 1995, 1997 261

Removing queue managers manually

262 MQSeries for Tandem NSK V2R2 System Management Guide

MQSeries commands

Appendix E. MQSC supported by MQSeries for Tandem NSK

This appendix lists the MQSeries commands (MQSC) supported by MQSeries for
Tandem NSK. For information about the syntax of these commands, see the
MQSeries Command Reference book.

ALTER CHANNEL
ALTER PROCESS
ALTER QALIAS
ALTER QLOCAL
ALTER QMGR
ALTER QMODEL
ALTER QREMOTE

CLEAR QLOCAL
DEFINE CHANNEL
DEFINE PROCESS
DEFINE QALIAS
DEFINE QLOCAL
DEFINE QMODEL
DEFINE QREMOTE

DELETE CHANNEL
DELETE PROCESS
DELETE QALIAS
DELETE QLOCAL
DELETE QMODEL
DELETE QREMOTE
DISPLAY CHANNEL
DISPLAY CHSTATUS
DISPLAY PROCESS
DISPLAY QMGR
DISPLAY QUEUE
PING CHANNEL
PING QMGR

RESET CHANNEL
RESOLVE CHANNEL

© Copyright IBM Corp. 1995, 1997

Change channel attributes.

Change process attributes.

Change attributes of an alias queue.
Change attributes of a local queue.
Change queue manager attributes.
Change attributes of a model queue.

Change attributes of a local definition of a remote
gueue, a queue-manager alias, or a reply-to queue
alias.

Clear messages from a local queue.
Create a channel definition.

Create a process definition.

Create an alias-queue definition.
Create a local-queue definition.
Create a model-queue definition.

Create a local definition of a remote queue, a
gueue-manager alias, or a reply-to-queue alias.

Delete a channel definition.

Delete a process definition.

Delete an alias-queue definition.

Delete a local-queue definition.

Delete a model-queue definition.

Delete a local definition of a remote queue.
Display a channel definition.

Display the status of one or more channels.
Display a process definition.

Display queue-manager attributes

Display queue attributes

Test a channel.

Test whether queue manager is responding to
commands.

Reset the message sequence number for a channel.

Resolve in-doubt messages on sender or server
channel.

263

MQSeries commands

START CHANNEL Start a channel or LU 6.2 responder process
STOP CHANNEL Stop a channel

If you build MQSC commands into a script, there must be no more than 72
characters on each line.

Attributes of MQSC

APPLTYPE

AUTOSTART

This section provides information about MQSC attributes that is specific to
MQSeries for Tandem NSK. See also Appendix K, “Setting up communications”
on page 319.

The process attribute APPLTYPE can have the value NSK on these MQSC
commands:

ALTER PROCESS
DISPLAY PROCESS
DEFINE PROCESS

The channel attribute AUTOSTART(ENABLED), which is required for SNA channels
that are to accept incoming requests, indicates that the LU 6.2 responder process
for the channel will be started at queue-manager startup.

AUTOSTART(ENABLED) can be specified on the DEFINE CHANNEL command for
RCVR, RQSTR, SVR, and SVRCONN channels.

AUTOSTART(DISABLED) is the default value.

264 MQSeries for Tandem NSK V2R2 System Management Guide

Code page conversion tables

Appendix F. Code page conversion tables

Note: The information in this appendix will be included in the MQSeries
Application Programming Reference at the next opportunity.

Each of the tables shows the conversion support for the characters used by one
language.

Some of the coded character set identifiers (CCSIDs) are used by many languages,
for example CCSID 819 (ISO8859-1 Western European), and appear in many
tables. Other CCSIDs, for example CCSID 273 (German EBCDIC), appear in only
one table.

The following terms are used in the tables:

ISO Indicates that the CCSID is for an ISO 8859 code set

pc-A Indicates in the AlIX and GIS rows that the CCSID is an IBM
defined CCSID used in AlX, AT&T, and OS/2.

-8 Indicates in the HP-UX rows that the CCSID is for the HP-UX
defined code set roman8

GIS Indicates MQSeries for AT&T GIS UNIX

NT Indicates MQSeries for Windows NT

Solaris Indicates MQSeries for Sun Solaris

SunOSs Indicates MQSeries for SunOS

SINIX, DC/OSx Indicates MQSeries for SINIX and DC/OSx
DEC OpenVMS Indicates MQSeries for Digital OpenVMS

Tandem Indicates MQSeries for Tandem NonStop Kernel

The following codes are used in the tables:

Y Conversion at target supported going to and from source
y No conversion is required because the different MQSeries products are
operating in the same CCSID

The default for data conversion is for the conversion to be performed at the target
(receiving) system.

Where a cell in a table is blank, conversion is not supported by the target product.

If the source product supports the conversion, a channel can be set up and data
exchanged by setting the channel attribute DataConversion to YES at the source.
To determine if the source product supports the conversion, read the relevant table
with source and target reversed. If conversion is shown as supported, it is possible
to do conversion in the source product.

© Copyright IBM Corp. 1995, 1997 265

Code page conversion tables

Notes:

1. If you have MQSeries for MVS/ESA V1.1.3 and have installed APAR PN73611,
you can change the default CCSID. If you have an earlier release, or have not
applied this APAR, CCSID 500 is always used; this means that you can use
only the multilingual code page (Table 22 on page 275).

2. Conversion for MQSeries client information takes place in the server, so the
server must support conversion from the client CCSID to the server CCSID.

3. The OS/2 and Solaris rows include information from some country-specific
versions. Not all of the conversions shown in the OS/2 and Solaris rows are
supported by all OS/2 and Solaris versions.

For an extended list of CCSIDs, see the Character Data Representation Reference,
SC09-1390. See Table 38 on page 291 for a cross reference between some of
the CCSID numbers and some industry code set names.

266 MQsSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Code-page conversion tables

Table 14. Conversion support: US ENGLISH

* Supported on MQSeries for AIX Version 2.2.1 or later.
t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Target Source » MVS, 0s/2, GIS, AlX, AlX, GIS, HP-UX
| 0S/400 NT HP-UX, NT
v GIS,

Solaris,

SunOs,

DEC-OVMS,
Tandem
CCSID 37 437 819 850 1051

MVS 37 y Yt Yt Yt Yt
0S/400 37 y Y Y
0s/2 437 Y Y
AlX (pc-A) 850 \4 Y Y y \&
AIX (ISO) 819 Y Y* 3% Y Y*
HP-UX (ISO) 819 Y Y y Y Y
HP-UX (-8) 1051 Y Y Y Y y
GIS (I1SO) 819 Y Y y \'% \'%
GIS (pc-A) 437 Y y \4 Y \%
GIS (pc-A) 850 Y Y Y y Y
NT 437 Y y Y Y Y
NT 850 Y Y Y y Y
Solaris 819 Y Y y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y y Y Y
DEC-OVMS 819 Y Y y Y Y
Tandem 819 Y Y y Y Y
Note:

Appendix F. Code page conversion tables

267

Code-page conversion tables

Table 15. Conversion support: GERMAN

* Supported on MQSeries for AIX Version 2.2.1 or later.
T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Target Source > MVS, GIS, NT AlX, 0S/2, AlX, HP-UX
| 0S/400 HP-UX, GIS, NT
v GIS,

Solaris,

SunOSs,

DEC-OVMS,
Tandem
CCsSID 273 437 819 850 1051

MVS 273 y Yt Yt Yt Yt
0S/400 273 y Y Y Y
0s/2 850 Y y
AIX (pc-A) 850 Y Y Y y Y*
AIX (ISO) 819 Y \& y \'% Y*
HP-UX (ISO) 819 \4 Y y Y \%
HP-UX (-8) 1051 Y Y Y Y y
GIS (ISO) 819 Y Y y Y Y
GIS (pc-A) 437 Y y Y Y Y
GIS (pc-A) 850 Y Y Y y \'%
NT 437 Y y Y Y Y
NT 850 Y Y Y 3% Y
Solaris 819 Y Y y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

268 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 16. Conversion support: DANISH and NORWEGIAN

Target Source —» MVS, AlX, 0S/2, AlX, 0S/2, GIS, HP-UX
| 0S/400 HP-UX, GIS, NT NT
v GIS,

Solaris,

SunOs,

DEC-OVMS,
Tandem
CCsSID 277 819 850 865 1051
MVS 277 y Yt Yt Yt Yt
0S/400 277 y Y Y Y
0s/2 850 Y y
0Ss/2 865 Y Y
AIX (pc-A) 850 Y Y y Y*
AIX (ISO) 819 Y y Y Y*
HP-UX (ISO) 819 Y y Y Y Y
HP-UX (-8) 1051 Y Y Y y
GIS (ISO) 819 Y y Y Y Y
GIS (pc-A) 850 Y Y y \'% \'%
GIS (pc-A) 865 Y Y Y y
NT 850 Y Y 3% Y Y
NT 865 Y Y Y y
Solaris 819 Y y Y Y Y
SunOS 819 Y y Y
SINIX, DC/OSx 819 Y y Y Y Y
DEC-OVMS 819 Y 3% Y Y
Tandem 819 Y y Y Y Y
Note:
* Supported on MQSeries for AIX Version 2.2.1 or later.
t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.
Appendix F. Code page conversion tables 269

Code-page conversion tables

Table 17. Conversion support: FINNISH and SWEDISH

Target Source —» MVS, GIS, NT AlX, 0S/2, 0S/2, NT HP-UX
| 0S/400 HP-UX, AlX, GIS,
v GIS, NT

Solaris,

SunOSs,

DEC-OVMS,

Tandem

CCsSID 278 437 819 850 865 1051

MVS 278 y Yt Yt Yt Yt Yt
0S/400 278 y Y Y Y
0s/2 850 Y y
0Ss/2 865 Y Y
AIX (pc-A) 850 Y Y Y y \&
AlX (ISO) 819 Y \& y Y \&
HP-UX (ISO) 819 Y Y 3% Y Y Y
HP-UX (-8) 1051 Y Y Y Y y
GIS (ISO) 819 Y Y y Y Y Y
GIS (pc-A) 437 Y y Y Y Y Y
GIS (pc-A) 850 Y Y Y y Y Y
NT 437 Y 3% Y Y Y Y
NT 850 Y Y Y y Y Y
NT 865 Y Y Y Y y
Solaris 819 Y Y y Y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

* Supported on MQSeries for AIX Version 2.2.1 or later.
t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

270 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 18. Conversion support: ITALIAN

Target Source > MVS, GIS, NT AlX, 0S/2, AlX, HP-UX
| 0S/400 HP-UX, GIS, NT
v GIS,

Solaris,

SunOSs,

DEC-OVMS,
Tandem
CCsSID 280 437 819 850 1051

MVS 280 y Yt Yt Yt Yt
0S/400 280 y Y Y Y
0s/2 850 Y y
AIX (pc-A) 850 Y Y Y y Y*
AIX (ISO) 819 Y \& y \'% Y*
HP-UX (ISO) 819 \4 Y y Y \%
HP-UX (-8) 1051 Y Y Y Y y
GIS (ISO) 819 Y Y y Y Y
GIS (pc-A) 437 Y y Y Y Y
GIS (pc-A) 850 Y Y Y y \'%
NT 437 Y y Y Y Y
NT 850 Y Y Y 3% Y
Solaris 819 Y Y y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

* Supported on MQSeries for AIX Version 2.2.1 or later.
T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Appendix F. Code page conversion tables

271

Code-page conversion tables

Table 19. Conversion support: SPANISH

* Supported on MQSeries for AIX Version 2.2.1 or later.
T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Target Source > MVS, GIS, NT AlX, 0S/2, AlX, HP-UX
| 0S/400 HP-UX, GIS, NT
v GIS,

Solaris,

SunOSs,

DEC-OVMS,
Tandem
CCsSID 284 437 819 850 1051

MVS 284 y Yt Yt Yt Yt
0S/400 284 y Y Y Y
0s/2 850 Y y
AIX (pc-A) 850 Y Y Y y Y*
AIX (ISO) 819 Y \& y \'% Y*
HP-UX (ISO) 819 \4 Y y Y \%
HP-UX (-8) 1051 Y Y Y Y y
GIS (ISO) 819 Y Y y Y Y
GIS (pc-A) 437 Y y Y Y Y
GIS (pc-A) 850 Y Y Y y \'%
NT 437 Y y Y Y Y
NT 850 Y Y Y 3% Y
Solaris 819 Y Y y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

272 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 20. Conversion support: UK ENGLISH / GAELIC

Target Source > MVS, GIS, NT AlX, 0S/2, AlX, HP-UX
| 0S/400 HP-UX, GIS, NT
v GIS,

Solaris,

SunOSs,

DEC-OVMS,
Tandem
CCsSID 285 437 819 850 1051

MVS 285 y Yt Yt Yt Yt
0S/400 285 y Y Y Y
0s/2 850 Y y
AIX (pc-A) 850 Y Y Y y Y*
AIX (ISO) 819 Y \& y \'% Y*
HP-UX (ISO) 819 \4 Y y Y \%
HP-UX (-8) 1051 Y Y Y Y y
GIS (ISO) 819 Y Y y Y Y
GIS (pc-A) 437 Y y Y Y Y
GIS (pc-A) 850 Y Y Y y \'%
NT 437 Y y Y Y Y
NT 850 Y Y Y 3% Y
Solaris 819 Y Y y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

* Supported on MQSeries for AIX Version 2.2.1 or later.
T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Appendix F. Code page conversion tables

273

Code-page conversion tables

Table 21. Conversion support: FRENCH

* Supported on MQSeries for AIX Version 2.2.1 or later.
T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Target Source > MVS, GIS, NT AlX, 0S/2, AlX, HP-UX
| 0S/400 HP-UX, GIS, NT
v GIS,

Solaris,

SunOSs,

DEC-OVMS,
Tandem
CCsSID 297 437 819 850 1051

MVS 297 y Yt Yt Yt Yt
0S/400 297 y Y Y Y
0s/2 850 Y y
AIX (pc-A) 850 Y Y Y y Y*
AIX (ISO) 819 Y \& y \'% Y*
HP-UX (ISO) 819 \4 Y y Y \%
HP-UX (-8) 1051 Y Y Y Y y
GIS (ISO) 819 Y Y y Y Y
GIS (pc-A) 437 Y y Y Y Y
GIS (pc-A) 850 Y Y Y y \'%
NT 437 Y y Y Y Y
NT 850 Y Y Y 3% Y
Solaris 819 Y Y y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

274 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 22. Conversion support: MULTILINGUAL

Target Source > GIS, NT MVS, AlX, 0S/2, AlX, HP-UX
| 0S/400 HP-UX, GIS, NT
v GIS,

Solaris,

SunOSs,

DEC-OVMS,
Tandem
CCsSID 437 500 819 850 1051

MVS 500 Yt y Yt Yt Yt
0S/400 500 Y y Y Y
0s/2 850 Y y
AIX (pc-A) 850 Y Y Y y Y*
AIX (ISO) 819 Y* Y y \'% Y*
HP-UX (ISO) 819 \4 Y y Y \%
HP-UX (-8) 1051 Y Y Y Y y
GIS (ISO) 819 Y Y y Y Y
GIS (pc-A) 437 y Y Y Y Y
GIS (pc-A) 850 Y Y Y y \'%
NT 437)% Y Y Y Y
NT 850 Y Y Y 3% Y
Solaris 819 Y Y y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

* Supported on MQSeries for AIX Version 2.2.1 or later.
T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Appendix F. Code page conversion tables

275

Code-page conversion tables

Table 23. Conversion support: PORTUGUESE

Target Source —» 0S/400 MVS, AlX, 0S/2, 0S/2, HP-UX
| 0S/400 HP-UX, | AIX, GIS, | GIS,NT
v GIS, NT

Solaris,

SunOSs,

DEC-OVMS,

Tandem

CCsSID 37 500 819 850 860 1051

MVS 500 Yt y Yt Yt Yt Yt
0S/400 37 y Y Y Y
0S/400 500 Y y Y Y
0Ss/2 850 Y Y y Y
0Ss/2 860 Y Y Y y
AIX (pc-A) 850 Y Y Y y &
AIX (ISO) 819 Y Y y Y \&
HP-UX (ISO) 819 Y Y y Y Y Y
HP-UX (-8) 1051 Y Y Y Y y
GIS (I1SO) 819 Y Y y Y Y Y
GIS (pc-A) 850 Y Y Y y Y Y
GIS (pc-A) 860 Y Y Y Y y
NT 850 Y Y Y y Y Y
NT 860 Y Y Y Y y
Solaris 819 Y Y y Y Y Y
SunOS 819 Y Y y Y
SINIX, DC/OSx 819 Y Y 3% Y Y
DEC-OVMS 819 Y Y y Y
Tandem 819 Y Y y Y Y
Note:

* Supported on MQSeries for AIX Version 2.2.1 or later.
t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

276 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 24. Conversion support: ICELANDIC

Target Source —» AlX, 0S/2, GIS, 0S/2, AlX, MVS, HP-UX
| HP-UX, NT NT 0S/400
v GIS,

Solaris,

SunOs,

DEC-OVMS,
Tandem
CCsSID 819 850 861 871 1051

MVS 871 Yt Yt Yt y Yt
0S/400 871 Y Y y
0s/2 850 y Y
0Ss/2 861 Y y Y
AIX (pc-A) 850 Y y \'% Y*
AlX (ISO) 819 y Y Y Y*
HP-UX (ISO) 819 3% Y Y Y Y
HP-UX (-8) 1051 Y Y Y y
GIS (ISO) 819 y Y Y Y Y
GIS (pc-A) 850 Y y Y \'% \'%
NT 850 \4 y Y Y Y
NT 861 Y Y 3% Y
Solaris 819 y Y Y Y Y
SunOS 819 y Y Y
SINIX, DC/OSx 819 y Y Y Y Y
DEC-OVMS 819 y Y Y Y
Tandem 819 y Y Y Y
Note:

* Supported on MQSeries for AIX Version 2.2.1 or later.
T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Appendix F. Code page conversion tables

277

Code-page conversion tables

Table 25. Conversion support: EASTERN EUROPEAN Languages

Target Source —» 0S/2, NT MVS, 0S/400 AlX, HP-UX, GIS,

| Solaris, DEC-OVMS,

v Tandem
CCsID 852 870 912

MVS 870 Yt y Yt

0S/400 870 y Y

0S/2 852 y

AIX (ISO) 912 y* Y* y

HP-UX (ISO) 912 Y Y y

GIS (I1SO) 912 Y Y y

NT 852 3% Y Y

Solaris 912 Y Y y

SunOS

SINIX, DC/OSx 912 Y Y 3%

DEC-OVMS 912 Y Y y

Tandem 912 Y Y y

Romanian, Serbian, Slovakian, and Sloven.

Note: Languages that typically use these CCSIDS include Albanian, Croatian, Czech, Hungarian, Polish,

Note:

* Only on AIX V4.1 and later.
t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

278 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 26. Conversion support: CYRILLIC

Target Source —» 0S/2, NT 0S/2, NT 0S/400 AlX, MVS,
| HP-UX, 0S/400
v GIS,
Solaris,
DEC-OVMS,
Tandem
CCsSID 855 866 880 915 1025
MVS 1025 Yt Yt Yt Yt y
0S/400 880 y Y
0S/400 1025 Y Y Y Y y
0Ss/2 855 Y Y
0s/2 866 Y Y Y
AIX (ISO) 915 Y+ Y* Y+ y Y+
HP-UX (ISO) 915 Y Y** Y 3% Y
GIS (ISO) 915 Y Y Y y Y
NT 855 y Y Y Y Y
NT 866 Y y Y \'% \'%
Solaris 915 Y Y Y y Y
SunOS
SINIX, DC/OSx 915 Y Y Y y Y
DEC-OVMS 915 Y Y Y 3%
Tandem 915 Y Y Y y Y

Note: Languages that typically use these CCSIDS include Byelorussia (Belarus), Bulgarian, Macedonian,

Russian, and Serbian.

Note:

+ Only on AIX V4.1 and later.

T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.
* Supported on MQSeries for AIX Version 2.2.1 or later.

** Supported on MQSeries for HP-UX Version 2.2.1 or later.

Appendix F. Code page conversion tables 279

Code-page conversion tables

Table 27. Conversion support: GREEK

t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

CCSID and is not supported.

Target Source —» 0S/2, AIX, HP-UX, 0S/2, NT MVS, 0S/400
| GIS, Solaris,
v DEC-OVMS, Tandem

CCsID 813 869 875
MVS 875 Yt Yt y
0S/400 875 Y Y y
0s/2 813 y Y Y
0s/2 869 Y y Y
AlX (ISO) 813 y Y Y
HP-UX (ISO) 813# y Y Y
GIS (ISO) 813 y Y Y
NT 869 Y y Y
Solaris 813 y Y Y
SunOS
SINIX, DC/OSx 813 Y
DEC-OVMS 813 3%
Tandem 813 y Y Y
Note:

Only the ISO code-set on HP-UX is supported. The HP-UX proprietary greek8 code-set has no registered

280 MQsSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 28. Conversion support: TURKISH
Target Source —» 0S/2, NT AlIX, HP-UX, Solaris, MVS, 0S/400
| DEC-OVMS, Tandem
v
CCsID 857 920 1026

MVS 1026 Yt Yt y
0S/400 1026 Y Y
0s/2 857 y Y
AIX (ISO) 920 Y y Y
HP-UX (ISO) 920# Y y Y
GIS
NT 857
Solaris 920 Y y
SunOS
SINIX, DC/OSx 920 y
DEC-OVMS 920 Y y
Tandem 920 Y y Y
Note:
t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.
Only the ISO code set on HP-UX is supported. The HP-UX proprietary turkish8 code set has no registered

CCSID and is not supported.

Appendix F. Code page conversion tables 281

Code-page conversion tables

Table 29. Conversion support: HEBREW

CCSID and is not supported.

Target Source —» MVS, OS/400 AlIX 0S/2, NT AlIX, HP-UX,

| Solaris,

v DEC-OVMS,

Tandem

CCsID 424 856 862 916

MVS 424 y Yt Yt Yt

0S/400 424 y Y# Y

0Ss/2 862 Y

AIX (pc-A) 856 Y+ y Y+ Y+

AIX (1SO) 916 Y+ Y+ Y+ y

HP-UX (ISO) 9168 Y Y Y y

GIS

NT 862 Y Y y

Solaris 916 Y Y Y

SunOS

SINIX, DC/OSx 916 Y Y Y y

DEC-OVMS 916 Y Y Y y

Tandem 916 Y Y Y y

Note:

t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

Only to/from CCSID 4952 (a variant of 856).

+ Only on AIX V4.1 and later.

§ Only the ISO code set on HP-UX is supported. The HP-UX proprietary hebrew8 code set has no registered

282 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 30. Conversion support: ARABIC
Target Source —» MVS, OS/400 0S/2, NT AlIX AlIX, HP-UX,
| Solaris,
v DEC-OVMS,
Tandem
CCsID 420 864 1046 1089
MVS 420 y Yt Yt Yt
0S/400 420 y Y
0Ss/2 864 Y
AIX (pc-A) 1046 Y# Y# y Y#
AIX (1SO) 1089 Y# Y# Y# y
HP-UX (ISO) 10898 Y Y Y y
GIS
NT 864 Y y Y
Solaris 1089 Y Y Y
SunOS
SINIX, DC/OSx 1089 Y Y Y y
DEC-OVMS 1089 Y Y Y y
Tandem 1089 Y Y Y y
Note:
t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.
Only on AIX V4.1 and later.
§ Only the ISO code set on HP-UX is supported. The HP-UX proprietary arabic8 code set has no registered
CCSID and is not supported.

Appendix F. Code page conversion tables 283

Code-page conversion tables

Table 31. Conversion support: JAPANESE LATIN SBCS

Target Source —» 0S/2, AIX 0S/2 MVS, OS/400 AlIX
|
v
CCsID 932 942 1027 5050 33722
MVS 1027 3%
0S/400 1027 Y y
0S/2 932 y
0S/2 942 Y
AIX (pc-A) 932 y Y
AIX (euc) 5050 Y Y
33722*
HP-UX
GIS
NT 932 y Y Y
Solaris
SunOS
SINIX, DC/OSx
DEC-OVMS
Tandem

Note: On AIX conversion from mixed DBCS to SBCS (0S/400 and MVS) will only convert the SBCS subset.

* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AIX. On AIX V3.2.5 MQSeries
codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the
operating system is 33722.

284 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 32. Conversion support: JAPANESE KATAKANA SBCS

Target Source —» MVS, OS/400 0S/2, HP-UX AlIX AlIX
|
v
CCsID 290 897 932 5050 33722
MVS 290 3% Y
0S/400 290 y
0s/2 897 Y
AIX (pc-A) 932 Y y
AlX (euc) 5050 \4 \%
33722*
HP-UX (kana8) 897 \4 y
GIS
NT 932 Y Y y
Solaris
SunOS
SINIX, DC/OSx
DEC-OVMS
Tandem

Note: On AIX conversion from mixed DBCS to SBCS (0S/400 and MVS) will only convert the SBCS subset.
* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AlX. On AIX V3.2.5 MQSeries

codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the

operating system is 33722.

Appendix F. Code page conversion tables

285

Code-page conversion tables

Table 33. Conversion support: JAPANESE KANJI / LATIN MIXED

T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AlX. On AIX V3.2.5 MQSeries
codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the
operating system is 33722.

5035 is a CCSID related to code page 939.

§ Defined by HP-UX as japanl5 and SJIS. Note that about 74 DBCS characters have different representations
in japan15 and 932 so may not be converted correctly if the conversion is performed on a non-HP-UX system.

** Supported on HP-UX V10 or later.

Target Source —» 0S/2, AlX, 0S/2 HP-UX, MVS, AlIX
| HP-UX, DEC-OVMS, 0S/400
v DEC-OVMS, Tandem
Tandem

CCsSID 932 942 954 5035 5050 33722
MVS 5035# Yt Yt y
0S/400 5035# Y Y y Y
0s/2 932 y Y
0Ss/2 942 Y Y
AIX (pc-A) 932 y Y
AIX (1ISO) 5050 Y Y

33722
HP-UX (euc) 954 Y y Y** y
HP-UX (-158) 932 Y y** Y
GIS
NT 932 y Y \'%
Solaris
SunOS
SINIX, DC/OSx
DEC-OVMS 932 3% Y Y Y
DEC-OVMS 954 Y y Y y
Tandem 932 y Y Y Y
Tandem 954 Y y Y y
Note:

286 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 34. Conversion support: JAPANESE KANJI / KATAKANA MIXED

Target Source —» 0S/2, AlX, 0S/2 HP-UX, MVS, AlX,
| HP-UX, DEC-OVMS, 0S/400 Solaris
v DEC-OVMS, Tandem
Tandem

CCsID 932 942 954 5026 5050 33722
MVS 5026# Yt Yt y
0S/400 5026# Y Y y Y
0s/2 932 y Y
0Ss/2 942 Y Y
AIX (pc-A) 932 y Y
AIX (euc) 5050 Y Y

33722
HP-UX (euc) 954 Y y Y** y
HP-UX (-158) 932 y Y Y Y
GIS
NT 932 y Y \'%
Solaris 5050 Y y Y y
SunOS
SINIX, DC/OSx
DEC-OVMS 932 3% Y Y Y
(sjis)
DEC-OVMS 954 Y y \'% y
(euc)
Tandem (sjis) 932 y Y
Tandem (euc) 954 Y y

Note:

T Supported on MQSeries for MVS/ESA Version 1.1.4 or later.

* 5050 and 33722 are CCSIDs related to base code page 954 = eucJP on AlX. On AIX V3.2.5 MQSeries
codes this code page as CCSID 5050 for compatibility with OS/400. On AIX V4.1 the CCSID reported by the
operating system is 33722.

5026 is a CCSID related to code page 930. CCSID 5026 is the CCSID reported to the user on OS/400 when
the Japanese Katakana (DBCS) feature is selected.

§ Defined by HP-UX as japan15 and SJIS. Note that about 74 DBCS characters have different representations
in japan15 and 932 so may not be converted correctly if the conversion is performed on a non-HP-UX system.

** Supported on HP-UX V10 or later.

Appendix F. Code page conversion tables 287

Code-page conversion tables

Table 35. Conversion support: KOREAN

Target Source —» MVS, 0S/400 0S/2, NT AlIX, HP-UX,
| DEC-OVMS, Tandem
v

CCsID 933 949 970
MVS 933 y Yt
0S/400 933 y Y
0s/2 949 Y y
AIX (euc) 970 Y y
HP-UX (-15) 949§ Y y
HP-UX (euc) 9708 Y y
GIS
NT 949 Y y
Solaris
SunOS
SINIX, DC/OSx
DEC-OVMS 970 Y Y 3%
Tandem 970 Y Y y
Note:

t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.
8 On HP-UX9 949 is used, but on HP-UX10 970 is used.

288 MQSeries for Tandem NSK V2R2 System Management Guide

Code-page conversion tables

Table 36. Conversion support: SIMPLIFIED CHINESE

Target Source —» MVS, 0S/400 0S/2, HP-UX, NT AlIX, DEC-OVMS,
| Tandem
v

CCsID 935 1381 1383
MVS 935 y Yt
0S/400 935 y Y+
0s/2 1381 Y y
AIX (euc) 1383+ y* Y* y
HP-UX (-15) 13818 N y
GIS
NT 1381## Y Y
Solaris
SunOS
SINIX, DC/OSx
DEC-OVMS 1383 Y y
Tandem 1383 Y Y y
Note:

t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.
+ Supported on OS/400 V3R6 or later.

* Supported on country AIX version only.
§ Is called prcl5 and hp15CN on HP-UX.

** Supported on HP-UX V10 or later.
NT uses the code page number 936, but this is best represented by the CCSID of 1381.

Appendix F. Code page conversion tables

289

Code-page conversion tables

Table 37. Conversion support: TRADITIONAL CHINESE

Target Source —» MVS, 0S/2, 0S/2 0S/2, AlX, AlX,

| 0S/400 HP-UX HP-UX, NT, HP-UX,

v DEC-OVMS, DEC-OVMS,

Tandem Tandem

CCsSID 937 938 948 950 964

MVS 937 y Yt Yt Yt

0S/400 937 y Y Y Y

0S/2 (PS/55) 938 Y y

0S/2 (PS/55) 948 Y y

0S/2 (big5) 950 Y y

AlX (euc) 964 Y Y Y y

AIX (big5) 950 Y Y y Y

HP-UX (-158) 938 Y y Y y**

HP-UX (big5) 950 N Y y y**

HP-UX 964 N N \did y

(eucTw)

GIS

NT 950 Y Y Y 3%

Solaris

SunOS

SINIX, DC/OSx

DEC-OVMS 964 Y Y Y Y y

(euc)

DEC-OVMS 950 Y Y Y y Y

(big5)

Tandem (euc) 964 Y Y y

Tandem (big5) 950 Y Y Y Y

Note:

t Supported on MQSeries for MVS/ESA Version 1.1.4 or later.
§ Is called rocl15 and eucTW on HP-UX.
** Supported on HP-UX V10 or later.

290 MQSeries for Tandem NSK V2R2 System Management Guide

Table 38. Code set names and

CCSIDs
Code set CCsSIDs

names

ISO 8859-1 819

ISO 8859-2 912

ISO 8859-5 915

ISO 8859-6 1089

ISO 8859-7 813

ISO 8859-8 916

ISO 8859-9 920
eucJP 954 5050 33722
euckR 970
eucTW 964
eucCN 1383

Code-page conversion tables

Appendix F. Code page conversion tables

291

Code-page conversion tables

292 MQSeries for Tandem NSK V2R2 System Management Guide

Structure data types (TAL)

Appendix G. Application Programming Reference

The following sections are specific to MQSeries for Tandem NSK, and should be
used in conjunction with the MQSeries Application Programming Reference manual.

Elementary data types — TAL programming language

The elementary data types for the TAL programming language are:

Data Type Representation

MQBYTE STRING

MQBYTE24 BEGIN STRING BYTE [0:23];END
MQBYTE32 BEGIN STRING BYTE [0:31];END
MQCHAR STRING

MQCHAR4 BEGIN STRING BYTE [0:3[;END
MQCHARS BEGIN STRING BYTE [0:7]; END
MQCHAR12 BEGIN STRING BYTE [0:11];END
MQCHAR28 BEGIN STRING BYTE [0:27];END
MQCHAR32 BEGIN STRING BYTE [0:31];END
MQCHAR48 BEGIN STRING BYTE [0:47];END
MQCHARG64 BEGIN STRING BYTE [0:63];END
MQCHAR128 BEGIN STRING BYTE [0:127];END
MQCHAR256 BEGIN STRING BYTE [0:255];END
MQHCONN INT(32)

MQHOBJ INT(32)

MQLONG INT(32)

Structure data types — TAL programming language

This section describes TAL declarations for the following MQSeries structure data

types:

MQDLH Dead letter header
MQGMO Get message options
MQMD Message descriptor

MQOD Object descriptor

MQPMO Put message options
MQTM Trigger message

MQTMC2 Trigger message 2

MQXQH Transmission queue header

© Copyright IBM Corp. 1995, 1997 293

Structure data types (TAL)

MQDLH — Dead Letter Header

The MQDLH structure describes the information that is prefixed to the application
message data of messages on the dead-letter (undelivered-message) queue.

MQDLH — TAL declaration

STRUCT MQDLH~DEF (*);

BEGIN

STRUCT STRUCID;

BEGIN STRING BYTE [0:3]; END;

INT(32) VERSION;

INT(32) REASON;

STRUCT ~ DESTQNAME;

BEGIN STRING BYTE [0:47]; END;

STRUCT ~ DESTQMGRNAME;

BEGIN STRING BYTE [0:47]; END;

INT(32) ENCODING;

INT(32) CODEDCHARSETID;

STRUCT ~ FORMAT;

BEGIN STRING BYTE [0:7]; END;

INT(32) PUTAPPLTYPE;

STRUCT ~ PUTAPPLNAME;

BEGIN STRING BYTE [0:27]; END;

STRUCT PUTDATE;

BEGIN STRING BYTE [0:7]; END;

STRUCT PUTTIME;

BEGIN STRING BYTE [0:7]; END;
END;

MQGMO — Get Message Options

The MQGMO structure is an input/output parameter of the MGET call. Please note
the following information about the MQGMO_SET_SIGNAL, MQGMO_WAIT,
MQGMO_LOCK, MQGMO_UNLOCK, and MQGMO_NO_SYNCPOINT options in
MQSeries for Tandem NSK:

MQGMO_SET_SIGNAL
The MQGMO_SET_SIGNAL option applies to MQSeries for Tandem NSK only.
It cannot be specified in conjunction with the MQGMO_BROWSE_FIRST,
MQGMO_BROWSE_NEXT, MQGMO_BROWSE_MSG_UNDER_CURSOR,
MQGMO_MSG_UNDER_CURSOR, and MQGMO_WAIT options.

For more information about MQGMO_SET_SIGNAL, see “Signal notification IPC
message” on page 300.

MQGMO_WAIT
Only one nonbrowse MQGET call is activated for any given message.
Nonbrowse MQGET calls are not given priority over browse MQGET calls waiting
for the same message.

MQGMO_NO_SYNCPOINT
If MQPUT is issued outside a Tandem TMF transaction without the
MQPMO_NO_SYNCPOINT option, the reason code
MQRC_UNIT_OF _WORK_NOT_STARTED is returned.

MQGMO_LOCK, MQGMO_UNLOCK
The MQGMO_LOCK and MQGMO_UNLOCK options are not supported by
MQSeries for Tandem NSK. If specified, they return the error
MQRC_OPTIONS_ERROR.

294 MQSeries for Tandem NSK V2R2 System Management Guide

MQGMO — TAL declaration

STRUCT MQGMO™DEF (*);
BEGIN

STRUCT STRUCID;
BEGIN STRING BYTE [0:3]; END;
INT(32) VERSION;
INT(32) OPTIONS;
INT(32) WAITINTERVAL;
INT(32) SIGNAL1;
INT(32) SIGNALZ;
STRUCT RESOLVEDQNAME ;

BEGIN STRING BYTE [0:47]; END;

END;

MQMD — Message Descriptor

The MQMD structure contains the control information that describes a message.
Please note the following information about the BackoutCount field in MQSeries for

Tandem NSK:

BackoutCount

Structure data types (TAL)

A backout count is maintained for each message. This count is an estimate of
the number of times, within a single queue manager association, a message has
been returned to an application on consecutive nonbrowse MQGET calls, and
subsequently backed out under TMF control. The backout count is not saved to
disk, and is therefore not guaranteed to be accurate. The backout count is reset
to zero when an implicit or explicit MQDISC is issued, when MQGET returns a
different message, and at queue manager restart.

Appendix G. Application Programming Reference

295

Structure data types (TAL)

MQMD — TAL declaration

STRUCT

BEGIN
STRUCT
BEGIN STRING
INT(32)
INT(32)
INT(32)
INT(32)
INT(32)
INT(32)
INT(32)
STRUCT
BEGIN STRING
INT(32)

INT(32)

STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
INT(32)
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
INT(32)
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING

END;

MQMD™DEF (%)

STRUCID;

BYTE [0:3]; END;
VERSION;
REPORTOPTIONS;
MSGTYPE;
EXPIRY;
FEEDBACK;
ENCODING;
CODEDCHARSETID;
FORMAT;

BYTE [0:7]; END;
PRIORITY;
PERSISTENCE;
MSGID;

BYTE [0:23]; END;
CORRELID;

BYTE [0:23]; END;
BACKOUTCOUNT
REPLYTOQ;

BYTE [0:47]; END;
REPLYTOQMGR;
BYTE [0:47]; END;

USERIDENTIFIER;

BYTE [0:11]; END;
ACCOUNTINGTOKEN;

BYTE [0:31]; END;
APPLIDENTITYDATA;

BYTE [0:31]; END;
PUTAPPLTYPE;
PUTAPPLNAME ;

BYTE [0:27]; END;
PUTDATE;

BYTE [0:7]; END;
PUTTIME;

BYTE [0:7]; END;
APPLORIGINDATA;

BYTE [0:3]; END;

MQOD — Object Descriptor

The MQOD structure, which is an input/output parameter of the MQOPEN and
MQPUTL calls, is used to specify an object by name.

MQOD - TAL declaration

STRUCT MQOD"DEF (*) ;BEGINSTRUCT STRUCID;
BEGIN STRING BYTE [0:3]; END;INT(32) VERSION;
INT(32) OBJECTTYPE;STRUCT

OBJECTNAME;
BEGIN STRING BYTE [0:47]; END;STRUCT OBJECTQMGRNAME ;
BEGIN STRING BYTE [0:47]; END;STRUCT DYNAMICQNAME;
BEGIN STRING BYTE [0:47]; END;STRUCT ALTERNATEUSERID;

BEGIN STRING BYTE [0:11]; END;

296 MQsSeries for Tandem NSK V2R2 System Management Guide

Structure data types (TAL)

MQPMO — Put Message Options

The MQPMO structure is an input/output parameter of the MQPUT and MQPUT1
calls. Please note the following information about the MQPMO_NO_SYNCPOINT
option in MQSeries for Tandem NSK:

MQPMO_NO_SYNCPOINT
If MQPUT is issued outside a Tandem TMF transaction without the
MQPMO_NO_SYNCPOINT option, the reason code
MQRC_UNIT_OF WORK_NOT_STARTED is returned.

MQPMO — TAL declaration

STRUCT MQPMO™DEF (%)

BEGIN

STRUCT STRUCID;

BEGIN STRING BYTE [0:3]; END;

INT(32) VERSION;

INT(32) OPTIONS;

INT(32) TIMEOUT;

INT(32) CONTEXT;

INT(32) KNOWNDESTCOUNT

INT(32) UNKNOWNDESTCOUNT;

INT(32) INVALIDDESTCOUNT

STRUCT RESOLVEDQNAME ;

BEGIN STRING BYTE [0:47]; END;

STRUCT RESOLVEDQMGRNAME ;

BEGIN STRING BYTE [0:47]; END;
END;

MQTM — Trigger Message

The MQTM structure describes the data in the trigger message that is sent by the
gueue manager to a trigger-monitor application when a trigger event occurs for a
gueue.

MQTM — TAL declaration

STRUCT MQTM™DEF (*);
BEGIN
STRUCT STRUCID;
BEGIN STRING BYTE [0:3]; END;
INT(32) VERSION;
STRUCT QNAME;
BEGIN STRING BYTE [0:47]; END;
STRUCT PROCESSNAME ;
BEGIN STRING BYTE [0:47]; END;
STRUCT TRIGGERDATA;
BEGIN STRING BYTE [0:63]; END;
INT(32) APPLTYPE;

STRUCT APPLID;
BEGIN STRING BYTE [0:255]; END;
STRUCT ENVDATA;
BEGIN STRING BYTE [0:127]; END;
STRUCT USERDATA;
BEGIN STRING BYTE [0:127]; END;

END;

Appendix G. Application Programming Reference 297

Structure data types (TAL)

MQTMC2 — Trigger Message 2

Data passed by a trigger monitor application to a started application can be
described by the MQTMC2 structure.

MQTMC2 — TAL declaration

STRUCT MQTMC2/DEF () ;
BEGIN

STRUCT STRUCID;

BEGIN STRING BYTE [0:3]; END;
STRUCT VERSION;

BEGIN STRING BYTE [0:3]; END;
STRUCT QNAME;

BEGIN STRING BYTE [0:47]; END;
STRUCT PROCESSNAME ;

BEGIN STRING BYTE [0:47]; END;
STRUCT TRIGGERDATA;

BEGIN STRING BYTE [0:63]; END;
STRUCT APPLTYPE;

BEGIN STRING BYTE [0:3]; END;
STRUCT APPLID;

BEGIN STRING BYTE [0:255]; END;
STRUCT ENVDATA;

BEGIN STRING BYTE [0:127]; END;
STRUCT USERDATA;

BEGIN STRING BYTE [0:127]; END;
STRUCT QMQRNAME ;

BEGIN STRING BYTE [0:47]; END;
END;

MQXQH — Transmission Queue Header

The MQXQH structure describes the information that is prefixed to the application
message data of messages on transmission queues.

MQXQH — TAL declaration

STRUCT MQXQH™DEF (%)
BEGIN

STRUCT STRUCID;

BEGIN STRING BYTE [0:3]; END;
INT(32) VERSION;

STRUCT REMOTEQNAME
BEGIN STRING BYTE [0:47]; END;
STRUCT REMOTEQMGRNAME ;

BEGIN STRING
STRUCT
END;

BYTE [0:47]; END;

MSGDESC (MQMD"DEF) ;

298 MQsSeries for Tandem NSK V2R2 System Management Guide

MQI calls (TAL)

MQI calls — TAL programming language
This section describes TAL invocations of the following MQI calls:

MQBACK Back out changes
MQCLOSE Close object
MQCONN Connect queue manager

MQDISC Disconnect queue manager
MQGET Get message

MQPUT Put message

MQPUT1 Put one message

MQINQ Inquire about object attributes
MQSET Set object attributes
MQOPEN Open object

MQCMIT Commit changes

MQSYNC Synchronize statistics updates

MQBACK — Back Out Changes

The MQBACK call indicates to the queue manager that all message gets and puts
since the last syncpoint are to be backed out.

In MQSeries for Tandem NSK, MQBACK always returns a CompCode of
MQCC_FAILED and a Reason of MQRC_ENVIRONMENT_ERROR. Transactions
are managed externally through TM/MP.

MQBACK — TAL invocation
INT(32) .EXT Hconn;

INT(32) LEXT CC;

INT(32) .EXT Reason;

CALL MQBACK(HConn, CC, Reason);

MQCLOSE - Close Object

The MQCLOSE call, which is the inverse of the MQOPEN call, relinquishes access
to an object.

MQCLOSE - TAL invocation
INT(32) .EXT HConn ;

INT(32) .EXT HObj;

INT(32) Options;

INT(32) LEXT CC;

INT(32) .EXT Reason;

CALL MQCLOSE(HConn, HObj, Options, CC, Reason);
MQCONN — Connect Queue Manager

The MQCONN call connects an application program to an MQSeries queue
manager.

Appendix G. Application Programming Reference 299

MQI calls (TAL)

MQCONN - TAL invocation
STRING .EXT InQMgr[0:47];
INT(32) .EXT HConn ;

INT(32) .EXT CC;

INT(32) .EXT Reason;

CALL MQCONN(InQMgr, HConn, CC, Reason);

MQDISC — Disconnect Queue Manager

The MQDISC call, which is the inverse of MQCONN, breaks the connection
between the MQSeries queue manager and the application program.

MQDISC — TAL invocation
INT(32) .EXT HConn ;
INT(32) .EXT CC;

INT(32) .EXT Reason;

CALL MQDISC(HConn, CC, Reason);

MQGET — Get Message

The MQGET call retrieves a message from a local queue that has been opened
using the MQOPEN call.

Please note the following information about the operation of the MQGET call in
MQSeries for Tandem NSK:

* The message retrieved by the MQGET call is deleted from the queue unless
the MQGMO_BROWSE_FIRST option or the MQGMO_BROWSE_NEXT option
is specified.

e If MQGET is issued outside a Tandem TMF transaction without the
MQGMO_NO_SYNCPOINT option, the reason code
MQRC_UNIT_OF _WORK_NOT_STARTED is returned.

¢ |f the MQGMO_CONVERT option is specified for an MQGET call, and the
message that is retrieved is not in one of the built-in formats (MQFMT_*), the
message is passed to the data conversion exit function MQDATACONVEXIT()
for conversion. A single data conversion exit is provided by the product,
because the Tandem NSK operating system does not support dynamic linking.
The format name of the unconverted message, from the MQMD of the
message, is passed to MOQDATACONVEXIT() in the MsgDesc parameter.

Signal notification IPC message

For backwards compatibility with MQSeries for Tandem NSK, Version 1.5.1, the
signal mode of message-arrival notification is supported. This type of notification is
selected by the MQGMO_SET_SIGNAL option in the options field of the Get
Message Options structure. If MOQGMO_SET_SIGNAL is specified, the following
options are not valid:

« MQGMO_BROWSE_FIRST

« MQGMO_BROWSE_NEXT

« MQGMO_BROWSE_MSG_UNDER_CURSOR
+ MQGMO_MSG_UNDER_CURSOR

« MQGMO_LOCK

« MQGMO_UNLOCK

300 MQsSeries for Tandem NSK V2R2 System Management Guide

MQI calls (TAL)

« MQGMO_WAIT

If MQGMO_SET_SIGNAL is specified with any of these options, a CompCode of
MQCC_FAILED and a Reason of MQRC_OPTIONS_ERROR are returned.

The effects of specifying MQGMO_SET_SIGNAL are as follows:

e |f a message is available when MQGET is issued, it is returned immediately to
the requesting application.

¢ |f no message is available when MQGET is issued, a CompCode of
MQCC_WARNING and a Reason of MQRC_SIGNAL_REQUEST_ACCEPTED
are returned. When a message becomes available, an Inter-Process
Communication (IPC) message is sent to the $RECEIVE queue of the process
that made the MQGET call.

The format of this IPC message is:

MsgCode (INT)
Identifies the message as a notification. The value is TRIGGER_RESPONSE.

ApplTag (LONG)
Is the application tag provided in the Signall field of MQGMO.

The Signall field of MQGMO is significant only when the signal mode of
message-arrival notification has been requested. It can be used by an
application to associate the IPC notification message with a particular MQGET
request.

Status (LONG)
Is the reason Code from MQGET. It can have the following values:

MQRC_NONE
A message satisfying the criteria specified in the MQGET call is available on
the queue.

MQRC_NO_MSG_AVAILABLE
The time specified in the WaitiInterval field has expired.

MQRC_CONNECTION_BROKEN
The queue manager has been stopped.

MQRC_GET_INHIBITED
An operator has inhibited the GET operation for the queue.

MQRC_Q_DELETED
The queue has been deleted.

MQRC_Q_MGR_QUIESCING
The queue manager is quiescing, and the MQGET call was issued with the
MQGMO_FAIL_IF_QUIESCING option.

MQRC_Q_MGR_STOPPING
The queue manager is shutting down.

Only one signal-notification-mode MQGET call can be outstanding for any queue.
If an MQGET with signal notification is specified when there is already a
signal-natification MQGET call outstanding for the same queue, a CompCode of
MQCC_FAILED and a Reason of MQRC_SIGNAL_OUSTANDING are returned.

Appendix G. Application Programming Reference 301

MQI calls (TAL)

If the signal notification indicates that a message is available (Status is
MQRC_NONE), the message is not locked by the Queue Manager; therefore, it is
also available to any other application that shares the queue. It is possible,
therefore, that the message will not be available by the time the application issues
an MQGET call to retrieve or browse the message. The signal notification IPC
message is not part of any unit of work (that is, a Tandem TMF transaction),
started by either the application or MQSeries.

If the application calls MQCLOSE for a queue with outstanding signal-notification
MQGET operations initiated by that application, the outstanding signal notifications
are cancelled. If an application calls MQDISC, all outstanding signal notifications
initiated by the application are cancelled.

MQGET — TAL invocation
The TAL language invocation is:

INT(32) .EXT Hconn;

INT(32) .EXT Hobj;

STRUCT .EXT MsgDesc (MQMD"Def) ;
STRUCT .EXT GetMsgOpt (MQGMO™Def) ;
INT(32) .EXT BufferlLen;

INT(32) .EXT Buffer[0:BUFFERMLEN];
INT(32) EXT CC;

INT(32) .EXT Reason;

CALL MQGET(HConn, HObj, MsgDesc, GetMsgOpt, BufferLen, Buffer,
DataLen, CC, Reason);

MQPUT — Put Message

The MQPUT call puts a message on an open queue.

If MQPUT is issued outside a Tandem TMF transaction without the
MQPMO_NO_SYNCPOINT option, the reason code
MQRC_UNIT_OF WORK_NOT_STARTED is returned.

MQPUT — TAL invocation

INT(32) .EXT HConn;

INT(32) .EXT Hobj;

STRUCT .EXT MsgDesc (MQMD~Def) ;
STRUCT .EXT PutMsgOpt (MQPMO™Def);
INT(32) .EXT BufferLen

STRING .EXT Buffer[0:BUFFER"SIZE]
INT(32) .EXT CC;

INT(32) .EXT Reason;

CALL MQPUT(HConn, HObj, MsgDesc, PutMsgOpt, BufferLen, Buffer,
CC, Reason);

MQPUT1 — Put One Message

The MQPUTL call puts one message on a queue; the queue need not be open.

If MQPUTL is issued outside a Tandem TMF transaction without the
MQPMO_NO_SYNCPOINT option, the reason code
MQRC_UNIT_OF_WORK_NOT_STARTED is returned.

302 MQsSeries for Tandem NSK V2R2 System Management Guide

MQI calls (TAL)

MQPUT1 — TAL invocation
INT(32) .EXT HConn ;

STRUCT .EXT ObjDesc (MQOD~Def)
STRUCT .EXT MsgDesc (MQMD™Def) ;
STRUCT .EXT PutMsgOpt (MQPMO~Def);
INT(32) .EXT BufferLen

STRING .EXT Buffer[0:BUFFER"SIZE]
INT(32) LEXT CC;

INT(32) .EXT Reason;

CALL MQPUT1(HConn, ObjDesc, MsgDesc, PutMsgOpt, BufferLen, Buffer,
CC, Reason);

MQINQ — Inquire About Object Attributes
The MQINQ call returns the attributes of an object.

MQINQ — TAL invocation
INT(32) .EXT HConn ;
INT(32) .EXT HObj ;

INT(32) SelectorCount;

INT(32) .EXT Selectors[0:NUM SELECTORS];
INT(32) IntAttrCount;

INT(32) JEXT IntAttrs[0:NUMNINTMATTR]
INT(32) CharAttrLength;

STRING .EXT CharAttrs[0:LEN~CHARMATTR];
INT(32) .EXT CC;
INT(32) .EXT Reason;

PROC MQINQ(HConn, HObj, SelectorCount, Selectors, IntAttrCount,
IntAttrs, CharAttrLength, CharAttrs, CC, Reason)

MQSET — Set Object Attributes
The MQSET call is used to change the attributes of a queue.

MQSET — TAL invocation
INT(32) .EXT HConn ;
INT(32) .EXT HObj;

INT(32) SelectorCount;

INT(32) .EXT Selectors[0:NUM SELECTORS];
INT(32) IntAttrCount;

INT(32) JEXT IntAttrs[0:NUMNINTMATTR]
INT(32) CharAttrlLength;

STRING .EXT CharAttrs[0:LEN*CHARMATTR];
INT(32) EXT CC;
INT(32) .EXT Reason;

CALL MQSET(HConn, HObj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
CharAttrLength, CharAttrs, CC, Reason);

Appendix G. Application Programming Reference 303

MQI calls (TAL)

MQOPEN — Open Object

The MQOPEN call establishes access to an object.

MQOPEN — TAL invocation

INT(32) .EXT HConn;

STRUCT .EXT ObjDesc (MQOD™Def) ;
INT(32) Options; INT(32) .EXT Hobj;
INT(32) .EXT CC;

INT(32) .EXT Reason;

CALL MQOPEN(HConn, ObjDesc, Options, HObj, CC, Reason);

MQCMIT — Commit Changes

The MQCMIT call indicates to the queue manager that the application has reached
a syncpoint.

In MQSeries for Tandem NSK, the MQCMIT call always returns a CompCode of
MQCC_FAILED and a Reason of MQRC_ENVIRONMENT_ERROR. Transactions
are managed externally through TM/MP.

MQCMIT — TAL invocation
INT(32) .EXT Hconn;

INT(32) EXT CC;

INT(32) .EXT Reason;

MQSYNC — Synchronize statistics updates

The MQSYNC call is included in MQSeries for Tandem NSK for backwards
compatibility with MQSeries for Tandem NSK, Version 1.5.1. The call returns a
CompCode of MQCC_OK and a Reason of MQRC_NONE, but performs no function.

MQSYNC — C invocation

transaction_id_def TransID;

int CommitAbort;
MQLONG CompCode;
MQLONG Reason;

MQSYNC (&TransID, CommitAbort, &CompCode, &Reason);

MQSYNC — COBOL invocation

01 TRANSID NATIVE-4.
01 COMMITABORT NATIVE-4.
01 COMPCODE NATIVE-4.
01 REASON NATIVE-4.

CALL 'MQSYNC' USING TRANSID COMMITABORT.

MQSYNC — TAL invocation
STRING .EXT TranslID;

INT CommitAbort;

INT(32) .EXT CC;

INT(32) .EXT Reason;

CALL MQSYNC(TransID, CommitAbort, CC, Reason);

304 MQsSeries for Tandem NSK V2R2 System Management Guide

Reason codes

Attributes of MQSeries objects

In MQSeries for Tandem NSK, the attributes of all objects are as described in the
MQSeries Application Programming Reference manual, with the following
exceptions and additions.

Attributes of local queues

The HardenGetBackout attribute is ignored in MQSeries for Tandem NSK because
the backout count is not saved to disk. To maintain compatibility with other
MQSeries Version 2 products, the MQIA_ HARDEN_GET_BACKOUT selector can
be specified on the MQINQ call.

Attributes of process definitions
The ApplType attribute of a process definition can have the value MQAT_NSK.

Attributes of queue managers
e The value of the Platform attribute is MQPL_NSK.

The associated constant value is:
MQPL_NSK 12 X'0000000C"
e MaxMsglength is 4 MB.
e CommandLevel is MQCMDL_LEVEL_221.
e SyncPoint is MQSP_AVAILABLE.

e The value of CodedCharSetId is as specified when the queue manager instance
was created.

Reason codes

In MQSeries for Tandem NSK, reason codes (MQRC_) are as described in the
MQSeries Application Programming Reference manual, with the following additions:

Constant Decimal Hexadecimal

MQRC_SYNCPOINT_LIMIT_REACHED 2024 X'000007ES8'
MQRC_UNIT_OF_WORK_NOT_STARTED 2232 X'000008B8"
MQRC_UOW_CANCELED 2297 X'000008F9'

Appendix G. Application Programming Reference 305

Reason codes

306 MQsSeries for Tandem NSK V2R2 System Management Guide

Writing applications

Appendix H. Building and running applications

The sample programs and the sample compilation and binding scripts, provided in
subvolume ZMQSSMPL, illustrate the main features of the MQI in MQSeries for
Tandem NSK V2.2, and demonstrate how to compile and bind an application.

Writing applications

This section describes some minor differences between the standard Version 2
MQI interface, as documented in the MQSeries Application Programming Reference
book, and the MQI interface for MQSeries for Tandem NSK V2.2.

Unit of work (transaction) management

Transaction management is performed under the control of Tandem’s TM/MP
product, rather than by MQSeries itself.

The effects of this difference are:

¢ The default SYNCPOINT option for the MQPUT and MQGET calls is
SYNCPOINT, rather than NO_SYNCPOINT.

e To use the default (SYNCPOINT) option for MQPUT, MQGET and MQPUT1
operations, the application must have an active TM/MP Transaction that defines
the unit of work to be committed. An application initiates a TM/MP transaction
by calling the BEGINTRANSACTIONY() function. All MQPUT, MQPUT1 and
MQGET operations performed by the application while this transaction is active
are within the same unit of work (transaction). Any other database operations
performed by the application are also within this UOW. Note that there are
system-imposed limits on the number and size of messages that can be written
and deleted within a single TM/MP transaction. When the application has
completed the UOW, the TM/MP transaction is ended (the UOW is committed)
using the ENDTRANSACTION() function. If any error is encountered, the
application can cancel the TM/MP transaction (backout the UOW) using the
ABORTTRANSACTIONY() function. Consequently, the standard Version 2
functions MQCMIT() and MQBACK() are not supported on this product. If they
are called, an error is returned.

e If an application uses the NO_SYNCPOINT option for MQPUT, MQGET and
MQPUT1 operations, MQSeries starts a TM/MP transaction itself, performs the
gueueing operation, and commits the transaction before returning to the
application. Each operation is therefore performed in its own UOW and, once
complete, cannot be backed out by the application using TM/MP.

e A TM/MP transaction does not need to be active for MQI calls other than
MQGET, MQPUT and MQPUTL.

e Because TM/MP can cause previously performed MQGET, MQPUT and
MQPUT1 operations to be backed out without notification, the current
gueue-depth and input-and-output-open counts of queues can become
inaccurate. The cleangm control command runs in the background to correct
such inaccuracies, and each MQOPEN call corrects the value of these
attributes on a queue if necessary. However, applications should be coded to
be resilient to inaccuracies in these quantities, especially in an environment that
may involve backed-out transactions.

© Copyright IBM Corp. 1995, 1997 307

Writing applications

e The back-out count attribute cannot be maintained in the same way as on
standard Version 2 implementations. Also, the harden backout count attribute
is not used.

e The MQRC_SYNCPOINT_LIMIT_REACHED reason code is used by MQSeries
for Tandem NSK V2.2 to inform an application that the system-imposed limit on
the number of I/O operations within a single TM/MP transaction has been
reached. If the application specified the SYNCPOINT option, it should cancel
the transaction (backout the UOW) and retry with a smaller number of
operations in that UOW.

e The MQRC_UOW_CANCELED reason code informs the application that the
UOW (TM/MP transaction) has been canceled, either by the system itself
(TM/MP imposes some system-wide resource-usage thresholds that will cause
this), by user action, or by the initiator of the transaction itself.

General design considerations
Please note that:

e The MQI library (bound into the application process) does not open $RECEIVE
and does not open $TMP (TM/MP transaction pseudo-file) itself, so you may
code your application to use these features.

e The MQI library uses a SERVERCLASS_SEND_() call in initial communication
with the Queue Manager. While connected, it maintains two process file opens
(with the LINKMON process and a Local Queue Manager Agent) and a small
number of disk file opens (fewer than 10).

XA interface

No XA interface for unit of work (UOW) coordination is provided. All UOW
coordination is performed by TM/MP.

MQGMO_BROWSE_* with MQGMO_LOCK

As a consequence of the use of TM/MP, MQGMO_BROWSE_* with
MQGMO_LOCK is not supported.

Triggered applications

Triggered MQSeries applications in the Tandem NSK environment receive user
data through environment variables set up in the TACL process that is running.
This is because there is a limit to the length of the argument list that can be passed
to a Tandem C process.

308 MQsSeries for Tandem NSK V2R2 System Management Guide

Writing applications

In order to access this information, triggered applications should contain code
similar to the following (see sample amgsinga for more details):

MQTMC2 =*trig; /* trigger message structure x/
MQTMC2 trigdata; /* trigger message structure */
char *xapplld;

char *envData;

char *usrData;

char *qmName;

/**/

/* */
/* Set the program argument into the trigger message */
/* */
/**/
trig = (MQTMC2*)argv[1]; /* -> trigger message */

/* get the environment variables and load the rest of the trigger */
memcpy (&trigdata, trig, sizeof(trigdata));

memset (trigdata.ApplId, ' ', sizeof(trigdata.Applld));
memset (trigdata.EnvData, ' ', sizeof(trigdata.EnvData));
memset (trigdata.UserData, ' ', sizeof(trigdata.UserData));

memset (trigdata.QMgrName, , sizeof(trigdata.QMgrName));

if((app1Id = getenv("TRIGAPPLID")) != 0)
{

}

if ((envData = getenv("TRIGENVDATA")) != 0)
{

strncpy(trigdata.EnvData , envData, strlen(envData));

}

if ((usrData = getenv("TRIGUSERDATA")) != 0)
{

strncpy(trigdata.UserData, usrData, strlen(usrData));

}

strncpy(trigdata.ApplId ,applld, strlen(applld));

if ((gmName = getenv("TRIGQMGRNAME")) != 0)

{
strncpy(trigdata.QMgrName, gmName, strlen(gmName));

}

trig = &trigdata;

Appendix H. Building and running applications 309

Running applications

Compiling and b

inding applications

The MQSeries for Tandem NSK V2.2 MQI is implemented using the Tandem wide
memory model (the int datatype is 4 bytes) and the Common Runtime
Environment (CRE). Applications must be compatible with this environment in
order to work correctly. Refer to the sample build files for the correct options for
each compiler in order to ensure compatibility.

In particular, TAL and COBOL applications must follow the rules that are required
for compatibility with the CRE, documented in the Tandem manuals relating to the
CRE.

Four versions of the MQI library are delivered with MQSeries for Tandem NSK
V2.2, contained in ZMQSLIB. You must ensure that you use the correct library, as
shown in Table 39.

Table 39. Using the correct version of the MQI library

Programming language Nonnative Native
TAL or COBOL MQILIBC MQILIBCN
C MQILIBL MQILIBN

Running applications

In order to be able to connect to a queue manager, the environment of an
application program must be correctly defined:

e The PARAM MQDEFAULTPREFIX is mandatory in the environment of all
applications.

 If you have chosen an alternative (nondefault) location for your MQSINI file, an
application will not be able to connect to the queue manager if the PARAM
MQMACHINIFILE is not set correctly.

e TAL and COBOL applications must have the PARAM SAVE-ENVIRONMENT
ON defined in their environment, or they will not be able to connect to the
gueue manager.

An application may run as either low-pin or high-pin. MQSeries executables
themselves are configured to run as high-pin.

MQSeries applications are supported in the NSK environment only. No support for
OSS applications is provided.

An MQSeries application may run under PATHWAY, from TACL, or as a child
process of another process. Applications can even be added to the queue
manager PATHWAY configuration itself, provided they behave correctly on queue
manager shutdown.

310 MQSeries for Tandem NSK V2R2 System Management Guide

Sample programs

Appendix I. MQSeries for Tandem NSK sample programs

The following C and COBOL sample programs are supplied with MQSeries for
Tandem NSK, Version 2.2:

Description C source C executable COBOLS85 COBOLS85
source executable

Read and output message descriptor amgsbcg0 amgsbcg No sample No sample

and context for each message on a

queue

Echo a message from a message amgsecha amgsech amqOechO amqOech

queue to the reply-to queue

Write messages from a queue to amqsgbr0 amqgsgbr amqOgbr0 amqOgbr
stdout, leave messages on the
queue (Browse)

Remove messages from the named amgsgetO amgsget amq0get0 amgOget
gueue and write to stdout

Read the triggered queue, respond amgsinga amgsing No sample No sample
with queue information

Use a shared input queue No sample No sample amq0inq0 amqOinq
Copy stdin to a message and put the amqsputO amqgsput amqOput0 amqOput
message on a specified queue

Put a request message on a amgsreqO amgsreq amqOreqO amqOreq
specified queue and display the

replies

(Trigger function) inhibit puts on a amagsseta amgsset amqOset0 amqOset

named queue and respond with a
statement of the result

Trigger monitor amqstrg0 amqstrg No sample No sample
Sample skeleton for data conversion amgqsvfcn No sample No sample No sample
exit

Sample skeleton for channel exit amgsvchn No sample No sample No sample

The following TAL sample programs are supplied with MQSeries for Tandem NSK

Version 2.2:

Description TAL source TAL
executable

Read n messages from a queue zmqreadt zmqread

Write n messages of n length to a queue zmaqwritt zmaqwrit

© Copyright IBM Corp. 1995, 1997 311

Building COBOL samples

Building C sample programs

The subvolume ZMQSSMPL contains the following TACL macro files to be used for
building sample C applications:

CSAMP

BSAMP

COMPALL

BINDALL

BUILDC

Usage: CSAMP source-code-file-name

This is a basic macro for compiling a source file using the include
files contained in subvolume ZMQSLIB. For example, to compile
the sample AMQSBCGO, use CSAMP AMQSBCGO. If the compilation is
successful, the macro produces an object file with the last character
of the file name replaced by the letter O; for example, AMQSBCGO.

Usage: BSAMP exe-file-name

This is a basic macro used to bind an object file with the user
libraries in ZMQSLIB. For example, to bind the compiled sample
AMQSBCGO, use BSAMP AMQSBCG. The macro produces an
executable file called exe-filenamekE; for example, AMQSBCGE.

Usage: COMPALL

This TACL macro compiles each of the sample source code files
using the CSAMP macro.

Usage: BINDALL

This TACL macro binds each of the sample object files into
executables using the BSAMP macro.

Usage: BUILDC

This TACL macro compiles and binds all of the C sample files using
the macros COMPALL and BINDALL.

Building COBOL sample programs

The subvolume ZMQSSMPL contains the following files to be used for building
sample COBOL applications.

CCBSMPLS

BCBSMPLS

BUILDCOB

Usage: CCBSMPLS

This TACL macro compiles each of the COBOL sample source
code files.

Usage: BIND /IN BCBSMPLS/

This bind input file binds each of the COBOL sample object files
into executables.

Usage: BUILDCOB

This TACL macro compiles and binds all of the COBOL sample files
using the macros CCBSMPLS and BCBSMPLS.

312 MQSeries for Tandem NSK V2R2 System Management Guide

Building data-conversion exits

Building TAL sample programs

The subvolume ZMQSSMPL contains the following files to be used for building
sample TAL programs.

CTLSMPLS Usage: CTLSMPLS

This TACL macro compiles each of the TAL sample source code
files.

BTLSMPLS Usage: BIND /IN BTLSMPLS/

This bind input file binds each of the TAL sample object files into
executables.

BUILDCOB Usage: BUILDCOB

This TACL macro compiles and binds all of the TAL sample files
using the macros CTLSMPLS and BTLSMPLS.

Building and using data-conversion exit functions

Dynamically bound libraries are not supported by MQSeries for Tandem NSK.
Data conversion exits (and channel exits) are implemented by including statically
bound stub functions in the MQSeries libraries and executables that can be
replaced using the REPLACE bind option.

A data conversion exit must be called DATACONVEXIT (see sample AMQSVFCN),
and can be bound into the chosen executable (or library) using the TACL macro
BEXITE.

Note: This procedure modifies the target executable; you are recommended to
make a back-up copy of the target executable or library before using the macro.

Exit functions, once compiled, must be bound directly into the target executable or
library to be accessible by MQSeries. The following TACL macro is used for this
purpose:

BEXITE Usage: BEXITE target-executable-or-library
source-exit-file-or-library

For example, to bind the sample data conversion exit into the sample MQSGETA,
follow these steps:

1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).

2. Compile the get application (CSAMP AMQSGETO).
3. Bind the get application (BSAMP AMQSGET).
4

. Bind the exit function into the get application (BEXITE AMQSGET
AMQSVFCO).

Appendix I. MQSeries for Tandem NSK sample programs 313

Building channel exits

Alternatively, if all applications are to have this data conversion exit, the following
steps would create both a user library and an application with the exit bound in:

1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).
2. Compile the get application (CSAMP AMQSGETO).

3. Bind the exit function into the user library (BEXITE ZMQSLIB.MQMLIBC
AMQSVFCO).

4. Bind the get application with the modified library (BSAMP AMQSGET).

If the data conversion exit is to be used by channels processing within MQSeries, it
must also be bound into the caller executable by the system administrator. For
example:

BEXITE ZMQSEXE.MQMCACAL AMQSVFCO

Use the TACL macro BDCXALL to bind the data conversion exit into all required
MQSeries processes. For example:

BDCXALL source-exit-file-or-library

Building and using channel exit functions

Dynamically bound libraries are not supported by MQSeries for Tandem NSK.
Channel exits (and data-conversion exits) are implemented by including statically
bound stub functions in the MQSeries libraries and executables which can be
replaced using the REPLACE bind option.

A channel exit function must be written in C, must be called CHANNELEXIT (see
sample AMQSVCHN), and can be bound into the chosen executable (or library)
using the TACL macro BEXITE.

Note: This procedure modifies the target executable. Therefore, you are
recommended to make a back-up copy of the target executable or library before
using the macro.

The function CHANNELEXIT must handle each of the possible exit calls (security,
message-retry, message, send, and receive). You may write your own functions to
do this.

Use the TACL macro BCHXALL to bind the data conversion exit into all required
MQSeries processes. For example:

BCHXALL source-exit-file-or-library

314 MQSeries for Tandem NSK V2R2 System Management Guide

Channel exit programs

Appendix J. User exits

MQSeries for Tandem NSK, Version 2 Release 2, supports both channel exit
programs and data-conversion exit programs. For information about channel exits,
see the MQSeries Intercommunication book. For information about data-conversion
exits, see the MQSeries Application Programming Guide and the MQSeries
Application Programming Reference.

This appendix provides information specific to the use of exit programs in MQSeries
for Tandem NSK.

Channel exit programs

In MQSeries for Tandem NSK, a user exit program can be called at the following
points in MCA (message channel agent) processing:

e Channel security exit

e Channel message-retry exit
e Channel message exit

e Channel send exit

e Channel receive exit

MQSeries for Tandem NSK supports a single, statically bound channel exit
program, whose entry point is MQCHANNELEXIT(). MQSeries for Tandem NSK
provides a stub function for this exit that acts as a placeholder for user-supplied exit
code. In the supplied stub function, the ExitResponse field in MQCXP (channel exit
parameter structure) is set to MQXCC_CLOSE_CHANNEL, which causes the MCA
to close the channel. No other fields in MQCXP are modified.

You replace the supplied stub function in the MCA executable images with your
own user exit code using the Tandem BIND utility. Only the Tandem Common
Runtime Environment (CRE) interface for the WIDE memory model is supported.

Reusing channel-exit programs
In MQSeries for Tandem NSK, there is a single entry point for all channel exits. In
other MQSeries Version 2 products, there are entry points specific to each channel
type and function. It is possible to use channel-exit programs written for other
MQSeries Version 2 products by calling those programs from MQCHANNELEXIT().
To determine the type of exit being called, examine the ExitId field of MQCXP,
then extract the associated exit-program name from the MsgExit, MsgRetryExit,
ReceiveExit, SendExit, or SecurityExit field of MQCD.

Channel attributes
The channel attributes that define the names of user exits are:

e Security exit name (SCYEXIT)

e Message-retry exit name (MREXIT)
* Message exit name (MSGEXIT)

e Send exit name (SENDEXIT)

¢ Receive exit name (RCVEXIT)

© Copyright IBM Corp. 1995, 1997 315

Data-conversion exit programs

If these channel attributes are left blank, the channel user exit is not invoked. If
any of the channel attributes is nonblank, the MQCHANNELEXIT() user exit
program is invoked for the corresponding function. Note that the text-string value of
the channel attribute is not used to determine the name of the user exit program,
since only a single entry point, MQCHANNELEXIT(), is supported in MQSeries for
Tandem NSK. However, the values of these channel attributes are passed to
MQCHANNELEXIT() in the MQCD (channel data) structure. The function of the
channel exit (that is, whether the exit corresponds to a Message, Message-retry,
Receive, Security or Send Exit) is passed to MQCHANNELEXIT() in the
ChannelExitParms parameter of the MQCXP (Channel Exit Parameters) structure.

MQSeries for Tandem NSK does not support the following channel attributes:

e CICS Profile Name

e Sequential delivery

e Target system identifier

¢ Transaction identifier

¢ Maximum transmission size

Data-conversion exit programs

A data-conversion exit can be called to convert messages of application-defined
format. The data-conversion exit is invoked during the processing of an MQGET
call in the following two circumstances:

1. A message is retrieved by an application using MQGET specifying the
MQGMO_CONVERT option, and the message descriptor (MQMD) contains a
Format value that does not represent one of the built-in formats (MQFMT _%*).

2. A message is retrieved from a transmission queue by an MCA (which uses
MQGET internally) for transmission to a remote queue manager over a
channel defined with CONVERT(YES), and the message descriptor (MQMD) of
the message contains a Format value that is not one of the built-in formats
(MQFMT_*).

The MQXCNVC call is used by the data-conversion exit program to convert
characters from one character set to another.

MQSeries for Tandem NSK supports a single, statically bound data-conversion exit
whose entry point is MQDATACONVEXIT(). MQSeries for Tandem NSK provides a
stub function for this exit that acts as a placeholder for user-supplied exit code. In
the supplied stub function, the Reason field in MQDXP (the data-conversion exit
parameter structure) is set to MQRC_NOT_CONVERTED. No other parameters
are modified. This value causes the caller of MQGET to receive the CompCode
MQCC_WARNING and the Reason code MQRC_NOT_CONVERTED.

You replace the supplied stub version of MQDATACONVEXIT() with your own
data-conversion exit program using the Tandem BIND utility. To support data
conversion on receipt of messages (that is, when an application issues MQGET),
the MQDATACONVEXIT() function in the local queue manager (LQM) agent
executable image must be replaced. To support data conversion on sending of
messages, the MQDATACONVEXIT() function in the MCA executable image must
be replaced.

316 MQsSeries for Tandem NSK V2R2 System Management Guide

Data-conversion exit programs

The interface to MQDATACONVEXIT(), the associated data structures MQCXP,
MQCD, and MQDXP, and the MQXCNVC call are defined in the MQSeries
Application Programming Reference manual. Guidance information is provided in
the MQSeries Application Programming Guide. Note that only the Tandem
Common Runtime Environment (CRE) interface for the WIDE memory model is
supported.

Reusing data-conversion exit programs

In other MQSeries Version 2 products, a data-conversion exit is required for each
application-defined format to be supported. The data-conversion exit programs are
named according to the Format value (from MQMD) of the message to be
converted. The format for which conversion is being requested can be determined
from the Format field of the MsgDesc parameter. The appropriate data-conversion
exit program can therefore be invoked from MQDATACONVEXIT(). The
parameters supplied to MQDATACONVEXIT() can be supplied to the invoked
data-conversion function.

Appendix J. User exits 317

Data-conversion exit programs

318 MQSeries for Tandem NSK V2R2 System Management Guide

Setting up communications

Appendix K. Setting up communications

This appendix describes how to set up communications for MQSeries for Tandem
NSK using the SNA and TCP/IP communications protocols. The following
examples are provided:

¢ “SNAX communications example” on page 321
e “ICE communications example” on page 328
e “TCP/IP communications example” on page 331

SNA channels

The following channel attributes are necessary for SNA channels in MQSeries for
Tandem NSK V2.2:

CONNAME

The value of CONNAME depends on whether SNAX or ICE is used as the
communications protocol:

If SNAX is used:

CONNAME('$PPPP.LOCALLU.REMOTELU')
Applies to sender, requester and fully qualified server channels, where:

$PPPP Is the process name of the SNAX/APC process.
LOCALLU Is the name of the Local LU.
REMOTELU Is the name of the partner LU on the remote machine.

For example:
CONNAME ('$BPO1.IYAHTO80.IYCNVMO3')

CONNAME('$PPPP.LOCALLU"
Applies to receiver and non fully qualified server channels, where:

$PPPP Is the process name of the SNAX/APC process.
LOCALLU Is the name of the Local LU. This value can be an asterisk
(*), indicating any name.

For example:
CONNAME ('$BPO1.IYAHT080')
If ICE is used.

CONNAME('$PPPP #OPEN.LOCALLU.REMOTELU")
Applies to sender, requester and fully qualified server channels, where:

$PPPP Is the process name of the ICE process.
#OPEN Is the ICE open name.
LOCALLU Is the name of the Local LU.

REMOTELU Is the name of the partner LU on the remote machine.
For example:
CONNAME ('$ICE.#IYAHTOC.IYAHTOCO.IYCNVMO3")

CONNAME('$PPPP.#0OPEN.LOCALLU")
Applies to receiver and non fully qualified server channels, where:

$PPPP Is the process name of the SNAX/APC process.
#OPEN Is the ICE open name.

© Copyright IBM Corp. 1995, 1997 319

Setting up communications

LOCALLU Is the name of the Local LU. This value can be an asterisk
(*), indicating any name.

For example:
CONNAME ('$ICE.#IYAHTOC.IYAHTOCO')

MODENAME
Is the SNA mode name. For example, MODENAME(LU62PS).

TPNAME(LOCALTP[.REMOTETPY])
Is the Transaction Process (TP) name.

LOCALTP Is the local name of the TP.

REMOTETP Is the name of the TP on the remote machine. This value is
optional. If it is not specified, and the channel is one that
initiates a conversation (that is, a sender, requester, or fully
qualified server channel) the LOCALTP name is used.

Both the LOCALTP and REMOTETP values can be up to 16 characters in
length.

Note: If SNAX is being used to facilitate SNA communications, the values in
the LOCALTP field in the TPNAME must match TPs defined to SNAX. If ICE
is being used, TPNAMESs do not need to be defined to ICE; they need only be
present in the MQSeries channel definitions.

LU 6.2 responder processes

There is no SNA listener process in MQSeries for Tandem NSK. Each channel
initiated from a remote system (receiver, server, or requester that has a fully
gualified server on the remote system or a requester that has a sender on the
remote system) must have its own, uniqgue TP name on which it can listen. This
TP name is specified as the LOCALTP value.

Such channels must be defined to MQSC with the attribute
AUTOSTART(ENABLED) to ensure that there is an LU 6.2 responder process
listening on this TP name whenever the queue manager is started. This LU 6.2
responder process (MQLUGRES) services incoming SNA requests for its particular
TP. If the channel is newly defined, or has been recently altered, an LU 6.2
responder process can be started for that channel by issuing either the MQSC
command START CHANNEL (using runmgsc) or the runmgchl control command
from the TACL prompt.

SNA channels defined AUTOSTART(DISABLED) do not listen for incoming SNA
requests. LU 6.2 responder processes are not started for such channels. A
message is logged to MQERRLG1 whenever an LU 6.2 responder process is
started.

TCP/IP channels

For information about using a nondefault TCP/IP process for communications via
TCP/IP, see “Reconfiguring a queue manager for a nondefault TCP/IP process” on
page 55. For information about the TCP/IP ports a queue manager listens on, see
“TCP/IP ports listened on by the queue manager” on page 55.

320 MQsSeries for Tandem NSK V2R2 System Management Guide

Setting up communications

Communications examples

This section provides communications setup examples for SNA (SNAX and ICE)
and TCP/IP.

SNAX communications example
This section provides:

e An example SCF configuration file for the SNA line

e Some example SYSGEN parameters to support the line

¢ An example SCF configuration file for the SNA process definition
¢ Some example MQSC channel definitions

SCF SNA line configuration file
Here is an example SCF configuration file:

SCF configuration file for defining SNA LINE, PUs and LUs to VTAM
Line is called $SNAO2 and SYSGEN'd into the Tandem system

ALLOW ALL
ASSUME LINE $SNAG2

ABORT, SUB LU
ABORT, SUB PU
ABORT

DELETE, SUB LU
DELETE, SUB PU
DELETE

== ADD $SNAO2 LINE DEFINITION

ADD LINE $SNAO2, STATION SECONDARY, MAXPUS 5, MAXLUS 1024, RECSIZE 2048, &
CHARACTERSET ASCII, MAXLOCALLUS 256, &
PUIDBLK %HO05D, PUIDNUM %H312FB

== ADD REMOTE PU OBJECT, LOCAL IS IMPLICITLY DEFINED AS #ZNT21

ADD PU #PU2, ADDRESS 1, MAXLUS 16, RECSIZE 2046, TYPE (13,21), &
TRRMTADDR 04400045121088, DYNAMIC ON, &
ASSOCIATESUBDEV $CHAMB.#p2, &

TRSSAP %H04, &
CPNAME IYAQCDRM, SNANETID GBIBMIYA

== ADD LOCAL LU OBJECT

ADD LU #ZNTLUL, TYPE (14,21), RECSIZE 1024, &
CHARACTERSET ASCII, PUNAME #ZNT21, SNANAME IYAHT080

Appendix K. Setting up communications 321

Setting up communications

== ADD PARTNER LU OBJECTS

== spinach (HP)

ADD LU #PU2LU1, TYPE(14,21), PUNAME #PU2, SNANAME IYABTOFO
== stingray (AIX)

ADD LU #PU2LU2, TYPE(14,21), PUNAME #PU2, SNANAME IYA3T995
== coop007 (0S/2)

ADD LU #PU2LU3, TYPE(14,21), PUNAME #PU2, SNANAME IYAFT170
== MVS CICS

ADD LU #PU2LU4, TYPE(14,21), PUNAME #PU2, SNANAME IYCMVMO3
== MVS Non-CICS

ADD LU #PU2LU5, TYPE(14,21), PUNAME #PU2, SNANAME IYCNVMO3
== finnrl00 (NT)

ADD LU #PU2LU6, TYPE(14,21), PUNAME #PU2, SNANAME IYAFTO80
== winasl8 (AS400)

ADD LU #PU2LU7, TYPE(14,21), PUNAME #PU2, SNANAME IYAFT110
== MQ-Portugese (0S/2)

ADD LU #PU2LU8, TYPE(14,21), PUNAME #PU2, SNANAME IYAHT090
== VSE

ADD LU #PU2LU1O, TYPE(14,21), PUNAME #PU2, SNANAME IYZMZSI2

= START UP TOKEN RING ASSOCIATE SUB DEVICE $CHAMB.#P2
then start the line, pu's and Tu's

START LINE $CHAMB, SUB ALL

START
START, SUB PU

STATUS

STATUS, SUB PU
STATUS, SUB LU

322 MQSeries for Tandem NSK V2R2 System Management Guide

Setting up communications

SYSGEN parameters
The following are CONFTEXT file entries for a SYSGEN to support the SNA and
token ring lines:

!**

! LAN MACRO

!**

! This macro is used for all 361x LAN controllers
! REQUIRES T9375 SOFTWARE PACKAGE

C3613"MLAM = MLAM
TYPE 56, SUBTYPE 0,
PROGRAM C9376P00,
INTERRUPT IOP~INTERRUPT~HANDLER,
MAXREQUESTSIZE 32000,
RSIZE 32000,
BURSTSIZE 16,
LINEBUFFERSIZE 32,

STARTDOWN #;

!**
! SNAX macro for Token ring Tines
!**
TOKEN™RING"~SNAX"MACRO = SNATS

TYPE 58,

SUBTYPE 4,

RSIZE 1024,

SUBTYPE 4,

FRAMESIZE 1036 # ;

!**

! SNAX MANAGER

!**

SSCP™MACRO = SNASVM
TYPE 13, SUBTYPE 5,
RSIZE 256 #;

!**

! LAN CONTROLLER

!**

LAN1 3616 0,1 %130 H

Irkxxxxxkxx* Service manager
SNAX 6999 0,1 %370 5

Ixsxxsxxxxxx SNAX/Token Ring Pseudocontroller
RING 6997 0,1 %360 ;

Ikx*xx*xx*x**x Token Ring Line
$CHAMB LAN1.0, LANI.1 C3613”MLAM, NAME #LAN1;

Irsxxsxxsxxx Configure the SSCP
$sscp SNAX.Q, SNAX.1 SSCP~MACRO;

Ikxkxxxxxx%x Spa Tines for Dummy Controller over Token Ring

$SNAO1L RING.O, RING.1 TOKEN"RING~SNAX"MACRO;
$SNAG2 RING.2, RING.3 TOKEN"“RING~SNAX"MACRO;

Appendix K. Setting up communications 323

Setting up communications

SNAX/APC process configuration
The following definitions configure the example APC process (process name
$BPO01) via SCF for the SNA line.

Note: The pathway process $BPO1 is created using the Tandem utility APCRUN.

== SCF Configuration file for SNAX/APC Lus

ALLOW ERRORS
ASSUME PROCESS $BPO1

ABORT SESSION =
ABORT TPN =*

ABORT PTNR-MODE =*
ABORT PTNR-LU =
ABORT LU =

DELETE TPN =*
DELETE PTNR-MODE =
DELETE PTNR-LU =
DELETE LU =

== ADD LOCAL LU

ADD LU IYAHT080, SNANAME GBIBMIYA.IYAHT080, SNAXFILENAME $SNAO2.#ZNTLU1, &
MAXSESSION 256, AUTOSTART YES

== TPnames for MQSeries

ADD TPN IYAHTO80.INTCRS6A
ADD TPN IYAHTO80.DUMMY, GENERALTPREADY yes, SESSIONCONTROL yes, &
REMOTEATTACHTIMER -1, REMOTEATTACH queue

=== Spinach (HP) Partner LU

ADD PTNR-LU IYAHTO80.IYABTOFO, SNANAME GBIBMIYA.IYABTOFO, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYABTOFO.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHTO80.MHO1SDRCSDR
ADD TPN IYAHT080.MHO1RQSDSDR
ADD TPN IYAHT080.MHO1RQSVSVR
ADD TPN IYAHT080.MHO1SDRCRCVR
ADD TPN IYAHT080.MHO1RQSVRQSTR
ADD TPN IYAHTO80.MHO1RQSDRQSTR

Winas18 (AS400) Partner LU

324 MQSeries for Tandem NSK V2R2 System Management Guide

ADD

ADD

ADD
ADD
ADD
ADD
ADD
ADD

ADD

ADD

ADD
ADD
ADD
ADD
ADD

ADD

ADD

ADD
ADD
ADD
ADD
ADD
ADD

PTNR-LU

PTNR-MODE

TPN
TPN
TPN
TPN
TPN
TPN

Setting up communications

IYAHTO80.IYAFT110, SNANAME GBIBMIYA.IYAFT110, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

IYAHT080.IYAFT110.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

IYAHT080.M401SDRCSDR
IYAHT080.M401RQSDSDR
IYAHT080.M401RQSVSVR
IYAHT080.M401SDRCRCVR
IYAHT080.M401RQSVRQSTR
IYAHT080.M401RQSDRQSTR

Stingray (AIX) Partner LU

PTNR-LU

PTNR-MODE

TPN
TPN
TPN
TPN
TPN
TPN

PTNR-LU

PTNR-MODE

TPN
TPN
TPN
TPN
TPN
TPN

IYAHT080.IYA3T995, SNANAME GBIBMIYA.IYA3T995, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

IYAHT080.IYA3T995.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

IYAHT080.MAO2SDRCSDR
IYAHTO80.MAOZ2RQSDSDR
IYAHT080.MAO2RQSVSVR
IYAHT080.MAG2SDRCRCVR
IYAHT080.MAO2RQSVRQSTR
IYAHT080.MAO2RQSDRQSTR

coop007 (0S/2) Partner LU

IYAHTO80.IYAFT170, SNANAME GBIBMIYA.IYAFT170, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

IYAHT080.IYAFT170.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

IYAHT080.MOO2SDRCSDR
IYAHT080.M002RQSDSDR
IYAHT080.MOO2RQSVSVR
IYAHT080.MOO2SDRCRCVR
IYAHT080.MOO2RQSVRQSTR
IYAHT080.MOO2RQSDRQSTR

Appendix K. Setting up communications

325

Setting up communications

== MQ-Portugese (0S/2) Partner LU

ADD PTNR-LU IYAHTO80.IYAHT090, SNANAME GBIBMIYA.IYAHT090, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYAHT090.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

== finnrl00 (NT) Partner LU

ADD PTNR-LU IYAHTO80.IYAFTO80, SNANAME GBIBMIYA.IYAFT080, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYAFT080.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHTO80.MWO1SDRCSDR
ADD TPN IYAHT080.MWO1RQSDSDR
ADD TPN IYAHT080.MWO1RQSVSVR
ADD TPN IYAHT080.MWO1SDRCRCVR
ADD TPN IYAHTO80.MWO1RQSVRQSTR
ADD TPN IYAHTO80.MWO1RQSDRQSTR
== MVS CICS Partner LU

ADD PTNR-LU IYAHTO80.IYCMVMO3, SNANAME GBIBMIYA.IYCMVMO3, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYCMVMO3.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.VMO3SDRCSDR
ADD TPN IYAHT080.VMO3RQSDSDR
ADD TPN IYAHT080.VMO3RQSVSVR
ADD TPN IYAHT080.VMO3SDRCRCVR
ADD TPN IYAHT080.VMO3RQSVRQSTR
ADD TPN IYAHT080.VMO3RQSDRQSTR

== MVS Non CICS Partner LU

ADD PTNR-LU IYAHTO80.IYCNVMO3, SNANAME GBIBMIYA.IYCNVMO3, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

326 MQsSeries for Tandem NSK V2R2 System Management Guide

Setting up communications

ADD PTNR-MODE IYAHTO80.IYCNVMO3.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

ADD TPN IYAHT080.VMO3NCMSDRCSDR
ADD TPN IYAHT080.VMO3NCMRQSDSDR
ADD TPN IYAHT080.VMO3NCMRQSVSVR
ADD TPN IYAHT080.VMO3NCMSDRCRCVR
ADD TPN IYAHT080.VMO3NCMRQSVRQSTR
ADD TPN IYAHT080.VMO3NCMRQSDRQSTR

== VSE Partner LU

ADD PTNR-LU IYAHTO80.IYZMZSI2, SNANAME GBIBMIYA.IYZMZSIZ2, &
PERIPHERAL-NODE NO, PARALLEL-SESSION-LU YES

ADD PTNR-MODE IYAHTO80.IYZMZSI2.LU62PS, MODENAME LU62PS, &
DEFAULTMAXSESSION 8, DEFAULTMINCONWINNER 4, &
DEFAULTMINCONLOSER 3, MAXAUTOACT 1, RCVWINDOW 4, &
DEFAULTMAXINRUSIZE 1024, DEFAULTMAXOUTRUSIZE 1024, &
SENDWINDOW 4

== Start the LUs

START LU IYAHTO80, SUB ALL
START TPN =

Channel definitions
Here are some example MQSeries channel definitions that support the SNAX
configuration:

¢ A sender channel to MQSeries on MVS/ESA (hon-CICS mover):

DEFINE CHANNEL(MTO1.VMO3.SDRC.0002) CHLTYPE(SDR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.SDRC.0001') +
CONNAME (' $BPO1.IYAHTO80.IYCNVMO3') +
MODENAME (' LU62PS') TPNAME (DUMMY)

¢ A receiver channel from MQSeries on MVS/ESA:

DEFINE CHANNEL(VMO3.MTO1.SDRC.0002) CHLTYPE(RCVR) +
TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VMO3NCM') +
SEQWRAP(9999999) +
MAXMSGL (2048) AUTOSTART (ENABLED) +
CONNAME (' $BPO1.IYAHTO80') TPNAME (VMO3NCMSDRCRCVR)

Appendix K. Setting up communications 327

Setting up communications

* A server channel to MQSeries on MVS/ESA which is capable of initiating a
conversation, or being initiated by a remote requester channel:

DEFINE CHANNEL(MTO1.VMO3.RQSV.0002) CHLTYPE(SVR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.RQSV.0001') +
CONNAME (' $BPO1.IYAHTO80.IYCNVMO3') +
MODENAME (' LU62PS') TPNAME (VMO3NCMRQSVSVR.DUMMY) +
AUTOSTART (ENABLED)

where DUMMY is the TPNAME the MVS queue manager is listening on.

ICE communications example
There are two stages in configuring ICE for MQSeries:

1. The ICE process itself must be configured.

2. Line ($ICEO01, in the following example) and SNA information must be input to
the ICE process.

Configuring the ICE process
Here is an example ICE process configuration. This configuration is located by
default in a file called GOICE:

?tacl macro

clear all

param backupcpu 1

param cinittimer 120

param collector $0

param config icectl

param idblk 05d

param idnum 312FF

param cpname IYAHROOC

param datapages 64

param dynamicrlu yes

param genesis $gen

param maxrcv 4096

param loglevel info

param netname GBIBMIYA
param password XXXXXXXXXXXXXXXXXXXX
param retrysl 5

param secuserid super.super
param startup %1%

param timerl 20

param timer2 300

param usstable default

run $system.ice.ice/name $ICE,nowait,cpu 0,pri 180,highpin off/

Note: The password param has been replaced by XXXXXXXXXXXXXXXXXXXX.

328 MQSeries for Tandem NSK V2R2 System Management Guide

Setting up communications

Defining the line and APC information

Once the ICE process has been started with this configuration, the following
information is input to the ICE process using the Node Operator Facility (NOF**).
This example defines a line called $ICEO1 running on the token ring port
$CHAMB.#ICE:

== [CE definitions for PU IYAHROOC.
== Local LU for this PU is IYAHTOCO.

ALLOW ERRORS
OPEN $ICE
ABORT LINE $ICEO1, SUB ALL

DELETE LINE $ICEQ1, SUB ALL

ADD TOKEN RING LINE

ADD LINE $ICE@1, TNDM $CHAMB.#ICE, &
IDBLK %HO5D, &
PROTOCOL TOKENRING, WRITEBUFFERSIZE 8192

== ADD PU OBJECT

ADD PU IYAHROOC, LINE $ICEO1, MULTIROUTE YES, &
DMAC 400045121088, DSAP %H04, &
NETNAME GBIBMIYA, IDNUM %H312FF, IDBLK %HO5D, &
RCPNAME GBIBMIYA.IYAQCDRM, SSAP %HO8

== Add Local APPL Object

DELETE APPL IYAHTOCO
ADD APPL IYAHTOCO, ALIAS IYAHTOCO, LLU IYAHTOCO, PROTOCOL CPIC, &
OPENNAME #IYAHTOC

== Add Mode LU62PS

DELETE MODE LU62PS
ADD MODE LU62PS, MAXSESS 8, MINCONWIN 4, MINCONLOS 3

== Add Partner LU Objects

== spinach (HP)

ABORT RLU IYABTOFO

Appendix K. Setting up communications 329

Setting up communications

DELETE RLU IYABTOFO
ADD RLU IYABTOFO, MODE LU62PS, PARSESS YES

== stingray (AIX)

ABORT RLU IYA3T995
DELETE RLU IYA3T995
ADD RLU IYA3T995, MODE LU62PS, PARSESS YES

== coop007 (0S/2)

ABORT RLU IYAFT170
DELETE RLU IYAFT170
ADD RLU IYAFT170, MODE LU62PS, PARSESS YES

== MVS CICS

ABORT RLU IYCMVMO3
DELETE RLU IYCMVMO3
ADD RLU IYCMVMO3, MODE LU62PS, PARSESS YES

== MVS Non-CICS

ABORT RLU IYCNVMO3
DELETE RLU IYCNVMO3
ADD RLU IYCNVMO3, MODE LU62PS, PARSESS YES

== finnrl00 (NT)

ABORT RLU IYAFT080
DELETE RLU IYAFT0O80
ADD RLU IYAFTO80, MODE LU62PS, PARSESS YES

== winas18 (AS400)

ABORT RLU IYAFT110
DELETE RLU IYAFT110
ADD RLU IYAFT110, MODE LU62PS, PARSESS YES

ABORT RLU IYAHT080
DELETE RLU IYAHT080
ADD RLU IYAHTO80, MODE LU62PS, PARSESS YES

== START UP ICE LINE $ICEO1 AND SUB DEVICE

START LINE $ICEO1, SUB ALL

Note: In order for this configuration to work, the port #ICE must have been defined
to the token ring line. For example, these commands could be entered into SCF:

add port $chamb.#ice, type tr8025, address %HO8
start port $chamb.#ice

where $chamb is a token-ring controller, and the SAP of the port is %08.

330 MQSeries for Tandem NSK V2R2 System Management Guide

Setting up communications

Channel definitions for ICE
Here are some MQSeries channel definitions that would support this ICE
configuration:

e A sender channel to MQSeries on MVS/ESA (non-CICS mover):

DEFINE CHANNEL(MTO1.VMO3.SDRC.ICE) CHLTYPE(SDR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.SDRC.ICE') +
CONNAME (' $ICE. #IYAHTOC. IYAHTOCO. IYCNVMO3') +
MODENAME (' LU62PS') TPNAME (DUMMY)

¢ A receiver channel from MQSeries on MVS/ESA:

DEFINE CHANNEL(VMO3.MTO1.SDRC.ICE) CHLTYPE(RCVR) +
TRPTYPE(LU62) REPLACE DESCR('Receiver channel from VMO3NCM') +
SEQWRAP(9999999) +
MAXMSGL (2048) AUTOSTART (ENABLED) +
CONNAME (' $ICE.#IYAHTOC.IYAHTOCO') TPNAME (VMO3NCMSDRCRCVR)

e A server channel to MQSeries on MVS/ESA that is capable of initiating a
conversation, or being initiated by a remote requester channel:

DEFINE CHANNEL(MTO1.VMO3.RQSV.ICE) CHLTYPE(SVR) +
TRPTYPE(LU62) +
SEQWRAP(9999999) MAXMSGL (2048) +
XMITQ('VMO3NCM.TQ.RQSV.ICE') +
CONNAME (' $ICE. #IYAHTOC. IYAHTOCO. IYCNVMO3') +
MODENAME (' LU62PS') TPNAME (VMO3NCMRQSVSVR.DUMMY) +
AUTOSTART (ENABLED)

where DUMMY is the TPNAME the MVS queue manager is listening on.

TCP/IP communications example

This example shows how to establish communications with a remote MQSeries
system over TCP/IP.

TCPConfig stanza in QMINI
The QMINI file must contain an appropriate TCPConfig stanza. For example:

TCPConfig:
TCPPort=1414
TCPNumListenerPorts=1
TCPListenerPort=1996
TCPKeepAlive=1

The TCPPort value is the default outbound port for channels without a port value in
the CONNAME field. TCPListenerPort identifies the port on which the TCP/IP
listener will listen.

Defining a TCP/IP sender channel
A TCP/IP sender channel must be defined. In this example, the queue manager is
MHO1 on a host called SPINACH:

DEFINE CHANNEL(MTO1 MHO1_SDRC_0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
SEQWRAP(9999999) MAXMSGL(4194304) +
XMITQ('MHO1_TQ_SDRC_0001') +
CONNAME (' SPINACH.HURSLEY . IBM.COM(2000) ')

Appendix K. Setting up communications 331

Setting up communications

This channel would try to attach to a TCP/IP port number 2000 on the host
SPINACH.

The following example shows a TCP/IP sender channel definition for a queue
manager MHO1 on the host SPINACH using the default outbound TCP/IP port:

DEFINE CHANNEL(MTO1 MHO1_SDRC_0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
SEQWRAP(9999999) MAXMSGL(4194304) +
XMITQ('MHO1_TQ_SDRC_0001') +
CONNAME (' SPINACH.HURSLEY . IBM.COM")

No port number is specified in the CONNAME. Therefore, the value specified on
the TCPPort entry in the QMINI file (1414) is used.

Defining a TCP/IP receiver channel
An example TCP/IP receiver channel:

DEFINE CHANNEL(MHO1 MT@1 SDRC_0001) CHLTYPE(RCVR) +
TRPTYPE(TCP)

A TCP/IP receiver channel requires no CONNAME value, but a TCP/IP listener
must be running. There are two ways of starting a TCP/IP listener. Either:

1. Go into the queue manager’s pathway using pathcom, and enter:
start server mgs-tcplis00
or
2. From the TACL prompt, enter
runmglsr -m QMgrName
A TCP/IP listener, which will listen on the port defined in the QMINI file (in this
example, 1996), is started.

Note: This port number can be overridden by the -p Port flag on runmglsr .

Defining a TCP/IP sender channel on the remote system
The sender channel definition on the remote system to connect to this receiver
channel could look like:

DEFINE CHANNEL(MHO1 MTO1 SDRC_0001) CHLTYPE(SDR) +
TRPTYPE(TCP) +
XMITQ('MTO1_TQ_SDRC_0001') +
CONNAME (' TANDEM. ISC. UK. IBM.COM(1996) ')

332 MQSeries for Tandem NSK V2R2 System Management Guide

MQSeries clients

Appendix L. MQSeries clients

An MQSeries client is an MQSeries system that does not include a queue
manager. The MQSeries client code directs MQI calls from applications running on
the client system to a queue manager on an MQSeries server system to which it is
connected.

This appendix provides information about MQSeries clients that is specific to
MQSeries for Tandem NSK V2.2. It should be used in conjunction with the
MQSeries Clients book.

Client support

MQSeries for Tandem NSK V2.2 can function as an MQSeries server system to all
MQSeries clients that can connect to the server using TCP/IP or SNA LU 6.2
protocols. However, there is no MQSeries for Tandem NSK V2.2 client.

When an MQSeries client connects to a queue manager on MQSeries for Tandem
NSK V2.2:

e Any MQGET, MQPUT, or MQPUTL1 with an MQ*_SYNCPOINT option initiates a
Tandem transaction, if one has not already been associated with the
connection handle.

e Any MQGET, MQPUT, or MQPUTL1 with neither an MQ*_SYNCPOINT nor an
MQ*_NO_SYNCPOINT option initiates a Tandem transaction, if one has not
already been associated with the connection handle.

e The MQCMIT call commits a Tandem transaction, if one is associated with the
connection handle. The MQBACK call cancels the Tandem transaction, if one
is associated with the connection handle.

In all cases, if the Tandem BEGINTRANSACTION fails, a CompCode of
MQCC_FAILED, and a Reason of MQRC_SYNCPOINT_NOT_AVAILABLE are
returned to the caller.

Security considerations

MQSeries for Tandem NSK V2.2 supports the use of channel security exits for the
validation of clients, as follows:

e After a connection is established between the MQSeries client and the server,
the client invokes the security exit on the server prior to returning from the
MQCONN call.

e The server security exit can return information to the client security exit.

This dialog allows, for example, the communication of confidential data between the
server and client. If the client has not defined a security exit, the values of the local
environment variables MQ_USER_ID and MQ_PASSWORD are passed to the
server via channel attributes. These attributes are available to the server security
exit for validation.

© Copyright IBM Corp. 1995, 1997 333

MQSeries clients

334 MQSeries for Tandem NSK V2R2 System Management Guide

Events

Appendix M.

Programmable System Management

MQSeries for Tandem NSK supports these system-management functions of
MQSeries:

e Instrumentation events
¢ Programmable Command Formats (PCFs)
¢ Installable services

This appendix provides a summary of these functions in MQSeries for Tandem
NSK. For detailed descriptions, see the MQSeries Programmable System
Management book.

Instrumentation events

MQSeries for Tandem NSK supports the standard MQSeries instrumentation
events, which result in the generation of an event message on an event queue.

You enable and disable events by specifying appropriate values for queue and
gueue manager attributes using:
e MQSC, as described in the MQSeries Command Reference book

e PCF commands, as described in the MQSeries Programmable System
Management book

* Message Queue Management (MQM), as described in Chapter 5, “Managing
gueue managers” on page 47

Event types supported by MQSeries for Tandem NSK

MQSeries for Tandem NSK supports the following event types:

Table 40 (Page 1 of 2). Event types supported by MQSeries for Tandem NSK

Event type Event name
Authority events Not Authorized (type 1)
Channel events Channel Activated

Channel Conversion Error
Channel Not Activated
Channel Started

Channel Stopped

Inhibit events Get Inhibited
Put Inhibited
Local events Alias Base Queue Type Error

Queue Type Error
Unknown Alias Base Queue
Unknown Object Name

Performance events Queue Depth High
Queue Depth Low
Queue Full
Queue Service Interval High
Queue Service Interval OK

© Copyright IBM Corp. 1995, 1997

Events

Table 40 (Page 2 of 2). Event types supported by MQSeries for Tandem NSK

Event type Event name

Remote events Default Transmission Queue Type Error
Default Transmission Queue Usage Error
Queue Type Error
Remote Queue Name Error
Transmission Queue Usage Error
Unknown Default Transmission Queue
Unknown Remote Queue Manager
Unknown Transmission Queue

Start and stop events Queue Manager Active
Queue Manager Not Active

Event-message format
MQSeries for Tandem NSK supports the standard MQSeries event-message
format. That is, the event message has two parts, the message descriptor (MQMD)
and the message data. The message data comprises an event header and some
data that is specific to the type of event.

The MQMD structure of an event message is summarized in Table 41. The event
header structure (MQCFH) is summarized in Table 42 on page 337.

Table 41 (Page 1 of 2). MQMD structure of an event message

Parameter Type Values

Strucld MQCHAR4 MQMD_STRUC_ID

Version MQLONG MQMD_VERSION_1

Report MQLONG MQRO_NONE

MsgType MQLONG MQMT_DATAGRAM

Expiry MQLONG MQEI_UNLIMITED

Feedback MQLONG MQFB_NONE

Encoding MQLONG Encoding of the queue manager generating
the event.

CodedCharSetId MQLONG Coded character set ID (CCSID) of the
gueue manager generating the event.

Format MQCHARS MQFMT_EVENT

Priority MQLONG Default priority of the event queue, if itis a

local queue, or its local definition at the
gueue manager generating the event.

Persistence MQLONG Default persistence of the event queue, if it
is a local queue, or its local definition at the
gueue manager generating the event.

MsgId MQBYTE24 The value is uniquely generated by the
gueue manager.

Correlld MQBYTE24 MQCI_NONE

BackoutCount MQLONG The value is always 0.

ReplyToQ MQCHAR48 Always blank.

ReplyToQMgr MQCHAR48 The queue manager name at the originating
system.

336 MQSeries for Tandem NSK V2R2 System Management Guide

Events

Table 41 (Page 2 of 2). MQMD structure of an event message

Parameter Type Values

UserIdentifier MQCHAR12 Always blank.

AccountingToken MQBYTE32 MQACT_NONE

ApplldentityData MQCHAR32 Always blank.

PutApplType MQLONG Type of application that put the message.

PutAppIName MQCHAR28 Name of the application that put the
message.

PutDate MQCHARS8 Date when the message was put, generated
by the queue manager.

PutTime MQCHARS Time when message was put, generated by
the queue manager.

ApplOriginData MQCHAR4 Always blank.

Table 42. Event header structure (MQCFH)

Parameter Type Values

Type MQLONG MQCFT_EVENT
StruclLength MQLONG MQCFH_STRUC_LENGTH
Version MQLONG MQCFH_VERSION_1
Command MQLONG MQCMD_Q_MGR_EVENT

MQCMD_PERFM_EVENT
MQCMD_CHANNEL_EVENT

MsqSeqNumber MQLONG Always 1.
Control MQLONG MQCFC_LAST
CompCode MQLONG MQCC_OK
MQCC_WARNING
Reason MQLONG Reason code identifying event.
ParameterCount MQLONG The number of parameter structures that

follow the MQCFH structure.

Queue statistics
Queue statistics and internal counts are updated when messages are put onto or
removed from a queue. If a transaction is cancelled abnormally, these statistics
can become inaccurate.

To maintain accurate values, the statistics and counts are updated whenever they
are required for processing by a Programmable Command Format (PCF) message
or by any MQINQ call.

See also the description of the cleangm command in “cleangm (Perform
housekeeping on a queue manager)” on page 200.

Appendix M. Programmable System Management 337

PCFs

Programmable command formats (PCFs)

MQSeries for Tandem NSK supports the standard Programmable Command
Format (PCF) functions, as described in the MQSeries Programmable System
Management book. PCF messages are made up of two parts, the message
descriptor (MQMD) and the message data. The message data comprises a PCF
header (MQCFH) and some PCF parameters defined by the structures MQCFIN,
MQCFIL, MQCFST, and MQCFSL.

The PCF message descriptor (MQMD) is summarized in Table 43. The PCF
header structure (MQCFH) is summarized in Table 44 on page 339. The PCF
parameter structures are summarized in Table 45 on page 339 through Table 48

on page 340.

PCF message descriptor

For MQSeries for Tandem NSK, the standard PCF message descriptor applies.
That is, the message descriptor contains these fields:

Table 43. PCF message descriptor

Field Values

Report Any valid value

MsgType MQMT_REQUEST

Expiry Any valid value

Feedback MQFB_NONE

Encoding Encoding used for the message data; conversion is performed if
necessary.

CodedCharSetId CCSID used for the message data; conversion is performed if
necessary.

Format MQFMT_ADMIN
MQFMT_PCF (for user data)

Priority Any valid value

Persistence Any valid value

Msgld Any valid value, including MQMI_NONE

Correlld Any valid value, including MQMI_NONE

ReplyToQ Queue name

ReplyToQMgr Queue manager name

Message Any valid value, including MQPMO_DEFAULT_CONTEXT

context fields

PCF header (MQCFH)

For MQSeries for Tandem NSK, the standard PCF header applies. That is, the
PCF header structure contains these fields:

338 MQSeries for Tandem NSK V2R2 System Management Guide

Table 44. PCF header

PCFs

Field Type Values

Type MQLONG MQCFT_COMMAND
MQCFT_RESPONSE
MQCFT_EVENT

Struclength MQLONG MQCFH_STRUC_LENGTH

Version MQLONG MQCFH_VERSION_1

Command MQLONG Valid command identifier.

MsgSeqNumber MQLONG Sequence number of the message.

Control MQLONG MQCFC_LAST
MQCFC_NOT_LAST

CompCode MQLONG MQCC_OK
MQCC_WARNING
MQCC_FAILED
MQCC_UNKNOWN

Reason MQLONG Reason code qualifying the completion code.

ParameterCount MQLONG Count of parameter structures.

PCF string parameter (MQCFST)

For MQSeries for Tandem NSK, the standard PCF string parameter structure
(MQCEFST) applies. That is, the PCF string parameter structure contains these

fields:

Table 45. PCF string parameter

Field Type Value

Type MQLONG MQCFT_STRING

Struclength MQLONG Length in bytes of the MQCFST
structure.

Parameter MQLONG Parameter identifier.

CodedCharSetId MQLONG Coded character set identifier (CCSID).

Stringlength MQLONG Length in bytes of the data in the String
field.

String MQCHAR x String value.

Stringlength

Appendix M. Programmable System Management 339

PCFs

PCF integer list parameter (MQCFIL)

For MQSeries for Tandem NSK, the standard PCF integer list parameter structure
(MQCFIL) applies. That is, the PCF integer list parameter structure contains these
fields:

Table 46. PCF integer list

Field Type Value
Type MQLONG MQCFT_INTEGER_LIST
Struclength MQLONG Length in bytes of the MQCFIL structure.
Parameter MQLONG Parameter identifier.
Count MQLONG Number of elements in the Values array.
Values MQLONG Parameter values.

x Count

PCF integer (MQCFIN)
For MQSeries for Tandem NSK, the standard PCF integer structure (MQCFIN)
applies. That is, the PCF integer structure contains these fields:

Table 47. PCF integer

Field Type Value

Type MQLONG MQCFT_INTEGER
Struclength MQLONG MQCFIN_STRUC_LENGTH
Parameter MQLONG Parameter identifier

Value MQLONG Parameter value

PCF string list (MQCFSL)
For MQSeries for Tandem NSK, the standard PCF string list structure (MQCFSL)
applies. That is, the PCF string list structure contains these fields:

Table 48. PCF string list

Field Type Value

Type MQLONG MQCFT_STRING_LIST

Struclength MQLONG Length in bytes of the MQCFSL
structure

Parameter MQLONG Parameter identifier

CodedCharSetId MQLONG CCSID of the data in the Strings field.

Count MQLONG Number of strings in the Strings field.

Stringlength MQLONG Length in bytes of each string in the
Strings field.

Strings MQCHAR x Set of string values for the parameter

Stringlength x Count identified by the Parameter field.

340 MQSeries for Tandem NSK V2R2 System Management Guide

PCF commands supported by MQSeries for Tandem NSK

The following MQSeries PCF commands are supported by MQSeries for Tandem
NSK. For a complete description of these commands, see the MQSeries
Programmable System Management book.

Table 49. PCF commands supported by MQSeries for Tandem NSK

PCFs

Command

Command identifier

Change Channel

MQCMD_CHANGE_CHANNEL

Change Process

MQCMD_CHANGE_PROCESS

Change Queue

MQCMD_CHANGE_Q

Change Queue Manager

MQCMD_CHANGE_Q_MGR

Clear Queue

MQCMD_CLEAR_Q

Copy Channel

MQCMD_COPY_CHANNEL

Copy Queue

MQCMD_COPY_Q

Create Channel

MQCMD_CREATE_CHANNEL

Create Process

MQCMD_CREATE_PROCESS

Create Queue

MQCMD_CREATE_Q

Delete Channel

MQCMD_DELETE_CHANNEL

Delete Process

MQCMD_DELETE_PROCESS

Delete Queue

MQCMD_DELETE_Q

Escape

MQCMD_ESCAPE

Inquire Channel

MQCMD_INQUIRE_CHANNEL

Inquire Channel Names

MQCMD_INQUIRE_CHANNEL_NAMES

Inquire Channel Status

MQCMD_INQUIRE_CHANNEL_STATUS

Inquire Process

MQCMD_INQUIRE_PROCESS

Inquire Process Names

MQCMD_INQUIRE_PROCESS_NAMES

Inquire Queue

MQCMD_INQUIRE_Q

Inquire Queue Manager

MQCMD_INQUIRE_Q_MGR

Inquire Queue Names

MQCMD_INQUIRE_Q_NAMES

Ping Channel

MQCMD_PING_CHANNEL

Ping Queue Manager

MQCMD_PING_Q_MGR

Reset Channel

MQCMD_RESET_CHANNEL

Resolve Channel

MQCMD_RESOLVE_CHANNEL

Start Channel

MQCMD_START_CHANNEL

Start Channel Initiator

MQCMD_START_CHANNEL_INIT

Stop Channel

MQCMD_STOP_CHANNEL

Appendix M. Programmable System Management

341

Installable services

PCF command responses
In MQSeries for Tandem NSK, the command server generates standard response
messages to each PCF command. There are three types of response:

e OK response
e Error response
e Data response

For more information, see the MQSeries Programmable System Management book.

Installable services

Authorization service interface
The authorization service enables queue managers to invoke authorization facilities.
For example, a queue manager can check that a particular user ID is authorized to
open a queue using the authorization service.

An authorization service component is supplied with MQSeries for Tandem NSK.
This component is called the Object Authority Manager (OAM). By default, the
OAM is active and works with the control commands dspmqaut (display authority)
and setmqaut (set authority).

You can augment or replace the OAM with your own authorization service
component, as described in the MQSeries Programmable System Management
book.

Name service interface

The name service provides support to the queue manager for resolving the name of
the queue manager that owns a queue.

The standard name service interface, as described in the MQSeries Programmable
System Management book, is supported by MQSeries for Tandem NSK.

342 MQSeries for Tandem NSK V2R2 System Management Guide

EMS event template

Appendix N. EMS event template used by MQSeries for
Tandem NSK

The EMS template file (SMQSTMPL) contains the source code for the definitions of
MQSeries EMS events. These definitions control how the information in the EMS
event messages is displayed, and also show the type and meaning of the data
contained in each EMS Event message.

The following types of event are generated:

ZMQS-VAL-EVT-ERROR
An FFEST (a system resource problem, a software problem, or a hardware
problem).

ZMQS-VAL-EVT-ERR
An error with MQSeries, referencing an FFST event and logged data on disk.

ZMQS-VAL-EVT-MSG
An MQSeries message, such as the starting of a queue manager or channel. All
of these events correspond to an MQSeries AMQxxxxx log message and contain
the same information and text. The variable data in each message is contained
in individual tokens within the event message. For more information about the
AMOQxxxxx messages, see Appendix O, “Messages” on page 347.

ZMQS-VAL-EVT-QMGR
A queue manager event for authority, inhibit, local, remote, start, and stop
events. These EMS events have effectively the same information content as
their corresponding PCF event messages, which are described in the MQSeries
Programmable System Management book. Individual tokens in the event
message contain the variable data in each event message.

ZMQS-VAL-EVT-PERF
A performance event, corresponding with the standard MQSeries performance
events. These events report statistical data about queues within a queue
manager. The variable data in performance events is contained in individual
tokens within the event message.

ZMQS-VAL-EVT-CHNL
A channel event, corresponding with the standard MQSeries channel events.
Channel events report changes in status of channels, or problems in
communication between queue managers. As with the other event message
types, the variable data in channel events is contained in individual tokens within
the event message.

© Copyright IBM Corp. 1995, 1997 343

EMS event template

Here is an extract from the definitions of the EMS templates:

VERSION: "IBM.MQS - 10JAN97"
SSID: ZMQS-VAL-SSID
SSNAME: "MQSeries", "MQS"

== This is an EMS FFST message

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-ERROR
OVERRIDE ZEMS-TKN-EMPHASIS ZSPI-VAL-TRUE
"MQSeries FFST from component COMP_<1>

MSG:

"<#CR> Error Code : <2>
"<#CR> Severity : <3>
"<#CR> Module Name : <4>
"<xCR> Probe ID : <5>
"<#CR> Error Text :
"<xCR> <p>"

1: ZMQS-TKN-COMPONENT

2: ZMQS-TKN-ERROR-CODE

ZMQS-TKN-SEVERITY
ZMQS-TKN-MODULE-NAME
ZMQS-TKN-PROBE-ID
ZMQS-TKN-ERROR-TEXT

oSO BWw

== This is an EMS Display Message Event

ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-MSG

"MQSeries message: <I1>
"<xCR> EXPLANATION :
"<xCR> <2>
"<xCR> ACTION :
"<xCR> <3>"
1: ZMQS-TKN-ERROR-TEXT
2: ZMQS-TKN-ERROR-TEXT-2
3: ZMQS-TKN-ERROR-TEXT-3

== This is an EMS Report Error Event

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-ERR
OVERRIDE ZEMS-TKN-EMPHASIS ZSPI-VAL-TRUE
"MQSeries Error
"<xCR> Error Code : <1>
"<#CR> Function : <2>
"<xCR> Probe ID : <3>
"<#CR> FFST File : <4>
1: ZMQS-TKN-ERROR-CODE
2: ZMQS-TKN-MODULE-NAME
3: ZMQS-TKN-PROBE-ID
4: ZMQS-TKN-FILE-NAME

344 MQSeries for Tandem NSK V2R2 System Management Guide

EMS event template

This is an EMS copy of PCF Queue Manager event message

== for authority, inhibit, Tocal, remote, start and stop events
MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-QMGR

"MQSeries QMgr Event from <1> "
"<#CR> Reason : <2> !

"<xIF 3><*CR> Reason Qualifier : <4> <xENDIF>"

"<xIF 5><*CR> User ID : <6> <*ENDIF>"

"<xIF 13><*CR> Object QMgr : <14> <*ENDIF>"
"<xIF 9><xCR> Options : <10> <+xENDIF>"
"<xIF 11><*CR> Command : <12> <*ENDIF>"
"<xIF 15><*CR> Queue Name : <16> <xENDIF>"
"<#IF 17><*CR> Queue Type : <18> <xENDIF>"
"<xIF 19><*CR> Base Queue Name : <20> <xENDIF>"
"<#IF 21><*CR> XMit Queue Name : <22> <+xENDIF>"
"<xIF 30><*CR> Application Type : <31> <*ENDIF>"
"<#IF 32><*CR> Application Name : <33> <xENDIF>"

1: ZMQS-TKN-QMGR

2: ZMQS-TKN-REASON

3: TOKENPRESENT (ZMQS-TKN-REASON-QUALIFIER)
4: ZMQS-TKN-REASON-QUALIFIER

5: TOKENPRESENT(ZMQS-TKN-USER-1ID)

6: ZMQS-TKN-USER-ID

9: TOKENPRESENT (ZMQS-TKN-OPTIONS)

10: ZMQS-TKN-OPTIONS

11: TOKENPRESENT (ZMQS-TKN-COMMAND)

12: ZMQS-TKN-COMMAND

13: TOKENPRESENT (ZMQS-TKN-0BJ-QMGR)
14: ZMQS-TKN-0BJ-QMGR

15: TOKENPRESENT (ZMQS-TKN-Q-NAME)

16: ZMQS-TKN-Q-NAME

17: TOKENPRESENT (ZMQS-TKN-Q-TYPE)

18: ZMQS-TKN-Q-TYPE

19: TOKENPRESENT (ZMQS-TKN-BASE-Q-NAME)
20: ZMQS-TKN-BASE-Q-NAME
21: TOKENPRESENT(ZMQS-TKN-XMIT-Q-NAME)
22: ZMQS-TKN-XMIT-Q-NAME
30: TOKENPRESENT (ZMQS-TKN-APPL-TYPE)
31: ZMQS-TKN-APPL-TYPE
32: TOKENPRESENT (ZMQS-TKN-APPL-NAME)
33: ZMQS-TKN-APPL-NAME

== This is an EMS copy of PCF Performance event message

MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-PERF
"MQSeries Performance Event from <I>
"<#CR> Reason : <2>
"<xCR> Queue Name : <3> "
"<xCR> Time Since Last Reset : <4> !
"<xCR> Highest Queue Depth . <5> !
"<#CR> # Of Messages Enqueued : <6> !
"<xCR> # Of Messages Dequeued : <7> !
1: ZMQS-TKN-QMGR
2: ZMQS-TKN-REASON

Appendix N. EMS event template used by MQSeries for Tandem NSK

345

EMS event template

ZMQS-TKN-Q-NAME
ZMQS-TKN-TIME-SINCE-RESET
ZMQS-TKN-HIGH-Q-DEPTH
ZMQS-TKN-MSG-ENQ-COUNT
ZMQS-TKN-MSG-DEQ-COUNT

NoO ok~ w

== This is an EMS copy of PCF Channel event message
MSG: ZEMS-TKN-EVENTNUMBER, ZMQS-VAL-EVT-CHNL
"MQSeries Channel Event from <1>
"<#CR> Reason : <2>
"<*CR> Channel Name : <3>
"<xCR> XMit Queue Name : <5>
"<xCR> Connection Name : <7>
"<xCR> Reason Qualifier : <9>
"<xCR> Format : <11>
"<#CR> Return Code :
"<#CR> Auxiliary rc 1 :

<13>
<15>

"<xCR>
"<*xCR>
"<xCR>
"<xCR>
"<*xCR>

"<xCR>

Auxiliary
CCSID 1 :
AuxiTiary
CCSID 2 :
AuxiTiary
CCSID 3 :

rc 2 : <17>
<19>

string 1 :
<23>

string 2 :
<27>

<?21>

<25>

"<xCR> Auxiliary string 3 : <29>
1: ZMQS-TKN-QMGR
ZMQS-TKN-REASON
ZMQS-TKN-CHANNEL-NAME
ZMQS-TKN-XMIT-Q-NAME
ZMQS-TKN-CONN-NAME

9: ZMQS-TKN-REASON-QUALIFIER
11: ZMQS-TKN-FORMAT

13: ZMQS-TKN-RETURN-CODE

15: ZMQS-TKN-RETURN-CODE-2
17: ZMQS-TKN-RETURN-CODE-3
19: ZMQS-TKN-CCSID

21: ZMQS-TKN-ERROR-TEXT

23: ZMQS-TKN-CCSID-2

25: ZMQS-TKN-ERROR-TEXT-2

27: ZMQS-TKN-CCSID-3

29: ZMQS-TKN-ERROR-TEXT-3

~N o w N
ee ee se e

346 MQSeries for Tandem NSK V2R2 System Management Guide

MQSeries messages

Appendix O. Messages

This appendix describes the format of the messages issued by MQSeries and how
they are documented.

Message format
The format of the MQSeries messages is as follows:
e The message identifier, where the identifier has two components:

1. The characters “AMQ,” which identify the message as originating from
MQSeries
2. A four-digit decimal code

e Text of the message

Structure of messages

This section describes the structure of MQSeries messages.

Message variables

Some messages display text or numbers that vary according to the circumstances
giving rise to the message; these are known as message variables.

In this book, the message variables are shown as an '&' symbol, followed by
a number.

Where there is more than one variable in a message, a different number is added
to each '&' symbol.

Note: You should always look at the extended help for a message before carrying
out any other action, because, in certain cases, the variables are displayed in the
extended help only.

Message information
Where applicable, this information is also provided:

Explanation: Why the message was issued.
User action: Instructions to the user.

Note: The message file may contain the explanation of the message, in addition
to the message itself.

MQSeries messages

MQSeries messages are numbered 5000 through 9999, and they are listed in this
book in numeric order. However, not all numbers have been used, and therefore,
the list is not continuous.

© Copyright IBM Corp. 1995, 1997 347

MQSeries messages

Message groups

MQSeries messages are grouped according to the part of MQSeries from which

they originate:
5000 through 5999

6000 through 6999

7000 through 7999

8000 through 8999

9000 through 9999

Installable services - see page “Installable services
messages” on page 349.

Common services - see page “Common services
messages” on page 355.

The MQSeries product - see page “MQSeries product
messages” on page 358.

Administering MQSeries - see page “Administration
messages” on page 368.

Remote - see page “Remote messages” on page 388.

348 MQSeries for Tandem NSK V2R2 System Management Guide

Installable services messages

AMQ5006 Unexpected error: rc = &1
Explanation:
An unexpected error occurred in an internal function of the
product.
User action:

Save the generated output files and contact your IBM support
center.

AMQ5501 There was not enough storage to satisfy the
request

Explanation:

An internal function of the product attempted to obtain
storage, but there was none available.
User action:

Stop the product and restart it. If this does not resolve the
problem, save the generated output files and contact your
IBM support center.

AMQ5511 Installable service component '&3' returned
'&4'.

Explanation:

The internal function, that adds a component to a service,
called the component initialization process. This process
returned an error.

User action:

Check the component was installed correctly. If it was, and
the component was supplied by IBM, then save the
generated output files and contact your IBM support center. If
the component was not supplied by IBM, save the generated
output files and follow the support procedure for that
component.

AMQ5512 Installable service component '&3' returned
'&4' for queue manager name = '&5'".

Explanation:

An installable service component returned an unexpected
return code.
User action:

Check the component was installed correctly. If it was, and
the component was supplied by IBM, then save the
generated output files and contact your IBM support center. If
the component was not supplied by IBM, save the generated
output files and follow the support procedure for that
component.

AMQ5513 '&3' returned &1.
Explanation:

An unexpected error occurred.
User action:

Save the generated output files and contact your IBM support
center.

AMQ5006 « AMQ5609

AMQ5600 Usage: crtmgm [-z] [-q] [-c Text] [-d DefXmitQ]
[-h MaxHandles]
Explanation:
See Explanation of message AMQ5700.
User action:
None.
AMQ5603 Usage: ditmgm [-z] QMgrName
Explanation:
See Explanation of message AMQ5700.
User action:
None
AMQ5604 Usage: dspmqaut [-m QMgrName] [-n

ObjName] -t ObjType [-p Principal | -g Group]
[-s ServiceName]
Explanation:

See Explanation of message AMQ5700.
User action:

None

AMQ5605 Usage: endmgm [-Z] [-c | -i | -p] QMgrName
Explanation:

See Explanation of message AMQ5700.
User action:

None.

AMQ5606 Usage: setmgaut -m QMgrName [-n ObjName]
-t ObjType [-p Principal | -g Group] [-s
ServiceName] Authorizations

Explanation:

See Explanation of message AMQ5700.
User action:

None.

AMQ5607 Usage: strmgm [-z] [QMgrName]
Explanation:

See Explanation of message AMQ5700.
User action:

None.

AMQ5608 Usage: dspmqtrn QMgrName
Explanation:

See Explanation of message AMQ5700.
User action:

None.

AMQ5609 Usage: rsvmgtrn -m QMgrName (-c | -b)

Transaction,Number
Explanation:

See Explanation of message AMQ5700.
User action:

None.

Appendix O. Messages 349

AMQ5610 « AMQ5710

AMQ5610 Usage: strmqtrc [-m QMgrName] [-t
TraceType]
Explanation:

See Explanation of message AMQ5700.
User action:

None.

AMQ5611 Usage: endmgtrc [-m QMgrName] [-a]
Explanation:

See Explanation of message AMQ5700.
User action:

None.

AMQ5612 Usage: dspmgqtrc [-t TemplateFile]
InputFileName
Explanation:

See Explanation of message AMQ5700.
User action:

None.

AMQ5700 Queue manager name '&3', work queue name
'&4'".
Explanation:
These are the values of the parameters with which the add-in
task was started.
User action:

None.
Programmer response:

None.

AMQ5701 Checking mail-in database &3
Explanation:

The add-in task is performing a periodic check for mail
memos that have arrived in the mail-in database called &3.
User action:

None.
Programmer response:

None.

AMQ5702 Checking for replies.
Explanation:

The add-in task is checking the reply queues for responses
from MQSeries applications.
User action:

Programmer response:

None.

AMQ5703 MQSeries add-in task ended.
Explanation:

Termination of the MQSeries add-in task has completed.
User action:

None.
Programmer response:

None.

AMQ5704 Terminating.
Explanation:

The add-in task is terminating, either due to a user request or
an error.
User action:

None.
Programmer response:

None.

AMQ5705 Initializing.
Explanation:

The add-in task is initializing. It processes the link database
and connects to the queue manager in preparation to receive
requests.

User action:

None.
Programmer response:

None.

AMQ5706 Mail-in database '&3', link database '&4', wait
time &1 seconds.
Explanation:

These are the values of the parameters with which the add-in
task was started.
User action:

None.
Programmer response:

None.

AMQ5707 Add-in task initialization complete.
Explanation:

The add-in task has finished reading the link database and is
now ready to process requests.
User action:

None.
Programmer response:

None.

AMQ5708 Only two-byte integer values are supported
for S390 format.
Explanation:

The add-in task supports conversion of two-byte integers from
S390 systems.
User action:

Ensure that the entry in the link database uses fields of only
two bytes in length if they are in the S390 format.
Programmer response:

None.

AMQ5710 Text of user document causing previous
message: '&3'.
Explanation:

The add-in task generated the previous message in response
to an error. This message contains the text of the user note
associated with the error.

User action:

None.

350 MQSeries for Tandem NSK V2R2 System Management Guide

Programmer response:

None.

AMQ5711 An error occurred in reading the link
database.
Explanation:

The add-in task detected an error while reading the link
database.
User action:

Use the information in previous error messages to diagnose
the error. Then, correct the contents of the link database and
restart the add-in task.

Programmer response:

None.

AMQ5712 An error occurred while setting field '&5' in
user document, return code &3
Explanation:

The add-in task was trying to update a document in response
to a reply from an MQSeries application. An error was
encountered during the update of the field '&5'. The link
database entry '&4' was being used to perform the update.
User action:

Make sure that the entry in the link database matches the
description of the form being used for the update.
Programmer response:

None.

AMQ5714 Field '&4' not found in link database entry.
Explanation:

The add-in task could not find a field called '&4' during
processing of the link database. This field is a required field.
User action:

Examine the definition of the link database being used to
ensure that all of the required fields are supplied. Refer to the
IBM-supplied sample link database for an example of a valid
link database.

Programmer response:

None.

AMQ5715 Data type '&4' not supported.
Explanation:

The add-in task does not support the data type '&4'.
User action:

Consult the MQSeries documentation for a description of the
list of supported data types. Update the entry in the link
database using the unsupported data type. Then, stop and
restart the add-in task.

Programmer response:

None.

AMQ5716 An error occurred connecting to MQSeries
queue manager '&4', reason code &3
Explanation:

The add-in task could not connect to MQSeries queue
manager '&4'. The reason code from MQCONN was &3.
User action:

Look up the reason code in the MQSeries documentation to
establish the cause of the error. Ensure that the queue

AMQ5711 » AMQ5721

manager exists and is running. If the add-in task is running as
an MQSeries client, ensure that it can communicate with the
server queue manager.

Programmer response:

None.

AMQ5717 An error occurred disconnecting from
MQSeries queue manager '&4', return code
‘&3
Explanation:
The add-in task encountered an error disconnecting from the
MQSeries queue manager '&4'. The reason code from
MQDISC was &3.
User action:

Look up the reason code in the MQSeries documentation to
establish the cause of the error.
Programmer response:

None.

AMQ5718 An error occurred during processing of a
request in the mail-in database.
Explanation:

The add-in task encountered an error during processing of a
request in the mail-in database. The processing involves
transforming the contents of the mail memo into a message
which is placed on an MQSeries queue. If the message has a
reply, an additional message is formatted and placed on the
internal work queue.

User action:

Use the information in previous error messages to diagnose
the error.
Programmer response:

None.

AMQ5720 Errors detected in response message from
MQSeries application.
Explanation:

The response from an MQSeries application to a message
sent by the add-in task satisfied the error conditions specified
in the corresponding link database entry. The error data is
'&4'.

User action:

Examine the error conditions in the link database entry to
establish why the error conditions were satisfied. If an invalid
request message was sent to the MQSeries application,
correct the request messages being sent. If the problem was
due to an error encountered by the MQSeries application,
correct the cause of the error and retry the request.
Programmer response:

None.

AMQ5721 An error occurred opening internal work file
'&4'.

Explanation:
The add-in task could not open the internal work file used to
hold the contents of a mail memo during processing. Possible
causes include more than one program trying to use the
same file.
User action:

Appendix O. Messages 351

AMQ5723 « AMQ5734

Ensure that there is only one copy of the MQSeries add-in
task running.
Programmer response:

None.

AMQ5723 Memory allocation failed.
Explanation:

The add-in task was unable to allocate storage.
User action:

Try to free up some system memory and retry the operation.
Programmer response:

None.

AMQ5725 Empty mail memo received from mail-in
database.
Explanation:

The add-in task found a mail memo with an empty body in
the mail-in database. Mail memos in the mail-in database
must contain the information required to generate a message
to place on an MQSeries queue.

User action:

Ensure that all entries placed in the mail-in database have
the expected contents. None.
Programmer response:

None.

AMQ5727 Link database entry '&4' cannot be found.
Explanation:

The add-in task received a request without a corresponding
entry in the link database. The name of the required entry is
'&4'.

User action:

Either add an entry of the correct name to the link database
or change the request being generated to use an existing
entry in the link database. If you add an entry to the link
database, you will have to stop and restart the add-in task
before the change takes effect.

Programmer response:

None.

AMQ5729 An error was encountered by the add-in task.
Check the mail for details.
Explanation:

This message is inserted into the error_field_msg field of a
user document if an error is encountered by the add-in task
during the processing of the document's associated mail
memo.

User action:

None.
Programmer response:

None.

AMQ5730 Error encountered by MQSeries add-in task
Explanation:

This is the subject line of mail memos sent by the add-in
task.
User action:

None.
Programmer response:

None.

AMQ5731 Idle.
Explanation:

The add-in task is waiting for the configured time interval to
elapse before checking the mail-in database for new requests
and checking the reply queues for new replies.

User action:

None.
Programmer response:

None.

AMQ5732 LOAD MQLINK -t -g WorkQName -w WaitTime
-d MaillnDB -I LinkDB QMgrName
Explanation:

This is a summary of the correct syntax for invoking the
MQSeries add-in task in Lotus Notes. If you specify a queue
manager name, it must the last parameter. The order of the
other parameters is not significant.

User action:

None.
Programmer response:

None.

AMQ5733 MQSeries add-in task loading.
Explanation:

The add-in task has been started and is accessing the link
database in preparation to receive requests.
User action:

None.
Programmer response:

None.

AMQ5734 An error occurred opening the database '&4'.
The error code was &3.
Explanation:

The add-in task could not open the named database. This
could be because the database does not exist.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

352 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ5735 « AMQ5744

AMQ5735 An error occurred opening the mail file '&4'.
The error code was &3.
Explanation:

The add-in task could not open the named mail file.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5740 An error occurred opening an entry in the link
database '&4'. The error code was &3.
Explanation:

The add-in task could not open an entry in the link database.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5736 An error occurred searching the database
'&4'. The error code was &3.
Explanation:

The add-in task could not search the named database.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5737 An error occurred deleting an entry from the
database '&4'. The error code was &3.
Explanation:

The add-in task could not delete an entry from the named
database.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5738 An error occurred extracting the contents of a
mail memo in the mail-in database '&5' to the
file called '&4'. The error code was &3.
Explanation:

The add-in task could not extract the body of a mail memo
into the named file. Possible causes include being unable to
create the file or another program already using the file.
User action:

Ensure that there is only one copy of the MQSeries add-in
task running. If the problem was due to the configuration in
which you are operating Lotus Notes, refer to the Lotus Notes
documentation for information to resolve the problem.
Programmer response:

None.

AMQ5741 An error occurred creating a mail memo. The
error code was &3.
Explanation:

The add-in task could not create a mail memo. This is
probably due to a shortage of resources.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5742 Could not send a mail memo to user '&4'. The
error code was &3.
Explanation:

The add-in task could not send a mail memo to the named
user to report an error condition.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5743 Could not find entry with ID '&5' in database
'&4'. The error code was &3.
Explanation:

The add-in task could not find an entry in the database '&4'
which it was to update in response to a reply from an
MQSeries application. This may indicate that the entry has
been manually deleted or that another application has already
updated the entry.

User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5739 An error occurred opening a mail memo in the
mail-in database '&4'. The error code was &3.
Explanation:

The add-in task could not open a mail memo in the named
mail-in database.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

AMQ5744 Could not update an entry in database '&4'.
The error code was &3.
Explanation:

The add-in task could not update an entry in the database
'&4" in response to a reply from an MQSeries application.
User action:

Refer to the Lotus Notes documentation for information to
resolve the problem.
Programmer response:

None.

Appendix O. Messages 353

AMQ5745 « AMQ5747

- - Programmer response:
AMQ5745 An error occurred opening MQSeries queue

'&4', reason code &3. None.
Explanation:
The add-in task could not open MQSeries queue ‘&4 AMQS5747 An error occurred getting a message from
MQOPEN was called with open options &5. The reason code ~ MQsSeries queue '&4', reason code &3
from MQOPEN was &3. Explanation:
User action: The add-in task could not get a message from MQSeries
Look up the reason code in the MQSeries documentation to queue '&4'. The reason code from MQGET was &3.
establish the cause of the error. User action:

Programmer response: Look up the reason code in the MQSeries documentation to

None. establish the cause of the error.
Programmer response:

AMQ5746 An error occurred putting a message on None.
MQSeries queue '&4', reason code &3.
Explanation:

The add-in task could not put a message on MQSeries queue
'&4'. The reason code from MQPUT was &3.
User action:

Look up the reason code in the MQSeries documentation to
establish the cause of the error.

354 MQSeries for Tandem NSK V2R2 System Management Guide

Common services messages

AMQ6004 » AMQ6052

generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6004 An error occurred during MQSeries
initialization or ending.
Explanation:

An error was detected during initialization or ending of
MQSeries. The MQSeries error recording routine has been
called.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQG6047 Conversion not supported.

Explanation:

MQSeries is unable to convert string data tagged in CCSID
&1 to data in CCSID &2.
User action:

Check the appropriate National Language Support
publications to see if the CCSIDs are supported by your
system.

AMQ6025 Program not found.
Explanation:

MQSeries is unable to start program &3 because it was not
found.
User action:

Check the program name is correctly specified and rerun the
program.

AMQ6048 DBCS error

Explanation:

MQSeries is unable to convert string data due to a DBCS
error. Conversion is from CCSID &1 to CCSID &2.
User action:

Check the appropriate National Language Support
publications to see if the CCSIDs are supported by your
system.

AMQ6026 A resource shortage prevented the creation of
an MQSeries process.
Explanation:

An attempt to create an MQSeries process was rejected by
the operating system due to a process limit (either the
number of processes for each user or the total number of

processes running system wide), or because the system does

not have the resources necessary to create another process.
User action:

Investigate if a process limit is preventing the creation of the
process and if so why the system is constrained in this way.
Consider raising this limit or reducing the workload on the
system.

AMQ6049 DBCS only string not valid.

Explanation:

MQSeries is unable to convert string data in CCSID &1 to
data in CCSID &2. Message descriptor data must be in
single byte form. CCSID &2 is a DBCS only CCSID.

User action:

Check the CCSID of your job or system and change it to one
supporting SBCS or mixed character sets. Refer to the
appropriate National Language Support publications for
character sets and CCSIDs supported.

AMQ6035 MQSeries failed, no storage available.
Explanation:

An internal function of the product attempted to obtain
storage, but there was none available.
User action:

Stop the product and restart it. If this does not resolve the
problem, save the generated output files and contact your
IBM support center.

AMQ6037 MQSeries was unable to obtain enough
storage.
Explanation:

The product is unable to obtain enough storage. The
product's error recording routine may have been called.
User action:

Stop the product and restart it. If this does not resolve the
problem see if a problem has been recorded. If a problem
has been recorded, use the standard facilities supplied with
your system to record the problem identifier, and to save the

AMQ6050 CCSID error.

Explanation:

MQSeries is unable to convert string data in CCSID &1 to
data in CCSID &2.
User action:

Check the appropriate National Language Support
publications to see if the CCSIDs are supported by your
system.

AMQ6051 Conversion length error.
Explanation:

MQSeries is unable to convert string data in CCSID &1 to
data in CCSID &2, due to an input length error.
User action:

None.

AMQG6052 Conversion length error.
Explanation:

MQSeries is unable to convert string data in CCSID &1 to
data in CCSID &2.
User action:

None.

Appendix O. Messages 355

AMQ6053 » AMQ6121

AMQ6053 CCSID error
Explanation:

MQSeries is unable to convert string data in CCSID &1 to
data in CCSID &2.
User action:

One of the CCSIDs is not supported by the system. Check
the appropriate National Language Support publications to
see if the CCSIDs are supported by your system.

AMQ6064 An internal MQSeries error has occurred.
Explanation:

An error has been detected, and the MQSeries error
recording routine has been called.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ6107 CCSID not supported.

Explanation:

MQSeries is unable to convert string data in CCSID &1 to
data in CCSID &2, because one of the CCSIDs is not
recognized.

User action:

Check the appropriate National Language Support
publications to see if the CCSIDs are supported by your
system.

AMQ6090 MQSeries was unable to display an error
message.
Explanation:

MQSeries has attempted to display the message associated
with return code &6. The return code indicates that there is
no message text associated with the message. Associated
with the request are inserts &1 : &2 : &3 : &4 : &5.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ6115 An internal MQSeries error has occurred.

Explanation:

An error has been detected, and the MQSeries error
recording routine has been called.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ6091 An internal MQSeries error has occurred.
Explanation:

Private memory has detected an error, and is abending due
to &3. The error data is &1.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQG6100 An internal MQSeries error has occurred.
Explanation:

MQSeries has detected an error, and is abending due to &3.

The error data is &1.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ6118 An internal MQSeries error has occurred.

Explanation:

An error has been detected, and the MQSeries error
recording routine has been called.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ6119 An internal MQSeries error has occurred.
Explanation:

MQSeries detected an unexpected error when calling the
operating system. The MQSeries error recording routine has
been called.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQG6120 An internal MQSeries error has occurred.
Explanation:

An error has been detected, and the MQSeries error
recording routine has been called.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ6121 An internal MQSeries error has occurred.
Explanation:

An error has been detected, and the MQSeries error
recording routine has been called.
User action:

MQsSeries has detected a parameter count of &1 that is not
valid. Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated

356 MQSeries for Tandem NSK V2R2 System Management Guide

output files. Contact your IBM support center. Do not discard
these files until the problem has been resolved.

AMQ6122 An internal MQSeries error has occurred.
Explanation:

An error has been detected, and the MQSeries error
recording routine has been called.
User action:

MQSeries has detected parameter &1 that is not valid, having
value &2&3. Use the standard facilities supplied with your
system to record the problem identifier, and to save the
generated output files. Contact your IBM support center. Do
not discard these files until the problem has been resolved.

AMQ6122 « AMQ6767

AMQ6173

AMQ6125 An internal MQSeries error has occurred.
Explanation:

An internal error has occurred with identifier &1. This
message is issued in association with other messages.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not discard
these files until the problem has been resolved.

AMQ6148 An internal MQSeries error has occurred.
Explanation:

MQSeries has detected an error, and is abending due to &3.
The error data is &1.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not discard
these files until the problem has been resolved.

AMQ6172 No codeset found for current locale.
Explanation:

No codeset could be determined for the current locale. Check
that the locale in use is supported.
User action:

None.

No CCSID found for codeset &3.
Explanation:

Codeset &3. has no supported CCSID. Check that the locale
in use is supported. CCSIDs can be added by updating the
file /var/mgm/conv/table/ccsid.tbl.

User action:

None.

AMQ6708 A disk full condition was encountered when
formatting a new log file in location &3.
Explanation:

The queue manager attempted to format a new log file in
directory &3. The drive or file system containing this directory
did not have sufficient free space to contain the new log file.
User action:

Increase the amount of space available for log files and retry
the request.

AMQ6710 Queue manager unable to access directory
&3.

Explanation:

The queue manager was unable to access directory &3 for
the log. This could be because the directory does not exist, or
because the queue manager does not have sufficient
authority.

User action:

Ensure that the directory exists and that the queue manager
has authority to read and write to it. Ensure that the LogPath
attribute in the queue manager's configuration file matches
the intended log path.

AMQ6767 Log file &3 could not be opened for use.
Explanation:

Log file &3 could not be opened for use. Possible reasons
include the file being missing, the queue manager being
denied permission to open the file or the contents of the file
being incorrect.

User action:

If the log file was required to start the queue manager,
ensure that the log file exists and that the queue manager is
able to read from and write to it. If the log file was required to
recreate an object from its media image and you do not have
a copy of the required log file, delete the object instead of
recreating it.

Appendix O. Messages 357

AMQ7001 « AMQ7017

MQSeries product messages

AMQ7001 The location specified for creation of the
queue manager is not valid.
Explanation:

The directory under which queue managers are to be created
is not valid. It may not exist, or there may be a problem with
authorization.

User action:

The location is specified in the machine-wide ini file. Correct
the file and submit the request again.

AMQ7012 The specified trigger interval is not valid.

Explanation:

You specified a value for the trigger interval that is not valid.
The value must be not less than zero and not greater than
999 999 999.

User action:

Correct the value and resubmit the request.

AMQ7002 An error occurred manipulating a file.
Explanation:

An internal error occurred while trying to create or delete a
queue manager file. It is likely that the error was caused by
there being insufficient space on a disk, or by problems with
authorization to the underlying filesystem.

User action:

Identify the file that caused the error, using problem
determination techniques. Correct the error in the filesystem
and submit the request again.

AMQ7013 There is an error in the name of the specified

dead letter queue.
Explanation:

You specified a name for the dead letter queue that is not
valid.
User action:

Correct the name and resubmit the request.

AMQ7005 The queue manager is running.
Explanation:

You tried to perform an action that requires the queue
manager stopped, however, it is currently running. You
probably tried to delete or start a queue manager that is
currently running.

User action:

If the queue manager should be stopped, stop the queue
manager and submit the failed command again.

AMQ7014 There is an error in the name of the specified

default transmission queue.
Explanation:

You specified a name for the default transmission queue that
is not valid.
User action:

Correct the name and submit the command again.

AMQ7015 There is an error in the maximum number of

open object handles specified.
Explanation:

You specified a value for the maximum number of open
object handles to be allowed that is not valid. The value
must be not less than zero and not greater than 999 999 999.
User action:

Correct the value and submit the command again.

AMQ7006 Missing attribute &5 on stanza starting on line
&1 of ini file &3.
Explanation:

The &4 stanza starting on line &1 of configuration file &3 is
missing the required &5 attribute.
User action:

Check the contents of the file and retry the operation.

AMQ7008 The queue manager already exists.
Explanation:

You tried to create a queue manager that already exists.
User action:

If you specified the wrong queue manager name, correct the
name and submit the request again.

AMQ7016 There is an error in the maximum number of

uncommitted messages specified.
Explanation:

You specified a value for the maximum number of
uncommitted messages to be allowed that is not valid. The
value must be not less than 1 and not greater than 999 999
999.

User action:

Correct the value and submit the command again.

AMQ7010 The queue manager does not exist.
Explanation:

You tried to perform an action against a queue manager that
does not exist. You may have specified the wrong queue
manager name.

User action:

If you specified the wrong name, correct it and submit the
command again. If the queue manager should exist, create
it, and then submit the command again.

358 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ7017 Log not available.

Explanation:

The queue manager was unable to use the log. This could
be due to a log file being missing or damaged, or the log path
to the queue manager being inaccessible.

User action:

Ensure that the LogPath attribute in the queue manager
configuration file is correct. If a log file is missing or otherwise
unusable, restore a backup copy of the file, or the entire
gueue manager.

AMQ7018 « AMQ7047

AMQ7018 The queue manager has stopped
Explanation:

See Explanation of message AMQ7019
User action:

See User action for message AMQ7019

An error occurred while creating the directory
structure for the new queue manager.
Explanation:

AMQ7019

During creation of the queue manager an error occurred while
trying to create a file or directory.
User action:

Identify why the queue manager files cannot be created. It is
probable that there is insufficient space on the specified disk,
or that there is a problem with access control. Correct the
problem and submit the command again.

AMQ7021 An error occurred while deleting the directory
structure for the queue manager.
Explanation:

While deleting the queue manager, an error occurred deleting
a file or directory. The queue manager may not have been
completely deleted.

User action:

Follow problem determination procedures to identify the file or
directory and to complete deletion of the queue manager.

AMQ7024 Arguments supplied to a command are not
valid.
Explanation:

You supplied arguments to a command that it could not
interpret. It is probable that you specified a flag not accepted
by the command, or that you included extra flags.

User action:

Correct the command and submit it again.

AMQ7025 Error in the supplied command description.
Explanation:

The descriptive text you supplied on the command was in
error.
User action:

Correct the descriptive text and submit the command again.

AMQ7026 A principal or group hame was invalid.
Explanation:

You specified the name of a principal or group which does
not exist.
User action:

Correct the name and resubmit the request.

AMQ7028 The queue manager is not available for use.
Explanation:

You have requested an action that requires the queue
manager running, however, the queue manager is not
currently running.

User action:

Start the required queue manager and submit the command
again.

AMQ7030 Request to quiesce the queue manager
accepted. The queue manager will stop when
there is no further work for it to perform.

Explanation:

You have requested that the queue manager end when there
is no more work for it. In the meantime, it will refuse new
applications that attempt to start, although it allows those
already running to complete their work.

User action:

None.

AMQ7031 The queue manager is stopping.
Explanation:

You issued a command that requires the queue manager
running, however, it is currently in the process of stopping.
The command cannot be run.

User action:

None

AMQ7041 Object already exists.
Explanation:

A Define Object operation was performed, but the name
selected for the object is already in use by an object that is
unknown to MQSeries. The object name selected by
MQSeries was &3, in directory &4, of object type &5.

User action:

Remove the conflicting object from the MQSeries system,
then try the operation again.

AMQ7042 Media image not available for object &3 of
type &4.

Explanation:

The media image for object &3, type &4, is not available for
media recovery. A log file containing part of the media image
cannot be accessed.

User action:

A previous message indicates which log file could not be
accessed. Restore a copy of the log file and all subsequent
log files from backup. If this is not possible, you must delete
the object instead.

AMQ7044 Media recovery not allowed.
Explanation:

Media recovery is not possible on a queue manager using a
circular log. Damaged objects must be deleted on such a
queue manager.

User action:

None.

AMQ7047 An unexpected error was encountered by a
command.

Explanation:

An internal error occurred during the processing of a
command.
User action:

Follow problem determination procedures to identify the
cause of the error.

Appendix O. Messages 359

AMQ7048 « AMQ7074

AMQ7048 The queue manager name is either not valid
or not known

Explanation:

Either the specified queue manager name does not conform
to the rules required by MQSeries or the queue manager
does not exist. The rules for naming MQSeries objects are
detailed in the MQSeries Command Reference.

User action:

Correct the name and submit the command again.

AMQ7053 The transaction has been committed.
Explanation:

The prepared transaction has been committed.
User action:

None.

AMQ7054 The transaction has been backed out.
Explanation:

The prepared transaction has been backed out.
User action:

None.

AMQ7055 The transaction number is not recognized.
Explanation:

The number of the transaction you supplied was not
recognized as belonging to an in-doubt transaction.
User action:

Ensure that you entered a valid transaction number. It is
possible that the transaction number you entered corresponds
to a transaction which was committed or backed out before
you issued the command to resolve it.

AMQ7056 Transaction number &1,&2.
Explanation:

This message is used to report the number of an in-doubt
transaction.
User action:

None.

AMQ7064 Log path not valid or inaccessible.
Explanation:

The supplied log path could not be used by the queue
manager. Possible reasons for this include the path not
existing, the queue manager not being able to write to the
path, or the path residing on a remote device.

User action:

Ensure that the log path exists and that the queue manager
has authority to read and write to it. If the queue manager
already exists, ensure that the LogPath attribute in the queue
manager's configuration file matches the intended log path.

AMQ7065 Insufficient space on disk.
Explanation:

The operation cannot be completed due to shortage of disk
space.
User action:

Either make more disk space available, or reduce the disk
requirements of the command you issued.

AMQ7066 There are no prepared transactions.
Explanation:

There are no prepared transactions to be resolved.
User action:

None.
AMQ7068 Authority file contains an authority stanza that
is not valid.
Explanation:

A syntax error has been found in one of the files containing
authorization information for the queue manager.
User action:

Correct the contents of the incorrect authorization file by
editing it.

AMQ7069 The queue manager was created successfully,
but cannot be made the default.

Explanation:

The queue manager was defined to be the default queue
manager for the machine when it was created. However,
although the queue manager has been created, an error
occurred trying to make it the default. There may not be a
default queue manager defined for the machine at present.
User action:

There is probably a problem with the machine-wide ini file.
Verify the existence of the file, its access permissions, and its
contents. If its backup file exists, reconcile the contents of
the two files and then delete the backup. Finally, either
update the machine-wide ini file by hand to specify the
desired default queue manager, or delete and recreate the
queue manager.

AMQ7073 Log size not valid.
Explanation:

Either the number of log files or the size of the log files was
outside the accepted values.
User action:

Make sure that the log parameters you enter lie within the
valid range.

AMQ7074 Unknown stanza key &4 on line &1 of ini file
&3.

Explanation:

Line &1 of the configuration file &3 contained a stanza called
&4. This stanza is not recognized.
User action:

Check the contents of the file and retry the operation.

360 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ7075 » AMQ7090

AMQ7075 Unknown attribute &4 on line &1 of ini file &3.
Explanation:

Line &1 of the configuration file &3 contained an attribute
called &4 that is not valid. This attribute is not recognized in
this context.

User action:

Check the contents of the file and retry the operation.

AMQ7084 Object &3, type &4 damaged.
Explanation:

The object &3, type &4 was damaged. The object must be
deleted or, if the queue manager supports media recovery,
recreated from its media image.

User action:

Delete the object or recreate it from its media image.

AMQ7076 Value &5 not valid for attribute &4 on line &1
of ini file &3
Explanation:

Line &1 of the configuration file &3 contained value &5 that is
not valid for the attribute &4.
User action:

Check the contents of the file and retry the operation.

AMQ7077 You are not authorized to perform the
requested operation.
Explanation:

You tried to issue a command for the queue manager. You
are not authorized to perform the command.
User action:

Contact your system administrator to perform the command
for you. Alternatively, request authority to perform the
command from your system administrator.

AMQ7080 No objects processed.
Explanation:

No objects were processed, either because no objects
matched the criteria given, or because the objects found did
not require processing.

User action:

None.

AMQ7081 Object &3, type &4 recreated.
Explanation:

The object &3, type &4 was recreated from its media image.
User action:

None.

AMQ7082 Object &3, type &4 is not damaged.
Explanation:

Object &3, type &4 cannot be recreated since it is not
damaged.
User action:

None

AMQ7083 A resource problem was encountered by a
command.
Explanation:

The command failed due to a resource problem. Possible
causes include the log being full or the command running out
of memory.

User action:

Look at the previous messages to diagnose the problem.
Rectify the problem and retry the operation.

AMQ7085 Object &3, type &4 not found.
Explanation:

Object &3, type &4 cannot be found.
User action:

None.

AMQ7086 Media image for object &3, type &4 recorded.
Explanation:

The media image for object &3, type &4 has been recorded.
User action:

None.

AMQ7087 Object &3, type &4 is a temporary object
Explanation:

Object &3, type &4 is a temporary object. Media recovery
operations are not permitted on temporary objects.
User action:

None.

AMQ7088 Object &3, type &4 in use.
Explanation:

Object &3, type &4 is in use. Either an application has it open
or, if it is a local queue, there are uncommitted messages on
it.

User action:

Ensure that the object is not opened by any applications, and
that there are no uncommitted messages on the object, if it is
a local queue. Then, retry the operation.

AMQ7089 Media recovery already in progress.
Explanation:

Another media recovery operation is already in progress.
Only one media recovery operation is permitted at a time.
User action:

Wait for the existing media recovery operation to complete
and retry the operation.

AMQ7090 The queue manager CCSID is not valid.
Explanation:

The CCSID to be used by the QMGR is not valid, probably
because it is a DBCS CCSID.
User action:

None.

Appendix O. Messages 361

AMQ7091 « AMQ7307

AMQ7091 You are performing authorization for the
queue manager, but you specified an object
name.

Explanation:

Modification of authorizations for a queue manager can be
performed only from that queue manager. You must not
specify an object name.

User action:

Correct the command and submit it again.

AMQ7092 An object name is required but you did not
specify one.
Explanation:

The command needs the name of an object, but you did not
specify one.
User action:

Correct the command and submit it again.

AMQ7093 An object type is required but you did not
specify one.
Explanation:

The command needs the type of the object, but you did not
specify one.
User action:

Correct the command and submit it again.

AMQ7094 You specified an object type that is not valid,
or more than one object type.
Explanation:

Either the type of object you specified was not valid, or you
specified multiple object types on a command which supports
only one.

User action:

Correct the command and submit it again.

AMQ7095 An entity name is required but you did not
specify one.
Explanation:

The command needs one or more entity names, but you did
not specify any. Entities can be principals or groups.
User action:

Correct the command and submit it again.

AMQ7096 An authorization specification is required but
you did not provide one.
Explanation:

The command sets the authorizations on MQSeries objects.
However you did not specify which authorizations are to be
set.

User action:

Correct the command and submit it again.

AMQ7097 You gave an authorization specification that is
not valid.
Explanation:

The authorization specification you provided to the command
contained one or more items that could not be interpreted.
User action:

Correct the command and submit it again.

AMQ7098 The command accepts only one entity hame.
You specified more than one.
Explanation:

The command can accept only one principal or group name.
You specified more than one.
User action:

Correct the command and submit it again.

AMQ7099 Entity &3 has the following authorizations for
object &4:

Explanation:

Informational message. The list of authorizations follows.
User action:

None.

AMQ7305 Trigger message could not be put on an
initiation queue.
Explanation:
The attempt to put a trigger message on queue &4 on queue
manager &5 failed with reason code &1. The message will
be put on the dead-letter queue.
User action:

Ensure that the initiation queue is available, and operational.

AMQ7306 The dead-letter queue must be a local queue.
Explanation:

An undelivered message has not been put on the dead-letter
queue &4 on queue manager &5, because the queue is not a
local queue. The message will be discarded.

User action:

Inform your system administrator.

AMQ7307 A message could not be put on the dead-letter
queue.
Explanation:

The attempt to put a message on the undelivered-message
gueue &4 on queue manager &5 failed with reason code &1.
The message will be discarded.

User action:

Ensure that the undelivered-message queue is available, and
operational.

362 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ7308 « AMQ7472

AMQ7308 Trigger condition &1 was not satisfied.
Explanation:

At least one of the conditions required for generating a trigger
message was not satisfied, so a trigger message was not
generated. If you were expecting a trigger message, consult
the MQSeries Application Programming Guide for a list of the
conditions required. (Note that arranging for condition &1 to
be satisfied might not be sufficient because the conditions are
checked in an arbitrary order, and checking stops when the
first unsatisfied condition is discovered.)

User action:

If a trigger message is required, ensure that all the conditions
for generating one are satisfied.

AMQ7310 Report message could not be put on a
reply-to queue.

Explanation:
The attempt to put a report message on queue &4 on queue
manager &5 failed with reason code &1. The message will

be put on the undelivered-message queue.
User action:

Ensure that the reply-to queue is available, and operational.

AMQ7463 The log for queue manager &3 is full.
Explanation:

This message is issued when an attempt to write a log record
is rejected because the log is full. The queue manager will
attempt to resolve the problem.

User action:

This situation may be encountered during a period of
unusually high message traffic. However, if you persistently
fill the log, you may have to consider enlarging the size of the
log. You can either increase the number of log files by
changing the values in the queue manager configuration file.
You will then have to stop and restart the queue manager.
Alternatively, if you need to make the log files themselves
bigger, you will have to delete and recreate the queue
manager.

AMQ7464 The log for queue manager &3 is no longer
full.
Explanation:

This message is issued when a log was previously full, but an
attempt to write a log record has now been accepted. The
log full situation has been resolved.

User action:

None

AMQ7465 The log for queue manager &3 is full. This is
due to the presence of a long-running
transaction.

Explanation:

This message is issued when an attempt made to resolve a
log full situation fails, because the space is occupied by a
long-running transaction.

User action:

Try to ensure that the duration of your transactions is not
excessive. Commit or roll back any old transactions to
release log space for further log records.

AMQ7466 The log for queue manager &3 is too small to
support the current data rate.
Explanation:

This message is issued when the monitoring tasks
maintaining the log cannot keep up with the current rate of
data being written.

User action:

The number of primary log files configured should be
increased to prevent possible log full situations.

The oldest log file required to start queue
manager &3 is &4.
Explanation:

AMQ7467

The log file &4 contains the oldest log record required to
restart the queue manager. Log records older than this may
be required for media recovery.

User action:

You can move log files older than &4 to an archive medium
to release space in the log directory. If you move any of the
log files required to recreate objects from their media images,
you will have to restore them to recreate the objects.

AMQ7468 The oldest log file required to perform media
recovery of queue manager &3 is &4.
Explanation:

The log file &4 contains the oldest log record required to
recreate any of the objects from their media images. Any log
files prior to this will not be accessed by media recovery
operations.

User action:

You can move log files older than &4 to an archive medium
to release space in the log directory.

AMQ7469 Transactions rolled back to release log space.
Explanation:

The log space for the queue manager is becoming full. One
or more long-running transactions have been rolled back to
release log space so that the queue manager can continue to
process requests.

User action:

Try to ensure that the duration of your transactions is not
excessive. You may consider increasing the size of the log
to allow transactions to last longer before the log starts to
become full.

AMQ7472 Object &3, type &4 damaged.
Explanation:

Object &3, type &4 has been marked as damaged. This
indicates that the queue manager was either unable to
access the object in the file system, or that some kind of
inconsistency with the data in the object was detected.
User action:

If a damaged object is detected, the action performed
depends on whether the queue manager supports media
recovery and when the damage was detected. If the queue
manager does not support media recovery, you must delete
the object as no recovery is possible. If the queue manager
does support media recovery and the damage is detected
during the processing performed when the queue manager is
being started, the queue manager will automatically initiate
media recovery of the object. If the queue manager supports

Appendix O. Messages 363

AMQ7901 » AMQ7924

media recovery and the damage is detected once the queue
manager has started, it may be recovered from a media
image using the rcrmgobj command or it may be deleted.

AMQ7901 The data-conversion exit &3 has not loaded.
Explanation:

The data-conversion exit program, &3, failed to load. The
internal function gave exception &4.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ7907 Unexpected exception in data-conversion exit.

Explanation:

The data-conversion exit routine, &3, ended with an
unexpected exception. The message has not been
converted.

User action:

Correct the error in the data-conversion exit routine.

AMQ7902 The data conversion exit &3 was not loaded.
The operating system call &4 returned &1.
Explanation:

User action:

Specify REPLACE to over-write the existing file, or choose a
different output file name.

AMQ7921 An internal MQSeries error occurred.

Explanation:

The MQDXP structure passed to the Internal Formats
Conversion routine contains an incorrect eyecatcher field.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

AMQ7903 The data-conversion exit &3 cannot be found.
Explanation:

Message data conversion has been requested for an
MQSeries message with a user-defined format, but the
necessary data-conversion exit program, &3, cannot be
found. The internal function gave exception &4.

User action:

Check that the necessary data-conversion exit &3 exists.

AMQ7904 The data conversion exit &3 cannot be found,
or loaded.
Explanation:

Message data conversion was requested for an MQSeries
message with a user-defined format, but the necessary data
conversion exit program, &3, was not found, or loaded. The
&4 function call gave a return code of &1.

User action:

Check that the necessary data conversion exit routine exists
one of the standard directories for dynamically loaded
modules. If necessary, inspect the generated output to
examine the message descriptor (MQMD structure) of the
MQSeries message for which conversion was requested.
This may help you to determine where the message
originated.

AMQ7922 A PCF message is incomplete.

Explanation:

Message data conversion cannot convert a message in
Programmable Command Format (PCF) because the
message is only &1 bytes long and does not contain a PCF
header. The message has either been truncated, or it
contains data that is not valid.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7905 Unexpected exception &4 in data-conversion
exit.
Explanation:

The data-conversion exit program, &3, ended with an
unexpected exception &4. The message has not been
converted.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Contact your IBM support center. Do not

discard these files until the problem has been resolved.

364 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ7923 A message had an unrecognized integer

encoding.
Explanation:

Message data conversion cannot convert a message because
the integer encoding value of the message, &1, was not
recognized.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7924 Bad length in the PCF header (length = &1).

Explanation:

Message data conversion cannot convert a message in
Programmable Command Format (PCF) because the PCF
header structure contains an incorrect length field. Either the
message has been truncated, or it contains data that is not
valid.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message

Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7925 Message version &1 is not supported.
Explanation:

Message data conversion cannot convert a message because
the Version field of the message contains an incorrect value.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7926 A PCF message has an incorrect parameter
count value &1.
Explanation:

Message data conversion cannot convert a message in
Programmable Command Format (PCF) because the
parameter count field of the PCF header is incorrect.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7927 Bad type in PCF structure number &1 (type =
&2).

Explanation:

A Programmable Command Format (PCF) structure passed
to the Internal Formats Converter contained an incorrect type
field.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7928 Bad length in PCF structure number &1
(length = &2).

Explanation:

A Programmable Command Format (PCF) structure passed
to the Internal Formats Converter contained an incorrect
length field.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7925 » AMQ7932

AMQ7929 A PCF structure is incomplete.
Explanation:

Message data conversion cannot convert a message in
Programmable Command Format (PCF) because structure
number &1, of Type value &2, within the message is
incomplete. The message has either been truncated, or it
contains data that is not valid.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

Bad CCSID in PCF structure number &1
(CCSID = &2).
Explanation:

AMQ7930

A Programmable Command Format (PCF) structure passed
to the Internal Formats Converter contains an incorrect
CCSID.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7931 Bad length in PCF structure number &1
(length = &2).

Explanation:

Message data conversion cannot convert a message in
Programmable Command Format (PCF) because one of the
structures of the message contains an incorrect length field.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7932 Bad count in PCF structure number &1 (count
= &2).

Explanation:

Message data conversion cannot convert a message in
Programmable Command Format (PCF) because a StringList
structure of the message contains an incorrect count field.
User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor, the headers of the message, and the incorrect
structure to determine the source of the message, and to see
how data that is not valid became included in the message.

Appendix O. Messages 365

AMQ7933 « AMQ7959

AMQ7933 Bad string length in PCF structure.
Explanation:

Message data conversion cannot convert a message in
Programmable Command Format (PCF) because structure
number &1 of the message contains an incorrect string length
value &2.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor, the headers of the message, and the incorrect
structure to determine the source of the message and to see
how data that is not valid became included in the message.

AMQ7934 Wrong combination of MQCCSI_DEFAULT
with MQCCSI_EMBEDDED.
Explanation:

Message data conversion could not convert a message in
Programmable Command Format (PCF) because structure
&1 of the message contained a CodedCharSetld field of
MQCCSI_DEFAULT while the message itself had a
CodedCharSetld of MQCCSI_EMBEDDED. This is an
incorrect combination.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor, the headers of the message and the incorrect
structure to determine the source of the message and to see
how data that is not valid became included in the message.

AMQ7935 Bad CCSID in message header (CCSID = &1).
Explanation:

Message data conversion could not convert a message
because the Message Descriptor of the message contained
an incorrect CodedCharSetld field.

User action:

Use the standard facilities supplied with your system to
record the problem identifier, and to save the generated
output files. Do not discard these files until the problem has
been resolved. Use the file containing the Message
Descriptor of the message to determine the source of the
message and to see how data that is not valid became
included in the message.

AMQ7936 The file &3 already exists.
Explanation:

The output file already exists, but REPLACE has not been
specified.
User action:

Specify REPLACE to over-write the existing file, or select a
different output file name.

AMQ7943 Usage: crtmqcvx SourceFile TargetFile
Explanation:

See Explanation of message AMQ7953.
User action:

See User action for message AMQ7953.

AMQ7953 One structure has been parsed.
Explanation:

The crtmgcvx command has parsed one structure.
User action:

None.

AMQ7954 &1 structures have been parsed.
Explanation:

The crtmgcvx command has parsed %1 structures.
User action:

None.

AMQ7955 Unexpected field: &1.
Explanation:

The field within the structure is of a type that is not
recognized.
User action:

Correct the field and retry the command.

AMQ7956 Bad array dimension.
Explanation:

An array field of the structure has an incorrect dimension
value.
User action:

Correct the field and retry the command.

AMQ7957 Warning at line &1.
Explanation:

The structure contains another field after a variable length
field.
User action:

Correct the structure and retry the command.

AMQ7958 Error at line &1 in field &3.
Explanation:

Field name '&3' is a field of type 'float'. Fields of type float
are not supported by this command.
User action:

Either correct the structure to eliminate fields of type float, or
write your own routine to support conversion of these fields.

AMQ7959 Error at line &1 in field &3.
Explanation:

Field name '&3' is a field of type 'double’. Fields of type
double are not supported by this command.
User action:

Either correct the structure to eliminate fields of type double,
or write your own routine to support conversion of these
fields.

366 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ7960 » AMQ7970

AMQ7960 Error at line &1 in field &3.
Explanation:

Field name '&3' is a 'pointer field. Fields of type pointer are
not supported by this command.
User action:

Either correct the structure to eliminate fields of type pointer,
or write your own routine to support conversion of these
fields.

AMQ7964 Unexpected option &3.

Explanation:

The option specified is not valid for this command.
User action:

Retry the command with a valid option.

AMQ7961 Error at line &1 in field &3.
Explanation:

Field name '&3' is a 'bit' field. Bit fields are not supported by
this command.
User action:

Either correct the structure to eliminate bit fields, or write your

own routine to support conversion of these fields.

AMQ7965 Incorrect number of arguments.

Explanation:

The command was passed an incorrect number of
arguments.
User action:

Retry the command, passing it the correct number of
arguments.

AMQ7962 No input file specified.
Explanation:

This command requires that an input file is specified.
User action:

Specify the name of the input file and retry the command.

AMQ7968 Cannot open file '&3'.

Explanation:

You cannot open the file &3.
User action:

Check that you have the correct authorization to the file and
retry the command.

AMQ7963 No output file specified.
Explanation:

This command requires that an output file name is specified.
User action:

Specify the name of the output file and retry the command.

AMQ7969 Syntax error.

Explanation:

This line of the input file contains a language syntax error.
User action:

Correct the syntax error and retry the command.

AMQ7970 Syntax error on line &1.

Explanation:

This message identifies where, in the input file, a previously
reported error was detected.
User action:

Correct the error and retry the command.

Appendix O. Messages 367

AMQ8001 « AMQ8018

Administration messages AMQ8010 MQSeries process created.
Explanation:
MQSeries process &5 created.
AMQ8001 MQSeries queue manager created. User action:
Explanation:
None.
MQSeries queue manager &5 created.
User action: AMQ8011 MQSeries process deleted.
None. Explanation:
MQSeries process &5 deleted.
AMQ8002 MQSeries queue manager deleted. User action:
Explanation:

None.
MQSeries queue manager &5 deleted.

User action: AMQ8012 MQSeries process changed.
None. Explanation:
MQSeries process &5 changed.
AMQ8003 MQSeries queue manager started. User action:
Explanation:
None.
MQSeries queue manager &5 started.
User action: AMQ8013 MQM process copied.
None. Explanation:
MQM process &5 created in library &3 by copying.
AMQ8004 MQSeries queue manager ended. User action:
Explanation:
None.
MQSeries queue manager &5 ended.
User action: AMQ8014 MQSeries channel created.
None. Explanation:
MQSeries channel &5 created.
AMQ8005 MQSeries queue manager changed. User action:
Explanation:
None.
MQSeries queue manager &5 changed.
User action: AMQ8015 MQSeries channel deleted.
None. Explanation:
MQSeries channel &5 deleted.
AMQ8006 MQSeries queue created. User action:
Explanation:
None.
MQSeries queue &5 created.
User action: AMQ8016 MQSeries channel changed.
None. Explanation:
MQSeries channel &5 changed.
AMQ8007 MQSeries queue deleted. User action:
Explanation:
None.
MQSeries queue &5 deleted.
User action: AMQ8018 Start MQSeries channel accepted.
None. Explanation:
MQSeries channel &5 is being started. The start channel
AMQ8008 MQSeries queue changed. function has been initiated. This involves a series of
Explanation: operations across the network before the channel is actually

started. The channel status displays "BINDING" for a short
period while communication protocols are negotiated with the
channel with whom communication is being initiated.

None. User action:

MQSeries queue &5 changed.
User action:

None.

368 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8019 « AMQ8036

AMQ8019 Stop MQSeries channel accepted.
Explanation:

MQSeries channel &5 has been requested to stop.
User action:

None.

AMQ8027 MQSeries command server started.
Explanation:

The MQSeries command server has been started.
User action:

None.

AMQB8020 Ping MQSeries channel complete.
Explanation:

Ping MQSeries channel &5 complete.
User action:

None.

AMQ8028 MQSeries command server ended.
Explanation:

The MQSeries command server has been stopped.
User action:

None.

AMQ8021 MQSeries Listener program started.
Explanation:

The MQSeries channel listener program has been started.

User action:

None.

AMQ8029 MQSeries authority granted.
Explanation:

Authority for MQSeries object &5 granted.
User action:

None.

AMQ8022 MQSeries queue cleared.
Explanation:

All messages on MQSeries queue &5 have been deleted.
User action:

None.

AMQ8030 MQSeries authority revoked.
Explanation:

Authority for MQSeries object &5 revoked.
User action:

None.

AMQ8023 MQSeries channel reset.
Explanation:

MQSeries channel &5 has been reset.
User action:

None.

AMQ8033 MQSeries object recreated.
Explanation:

MQSeries object &5 has been recreated from image.
User action:

None.

AMQ8024 MQSeries channel initiator started.
Explanation:

The channel initiator for MQSeries queue &5 has been
started.
User action:

None.

AMQ8025 MQSeries channel resolved.
Explanation:

In doubt messages for MQSeries channel &5 have been
resolved.
User action:

None.

AMQ8026 End MQSeries queue manager accepted.
Explanation:

A controlled stop request has been initiated for MQSeries
queue manager &5.
User action:

None.

AMQ8034 MQSeries object image recorded.
Explanation:

Image of MQSeries object &5 has been recorded.
User action:

None.

AMQ8035 MQSeries Command Server Status . . :
Running
Explanation:

See Explanation of message AMQ8041.
User action:

See User action for message AMQ8041.

AMQ8036 MQSeries command server status . . :
Stopping
Explanation:

See Explanation of message AMQ8041.
User action:

See User action for message AMQ8041.

Appendix O. Messages

369

AMQS8037 » AMQ8105

AMQ8037 MQSeries command server status . . :
Starting

Explanation:

See Explanation of message AMQ8041.
User action:

See User action for message AMQ8041.

support non runtime only applications then investigate if the
base option has been installed. The base option must be
installed if non runtime applications are to run on this node.

AMQ8038 MQSeries command server status . . :
Running with queue disabled

Explanation:

See Explanation of message AMQ8041.
User action:

See User action for message AMQ8041.

AMQ8039 MQSeries command server status . . :
Stopped

Explanation:

See Explanation of message AMQ8041.
User action:

See User action for message AMQ8041.

AMQ8040 MQSeries command server ending.
Explanation:

See Explanation of message AMQ8041.
User action:

See User action for message AMQ8041.

AMQB8041 The queue manager cannot be restarted
because processes, that were previously
connected, are still running.

Explanation:

Processes, that were connected to the queue manager the
last time it was running, are still active. The queue manager
cannot be restarted.

User action:

Stop the processes and try to start the queue manager.

AMQ8042 Process &1 is still running.
Explanation:

See Explanation of message AMQ8043.
User action:

See User action for message AMQ8043.

AMQ8043 Non runtime application attempted to connect
to runtime only queue manager.

Explanation:

A non runtime application attempted to connect to a queue
manager on a node where support for non runtime
applications has not been installed. The connect attempt will
be rejected with a reason of
MQRC_ENVIRONMENT_ERROR.

User action:

If the node is intended to support only runtime applications
then investigate why a non runtime application has attempted
to connect to the queue manager. If the node is intended to

AMQ8046 Starting LU 6.2 responder for MQSeries
channel
Explanation: None
User action: None

AMQ8101 Unexpected error (&1).
Explanation:

An unexpected reason code with hexadecimal value &4 was
received from the MQSeries queue manager during command
processing. (Note that hexadecimal values in the range
X'07D1'-X'0BB7' correspond to MQI reason codes
2001-2999.) More information might be available in the log. If
the reason code value indicates that the error was associated
with a particular parameter, the parameter concerned is &2.
User action:

Correct the error and then try the command again.

MQSeries object name specified in &2 not
valid.
Explanation:

AMQ8102

MQSeries object name &5 specified in &2 is not valid. The
length of the name must not exceed 48 characters, or 20
characters if it is a channel name. The name should contain
the following characters only: lowercase a-z, uppercase A-Z,
numeric 0-9, period (.), forward slash (/), underscore (_) and
percent sign (%).

User action:

Change the length of the parameter value or change the

parameter value to contain a valid combination of characters,
then try the command again.

AMQ8103 Insufficient storage available.
Explanation:

There was insufficient storage available to perform the
requested operation.
User action:

Free some storage and then try the command again.

AMQ8104 MQSeries directory &3 not found.
Explanation:

Directory &3 was not found. This directory is created when
MQSeries is installed successfully. Refer to the log for more
information.

User action:

Verify that installation of MQSeries was successful. Correct
the error and then try the command again.

AMQ8105 Object error.
Explanation:

An object error occurred. Refer to the log for more
information.
User action:

Correct the error and then try the command again.

370 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8106 MQSeries queue manager being created.
Explanation:

The MQSeries queue manager is being created.
User action:

Wait for the creation process to complete and then try the
command again.

AMQ8107 MQSeries queue manager running.
Explanation:

The MQSeries queue manager is running.
User action:

None.

AMQ8108 MQSeries queue manager ending.
Explanation:

The MQSeries queue manager is ending.
User action:

Wait for the MQSeries queue manager to end and then try
the command again.

AMQ8109 MQSeries queue manager being deleted.
Explanation:

The MQSeries queue manager is being deleted.
User action:

Wait for the deletion process to complete.

AMQ8110 MQSeries queue manager already exists.
Explanation:

MQSeries queue manager &5 already exists.
User action:

None.

AMQ8117 MQSeries queue manager deletion incomplete.
Explanation:

Deletion of MQSeries queue manager &5 was only partially
successful. An object was not found, or could not be deleted.
Refer to the log for more information.

User action:

Delete any remaining MQSeries queue manager objects.

AMQ8106 » AMQ8143

User action:

Obtain the necessary authority from your security officer or
MQSeries administrator. Then try the command again.

AMQ8137

MQSeries queue manager already starting.
Explanation:

The strmgm command was unsuccessful because MQSeries
gueue manager &5 is already starting.
User action:

Wait for the strmgm command to complete.

AMQ8138

The MQSeries queue has an incorrect type.
Explanation:

The operation is not valid with MQSeries queue &5 because
it is not a local queue.
User action:

Change the QNAME parameter to specify an MQSeries
queue of the correct type.

AMQ8139 Already connected.
Explanation:

A connection to the MQSeries queue manager already exists.
User action:

None.

AMQ8140 Resource timeout error.
Explanation:

A timeout occurred in the communication between internal
MQSeries queue manager components. This is most likely to
occur when the system is heavily loaded.

User action:

Wait until the system is less heavily loaded, then try the
command again.

AMQ8141 MQSeries queue manager starting.
Explanation:

MQSeries queue manager &b5 is starting.
User action:

Wait for the MQSeries queue manager startup process to
complete and then try the command again.

AMQ8118 MQSeries queue manager does not exist.
Explanation:

MQSeries queue manager &5 does not exist.
User action:

Create the message queue manager (crtmgm command) and
then try the command again.

AMQ8142 MQSeries queue manager stopped.
Explanation:

MQSeries queue manager &5 is stopped.
User action:

Use the strmgm command to start the MQSeries queue
manager, and then try the command again.

AMQ8135 Not authorized.
Explanation:

You are not authorized to perform the requested operation for
the MQSeries object &5 specified in &2. Either you are not
authorized to perform the requested operation, or you are not
authorized to the specified MQSeries object. For a copy
command, you may not be authorized to the specified source
MQSeries object, or, for a create command, you may not be
authorized to the system default MQSeries object of the
specified type.

AMQ8143 MQSeries queue not empty.
Explanation:

MQSeries queue &5 specified in &2 is not empty or contains
uncommitted updates.
User action:

Commit or rollback any uncommitted updates. If the
command is DELETE QLOCAL, use the CLEAR QLOCAL
command to clear the messages from the MQSeries queue.
Then try the command again.

Appendix O. Messages 371

AMQ8144 « AMQ8155

AMQ8144 Log not available.
Explanation:

The MQSeries logging resource is not available.
User action:

Use the ditmgm command to delete the MQSeries queue
manager and then the crtmgm command to create the
MQSeries queue manager. Then try the command again.

AMQ8145 Connection broken.
Explanation:

The connection to the MQSeries queue manager failed during
command processing. This may be caused by an endmgm -i
command being issued by another user, or by an MQSeries
gqueue manager error.

User action:

Use the strmgm command to start the message queue
manager, wait until the message queue manager has started,
and try the command again.

AMQ8146 MQSeries queue manager not available.
Explanation:

The MQSeries queue manager is not available because it has
been stopped or has not been created.
User action:

Use the crtmgm command to create the message queue
manager, or the strmgm command to start the message
queue manager as necessary. Then try the command again.

AMQ8147 MQSeries object not found.
Explanation:

If the command entered was Change, the MQSeries object
&5 specified in &2 does not exist. If the command entered
was Copy, the source MQSeries object does not exist. If the
command entered was Create, the system default MQSeries
object of the specified type does not exist.

User action:

Correct the MQSeries object name and then try the command
again or, if you are creating a new MQSeries queue or
process object, either specify all parameters explicitly or
ensure that the system default object of the required type
exists. The system default queue names are
SYSTEM.DEFAULT.LOCAL.QUEUE,
SYSTEM.DEFAULT.ALIAS.QUEUE and
SYSTEM.DEFAULT.REMOTE.QUEUE. The system default
process name is SYSTEM.DEFAULT.PROCESS.

AMQ8148 MQSeries object in use.
Explanation:

MQSeries object &5 specified in &2 is in use by an MQSeries
application program.
User action:

Wait until the MQSeries object is no longer in use and then
try the command again, or specify FORCE to force the
processing of the MQSeries ALTER command regardless of
any application program affected by the change. If the object
is the dead-letter queue and the open input count is nonzero,
it may be in use by an MQSeries channel. If the object is
another MQSeries queue object with a nonzero open output

count, it may be in use by an MQSeries channel (of type
RCVR or RQSTR). In either case, use the STOP CHANNEL
and START CHANNEL commands to stop and restart the
channel in order to solve the problem.

AMQ8149 MQSeries object damaged.
Explanation:

The MQSeries object &5 specified in &2 is damaged.
User action:

The MQSeries object contents are not valid. Issue the
DISPLAY CHANNEL, DISPLAY QUEUE, or DISPLAY
PROCESS command, as required, to determine the name of
the damaged object. Issue the DEFINE command, for the
appropriate object type, to replace the damaged object, then
try the command again.

AMQ8150 MQSeries object already exists.
Explanation:

MQSeries object &5 specified for &2 could not be created
because it already exists.
User action:

Check that the name is correct and try the command again
specifying REPLACE, or delete the MQSeries object. Then
try the command again.

AMQ8151 MQSeries object has different type.
Explanation:

The type specified for MQSeries object &5 is different from
the type of the object being altered or defined.
User action:

Use the correct MQSeries command for the object type, and
then try the command again.

AMQ8152 Source MQSeries object has different type.
Explanation:

The type of the source MQSeries object is different from that
specified.

User action:

Correct the name of the command, or source MQSeries

object name, and then try the command again, or try the
command using the REPLACE option.

AMQ8153 Insufficient disk space for the specified
queue.

Explanation:

The command failed because there was insufficient disk
space available for the specified queue.
User action:

Release some disk space and then try the command again.

AMQ8155 Connection limit exceeded.
Explanation:

The queue manager connection limit has been exceeded.
User action:

The maximum limit on the number of MQSeries application
programs that may be connected to the MQSeries queue
manager has been exceeded. Try the command later.

372 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8156 « AMQ8189

AMQ8156 MQSeries queue manager quiescing.
Explanation:

The MQSeries queue manager is quiescing.
User action:

The queue manager was stopping with -c specified for
endmgm. Wait until the queue manager has been restarted
and then try the command again.

AMQ8157 Security error.
Explanation:

An error was reported by the security manager program.
User action:

Inform your systems administrator, wait until the problem has
been corrected, and then try the command again.

AMQ8159 MAXDEPTH not allowed with queue type *ALS
or *RMT.

Explanation:

The MAXDEPTH parameter may not be specified for an
MQM queue of type *ALS or *RMT.
User action:

Remove the MAXDEPTH parameter from the command or, if
the command is CRTMQMQ, specify a different value for
QTYPE. Then try the command again.

AMQ8160 DFTSHARE not allowed with queue type *ALS
or *RMT.

Explanation:

The DFTSHARE parameter may not be specified for an MQM
queue of type *ALS or *RMT.
User action:

Remove the DFTSHARE parameter from the command or, if
the command is CRTMQMQ, specify a different value for
QTYPE. Then try the command again.

AMQ8172 Already disconnected.
Explanation:

The MQI reason code of 2018 was returned from the
MQSeries queue manager in response to an MQDISC
request issued during command processing.

User action:

None.

AMQ8185

Operating system object already exists.
Explanation:

The MQSeries object cannot be created because an object
that is not known to MQSeries already exists in the MQSeries
directory with the name that should be used for the new
object. Refer to the log for previous messages.

User action:

Remove the non-MQSeries object from the MQSeries library,
and try the command again.

AMQ8173 No processes to display.
Explanation:

There are no matching processes defined on this system.
User action:

Using the DEFINE PROCESS command to create a process.

AMQ8174 No queues to display.
Explanation:

There are no matching queues defined on this system.
User action:

Using the appropriate command to define a queue of the type
that you require, that is, DEFINE QALIAS, DEFINE QLOCAL,
DEFINE QMODEL, or DEFINE QREMOTE.

AMQ8186 Image not available for MQSeries object &5.
Explanation:

MQSeries object &5 type &3 cannot be recreated because
the image is not fully available in the logs that are currently
online. Refer to earlier messages in the error log for
information about the error logs that need to be brought
online for this object to be recreated.

User action:

Bring the relevant error logs online, and try the command
again.

AMQ8187 MQSeries object &5 is currently open.
Explanation:

MQSeries object &5, type &3, is currently in use, so the &1
command cannot be issued against it. If a generic list was
presented to the command, the command is still issued
against the other objects in the list.

User action:

Wait until the object is no longer in use, and try the command
again.

AMQ8188 Insufficient authorization to MQSeries object
&5.

Explanation:

You are not authorized to issue the &1 command against
MQSeries object &5 type &3. If a generic list was presented
to the command, the command is still issued against the
other objects in the list.

User action:

Obtain sufficient authorization for the object, and retry the
command.

AMQ8189 MQSeries object &5 is damaged.
Explanation:

MQSeries object &5 type &3 is damaged and the &1
command cannot be issued against it. If a generic list was
presented to the command then the command is still issued
against the other objects in the list.

User action:

Issue the appropriate DEFINE command for the object,
specifying REPLACE, and then try the command again.

Appendix O. Messages 373

AMQ8190 » AMQ8298

AMQ8190 &1 succeeded on &2 objects and failed on &3
objects.

Explanation:

An operation performed on a generic list of objects was not
completely successful.
User action:

Examine the log for details of the errors encountered, and
take appropriate action.

AMQ8191 MQSeries command server is starting.
Explanation:

The MQSeries command server is starting.
User action:

Wait for the strmgcsv command to complete and then try the
operation again.

AMQ8197 Deleted MQSeries queue damaged.
Explanation:

The deleted MQSeries queue &5 was damaged, and any
messages it contained have been lost.
User action:

None.

AMQ8226 MQSeries channel already exists.
Explanation:

MQSeries channel &3 cannot be created because it already
exists.
User action:

Check that the name is correct and try the command again
specifying REPLACE, or delete the MQSeries channel and
then try the command again.

AMQ8192 MQSeries command server already starting.
Explanation:

The request to start the MQSeries command server was
unsuccessful because the MQSeries command server is
already starting.

User action:

Wait for the strmgcsv command to complete.

AMQ8227 Channel &3 not found.
Explanation:

ALTER CHANNEL has been issued for a non-existent
channel.
User action:

Correct the MQSeries channel name and then try the
command again.

AMQ8193 MQSeries command server is ending.
Explanation:

The MQSeries command server is ending.
User action:

Wait for the endmgcsv command to complete and then try the
command again.

AMQ8194 MQSeries command server already ending.
Explanation:

The end MQSeries command server request was
unsuccessful because the MQSeries command server is
already ending.

User action:

Wait for the endmgcsv command to complete.

AMQ8195 MQSeries command server already running.
Explanation:

The strmgcsv command was unsuccessful because the
MQSeries command server is already running.
User action:

None.

AMQ8196 MQSeries command server already stopped.
Explanation:

The request to end the MQSeries command server was
unsuccessful because the MQSeries command server is
already stopped.

User action:

None.

AMQ8296 &4 MQSC commands completed successfully.
Explanation:

The &1 command has completed successfully. The &4
MQSeries commands from &5 have been processed without
error and a report written to the printer spool file.

User action:

None.

AMQ8297 &4 MQSC commands verified successfully.
Explanation:

The &1 command completed successfully. The &4 MQSeries
commands from &5 have been verified and a report written to
the printer spool file.

User action:

None.

AMQ8298 Error report generated for MQSC command
process.

Explanation:

The &1 command attempted to process the sequence of
MQSeries commands from &5 and encountered some errors,
however, the operation may have partially completed. A
report has been written to the printer spool file.

User action:

Examine the spooled printer file for details of the errors
encountered, correct the MQSC source file, and retry the
operation.

374 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8299 » AMQ8412

AMQ8299 Cannot open &5 for MQSC process.
Explanation:

The &1 command failed to open &5 for MQSeries command
processing.
User action:

Check that the intended file exists, and has been specified
correctly. Correct the specification or create the object, and
try the operation again.

AMQ8302 Internal failure initializing MQSeries services.
Explanation:

An error occurred while attempting to initialize MQSeries
services.
User action:

None.

AMQ8405 Syntax error detected at or near end of
command segment below:-
Explanation:

The MQSC script contains &1 commands having a syntax
error.
User action:

None.

AMQ8406 Unexpected 'end of input' in MQSC.
Explanation:

An MQSC command contains a continuation character, but
the 'end of input' has been reached without completing the
command.

User action:

None.

AMQ8303 Insufficient storage available to process
request.
Explanation:

User action:

See User action for message AMQ8304.

AMQ8304 Tracing cannot be started. Too many traces
are already running.
Explanation:

User action:

Stop one or more of the other traces and try the command
again.

AMQ8401 &1 MQSC commands read.
Explanation:

The MQSC script contains &1 commands.
User action:

None.

AMQ8402 &1 commands have a syntax error.
Explanation:

The MQSC script contains &1 commands having a syntax
error.
User action:

None.

AMQ8403 &1 commands cannot be processed.
Explanation:

The MQSC script contains &1 commands that failed to
process.
User action:

None.

AMQ8407 Display Process details.
Explanation:

The MQSC DISPLAY PROCESS command completed
successfully, and details follow this message.
User action:

None.

AMQ8408 Display Queue Manager details.
Explanation:

The MQSC DISPLAY QMGR command completed
successfully, and details follow this message.
User action:

None.

AMQB8409 Display Queue details.
Explanation:

The MQSC DISPLAY QUEUE command completed
successfully, and details follow this message.
User action:

None.

AMQ8410 Parser error.
Explanation:

The MQSC Parser has an internal error.
User action:

None.

AMQ8411 Duplicate Keyword error.
Explanation:

A command in the MQSC script contains duplicate keywords.
User action:

None.

AMQ8404 Command failed.
Explanation:

An MQSC command has been recognized, but cannot be
processed.
User action:

None.

AMQ8412 Numeric Range error.
Explanation:

The value assigned to an MQSC command keyword is out of
the permitted range.
User action:

None.

Appendix O. Messages 375

AMQB8413 « AMQ8502

AMQ8413 String Length Error.
Explanation:

A string assigned to an MQSC keyword is either NULL, or
longer than the maximum permitted for that keyword.
User action:

None.

AMQ8421 A required keyword was not specified.
Explanation:

A keyword required in this command was not specified.
User action:

None.

AMQ8414 Display Channel details.
Explanation:

The MQSC DISPLAY CHL command completed successfully,
and details follow this message.
User action:

None.

AMQ8415 MQSeries commands are active.
Explanation:

The MQSC DISPLAY QMGR command completed
successfully, and details follow this message.
User action:

None.

AMQB8424 Error detected in a name keyword.
Explanation:

A keyword in an MQSC command contained a name string
which was not valid. This may be because it contained
characters which are not accepted in MQ names. Typical
keywords which can produce this error are QLOCAL (and the
other g types), CHANNEL, XMITQ, INITQ, MCANAME etc.
User action:

None.

AMQ8416 MQSC timed out waiting for a response from
the command server.
Explanation:

MQSC did not receive a response message from the remote
command server in the time specified.
User action:

None.

AMQ8498 Starting MQSeries Commands.
Explanation:

The MQSC script contains &1 commands.
User action:

None.

AMQ8499 Usage: runmgsc -e -v -w WaitTime -x -i -0
QMgrName
Explanation:

None.
User action:

None.

AMQ8417 Display Channel Status details.
Explanation:

The MQSC DISPLAY CHANNEL STATUS command
completed successfully, and details follow this message.
User action:

None.

AMQ8500 MQSeries Display MQ Files

Explanation:

Title for the dspmgfls command.
User action:

None.

AMQ8418 &1 command responses received.
Explanation:

Running in qgueued mode, &1 command responses were
received from the remote command server.
User action:

None.

AMQ8501 Common services initialization failed with

return code &1.
Explanation:

A request by the command server to initialize common
services failed with return code &1.
User action:

None.

AMQ8419 The Queue is already in the DCE cell.
Explanation:

The Queue is already in the cell, that is, its SCOPE attribute
is already CELL.
User action:

None.

AMQ8420 Channel Status not found.
Explanation:

No status was found for the specified channel(s).
User action:

None.

AMQ8502 Connect shared memory failed with return

code &1.
Explanation:

A request by the command server to connect shared memory
failed with return code &1.
User action:

None.

376 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8503 « AMQ8601

AMQ8503 Post event semaphore failed with return code
&1.

Explanation:

A request by the command server to post an event
semaphore failed with return code &1.
User action:

None.

AMQ8504 Command server MQINQ failed with reason
code &1.

Explanation:

An MQINQ request by the command server, for the MQSeries
queue &3, failed with reason code &1.
User action:

None.

AMQ8505 Reallocate memory failed with return code &1.
Explanation:

A request by the command server to reallocate memory failed
with return code &1.
User action:

None.

AMQ8506 Command server MQGET failed with reason
code &1.

Explanation:

An MQGET request by the command server, for the
MQSeries queue &3, failed with reason code &1.
User action:

None.
AMQ8507 Command server MQPUT1 request for an
undelivered message failed with reason code
&1.
Explanation:

An attempt by the command server to put a message to the
dead-letter queue, using MQPUT1, failed with reason code
&1. The MQDLH reason code was &2.

User action:

None.

AMQ8508 Queue Manager Delete Object List failed with
return code &1.

Explanation:

A request by the command server to delete a queue manager
object list failed with return code &1.
User action:

None.

AMQ8509 Command server MQCLOSE reply-to queue
failed with reason code &1.

Explanation:

An MQCLOSE request by the command server for the
reply-to queue failed with reason code &1.
User action:

None.

AMQ8511 Usage: strmqcsv QMgrName
Explanation:

See Explanation of message AMQ8514.
User action:

None.

AMQ8512 Usage: endmgcsv [-c | -i] QMgrName
Explanation:

See Explanation of message AMQ8514.
User action:

None.

AMQ8513 Usage: dspmgcsv QMgrName
Explanation:

See Explanation of message AMQ8514.
User action:

None.

AMQ8514 No response received after &1 seconds.
Explanation:

The command server has not reported the status of running,
to the start request, before the timeout of &1 seconds was
reached.

User action:

None.

AMQ8515 MQSeries Alter MQ Files
Explanation:

Title for the altmqfls command.
User action:

None.

AMQ8516 MQSeries Clean Queue Manager
Explanation:

Title for the cleangm command.
User action:

None.

AMQ8517 The messages files are partitioned and cannot
be moved.

Explanation:

Partition error from the altmqgfls command.
User action:

None.

AMQB8601 MQSeries trigger monitor started.
Explanation:

The MQSeries trigger monitor has been started.
User action:

None.

Appendix O. Messages 377

AMQ8602 « AMQ8615

AMQ8602 MQSeries trigger monitor ended.
Explanation:

The MQSeries trigger monitor has ended.
User action:

None.

AMQ8603 Usage: runmgtrm [-m QMgrName] [-q InitQ]
Explanation:

See Explanation of message AMQ8604.
User action:

See User action for message AMQ8604.

AMQ8604 Use of MQSeries trigger monitor not
authorized.

Explanation:

The MQSeries trigger monitor cannot be run due to lack of
authority to the requested queue manager or initiation queue.
User action:

Obtain the necessary authority from your security officer or
MQSeries administrator. Then try the command again.

AMQ8605 Queue manager not available to the MQSeries
trigger monitor

Explanation:

The queue manager specified for the trigger monitor does not
exist, or is not active.
User action:

Check that you named the correct queue manager. Ask your
systems administrator to start it, if it is not active. Then try
the command again.

Insufficient storage available for the MQSeries
trigger monitor.
Explanation:

AMQ8606

There was insufficient storage available for the MQSeries
trigger monitor to run.
User action:

Free some storage and then try the command again.

AMQ8607 MQSeries trigger monitor connection failed.
Explanation:

The trigger monitor's connection to the requested queue
manager failed because of MQI reason code &1 from
MQCONN.

User action:

Consult your systems administrator about the state of the
gueue manager.

AMQ8608 MQSeries trigger monitor connection broken.
Explanation:

The connection to the queue manager failed while the trigger
monitor was running. This may be caused by an endmgm
command being issued by another user, or by an MQSeries
gueue manager error.

User action:

Consult your systems administrator about the state of the
gueue manager.

AMQ8609 Initiation queue missing or wrong type
Explanation:

The named initiation queue could not be found; or the queue
type is not correct for an initiation queue.
User action:

Check that the named queue exists, and is a local queue, or
that the named queue is an alias for a local queue which
exists.

AMQ8610 Initiation queue in use
Explanation:

The MQSeries trigger monitor could not open the initiation
queue because the queue is open for exclusive use by
another application.

User action:

Wait until the queue is no longer in use, and try the command
again.

AMQ8611 Initiation queue could not be opened.
Explanation:

The MQSeries trigger monitor could not open the initiation
queue; reason code &1 was returned from MQOPEN.
User action:

Consult your systems administrator.

AMQ8612 Waiting for a trigger message
Explanation:

The MQSeries trigger monitor is waiting for a message to
arrive on the initiation queue.
User action:

None.

AMQ8613 Initiation queue changed or deleted
Explanation:

The MQSeries trigger monitor is unable to continue because
the initiation queue has been deleted or changed since it was
opened.

User action:

Retry the command.

AMQ8614 Initiation queue not enabled for input.
Explanation:

The MQSeries trigger monitor cannot read from the initiation
queue because input is not enabled.
User action:

Ask your systems administrator to enable the queue for input.

AMQ8615 MQSeries trigger monitor failed to get
message.

Explanation:

The MQSeries trigger monitor failed because of MQI reason
code &1 from MQGET.
User action:

Consult your systems administrator.

378 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8616 » AMQ8721

AMQ8616 End of application trigger.
Explanation:

The action to trigger an application has been completed.
User action:

None.

AMQ8617 Not a valid trigger message.
Explanation:

The MQSeries trigger monitor received a message that is not
recognized.
User action:

Consult your systems administrator.

AMQ8618 Error starting triggered application.
Explanation:

An error was detected when trying to start the application
identified in a trigger message.
User action:

Check that the application the trigger monitor was trying to
start is available.

AMQ8619 Application type &1 not supported.
Explanation:

A trigger message was received which specifies application
type &1; the trigger monitor does not support this type.
User action:

Use an alternative trigger monitor for this initiation queue.

AMQ8620 Trigger message with warning &1
Explanation:

The trigger monitor received a message with a warning. For
example, it may have been truncated or it could not be
converted to the trigger monitor's data representation. The
reason code for the warning is &1.

User action:

None.

AMQ8621 Usage: runmgtmc [-m QMgrName] [-q InitQ]
Explanation:

See Explanation of message AMQ8708.
User action:

None.

AMQ8622 Usage: CICS-Transaction-Name [MQTMC2
structure]
Explanation:

See Explanation of message AMQ8708.
User action:

None.

AMQ8701 Usage: rcdmgimg [-z] [-m QMgrName] -t
ObjType [GenericObjName]
Explanation:

See Explanation of message AMQ8708.
User action:

None.

AMQ8702 Usage: rcrmqobj [-z] [F-m QMgrName] -t
ObjType [GenericObjName]
Explanation:

See Explanation of message AMQ8708.
User action:

None.

AMQ8703 Usage: dspmqfls [-m QMgrName] [-t ObjType]
GenericObjName
Explanation:

See Explanation of message AMQ8708.
User action:

None.

AMQ8708 Dead letter queue handler started to process
INPUTQ(&3).
Explanation:

The dead letter queue handler (runmqdlqg) has been started
and has parsed the input file without detecting any errors and
is about to start processing the queue identified in the
message.

User action:

None.

AMQ8709 Dead letter queue handler ending.
Explanation:

The dead letter queue handler (runmqdlq) is ending because
the WAIT interval has expired and there are no messages on
the dead letter queue, or because the queue manager is
shutting down, or because the dead letter queue handler has
detected an error. If the dead letter queue handler has
detected an error, an earlier message will have identified the
error.

User action:

None.

AMQ8710 Cannot move queue file to 'x' (where 'X' is a
volume)
Explanation: None
User action: None

AMQ8711 Queue files moved to X'
Explanation: None
User action: None

AMQ8721 Dead letter queue message not prefixed by a
valid MQDLH.
Explanation:

The dead letter queue handler (runmqdiq) retrieved a
message from the nominated dead letter queue, but the
message was not prefixed by a recognizable MQDLH. This
typically occurs because an application is writing directly to
the dead letter queue but is not prefixing messages with a
valid MQDLH. The message is left on the dead letter queue
and the dead letter queue handler continues to process the
dead letter queue. Each time the dead letter queue handler
repositions itself to a position before this message to process
messages that could not be processed on a previous scan it
will reprocess the failing message and will consequently
reissue this message.

Appendix O. Messages 379

AMQ8722 » AMQ8747

User action:

Remove the invalid message from the dead letter queue. Do
not write messages to the dead letter queue unless they have
been prefixed by a valid MQDLH. If you require a dead letter
queue handler that can process messages not prefixed by a
valid MQDLH, you must change the sample program called
amgsdlq to cater for your needs.

AMQ8722 Dead letter queue handler unable to put
message: Rule &1 Reason &2.

Explanation:

This message is produced by the dead letter queue handler
when it is requested to redirect a message to another queue
but is unable to do so. If the reason that the redirect fails is
the same as the reason the message was put to the dead
letter queue then it is assumed that no new error has
occurred and no message is produced. The retry count for
the message will be incremented and the dead letter queue
handler will continue.

User action:

Investigate why the dead letter queue handler was unable to
put the message to the dead letter queue. The line number
of the rule used to determine the action for the message
should be used to help identify to which queue the dead letter
queue handler attempted to PUT the message.

AMQ8743 Unable to inquire on queue manager:
CompCode = &1 Reason = &2.

Explanation:

The dead letter queue handler (runmqdlqg) could not inquire
on the queue manager. This message is typically issued
because of a resource shortage or because the queue
manager is ending. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.

User action:

Take appropriate action based upon the completion code and
reason.

AMQ8744 Unable to close queue manager: CompCode =
&1 Reason = &2.

Explanation:

The dead letter queue handler (runmqdlq) could not close the
queue manager. This message is typically issued because of
a resource shortage or because the queue manager is
ending. The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action:

Take appropriate action based upon the completion code and
reason.

AMQ8741 Unable to connect to queue manager(&3) :
CompCode = &1 Reason = &2.

Explanation:

The dead letter queue handler (runmgdlqg) could not connect
to the requested queue manager. This message is typically
issued when the requested queue manager has not been
started or is quiescing, or if the process does not have
sufficient authority. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.

User action:

Take appropriate action based upon the completion code and
reason.

AMQ8742 Unable to open queue manager: CompCode =
&1 Reason = &2.

Explanation:

The dead letter queue handler (runmqdliqg) could not open the
queue manager object. This message is typically issued
because of a resource shortage or because the process does
not have sufficient authority. The completion code and the
reason can be used to identify the error. The dead letter
queue handler ends.

User action:

Take appropriate action based upon the completion code and
reason.

AMQ8745 Unable to open dead letter queue(&3) for
browse: CompCode = &1 Reason = &2.

Explanation:

The dead letter queue handler (runmqdlg) could not open the
dead letter queue for browsing. This message is typically
issued because another process has opened the dead letter
queue for exclusive access, or because an invalid dead letter
queue name was specified. Other possible reasons include
resource shortages or insufficient authority. The completion
code and the reason can be used to identify the error. The
dead letter queue handler ends.

User action:

Take appropriate action based upon the completion code and
reason.

AMQ8746 Unable to close dead letter queue: CompCode
= &1 Reason = &2.

Explanation:

The dead letter queue handler (runmgdlqg) could not close the
dead letter queue. This message is typically issued because
of a resource shortage or because the queue manager is
ending. The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action:

Take appropriate action based upon the completion code and
reason.

AMQ8747 Integer parameter(&2) outside permissible
range for &3 on line &1.

Explanation:

An integer supplied as input to the dead letter handler was
outside of the valid range of values for a particular keyword.
User action:

Correct the input data and restart the dead letter queue
handler.

380 MQsSeries for Tandem NSK V2R2 System Management Guide

AMQ8748 « AMQ8759

AMQ8748 Unable to get message from dead letter
queue: CompCode = &1 Reason = &2.

Explanation:

The dead letter queue handler (runmqdlqg) could not get the
next message from the dead letter queue. This message is
typically issued because of the queue manager ending, a
resource problem, or another process having deleted the
dead letter queue. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.

User action:

Take appropriate action based upon the completion code and
reason.

Unable to commit/backout action on dead
letter queue: CompCode = &1 Reason
Explanation:

AMQ8749

The dead letter queue handler (runmqdlg) was unable to
commit or backout an update to the dead letter queue. This
message is typically issued because of the queue manager
ending, or because of a resource shortage. If the queue
manager has ended, the update to the dead letter queue (and
any associated updates) will be backed out when the queue
manager restarts. If the problem was due to a resource
problem then the updates will be backed out when the dead
letter queue handler terminates. The completion code and
the reason can be used to identify the error. The dead letter
queue handler ends.

User action:

Take appropriate action based upon the completion code and
reason.

AMQ8750 No valid input provided to runmqdiq.
Explanation:

Either no input was provided to runmqdlg, or the input to
runmqdlg contained no valid message templates. If input was
provided to runmqdlq but was found to be invalid, earlier
messages will have been produced explaining the cause of
the error. The dead letter queue handler will ends.

User action:

Correct the input data and restart the dead letter queue
handler.

AMQ8751 Unable to obtain private storage.
Explanation:

The dead letter queue handler (runmqdlqg) was unable to
obtain private storage. This problem would typically arise as
a result of some more global problem. For example if there
is a persistent problem that is causing messages to be written
to the DLQ and the same problem (for example queue full) is
preventing the dead letter queue handler from taking the
requested action with the message, it is necessary for the
dead letter queue handler to maintain a large amount of state
data to remember the retry counts associated with each
message, or if the dead letter queue contains a large number
of messages and the rules table has directed the dead letter
queue handler to ignore the messages.

User action:

Investigate if some more global problem exists, and if the
dead letter queue contains a large number of messages. |If
the problem persists contact your support center.

Parameter(&3) exceeds maximum length on
line &1.
Explanation:

AMQ8752

A parameter supplied as input to the dead letter handler
exceeded the maximum length for parameters of that type.
User action:

Correct the input data and restart the dead letter queue
handler.

AMQ8753 Duplicate parameter(&3) found on line &1.
Explanation:

Two or more parameters of the same type were supplied on
a single input line to the dead letter queue handler.
User action:

Correct the input and restart the dead letter queue handler.

AMQ8756 Error detected releasing private storage.
Explanation:

The dead letter queue handler (runmgdlg) was informed of an
error while attempting to release an area of private storage.
The dead letter queue handler ends.

User action:

This message should be preceded by a message or FFST
information from the internal routine that detected the error.
Take the action associated with the earlier error information.

AMQ8757 Integer parameter(&3) outside permissible
range on line &1.

Explanation:

An integer supplied as input to the dead letter handler was
outside of the valid range of integers supported by the dead
letter queue handler.

User action:

Correct the input data and restart the dead letter queue
handler.

AMQ8758 &1 errors detected in input to runmqdiq.
Explanation:

One or more errors have been detected in the input to the
dead letter queue handler(runmqdliqg). Error messages will
have been generated for each of these errors. The dead
letter queue handler ends.

User action:

Correct the input data and restart the dead letter queue
handler.

AMQ8759 Invalid combination of parameters to dead
letter queue handler on line &1.

Explanation:

An invalid combination of input parameters has been supplied
to the dead letter queue handler. Possible causes are:

no ACTION specified,

ACTION(FWD) but no FWDQ specified,

HEADER(YES|NO) specified without ACTION(FWD).

User action:

Correct the input data and restart the dead letter queue
handler.

Appendix O. Messages 381

AMQS8760 » AMQ8768

AMQ8760 Unexpected failure while initializing process:
Reason = &1.
Explanation:

The dead letter queue handler (runmqdliq) could not perform
basic initialization required to use MQ services because of an
unforeseen error. The dead letter queue handler ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQ8761 Unexpected failure while connecting to queue
manager: CompCode = &1 Reason
Explanation:

The dead letter queue handler (runmqdlqg) could not connect
to the requested queue manager because of an unforeseen
error. The dead letter queue handler ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQ8765 Unexpected failure while opening dead letter

queue for browse: CompCode = &1 Reason =
&2.
Explanation:

The dead letter queue handler (runmqdliqg) could not open the
dead letter queue for browsing because of an unforeseen
error. The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQ8762 Unexpected error while attempting to open
gqueue manager: CompCode = &1 Reason =
&2.
Explanation:

The dead letter queue handler (runmqdlqg) could not open the
gueue manager because of an unforeseen error. The
completion code and the reason can be used to identify the
error. The dead letter queue handler ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQ8763 Unexpected error while inquiring on queue
manager: CompCode = &1 Reason = &
Explanation:

The dead letter queue handler (runmqdlg) could not inquire
on the queue manager because of an unforeseen error. The
completion code and the reason can be used to identify the
error. The dead letter queue handler ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQ8764 Unexpected error while attempting to close
queue manager: CompCode = &1 Reason =
&2.
Explanation:

The dead letter queue handler (runmqdlqg) could not close the
queue manager because of an unforeseen error. The
completion code and the reason can be used to identify the
error. The dead letter queue handler ends.

User action:

AMQ8766 Unexpected error while closing dead letter
queue: CompCode = &1 Reason = &2
Explanation:

The dead letter queue handler (runmqdlqg) could not close the
dead letter queue because of an unforeseen error. The
completion code and the reason can be used to identify the
error. The dead letter queue handler ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQ8767 Unexpected error while getting message from
dead letter queue: CompCode = &1 Reason =
&2.
Explanation:

The dead letter queue handler (runmqdlqg) could not get the
next message from the dead letter queue because of an
unforeseen error. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQ8768 Unexpected error committing/backing out
action on dead letter queue: CompCode = &1
Reason = &2.
Explanation:

The dead letter queue handler (runmqdlg) was unable to
either commit or backout an update to the dead letter queue
because of an unforeseen error. The completion code and
the reason can be used to identify the error. The dead letter
queue handler ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

382 MQSeries for Tandem NSK V2R2 System Management Guide

AMQS8769 » AMQ8809

AMQ8769 Unable to disconnect from queue manager:
CompCode = &1 Reason = &2.

Explanation:

The dead letter queue handler (runmqdlig) was unable to
disconnect from the queue manager because of an
unexpected error. The completion code and the reason can
be used to identify the error. The dead letter queue handler
ends.

User action:

Use the standard facilities supplied with your system to
record the problem identifier and to save the generated
output files. Contact your support center. Do not discard
these files until the problem has been resolved.

AMQB8801 EC Boss &3 for Queue Manager &4 is

Initializing

Explanation:

The EC Boss for Queue Manager &4 is beginning the start up
sequence. The process name of the EC Boss is &3

User action:

None
AMQ8802 EC Boss &3 for Queue Manager &4
initialization complete.
Explanation:

The EC Boss for Queue Manager &4 has completed process
start up actions. The process name of the EC Boss is &3
User action:

None
AMQ8803 EC Boss &3 for Queue Manager &4 controlled
shutdown initiated.
Explanation:

The EC Boss for Queue Manager &4 has entered the
controlled shutdown state. The Queue Manager will not
accept new work, and once operations in progress have
completed, connections will be terminated. When there are no
more connections, the Queue Manager will end. The process
name of the EC Boss is &3.

User action:

None

AMQ8804 EC Boss &3 for Queue Manager &4 quiesce
shutdown initiated.

Explanation:

The EC Boss for Queue Manager &4 has entered the quiesce
shutdown state.

The Queue Manager will not accept new work, but will allow
existing connections to complete before ending. The process
name of the EC Boss is &3.

User action:

None

AMQ8805 EC Boss &3 for Queue Manager &4 immediate
shutdown initiated.

Explanation:

The EC Boss for Queue Manager &4 has entered the
immediate shutdown state. Any current connections are
terminated and the Queue Manager will end immediately.
The process name of the EC Boss is &3.

User action:

None

AMQ8806 EC / EC Boss &3 for Queue Manager &4
cannot access file &5.

Explanation:

An EC, or the EC Boss (process name &3) for Queue
Manager &4 has not been able to access the file named &5.
This file is critical to the operation of the Queue Manager,
and the Queue Manager will not start properly until the
problem is corrected.

User action:

End the Queue Manager and check the existence or file
attributes of the file named &5. Verify that the file exists, and
has the appropriate file security and type attributes, correct
the problem and restart the Queue Manager.

AMQ8807 EC / EC Boss &3 for Queue Manager &4
obtained file error &1 on file &5.

Explanation:

An EC, or the EC Boss (process name &3) for Queue
Manager &4 obtained Tandem file error &1 while attempting
an 10 operation to file &5.

The successful completion of the IO operation may be critical
to the correct operation of the Queue Manager, and the
Queue Manager may not operate properly until the problem is
corrected.

User action:

End the Queue Manager and check the file attributes of the
file named &5.

Verify that the file exists, and has the appropriate file security
and type attributes, correct the problem and restart the
Queue Manager.

AMQ8808 Incorrect Queue Manager name &4 supplied to
process &3

Explanation:

A Queue Manager process (process name &3) was supplied
with an invalid or non-existent Queue Manager name, &4.
The initialization of the process failed as a result.

User action:

End the Queue Manager and check queue manager name
that is being used in the configuration databases. After
correcting the problem restart the Queue Manager.

AMQ8809 Queue Manager &4 Started.
Explanation:

The EC Boss has reported that the Queue Manager named
&4 has entered the "started" state.
User action:

None.

Appendix O. Messages 383

AMQ8810 « AMQ8819

AMQ8810 EC number &1, process name &3, for Queue
Manager &4 is initializing.

Explanation:

An EC in the Queue Manager named &4 has started and is
performing process initialization.
User action:

None.

AMQ8811 EC number &1, process name &3, for Queue
Manager &4 has completed initialization.

Explanation:

An EC in the Queue Manager named &4 has completed
process initialization.
User action:

None.

AMQ8812 EC number &1, process name &3, for Queue
Manager &4 has started controlled shutdown.

Explanation:

An EC in the Queue Manager named &4 has reported that a
controlled shutdown has started. The EC will wait for all
currently running agents to end before performing the final
shutdown actions.

User action:

None.

AMQ8813 EC number &1, process name &3, for Queue
Manager &4 has started quiesce shutdown.

Explanation:

An EC in the Queue Manager named &4 has reported that a
quiesce shutdown has started. The EC will wait for all
currently running agents to end before performing the final
shutdown actions.

User action:

None.

AMQ8814 EC number &1, process name &3, for Queue
Manager &4 has started immediate shutdown.

Explanation:

An EC in the Queue Manager named &4 has reported that an
immediate shutdown has started. The EC will terminate
immediately, without waiting for currently running agents to
end.

User action:

None.

AMQ8815 EC number &1, process name &3, for Queue
Manager &4 has shutdown.

Explanation:

An EC in the Queue Manager named &4 has reported that it
has completed shutdown actions. When all ECs in the Queue
Manager have completed shutdown actions, the Queue
Manager will end.

User action:

None.

AMQ8816 Queue Manager &4 has started, though only
&1 of &2 ECs have registered.
Explanation:

The Queue Manager named &4 has entered the started
state, and will now accept connections. However, only &1 of
the expected &2 ECs have registered with the EC Boss. The
Queue Manager’s load balancing and overall
performance will be adversely affected, however it will still be
able to service connections.

User action:

Examine the logs to determine the cause of the failure to start
the missing ECs. End the Queue Manager, and rectify the
problem if possible. Restart the Queue Manager and ensure
that the Queue Manager starts correctly.

AMQ8817 Process &3 in Queue Manager &4 cannot
process a request to a resource problem.

Explanation:

The Queue Manager named &4 has entered the started
state, and will now accept connections. However, only &1 of
the expected &2 ECs have registered with the EC Boss. The
Queue Manager’s load balancing and overall
performance will be adversely affected, however it will still be
able to service connections.

User action:

The process named &3 has failed to process a request from
another process due to failure to allocate a resource, such as
memory, or disk space. Depending on the criticality of the
resource itself, this may cause further errors, or the failure of
certain Queue Manager components. User Action: Examine
the logs to determine the cause of the failure. If there are
resource problems that can be corrected, correct them and
attempt the operation again.

AMQ8818 EC Boss in Queue Manager &4 rejected a
registration from process &3.

Explanation:

The process named &3 attempted to register with the EC
Boss. The EC Boss detected a problem with the registration
information and rejected the attempt.

User action:

Examine the logs to determine further information about the
problem. Determine the identity of the process, and verify
that the process is an EC. If the process is not an EC, or
cannot be identified, then a security threat may be present.

AMQ8819 EC Number &1 registered with the EC Boss in
Queue Manager &4.

Explanation:

EC number &1 has registered with the EC Boss. When all
the expected ECs have registered, the Queue Manager
enters the started state.

User action:

None.

384 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8820 « AMQ8828

AMQ8820 An unknown message received by process &3
in Queue Manager &4 from process &5 has
been rejected.

Explanation:

The process &3 has received and rejected a message that is
either not of the correct format, or from an unknown source.
User action:

Examine the log to determine if further information is
available. Try to identify the process to ensure that a security
threat is not present.

AMQ8821 The EC Boss in Queue Manager &4 detected
the failure of EC number &1
Explanation:

The EC Boss has detected that EC number &1 has
terminated unexpectedly.

If the maximum number of restarts performed on this EC has
not already been exceeded, PATHWAY will attempt to restart
the EC.

User action:

Examine the log to determine if further information is
available.

AMQ8822 The EC Boss in Queue Manager &4 failed to
find an EC to service a request.

Explanation:

The EC Boss failed to find an active EC to service a request
that was made, either by an application (in order to start a
connection), or by and administration command (for example,
to start or stop a channel). It is possible that all the ECs in
the Queue Manager have failed repeatedly, exceeding the
maximum number of restarts allowed by PATHWAY.

User action:

Examine the log to see if further information is available on
the state of the Queue Manager. The Queue Manager will
need to be ended and restarted.

AMQ8823 Process &3 in Queue Manager &4 received
and rejected a message from an unknown
source, &5.
Explanation:

A process in Queue Manager &4 received and rejected a
message from a source that is not authorized or not
registered to communicate with the Queue Manager. The
process is identified by &5. The process that received the
message is identified by &3.

User action:

Examine the log to determine if further information is
available on the identity of the source of the message. Try to
determine the identify of the sender to ensure that a security
threat is not present.

AMQ8824 The EC Boss in Queue Manager &4 detected
an inconsistency in the context data for agent
process &3.
Explanation:

The EC Boss found that the information it had previously held
about the agent &3 is not consistent with new information.
User action:

Examine the log to see if further information is available
relating to process &3.

AMQ8825 EC number &1 in Queue Manager &4 detected
the failure of the EC Boss.

Explanation:

An EC detected that the EC Boss process for the Queue
Manager has failed. If the maximum number of restarts for
the EC Boss has not been exceeded, PATHWAY will attempt
to restart the EC Boss.

User action:

Examine the log to see if further information is available
relating to the failure of the EC Boss. If the problem persists,
end the Queue Manager correct the problem and restart. If
the problem cannot be identified as a configuration problem,
use the standard facilities supplied with your system to record
the problem identifier, and save the generated output files.
Contact your IBM support center. Do not discard these files
until the problem has been resolved.

AMQ8826 EC number &1 in Queue Manager &4 detected
the failure of an &5 agent with process name
&3.
Explanation:

An EC detected that an &5 agent process &3 has failed. If
the maximum number of restarts of agent processes has not
already been exceeded, the EC will attempt to restart the
agent process when it is required.

User action:

Examine the log to see if further information is available
relating to the failure of the agent process. If the problem
persists, end the Queue Manager correct the problem and
restart. If the problem cannot be identified as a configuration
problem, use the standard facilities supplied with your system
to record the problem identifier, and save the generated
output files. Contact your IBM support center. Do not discard
these files until the problem has been resolved.

AMQ8827 EC number &1 in Queue Manager &4 failed to
communicate with the EC Boss.

Explanation:

An EC attempted to communicate with the EC Boss, but the
attempt failed. The failure to communicate is interpreted by
the EC as EC Boss failure.

User action:

Examine the log to see if further information is available
relating to the failure to communicate with the EC Boss. If the
problem persists, end the Queue Manager correct the
problem and restart. If the problem cannot be identified as a
configuration problem, use the standard facilities supplied
with your system to record the problem identifier, and save
the generated output files. Contact your IBM support center.
Do not discard these files until the problem has been
resolved.

AMQ8828 EC number &1 in Queue Manager &4 failed to
communicate with &5 agent process &3.

Explanation:

An EC attempted to communicate with an agent process, but
the attempt failed. The failure to communicate is interpreted
by the EC as agent process failure. Depending on various
factors, the EC may attempt to restart the agent.

User action:

Appendix O. Messages 385

AMQ8829 » AMQ8837

Examine the log to see if further information is available
relating to the failure to communicate with the agent. If the
problem persists, end the Queue Manager correct the
problem and restart. If the problem cannot be identified as a
configuration problem, use the standard facilities supplied
with your system to record the problem identifier, and save
the generated output files. Contact your IBM support center.
Do not discard these files until the problem has been
resolved.

AMQ8829 EC number &1 in Queue Manager &4 failed to
start an &5 agent.
Explanation:

An EC attempted to create an agent process, but the attempt
failed . If the maximum number of agent restarts has not
already been exceeded, the EC will attempt to restart the
agent process.

User action:

Examine the log to see if further information is available
relating to the failure to start the agent. If the problem
persists, end the Queue Manager correct the problem and
restart. If the problem cannot be identified as a configuration
problem, use the standard facilities supplied with your system
to record the problem identifier, and save the generated
output files. Contact your IBM support center. Do not discard
these files until the problem has been resolved.

AMQ8833 EC number &1 in Queue Manager &4 failed to

deactivate &5 agent process &3.
Explanation:

An EC failed to activate an idle agent in order to service a
connection or start channel request. The request could not be
satisfied by the EC. The EC returns a failure completion and
reason code to the originator of the request.

User action:

Examine the log to see if further information is available
relating to the failure to deactivate the agent.

AMQ8834 EC number &1 in Queue Manager &4 failed to

activate &5 agent process &3.
Explanation:

An EC failed to deactivate an active agent after the agent
indicated that it had completed processing a connection or
channel.

User action:

Examine the log to see if further information is available
relating to the failure to deactivate the agent.

AMQ8830 EC number &1 in Queue Manager &4 failed to
service a stop channel agent request for
channel &5.
Explanation:

An EC attempted to process a stop channel request, but the
attempt failed.

The failure will be relayed back to the original requestor via
the EC Boss.

User action:

Examine the log to see if further information is available
relating to the failure to service the stop channel request.
The originator of the stop channel request will be informed of
the failure, together with the reason for the failure.

AMQ8835 EC number &1 in Queue Manager &4

destroyed idle &5 agent process &3.
Explanation:

An EC successfully destroyed an idle agent process. The EC
normally performs this operation as a result of managing the
pool of idle agents. Agents that have been used more than a
certain (configurable) number of times are destroyed and a
fresh agent created in their place.

User action:

None.

AMQ8831 EC number &1 in Queue Manager &4 failed to
service an agent "done" request from agent
process &3.
Explanation:

An EC attempted to process an agent "done" request, but the

attempt failed. An agent "done" request indicates that agent
process &3 has completed its work and is asking the EC
whether to terminate, or to go idle. For some reason, the EC
failed to process the request. The EC will terminate the
agent process.

User action:

Examine the log to see if further information is available
relating to the failure to service the agent "done" request.

AMQ8836 EC number &1 in Queue Manager &4 failed to

destroy an idle &5 agent process &3.
Explanation:

An EC failed to destroy an idle agent process. The EC
normally performs this operation as a result of managing the
pool of idle agents. Agents that have been used more than a
certain (configurable) number of times are destroyed and a
fresh agent created in their place.

User action:

Examine the log to see if further information is available
relating to the failure to destroy the agent.

AMQ8832 EC number &1 in Queue Manager &4 created
an idle &5 agent process.
Explanation:

An EC successfully created an idle agent.
User action:

None.

386 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ8837 EC number &1 in Queue Manager &4 failed to

create an idle &5 agent.
Explanation:

An EC failed to create an idle &5 agent process. The EC
normally performs this operation as a result of managing the
pool of idle agents. Agents that have been used more than a
certain (configurable) number of times are destroyed and a
fresh agent created in their place.

User action:

Examine the log to see if further information is available
relating to the failure to create the agent.

AMQ8838 « AMQ8850

AMQ8838 EC number &1 in Queue Manager &4 initiated
creation of an idle &5 agent.
Explanation:

An EC successfully initiated the creation of an idle &5 agent
process. The EC normally performs this operation as a result
of managing the pool of idle agents. Agents that have been
used more than a certain (configurable) number of times are
destroyed and a fresh agent created in their place.

User action:

None.

AMQ8841 EC process &3 in Queue Manager &4 is

waiting for the EC Boss to initialize.
Explanation:

An EC is waiting for the EC Boss to initialize and create its
entry in the RUNTIME file for the Queue Manager.
User action:

None.

AMQ8839 EC number &1 in Queue Manager &4 failed to
complete a &3 request for channel &5.
Explanation:

An EC failed to complete the processing of an &3 request.
The originator of the request is passed the completion status
and reason code.

User action:

Examine the log to see if further information is available
relating to the failure to complete the processing of the
request.

AMQ8840 EC number &1 in Queue Manager &4 failed to
complete an agent status request for agent
process &3.
Explanation:

An EC failed to complete the processing of an agent status
request. The EC Boss or EC has detected an inconsistency
in the context information about the agent.

User action:

Examine the log to see if further information is available
relating to the failure to complete the processing of the
request.

AMQ8842 EC number &1 in Queue Manager &4 failed to

auto-start an agent for agent channel &5.
Explanation:

An EC Failed to auto-start an LU 6.2 Responder MCA agent
to service channel &5. The channel is marked to be
auto-started in the channel definitions, but the EC failed to
start the agent process during initialization.

User action:

Examine the log to see if further information is available
relating to the failure to auto-start the agent.

AMQ8843 LUG6.2 responder process started for channel

y
Explanation: None

User action: None

AMQ8844 LUB6.2 responder process for channel 'y'

ended
Explanation: None
User action: None

AMQ8850 WARNING - EXCEPTION DETECTED

Installation configuration exceeds the
recorded license use entitlement. Please see
your Program Provider to obtain the required
additional use-authorization.

Explanation:

None.
User action:

None.

Appendix O. Messages 387

AMQO9001 » AMQ9202

Remote messages

AMQ9001 Channel program ended normally.
Explanation:

Channel program '&3' ended normally.
User action:

None.

AMQ9002 Channel program started.
Explanation:

Channel program '&3' started.
User action:

None.

AMQ9181 The response set by the exit is not valid.
Explanation:

The user exit '&3' returned a response code '&1' that is not
valid in the ExitResponse field of the channel exit parameters
(MQCXP). Message AMQ9190 is issued giving more details,
and the channel stops.

User action:

Investigate why the user exit program set a response code
that is not valid.

AMQ9182 The secondary response set by the exit is not
valid.

Explanation:

The user exit '&3' returned a secondary response code '&1' in
the ExitResponse? field of the channel exit parameters
(MQCXP) that is not valid. Message AMQ9190 is issued
giving more details, and the channel stops.

User action:

Investigate why the user exit program set a secondary
response code that is not valid.

AMQ9184 The exit buffer address set by the exit is not
valid.

Explanation:

The user exit '&3' returned an address '&1' for the exit buffer
that is not valid, when the secondary response code in the
ExitResponse2 field of the channel exit parameters (MQCXP)
is set to MQXR2_USE_EXIT_BUFFER. Message AMQ9190
is issued giving more details, and the channel stops.

User action:

Investigate why the user exit program set an exit buffer
address that is not valid. The most likely cause is the failure
to set a value, so that the value is 0.

AMQ9189 The data length set by the exit is not valid.
Explanation:

The user exit '&3' returned a data length value '&1' that was
not greater than zero. Message AMQ9190 is issued giving
more details, and the channel stops.

User action:

Investigate why the user exit program set a data length that is
not valid.

AMQ9190 Channel stopping because of an error in the
exit.

Explanation:

The user exit '&3', invoked for channel '&4' with id '&1' and
reason '&2', returned values that are not valid, as reported in
the preceding messages. The channel stops.

User action:

Investigate why the user exit program set values that are not
valid.

AMQ9196 Data length is larger than the agent buffer
length.

Explanation:

The data length '&1' set by exit '&3" is larger than the agent
buffer length. The user exit returned data in the supplied
agent buffer, but the length specified is greater than the
length of the buffer. Message AMQ9190 is issued giving more
details, and the channel stops.

User action:

Investigate why the user exit program set a data length that is
not valid..

AMQ9197 Data length is larger than the exit buffer
length.

Explanation:

The data length '&1' set by exit '&3" is larger than the exit
buffer length. The user exit returned data in the supplied exit
buffer, but the length specified is greater than the length of
the buffer. Message AMQ9190 is issued giving more details,
and the channel stops.

User action:

Investigate why the user exit program set a data length that is
not valid.

AMQ9201 Allocate failed to host '&3'.
Explanation:

The attempt to allocate a conversation using &4 to host '&3'
was not successful.
User action:

The error may be due to an incorrect entry in the &4
parameters contained in the channel definition to host '&3".
Correct the error and try again. If the error persists, record
the error values and contact your systems administrator. The
return code from &4 was &1 (X'&2'). It may be possible that
the listening program at host '&3" is not running. If this is the
case, perform the relevant operations to start the listening
program for protocol &4 and try again.

AMQ9202 Remote host '&3' not available, retry later.
Explanation:

The attempt to allocate a conversation using &4 to host '&3'
was not successful. However the error may be a transitory
one and it may be possible to successfully allocate a &4
conversation later.

User action:

Try the connection again later. If the failure persists, record
the error values and contact your systems administrator. The
return code from &4 is &1 (X'&2'). The reason for the failure
may be that this host cannot reach the destination host. It
may also be possible that the listening program at host '&3'

388 MQSeries for Tandem NSK V2R2 System Management Guide

was not running. If this is the case, perform the relevant
operations to start the &4 listening program, and try again.

AMQ9203 A configuration error for &4 occurred.
Explanation:

Allocation of a &4 conversation to host '&3' was not possible.
User action:

The configuration error may be one of the following: 1. If the
communications protocol is LU6.2, it may be that one of the
transmission parameters (Mode, or TP Name) is incorrect.
Correct the error and try again. The mode name should be
the same as the mode defined on host &3. The TP name on
&3 should be defined. 2. If the communications protocol is
LU6.2, it may be that an LU6.2 session has not been
established. Contact your systems administrator. 3. If the
communications protocol is TCP/IP, it may be that the host
name specified is incorrect. Correct the error and try again.
4. If the communications protocol is TCP/IP, it may be that
the host name specified cannot be resolved to a network
address. The host name may not be in the nameserver. The
return code from &4 is &1 (X'&2'). Record the error values
and tell the system administrator.

AMQ9204 Connection to host '&3' rejected.
Explanation:

Connection to host '&3' over &4 was rejected.
User action:

The remote system might not be configured to allow
connections from this host. Check the &4 listener program
has been started on host '&3". If the conversation uses
LUG6.2, it is possible that either the userid or password
supplied to the remote host is incorrect. If the conversation
uses TCP/IP, it is possible that the remote host does not
recognize the local host as a valid host. The return code from
&4 is &1 X('&2"). Record the values and tell the systems
administrator.

AMQ9205 The host name supplied is not valid.
Explanation:

The supplied &4 host name '&3' could not be resolved into a
network address. Either the name server does not contain
the host, or the name server was not available.

User action:

Check the &4 configuration on your host.

AMQ9206 Error on send to host '&3'".
Explanation:

An error occurred sending data over &4 to '&3'. This may be
due to a communications failure.
User action:

Record the value &1 and the return code &4 and tell your
systems administrator.

AMQ9207 The data received from host '&3" is not valid.
Explanation:

Incorrect data format received from host '&3' over &4. It may
be that an unknown host is attempting to send data. An FFST
file has been generated containing the invalid data received.
User action:

Tell the systems administrator.

AMQ9203 » AMQ9214

AMQ9208 Error on receive from host '&3".
Explanation:

An error occurred receiving data from '&3' over &4. This may
be due to a communications failure.
User action:

Record the &4 return code &1 (X'&2'") and tell the systems
administrator.

AMQ9209 Connection to host '&3' closed.
Explanation:

An error occurred receiving data from '&3' over &4. The
connection to the remote host has unexpectedly terminated.
User action:

Tell the systems administrator.

AMQ9210 Remote attach failed.
Explanation:

There was an incoming attach from a remote host but the
local host could not complete the bind.
User action:

Record the &4 return code &1 (X'&2") and tell the systems
administrator who should check the &4 configuration.

AMQ9211 Error allocating storage.
Explanation:

The program was unable to obtain enough storage.
User action:

Stop some programs which are using storage and retry the
operation. If the problem persists contact your Systems
Administrator.

AMQ9212 A TCP/IP socket could not be allocated.
Explanation:

A TCP/IP socket could not be created, possibly because of a
storage problem.
User action:

Try the program again. If the failure persists record the value
&1 and tell the systems administrator.

AMQ9213 A communications error for &4 occurred.
Explanation:

An unexpected error occurred in communications.
User action:

The return code from the &4&3 call was &1 (X'&2'). Record
these values and tell the systems administrator.

AMQ9214 Attempt to use an unsupported
communications protocol.
Explanation:

An attempt was made to use an unsupported communications
protocol type &2.
User action:

Check the channel definition file. It may be that the
communications protocol entered is not a currently supported
one.

Appendix O. Messages 389

AMQ9215 » AMQ9227

AMQ9215 Communications subsystem unavailable.
Explanation:

An attempt was made to use the communications subsystem,
but it has not been started.
User action:

Start the communications subsystem, and rerun the program.

AMQ9221 Unrecognized protocol was specified.
Explanation:

The specified value of '&3' was not recognized as one of the
protocols supported.
User action:

Correct the parameter and retry the operation.

AMQ9216 Usage: &3 [-m QMgrName] [-n TPName]
Explanation:

Values passed to the responder channel program are not
valid. The parameter string passed to this program is as
follows :- [-m QMgrName] [-n TPName] Default values will be
used for parameters not supplied.

User action:

Correct the parameters passed to the Channel program and
retry the operation.

AMQ9217 The TCP/IP listener program could not be
started.
Explanation:

An attempt was made to start a new instance of the listener
program, but the program was rejected.
User action:

The failure could be because either the subsystem has not
been started (in this case you should start the subsystem), or
there are too many programs waiting (in this case you should
try to start the listener program later).

AMQ9218 The TCP/IP listener program could not bind to
port number &1.
Explanation:

An attempt to bind the TCP/IP socket to the listener port was
unsuccessful.
User action:

The failure could be due to another program using the same
port number. Record the return code &2 from the bind and
tell the systems administrator.

AMQ9219 The TCP/IP listener program could not create
a new connection for the incoming
conversation.

Explanation:

An attempt was made to create a new socket because an
attach request was received, but an error occurred.
User action:

The failure may be transitory, try again later. If the problem
persists, record the return code &1 and tell the systems
administrator. It may be necessary to free some jobs, or
restart the communications system.

AMQ9220 The &4 communications program could not be
loaded.
Explanation:

The attempt to load the &4 library or procedure '&3' failed
with error code &1.
User action:

Either the library must be installed on the system or the
environment changed to allow the program to locate it.

AMQ9222 Cannot find the configuration file.
Explanation:

The configuration file '&3' cannot be found. This file contains
default definitions for communication parameters. Default
values will be used.

User action:

None.

AMQ9223 Enter a protocol type.
Explanation:

The operation you are performing requires that you enter the
type of protocol.
User action:

Add the protocol parameter and retry the operation.

AMQ9224 Unexpected token detected.
Explanation:

On line &1 of the INI file keyword '&3' was read when a
keyword was expected.
User action:

Correct the file and retry the operation.

AMQ9225 File syntax error.
Explanation:

A syntax error was detected on line &1 while processing the
INI file.
User action:

Correct the problem and retry the operation.

AMQ9226 Usage: &3 [-m QMgrName] -t (TCP | LU62 |
NETBIOS) [ProtocolOptions]
Explanation:

Values passed to the listener program were invalid. The
parameter string passed to this program is as follows :- [-m
QMgrName] (-t TCP [-p Port] | -t LU62 [-n TPName] | -t
NETBIOS [-l LocalName] [-e Names] [-s Sessions] [-0
Commands] [-a Adaptor]) Default values will be used for
parameters not supplied.

User action:

Correct the parameters passed to the listener program and
retry the operation.

AMQ9227 &3 local host name not provided.
Explanation:

User action:

Add a local name to the configuration file and retry the
operation.

390 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ9228 » AMQ9504

AMQ9228 The &4 responder program could not be
started.
Explanation:

An attempt was made to start an instance of the responder
program, but the program was rejected.
User action:

The failure could be because either the subsystem has not
been started (in this case you should start the subsystem), or
there are too many programs waiting (in this case you should
try to start the responder program later).

AMQ9229 The application has been ended.
Explanation:

You have issued a request to end the application.
User action:

None.

AMQ9230 An unexpected &4 event occurred.
Explanation:

During the processing of network events, an unexpected
event &1 occurred.
User action:

None.

AMQ9231 The supplied parameter is not valid.
Explanation:

The value of the &4 &5 parameter has the value '&3". This
value has either not been specified or has been specified
incorrectly.

User action:

Check value of the &5 parameter and correct it if necessary.
If the fault persists, record the return code (&1,&2) and &4
and tell the systems administrator.

AMQ9232 No &3 specified
Explanation:

The operation requires the specification of the &3 field.
User action:

Specify the &3 and retry the operation.

AMQ9233 Error creating Listener thread for &3.
Explanation:

The process attempted to create a new thread for an
incoming connection.
User action:

Contact the systems administrator.

AMQ9235 The supplied Local LU was invalid.
Explanation:

The &4 Local LU name '&3' was invalid.
User action:

Either the Local LU name was entered incorrectly or it was
not in the &4 communications configuration. Correct the error
and try again.

AMQ9236 The supplied Partner LU was invalid.
Explanation:

The &4 Partner LU name '&3' was invalid.
User action:

Either the Partner LU name was entered incorrectly or it was
not in the &4 communications configuration. Correct the error
and try again.

AMQ9240 A communications error for SNAX occurred.
Explanation:

An unexpected error occurred in communications. The reply
code return code from the SNAX APC &3 request was &1 in
the &4 header. The detail return code was &2.

User action:

Record the error values and tell the systems administrator.

AMQ9501 Usage: &3 [-m QMgrName] -c ChiIName.
Explanation:

Values passed to the channel program are not valid. The
parameter string passed to this program is as follows :- [-m
QMgrName] -¢c ChiIName Default values will be used for
parameters not supplied.

User action:

Correct the parameters passed to the Channel program and
retry the operation.

AMQ9502 Type of channel not suitable for action
requested.
Explanation:

The operation requested cannot be performed on channel
'&3'. Some operations are only valid for certain channel types.
For example, you can only ping a channel from the end
sending the message.

User action:

Check whether the channel name is specified correctly. If it
is check that the channel has been defined correctly.

AMQ9503 Channel negotiation failed.
Explanation:

Channel '&3' between this machine and the remote machine
could not be established due to a negotiation failure.
User action:

Tell the systems administrator who should look at the log on
the remote system for messages explaining the cause of the
negotiation failure.

AMQ9504 A protocol error was detected for channel
'&3".
Explanation:
During communications with the remote queue manager, the
channel program detected a protocol error. The failure type
was &1 with associated data of &2.
User action:

Contact the systems administrator who should examine the
error logs to determine the cause of the failure.

Appendix O. Messages 391

AMQ9505 « AMQ9517

AMQ9505 Channel sequence number wrap values are
different.

Explanation:

The sequence number for channel '&3' is &1, but the value
specified at the remote location is &2. The two values must
be the same before the channel can be started.

User action:

Change either the local or remote channel definitions so that
the values specified for the message sequence number wrap
values are the same.

AMQ9506 Message receipt confirmation failed.
Explanation:

Channel '&3' has ended because the remote queue manager
did not accept the last batch of messages.
User action:

The error log for the channel at the remote site will contain an
explanation of the failure. Contact the remote Systems
Administrator to resolve the problem.

AMQ9507 Channel '&3' is currently in-doubt.
Explanation:

The requested operation cannot complete because the
channel is in-doubt with host '&4'".
User action:

Examine the status of the channel, and either restart a
channel to resolve the in-doubt state, or use the RESOLVE
CHANNEL command to correct the problem manually.

AMQ9508 Program cannot connect to the queue
manager.

Explanation:

The connection attempt to queue manager '&4' failed with
reason code &1.
User action:

Ensure that the queue manager is available and operational.

AMQ9509 Program cannot open queue manager object.
Explanation:

The attempt to open either the queue or queue manager
object '&4' on queue manager '&5' failed with reason code
&1.

User action:

Ensure that the queue is available and retry the operation.

AMQ9510 Messages cannot be retrieved from a queue.
Explanation:

The attempt to get messages from queue '&4' on queue
manager '&5' failed with reason code &1.
User action:

Ensure that the required queue is available and operational.

AMQ9511 Messages cannot be put to a queue.
Explanation:

The attempt to put messages to queue '&4' on queue
manager '&5' failed with reason code &1.
User action:

Ensure that the required queue is available and operational.

AMQ9512 Ping operation is not valid for channel '&3'".
Explanation:

Ping may only be issued for SENDER or SERVER channel

types.
User action:

If the local channel is a receiver channel, you must issue the
ping from the remote queue manager.

AMQ9513 Maximum number of channels reached.
Explanation:

The maximum number of channels that can be in use
simultaneously has been reached.
User action:

Either wait for some of the operating channels to close or use
the stop channel command to close some channels. Retry the
operation when some channels are available. The number of
permitted channels is a configurable parameter in the queue
manager configuration file.

AMQ9514 Channel '&3' is in use.
Explanation:

The requested operation failed because channel '&3" is
currently active.
User action:

Either end the channel manually, or wait for it to close, and
retry the operation.

AMQ9515 Channel '&3' changed.
Explanation:

The statistics shown are for the channel requested, but it is a
new instance of the channel. The previous channel instance
has ended.
User action:

None.

AMQ9516 File error occurred.
Explanation:

The filesystem returned error code &1 for file '&3".
User action:

Record the name of the file '&3' and tell the systems
administrator, who should ensure that file '&3" is correct and
available.

AMQ9517 File damaged.
Explanation:

The program has detected damage to the contents of file '&3".
User action:

Record the values and tell the systems administrator who
must restore a saved version of file '&3'. The return code was
'&1" and the record length returned was '&2'.

392 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ9518 « AMQ9530

AMQ9518 File '&3' not found.
Explanation:

The program requires that the file '&3' is present and
available.
User action:

Record the name of the file and tell the systems administrator
who must ensure that file '&3' is available to the program.

AMQ9525 Remote queue manager is ending.

Explanation:

Channel '&3' is closing because the remote queue manager
is ending.
User action:

None.

AMQ9519 Channel '&3' not found.
Explanation:

The requested operation failed because the program could
not find a definition of channel '&3'".
User action:

Check that the name is specified correctly and the channel
definition is available.

AMQ9520 Channel not defined remotely.
Explanation:

There is no definition of channel '&3' at the remote location.
User action:

Add an appropriate definition to the remote hosts list of
defined channels and retry the operation.

AMQ9526 Message sequence number error for channel

'&3'.
Explanation:
The local and remote queue managers do not agree on the
next message sequence number. A message with sequence
number &1 has been sent when sequence number &2 was
expected.
User action:

Determine the cause of the inconsistency. It could be that
the synchronization information has become damaged, or has
been backed out to a previous version.

If the situation cannot be resolved, the sequence number
can be manually reset at the sending end of the channel
using the RESET CHANNEL command.

AMQ9521 Host is not supported by this channel.
Explanation:

The connection across channel '&5' was refused because the
remote host '&4' did not match the host '&3' specified in the
channel definition.

User action:

Update the channel definition, or remove the explicit mention
of the remote machine connection name.

AMQ9522 Error accessing the status table.
Explanation:

The program could not access the channel status table.
User action:

None.

AMQ9523 Remote host detected a protocol error.
Explanation:

During communications through channel '&3', the remote
queue manager channel program detected a protocol error.
The failure type was &1 with associated data of &2.

User action:

Tell the systems administrator, who should examine the error
files to determine the cause of the failure.

AMQ9524 Remote queue manager unavailable.
Explanation:

Channel '&3' cannot start because the remote queue
manager is not currently available.
User action:

Either start the remote queue manager, or retry the operation
later.

AMQ9527 Cannot send message through channel '&3'.
Explanation:

The channel has closed because the remote queue manager
cannot receive a message.
User action:

Contact the systems administrator who should examine the
error files of the remote queue manager, to determine why
the message cannot be received, and then restart the
channel.

AMQ9528 User requested closure of channel '&3'.
Explanation:

The channel is closing because of a request by the user.
User action:

None.

AMQ9529 Target queue unknown on remote host.
Explanation:

Communication using channel '&3' has ended because the
target queue for a message is unknown at the remote host.
User action:

Ensure that the remote host contains a correctly defined
target queue, and restart the channel.

AMQ9530 Program could not inquire queue attributes.
Explanation:

The attempt to inquire the attributes of queue '&4' on queue
manager '&5' failed with reason code &1.
User action:

Ensure that the queue is available and retry the operation.

Appendix O. Messages 393

AMQ9531 » AMQ9543

AMQ9531 Transmission queue specification error.
Explanation:

Queue '&4' identified as a transmission queue in the channel
definition '&3' is not a transmission queue.
User action:

Ensure that the queue name is specified correctly. If so, alter
the queue usage parameter of the queue to that of a
transmission queue.

AMQ9532 Program cannot set queue attributes.
Explanation:

The attempt to set the attributes of queue '&4' on queue
manager '&5' failed with reason code &1.
User action:

Ensure that the queue is available and retry the operation.

AMQ9533 Channel '&3' is not currently active.
Explanation:

The channel was not stopped because it was not currently
active.
User action:

None.

AMQ9534 Channel '&3' is currently not enabled.
Explanation:

The channel program ended because the channel is currently
not enabled.
User action:

Issue the START CHANNEL command to re-enable the
channel.

AMQ9535 User exit not valid.
Explanation:

Channel program '&3' ended because user exit '&4" is not
valid.
User action:

Ensure that the user exit is specified correctly in the channel
definition, and that the user exit program is correct and
available.

AMQ9536 Channel ended by an exit.
Explanation:

Channel program '&3' was ended by exit '&4'.
User action:

None.

AMQ9537 Usage: &3 [-m QMgrName] [-q nitQ]
Explanation:

Values passed to the Channel initiator program are not valid.
The parameter string passed to this program is as follows :-
[-m QMgrName] [-q InitQ] Default values will be used for
parameters not supplied.

User action:

Correct the parameters passed to the program and retry the
operation.

AMQ9538 Commit control error.
Explanation:

An error occurred when attempting to start commitment
control. Either exception '&3' was received when querying
commitment status, or commitment control could not be
started.

User action:

Refer to the error log for other messages pertaining to this
problem.

AMQ9539 No channels available.
Explanation:

The channel initiator program received a trigger message to
start an MCA program to process queue '&3'. The program
could not find a defined, available channel to start.

User action:

Ensure that there is a defined channel, which is enabled, to
process the transmission queue.

AMQ9540 Commit failed.
Explanation:

The program ended because return code &1 was received
when an attempt was made to commit change to the
resource managers. The commit ID was '&3'".

User action:

Tell the systems administrator.

AMQ9541 CCSID supplied for data conversion not
supported.
Explanation:

The program ended because, either the source CCSID '&1' or
the target CCSID '&2' is not valid, or is not currently
supported.

User action:

Correct the CCSID that is not valid, or ensure that the
requested CCSID can be supported.

AMQ9542 Queue manager is ending.
Explanation:

The program will end because the queue manager is
quiescing.
User action:

None.

AMQ9543 Status table damaged.
Explanation:

The channel status table has been damaged.
User action:

End all running channels and issue a DISPLAY CHSTATUS
command to see the status of the channels. Use the standard
facilities supplied with your system to record the problem
identifier, and to save the generated output files. Contact
your IBM support center. Do not discard these files until the
problem has been resolved.

394 MQSeries for Tandem NSK V2R2 System Management Guide

AMQ9544 « AMQ9556

AMQ9544 Messages written to the 'dead-letter queue'.
Explanation:

During the processing of channel '&3' one or more messages
have been put to a dead-letter queue. The location of the
messages is &1, where 1 is the local dead-letter queue and 2
is the remote dead-letter queue.

User action:

Examine the contents of the dead-letter queue. Each
message is contained in a structure that describes why the
message was put to the queue, and to where it was originally
addressed. The program identifier (PID) of the processing
program was '&4'.

AMQ9545 Disconnect interval expired.
Explanation:

Channel '&3' closed because no messages arrived on the
transmission queue within the disconnect interval period.
User action:

None.

AMQ9546 Error return code received.
Explanation:

The program has ended because return code &1 was
returned from an internal function.
User action:

Correct the reason for the failure and retry the operation.

AMQ9550 Channel program &3 cannot be stopped at
this time.

Explanation:

The channel program is currently busy and cannot be
stopped at the moment.
User action:

Issue the STOP CHANNEL command again at a later time.

AMQ9551 Protocol not supported by remote host
Explanation:

The operation you are performing over Channel '&3' to the
host at '&4" is not supported by the target host.
User action:

Check that the connection name parameter is specified
correctly and that the levels of the products in use are
compatible.

AMQ9552 Security flow not received.
Explanation:

During communications through channel '&3' the local
security exit requested security data from the remote
machine. The security data has not been received so the
channel has been closed.

User action:

Tell the systems administrator who should ensure that the
security exit on the remote machine is defined correctly.

AMQ9547 Type of remote channel not suitable for action
requested.

Explanation:

The operation requested cannot be performed because
channel '&3' on the remote machine is not of a suitable type.
For example, if the local channel is defined as a sender the
remote machine must define its channel as either a receiver
or requester.

User action:

Check that the channel name is specified correctly. If it is,
check that the remote channel has been defined correctly.

AMQ9548 Message put to the ‘dead-letter queue'.
Explanation:

During processing a message has been put to the dead-letter
queue.
User action:

Examine the contents of the dead-letter queue. Each
message is contained in a structure that describes why the
message was put to the queue, and to where it was originally
addressed.

AMQ9549 Transmission Queue '&3' inhibited for MQGET.
Explanation:

An MQGET failed because the transmission queue had been
previously inhibited for MQGET.
User action:

None.

AMQ9553 Not supported.
Explanation:

The command or function attempted is not currently
supported on this platform.
User action:

None.

AMQ9554 User not authorized.
Explanation:

You are not authorized to perform the Channel operation.
User action:

Tell the systems administrator who should ensure that the
correct access permissions are available to you, and then
retry the operation.

AMQ9555 File format error.
Explanation:

The file '&3' does not have the expected format.
User action:

Ensure that the file name is specified correctly.

AMQ9556 Channel synchronization file missing or
damaged.

Explanation:

The channel synchronization file '&3" is missing or does not
correspond to the stored channel information for queue
manager '&4'.

User action:

Rebuild the synchronization file using the rcrmgobj command
rcrmqobj -t syncfile (-m g-mgr-name)

Appendix O. Messages 395

AMQO557 « AMQ9600

AMQ9557 Queue Manager UserlD initialization failed. AMQ9565 No dead-letter queue defined.
Explanation: Explanation:
The call to initialize the user ID failed with CompCode &1 and The queue manager '&4' does not have a defined dead-letter
Reason &2. queue.
User action: User action:

Correct the error and try again.

Either correct the problem that caused the program to try and
write a message to the dead-letter queue or create a
dead-letter queue for the queue manager.

AMQ9558 Remote Channel is not currently available.
Explanation:
The channel program ended because the channel '&3' is not AMQ9566. Invalid MQSERVER value
Explanation:

currently available on the remote system. This could be
because the channel is disabled or that the remote system
does not have sufficient resources to run a further channel.
User action:

Check the remote system to ensure that the channel is
available to run and retry the operation.

The value of the MQSERVER environment variable was '&3'.
The variable should be in the format
‘ChannelName/Protocol/ConnectionName'.

User action:

Correct the MQSERVER value and retry the operation.

AMQ9560 Rebuild Synchronization File - program
started

Explanation:

Rebuilding the Synchronization file for Queue Manager '&3' .
User action:

AMQ9572

Message header is not valid.
Explanation:

Channel '&3' is stopping because a message header is not
valid. During the processing of the channel, a message was
found that has a header that is not valid. The dead-letter
queue has been defined as a transmission queue, so a loop

None. would be created if the message had been put there.
User action:
AMQ9561 Rebuild Synchronization File - program
completed normally Correct the problem t_hat caused the message to have a
Explanation: header that is not valid.
Rebuild _Syr?chronlzatlon File program completed normally. AMQ9573 Maximum number of active channels reached.
User action: .
Explanation:
None. .
There are too many channels active to start another. The
current defined maximum number of active channels is &1.
AMQ9562 Synchronization file in use. User action:
Explanation:

The Synchronization file '&3' is in use and cannot be
recreated.
User action:

Stop any channel activity and retry the rcrmgobj command.

Either wait for some of the operating channels to close or use
the stop channel command to close some channels. Retry the
operation when some channels are available. The maximum
number of active channels is a configurable parameter in the
queue manager configuration file.

AMQ9563 Synchronization file cannot be deleted
Explanation:

The filesystem returned error code &1 for file '&3".
User action:

Tell the systems administrator who should ensure that file '&3
is available and not in use.

AMQO574

Channel &3 can now be started.
Explanation:

Channel &3 has been waiting to start, but there were no
channels available because the maximum number of active
channels was running. One, or more, of the active channels
has now closed so this channel can start.

User action:
o . None.
AMQ9564 Synchronization File cannot be created
Explanation:
AMQ9600 The TCP Listener &3 in Queue Manager &4

The filesystem returned error code &1 for file '&3'".
User action:

Tell the systems administrator.

396 MQSeries for Tandem NSK V2R2 System Management Guide

cannot find an available port.
Explanation:

The TCP listener has tried all the ports that are configured in
the QMINI file for this Queue Manager, and none were
available for listening on. The TCP Listener has now
terminated. The TCP Listener is either not needed (because
there are already TCP Listeners running on all the Queue
Manager ports), or there is a configuration problem with the
Queue Manager.

User action:

AMQO712 « AMQ9999

Review the QMINI file TCP/IP Listener stanzas to determine if
there is a configuration problem. The port numbers
themselves may be incorrect, or overlap with ports being
used by other Queue Managers on the same system, or with
other services.

AMQ9713 MQSeries Clean Queue Manager complete
Explanation: None
User action: None

AMQ9999 Channel program ended abnormally.

AMQ9712 MQSeries Clean Queue Manager started Explanation:
Explanation: None Channel program '&3' ended abnormally.
User action: None User action:

Look at previous error messages for channel program '&3' in
the error files to determine the cause of the failure.

Appendix O. Messages 397

398 MQsSeries for Tandem NSK V2R2 System Management Guide

Notices

Appendix P. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, Mail Point 151,
IBM United Kingdom Laboratories, Hursley Park, Winchester, Hampshire SO21
2JN, England. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

AIX AS/400

BookManager CICS

FFST First Failure Support Technology
IBM IBMLink

MQ MQSeries

MQSeries Three Tier MVS/ESA

0s/2 0S/400

VSE/ESA

Tandem NonStop Kernel is a trademark of Tandem Computers, Inc.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

© Copyright IBM Corp. 1995, 1997 399

Notices

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

400 MQSeries for Tandem NSK V2R2 System Management Guide

Part 4. Glossary and index

© Copyright IBM Corp. 1995, 1997 401

402 MQSeries for Tandem NSK V2R2 System Management Guide

administration commands

e channel definition file (CDF)

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you cannot find a
particular term, see the Index or the IBM Dictionary of
Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies can be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A

administration commands MQSeries commands
used to manage MQSeries objects, such as queues,
processes, and namelists.

alert. A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
gueue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

alternate user security A security feature in which
the authority of one user ID can be used by another
user ID, for example, to open an MQSeries object.

APAR. Authorized Program Analysis Report.
APC. Advanced Program Communication.

application queue . A queue used by an application.

asynchronous messaging A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks Security checks that are

performed when you attempt to open an MQSeries
object.

© Copyright IBM Corp. 1995, 1997

authorization file . A file that provides security
definitions for an object, a class of objects, or all
classes of object.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B

back out . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins.

basic mapping support (BMS) An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic Mapping Support.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

C

call back . A requester message channel initiates a
transfer from a sender channel by first calling the
sender, then closing down and awaiting a call back.

CCF. Channel control function.
CCSID. Coded character set identifier.
CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) A program to move
messages from a transmission queue to a
communication link, and from a communication link to a
local queue, together with an operator panel interface to
allow the setup and control of channels.

channel definition file (CDF) In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

403

channel event e distributed application

channel event . An event that indicates that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CICS. Customer Information Control System.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQI client.

client application An application running on a
workstation and linked to a client that gives the
application access to queuing services on a server.

client connection channel type The type of MQI
channel definition associated with an MQI client. See
also server connection channel type.

coded character set identifier (CCSID) The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an instruction that can be
carried out by the queue manager.

command processor
processes commands.

The MQSeries component that

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . The act of completing a transaction so that
changes to the database a recorded and stable.
Protected resources are released after the transaction is
committed.

Common Run-Time Environment (CRE) A set of
services that enable system and application
programmers to write mixed-language programs. These
shared, run-time services can be used by C, COBOLSS5,

FORTRAN, Pascal, and TAL programs.

completion code .
MQI call has ended.

A return code indicating how an

configuration file (also known as ini file) A file that
contains configuration information related to logs,
communications, or installable services. See also
stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call or automatically by the MQOPEN call.

connection handle . The identifier, or token, by which
a program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . A method of allowing security to be
handled such that messages are obliged to carry details
of their origins in the message descriptor.

controlled shutdown See quiesced shutdown.

CRE. Common Run-Time Environment.

Customer Information Control System (CICS) . An
IBM transaction management system that provides
concurrent online access to data files by means of
user-written application programs. CICS also includes
facilities for building, using, and maintaining databases.

D

data conversion interface (DCI) The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a

reply.
DCE. Distributed Computing Environment.
DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

distributed application In message queuing, a set of
application programs that can each be connected to a

404 MQSeries for Tandem NSK V2R2 System Management Guide

Distributed Computing Environment (DCE)

different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE)

Middleware that provides basic services, making the
development of distributed applications easier. DCE is
defined by the Open Software Foundation (OSF).

distributed queue management In message
queuing, the setup and control of message channels to
gueue managers on other systems.

DLQ (dead-letter queue) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dynamic queue . A local queue that is created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E

EC. EC is a subsidiary controlling process in the
gueue manager, responsible for a set of agents.

EC Boss. The Execution Controller Boss is the main
controlling process in the queue manager.

EMS. Event Monitoring System.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (Queue manager,
performance, or channel event) has its own event
queue.

e input/output parameter

F

FFST. First Failure Support Technology.

FIFO (first-in-first-out) A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time.

First Failure Support Technology (FFST) Used by
MQSeries on UNIX systems, MQSeries for 0S/2,
MQSeries for Windows NT, and MQSeries for OS/400
to detect and report software problems.

first-in-first-out (FIFO) A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time.

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

¢ MQSeries data conversion interface (DCI)

¢ MQSeries message channel interface (MCI)
e MQSeries name service interface (NSI)

¢ MQSeries security enabling interface (SEI)
¢ MQSeries trigger monitor interface (TMI)

G

get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

H

handle. See connection handle and object handle.

ICE. Intersystem Communications Environment is a
family of Tandem-based software products that enables
you to access a variety of applications on Tandem
computers.

immediate shutdown In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

ini file . See configuration file.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter A parameter of an MQI call
in which you supply information when you make the

Glossary of terms and abbreviations 405

input parameter e message queue management

call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

installable services In MQSeries on UNIX systems,
MQSeries for Tandem, MQSeries for OS/2, and
MQSeries for Windows NT, additional functionality
provided as independent components. The installation
of each component is optional: in-house or third-party
components can be used instead. See also
authorization service, name service, and user identifier
service.

instrumentation event A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

L

linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
process of keeping restart data in a sequence of files.
New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener . In MQSeries distributed queuing, a program
that monitors information about incoming network
connections.

local definition An MQSeries object that belongs to a
local queue manager.

local definition of a remote queue An MQSeries
object that belongs to a local queue manager. This
object defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
gueuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, records the work done by queue
managers while they receive, transmit, and deliver
messages.

logical unit of work (LUW) See unit of work.

MCA (message channel agent) . A program that
transmits prepared messages from a transmission
gueue to a communication link, or from a
communication link to a destination queue.

MCI (message channel interface) The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message . In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender and a receiver)
and a communication link. Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
gueue to a communication link, or from a
communication link to a destination queue.

message channel interface (MCI) The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface lets application programs
access message gueuing services.

message queue management . The Message Queue
Management (MQM) facility in MQSeries for Tandem

406 MQSeries for Tandem NSK V2R2 System Management Guide

NSK V2.2 uses PCF command formats and control
commands. MQM runs as a PATHWAY SCOBOL
requester under the Terminal Control Process (TCP)
and uses an MQM SERVERCLASS server, which
invokes the C language API to perform PCF
commands. There is a separate instance of MQM for
each queue manager configured on a system, since
each queue manager is controlled under its own
PATHWAY configuration. Consequently, an MQM is
limited to the management of the queue manager to
which it belongs.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

MQI (message queuing interface) The programming
interface provided by the MQSeries queue managers.
This programming interface lets application programs
access message gueuing services.

MQI channel . Connects an MQI client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQM. Message Queue Management.

MQI client . Part of an MQSeries product that can be
installed on a system without installing the full queue
manager. The MQI client accepts MQI calls from
applications and communicates with a queue manager
on a server system.

MQI server. An MQI server is a queue manager that
provides queuing services to one or more clients. All
the MQSeries objects, for example queues, exist only
on the queue manager system, that is, on the MQI
server machine. A server can support normal local MQI
applications as well.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

message queuing b performance trace

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

nonpersistent message A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

null character .
X'00'.

The character that is represented by

O

object. In MQSeries, an object is a queue manager, a
gueue, a process definition, a namelist (MVS/ESA only),
or a channel.

Object authority manager (OAM) In MQSeries on
UNIX systems, MQSeries for Tandem, and &gmnt;, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor A data structure that identifies a
particular MQSeries object (MQOD). Included in the
descriptor are the name of the object and the object

type.

object handle . The identifier, or token, by which a
program accesses the MQSeries object with which it is
working.

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

performance event . A category of event that indicates
a limit condition has occurred.

performance trace . An MQSeries trace option where

the trace data is to be used for performance analysis
and tuning.

Glossary of terms and abbreviations 407

permanent dynamic queue e reply-to queue

permanent dynamic queue A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping. In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

preemptive shutdown In MQSeries, a shutdown of a
gueue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

process definition object An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF)
MQSeries message that is used by:

A type of

¢ User administration applications that put PCF
commands onto the system command input queue
of a specified queue manager.

¢ User administration applications, to get the results
of a PCF command from a specified queue
manager.

¢ A queue manager, as a notification that an event
has occurred.

Contrast with MQSC.

program temporary fix (PTF) A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q

queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
gueue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an

application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

gueue manager event . An event that indicates:

¢ An error condition has occurred in relation to the
resources used by a queue manager. For example,
an error condition caused by a queue being
unavailable.

¢ A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown In MQSeries, a shutdown of a
gueue manager that allows all connected applications to
disconnect. Contrast with immediate shutdown and
preemptive shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,
programs are allowed to finish processing, but no new
programs are allowed to start.

R

RBA. Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

remote queue . A queue that belongs to a remote
gueue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager is remote if it is not the queue manager to
which the program is connected.

remote queue object . See local definition of a remote

queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

408 MQseries for Tandem NSK V2R2 System Management Guide

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used for
requesting a reply from another program.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to the MQOPEN call.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S

security enabling interface (SEI) The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

report message e store and forward

sequential number wrap value In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type The type of MQI
channel definition associated with the server that runs a
gueue manager. See also client connection channel

type .

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event An event related to the service

interval.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

single-phase back out . A method in which an action
that is in progress must not be allowed to finish, and all
changes that are part of that action must be undone.

single-phase commit A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.
SNA. Systems Network Architecture.

stanza. A group of lines in a configuration file that
assigns a value to a parameter that modifies the
behavior of a queue manager, client, or channel. In
MQSeries on systems, a configuration (ini) file can
contain a number of stanzas.

store and forward . The temporary storing of packets,

messages, or frames in a data network before they are
retransmitted toward their destination.

Glossary of terms and abbreviations 409

symptom string e utility

symptom string Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

system.command.input queue A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
gueue by the command server, which validates them
and passes them to the command processor to be run.

system control commands Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

T

TACL. Tandem Advanced Command Language.

temporary dynamic queue A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging
messaging.

See asynchronous

TMF. Transaction Management Facility.
TMI. Trigger monitor interface.

TM/MP. NonStop Transaction Manager/MP.
tranid . See transaction identifier.

transmission program See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility that lets a queue
manager start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message that contains information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
that serves one or more initiation queues. When a
trigger message arrives on an initiation queue, the
trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

trigger monitor interface (TMI) The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U

undelivered-message queue See dead-letter queue.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

410 MQSeries for Tandem NSK V2R2 System Management Guide

Index

Special Characters
$SYSTEM, default installation volume 19

A

ACTION keyword, rules table 143
action keywords, rules table 143
ADD SERVER, PATHCOM command 38
administration
authorizations 131
command sets 33
control commands 33
MQSeries commands (MQSC) 34
programmable command format commands
(PCF) 34
local 83
remote 108
channels 109
objects 107
transmission queues 109
agent processes 53
alias queues
authorizations to 125
description 7
aliases
queue manager 117
reply-to queues 117
alter queue manager attributes 86
ALTER SERVER, PATHCOM command 39
alternate user authority 125
altmgfls command 95, 198
related commands 199
amgscoma 59
AMQxxxxx messages 347
APC pathway definition, example 324
application
data 4
design considerations 180
MQI administration support 83
programming errors, examples of 176
time-independent 3
APPLIDAT keyword, rules table 142
APPLNAME keyword, rules table 142
APPLTYPE keyword, rules table 142
APPLTYPE(NSK), process attribute 264
attributes 85
ALL attribute 93
altering 86
changing 94
default 93
displaying queue manager 85

© Copyright IBM Corp. 1995, 1997

Index

attributes (continued)

MQSC and PCFs compared 35

gueue manager

altering 86
displaying 85

queues 7
audit trail 16
audit-trail size, TM/IMP 159
authority

alternate user 125

commands 124

context 126

installable services 124

set/reset command 236
authority events 335
authorization

administration 131

dspmgaut command 124

lists 123

MQI 128

setmgaut command 124

user groups 122
authorization files

all class 136

authorization to 137

class 136

contents 135

directories 134

managing 136

paths 134

understanding 134
authorization service interface 342
authorization service, configuring 28
AUTOSTART, channel attribute 264

B

bibliography xii

binding 14
BookManager xvi
browsing queues 96
building applications 307

C

case-sensitive control commands 33
CCSID language support tables 265
CCSID parameter, crtmgm command 53
changing queue attributes 94
channel

commands 127

configuration 166

411

Index

channel (continued) commands (continued)
defining 110 control (continued)
description 10, 107 dspmgfls 219
escape command authorizations 131 dspmqtrc 221
events 152 endmqcsv 222
remote administration 109 endmgm 224
run command 229 endmaqtrc 226
run initiator command 228 instmgm 227
security 127, 128 runmgchi 228
security requirements 127 runmgchl 229
starting 111 runmqgdlg 230
channel attributes 315 runmglsr 231
channel events 335 runmgsc 232
channel exit programs 315 runmgtrm 235
channel exits 12 setmgaut 236
building 314 strmgcsv 242
channel initiator disconnect interval 54 strmgm 243
channel synchronization subvolume 57 strmqtrc 244
Channels menu, MQM 72 MQSC
channels, limiting number of 54 ALTER QLOCAL 94
Chinese language support 289, 290 ALTER QREMOTE 116
cleangm command 49, 200 command files 87
clearing a local queue 95 DEFINE CHANNEL 110
clients 11, 333 DEFINE QALIAS 100
cnv1520 command 201 DEFINE QLOCAL 94
related commands 202 DEFINE QLOCAL LIKE 94
cnvclchl command 206 DEFINE QLOCAL REPLACE 95
cnvmsgs command 203 DEFINE QMODEL 101
related commands 205 DEFINE QREMOTE 114
code-page conversions 265 DELETE QLOCAL 96
command errors 176 DISPLAY QREMOTE 116
command files 87 using 34
command queue 9 verifying 89
command server programmable command format (PCF) 34
display command 218 run DLQ handler (runmqdiq) 139
displaying status 62 runmgsc 84
end command 222 security commands
remote administration 62 dspmgaut 124
start command 242 setmgaut 122
starting 62 set/reset authority (setmgaut) 123
stopping 62 commit
command set single-phase 157
administration 33 two-phase 157
comparison 35 communications examples
commands ICE 328
comparison of sets 35 SNAX 321
control 33 TCP/IP 331
altmqgfls 198 communications, customizing 28
cleangm 200 compilation 14
cnvl520 201 configuration
cnvclchl 206 kernel 20
cnvmsgs 203 name service 31
crtmgevx 207 configuration files
crtmgm 209 MQSeries (MQSINI) 163
ditmgm 212 backing up 50
dspmgaut 214 contents 164
dspmqgcsv 218 overview 163

412 MQSeries for Tandem NSK V2R2 System Management Guide

configuration files (continued)
MQSeries (MQSINI) (continued)
path 90
overview 163
gueue manager (QMINI) 122
backing up 50
contents 165
disabling the object authority manager 122
stanzas 165
contents of
MQSINI 164
QMINI 165
context authority 126
control commands 33
altmgfls 198
case sensitive 33
cleangm 200
cnv1520 201
cnvclchl 206
cnvmsgs 203
crtmgevx 207
crtmgm 209
ditmgm 212
dspmqaut 214
dspmqgcsv 218
dspmqfls 219
dspmqtrc 221
endmqgcsv 222
endmgm 224
endmaqtrc 226
instmgm 227
runmqchi 228
runmgchl 229
runmgdlg 230
runmglsr 231
runmgsc 84, 232
runmgtrm 235
setmgaut 236
strmqcsv 242
strmgm 243
strmqtrc 244
controlled shutdown 59
conversions, code-page 265
copying a channel 82
copying a queue 70
Correlld, performance considerations when using 180
creating
a queue manager 23
crtmgm command 209
default objects 59
groups 15
process definitions 104
gueue manager 47, 58
system objects 59
users 15

creating a channel definition 75
creating a queue 68
creating a transmission queue 116
crtmgcvx command 207
crtmgm command 209
related commands 211
current queue depth 94
customizing
options available 27
overview
communications 28
data conversion 29
defining objects 29

D

Danish language support 269
data conversion
crtmgcvx command 207
customizing 29
data files subvolume 56
data-conversion exits 12
building 313
data-conversion user exits 316
dead-letter header, MQDLH 139
dead-letter queue
description 9

handler 230
specifying 49
debugging

command syntax errors 176
common command errors 176
common programming errors 176
preliminary checks 173
secondary checks 177, 180
default
objects 10
creating 59
defining 29
gueue manager 48
accidental change 61
accidental deletion 210
changing 61, 86
commands processed 84
system objects 259
transmission queue 50
default installation volume ($SYSTEM) 19
default TCP/IP port 55
default transmission queue 116
DefaultPrefix parameter, crtmgm command 50
defining a queue 68
defining queues 7
deleting
ditmgm command 212
local queue 96
queue manager 61

Index

Index

413

Index

deleting a channel 78
deleting a queue 71
DESTQ keyword, rules table 142
DESTQM keyword, rules table 142
determining problems 173
directories 125

gueue manager 125
disabling the object authority manager 122
disk requirements for installation 16
display

authority command 214

command server command 218

MQSeries files command 219

MQSeries formatted trace output command 221

process definitions 105

queue manager attributes 85

status of command server 62
displaying channel status 78
distributed queuing

dead-letter queue 9

incorrect output 183

undelivered-message queue 9
DLQ handler

invoking 139

rules table 140
ditmgm command 212

related commands 213
dspmqgaut command 214

related commands 217

using 122,124
dspmqgcsv command 218

related commands 218
dspmqfls command 219

related commands 220
dspmqtrc command 221

related commands 221
dynamic queues 5

authorizations to 125

E
EC Boss, role of 51
EC processes, number of 51
elementary data types, TAL 293
EMS event template, MQSeries 343
EMS events 153, 187
alternative collector, specifying 156
default collector 156
setting the MQEMSEVENTS PARAM 155
writing programs to process 156
EMSCollectorName 53
enabling
events 152
security 122
enabling EMS events 153

end MQSeries trace 226
ending a queue manager 60
ending interactive MQSC commands 85
endmgcsv command 222
related commands 223
endmgm command 59, 224
related commands 225
endmgtrc command 226
related commands 226
environment variable, disabling security 122
environment variables 20
error log 185
error occurring before established 186
example 187
subvolume 57
error messages 84
escape PCFs 35
Event Management Service (EMS) events 153
event queue 9
event-driven processing 3
event-message format 336
events
channel 152
instrumentation
description 151
enabling 152
message 153
types of 151
what they are 151
why use them 151
queues 152
trigger 152
types of 151
events, support for in MQSeries for Tandem NSK
examples
altmgfls command 199
cnv1520 command 201
cnvclchl command 206
cnvmsgs command 203
communications setup 321
crtmgcvx command 207
crtmgm command 211
ditmgm command 212
dspmqgaut command 217
dspmqgcsv command 218
dspmqgfls command 220
endmgcsv command 222
endmgm command 225
endmgtrc command 226
error log 187
PAK installation 255
programming errors 176
runmgsc command 234
setmgaut command 241
strmgcsv command 242
strmgm command 243

414 MQSeries for Tandem NSK V2R2 System Management Guide

335

examples (continued)
strmqtrc command 245
executables
specifying location of 32
ExpectedNumECs 51

F

feedback from MQSC commands 84
FEEDBACK keyword, rules table 142
FFST
examining 190
subvolume 56
files
authorization
all class 136
authorizations to 137
class 136
contents 135
managing 136
paths 134
understanding 134
configuration
in problem determination 188
overview 163
MQSeries configuration 163
gueue manager configuration 165
Finnish language support 270
FORMAT keyword, rules table 142
FREEZE SERVER, PATHCOM command 38
French language support 274
FWDQ keyword, rules table 144
FWDQM keyword, rules table 144

G

Gaelic language support 273
German language support 268
glossary 403

groups, creating 15

H

hard disk requirements 16
hardware requirements 14
HEADER keyword, rules table 144
home volume of queue manager 50

HomeTerminalName parameter, crtmgm command 51

HTML (Hypertext Markup Language) xvi
Hypertext Markup Language (HTML) xvi

ICE communications example 328
Icelandic language support 277
idle agent processes 53

incorrect output 181
Information Presentation Facility (IPF) xvii
inhibit events 335
initiation queue

defining 104

description 8
INPUTQ keyword, rules table 140
INPUTQM keyword, rules table 141
installable services

authorization service 342

name service 31, 342

object authority manager (OAM) 120

disabling 122

installation 13

directory structure 21

preparation 15

procedure 16

Index

procedure on NonStop Kernel D30, D40, and G02

releases 16

supported code sets 29

unsuccessful 25

verifying 23
installation subvolumes (ISVs) 15

ZMQSEXE 21

ZMQSLIB 22

ZMQSSMPL 22

ZMQSSYS 21
installation volume, default 19
instmgm command 227
instrumentation event

description 151

enabling 152

messages 153

types of 151

why use them 151
instrumentation events 335
interactive MQSC

ending 85

feedback from 84

using 84
IPF (Information Presentation Facility) xvii
issuing MQSeries commands 83
ISVs (installation subvolumes) 15
Italian language support 271

J

Japanese language support 287

K

Kanji language support 287
Katakana language support 287
kernel configuration 20

Korean language support 288

Index

415

Index

L

license management 250
LIKE attribute 94
load balancing 51
local administration 83
local events 335
local queues
clearing 95
command 9
copying definitions 94
dead-letter 9
defining one 92
deleting 96
description 7
initiation 8
transmission 8
undelivered-message 9
log, error 185, 187
LQMAgentPriority 54
LU 6.2 responder processes 320

M

managing objects for triggering 102
MaxActiveChannels 54
MaxChannels 54
maximum line length for MQSC commands 88
MCAAgentPriority 54
message

administration 368

containing unexpected information 183

description 4

descriptor 4

for instrumentation events 153

format 347

groups 348

information 347

lengths of 4, 180

MQSeries product 358

not appearing on queues 181

operator 186

performance considerations 180

queuing 3

remote 388

retrieval algorithms 5

searching for particular 180

structure 347

undelivered 188

variable length 180

variables 347
message length, decreasing 95
message queue interface (MQI) 3
Message Queue Management (MQM) 63
message queue subvolume 57

message queuing 3
message-driven processing 3, 14
messages
common services 355
installable services 349
migration from V1.5.1 13
MinldleLQMAgents 53
MinldleMCACallers 53
MinldleMCALU62Responders 53
MinldleMCATCPResponders 53
model queues
defining 101
description 8
working with 101
modifying a channel 74
modifying a queue 71
modifying the CCSID 53
monitoring 158
monitoring a channel 78
monitoring a queue 72
monitoring queue managers 151
MQAT_NSK, ApplType value 305
MQCFH, PCF header 338
MQCEFIL, PCF integer list parameter 340
MQCFIN, PCF integer 340
MQCFSL, PCF string list 340
MQCFST, PCF string parameter 339
MQCHANNELEXIT() 315
MQDATACONVEXIT() 316
MQDEFAULTPREFIX, environment variable 20
MQDLH, dead-letter header 139
MQEMSEVENTS PARAM 155
MQGMO_BROWSE_* 308
MQI
authorizations 128
description 3
local administration support 83
queue manager calls 7
MQM
user group 119
user ID 119, 125
MQM (Message Queue Management) 63
MQMACHINIFILE, environment variable 20, 163
MQMREFRESHINT, pathway parameter 39
MQOPEN authorizations 129
MQPUT and MQPUT1, performance
considerations 181
MQPUT authorizations 129
MQRC (reason codes) 305
MQS-CHANINITOO, TS/MP server class 38
MQS-CMDSERVO00, TS/MP server class 38
MQS-ECO00, TS/MP server class 39
MQS-TCPLIS00, TS/MP server class 38
MQS-TRIGMONOQO, TS/MP server class 38
MQSC 35, 84
command files
output reports 88

416 MQSeries for Tandem NSK V2R2 System Management Guide

MQSC (continued)
command files (continued)
running 89
commands 34
ending interactive input 85
how to issue commands 83
issuing commands interactively 84
issuing remotely 112
maximum line length 88
problems
local 90
remote 113
redirecting input and output 86
security requirements on channels 128
supported by MQSeries for Tandem NSK, V2.2 263
timed out command responses 112
using commands 86
verifying commands 89
MQSC commands
ALTER QLOCAL 94
ALTER QREMOTE 116
DEFINE CHANNEL 110
DEFINE QALIAS 100
DEFINE QLOCAL 94
DEFINE QLOCAL LIKE 94
DEFINE QLOCAL REPLACE 95
DEFINE QMODEL 101
DEFINE QREMOTE 114
DELETE QLOCAL 96
DISPLAY QREMOTE 116
maximum line length 88
using 34
MQSeries
prerequisites 13
super user, MQM 119
MQSeries for Tandem NSK, V2.2
AMQxxxxx messages 347
building applications 307
client support 333
EMS event template used by 343
installation instructions 15
MQSC supported by 263
running applications 307
software requirements 13
TM/MP (TMF) support 157
volume structure 56
MQSeries publications xii
MQSINI, configuration file 163
MQSINI, path to 90
MQSNOAUT, environment variable 20, 122
MQXCNVC, convert characters call 316
MQZAO constants and authority 129
Msgld, performance considerations when using 180
MSGTYPE keyword, rules table 143
Multilingual language support 275

MVS/ESA queue manager 112

N

name service interface 342
name service, configuration of 31
name transformation, object 58
names
allowed for objects 196
objects 5
naming conventions, national language support
nondefault TCP/IP process 55
nonpersistent messages 251
Norwegian language support 269
notification of events 152
NumECs parameter, crtmgm command 51

O

OAM (object authority manager) 120
object authority manager

disabling 122

dspmqgaut command 124

groups 121

how it works 121

sensitive operations 125

setmgaut command 122, 123
object authority manager (OAM) 120

replacing 342

subvolume 58
object name transformation 58
objects

access to 119

customizing 29

default

attributes 93
creating 59

for triggering 102

names 5

naming conventions 196

process definition 10

queue 7
gueue manager

MQI calls 7

prefixes 30
remote administration 107
system

creating 59
system default 10, 259
types of 5

operator commands, no response from 177
operator messages 186
overview of MQSeries for Tandem NSK 249

Index

Index

196

417

Index

P

PAK installation 255

panels, MQM facility 63

PARAM MQEMSEVENTS 155

parameters
altmgfls command 198
cleangm command 200
cnv1520 command 201
cnvclchl command 206
cnvmsgs command 203
crtmgcvx command 207
crtmgm command 209
ditmgm command 212
dspmqgaut command 214
dspmqgcsv command 218
dspmqfls command 219
dspmqtrc command 221
endmgcsv command 222
endmgm command 224
endmgtrc command 226
instmgm command 227
runmgchi command 228
runmgchl command 229
runmqdlg command 230
runmglsr command 231
runmgsc command 233
runmgtrm command 235
setmgaut command 238
strmqgcsv command 242
strmgm command 243
strmqtrc 244

PARAMSs (environment variables) 20

partitioning macro (partit) 30

PATHCOM commands
ADD SERVER 38
ALTER SERVER 39
FREEZE SERVER 38
START SERVER 38
STATUS SERVER 38
STOP SERVER 38
THAW SERVER 38

PathmonProcName 52

PATHWAY configuration, example 39

Pathway server classes, changing parameters of 45

pattern-matching keywords, rules table 142

PCF command responses 342

PCF commands 34, 341

PCFs (programmable command formats)
header (MQCFH) 338
integer (MQCFIN) 340
integer list parameter (MQCFIL) 340
message descriptor 338
MQCFH (header) 338
MQCEFIL (integer list parameter) 340
MQCEFIN (integer) 340

338

PCFs (programmable command formats) (continued)

MQCFSL (string list) 340

MQCEFST (string parameter) 339

string list (MQCFSL) 340

string parameter (MQCFST) 339
performance considerations

of application design 180

when using trace 188
performance events 152, 335
permanent queues 5
PERSIST keyword, rules table 143
persistent messages 251
Portuguese language support 276
PostScript format xvi
predefined queues 5

preemptive queue manager shutdown 60
priority of queue manager processes 54

problem determination
configuration files 188
further checks 177, 180
incorrect output
with distributed queuing 183
no response from commands 177
programming errors 176
things to check first 173
problems
running MQSC commands 90
using MQSC locally 90
using MQSC remotely 113
process definitions
creating 104
description 10
displaying 105
processing, event-driven 3

programmable command formats (PCFs)

programming errors, examples of 176
programs, samples supplied 311
protected resources 121
publications

MQSeries xii
PUTAUT keyword, rules table 144

QMDefaultVolume 50
QMINI, configuration file 165
queue depth
current 94
determining 94
gueue manager
alias, remote queue 117
authorization subvolumes 134
authorizations 125
command server 62
configuration file 165
configuration files
specifying 50

418 MQSeries for Tandem NSK V2R2 System Management Guide

34, 338

Index

queue manager (continued) queues (continued)
configuration overview 31 dynamic 5
creating 23, 47, 58 event 9
crtmgm command 209 event notification 152
default 48, 210 for MQI applications 83
accidental change 61 initiation
accidental deletion 210 defining 104
changing 61 trigger messages 8
deleting 61 local 7
ditmgm command 212 clearing 95
description 6 copying 94
directories 125 defining 92
endmgm command 224 deleting 96
events 151 model 8
home volume 50 defining 101
immediate shutdown 60 working with 101
local administration 83 objects
monitoring 151 alias 7
numbers of 48 local 7
object authority manager 120 model 8
description 120 remote 7
disabling 122 predefined 5
objects remote 7
MQI calls 7 creating 114
prefixes 30 gueue manager alias 117
on MVS/ESA 112 working with 117
preemptive shutdown 60 reply-to 9, 117
remote administration 107 temporary 5
removing transmission 8
manually 261 creating 116
restart 60 default 50, 116
shutdown 59 defining 110
controlled 59 remote administration 109
quiesce 59 undelivered-message 9
specifying on rmgsc 86 specifying 49
starting 59 working with 92
stopping 59 Queues menu, MQM 66
manually 261 quiesce shutdown 59
uniqgue name 48
Queue Manager Menu, MQM 64 R
queued mode, of runmgsc 112
queues railroad diagrams, how to read 196
alias 7 reason codes 305
aliases, working with 99 REASON keyword, rules table 143
application redirecting input and output, on MQSC commands 86
defining for triggering 103 related publications xvii
attributes 7 remote
changing 94 administration 108
authorizations to 125 of objects 107
browsing 96 issuing of MQSC commands 112
Command 9 queue deﬁnition
dead-letter 9 creating 114
specifying 49 queue object
defining 7 working with 117
description 4 queues
distributed, incorrect output from 183 as queue manager aliases 117

as reply-to queue aliases 117

Index 419

Index

remote (continued)
queuing
description 107
recommendations 113
security considerations 127
remote administration
command server 62
initial problems 113
remote events 335
remote queues
authorizations to 125
description 7
removing queue manager manually 261
REPLACE attribute, DEFINE commands 88
reply-to queue 9
reply-to queue aliases 117
REPLYQ keyword, rules table 143
REPLYQM keyword, rules table 143
requirements
disk storage 16
hardware 249
software 249
resetting a message sequence number (MSN) 80
resolving a channel 81
resources, protecting 120
restart queue manager 60
RESTORE command (installation) 16
restrictions
access to MQM objects 119
object names 196
retrieval algorithms for messages
RETRY keyword, rules table 144
RETRYINT keyword, rules table 141
return codes 174
altmgfls command 198
cleangm command 200
crtmgcvx command 207
crtmgm command 211
ditmgm command 212
dspmqgaut command 216
dspmqgcsv command 218
dspmqfls command 220
endmgqcsv command 222
endmgm command 225
endmgtrc command 226
runmgchi command 228
runmgchl command 229
runmglsr command 231
runmgsc command 233
runmgtrm command 235
setmgaut command 240
strmgcsv command 242
strmgm command 243
strmgtrc command 245
reusing exit programs 315

rollbback 157
rules table, DLQ handler 140
control data entry
INPUTQ keyword 140
INPUTQM keyword 141
RETRYINT keyword 141
WAIT keyword 141
example 148
patterns and actions (rules)
ACTION keyword 143
APPLIDAT keyword 142
APPLNAME keyword 142
APPLTYPE keyword 142
DESTQ keyword 142
DESTQM keyword 142
FEEDBACK keyword 142
FORMAT keyword 142
FWDQ keyword 144
FWDQM keyword 144
HEADER keyword 144
MSGTYPE keyword 143
PERSIST keyword 143
PUTAUT keyword 144
REASON keyword 143
REPLYQ keyword 143
REPLYQM keyword 143
RETRY keyword 144
USERID keyword 143
processing of 146
syntax 145
run listener (runmglsr command) 231
runmgchi command 228
runmgchl command 229
runmgdlg command 139, 230
runmglsr command 231
runmgsc
ending 85
feedback 84
issuing MQSC commands 83
problems 90
queued mode 112
specifying a queue manager 86
using 86
using interactively 84
verifying 89
runmgsc command 232
redirecting input and output 86
runmgtrm command 235
running applications 307

S

SAFEGUARD 249

sample programs 22, 311
building C versions 312
building COBOL versions 312

420 MQSeries for Tandem NSK V2R2 System Management Guide

sample programs (continued)
building TAL versions 313
sample trace data 189
SAVE-ENVIRONMENT ON, environment variable 20
SCF configuration file, example 321
security 119
enabling 122
remote 127
using the commands 122, 124
server classes, user defined 45
setmgaut command 236
installable services 124
related commands 241
using 122,123
shutdown
gueue manager 59
controlled 59, 60
immediate 60
preemptive 60
quiesce 59
single-phase commit 157
SNAX communications examples 321
softcopy books xvi
software requirements 13
Spanish language support 272
specified operating environment 249

stanzas
MQSINI 164
QMINI 165

start and stop events 335
start MQSeries trace command 244
start queue manager command 243
START SERVER, PATHCOM command 38
starting

a queue manager 59

channels 111

command server 62
starting a trace 66
starting and stopping a channel 79
STATUS SERVER, PATHCOM command 38
stdin, on runmgsc 86
stdout, on runmgsc 86
STOP SERVER, PATHCOM command 38
stopping a trace 66
stopping queue manager manually 261
stopping, command server 62
strmgcsv command 242

related commands 242
strmgm command 243

related commands 243
strmqgtrc command 244

related commands 246
structure data types, TAL 293
subvolumes

authorization 134

super user (MQSeries)

MQM 119
supported code sets 29
Swedish language support 270
syncpoint, performance considerations 181
syncpointing limits 158
syntax diagrams, how to read 196
syntax error, in MQSC commands 84
system default objects 10
system defaults 259
system objects, defining 29, 59

T

TACL environment variables 20

TAL programming language
elementary data types 293
structure data types 293

Tandem NSK logged-in user ID 125

Tandem NSK, overview of 249

TCP/IP channels 320

TCP/IP communications example 331

TCP/IP listeners 38

TCP/IP process name 55

TCPListenerPort 55

TCPNumListenerPorts 55

TCPPort 55

templates, EMS event 153

temporary queues 5

terminology used in this book 403

THAW SERVER, PATHCOM command 38

time-independent applications 3

Index

timed out responses from MQSC commands 112

TM/MP (TMF) support 157
TMF audit trail 16
trace

data sample 189

performance considerations 188
tracing MQSeries objects 65
transactional support 157
transmission queue 116

creating 116

default 50, 116

defining 110

description 8

remote administration 109
trigger

event queues 152

events

compared with instrumentation events 152

messages on initiation queue 8
monitor
description 8
start command 235
triggered applications 308

Index

421

Index

triggering Z
application queue .
defining 103 ZMQSTMPL, EMS event template file 153

managing objects for 102
troubleshooting 159
TS/MP administration 38
TS/MP server classes

MQS-CHANINITOO 38

MQS-CMDSERVO00 38

MQS-EC00 39

MQS-TCPLISO0 38

MQS-TRIGMONOO 38
two-phase commit 157
types of event 151
types of object 5

U

UK English language support 273
unauthorized access, protecting from 120
upgrade 13
US English language support 267
user exits 12, 315
user group
for authorization 122
MQM 119
user ID
authority 119
authorization 125
for authorization 125
Tandem NSK logged-in user 125
user-defined server classes 45
USERID keyword, rules table 143
users
belonging to more than one user group 121
creating 15
groups 121

V

variable, environment, disabling security 122
verifying MQSC commands 89

volume structure 56

volume, changing 95

WAIT keyword, rules table 141
Windows Help xvii

X

XA interface 308

422 MQSeries for Tandem NSK V2R2 System Management Guide

Sending your comments to IBM

MQSeries for Tandem NonStop Kernel
System Management Guide
GC33-1893-00

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.
You can send your comments to IBM in any of the following ways:
¢ By mail, use the Readers’ Comment Form
e By fax:
— From outside the U.K., after your international access code use 44 1962 870229
— From within the U.K., use 01962 870229
e Electronically, use the appropriate network ID:

— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
— IBMLink: WINVMD(IDRCF)
— Internet: idrcf@winvmd.vnet.ibom.com

Whichever you use, ensure that you include:

e The publication number and title
e The page number or topic to which your comment applies
¢ Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries for Tandem NonStop Kernel

System Management Guide

GC33-1893-00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NSK V2R2 System Management Guide GC33-1893-00

You can send your comments POST FREE on this form from any one of these countries:
Australia Finland Iceland Netherlands Singapore United States
Belgium France Israel New Zealand Spain of America
Bermuda Germany Italy Norway Sweden

Cyprus Greece Luxembourg Portugal Switzerland

Denmark Hong Kong Monaco Republic of Ireland United Arab Emirates

If your country is not listed here, your local IBM representative will be pleased to forward your comments
to us. Or you can pay the postage and send the form direct to IBM (this includes mailing in the U.K.).

E Fold along this line

aul siy) Buore InD [I

By air mail NE PAS AFFRANCHIR
Par avion

IBRS/CCRINUMBER: PHQ-D/1348/SO

NO STAMP REQUIRED

_——== REPONSE PAYEE
_—==T= GRANDE-BRETAGNE
———]

IBM United Kingdom Laboratories

Information Development Department (MP095)
Hursley Park,

WINCHESTER, Hants

S021277 United Kingdom

E Fold along this line

From: Name
Company or Organization
Address

EMAIL
Telephone

ﬂ Fasten here with adhesive tape *

auy siyy Buore 1nD u

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

