MQSeries®

Application Programming Reterence

SC33-1673-05

MQSeries®

Application Programming Reterence

SC33-1673-05

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix G, “Notices”
on page 665.

Sixth edition (January 1999)

This edition applies to the following products:

e MQSeries for AIX® Version 5.1

e MQSeries for AS/400® Version 4 Release 2.1

* MQSeries for AT&T GIS UNIX Version 2 Release 2

¢ MQSeries for Digital OpenVMS Version 2 Release 2

e MQSeries for HP-UX Version 5.1

¢ MQSeries for OS/2® Warp Version 5.1

¢ MQSeries for OS/390® Version 2 Release 1

* MQSeries for SINIX and DC/OSx Version 2 Release 2
¢ MQSeries for Sun Solaris Version 5.1

e MQSeries for Tandem NonStop Kernel Version 2 Release 2
e MQSeries for VSE/ESA™ Version 2 Release 1

e MQSeries for Windows NT® Version 5.1

¢ MQSeries for Windows® Version 2 Release 0

* MQSeries for Windows Version 2 Release 1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

S021 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994,1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

About this book iX
Who this book is for iX
What you need to know to understand this book iX
How to use thisbook X

Appearance of text in thisbook X

Terms used in thisbook X

Language compilers Xi
MQSeries publications XV

MQSeries cross-platform publications XV

MQSeries platform-specific publications Xvili

MQSeries Level 1 product publications XiX

Softcopy books XiX
MQSeries information available on the Internet XXi
Related publications XXi
Summary of Changes xXiii
Changes to this edition, SC33-1673-05 XXiii

MQSeries for OS/390 V2.1 XXili

MQSeries V5.1 e, XXV

MQSeries for VSE/ESA V2.1 XXVil

MQSeries for AS/400 VAR2M1 XXVili
Changes to the fifth edition included: XXViii
Changes to the fourth edition included: XXViii
Chapter 1. Data type descriptions - elementary 1
Conventions used in the descriptions of datatypes 1
Elementary data types 1
Chapter 2. Data type descriptions - structures 7
Conventions used in the descriptions of datatypes 7
Language considerations 8
Structure data types 20
MQBO - Beginoptions 21
MQCIH - CICS bridge header 23
MQCNO - Connect options 41
MQDH - Distribution header 48
MQDLH - Dead-letter header 55
MQGMO - Get-message options 66
MQIIH - IMS bridge header 103
MQMD - Message descriptor 110
MQMDE - Message descriptor extension 170
MQOD - Object descriptor 177
MQOR - Objectrecord 191
MQPMO - Put message options 193
MQPMR - Put message record 215
MQRMH - Message reference header 219
MQORR - Response record 229
MQTM - Trigger message oo i i i 231
MQTMC2 - Trigger message 2 (character format) 239
MQWIH - Work information header 244

© Copyright IBM Corp. 1994,1999 ili

Contents

MQXP - Exit parameter block (OS/390 only) 249
MQXQH - Transmission queue header 254
Chapter 3. Call descriptions 263
Conventions used in the call descriptions 263
Using the calls in the C language 265
MQBACK - Back outchanges 266
MQBEGIN - Beginunitofwork 271
MQCLOSE - Close object 275
MQCMIT - Commit changes 283
MQCONN - Connect queue manager 288
MQCONNX - Connect queue manager (extended) 296
MQDISC - Disconnect queue manager 298
MQGET - Getmessage 302
MQINQ - Inquire about object attributes 316
MQOPEN - Open object 332
MQPUT - Putmessage 351
MQPUTL - Putone message 363
MQSET - Set object attributes 372
MQSYNC - Synchronize statistics updates (Tandem NSK only) 381
Chapter 4. Attributes of MQSeries objects 383
Attributes for all queues 383
Attributes for local queues and model queues, 389
Attributes for local definitions of remote queues 406
Attributes for alias queues 408
Attributes for namelists 408
Attributes for process definitions L 410
Attributes for the queue manager 413
Chapter 5. Returncodes 429
Completion codes L 429
Reasoncodes 430
Chapter 6. MQSeries constants 511
Listof constants 511
Appendix A. Rules for validating MQI options, 565
MQOPEN call 565
MQPUT call 565
MQPUT1 call 566
MQGET call 566
MQCLOSE call 567
Appendix B. Machine encodings 569
Binary-integer encoding 569
Packed-decimal-integer encoding 570
Floating-point encoding 570
Constructing encodings 571
Analyzing encodings 571
Summary of machine architecture encodings 572
Appendix C. Report options and message flags 573
Structure of the report field 573

iv MQSeries Application Programming Reference

Tables

Tables

Analyzing the report field 575
Structure of the message-flags field 576
Appendix D. Data-conversion 579
Conversion processing 579
Processing conventions 581
Conversion of report messages 585
MQDXP - Data-conversion exit parameter structure 587
MQXCNVC - Convert characters 594
MQ_DATA_CONV_EXIT - Data conversion exit 601
Appendix E. Signal notification IPC message (Tandem NSK only) ... 607
Appendix F. Code page conversion tables 609
Code page conversiontables 611
OS/2 conversion support L 662
OS/400 conversion SUpport 662
Unicode conversion support 663
Appendix G. Notices 665
Programming interface information 666
Trademarks 667
Glossary of terms and abbreviations 669
Index . . . 681

1. Short names used for supported environments X
2. C and C++ language compilers L. Xii
3. COBOL language compilers Xiii
4. PL/llanguage compilers Xiv
5. Visual Basic language compilers Xiv
6. Assembler/390 language compilerso Xiv
7. TALcompilers Xiv
8. Elementary datatypesinC 3
9. Elementary data typesin COBOL 3
10. Elementary data typesin PL/l 4
11. Elementary data types in System/390 assembler 5
12. Elementary data typesin TAL 5
13. Elementary data types in Visual Basic 6
14. Cheaderfile 9
15. COBOL COPY files 12
16. PL/IINCLUDE file 15
17. Assembler macros 17
18. Visual Basic header files 19
19. Fieldsin MQBO 21
20. Initial values of fields in MQBO 22
21. Fieldsin MQCIH 23

Contents V

Tables

Vi

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.

47.

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

Contents of error information fields in MQCIH structure 25
Initial values of fields in MQCIH 34
Fields in MQCNO 41
Initial values of fields in MQCNO 46
Fieldsin MQDH 48
Initial values of fields in MQDH 52
Fields in MQDLH 55
Initial values of fields in MQDLH 61
Fields in MQGMO 66
MQGET options relating to messages in groups and segments of logical

MESSATES . . .« o v e 84
Outcome when MQGET or MQCLOSE call not consistent with group and

segment information 86
Initial values of fields in MQGMO 99
Fields in MQIH 103
Initial values of fields in MQIIH 107
Fieldsin MQMD 110
Initial values of fields in MQMD L. 163
Fields in MOQMDE 170
Queue-manager action when MQMDE specified on MQPUT or MQPUT1 172
Initial values of fields in MQMDE 174
Fieldsin MQOD 177
Initial values of fields in MQOD 187
Fields in MQOR 191
Initial values of fields in MQOR 192
Fields in MQPMO 193
MQPUT options relating to messages in groups and segments of logical

MESSATES o o e 199
Outcome when MQPUT or MQCLOSE call not consistent with group and

segment information 201
Initial values of fields in MQPMO, 210
Fields in MQPMR 215
Fieldsin MQRMH 219
Initial values of fields in MQRMH 225
Fields in MQRR 229
Initial values of fields in MQRR 229
Fields in MQTM e 231
Initial values of fields in MQTM 236
Fields in MQTMC2 239
Initial values of fields in MQTMC2 241
Fieldsin MQWIH 244
Initial values of fields in MQWIH 246
Fields in MQXP 249
Fields in MQXQH 254
Initial values of fields in MQXQH, 258
Effect of MQCLOSE options on various types of object and queue . .. 277
Valid MQOPEN options for each queue type 339
Attributes for all queues 383
Attributes for local and model queues 389
Attributes for local definitions of remote queues 406
Attributes for namelists Lo 408
Attributes for process definitions L. 410
Attributes for the queue manager 413
Summary of encodings for machine architectures 572

MQSeries Application Programming Reference

72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
108.
104.
105.
106.

Fields in MQDXP

Tables

Codeset names and CCSIDs,

Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:
Conversion support:

USENGLISH
GERMAN
DANISH and NORWEGIAN
FINNISH and SWEDISH
ITALIAN
SPANISH
UK ENGLISH / GAELIC
FRENCH,
MULTILINGUAL
PORTUGUESE,
ICELANDIC
EASTERN EUROPEAN Languages
CYRILLIC . . .
ESTONIAN
LATVIAN and LITHUANIAN
UKRAINIAN . .. oo oo
GREEK
TURKISH
HEBREW
ARABIC
FARSI

LAO
VIETNAMESE
JAPANESE LATINSBCS
JAPANESE KATAKANA SBCS
JAPANESE KANJI / LATIN MIXED
JAPANESE KANJI / KATAKANA MIXED
KOREAN
SIMPLIFIED CHINESE
TRADITIONAL CHINESE

MQSeries for OS/390 V2.1 single byte CCSID conversion support

Tables

Vil

Tables

viii MQSeries Application Programming Reference

About this book

About this book

The IBM® MQSeries set of products provides application programming services, on
various platforms, that allow a new style of programming. This style enables you to
code indirect program-to-program communication using message queues.

This book gives a full description of the MQSeries programming interface, the MQI,
for the following products:

MQSeries for AIX Version 5.1

MQSeries for AS/400 Version 4 Release 2 Modification 1
MQSeries for AT&T GIS UNIX Version 2 Release 2!
MQSeries for Digital OpenVMS Version 2 Release 2
MQSeries for HP-UX Version 5.1

MQSeries for OS/2 Warp Version 5.1

MQSeries for OS/390 Version 2 Release 1

MQSeries for SINIX and DC/OSx Version 2.2

MQSeries for Sun Solaris Version 5.1

MQSeries for Tandem NonStop Kernel Version 2 Release 2
MQSeries for VSE/ESA Version 2 Release 1

MQSeries for Windows NT Version 5.1

MQSeries for Windows Version 2.0

MQSeries for Windows Version 2.1

Note: This book does not apply to the MQSeries for AS/400 Version 4 Release 2

Modification 1 product using the RPG programming language. You should
use the MQSeries for AS/400 Version 4 Release 2 Application Programming
Reference (RPG), SC33-1957 for this programming language.

For information on how to design and write applications that use the services
MQSeries provides, see the MQSeries Application Programming Guide.

Who this book is for

This book is for the designers of applications that use message queuing
techniques, and for programmers who have to implement these designs.

What you need to know to understand this book

To write message queuing applications using MQSeries, you need to know how to
write programs in one of the supported programming languages:

C or COBOL (available on all supported platforms)
C++

This book does not describe the C++ programming language binding. For
information on C++ you should see the MQSeries Using C++ book.

PL/I (available on AIX, OS/2, OS/390, VSE/ESA, and Windows NT)
System/390® assembler (available on OS/390 only)

1 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

© Copyright IBM Corp. 1994,1999 4

About this book

e TAL (available on Tandem NonStop Kernel only)
¢ Visual Basic V4 or V5 (available on Windows 3.1, Windows 95, Windows 98,
and Windows NT only)

If the applications you are writing are to run within a CICS® system, you must also
be familiar with CICS on your platform and its application programming interface.

To understand this book, you do not need to have written message queuing
programs before.

How to use this

book

This book enables you to find out quickly, for example, how to use a particular call
or how to correct a particular error situation.

The book presents detailed reference information about the MQSeries programming
interface, called the Message Queue Interface (MQI). It describes the:

e Data types that the MQI calls use

e Parameters and return codes for the calls

e Attributes of MQSeries objects

» Values of constants you need to use when you write MQSeries programs
e Reason codes that may occur when you run your programs

Appearance of text in this book

This book uses the following type styles:

MQOPEN Example of the name of a call

CompCode Example of the name of a parameter of a call, a field in a
structure, or the attribute of an object

MQMD Example of the name of a data type or structure

MQCC_FAILED Example of the name of a constant

Terms used in this book

All new terms that this book introduces are defined in the glossary. In the body of
this book, the following shortened names are used for these products:

MQSeries The MQSeries set of products
CICS The CICS, or Transaction Server, product for the specific platform
on which you are working.

Not all of the capabilities described in this book are available in all environments.
Those calls, structures, fields, or options that are not supported everywhere are
identified as such in the explanatory text. Table 1 shows the short names used in
this book for the various environments, and the products to which they refer.

Table 1 (Page 1 of 2). Short names used for supported environments

Short name used Full product or environment name

in this book

AIX MQSeries for AIX Version 5.1

DOS client MQ client applications running on PC-DOS
HP-UX MQSeries for HP-UX Version 5.1

X MQSeries Application Programming Reference

About this book

Table 1 (Page 2 of 2). Short names used for supported environments

Short name used
in this book

Full product or environment name

0S/390 MQSeries for OS/390 Version 2.1

Digital OpenVMS MQsSeries for Digital OpenVMS Version 2.2

0S/2 MQSeries for OS/2 Warp Version 5.1

0S/400 MQSeries for AS/400 Version 4R2M1

Sun Solaris MQSeries for Sun Solaris Version 5.1

Tandem NonStop
Kernel

MQSeries for Tandem NonStop Kernel Version 2.2

UNIX systems The UNIX® systems supported by MQSeries that are not

Version 5. These are:

e MQSeries for AT&T GIS UNIX, Version 2.2
e MQSeries for SINIX and DC/OSx Version 2.2

Windows client MQSeries client applications running on Windows 3.1, Windows

95, Windows 98, or Windows NT

Windows NT MQSeries for Windows NT Version 5.1

16-bit Windows MQSeries for Windows Version 2.0

32-bit Windows MQSeries for Windows Version 2.1

The following table lists the MQSeries products available for Windows, and shows
the Windows platforms on which each runs.

Product Windows Windows Windows Windows
3.1 95 98 NT

MQSeries for Windows Yes Yes Yes Yes

Client

MQSeries for Windows NT No No No Yes

MQSeries for Windows V2.0 Yes Yes No No

MQSeries for Windows V2.1 No Yes Yes Yes

MQSeries for Windows Versions 2.0 and 2.1 support most of the features of the
MQI described in this book. For information on these products, see the MQSeries

for Windows User’s Guide.

Language compilers

Also, we use the following shortened names for these language compilers:

e C —see Table 2 on page xii
e COBOL - see Table 3 on page xiii
e PL/l — see Table 4 on page xiv

* Visual Basic — see Table 5 on page xiv

e Assembler/390 — see Table 6 on page xiv
e TAL — see Table 7 on page xiv

About this book Xi

About this book

Xii

Table 2 (Page 1 of 2). C and C++ language compilers

Platform Compiler
AIX IBM C for AIX Version 3.1.4

IBM C Set++ for AIX V3.1
AIX C++ IBM C Set++ for AIX V3.1
AS/400 IBM ILE C for AS/400, V4.2.1
AS/400 C++ IBM VisualAge™ C++ compiler for AS/400, V4.2.1
AT&T AT&T GIS High Performance C V1.0b compiler
AT&T C++ AT&T C++ language system for AT&T GIS UNIX
DC/OSx DC/OSx C4.0 Version 4.0.1 compiler

Digital OpenVMS

DEC C Version 5.0

Digital OpenVMS C++

DEC C++ V5.0 (VAX) V5.2 (AXP)

HP-UX

C Softbench Version 5.0
HP-UX ANSI C

HP C++, V3.1 for HP-UX V10.x
HP C, V3.6 for HP-UX

HP-UX C++ HP C++, V3.1 for HP-UX V10.x
IBM C and C++ compiler, V3.6
HP-UX ANSI C++ for V10 and V11
ANSI C++ compiler V3.6
0S/2 IBM VisualAge for C++ for OS/2 V3.0
Borland C++ V2.0 (C bindings only)
IBM C and C++ compiler, V3.6
0S/2 C++ IBM VisualAge for C++ for OS/2, V3.0
0S/390 C/370™ Release 2.1.0
IBM SAA AD/Cycle™ C/370 Compiler
0S/390 C++ IBM OS/390 C/C++ V2R4
IBM OS/390 C/C++
SINIX C compiler (C-DS, MIPS) V1.1
Sun Solaris Sun WorkShop Compiler C V4.2

Sun Solaris C++

Sun WorkShop Compiler C++ V4.2

Tandem NSK D30 or later using the WIDE memory model (32-bit
integers)

VSE/ESA IBM C for VSE/ESA V1.1

Windows NT Microsoft Visual C++ for Windows 95 and Windows NT V4.0

IBM VisualAge for C++ for Windows V3.5

Windows NT C++

IBM VisualAge for C++ for Windows V3.5

Microsoft Visual C++ for Windows 95 and Windows NT V4.0
IBM VisualAge for C++ Professional V4.0

IBM VisualAge for C++ Professional V5.0

IBM C and C++ compiler, V3.6.4

MQsSeries for Windows
V2.0 - 16-bit

16-bit C - Microsoft® Visual C++ V1.5

MQSeries for Windows
V2.0- 32-bit

32-bit C - Microsoft Visual C++ V2.0

MQSeries for Windows
V2.1

Microsoft Visual C++ V4.0
Borland C

MQSeries Application Programming Reference

About this book

Table 2 (Page 2 of 2). C and C++ language compilers

Platform

Compiler

DOS clients

Microsoft C V7.0

DOS clients C++

Microsoft Visual C++ V1.5

Windows 3.1 clients

Microsoft C V7.0

Windows 3.1 clients C++

Microsoft Visual C++ V1.5

Windows 95 and
Windows 98 clients

Microsoft Visual C++ V2.0

Windows 95 and

Windows 98 clients C++

IBM VisualAge for C++ V3.5
Microsoft Visual C++ V4.0

Note: AT&T has become NCR UNIX SVR4 MP-RAS, R3.0

Table 3. COBOL language compilers

Platform Compiler

AIX The Micro Focus COBOL compiler V4.0 for UNIX Systems
IBM COBOL Set for AIX Version 1.1

AS/400 IBM ILE COBOL compiler for AS/400 V4R2.1

Digital OpenVMS

DEC COBOL V5.0 (VAX) V2.2 (AXP)

HP-UX

COBOL Softbench Version 4.0

Micro Focus COBOL compiler Version 4.0 for UNIX

Systems
0S/2 Micro Focus COBOL compiler V4.0
IBM VisualAge for COBOL for OS/2 V1.1
0S/390 IBM COBOL for MVS and VM (formerly COBOL/370™)

IBM COBOL for OS/390 and VM

SINIX and DC/OSx

Micro Focus COBOL compiler V3.2 for SINIX

Sun Solaris Micro Focus COBOL compiler for UNIX systems V4.0
Tandem NSK D30 or later

VSE/ESA IBM COBOL for VSE/ESA V1.1

Windows NT Micro Focus Object COBOL compiler V3.3 or V4.0 for

Windows NT

IBM VisualAge COBOL Enterprise V2.2

IBM VisualAge COBOL for Windows NT V2.1

Windows 95 and
Windows 98 clients

Micro Focus COBOL Workbench V4.0

About this book Xiii

About this book

Table 4. PL/I language compilers
Platform Compiler
AIX IBM PL/I Set for AIX V1.1
0sS/2 IBM Visual Age for PL/I for OS/2
IBM PL/I for 0S/2 V1.2
0S/390 IBM SAA AD/Cycle PL/I
IBM PL/I for MVS and VM
VSE/ESA IBM PL/I for VSE/ESA V1.1
Windows NT IBM Visual Age for PL/I for Windows
IBM PL/I for Windows V1.2
IBM VisualAge PL/I Enterprise V2.1

In addition, MQSeries for Windows V2.0, MQSeries for Windows V2.1, and
MQSeries for Windows NT V5.1 support Basic compilers.

Table 5. Visual Basic language compilers

Platform Compiler

MQSeries for Windows Microsoft Visual Basic V4.0 (16 bit)
V2.0 - 16-bit

MQSeries for Windows Microsoft Visual Basic V4.0 (32 bit)
V2.0 - 32-bit

MQSeries for Windows Microsoft Visual Basic V4.0

V2.1

MQSeries for Windows Microsoft Visual Basic V4.0 or V5.0
NT V5.1

Windows 3.1 clients Microsoft Visual Basic V4.0
Windows 95 and Microsoft Visual Basic V4.0 or V5.0
Windows 98 clients

Table 6. Assembler/390 language compilers

Platform Compiler

0S/390 Assembler H assembler
IBM High Level Assembler/MVS assembler

Table 7. TAL compilers

Platform Compiler

Tandem NSK D30 or later
IBM High Level Assembler/MVS assembler

Xiv MQSeries Application Programming Reference

MQSeries publications

MQSeries publications

This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications

Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4R2M1

e MQSeries for AT&T GIS UNIX V2.2

* MQSeries for Digital OpenVMS V2.2

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for 0S/390 V2.1

e MQSeries for SINIX and DC/OSx V2.2
¢ MQSeries for Sun Solaris V5.1

e MQSeries for Tandem NonStop Kernel V2.2
e MQSeries for VSE/ESA V2.1

e MQSeries for Windows V2.0

¢ MQSeries for Windows V2.1

e MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xix. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure

The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing

MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide

The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication

The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

About this book XV

MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration

The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries Command Reference

The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management

The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
* MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1
e MQSeries for Windows V2.0

e MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide

The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference

The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary

The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

XVi MQSeries Application Programming Reference

MQSeries publications

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4AR2M1
e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
¢ MQSeries for 0OS/390 V2.1

e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

e AIX

e HP-UX

e 0S/2

e Sun Solaris

e Windows NT

¢ Windows 3.1

¢ Windows 95 and Windows 98

MQSeries Using Java ®

MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries Java is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference

The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a
programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries Queue Manager Clusters

MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a number of examples of
tasks you can perform to set up and maintain clusters of queue managers.

This book applies to the following MQSeries products only:
MQSeries for AIX V5.1

About this book XVii

MQSeries publications

MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for 0OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications

XVviii

Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AlX

MQSeries for AIX Version 5 Release 1 Quick Beginnings, GC33-1867
MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869
MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868
MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3
MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934
MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries Application Programming Reference

MQSeries publications

MQSeries for Sun Solaris
MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870
MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’'s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387

MQSeries LotusScript® Extension, SC34-5404

MQSeries Level 1 product publications

Softcopy books

For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

BookManager ™ format

The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection Kkit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

About this book XiX

MQSeries publications

XX

HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for Sun Solaris V5.1

e MQSeries for Windows NT V5.1 (compiled HTML)
e MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

http://www.software.ibm.com/ts/mgseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

e MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1
e MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

http://www.software.ibm.com/ts/mqseries/

PostScript format

The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries Application Programming Reference

MQSeries on the Internet

MQSeries information available on the Internet

— MQSeries Web site

The MQSeries product family Web site is at:

http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:
¢ Obtain latest information about the MQSeries product family.
¢ Access the MQSeries books in HTML and PDF formats.

¢ Download MQSeries SupportPacs.

Related publications

Character Data Representation Library, Character Data Representation
Architecture, Reference and Registry, SC09-2190

About this book XXi

MQSeries on the Internet

XXii MQSeries Application Programming Reference

Summary of changes

Summary of Changes

This section lists the major revisions to this book for the current edition and the
preceding two editions.

| Changes to this edition, SC33-1673-05

| This edition of MQSeries Application Programming Reference applies to these new
| versions and releases of MQSeries products:

| ¢ MQSeries for AIX V5.1

| e MQSeries for AS/400 V4AR2M1

| e MQSeries for HP-UX V5.1

| e MQSeries for OS/2 Warp V5.1

| ¢ MQSeries for 0OS/390 V2.1

| e MQSeries for Sun Solaris V5.1

| e MQSeries for VSE/ESA V2.1

| e MQSeries for Windows NT V5.1

| Major new function supplied with each of these MQSeries products is summarized
| here.

MQSeries for OS/390 V2.1

I

| MQSeries for OS/390 V2.1 is a new product for the OS/390 platform that offers
| functional enhancements over MQSeries for MVS/ESA V1.2. Those functional

| enhancements specific to MQSeries for OS/390 are summarized here. As a

| general rule, other function described in this book as supported by MQSeries for
| 0S/390 is also supported by MQSeries for MVS/ESA V1.2.

| MQSeries queue manager clusters

| MQSeries queue managers can be connected to form a cluster of queue

| managers. Within a cluster, queue managers can make the queues they host

| available to every other queue manager. Any queue manager can send a

| message to any other queue manager in the same cluster without the need for

| explicit channel definitions, remote queue definitions, or transmission queues for
| each destination. The main benefits of MQSeries clusters are:

| ¢ Fewer system administration tasks
| ¢ Increased availability
| ¢ Workload balancing

| Clusters are supported by these MQSeries products:

| ¢ MQSeries for AIX V5.1

| ¢ MQSeries for HP-UX V5.1

| e MQSeries for OS/2 Warp V5.1

| e MQSeries for 0S/390 V2.1

| ¢ MQSeries for Sun Solaris V5.1

| e MQSeries for Windows NT V5.1

| See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
| description of this function.

© Copyright IBM Corp. 1994,1999 XXili

Summary of changes

MQSeries V5.1

0S/390 Automatic Restart Manager (ARM)
If an MQSeries queue manager or channel initiator fails, the OS/390 Automatic
Restart Manager (ARM) can restart it automatically on the same OS/390 image.
If the OS/390 image itself fails, ARM can restart that image’s subsystems and
applications automatically on another OS/390 image in the sysplex, provided that
the LU 6.2 communication protocol is being used. By removing the need for
operator intervention, OS/390 ARM improves the availability of your MQSeries
subsystems.

0S/390 Resource Recovery Services (RRS)
MQSeries Batch and TSO applications can participate in two-phase commit
protocols with other RRS-enabled products, such as DB2, coordinated by the
0S/390 RRS facility.

MQSeries Workflow
MQSeries Workflow allows applications on various network clients to perform
business functions through System/390 by driving one or more CICS, IMS, or
MQSeries applications. This is achieved through format, rule, and table
definition, rather than through application programming.

Support for C ++
MQSeries for OS/390 V2.1 applications can be written in C++.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

The MQSeries Version 5 Release 1 products are:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

The following new function is provided in all of the V5.1 products:

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they host
available to every other queue manager. Any queue manager can send a
message to any other queue manager in the same cluster without the need for
explicit channel definitions, remote queue definitions, or transmission queues for
each destination. The main benefits of MQSeries clusters are:

¢ Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

Clusters are supported by these MQSeries products:

e MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

¢ MQSeries for OS/2 Warp V5.1
* MQSeries for 0S/390 V2.1

e MQSeries for Sun Solaris V5.1

XXIV MQSeries Application Programming Reference

Summary of changes

¢ MQSeries for Windows NT V5.1

See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
description of this function.

MQSeries Administration Interface (MQAI)
The MQSeries Administration Interface is an MQSeries programming interface
that simplifies manipulation of MQSeries PCF messages for administrative tasks.
It is described in a new book, MQSeries Administration Interface Programming
Guide and Reference, SC34-5390.

Support for Windows 98 clients
A Windows 98 client can connect to any MQSeries V5.1 server.

Message queue size
A message queue can be up to 2 GB.

Controlled, synchronous shutdown of a queue manager
A new option has been added to the endmgm command to allow controlled,
synchronous shutdown of a queue manager.

Java support
The MQSeries Client for Java and MQSeries Bindings for Java are provided with
all MQSeries V5.1 products. The client, bindings, and common files have been
packaged into .jar files for ease of installation.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

Conversion of the EBCDIC new-line character
You can control the conversion of EBCDIC new-line characters to ensure that
data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
unaltered by the ASCII conversion.

Client connections via MQCONNX
A client application can specify the definition of the client-connection channel at
run time in the MQCNO structure of the MQCONNX call.

Additional new function in MQSeries for AIX V5.1
e The UDP transport protocol is supported.
» Sybase databases can participate in global units of work.
e Multithreaded channels are supported.

Additional new function in MQSeries for HP-UX V5.1
e MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
e Multithreaded channels are supported.
e Both HP-UX kernel threads and DCE threads are supported.

Additional new function in MQSeries for OS/2 Warp V5.1
0S/2 high memory support is provided.

Summary of Changes XXV

Summary of changes

Additional new function in MQSeries for Sun Solaris V5.1
e MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris
7.

e Sybase databases can participate in global units of work.

e Multithreaded channels are supported.

Additional new function in MQSeries for Windows NT V5.1
MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
NT. New function in this release includes:

» Close integration with Microsoft Windows NT Version 4.0, including exploitation
of extra function provided by additional Microsoft offerings. The main highlights
are:

— Graphical tools and applications for managing, controlling, and exploring
MQSeries:

- MQSeries Explorer—a snap-in for the Microsoft management console
(MMC) that allows you to query, change, and create the local, remote,
and cluster objects across an MQSeries network.

- MQSeries Services—an MMC snap-in that controls the operation of
MQSeries components, either locally or remotely within the Windows
NT domain. It monitors the operation of MQSeries servers and
provides extensive error detection and recovery functions.

- MQSeries API Exerciser—a graphical application for exploring the
messaging and queuing programming functions that MQSeries
provides. It can also be used in conjunction with the MQSeries
Explorer to gain a deeper understanding of the effects of MQSeries
operations on objects and messages.

- MQSeries Postcard—a sample application that can be used to verify an
MQSeries installation, for either local or remote messaging.

— Support for the following features of Windows NT has been added:

- Windows NT performance monitor—used to access and display
MQSeries information, such as the current depth of a queue and the
rate at which message data is put onto and taken off queues.

- ActiveDirectory—programmable access to MQSeries objects is
available through the Active Directory Service Interfaces (ADSI).

- Windows NT user IDs—previous MQSeries restrictions on the validity of
Windows NT user IDs have been removed. All valid Windows NT user
IDs are now valid identifiers for MQSeries operations. MQSeries uses
the associated Windows NT Security Identifier (SID) and the Security
Account Manager (SAM). The SID allows the MQSeries Object
Authority Manager (OAM) to identify the specific user for an
authorization request.

- Windows NT registry—now used to hold all configuration and related
data. The contents of any configuration (.INI) files from previous
MQSeries installations of MQSeries for Windows NT products are
migrated into the registry; the .INI files are then deleted.

XXVi MQSeries Application Programming Reference

Summary of changes

- A set of Component Object Model (COM) classes, which allow ActiveX
applications to access the MQSeries Message Queue Interface (MQI)
and the MQSeries Administration Interface (MQAI).

— An online Quick Tour of the product concepts and functions.

— An online Information Center that gives you quick access to task help
information, reference information, and Web-based online books and home
pages.

— Simplified installation of MQSeries for Windows NT, with default options
and automatic configuration.

Support for web-based administration of an MQSeries network, which provides
a simplified way of using the MQSC commands and scripts and allows you to
create powerful macros for standard administration tasks.

Support for MQSeries LotusScript Extension (MQLSX), which allows Lotus
Notes applications that are written in LotusScript to communicate with
applications that run in non-Notes environments.

Support for Microsoft Visual Basic for Windows Version 5.0.

Performance improvements over the MQSeries for Windows NT Version 5.0
product.

Information and examples on how MQSeries applications can interface with and
exploit the lightweight directory access protocol (LDAP) directories.

Support for Sybase participation in global units of work.

MQSeries for VSE/ESA V2.1

MQSeries for VSE/ESA joins the MQSeries Level 2 products. New function in
Version 2 Release 1 of MQSeries for VSE/ESA includes:

Transmission Control Protocol/Internet Protocol (TCP/IP) is supported.

MQSeries clients can connect to the MQSeries for VSE/ESA server via the
TCP/IP protocol. (Note, however, that there is no MQSeries for VSE/ESA
client.)

Messages may be up to 4 MB in size.

A user-selected, coded character set ID (CCSID) can be specified for all
messages written locally.

Messages sent to remote, non-VSE/ESA systems can be flagged as
nonpersistent.

Confirmation-on-delivery (COD) and confirmation-on-arrival (COA) messages
are supported.

A message priority, in the range 0 through 9, can be specified on MQPUT and
MQPUT1 calls.

Automated reorganization of queue storage is supported.
Messages can be sent and received in batches of a user-specified size.

Support has been added for the C and PL/I application-programming
languages. Copy books, macros, and include files are provided for each
language.

Summary of Changes XXVili

Summary of changes

* Messages can be retrieved from queues by message identifier (Msgi/D) and
correlation identifier (Correlld).

* Message Channel Agents (MCASs) record more diagnostic information in the
SYSTEM.LOG when communications failures occur.

MQSeries for AS/400 V4R2M1
New function in MQSeries for AS/400 V4AR2M1 includes:

e Support for the MQSeries dead-letter queue handler
e Improvements to installation and migration procedures

Changes to the fifth edition included:
Changes to the book for the fifth edition included:

* New versions of the following products:

MQSeries for AS/400
MQSeries for Tandem NonStop Kernel

Changes to the fourth edition included:

Changes to the book for the fourth edition included:

XXViii

¢ New versions of the following products:

MQSeries for AlX
MQSeries for HP-UX
MQSeries for OS/2
MQSeries for Sun Solaris
MQSeries for Windows NT

The changes to the products include:

Addition of the MQBEGIN and MQCONNX function calls
Addition of the MQBO and MQCNO data type structures
Addition of distribution lists, which include the:

- MQDH data type structure
- MQOR data type structure
MQPMR data type structure
- MQRR data type structure

Addition of message groups and segmentation of large messages
Addition of the MQMDE message descriptor extension data type structure

Addition of reference message support, which includes the MQRMH data
type structure

Addition of PL/I language support on AIX, OS/2, and Windows NT

MQSeries Application Programming Reference

Elementary data types

Chapter 1. Data type descriptions - elementary

This chapter describes the elementary data types used by the MQI.

The elementary data types are:

e MQBYTE - Byte

¢ MQBYTEN — String of n bytes

¢ MQCHAR - Single-byte character

¢ MQCHARN — String of n single-byte characters
¢ MQHCONN - Connection handle

¢ MQHOBJ — Object handle

e MQLONG - Long integer

Conventions used in the descriptions of data types

For each elementary data type, this chapter gives a description of its usage, in a
form that is independent of the programming language. This is followed by typical
declarations in each of the supported programming languages.

Elementary data types

All of the other data types described in this chapter equate either directly to these
elementary data types, or to aggregates of these elementary data types (arrays or
structures).

MQBYTE - Byte
The MQBYTE data type represents a single byte of data. No particular
interpretation is placed on the byte—it is treated as a string of bits, and not as a
binary number or character. No special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage
whose nature is not known to the queue manager. For example, the area may
contain application message data or a structure. The boundary alignment of this
area must be compatible with the nature of the data contained within it.

In the C programming language, any data type can be used for function parameters
that are shown as arrays of MQBYTE. This is because such parameters are
always passed by address, and in C the function parameter is declared as a
pointer-to-void.

MQBYTEn - String of n bytes

Each MQBYTEN data type represents a string of n bytes, where n can take one of
the following values:

16, 24, 32, 40, or 64

Each byte is described by the MQBYTE data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with nulls to fill the string.

© Copyright IBM Corp. 1994,1999 1

Elementary data types

When the queue manager returns byte strings to the application (for example, on
the MQGET call), the queue manager always pads with nulls to the defined length
of the string.

Constants are available that define the lengths of byte string fields; see Chapter 6,
“MQSeries constants” on page 511.

MQCHAR - character
The MQCHAR data type represents a single character. The coded character set
identifier of the character is that of the queue manager (see the CodedCharSetId
attribute on page 417). No special alignment is required.

Note: Application message data specified on the MQGET, MQPUT, and MQPUT1
calls is described by the MQBYTE data type, not the MQCHAR data type.

MQCHARN - String of n characters

Each MQCHARnN data type represents a string of n characters, where n can take
one of the following values:

4, 8,12, 16, 20, 28, 32, 48, 64, 128, or 256

Each character is described by the MQCHAR data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with blanks to fill the string. In some cases a null character can
be used to end the string prematurely, instead of padding with blanks; the null
character and characters following it are treated as blanks, up to the defined length
of the string. The places where a null can be used are identified in the call and
data type descriptions.

When the queue manager returns character strings to the application (for example,
on the MQGET call), the queue manager always pads with blanks to the defined
length of the string; the queue manager does not use the null character to delimit
the string.

Constants are available that define the lengths of character string fields; see
Chapter 6, “MQSeries constants” on page 511.

MQHCONN - Connection handle

The MQHCONN data type represents a connection handle, that is, the connection
to a particular queue manager. A connection handle must be aligned on its natural
boundary.

Note: Applications must test variables of this type for equality only.

MQHOBJ - Object handle

The MQHOBJ data type represents an object handle that gives access to an object.
An object handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

2 MQSeries Application Programming Reference

Elementary data types

MQLONG - Long integer
The MQLONG data type is a 32-bit signed binary integer that can take any value in
the range -2 147 483 648 through +2 147 483 647, unless otherwise restricted
by the context. For COBOL, the valid range is limited to -999 999 999 through
+999 999 999. An MQLONG must be aligned on its natural boundary.

Elementary data types - C programming language

Table 8. Elementary data types in C

Data type Representation

MQBYTE typedef unsigned char MQBYTE;
MQBYTE16 typedef MQBYTE MQBYTE16[16];
MQBYTE24 typedef MQBYTE MQBYTE24[24];
MQBYTE32 typedef MQBYTE MQBYTE32[32];
MQBYTE40 typedef MQBYTE MQBYTE40[40];
MQBYTEG4 typedef MQBYTE MQBYTE64[64];
MQCHAR typedef char MQCHAR;
MQCHAR4 typedef MQCHAR MQCHARA[4];
MQCHARS8 typedef MQCHAR MQCHAR8[8];
MQCHAR12 typedef MQCHAR MQCHAR12[12];
MQCHAR16 typedef MQCHAR MQCHAR16[16];
MQCHAR20 typedef MQCHAR MQCHAR20[20];
MQCHAR28 typedef MQCHAR MQCHAR28[28];
MQCHAR32 typedef MQCHAR MQCHAR32[32];
MQCHAR48 typedef MQCHAR MQCHAR48[48];
MQCHARG64 typedef MQCHAR MQCHAR64[64];
MQCHAR128 typedef MQCHAR MQCHAR128[128];
MQCHAR256 typedef MQCHAR MQCHAR256[256] ;
MQHCONN typedef MQLONG MQHCONN;
MQHOBJ typedef MQLONG MQHOBJ;
MQLONG typedef Tong MQLONG;

MQPTR typedef void MQPOINTER MQPTR;
PMQLONG typedef MQLONG MQPOINTER PMQLONG;
PMQVOID typedef void MQPOINTER PMQVOID;

See “Data types” on page 9 for a description of the MQPOINTER macro variable.

Elementary data types - COBOL programming language

Table 9 (Page 1 of 2). Elementary data types in COBOL
Data type Representation

MQBYTE PIC X

MQBYTE16 PIC X(16)

MQBYTE24 PIC X(24)

MQBYTE32 PIC X(32)

MQBYTE40 PIC X(40)

MQBYTEG6G4 PIC X(64)

Chapter 1. Data type descriptions - elementary 3

Elementary data types

Table 9 (Page 2 of 2). Elementary data types in COBOL
Data type Representation
MQCHAR PIC X
MQCHAR4 PIC X(4)
MQCHARS PIC X(8)
MQCHAR12 PIC X(12)
MQCHAR16 PIC X(16)
MQCHAR20 PIC X(20)
MQCHAR28 PIC X(28)
MQCHAR32 PIC X(32)
MQCHAR48 PIC X(48)
MQCHARG64 PIC X(64)
MQCHAR128 PIC X(128)
MQCHAR256 PIC X(256)
MQHCONN PIC S9(9) BINARY
MQHOBJ PIC S9(9) BINARY
MQLONG PIC S9(9) BINARY
MQPTR POINTER
PMQLONG POINTER

Elementary data types - PL/I language (AIX, OS/2, OS/390, VSE/ESA,
and Windows NT only)

Table 10 (Page 1 of 2). Elementary data types in PL/I
Data type Representation
MQBYTE char(1)
MQBYTE16 char(16)
MQBYTE24 char(24)
MQBYTE32 char(32)
MQBYTE40 char(40)
MQBYTEG6G4 char(64)
MQCHAR char(1)
MQCHAR4 char(4)
MQCHARS8 char(8)
MQCHAR12 char(12)
MQCHAR16 char(16)
MQCHAR20 char(20)
MQCHAR28 char(28)
MQCHAR32 char(32)
MQCHAR48 char(48)
MQCHARG64 char(64)
MQCHAR128 char(128)
MQCHAR256 char(256)
MQHCONN fixed bin(31)
MQHOBJ fixed bin(31)

4 MQSeries Application Programming Reference

Elementary data types

Table 10 (Page 2 of 2). Elementary data types in PL/I

Data type Representation
MQLONG fixed bin(31)
PMQLONG pointer

Elementary data types - System/390 Assembler (OS/390 only)

Table 11. Elementary data types in System/390 assembler

Data type Representation
MQBYTE DS XL1
MQBYTE16 DS XL16
MQBYTE24 DS XL24
MQBYTE32 DS XL32
MQBYTE40 DS XL40
MQBYTE6G4 DS XL64
MQCHAR DS CL1
MQCHAR4 DS CL4
MQCHARS8 DS CL8
MQCHAR12 DS CL12
MQCHAR16 DS CL16
MQCHAR20 DS CL20
MQCHAR28 DS CL28
MQCHAR32 DS CL32
MQCHARA48 DS CL48
MQCHARG64 DS CL64
MQCHAR128 DS CL128
MQCHAR256 DS CL256
MQHCONN DS F
MQHOBJ DS F
MQLONG DS F
PMQLONG DS F

Elementary data types - TAL programming language (Tandem NonStop

Kernel only)

Table 12 (Page 1 of 2). Elementary data types in TAL

Data Type Representation

MQBYTE STRING

MQBYTE24 BEGIN STRING BYTE [0:23];END
MQBYTE32 BEGIN STRING BYTE [0:31];END
MQCHAR STRING

MQCHAR4 BEGIN STRING BYTE [0:3];END
MQCHARS8 BEGIN STRING BYTE [0:7]; END
MQCHAR12 BEGIN STRING BYTE [0:11];END
MQCHAR28 BEGIN STRING BYTE [0:27];END
MQCHAR32 BEGIN STRING BYTE [0:31];END

Chapter 1. Data type descriptions - elementary

Elementary data types

Table 12 (Page 2 of 2). Elementary data types in TAL
Data Type Representation

MQCHAR48 BEGIN STRING BYTE [0:47];END
MQCHARG4 BEGIN STRING BYTE [0:63[;END
MQCHAR128 BEGIN STRING BYTE [0:127];END
MQCHAR256 BEGIN STRING BYTE [0:255];END
MQHCONN INT(32)

MQHOBJ INT(32)

MQLONG INT(32)

| Elementary data types - Visual Basic (Windows 3.1, Windows 95,
| Windows 98, and Windows NT)

[Table 13. Elementary data types in Visual Basic
| Data type Representation
I MQBYTE Stringx1

I MQBYTE24 String#24

I MQBYTE32 String#32

I MQCHAR String*1

I MQCHARA4 Strings4

| MQCHARS String=8

| MQCHAR12 String12

I MQCHAR28 String*28

I MQCHAR32 String#32

I MQCHAR48 String+48

| MQCHARG64 String=64

I MQCHAR128 String*128

I MQCHAR256 String*256

I MQHCONN Long

| MQHOBJ Long

I MQLONG Long

6 MQSeries Application Programming Reference

Structure data types

Chapter 2. Data type descriptions - structures

This chapter describes the structure data types used by the MQI, which are:

e MQBO — Begin options

¢ MQCNO - Connect options

¢ MQGMO — Get-message options

e MQMD — Message descriptor

* MQMDE - Message descriptor extension
¢ MQOD - Object descriptor

¢ MQOR - Object record

e MQPMO - Put-message options

e MQPMR - Put message record

¢ MQRMH — Message reference header
¢ MQRR — Response record

The MQI also uses the following structure data types, which are included in this
chapter for completeness, but they are not part of the application programming
interface.

e MQCIH — CICS bridge header

¢ MQDH - Distribution header

¢ MQDLH — Dead-letter (undelivered-message) header
e MQIIH — IMS™ bridge header

e MQTM — Trigger message

¢ MQTMC2 — Trigger message (character format 2)

e MQWIH — Work Information header

e MQXQH — Transmission queue header

Note: The MQDXP — data conversion exit parameter structure is in Appendix D,
“Data-conversion” on page 579, together with the associated data
conversion calls.

Conventions used in the descriptions of data types

For each structure data type, this chapter gives a description of its usage, in a form
that is independent of the programming language. This is followed by typical
declarations in each of the supported programming languages.

The description of each structure data type contains the following sections:

Structure name
The name of the structure, followed by a brief description of the purpose of the
structure.

Fields
For each field, the name is followed by its elementary data type in parentheses
(); for example:

Version (MQLONG)

There is also a description of the purpose of the field, together with a list of
any values that the field can take. Names of constants are shown in
uppercase; for example, MQGMO_STRUC _ID. A set of constants having the
same prefix is shown using the * character, for example: MQIA *.

© Copyright IBM Corp. 1994,1999 7

Language considerations

In the descriptions of the fields, the following terms are used:
input You supply information in the field when you make a call.

output The queue manager returns information in the field when the
call completes or fails.

input/output You supply information in the field when you make a call, and
the queue manager changes the information when the call
completes or fails.

Initial values
A table showing the initial values for each field in the data definition files
supplied with the MQI.

C declaration
Typical declaration of the structure in C.

COBOL declaration
Typical declaration of the structure in COBOL.

PL/I declaration
Typical declaration of the structure in PL/I2.

System/390 assembler-language declaration
Typical declaration of the structure in System/390% assembler language.

Visual Basic declaration
Typical declaration of the structure in Visual basic.

Language considerations

This section outlines the requirements for data types in the following programming
languages:

e C — see “Using the data types in the C programming language”

e COBOL - see “Using the data types in the COBOL programming language” on
page 12

* PL/lI — see “Using the data types in the PL/I programming language” on
page 15

* Assembler/390 — see “Using the data types in the System/390 Assembler
programming language” on page 16

» Visual Basic — see “Using the data types in the Visual Basic programming
language” on page 19

Using the data types in the C programming language

This section contains information to help you use the MQI from the C programming
language.

2 PL/I and assembler are not sensitive to case, so the names of calls, structure fields, and constants can be coded in lowercase,
uppercase, or mixed case.

8 MQSeries Application Programming Reference

Language considerations

Header files

Header files are provided as part of the definition of the message queue interface,
to assist with the writing of C application programs that use message queuing.
These header files are summarized in Table 14.

Table 14. C header file

Filename Contents

CcMQC Function prototypes, data types, and named constants for the main MQI

CMQXC Function prototypes, data types, and named constants for the
data-conversion exit

To improve the portability of applications, it is recommended that the name of the
header file should be coded in lowercase on the #include preprocessor directive:

#include "cmgc.h"

Functions

Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; for all other parameters, the address of the parameter is passed
by value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer can
be specified as the parameter on the function invocation, in place of the address of
the parameter data. Parameters for which this is possible are identified in the call
descriptions.

No parameter is returned as the value of the function; in C terminology, this means
that all functions return void .

The attributes of the function are defined by the MQENTRY macro variable; the
value of this macro variable depends on the environment.

Parameters with undefined data type

The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has
an undefined data type, namely the Buffer parameter. This parameter is used to
send and receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is
perfectly valid to declare the parameters in this way, but it is usually more
convenient to declare them as the particular structure which describes the layout of
the data in the message. The actual function parameter is declared as a
pointer-to-void, and so the address of any sort of data can be specified as the
parameter on the function invocation.

Data types

All data types are defined by means of the C typedef statement. For each data
type, the corresponding pointer data type is also defined. The name of the pointer
data type is the name of the elementary or structure data type prefixed with the
letter “P” to denote a pointer. The attributes of the pointer are defined by the
MQPOINTER macro variable; the value of this macro variable depends on the
environment. The following illustrates how pointer data types are declared:

Chapter 2. Data type descriptions - structures 9

Language considerations

#define MQPOINTER =* /* depends on environment =*/

typedef MQLONG MQPOINTER PMQLONG; /+* pointer to MQLONG */
typedef MQMD MQPOINTER PMQMD; /* pointer to MQMD */

Manipulating binary strings

Strings of binary data are declared as one of the MQBYTEnN data types. Whenever
fields of this type are copied, compared, or set, the C functions memcpy ,
memcmp , or memset should be used; for example:

#include <string.h>
#include "cmgc.h"

MQMD MyMsgDesc;

memcpy (MyMsgDesc.MsgId, /* set "MsgId" field to nulls */
MQMI_NONE, /* ...using named constant */
sizeof (MyMsgDesc.MsglId));

memset (MyMsgDesc.Correlld, /* set "Correlld" field to nulls */
0x00, /* ...using a different method */
sizeof (MQBYTE24));

Do not use the string functions strcpy , strcmp , strncpy , or strncmp , because
these do not work correctly for data declared with the MQBYTEN data types.

Manipulating character strings

When the queue manager returns character data to the application, the queue
manager always pads the character data with blanks to the defined length of the
field; the queue manager does not return null-terminated strings. Therefore, when
copying, comparing, or concatenating such strings, the string functions strncpy ,
strncmp , or strncat should be used.

Do not use the string functions, which require the string to be terminated by a null
(strcpy , strcmp , strcat). Also, do not use the function strlen to determine the
length of the string; use instead the sizeof function to determine the length of the
field.

Initial values for structures

The header file CMQC defines various macro variables that may be used to provide
initial values for the message queuing structures when instances of those structures
are declared. These macro variables have names of the form “MQXXX_DEFAULT”,
where “MQXXX” represents the name of the structure. They are used in the
following way:

MQMD MyMsgDesc = {MQMD DEFAULT};
MQPMO MyPutOpts = {MQPMO DEFAULT};

For some character fields (for example, the Strucld fields which occur in most
structures, or the Format field which occurs in MQMD), the MQI defines particular
values that are valid. For each of the valid values, two macro variables are
provided:

e One macro variable defines the value as a string whose length excluding the
implied null matches exactly the defined length of the field. For example, for
the Format field in MQMD the following macro variable is provided (the symbol
“b” represents a blank character):

10 MmQseries Application Programming Reference

Language considerations

#define MQFMT_STRING "MQSTRbbb"
Use this form with the memcpy and memcmp functions.

e The other macro variable defines the value as an array of characters; the name
of this macro variable is the name of the string form suffixed with “_ ARRAY”.
For example:

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','d','d','d’
Use this form to initialize the field when an instance of the structure is declared

with values different from those provided by the MQMD_DEFAULT macro
variable.3

Initial values for dynamic structures

When a variable number of instances of a structure is required, the instances are
usually created in main storage obtained dynamically using the calloc or malloc
functions. To initialize the fields in such structures, the following technique is
recommended:

1. Declare an instance of the structure using the appropriate MQXXX_DEFAULT
macro variable to initialize the structure. This instance becomes the “model” for
other instances:

MQMD Model = {MQMD _DEFAULT}; /+* declare model instance */

The static or auto keywords can be coded on the declaration in order to give
the model instance static or dynamic lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of
the structure:

PMQMD Instance;
Instance = malloc(sizeof(MQMD)); /* get storage for dynamic instance */

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy (Instance,&Model,sizeof(MQMD)); /* initialize dynamic instance */

Use from C ++
For the C++ programming language, the header files contain the following additional
statements that are included only when a C++ compiler is used:

#ifdef _ cplusplus
extern "C" {
#endif

/* rest of header file */
#ifdef _ cplusplus

}
#endif

3 This is not always necessary; in some environments the string form of the value can be used in both situations. However, the
array form is recommended for declarations, since this is required for compatibility with the C++ programming language.

Chapter 2. Data type descriptions - structures 11

Language considerations

Notational conventions
The sections that follow show how the:

e Calls should be invoked
e Parameters should be declared
e Various data types should be declared

In a number of cases, parameters are arrays whose size is not fixed. For these, a
lowercase “n” is used to represent a numeric constant. When the declaration for
that parameter is coded, the “n” must be replaced by the numeric value required.

Using the data types in the COBOL programming language

This section contains information to help you use the MQI from the COBOL
programming language.

COPY files

Various COPY files are provided as part of the definition of the message queue
interface, to assist with the writing of COBOL application programs that use
message queuing. There are two files containing the named constants, and two
files for each of the structures.

Each structure is provided in two forms: a form with initial values, and a form
without.

* The structures with initial values can be used in the WORKING-STORAGE
SECTION of a COBOL program, and are contained in COPY files which have
names suffixed with the letter “V” (mnemonic for “Values”).

e The structures without initial values can be used in the LINKAGE SECTION of
a COBOL program, and are contained in COPY files which have names
suffixed with the letter “L” (mnemonic for “Linkage”).

The COPY files are summarized in Table 15.

Table 15 (Page 1 of 2). COBOL COPY files

File name (with File name (without Contents

initial values) initial values)

CMQBOV CMQBOL Begin options structure

CMQCIHV CMQCIHL CICS information header structure

CMQCNOV CMQCNOL Connect options structure

CMQDHV CMQDHL Distribution header structure

CMQDLHV CMQDLHL Dead-letter (undelivered-message)
header structure

CMQDXPV CMQDXPL Data-conversion-exit parameter structure

CMQGMOV CMQGMOL Get-message options structure

CMQIIHV CMQIIHL IMS information header structure

CMQMDV CMQMDL Message descriptor structure

CMQMDEV CMQMDEL Message descriptor extension structure

CMQODV CMQODL Object descriptor structure

CMQORV CMQORL Object record structure

CMQPMOV CMQPMOL Put-message options structure

CMQPMRV CMQPMRL Put-message record structure

12 MQSeries Application Programming Reference

Language considerations

Table 15 (Page 2 of 2). COBOL COPY files

File name (with File name (without Contents

initial values) initial values)

CMQRRV CMQRRL Response record structure

CMQTMV CMQTML Trigger-message structure

- CMQTMCL Trigger-message structure (character
format)

CMQWIHV CMQWIHL Work-information header structure

CMQV - Named constants for main MQI

CMQXQHV CMQXQHL Transmission-queue header structure

CMQXV - Named constants for data-conversion
exit

Structures

In the COPY file, each structure declaration begins with a level-10 item; this
enables several instances of the structure to be declared, by coding the level-01
declaration and then using the COPY statement to copy in the remainder of the
structure declaration. To reference the appropriate instance, the IN keyword can
be used:

* Declare two instances of MQMD
01 MY-MQMD.

COPY CMQMDV.
01 MY-OTHER-MQMD.

COPY CMQMDV.

*

* Set MSGTYPE field in MY-OTHER-MQMD
MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-MQMD.

The structures should be aligned on 4-byte boundaries. If the COPY statement is
used to include a structure following an item which is not the level-01 item, try to
ensure that the structure is a multiple of 4-bytes from the start of the level-01 item;
failure to do this may result in a performance degradation.

In Chapter 1, “Data type descriptions - elementary” on page 1, the names of fields
in structures are shown without a prefix. In COBOL, the field names are prefixed
with the name of the structure followed by a hyphen. However, if the structure
name ends with a numeric digit, indicating that the structure is a second or later
version of the original structure, the numeric digit is omitted from the prefix. Field
names in COBOL are shown in uppercase (although mixed case or lowercase can
be used if required). For example, the field MsgType described on page 124
becomes MQMD-MSGTYPE in COBOL.

The V-suffix structures are declared with initial values for all of the fields, and so it
is necessary to set only those fields where the value required is different from the
initial value.

Pointers

Some structures need to address optional data that may be discontiguous with the
structure. For example, the MQOR and MQRR records addressed by the MQOD
structure are like this. To address this optional data, the structures contain fields
that are declared with the pointer data type. However, COBOL does not support
the pointer data type in all environments. Because of this, the optional data can

Chapter 2. Data type descriptions - structures 13

Language considerations

also be addressed using fields which contain the offset of the data from the start of
the structure.

If an application is intended to be portable between environments, the application
designer should ascertain whether the pointer data type is available in all of the
intended environments. If it is not, the application should address the optional data
using the offset fields instead of the pointer fields.

In those environments where pointers are not supported, the pointer fields are
declared as byte strings of the appropriate length, with the initial value being the
all-null byte string. This initial value should not be altered if the offset fields are
being used.

Named constants

In this book, the names of constants are shown containing the underscore
character () as part of the name. In COBOL, the hyphen character (-) must be
used in place of the underscore.

Constants which have character-string values use the single-quote character as the
string delimiter ('). In some environments it may be necessary to specify an
appropriate compiler option to cause the compiler to accept the single quote as the
string delimiter.

The named constants are declared in the COPY files as level-10 items. To use the
constants, the level-01 item must be declared explicitly, and then the COPY
statement used to copy in the declarations of the constants:

* Declare a structure to hold the constants
01 MY-MQ-CONSTANTS.
COPY CMQV.

The above method causes the constants to occupy storage in the program even if
they are not referenced. If the constants are included in many separate programs
within the same run unit, multiple copies of the constants will exist; this may result
in a significant amount of main storage being consumed. This can be avoided by
using one of the following techniques:

e Add the GLOBAL clause to the level-01 declaration:

* Declare a global structure to hold the constants
01 MY-MQ-CONSTANTS GLOBAL.
COPY CMQV.

This causes storage to be allocated for only one set of constants within the run
unit; the constants, however, can be referenced by any program within the run
unit, not just the program which contains the level-01 declaration.

Note: The GLOBAL clause is not supported in all environments.

e Manually copy into each program only those constants that are referenced by
that program; do not use the COPY statement to copy all of the constants into
the program.

14 MQsSeries Application Programming Reference

Language considerations

Notational conventions
The sections that follow show how the:

e Calls should be invoked
e Parameters should be declared
e Various data types should be declared

In a number of cases, parameters are tables or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a humeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

Using the data types in the PL/I programming language

This section contains information to help you use the MQI from the PL/I
programming language.

INCLUDE files

Two INCLUDE files are provided as part of the definition of the message queue
interface, to assist with the writing of PL/I application programs that use message
gueuing. There is one INCLUDE file containing the structures and named
constants, and one containing the entry-point declarations. These files are
summarized in Table 16.

Table 16. PL/I INCLUDE file

Filename Contents
CMQEPP Entry points
CMQP Structures, named constants

To improve the portability of applications, it is recommended that the names of the
INCLUDE files should be coded in lowercase on the %include compiler directive:

%include sysTib(cmgp);
%include syslib(cmgepp);

Structures
Structures are declared with the BASED attribute, and so do not occupy any
storage unless the program declares one or more instances of a structure.

An instance of a structure can be declared by using the LIKE attribute:

%include syslib(cmgp);
%include syslib(cmgepp);

dc1 1 my_mgmd Tike MQMD; /* one instance =/
dcl 1 my_other_mgmd 1ike MQMD; /* another one */

The structure fields are declared with the INITIAL attribute. When the LIKE
attribute is used to declare an instance of a structure, that instance inherits the
initial values defined for that structure. Thus it is necessary to set only those fields
where the value required is different from the initial value.

PL/I is not sensitive to case, and so the names of calls, structure fields, and
constants can be coded in lowercase, uppercase, or mixed case.

Chapter 2. Data type descriptions - structures 15

Language considerations

Named constants

The named constants are declared as macro variables; as a result, named
constants which are not referenced by the program do not occupy any storage in
the compiled procedure. However, the compiler option which causes the source to
be processed by the macro preprocessor must be specified when the program is
compiled.

All of the macro variables are character variables, even the ones which represent
numeric values. Although this may seem counter-intuitive, it does not result in any
data-type conflict after the macro variables have been substituted by the macro

processor:
%dc1 MQMD_STRUC_ID char;
%MQMD_STRUC_ID = '''MD ''';

%dc1 MQMD_VERSION_1 char;
%MQMD_VERSION 1 = '1';

Notational conventions
The sections following show how the:

e Calls should be invoked
e Parameters should be declared
» Various data types should be declared.

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a numeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

Using the data types in the System/390 Assembler programming
language
This section contains information to help you use the MQI from the System/390
Assembler programming language.

Macros

Various macros are provided as part of the definition of the message queue
interface, to assist with the writing of assembler application programs that use
message queuing. There is one macro for the named constants, and one macro
for each of the structures. These files are summarized in Table 17 on page 17.

16 MQSeries Application Programming Reference

Language considerations

Table 17. Assembler macros
Filename Contents
CMQA Named constants (“equates”)
CMQCIHA CICS information-header structure
CMQDLHA Dead-letter header structure
CMQDXPA Data-conversion exit parameter structure
CMQGMOA Get-message options structure
CMQIIHA IMS information-header structure
CMQMDA Message descriptor structure
CMQODA Object descriptor structure
CMQPMOA Put-message options structure
CMQTMA Trigger message structure
CMQWIHA Work-information header structure
CMQXPA Exit parameter structure
CMQXQHA Transmission-queue header structure
Names

In this book, the names of parameters and the names of fields in structures, are
shown in a mixture of upper and lowercase. In assembler, all names must be
coded in uppercase.

Structures
The structures are generated by macros that have various parameters to control
the action of the macro.

Specifying the name of the structure: To allow more than one instance of a
structure to be declared, the macro prefixes the name of each field in the structure
with a user-specifiable string and an underscore. The string used is the label
specified on the invocation of the macro. If no label is specified, the name of the
structure is used to construct the prefix:

* Declare two object descriptors
CMQODA Prefix used="MQOD_" (the default)
MY _MQOD CMQODA Prefix used="MY_MQOD_"

The structure declarations use the default prefix.

Specifying the form of the structure: Structure declarations can be generated
by the macro in one of two forms, controlled by the DSECT parameter:

DSECT=YES An assembler DSECT instruction is used to start a new data
section; the structure definition immediately follows the DSECT
statement. The label on the macro invocation is used as the
name of the data section; if no label is specified, the name of the
structure is used.

DSECT=NO Assembler DC instructions are used to define the structure at the
current position in the routine. The fields are initialized with
values, which can be specified by coding the relevant parameters
on the macro invocation. Fields for which no values are specified
on the macro invocation are initialized with default values.

DSECT=NO is assumed if the DSECT parameter is not specified.

Chapter 2. Data type descriptions - structures 17

Language considerations

Declaring one structure embedded within another: To declare one structure as
a component of another structure, the NESTED parameter should be used:

NESTED=YES The structure declaration is nested within another.

NESTED=NO The structure declaration is not nested within another.
NESTED=NO is assumed if the NESTED parameter is not
specified.

Controlling the listing: The appearance of the structure declaration in the
assembler listing can be controlled by means of the LIST parameter:

LIST=YES The structure declaration appears in the assembler listing.
LIST=NO The structure declaration does not appear in the assembler
listing.

LIST=NO is assumed if the LIST parameter is not specified.

Specifying initial values for fields: The value to be used to initialize a field in a
structure can be specified by coding the name of that field (without the prefix) as a
parameter on the macro invocation, accompanied by the value required. For
example, to declare a message-descriptor structure with the MsgType field initialized
with MQMT_REQUEST, and the ReplyToQ field initialized with the string
“MY_REPLY_TO_QUEUE", the following could be used:

MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X
REPLYTOQ=MY_REPLY_TO_QUEUE

If a named constant (equate) is specified as a value on the macro invocation, the
CMQA macro must be used in order to define the named constant. Values which
are character strings must not be enclosed in single quotes.

Notational conventions
The sections that follow show how the:

¢ Calls should be invoked
e Parameters should be declared
» Various data types should be declared.

In the sample declarations of the elementary data types, the string “var” is used to
represent the name of a variable; when that declaration is coded, “var” must be
replaced by the actual name required.

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a humeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

18 MQseries Application Programming Reference

Language considerations

| Using the data types in the Visual Basic programming language

This section contains information to help you use the MQI from the Visual Basic
programming language.

Header files in Visual Basic

Header (or form) files are provided as part of the definition of the MQI to assist with
the writing of Visual Basic application programs that use message queuing. These
header files are summarized in Table 18.

Table 18. Visual Basic header files

File name Contents
CMQB.BAS Call declarations, data types, and named constants for the main MQI.
CMQBB.BAS Call declarations, data types, and named constants for the MQAI.

In a default installation, the module files (.BAS) are supplied in the \Program
Files\MQSeries for Windows NT\Samples\VB\Include subdirectory.

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; all other parameters are passed by address.

Initial values for structures

The supplied header files define various subroutines that may be invoked to
initialize the message queuing structures with the default values. These
subroutines have names of the form MQxxx_DEFAULTS , where MQxxx
represents the name of the structure. They are used in the following way:

MQMD_DEFAULTS (MyMsgDesc) '"Initialize message descriptor'
MQPMO_DEFAULTS (MyPutOpts) '"Initialize put-message options'

There is also a subroutine called MQSET_DEFAULTS, which you call at the start
of a program to ensure that various default constants are set up properly.

MQ_SETDEFAULTS should be called before any other MQSeries calls, and you
are recommended to put this subroutine in the Load procedure of the start up form.
For example:

Private Sub Form_Load()
' Set up default constants
MQ_SETDEFAULTS

End Sub

Notational conventions

In some cases, parameters are arrays whose sizes are not fixed. For these, a
lowercase ‘n’ represents a numeric constant. When you code the declaration for
that parameter, you must replace the ‘n’ with the numeric value you require.

Chapter 2. Data type descriptions - structures 19

Structure data types

Structure data types

Programming languages vary in their level of support for structures, and certain
rules and conventions are adopted in order to allow the MQI structures to be
mapped consistently in each programming language:

1. Structures are aligned on their natural boundaries. All MQI structures require
4-byte alignment.

2. Each field in the structure is aligned on its natural boundary. Fields with data
types that equate to MQLONG are aligned on 4-byte boundaries; other fields
are aligned on 1-byte boundaries.

3. The length of a structure is a multiple of its boundary alignment. All MQI
structures have lengths that are multiples of 4 bytes.

4. Where necessary, padding fields are declared explicitly to ensure compliance
with rules 2 and 3 above.

20 MQsSeries Application Programming Reference

MQBO - Begin options ¢ MQBO - Options field

MQBO - Begin options

The following table summarizes the fields in the structure.

Fields

Table 19. Fields in MQBO

Field Description Page
Strucld Structure identifier 21
Version Structure version number 21
Options Options that control the action of MQBEGIN 21

The MQBO structure is an input/output parameter for the MQBEGIN call.

This structure is supported in the following environments: AIX, HP-UX, OS/2, Sun

Solaris, Windows NT.

Strucld (MQCHARA4)

Structure identifier.

The value must be:

MQBO_STRUC_ID
Identifier for begin-options structure.

For the C programming language, the constant

MQBO_STRUC_ID_ARRAY is also defined; this has the same value

as MQBO_STRUC _ID, but is an array of characters instead of a
string.

This is always an input field. The initial value of this field is
MQBO_STRUC_ID.

Version (MQLONG)

Structure version number.

The value must be:

MQBO_VERSION_1
Version number for begin-options structure.

The following constant specifies the version number of the current version:

MQBO_CURRENT_VERSION
Current version of begin-options structure.

This is always an input field. The initial value of this field is
MQBO_VERSION_1.

Options (MQLONG)

Options that control the action of MQBEGIN.

The value must be:

MQBO_NONE
No options specified.

This is always an input field. The initial value of this field is
MQBO_NONE.

Chapter 2. Data type descriptions - structures

21

MQBO - language declarations

Table 20. Initial values of fields in MQBO

1. The symbol ‘b’ represents a single blank character.

the fields in the structure
MQBO MyBO = {MQBO_DEFAULT};

Field name Name of constant Value of constant
Strucld MQBO_STRUC_ID 'BObb !

(See note 1)
Version MQBO_VERSION_1 1
Options MQBO_NONE 0
Notes:

2. In the C programming language, the macro variable MQBO_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for

C language declaration

typedef struct tagMQBO
MQCHAR4 Strucld; /* Structure identifier x/

MQLONG Version; /* Structure version number =/

MQLONG Options; /* Options that control the action of MQBEGIN */

} MQBO;

COBOL language declaration
** MQBO structure
10 MQBO.
*k Structure identifier
15 MQBO-STRUCID PIC X(4).
*% Structure version number
15 MQBO-VERSION PIC S9(9) BINARY.
*k Options that control the action of MQBEGIN
15 MQBO-OPTIONS PIC S9(9) BINARY.

PL/I declaration (AlX, OS/2, and Windows NT)

dcl
1 MQBO based,

3 Strucld char(4), /* Structure identifier =/
3 Version fixed bin(31), /* Structure version number x/

3 Options fixed bin(31); /* Options that control the action of

MQBEGIN */

Visual Basic declaration (Windows NT only)

Type MQBO
Strucld As String*4 'Structure identifier'
Version As Long 'Structure version number'
Options As Long 'Controls action of MQBEGIN'
End Type

22 MQSeries Application Programming Reference

MQCIH - CICS bridge header

MQCIH - CICS bridge header

The following table summarizes the fields in the structure.

Table 21. Fields in MQCIH
Field Description page
Strucld Structure identifier 25
Version Structure version number 25
Struclength Length of MQCIH structure 25
Format MQ format name 26
ReturnCode Return code from bridge 26
CompCode MQ completion code or CICS EIBRESP 27
Reason MQ reason or feedback code, or CICS 27
EIBRESP2
UOWControl Unit-of-work control 27
GetWaitInterval Wait interval for MQGET call issued by bridge 28
task
LinkType Link type 28
OutputDatalength Output COMMAREA data length 28
FacilityKeepTime Bridge facility release time 29
ADSDescriptor Send/receive ADS descriptor 29
ConversationalTask Whether task can be conversational 29
TaskEndStatus Status at end of task 30
Facility BVT token value 30
Function MQ call name or CICS EIBFN function 31
AbendCode Abend code 31
Authenticator Password or passticket 31
ReplyToFormat MQ format name of reply message 32
RemoteSysId Remote sysid to use 32
RemoteTransId Remote transid to attach 32
Transactionld Transaction to attach 32
Facilitylike Terminal emulated attributes 32
Attentionld AID key 33
StartCode Transaction start code 33
CancelCode Abend transaction code 33
NextTransactionld Next transaction to attach 34
Note: The fields listed below are supported only in the following environments: AlX,
DOS client, HP-UX, OS/2, 0S/390, Sun Solaris, Windows client, Windows NT.
CursorPosition Cursor position 34
ErrorOffset Offset of error in message 34
InputItem Item number of last message read 34

Chapter 2. Data type descriptions - structures 23

MQCIH - CICS bridge header

The MQCIH structure describes the information that can be present at the start of a
message sent to the CICS bridge through MQSeries for OS/390. The structure can
be omitted if the values required by the application are the same as the initial
values shown in Table 23 on page 34 and the bridge is running with
AUTH=LOCAL or IDENTIFY. The format name of this structure is MQFMT_CICS.

The current version of MQCIH is MQCIH_VERSION_2. Fields that exist only in the
version-2 structure are identified as such in the descriptions that follow. The
declarations of MQCIH provided in the header, COPY, and INCLUDE files for the
supported programming languages contain the new fields, with the initial value of
the Version field set to MQGMO_VERSION_2.

The version-2 structure is supported in the following environments: AlX, DOS client,
HP-UX, 0S/390, OS/2, Sun Solaris, Windows client, Windows NT.

Special conditions apply to the character set and encoding used for the MQCIH
structure and application message data:

» Applications that connect to the queue manager which owns the CICS bridge
gueue must provide an MQCIH structure that is in the character set and
encoding of the queue manager. This is because data conversion of the
MQCIH structure is not performed in this case.

¢ Applications that connect to other queue managers can provide an MQCIH
structure that is in any of the supported character sets and encodings;
conversion of the MQCIH and application message data is performed by the
gueue manager as necessary.

Note: There is one exception to this. If the queue manager which owns the
CICS bridge queue is using CICS for distributed queuing, the MQCIH
must be in the character set and encoding of that queue manager.

e The application message data following the MQCIH structure must be in the
same character set and encoding as the MQCIH structure. The
CodedCharSetId and Encoding fields in the MQCIH structure cannot be used to
specify the character set and encoding of the application message data.

The application must ensure that fields documented as “request” fields have
appropriate values.

Error information is returned in the ReturnCode, Function, CompCode, Reason, and

AbendCode fields. Which of them is set depends on the value of the ReturnCode
field; see Table 22 on page 25.

24 MQSeries Application Programming Reference

MQCIH — Strucld field

* MQCIH - StrucLength field

Table 22. Contents of error information fields in MQCIH structure

ReturnCode

Function

CompCode

Reason

AbendCode

MQCRC_OK

MQCRC_BRIDGE_ERROR

MQFB_CICS_*

MQCRC_MQ_API_ERROR
MQCRC_BRIDGE_TIMEOUT

MQ call name

MQ CompCode

MQ Reason

MQCRC_CICS_EXEC_ERROR

CICS EIBFN

CICS EIBRESP

MQCRC_SECURITY_ERROR
MQCRC_PROGRAM_NOT_AVAILABLE
MQCRC_TRANSID_NOT_AVAILABLE

CICs
EIBRESP2

MQCRC_BRIDGE_ABEND - _
MQCRC_APPLICATION_ABEND

CICS ABCODE

Fields

Strucld (MQCHARA4)
Structure identifier.

The value must be:

MQCIH_STRUC_ID

Identifier for CICS information header structure.

For the C programming language, the constant
MQCIH_STRUC_ID_ARRAY is also defined; this has the same value
as MQCIH_STRUC_ID, but is an array of characters instead of a

string.

This is a request field. The initial value of this field is MQCIH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQCIH_VERSION_1

Version-1 CICS information header structure.

MQCIH_VERSION_2

Version-2 CICS information header structure.

Fields that exist only in the version-2 structure are identified as such

in the descriptions that follow.

The following constant specifies the version number of the current version:

MQCIH_CURRENT_VERSION

Current version of CICS information header structure.

This is a request field. The initial value of this field is

MQCIH_VERSION_2.

StrucLength (MQLONG)
Length of MQCIH structure.

The value must be one of the following:

Chapter 2. Data type descriptions - structures 25

MQCIH — Encoding field ¢ MQCIH — ReturnCode field

MQCIH_LENGTH_1
Length of version-1 CICS information header structure.

MQCIH_LENGTH_2
Length of version-2 CICS information header structure.

The following constant specifies the length of the current version:

MQCIH_CURRENT_LENGTH
Length of current version of CICS information header structure.

This is a request field. The initial value of this field is MQCIH_LENGTH_2.

Encoding (MQLONG)
Reserved.

This is a reserved field; its value is not significant. The initial value of this
field is O.

CodedCharSetId (MQLONG)
Reserved.

This is a reserved field; its value is not significant. The initial value of this
field is 0.

Format (MQCHARS)
MQ format name.

This is the MQ format name of the application message data which follows
the MQCIH structure. The rules for coding this are the same as those for
the Format field in MQMD.

This format name is also used for the reply message, if the ReplyToformat
field has the value MQFMT_NONE.

If the request message results in the generation of an error reply
message, the error reply message has a format name of
MQFMT_STRING.

This is a request field. The length of this field is given by
MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
Reserved.

The value must be:

MQCIH_NONE
No flags.

This is a request field. The initial value of this field is MQCIH_NONE.

ReturnCode (MQLONG)
Return code from bridge.

This is the return code from the CICS bridge describing the outcome of the
processing performed by the bridge. The Function, CompCode, Reason, and
AbendCode fields may contain additional information (see Table 22 on

page 25). The value is one of the following:

MQCRC_APPLICATION_ABEND
(5, X'005") Application ended abnormally.

26 MQSeries Application Programming Reference

MQCIH — CompCode field ¢ MQCIH — UOWControl field

MQCRC_BRIDGE_ABEND
(4, X'004') CICS bridge ended abnormally.

MQCRC_BRIDGE_ERROR
(3, X'003") CICS bridge detected an error.

MQCRC_BRIDGE_TIMEOUT
(8, X'008') Second or later message within current unit of work not
received within specified time.

MQCRC_CICS_EXEC _ERROR
(1, X'001') EXEC CICS statement detected an error.

MQCRC_MQ_API_ERROR
(2, X'002') MQ call detected an error.

MQCRC_OK
(0, X'000') No error.

MQCRC_PROGRAM_NOT_AVAILABLE
(7, X'007") Program not available.

MQCRC_SECURITY_ERROR
(6, X'006"') Security error occurred.

MQCRC_TRANSID_NOT_AVAILABLE
(9, X'009') Transaction not available.

The initial value of this field is MQCRC_OK.

CompCode (MQLONG)
MQ completion code or CICS EIBRESP.

The value returned in this field is dependent on ReturnCode; see Table 22
on page 25.

The initial value of this field is MQCC_OK

Reason (MQLONG)
MQ reason or feedback code, or CICS EIBRESP2.

The value returned in this field is dependent on ReturnCode; see Table 22
on page 25.

The initial value of this field is MQRC_NONE.

UOWControl (MQLONG)
Unit-of-work control.

This controls the unit-of-work processing performed by the CICS bridge.
You can request the bridge to run a single transaction, or one or more
programs within a unit of work. The field indicates whether the CICS
bridge should start a unit of work, perform the requested function within
the current unit of work, or end the unit of work by committing it or backing
it out. Various combinations are supported, to optimize the data
transmission flows.

The value must be one of the following:

MQCUOWC_ONLY
Start unit of work, perform function, then commit the unit of work
(DPL and 3270).

Chapter 2. Data type descriptions - structures 27

MQCIH — GetWaitinterval field ¢ MQCIH — OutputDatalLength field

MQCUOWC_CONTINUE
Additional data for the current unit of work (3270 only).

MQCUOWC_FIRST
Start unit of work and perform function (DPL only).

MQCUOWC_MIDDLE
Perform function within current unit of work (DPL only).

MQCUOWC_LAST
Perform function, then commit the unit of work (DPL only).

MQCUOWC_COMMIT
Commit the unit of work (DPL only).

MQCUOWC_BACKOUT
Back out the unit of work (DPL only).

This is a request field. The initial value of this field is MQCUOWC_ONLY.

GetWaitInterval (MQLONG)
Wait interval for MQGET call issued by bridge task.

This field is applicable only when U0OWControl has the value
MQCUOWC_FIRST. It allows the sending application to specify the
approximate time in milliseconds that the MQGET calls issued by the
bridge should wait for second and subsequent request messages for the
unit of work started by this message. This overrides the default wait
interval used by the bridge. The following special values may be used:

MQCGWI_DEFAULT
Default wait interval.

This causes the CICS bridge to wait for the period of time specified
when the bridge was started.

MQWI_UNLIMITED
Unlimited wait interval.

This is a request field. The initial value of this field is
MQCGWI_DEFAULT.

LinkType (MQLONG)
Link type.

This indicates the type of object that the bridge should try to link. The
value must be one of the following:

MQCLT_PROGRAM
DPL program.

MQCLT_TRANSACTION
3270 transaction.

This is a request field. The initial value of this field is
MQCLT_PROGRAM.

OutputDatalength (MQLONG)
Output COMMAREA data length.

This is the length of the user data to be returned to the client in a reply
message. This length includes the 8-byte program name. The length of

28 MQsSeries Application Programming Reference

MQCIH — FacilityKeepTime field ¢ MQCIH — ConversationalTask field

the COMMAREA passed to the linked program is the maximum of this
field and the length of the user data in the request message, minus 8.

Note: The length of the user data in a message is the length of the
message excluding the MQCIH structure.

If the length of the user data in the request message is smaller than
OutputDatalength, the DATALENGTH option of the LINK command is used;
this allows the LINK to be function-shipped efficiently to another CICS
region.

The following special value can be used:

MQCODL_AS_INPUT
Output length is same as input length.

This value may be needed even if no reply is requested, in order to
ensure that the COMMAREA passed to the linked program is of
sufficient size.

This is a request field used only for DPL programs. The initial value of
this field MQCODL_AS_INPUT.

FacilityKeepTime (MQLONG)
Bridge facility release time.

This is the length of time in seconds that the bridge facility will be kept
after the user transaction has ended.

This is a request field used only for 3270 transactions. The initial value of
this field is 0.

ADSDescriptor (MQLONG)
Send/receive ADS descriptor.

This is an indicator specifying whether ADS descriptors should be sent on
SEND and RECEIVE BMS requests. The value must be one of the
following:

MQCADSD_NONE
No ADS descriptor.

MQCADSD_SEND
Send ADS descriptor.

MQCADSD_RECV
Receive ADS descriptor.

MQCADSD_MSGFORMAT
Receive ADS descriptor.

This is a request field used only for 3270 transactions. The initial value of
this field is MQCADSD_NONE.

ConversationalTask (MQLONG)
Whether task can be conversational.

This is an indicator specifying whether the task should be allowed to issue
requests for more information, or should abend. The value must be one of
the following:

Chapter 2. Data type descriptions - structures 29

MQCIH — TaskEndStatus field ¢ MQCIH — Facility field

MQCCT_VYES

Task is conversational.
MQCCT_NO

Task is not conversational.

This is a request field used only for 3270 transactions. The initial value of
this field is MQCCT_NO.

TaskEndStatus (MQLONG)
Status at end of task.

This field shows the status of the user transaction at end of task. One of
the following values is returned:

MQCTES_NOSYNC
Not synchronized.

The user transaction has not yet completed, and has not
syncpointed.

MQCTES_COMMIT
Commit unit of work.

The user transaction has not yet completed, but has syncpointed the
first unit of work.

MQCTES_BACKOUT
Backout unit of work.

The user transaction has not yet completed. The current unit of work
will be backed out.

MQCTES_ENDTASK
End task.

The user transaction has ended (or abended).

This is a response field used only for 3270 transactions. The initial value
of this field is MQCTES_NOSYNC.

Facility (MQBYTES)
BVT token value.

This is an 8-byte bridge-facility token. The purpose of a bridge-facility
token is so that multiple transactions in a pseudoconversation can use the
same bridge facility (virtual 3270 terminal). In the first, or only, message in
a pseudoconversation, a value of MQCFAC_NONE should be set; this tells
CICS to allocate a new bridge facility for this message. A bridge-facility
token is returned in response messages when a non-zero
FacilityKeepTime is specified on the input message. Subsequent input
messages can then use the same bridge-facility token.

The following special value is defined:

MQCFAC_NONE
No BVT token specified.

For the C programming language, the constant
MQCFAC_NONE_ARRAY is also defined; this has the same value
as MQCFAC_NONE, but is an array of characters instead of a string.

30 MQsSeries Application Programming Reference

MQCIH — Function field ¢ MQCIH — Authenticator field

This is both a request and a response field used only for 3270
transactions. The length of this field is given by MQ_FACILITY_LENGTH.
The initial value of this field is MQCFAC_NONE.

Function (MQCHARA4)
MQ call name or CICS EIBFN function.

The value returned in this field is dependent on ReturnCode; see Table 22
on page 25. The following values are possible when Function contains
an MQ call name:

MQCFUNC_MQCONN
MQCONN call.

MQCFUNC_MQGET
MQGET call.

MQCFUNC_MQINQ
MQINQ call.

MQCFUNC_MQOPEN
MQOPEN call.

MQCFUNC_MQPUT
MQPUT call.

MQCFUNC_MQPUT1
MQPUT1 call.

MQCFUNC_NONE
No call.

In all cases, for the C programming language the constants
MQCFUNC_»_ARRAY are also defined; these have the same values as
the corresponding MQCFUNC_* constants, but are arrays of characters
instead of strings.

The length of this field is given by MQ_FUNCTION_LENGTH. The initial
value of this field is MQCFUNC_NONE.

AbendCode (MQCHARA4)
Abend code.

The value returned in this field is dependent on ReturnCode; see Table 22
on page 25.

The length of this field is given by MQ_ABEND_CODE_LENGTH. The
initial value of this field is 4 blank characters.

Authenticator (MQCHARS)
Password or passticket.

This is a password or passticket. If user-identifier authentication is active
for the CICS bridge, Authenticator is used with the user identifier in the
MQMD identity context to authenticate the sender of the message.

This is a request field. The length of this field is given by
MQ_AUTHENTICATOR_LENGTH. The initial value of this field is 8 blank
characters.

Chapter 2. Data type descriptions - structures 31

MQCIH — Reservedl field ¢ MQCIH — FacilityLike field

Reservedl (MQCHARS)
Reserved.

This is a reserved field. The value must be 8 blanks.

ReplyToFormat (MQCHARS)
MQ format name of reply message.

This is the MQ format name of the reply message which will be sent in
response to the current message. The rules for coding this are the same
as those for the Format field in MQMD.

This is a request field used only for DPL programs. The length of this field
is given by MQ_FORMAT_LENGTH. The initial value of this field is
MQFMT_NONE.

RemoteSysId (MQCHARA4)
Remote sysid to use.

This is a reserved field. The value must be 4 blanks. The length of this
field is given by MQ_REMOTE_SYS_ID_LENGTH.

RemoteTransId (MQCHAR4)
Remote transid to attach.

This is a reserved field. The value must be 4 blanks. The length of this
field is given by MQ_TRANSACTION_ID_LENGTH.

TransactionId (MQCHARA4)
Transaction to attach.

If LinkType has the value MQCLT_TRANSACTION, TransactionlId is the
transaction identifier of the user transaction to be run; a nonblank value
must be specified in this case.

If LinkType has the value MQCLT_PROGRAM, Transactionld is the
transaction code under which all programs within the unit of work are to be
run. If the value specified is blank, the CICS DPL bridge default
transaction code (CKBP) is used. If the value is nonblank, it must have
been defined to CICS as a local TRANSACTION whose initial program is
CSQCBPO00. This field is applicable only when UOWControl has the value
MQCUOWC_FIRST or MQCUOWC_ONLY.

This is a request field. The length of this field is given by
MQ_TRANSACTION_ID_LENGTH. The initial value of this field is 4
blanks.

Facilitylike (MQCHAR4)
Terminal emulated attributes.

This is the name of an installed terminal that is to be used as a model for
the bridge facility. A value of blanks means that FacilityLike is taken
from the bridge transaction profile definition, or a default value is used.

This is a request field used only for 3270 transactions. The length of this
field is given by MQ_FACILITY_LIKE_LENGTH. The initial value of this
field is 4 blanks.

32 MQSeries Application Programming Reference

MQCIH — Attentionld field ¢ MQCIH — CancelCode field

Attentionld (MQCHAR4)
AID key.

This is the initial value of the AID key when the transaction is started. It is
a 1-byte value, left justified.

This is a request field used only for 3270 transactions. The length of this
field is given by MQ_ATTENTION_ID_LENGTH. The initial value of this
field is 4 blanks.

StartCode (MQCHAR4)
Transaction start code.

This is an indicator specifying whether the bridge emulates a terminal
transaction or a STARTed transaction. The value must be one of the
following:

MQCSC_START
Start.

MQCSC_STARTDATA
Start data.

MQCSC_TERMINPUT
Terminate input.

MQCSC_NONE
None.

In all cases, for the C programming language the constants
MQCSC_*_ARRAY are also defined; these have the same values as the
corresponding MQCSC_* constants, but are arrays of characters instead
of strings.

In the response from the bridge, this field is set to the start code
appropriate to the next transaction id contained in the NextTransactionld
field. The following start codes are possible in the response:

MQCSC_START
MQCSC_STARTDATA
MQCSC_TERMINPUT

For CICS Transaction Server version 1.2, this field is a request field only;
its value in the response is undefined.

For CICS Transaction Server version 1.3 and subsequent releases, this is
both a request and a response field.

This field is used only for 3270 transactions. The length of this field is
given by MQ_START_CODE_LENGTH. The initial value of this field is
MQCSC_NONE.

CancelCode (MQCHAR4)
Abend transaction code.

This is the abend code to be used to terminate the transaction (normally a
conversational transaction that is requesting more data). Otherwise this
field is set to blanks.

This is a request field used only for 3270 transactions. The length of this
field is given by MQ_CANCEL_CODE_LENGTH. The initial value of this
field is 4 blanks.

Chapter 2. Data type descriptions - structures 33

MQCIH — NextTransactionld field ¢ MQCIH — Reserved4 field

NextTransactionld (MQCHAR4)
Next transaction to attach.

This is the name of the next transaction returned by the user transaction
(usually by EXEC CICS RETURN TRANSID). If there is no next
transaction, this field is set to blanks.

This is a response field used only for 3270 transactions. The length of this
field is given by MQ_TRANSACTION_ID_LENGTH. The initial value of
this field is 4 blanks.

Reserved? (MQCHARS)
Reserved.

This is a reserved field. The value must be 8 blanks.

Reserved3 (MQCHARS)
Reserved.

This is a reserved field. The value must be 8 blanks.

The remaining fields in this structure are not present if Version is less than
MQCIH_VERSION_2.

CursorPosition (MQLONG)
Cursor position.

This is the initial cursor position when the transaction is started.
Subsequently, for conversational transactions, the cursor position is in the
RECEIVE vector.

This is a request field used only for 3270 transactions. The initial value of
this field is 0.

ErrorOffset (MQLONG)
Offset of error in message.

This is the position of invalid data detected by the bridge exit. This field
provides the offset from the start of the message to the location of the
invalid data.

This is a response field used only for 3270 transactions. The initial value
of this field is 0.

InputItem (MQLONG)
Item number of last message read.

This is a reserved field. The value must be 0.

Reserved4 (MQLONG)
Reserved.

This is a reserved field. The value must be 0.

Table 23 (Page 1 of 3). Initial values of fields in MQCIH
Field name Name of constant Value of constant
Strucld MQCIH_STRUC_ID "CIHb'

(See note 1)
Version MQCIH_VERSION_2 2
StruclLength MQCIH_LENGTH_2 180

34 MQSeries Application Programming Reference

MQCIH — Reserved4 field

Table 23 (Page 2 of 3). Initial values of fields in MQCIH

Field name Name of constant Value of constant
Encoding None 0
CodedCharSetId None (]

Format MQFMT_NONE "bbbbbbbb !
Flags MQCIH_NONE 0
ReturnCode MQCRC_OK 0

CompCode MQCC_OK 0

Reason MQRC_NONE 0
UOWControl MQCUOWC_ONLY 273
GetWaitinterval MQCGWI_DEFAULT -2
LinkType MQCLT_PROGRAM 1
OutputDatalength MQCODL_AS_INPUT -1
FacilityKeepTime None 0
ADSDescriptor MQCADSD_NONE 0
ConversationalTask MQCCT_NO 0
TaskEndStatus MQCTES_NOSYNC 0
Facility MQCFAC_NONE Nulls
Function MQCFUNC_NONE "bbbb
AbendCode None "bbbb !
Authenticator None "bbbbbbbd’
Reservedl None "bbbbbbbb
ReplyToFormat MQFMT_NONE "bbbbbbbb'
RemoteSysId None "bbbb '
RemoteTransId None "bbbd '
Transactionld None "bbbd '
FacilitylLike None "bbbb '
Attentionld None "bbbb
StartCode MQCSC_NONE "bbbb '
CancelCode None "bbbb!
NextTransactionld None "bbbd’
Reserved? None "bbbbbbbb
Reserved3 None "bbbbbbbb
CursorPosition None 0
ErrorOffset None 0
InputlItem None 0

Chapter 2. Data type descriptions - structures

35

MQCIH — C declaration

Table 23 (Page 3 of 3). Initial values of fields in MQCIH

Field name

Name of constant

Value of constant

Reserved4

None

0

Notes:

1. The symbol ‘b’ represents a single blank character.

2. In the C programming language, the macro variable MQCIH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure

MQCIH MyCIH = {MQCIH_DEFAULT};

C language declaration

typedef struct tagMQCIH {

MQCHAR4
MQLONG
MQLONG
MQLONG
MQLONG
MQCHARS
MQLONG
MQLONG
MQLONG
MQLONG

MQLONG
MQLONG

MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQBYTES
MQCHAR4

MQCHAR4
MQCHARS
MQCHARS
MQCHARS
MQCHAR4
MQCHAR4
MQCHAR4
MQCHAR4
MQCHAR4
MQCHAR4
MQCHAR4
MQCHAR4
MQCHARS
MQCHARS
MQLONG
MQLONG
MQLONG
MQLONG

} MQCIH;

Strucld;
Version;
StruclLength;
Encoding;
CodedCharSetId;
Format;

Flags;
ReturnCode;
CompCode;
Reason;

UOWControl;
GetWaitInterval;

LinkType;
OutputDatalength;
FacilityKeepTime;
ADSDescriptor;

ConversationalTask;

TaskEndStatus;
Facility;
Function;

AbendCode;
Authenticator;
Reservedl;
ReplyToFormat;
RemoteSysId;
RemoteTransId;
Transactionld;
FacilityLike;
Attentionld;
StartCode;
CancelCode;
NextTransactionlId;
Reserved?;
Reserved3;
CursorPosition;
ErrorOffset;
InputItem;
Reserved4;

36 MQSeries Application Programming Reference

Structure identifier =/

Structure version number =/

Length of MQCIH structure */
Reserved */

Reserved =*/

MQ format name */

Reserved =*/

Return code from bridge */

MQ completion code or CICS EIBRESP */
MQ reason or feedback code, or CICS
EIBRESP2 */

Unit-of-work control =/

Wait interval for MQGET call issued
by bridge task =/

Link type */

Output COMMAREA data length */
Bridge facility release time x/
Send/receive ADS descriptor =*/
Whether task can be conversational =*/
Status at end of task */

BVT token value */

MQ call name or CICS EIBFN

function */

Abend code */

Password or passticket =*/

Reserved =*/

MQ format name of reply message */
Remote sysid to use */

Remote transid to attach */
Transaction to attach */

Terminal emulated attributes =/

AID key */

Transaction start code */

Abend transaction code =/

Next transaction to attach */
Reserved =/

Reserved */

Cursor position */

Offset of error in message */

Item number of last message read */
Reserved */

COBOL language declaration

%

**

**

**

**

%

**

*%x

**

**

**

%

**

**

**

**

**

%

**

**

**

**

**

%

**

*%x

**

**

10

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

MQCIH structure
MQCIH.
Structure identifier

MQCIH-STRUCID PIC
Structure version number
MQCIH-VERSION PIC

Length of MQCIH structure

MQCIH-STRUCLENGTH PIC
Reserved

MQCIH-ENCODING PIC
Reserved
MQCIH-CODEDCHARSETID PIC
MQ format name

MQCIH-FORMAT PIC
Reserved

MQCIH-FLAGS PIC
Return code from bridge
MQCIH-RETURNCODE PIC

S9(9)
S9(9)
S9(9)

S9(9)

S9(9)

S9(9)

MQCIH — COBOL declaration

X(4).

BINARY.

BINARY.

BINARY.

BINARY.

X(8).

BINARY.

BINARY.

MQ completion code or CICS EIBRESP

MQCIH-COMPCODE

PIC S9(9) BINARY.

MQ reason or feedback code, or CICS EIBRESP2

MQCIH-REASON
Unit-of-work control

PIC

S9(9) BINARY.

MQCIH-UOWCONTROL PIC S9(9) BINARY.
Wait interval for MQGET call issued by bridge task
MQCIH-GETWAITINTERVAL PIC S9(9) BINARY.
Link type

MQCIH-LINKTYPE PIC S9(9) BINARY.
Output COMMAREA data Tength
MQCIH-OUTPUTDATALENGTH PIC S9(9) BINARY.
Bridge facility release time
MQCIH-FACILITYKEEPTIME PIC S9(9) BINARY.
Send/receive ADS descriptor
MQCIH-ADSDESCRIPTOR PIC S9(9) BINARY.
Whether task can be conversational
MQCIH-CONVERSATIONALTASK PIC S9(9) BINARY.
Status at end of task

MQCIH-TASKENDSTATUS PIC S9(9) BINARY.
BVT token value

MQCIH-FACILITY PIC X(8).

MQ call name or CICS EIBFN function

MQCIH-FUNCTION PIC X(4).
Abend code

MQCIH-ABENDCODE PIC X(4).
Password or passticket
MQCIH-AUTHENTICATOR PIC X(8).
Reserved

MQCIH-RESERVED1 PIC X(8).
MQ format name of reply message
MQCIH-REPLYTOFORMAT PIC X(8).
Remote sysid to use
MQCIH-REMOTESYSID PIC X(4).
Remote transid to attach
MQCIH-REMOTETRANSID PIC X(4).

Transaction to attach

Chapter 2. Data type descriptions - structures

37

MQCIH — PL/I declaration

**

**

%

%

**

*%x

**

**

**

%

%

PL/l language declaration

dc

15 MQCIH-TRANSACTIONID PIC X(4).
Terminal emulated attributes
15 MQCIH-FACILITYLIKE PIC X(4).
AID key
15 MQCIH-ATTENTIONID PIC X(4).
Transaction start code
15 MQCIH-STARTCODE PIC X(4).
Abend transaction code
15 MQCIH-CANCELCODE PIC X(4).
Next transaction to attach
15 MQCIH-NEXTTRANSACTIONID PIC X(4).
Reserved
15 MQCIH-RESERVED2 PIC X(8).
Reserved
15 MQCIH-RESERVED3 PIC X(8).
Cursor position
15 MQCIH-CURSORPOSITION PIC S9(9)
Offset of error in message
15 MQCIH-ERROROFFSET PIC S9(9)
Item number of last message read
15 MQCIH-INPUTITEM PIC S9(9)
Reserved
15 MQCIH-RESERVED4 PIC S9(9)
1
1 MQCIH based,
3 Strucld char(4), /*
3 Version fixed bin(31), /*
3 Struclength fixed bin(31), /*
3 Encoding fixed bin(31), /*
3 CodedCharSetId fixed bin(31), /*
3 Format char(8), /*
3 Flags fixed bin(31), /*
3 ReturnCode fixed bin(31), /*
3 CompCode fixed bin(31), /*
3 Reason fixed bin(31), /*
3 UOWControl fixed bin(31), /*
3 GetWaitInterval fixed bin(31), /*
3 LinkType fixed bin(31), /*
3 OutputDatalength fixed bin(31), /*
3 FacilityKeepTime fixed bin(31), /*
3 ADSDescriptor fixed bin(31), /*
3 ConversationalTask fixed bin(31), /=
3 TaskEndStatus fixed bin(31), /*
3 Facility char(8), /*
3 Function char(4), [*
3 AbendCode char(4), /*
3 Authenticator char(8), /*
3 Reservedl char(8), /*
3 ReplyToFormat char(8), /*

38 MQseries Application Programming Reference

BINARY.
BINARY.
BINARY.

BINARY.

Structure identifier */
Structure version number x/
Length of MQCIH structure =/
Reserved »*/

Reserved */

MQ format name */

Reserved */

Return code from bridge =/

MQ completion code or CICS
EIBRESP =/

MQ reason or feedback code, or
CICS EIBRESP2 =/

Unit-of-work control */

Wait interval for MQGET call
issued by bridge task =/

Link type */

Output COMMAREA data length */
Bridge facility release time x/
Send/receive ADS descriptor =*/
Whether task can be conversa-
tional =/

Status at end of task */

BVT token value */

MQ call name or CICS EIBFN
function */

Abend code */

Password or passticket */
Reserved »*/

MQ format name of reply
message */

RemoteSysId
RemoteTransId
TransactionId
FacilityLike
Attentionld
StartCode
CancelCode
NextTransactionld
Reserved?
Reserved3
CursorPosition
ErrorOffset
InputItem

W LWWWWWWWWwWWwWwwww

w

Reserved4

char(4),
char(4),
char(4),
char(4),
char(4),
char(4),
char(4),
char(4),
char(8),
char(8),

MQCIH — S/390 assembler declaration

/*
/*
/*

/*
/*
/*
/*

/*

fixed bin(31), /*
fixed bin(31), /*
fixed bin(31), /=

fixed bin(31); /=

System/390 assembler language declaration

MQCIH
MQCIH_STRUCID
MQCIH_VERSION
MQCIH_STRUCLENGTH
MQCIH_ENCODING
MQCIH_CODEDCHARSETID
MQCIH_FORMAT
MQCIH_FLAGS
MQCIH_RETURNCODE
MQCIH_COMPCODE

*

MQCIH_REASON

*

MQCIH_UOWCONTROL
MQCIH_GETWAITINTERVAL

*

MQCIH_LINKTYPE

MQCIH_OUTPUTDATALENGTH
MQCIH_FACILITYKEEPTIME

MQCIH_ADSDESCRIPTOR

MQCIH_CONVERSATIONALTASK

*

MQCIH_TASKENDSTATUS
MQCIH_FACILITY
MQCIH_FUNCTION

*

MQCIH_ABENDCODE
MQCIH_AUTHENTICATOR
MQCIH_RESERVED1
MQCIH_REPLYTOFORMAT
*
MQCIH_REMOTESYSID
MQCIH_REMOTETRANSID
MQCIH_TRANSACTIONID
MQCIH_FACILITYLIKE
MQCIH_ATTENTIONID
MQCIH_STARTCODE
MQCIH_CANCELCODE

MQCIH_NEXTTRANSACTIONID

MQCIH_RESERVEDZ2

DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS

DS

DS
DS

DS
DS
DS
DS
DS

DS
DS
DS

DS
DS
DS
DS

DS
DS
DS
DS
DS
DS
DS
DS
DS

M M

b B B B n B |

F
XL8
CL4

CL4
CL8
CL8
CL8

CL4
CL4
CL4
CL4
CL4
CL4
CL4
CL4
CL8

Remote sysid to use */

Remote transid to attach =/
Transaction to attach */
Terminal emulated attributes */
AID key */

Transaction start code */
Abend transaction code =/
Next transaction to attach */
Reserved =*/

Reserved »*/

Cursor position =/

Offset of error in message */
Item number of last message
read */

Reserved »*/

Structure identifier
Structure version number
Length of MQCIH structure
Reserved

Reserved

MQ format name

Reserved

Return code from bridge

MQ completion code or CICS
EIBRESP

MQ reason or feedback code,
or CICS EIBRESP2
Unit-of-work control

Wait interval for MQGET call
issued by bridge task

Link type

Qutput COMMAREA data Tength
Bridge facility release time
Send/receive ADS descriptor
Whether task can be
conversational

Status at end of task

BVT token value

MQ call name or CICS EIBFN
function

Abend code

Password or passticket
Reserved

MQ format name of reply
message

Remote sysid to use

Remote transid to attach
Transaction to attach
Terminal emulated attributes
AID key

Transaction start code
Abend transaction code

Next transaction to attach
Reserved

Chapter 2. Data type descriptions - structures 39

MQCIH — S/390 assembler declaration

MQCIH_RESERVED3
MQCIH_CURSORPOSITION
MQCIH_ERROROFFSET
MQCIH_INPUTITEM

*

MQCIH_RESERVED4
MQCIH_LENGTH

MQCIH_AREA

40 MQSeries Application Programming Reference

DS
DS
DS
DS

DS
EQU
ORG
DS

CL8 Reserved

F Cursor position

F Offset of error in message

F Item number of Tast message
read

F Reserved

#*-MQCIH Length of structure

MQCIH

CL(MQCIH_LENGTH)

MQCNO - Connect options * MQCNO - Version field

MQCNO - Connect options

The following table summarizes the fields in the structure.

Table 24. Fields in MQCNO

Field Description Page
Strucld Structure identifier 41
Version Structure version number 41
Options Options that control the action of MQCONNX 42

Note: The remaining fields are not present if Version is less than
MQCNO_VERSION_2.

ClientConnOffset Offset of MQCD structure for client connection 43

ClientConnPtr Address of MQCD structure for client connection 44

The MQCNO structure is an input/output parameter for the MQCONNX call.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
0S/2, Sun Solaris, Windows client, Windows NT.

Fields

Strucld (MQCHARA4)
Structure identifier.

The value must be:

MQCNO_STRUC_ID
Identifier for connect-options structure.

For the C programming language, the constant

MQCNO_STRUC _ID_ARRAY is also defined; this has the same
value as MQCNO_STRUC_ID, but is an array of characters instead
of a string.

This is always an input field. The initial value of this field is
MQCNO_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQCNO_VERSION_1
Version-1 connect-options structure.

MQCNO_VERSION_2
Version-2 connect-options structure.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

The following constant specifies the version number of the current version:

MQCNO_CURRENT_VERSION
Current version of connect-options structure.

Chapter 2. Data type descriptions - structures 41

MQCNO - Options field

This is always an input field. The initial value of this field is
MQCNO_VERSION_1.

Options (MQLONG)
Options that control the action of MQCONNX.

Binding options : The following options control the type of MQ binding
that will be used; only one of these options can be specified:

MQCNO_STANDARD_BINDING
Standard binding.

This option causes the application and the local-queue-manager
agent (the component that manages queuing operations) to run in
separate units of execution (generally, in separate processes). This
arrangement maintains the integrity of the queue manager, that is, it
protects the queue manager from errant programs.

MQCNO_STANDARD_BINDING should be used in situations where
the application may not have been fully tested, or may be unreliable
or untrustworthy. MQCNO_STANDARD_BINDING is the default.

MQCNO_STANDARD_BINDING is defined to aid program
documentation. It is not intended that this option be used with any
other option controlling the type of binding used, but as its value is
zero, such use cannot be detected.

MQCNO_FASTPATH_BINDING
Fastpath binding.

This option causes the application and the local-queue-manager
agent to be part of the same unit of execution. This is in contrast to
the normal method of binding, where the application and the
local-queue-manager agent run in separate units of execution.

MQCNO_FASTPATH_BINDING is ignored if specified by an MQ
client application; processing continues as though the option had not
been specified.

MQCNO_FASTPATH_BINDING may be of advantage in situations
where the use of multiple processes is a significant performance
overhead compared to the overall resource used by the application.

Note: An application that uses the fastpath binding is known as a
trusted application.

The following important points must be considered when deciding
whether to use the fastpath binding:

1. Use of the MQCNO_FASTPATH_BINDING option
compromises the integrity of the queue manager, as it
permits a rogue application to alter or corrupt messages and
other data areas belonging to the queue manager. It should
therefore be considered for use only in situations where
these issues have been fully evaluated.

2. On Windows NT, use of MQCNO_FASTPATH_BINDING requires
that the program be a member of the mgqm group.

3. On UNIX systems, use of MQCNO_FASTPATH_BINDING
requires that the program run with the mgm user identifier and the
mgm group identifier. The application can be made to run this

42 MQSeries Application Programming Reference

MQCNO - ClientConnOffset field

way by configuring the program so that it is owned by the mgm
user identifier and mgm group identifier, and then setting the
setuid and setgid permission bits on the program.

4. On 0OS/2, UNIX systems, and Windows NT, a program that uses
MQCNO_FASTPATH_BINDING cannot have more than one
thread connected to a queue manager at any one time.

5. You must not use asynchronous signals and timer interrupts
(such as sigkill) with MQCNO_FASTPATH_BINDING. There
are also restrictions on the use of shared memory segments.
Refer to the MQSeries Application Programming Guide for more
information.

6. You must explicitly disconnect trusted applications from the
gueue manager.

7. You must stop trusted applications before ending the queue
manager with the endmgm command.

For more information about the implications of using trusted
applications, see “Connecting to a queue manager using the
MQCONNX call” in the MQSeries Application Programming Guide.

On AlX, HP-UX, OS/2, Sun Solaris, and Windows NT, the environment
variable MQ_CONNECT_TYPE can be used in association with the bind type
specified by the Options field, to control the type of binding used. If this
environment variable is specified, it should have the value FASTPATH or
STANDARD; if it has some other value, it is ignored. The value of the
environment variable is case sensitive.

The environment variable and Options field interact as follows:

¢ If the environment variable is not specified, or has a value which is not
supported, use of the fastpath binding is determined solely by the
Options field.

¢ |f the environment variable is specified and has a supported value, the
fastpath binding is used only if both the environment variable and
Options field specify the fastpath binding.

Default option : If none of the options described above is required, the
following option can be used:

MQCNO_NONE
No options specified.

MQCNO_NONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

This is always an input field. The initial value of this field is
MQCNO_NONE.

The remaining fields are not present if Version is less than MQCNO_VERSION_2.

ClientConnOffset (MQLONG)
Offset of MQCD structure for client connection.

This is the offset in bytes of an MQCD channel definition structure from
the start of the MQCNO structure. The offset can be positive or negative.

Chapter 2. Data type descriptions - structures 43

MQCNO - ClientConnPtr field

ClientConnOffset is used only when the application issuing the
MQCONNX call is running as an MQ client. For information on how to use
this field, see the description of the ClientConnPtr field.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQCNO_VERSION_2.

ClientConnPtr (MQPTR)
Address of MQCD structure for client connection.

ClientConnOffset and ClientConnPtr are used only when the application
issuing the MQCONNX call is running as an MQ client. By specifying one

or other of these fields, the application can control the definition of the
client connection channel by providing an MQCD channel definition
structure that contains the values required.

If the application is running as an MQ client but the application does not
provide an MQCD structure, the MQSERVER environment variable is used to
select the channel definition. If MQSERVER is not set, the client channel

table is used.

If the application is not running as an MQ client, ClientConnOffset and
ClientConnPtr are ignored.

If the application provides an MQCD structure, the fields listed below must
be set to the values required; other fields in MQCD are ignored.

Character strings can be padded with blanks to the length of the field, or
terminated by a null character. Refer to the MQSeries Intercommunication
book for more information about the fields in the MQCD structure.

Field in MQCD Value

ChannelName Channel name.

Version Structure version number. Must not be less than
MQCD_VERSION_6.

TransportType Any supported transport type.

ModeName LU6.2 mode name.

TpName LUG6.2 transaction program name.

SecurityExit Name of channel security exit.

SendExit Name of channel send exit.

ReceiveExit Name of channel receive exit.

MaxMsglLength Maximum length in bytes of messages that can be sent over
the client connection channel.

SecuritylUserData User data for security exit.

SendUserData User data for send exit.

ReceivelserData User data for receive exit.

UserIdentifier User identifier to be used to establish an LU6.2 session.

Password Password to be used to establish an LU6.2 session.

ConnectionName Connection name.

HeartbeatInterval Time in seconds between heartbeat flows.

Struclength Length of the MQCD structure.

ExitNamelLength Length of exit names addressed by SendExitPtr and
ReceiveExitPtr. Must be greater than zero if SendExitPtr or
ReceiveExitPtr is set to a value that is not the null pointer.

ExitDatalength Length of exit data addressed by SendUserDataPtr and

44 mQSeries Application Programming Reference

ReceivelserDataPtr. Must be greater than zero if
SendUserDataPtr or ReceivelserDataPtr is set to a value that
is not the null pointer.

MQCNO - ClientConnPtr field

Field in MQCD Value

SendExitsDefined Number of send exits addressed by SendExitPtr. If zero,
SendExit and SendUserData provide the exit name and data.
If greater than zero, SendExitPtr and SendUserDataPtr
provide the exit names and data, and SendExit and
SendUserData must be blank.

ReceiveExitsDefined Number of receive exits addressed by ReceiveExitPtr. If
zero, ReceiveExit and ReceiveliserData provide the exit name
and data. If greater than zero, ReceiveExitPtr and
ReceivelserDataPtr provide the exit names and data, and
ReceiveExit and ReceivelserData must be blank.

SendExitPtr Address of name of first send exit.

SendUserDataPtr Address of data for first send exit.

ReceiveExitPtr Address of name of first receive exit.

ReceivelUserDataPtr Address of data for first receive exit.

In the C programming language, the macro variable
MQCD_CLIENT_CONN_DEFAULT can be used to provide initial values
for the structure that are more suitable for use on the MQCONNX call than
those provided by MQCD_DEFAULT.

Once the MQCONNX called has completed, the MQCD structure is not

referenced again.

The channel definition structure can be provided in one of two ways:

¢ By using the offset field ClientConnOffset

In this case, the application should declare its own structure containing
an MQCNO followed by the channel definition structure MQCD, and
set ClientConnOffset to the offset of the channel definition structure
from the start of the MQCNO. Care must be taken to ensure that this
offset is correct. ClientConnPtr must be set to the null pointer or null

bytes.

Using ClientConnOffset is recommended for programming languages
which do not support the pointer data type, or which implement the
pointer data type in a fashion which is not portable to different
environments (for example, the COBOL programming language).

¢ By using the pointer field ClientConnPtr

In this case, the application can declare the channel definition
structure separately from the MQCNO structure, and set
ClientConnPtr to the address of the channel definition structure.
ClientConnOffset must be set to zero.

Using ClientConnPtr is recommended for programming languages
which support the pointer data type in a fashion which is portable to
different environments (for example, the C programming language).

Whichever technique is chosen, only one of ClientConnOffset and
ClientConnPtr can be used; the call fails with reason code
MQRC_CLIENT_CONN_ERROR if both are nonzero.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is not present if Version is less than
MQCNO_VERSION_2.

Chapter 2. Data type descriptions - structures 45

MQCNO - ClientConnPtr field

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte
string.

Table 25. Initial values of fields in MQCNO

Field name Name of constant Value of constant
Strucld MQCNO_STRUC_ID 'CNOb !
(See note 1)
Version MQCNO_VERSION_1 1
Options MQCNO_NONE 0
ClientConnOffset None 0
ClientConnPtr None Null pointer or null
bytes
Notes:

1. The symbol ‘b’ represents a single blank character.

2. In the C programming language, the macro variable MQCNO_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQCNO MyCNO = {MQCNO_DEFAULT};

46 MQSeries Application Programming Reference

C language declaration
typedef struct tagMQCNO {

MQCNO - language declarations

MQCHAR4 Strucld; /* Structure identifier =/
MQLONG Version; /* Structure version number =/
MQLONG Options; /* Options that control the action of
MQCONNX =/
MQLONG ClientConnOffset; /* Offset of MQCD structure for client
connection */
MQPTR ClientConnPtr; /* Address of MQCD structure for client
connection =/
} MQCNO;
COBOL language declaration
** MQCNO structure
10 MQCNO.
*% Structure identifier
15 MQCNO-STRUCID PIC X(4).
*% Structure version number

15 MQCNO-VERSION

PIC S9(9) BINARY.

*k Options that control the action of MQCONNX

15 MQCNO-OPTIONS

PIC S9(9) BINARY.

*ok Offset of MQCD structure for client connection
15 MQCNO-CLIENTCONNOFFSET PIC S9(9) BINARY.
*k Address of MQCD structure for client connection

15 MQCNO-CLIENTCONNPTR

POINTER.

PL/l declaration (AlX, OS/2, and Windows NT)

dcl
1 MQCNO based,

3 Strucld char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number =*/
3 Options fixed bin(31), /* Options that control the action

of MQCONNX =*/

3 ClientConnOffset fixed bin(31), /* Offset of MQCD structure for

3 ClientConnPtr pointer;

client connection */
/* Address of MQCD structure for
client connection */

Visual Basic declaration (Windows NT only)

Type MQCNO
Strucld As String*4
Version As Long
Options As Long

ClientConnOffset As Long

ClientConnPtr As String=*32

End Type

'Structure identifier'

'Structure version number'

'Controls action of MQCONNX'

'0ffset of MQCD structure for client'
'connection'’

'"Address of MQCD structure for client'
'connection’

Note: The ClientConnPtr field is not used, and is set to 32 null characters by

default.

Chapter 2. Data type descriptions - structures

47

MQDH - Distribution header

MQDH - Distribution header

The following table summarizes the fields in the structure.

Table 26. Fields in MQDH
Field Description Page
Strucld Structure identifier 49
Version Structure version number 49
Struclength Length of MQDH structure plus following records 49
Encoding Encoding of message data 50
CodedCharSetId Coded character-set identifier of message data 50
Format Format name of message data 50
Flags General flags 50
PutMsgRecFields Flags indicating which MQPMR fields are 51
present
RecsPresent Number of object records present 51
ObjectRecOffset Offset of first object record from start of MQDH 51
PutMsgRecOffset Offset of first put-message record from start of 51
MQDH

The MQDH structure describes the data that is present in a message on a
transmission queue when that message is a distribution-list message (that is, the
message is being sent to multiple destination queues). This structure is for use by
specialized applications that put messages directly on transmission queues, or
which remove messages from transmission queues (for example: message channel
agents).

This structure should not be used by normal applications which simply want to put
messages to distribution lists. Those applications should use the MQOD structure
to define the destinations in the distribution list, and the MQPMO structure to
specify message properties or receive information about the messages sent to the
individual destinations.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
0S/2, 0S/400, Sun Solaris, Windows client, Windows NT.

When an application puts a message to a distribution list, and some or all of the
destinations are remote, the queue manager prefixes the application message data
with the MQXQH and MQDH structures, and places the message on the relevant
transmission queue. The data therefore occurs in the following sequence when the
message is on a transmission queue:

¢ MQXQH structure
e MQDH structure
e Application message data

Depending on the destinations, more than one such message may be generated by
the queue manager, and placed on different transmission queues. In this case, the
MQDH structures in those messages identify different subsets of the destinations
defined by the distribution list opened by the application.

48 MQsSeries Application Programming Reference

Fields

MQDH - Strucld field ¢ MQDH — StrucLength field

An application that puts a distribution-list message directly on a transmission queue
must conform to the sequence described above, and must ensure that the MQDH
structure is correct. If the MQDH structure is not valid, the queue manager may
choose to fail the MQPUT or MQPUT1 call with reason code MQRC_DH_ERROR.

Messages can be stored on a queue in distribution-list form only if the queue is
defined as being able to support distribution list messages (see the DistLists
gueue attribute described in “Attributes for local queues and model queues” on
page 389). If an application puts a distribution-list message directly on a queue that
does not support distribution lists, the queue manager splits the distribution list
message into individual messages, and places those on the queue instead.

Strucld (MQCHAR4)

Structure identifier.

The value must be:

MQDH_STRUC_ID
Identifier for distribution header structure.

For the C programming language, the constant
MQDH_STRUC_ID_ARRAY is also defined; this has the same value
as MQDH_STRUC_ID, but is an array of characters instead of a
string.

The initial value of this field is MQDH_STRUC_ID.

Version (MQLONG)

Structure version number.

The value must be:

MQDH_VERSION_1
Version number for distribution header structure.

The following constant specifies the version number of the current version:

MQDH_CURRENT_VERSION
Current version of distribution header structure.

The initial value of this field is MQDH_VERSION_1.

StrucLength (MQLONG)

Length of MQDH structure plus following records.

This is the number of bytes from the start of the MQDH structure to the
start of the message data following the arrays of MQOR and MQPMR
records. The data occurs in the following sequence:

¢ MQDH structure

¢ Array of MQOR records
¢ Array of MQPMR records
¢ Message data

The arrays of MQOR and MQPMR records are addressed by offsets
contained within the MQDH structure. If these offsets result in unused
bytes between one or more of the MQDH structure, the arrays of records,
and the message data, those unused bytes must be included in the value

Chapter 2. Data type descriptions - structures 49

MQDH — Encoding field < MQDH — Flags field

of StrucLength, but the content of those bytes is not preserved by the
gueue manager. It is valid for the array of MQPMR records to precede the
array of MQOR records.

The initial value of this field is O.

Encoding (MQLONG)
Encoding of message data.

The initial value of this field is O.

CodedCharSetId (MQLONG)
Coded character-set identifier of message data.

The initial value of this field is O.

Format (MQCHARS)
Format name of message data.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
General flags.

The following flag can be specified:

MQDHF_NEW_MSG_IDS
Generate new message identifiers.

This flag indicates that a new message identifier is to be generated
for each destination in the distribution list. This can be set only when
there are no put-message records present, or when the records are
present but they do not contain the MsgId field.

Using this flag defers generation of the message identifiers until the

last possible moment, namely the moment when the distribution-list

message is finally split into individual messages. This minimizes the
amount of control information that must flow with the distribution-list

message.

When an application puts a message to a distribution list, the queue
manager sets MQDHF_NEW_MSG_IDS in the MQDH it generates
when both of the following are true:

¢ There are no put-message records provided by the application,
or the records provided do not contain the MsgId field.

e The MsglId field in MQMD is MQMI_NONE, or the Options field in
MQPMO includes MQPMO_NEW_MSG_ID

If no flags are needed, the following can be specified:

MQDHF_NONE
No flags.

This constant indicates that no flags have been specified.
MQDHF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is
zero, such use cannot be detected.

The initial value of this field is MQDHF_NONE.

50 MQseries Application Programming Reference

MQDH — PutMsgRecFields field ¢ MQDH — PutMsgRecOffset field

PutMsgRecFields (MQLONG)
Flags indicating which MQPMR fields are present.

Zero or more of the following flags can be specified:

MQPMRF_MSG_ID
Message-identifier field is present.

MQPMRF_CORREL_ID
Correlation-identifier field is present.

MQPMRF_GROUP_ID
Group-identifier field is present.

MQPMRF_FEEDBACK
Feedback field is present.

MQPMRF_ACCOUNTING_TOKEN
Accounting-token field is present.

If no MQPMR fields are present, the following can be specified:

MQPMRF_NONE
No put-message record fields are present.

MQPMRF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is
zero, such use cannot be detected.

The initial value of this field is MQPMRF_NONE.

RecsPresent (MQLONG)
Number of object records present.

This defines the number of destinations. A distribution list must always
contain at least one destination, so RecsPresent must always be greater
than zero.

The initial value of this field is O.

ObjectRecOffset (MQLONG)
Offset of first object record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQOR
object records containing the names of the destination queues. There are
RecsPresent records in this array. These records (plus any bytes skipped
between the first object record and the previous field) are included in the
length given by the Struclength field.

A distribution list must always contain at least one destination, so
ObjectRecOffset must always be greater than zero.

The initial value of this field is O.

PutMsgRecOffset (MQLONG)
Offset of first put message record from start of MQDH.

This field gives the offset in bytes of the first record in the array of
MQPMR put message records containing the message properties. If
present, there are RecsPresent records in this array. These records (plus
any bytes skipped between the first put message record and the previous
field) are included in the length given by the StrucLength field.

Chapter 2. Data type descriptions - structures 51

MQDH — C declaration

Put message records are optional; if no records are provided,
PutMsgRecOffset is zero, and PutMsgRecFields has the value
MQPMRF_NONE.

The initial value of this field is O.

Table 27. Initial values of fields in MQDH
Field name Name of constant Value of constant
Strucld MQDH_STRUC_ID 'DHbb "

(See note 1)
Version MQDH_VERSION_1 1
Struclength None 0
Encoding None 0
CodedCharSetId None 0
Format MQFMT_NONE "bbbbbbbb '
Flags MQDHF_NONE 0
PutMsgRecFields MQPMRF_NONE 0
RecsPresent None 0
ObjectRecOffset None 0
PutMsgRecOffset None 0
Notes:

1. The symbol ‘b’ represents a single blank character.

2. In the C programming language, the macro variable MQDH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQDH MyDH = {MQDH_DEFAULT};

C language declaration

typedef struct tagMQDH {

MQCHAR4
MQLONG
MQLONG

MQLONG
MQLONG

MQCHARS8
MQLONG
MQLONG

MQLONG
MQLONG

MQLONG

} MQDH;

Strucld;
Version;
StruclLength;

Encoding;
CodedCharSetlId;

Format;
Flags;
PutMsgRecFields;

RecsPresent;
ObjectRecOffset;

PutMsgRecOffset;

52 MQseries Application Programming Reference

/*
/*
/*

/*
/*

/*
/*
/*

/*
/*

Structure identifier =/

Structure version number x/

Length of MQDH structure plus following
records */

Encoding of message data =/

Coded character-set identifier of
message data */

Format name of message data */

General flags =*/

Flags indicating which MQPMR fields are
present */

Number of object records present =/
Offset of first object record from start
of MQDH =*/

Offset of first put message record from
start of MQDH */

MQDH — COBOL declaration ¢ MQDH — PL/I declaration

COBOL language declaration

PL/l declaration

%

**

**

**

**

%

**

*%x

**

**

**

%

MQDH structure

10 MQDH.

15

15

15

15

15

15

15

15

15

15

15

Structure identifier

MQDH-STRUCID PIC X(4).
Structure version number
MQDH-VERSION PIC S9(9) BINARY.

Length of MQDH structure plus following records

MQDH-STRUCLENGTH PIC S9(9) BINARY.
Encoding of message data
MQDH-ENCODING PIC S9(9) BINARY.

Coded character-set identifier of message data
MQDH-CODEDCHARSETID PIC S9(9) BINARY.

Format name of message data

MQDH-FORMAT PIC X(8).
General flags
MQDH-FLAGS PIC S9(9) BINARY.

Flags indicating which MQPMR fields are present
MQDH-PUTMSGRECFIELDS PIC S9(9) BINARY.

Number of object records present

MQDH-RECSPRESENT PIC S9(9) BINARY.

Offset of first object record from start of MQDH
MQDH-OBJECTRECOFFSET PIC S9(9) BINARY.

Offset of first put message record from start of MQDH
MQDH-PUTMSGRECOFFSET PIC S9(9) BINARY.

(AIX, OS/2, and Windows NT)

dc

1

1 MQDH based,

3
3
3

3
3

w

S
v
S

E
C

F
F
P
R
0

P

trucld char(4), /*
ersion fixed bin(31), /*
trucLength fixed bin(31), /*

ncoding fixed bin(31), /*
odedCharSetId fixed bin(31), /=

ormat char(8), /*
lags fixed bin(31), /*
utMsgRecFields fixed bin(31), /*
ecsPresent fixed bin(31), /*
bjectRecOffset fixed bin(31), /*

utMsgRecOffset fixed bin(31); /*

Structure identifier =/

Structure version number x/

Length of MQDH structure plus fol-
Towing records x/

Encoding of message data =/

Coded character-set identifier of
message data */

Format name of message data =/
General flags */

Flags indicating which MQPMR
fields are present =*/

Number of object records

present */

Offset of first object record from
start of MQDH */

Offset of first put message record
from start of MQDH */

Chapter 2. Data type descriptions - structures 53

MQDH - Visual Basic declaration

Visual Basic declaration (Windows NT only)

Type MQDH
Strucld
Version
StrucLength

Encoding
CodedCharSetId
Flags

PutMsgRecFields

RecsPresent
ObjectRecOffset

[

[

|

[

|

|

[

I

[

| Format
|

|

|

[

|

[

| PutMsgRecOffset
|

[

End Type

54 MmQseries Application Programming Reference

As
As
As

As
As

As
As
As

As
As

As

String*4
Long
Long

Long
Long

String+*8
Long
Long

Long
Long

Long

'Structure identifier'

'Structure version number'

"Length of MQDH structure plus'
'following records'

'"Encoding of message data'

'Coded character-set identifier'

'of message data'

'"Format name of message data'
'"Format name of message data'

'Flags indicating which MQPMR fields'
'are present'

'"Number of object records present'
'0ffset of first object record from'
'start of MQDH'

'0ffset of first put message record'
"from start of MQDH'

MQDLH - Dead-letter header

MQDLH - Dead-letter header

The following table summarizes the fields in the structure.

Table 28. Fields in MQDLH

Field Description Page

Strucld Structure identifier 57

Version Structure version number 57

Reason Reason message arrived on dead-letter queue 57

DestQName Name of original destination queue 59

DestQMgrName Name of original destination queue manager 59

Encoding Original data encoding 59

CodedCharSetId Original coded character set identifier 59

Format Original format name 60

PutApplType Type of application that put message on 60
dead-letter queue

PutApplName Name of application that put message on 60
dead-letter queue

PutDate Date when message was put on dead-letter 60
queue

PutTime Time when message was put on dead-letter 61
queue

The MQDLH structure describes the information that is prefixed to the application
message data of messages on the dead-letter (undelivered-message) queue. A
message can arrive on the dead-letter queue either because the queue manager or
message channel agent has redirected it to the queue, or because an application
has put the message directly on the queue.

Special processing is done when a message which is a segment is put with an
MQDLH structure at the front; see the description of the MQMDE structure for
further details.

This structure is not supported in the following environments: 16-bit Windows, 32-bit
Windows.

Applications that put messages directly on the dead-letter queue should prefix the
message data with an MQDLH structure, and initialize the fields with appropriate
values. However, the queue manager does not check that an MQDLH structure is
present, or that valid values have been specified for the fields.

If a message is too long to put on the dead-letter queue, the application should
consider doing one of the following:
e Truncate the message data to fit on the dead-letter queue.

¢ Record the message on auxiliary storage and place an exception report
message on the dead-letter queue indicating this.

e Discard the message and return an error to its originator. If the message is (or
might be) a critical message, this should be done only if it is known that the

Chapter 2. Data type descriptions - structures 55

MQDLH - Dead-letter header

originator still has a copy of the message—for example, a message received by
a message channel agent from a communication channel.

Which of the above is appropriate (if any) depends on the design of the application.

When a message is put on the dead-letter queue, all of the fields in the message
descriptor MQMD should be copied from those in the original message descriptor (if
there is one), with the exception of the following:

e The CodedCharSetId and Encoding fields should be set to whatever character
set and encoding are used for fields in the MQDLH structure.

e The Format field should be set to MQFMT_DEAD_LETTER_HEADER to
indicate that the data begins with a MQDLH structure.

¢ The context fields:

UserIdentifier
AccountingToken
ApplldentityData
PutApplType
PutApplName
PutDate

PutTime
ApplOriginData

should be set by using a context option appropriate to the nature of the
program:

A program putting on the dead-letter queue a message that is not related to
any preceding message should use the MQPMO_DEFAULT_CONTEXT
option; this causes the queue manager to set all of the context fields in the
message descriptor to their default values.

A program putting on the dead-letter queue a message it has just received
should use the MQPMO_PASS_ALL_CONTEXT option, in order to
preserve the original context information.

A program putting on the dead-letter queue a reply to a message it has just
received should use the MQPMO_PASS_IDENTITY_CONTEXT option; this
preserves the identity information but sets the origin information to be that
of the server.

A message channel agent putting on the dead-letter queue a message it
received from its communication channel should use the
MQPMO_SET_ALL _CONTEXT option, to preserve the original context
information.

In the MQDLH structure itself, the fields should be set as follows:

e The CodedCharSetlId, Encoding and Format fields should be set to the values
that describe the application message data that follows the MQDLH
structure—usually the values from the original message descriptor.

e The context fields PutApplType, PutApplName, PutDate, and PutTime should be
set to values appropriate to the application that is putting the message on the
dead-letter queue; these values are not related to the original message.

e Other fields should be set as appropriate.

56 MQsSeries Application Programming Reference

Fields

MQDLH - Strucld field ¢ MQDLH — Reason field

Character data in the MQDLH structure should be in the character set defined by
the CodedCharSetId field of the message descriptor. Numeric data in the MQDLH
structure should be in the data encoding defined by the Encoding field of the
message descriptor. The application should ensure that all fields have valid values,
and that character fields are padded with blanks to the defined length of the field;
the character data should not be terminated prematurely by using a null character,
because the queue manager does not convert the null and subsequent characters
to blanks in the MQDLH structure.

Applications that get messages from the dead-letter queue should verify that the
messages begin with an MQDLH structure. The application can determine whether
an MQDLH structure is present by examining the Format field in the message
descriptor MQMD; if the field has the value MQFMT_DEAD_ LETTER_HEADER,
the message data begins with an MQDLH structure. Applications that get
messages from the dead-letter queue should also be aware that such messages
may have been truncated if they were originally too long for the queue.

Strucld (MQCHARA4)
Structure identifier.

The value must be:

MQDLH_STRUC_ID
Identifier for dead-letter header structure.

For the C programming language, the constant
MQDLH_STRUC_ID_ARRAY is also defined; this has the same
value as MQDLH_STRUC _ID, but is an array of characters instead
of a string.

The initial value of this field is MQDLH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQDLH_VERSION 1
Version number for dead-letter header structure.

The following constant specifies the version number of the current version:

MQDLH_CURRENT_VERSION
Current version of dead-letter header structure.

The initial value of this field is MQDLH_VERSION 1.

Reason (MQLONG)
Reason message arrived on dead-letter (undelivered-message) queue.

This identifies the reason why the message was placed on the dead-letter
gueue instead of on the original destination queue. It should be one of the
MQFB_* or MQRC_* values (for example, MQRC_Q_ FULL). See the
description of the Feedback field in “MQMD - Message descriptor” on

page 110 for details of the common MQFB_x* values that can occur.

Chapter 2. Data type descriptions - structures 57

MQDLH — Reason field

If the value is in the range MQFB_IMS_FIRST through MQFB_IMS_LAST,
the actual IMS error code can be determined by subtracting
MQFB_IMS_ERROR from the value of the Reason field.

Some MQFB_x* values only ever occur in this field. They relate to
repository messages, trigger messages, or transmission-queue messages
that have been transferred to the dead-letter queue. These are:

MQFB_APPL_CANNOT_BE_STARTED
Application cannot be started.

An application processing a trigger message was unable to start the
application named in the ApplId field of the trigger message (see
“MQTM - Trigger message” on page 231).

On 0S/390, the CKTI CICS transaction is an example of an
application that processes trigger messages.

MQFB_APPL_TYPE_ERROR
Application type error.

An application processing a trigger message was unable to start the
application because the ApplType field of the trigger message is not
valid (see “MQTM - Trigger message” on page 231).

On 0S/390, the CKTI CICS transaction is an example of an
application that processes trigger messages.

MQFB_NOT_A_REPOSITORY_MSG
Message is not a repository message.

MQFB_STOPPED_BY_CHAD_EXIT
Message stopped by channel auto-definition exit.

MQFB_STOPPED_BY_MSG_EXIT
Message stopped by channel message exit.

MQFB_TM_ERROR
MQTM structure not valid or missing.

The Format field in MQMD specifies MQFMT_TRIGGER, but the
message does not begin with a valid MQTM structure. For example,
the StrucId mnemonic eye-catcher may not be valid, the Version
may not be recognized, or the length of the trigger message may be
insufficient to contain the MQTM structure.

On 0S/390, the CKTI CICS transaction is an example of an
application that processes trigger messages and can generate this
feedback code.

MQFB_XMIT_Q_MSG_ERROR
Message on transmission queue not in correct format.

A message channel agent has found that a message on the
transmission queue is not in the correct format. The message
channel agent puts the message on the dead-letter queue using this
feedback code.

The initial value of this field is MQRC_NONE.

58 MQseries Application Programming Reference

MQDLH — DestQName field ¢ MQDLH — CodedCharSetld field

DestQName (MQCHARA48)
Name of original destination queue.

This is the name of the message queue that was the original destination
for the message.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

DestQMgrName (MQCHARA48)
Name of original destination queue manager.

This is the name of the queue manager that was the original destination
for the message.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

Encoding (MQLONG)
Original data encoding.

This specifies the data encoding used for numeric data in the original
message. It applies to the message data which follows the MQDLH
structure; it does not apply to numeric data in the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original
data encoding should be preserved by copying it from the Encoding field in
the message descriptor MQMD to the Encoding field in the MQDLH
structure. The Encoding field in the message descriptor should then be set
to the value appropriate to the numeric data in the MQDLH structure.

The value MQENC_NATIVE can be used for the Encoding field in both the
MQDLH and MQMD structures.

The initial value of this field is 0.

CodedCharSetId (MQLONG)
Original coded character set identifier.

This specifies the coded character set identifier of character data in the
original message. It applies to the message data which follows the
MQDLH structure; it does not apply to character data in the MQDLH
structure itself.

When an MQDLH structure is prefixed to the message data, the original
coded character set identifier should be preserved by copying it from the
CodedCharSetId field in the message descriptor MQMD to the
CodedCharSetId field in the MQDLH structure. The CodedCharSetId field in
the message descriptor should then be set to the value appropriate to the
character data in the MQDLH structure.

The value MQCCSI_Q_MGR can be used for the CodedCharSetId field in
the MQMD structure, but should not be used for the CodedCharSetId field
in the MQDLH structure, as the queue manager does not replace the
value MQCCSI_Q_MGR in the latter field by the value that applies to the
gueue manager.

The initial value of this field is 0.

Chapter 2. Data type descriptions - structures 59

MQDLH — Format field

e MQDLH — PutDate field

Format (MQCHARS)

Original format name.

This is the format name of the application data in the original message. It
applies to the message data which follows the MQDLH structure; it does
not apply to the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original
format name should be preserved by copying it from the Format field in
the message descriptor MQMD to the Format field in the MQDLH
structure. The Format field in the message descriptor should then be set
to the value MQFMT_DEAD LETTER_HEADER.

The length of this field is given by MQ_FORMAT_LENGTH. The initial
value of this field is MQFMT_NONE.

PutApplType (MQLONG)

Type of application that put message on dead-letter
(undelivered-message) queue.

This field has the same meaning as the PutApplType field in the message
descriptor MQMD (see “MQMD - Message descriptor” on page 110 for
details).

If it is the queue manager that redirects the message to the dead-letter
queue, PutApplType has the value MQAT_QMGR.

The initial value of this field is 0.

PutApplName (MQCHAR28)

Name of application that put message on dead-letter
(undelivered-message) queue.

The format of the hame depends on the PutApplType field. See, also, the
description of the PutAppiName field in “MQMD - Message descriptor” on
page 110.

If it is the queue manager that redirects the message to the dead-letter
queue, PutApplName contains the first 28 characters of the queue-manager
name, padded with blanks if necessary.

The length of this field is given by MQ_PUT_APPL_NAME_LENGTH. The
initial value of this field is the null string in C, and 28 blank characters in
other programming languages.

PutDate (MQCHARS)

Date when message was put on dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue
manager is:

YYYYMMDD

where the characters represent:

YYYY year (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

60 MQsSeries Application Programming Reference

On 0S/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration.

The length of this field is given by MQ_PUT_DATE_LENGTH. The initial
value of this field is the null string in C, and 8 blank characters in other
programming languages.

PutTime (MQCHARS)
Time when message was put on the dead-letter (undelivered-message)

queue.

The format used for the time when this field is generated by the queue
manager is:

HHMMSSTH

where the characters represent (in order):

HH

MM
SS

T

H

Note:

hours (00 through 23)
minutes (00 through 59)

seconds (00 through 59; see note below)

tenths of a second (0 through 9)
hundredths of a second (0 through 9)

If the system clock is synchronized to a very accurate time
standard, it is possible on rare occasions for 60 or 61 to be
returned for the seconds in PutTime. This happens when leap
seconds are inserted into the global time standard.

MQDLH — PutTime field

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

On 0S/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration book.

The length of this field is given by MQ_PUT_TIME_LENGTH. The initial

value of this field is the null string in C, and 8 blank characters in other
programming languages.

Table 29 (Page 1 of 2). Initial values of fields in MQDLH

Field name Name of constant Value of constant
Strucld MQDLH_STRUC_ID 'DLHb"

(See note 1)
Version MQDLH_VERSION_1 1
Reason MQRC_NONE 0
Des tQName None Blanks

(See note 2)
DestQMgrName None Blanks
Encoding None 0
CodedCharSetId None 0
Format MQFMT_NONE "bbbbbbbb '
PutApplType None 0

Chapter 2. Data type descriptions - structures

61

MQDLH — C declaration

* MQDLH — COBOL declaration

Table 29 (Page 2 of 2). Initial values of fields in MQDLH

Field name Name of constant Value of constant
PutApplName None Blanks

PutDate None Blanks

PutTime None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQDLH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure

MQDLH MyDLH = {MQDLH_DEFAULT}

C language declaration

typedef struct tagMQDLH {

MQCHAR4 Strucld; /*
MQLONG Version; /*
MQLONG Reason; /*
MQCHAR48 DestQName; /*
MQCHAR48 DestQMgrName; /*
MQLONG Encoding; /*
MQLONG CodedCharSetId; /*
MQCHAR8 Format; /*
MQLONG PutApplType; /*
MQCHAR28 PutApplName; /*
MQCHARS PutDate; /*
MQCHAR8 PutTime; /*
} MQDLH;

COBOL language declaration

**

10 MQDLH.

**

15 MQDLH-STRUCID

**

15 MQDLH-VERSION
**
*k queue

15 MQDLH-REASON

**

**

62 MQSeries Application Programming Reference

MQDLH structure

Structure identifier

Structure identifier x/

Structure version number */

Reason message arrived on dead-letter
(undelivered-message) queue */

Name of original destination queue */
Name of original destination queue
manager *x/

Original data encoding =/

Original coded character set

identifier x/

Original format name =/

Type of application that put message on
dead-letter (undelivered-message)

queue */

Name of application that put message on
dead-letter (undelivered-message)

queue */

Date when message was put on dead-letter
(undelivered-message) queue */

Time when message was put on the dead-
Tetter (undelivered-message) queue */

PIC X(4).

Structure version number

PIC S9(9) BINARY.

Reason message arrived on dead-letter (undelivered-message)

PIC S9(9) BINARY.

Name of original destination queue
15 MQDLH-DESTQNAME
Name of original destination queue manager

PIC X(48).

PL/l declaration

**

**

%

%

**

**

*%x

**

**

**

**

15

15

15

15

15

15

15

15

MQDLH — PL/I declaration

MQDLH-DESTQMGRNAME ~ PIC X(48).

Original data encoding

MQDLH-ENCODING PIC S9(9) BINARY.

Original coded character set identifier
MQDLH-CODEDCHARSETID PIC S9(9) BINARY.

Original format name

MQDLH-FORMAT PIC X(8).

Type of application that put message on dead-letter
(undelivered-message) queue

MQDLH-PUTAPPLTYPE PIC S9(9) BINARY.

Name of application that put message on dead-Tetter
(undelivered-message) queue

MQDLH-PUTAPPLNAME PIC X(28).

Date when message was put on dead-letter
(undelivered-message) queue

MQDLH-PUTDATE PIC X(8).

Time when message was put on the dead-letter
(undelivered-message) queue

MQDLH-PUTTIME PIC X(8).

(AIX, OS/2, OS/390, VSE/ESA and Windows NT)

dc

1
1 MQDLH based,

3 Strucld char(4), /* Structure identifier */

3 Version fixed bin(31), /* Structure version number =*/

3 Reason fixed bin(31), /* Reason message arrived on dead-
Tetter (undelivered-message)
queue */

3 DestQName char(48), /* Name of original destination
queue */

3 DestQMgrName char(48), /* Name of original destination queue
manager */

3 Encoding fixed bin(31), /* Original data encoding x/

3 CodedCharSetId fixed bin(31), /* Original coded character set iden-
tifier */

3 Format char(8), /* Original format name =*/

3 PutApplType fixed bin(31), /* Type of application that put
message on dead-letter
(undelivered-message) queue */

3 PutApplName char(28), /* Name of application that put
message on dead-letter
(undelivered-message) queue */

3 PutDate char(8), /* Date when message was put on dead-
Tetter (undelivered-message)
queue */

3 PutTime char(8); /* Time when message was put on the

dead-letter (undelivered-message)
queue */

Chapter 2. Data type descriptions - structures

63

MQDLH — S/390 assembler declaration

e MQDLH — TAL declaration

System/390 assembler-language declaration (OS/390 only)

TAL declaration

MQDLH
MQDLH_STRUCID
MQDLH_VERSION
MQDLH_REASON

*
*

MQDLH_DESTQNAME

*

MQDLH_DESTQMGRNAME
*

MQDLH_ENCODING
MQDLH_CODEDCHARSETID
*

MQDLH_FORMAT
MQDLH_PUTAPPLTYPE
*

*
MQDLH_PUTAPPLNAME
*

*

MQDLH_PUTDATE

*

*

MQDLH_PUTTIME

*

*

MQDLH_LENGTH

MQDLH_AREA

(Tandem NSK only)

STRUCT MQDLH™DEF (%)

BEGIN

STRUCT STRUCID;

BEGIN STRING BYTE [0:3]; END;

INT(32) VERSION;

INT(32) REASON;

STRUCT DESTQNAME;

BEGIN STRING BYTE [0:47]; END;

STRUCT DESTQMGRNAME ;

BEGIN STRING BYTE [0:47]; END;

INT(32) ENCODING;

INT(32) CODEDCHARSETID;

STRUCT FORMAT;

BEGIN STRING BYTE [0:7]; END;

INT(32) PUTAPPLTYPE;

STRUCT PUTAPPLNAME ;

BEGIN STRING BYTE [0:27]; END;

STRUCT PUTDATE;

BEGIN STRING BYTE [0:7]; END;

STRUCT PUTTIME;

BEGIN STRING BYTE [0:7]; END;
END;

64 MQsSeries Application Programming Reference

DSECT
DS
DS
DS
DS
DS

DS
DS

DS

DS

DS

DS

DS

EQU
ORG
DS

CL4 Structure identifier

F Structure version number

F Reason message arrived on
dead-Tetter
(undelivered-message) queue

CL48 Name of original destination
queue

CL48 Name of original destination
queue manager

F Original data encoding

F Original coded character set
identifier

CL8 Original format name

F Type of application that put

message on dead-letter
(undelivered-message) queue
Name of application that put
message on dead-letter
(undelivered-message) queue
Date when message was put on
dead-letter
(undelivered-message) queue
Time when message was put on
the dead-letter
(undelivered-message) queue
*-MQDLH Length of structure

MQDLH

CL(MQDLH_LENGTH)

CL28

CL8

CL8

MQDLH — Visual Basic declaration

Visual Basic declaration (Windows NT only)

Type MQDLH

Strucld As String*4 'Structure identifier'

Version As Long 'Structure version number'

Reason As Long 'Reason message arrived on dead-'
'Tetter (undelivered-message) queue'

DestQName As String*48 'Name of original destination queue'

DestQMgrName As String*48 'Name of original destination queue'
'manager’

Encoding As Long 'Original data encoding'

CodedCharSetId As Long 'Original coded character set identifier'

Format As String*8 'Original format name'

'message on dead-letter'
'(undelivered-message) queue'
PutApp1Name As String*28 'Name of application that put the
'message on dead-letter'
'(undelivered-message) queue'

[
[
[
[
[
[
[
[
[
[
[
[
| PutAppl1Type As Long 'Type of application that put the
[
[
[
[
[
[
[
[
[
[
[
[

PutDate As String*8 'Date when message was put on the'
'dead-Tetter (undelivered-message)'
"queue’
PutTime As String*8 'Time when message was put on the'
'"dead-Tetter (undelivered-message)'
"queue’
End Type

Chapter 2. Data type descriptions - structures 65

MQGMO - Get-message options

¢ MQGMO - Strucld field

MQGMO - Get-message options

The following table summarizes the fields in the structure.

Table 30. Fields in MQGMO

Field Description Page

Strucld Structure identifier 66

Version Structure version number 67

Options Options that control the action of MQGET 67

WaitInterval Wait interval 91

Signall Signal 92

Signal2 Signal identifier 93

ResolvedQName Resolved name of destination queue 93

Note: The remaining fields are not present if Version is less than

MQGMO_VERSION_2.

MatchOptions Options controlling selection criteria used for 93
MQGET

GroupStatus Flag indicating whether message retrieved is in a 96
group

SegmentStatus Flag indicating whether message retrieved is a 97
segment of a logical message

Segmentation Flag indicating whether further segmentation is 97
allowed for the message retrieved

Note: The remaining fields are not present if Version is less than

MQGMO_VERSION_3.

MsgToken Message token 98

ReturnedLength Length of message data returned (bytes) 98

The current version of MQGMO is given by MQGMO_CURRENT_VERSION.

Fields that exist only in the more-recent versions of the structure are identified as
such in the descriptions that follow. The declarations of MQGMO provided in the

header, COPY, and INCLUDE files for the supported programming languages
contain the additional fields, but the initial value provided for the Version field is

MQGMO_VERSION_1. To use the additional fields, the application must set the

version number to MQGMO_CURRENT_VERSION. Applications which are

intended to be portable between several environments should use a more-recent
version MQGMO only if all of those environments support that version.

The MQGMO structure is an input/output parameter for the MQGET call.

Fields
StrucId (MQCHARA4)

Structure identifier.

The value must be:

MQGMO_STRUC_ID

Identifier for get-message options structure.

For the C programming language, the constant

66 MQsSeries Application Programming Reference

MQGMO - Version field ¢ MQGMO - Options field

MQGMO_STRUC _ID_ARRAY is also defined; this has the same
value as MQGMO_STRUC _ID, but is an array of characters instead
of a string.

This is always an input field. The initial value of this field is
MQGMO_STRUC_ID.

Version (MQLONG)
Structure version number.
The value must be one of the following:

MQGMO_VERSION_1
Version-1 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_2
Version-2 get-message options structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, 0S/390, 0S/2, OS/400, Sun Solaris, Windows client,
Windows NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

MQGMO_VERSION_3
Version-3 get-message options structure.

This version is supported in the following environments: AlX, DOS
client, HP-UX, OS/390, OS/2, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-3 structure are identified as such
in the descriptions that follow.

The following constant specifies the version number of the current version:

MQGMO_CURRENT_VERSION
Current version of get-message options structure.

This is always an input field. The initial value of this field is
MQGMO_VERSION_1.

Options (MQLONG)
Options that control the action of MQGET.

Zero or more of the options described below can be specified. If more
than one is required the values can be:

¢ Added together (do not add the same constant more than once), or

e Combined using the bitwise OR operation (if the programming
language supports bit operations).

Combinations of options that are not valid are noted; all other
combinations are valid. The following options are described:

MQGMO_WAIT

MQGMO_NO_WAIT
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT

Chapter 2. Data type descriptions - structures 67

MQGMO - Options field

MQGMO_NO_SYNCPOINT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_MSG_UNDER_CURSOR
MQGMO_LOCK

MQGMO_UNLOCK
MQGMO_ACCEPT_TRUNCATED_MSG
MQGMO_SET_SIGNAL
MQGMO_FAIL_IF_QUIESCING
MQGMO_CONVERT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_NONE

MQGMO_WAIT
Wait for message to arrive.

The application is to wait until a suitable message arrives. The
maximum time the application waits is specified in WaitInterval.

If MQGET requests are inhibited, or MQGET requests become
inhibited while waiting, the wait is canceled and the call completes
with MQCC_FAILED and reason code MQRC_GET_INHIBITED,
regardless of whether there are suitable messages on the queue.

This option can be used with the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options.

On OS/390, if it is desirable for the application to proceed with other
work while waiting for the message to arrive, consider using the
signal option (MQGMO_SET_SIGNAL) instead. However this option
is environment specific, and so should not be used by applications
which are intended to be portable between different environments.

If several applications are waiting on the same shared queue, the
application, or applications, that are activated when a suitable
message arrives are described below.

Note: In the description below, a browse MQGET call is one which
specifies one of the browse options, but not MQGMO_LOCK;
an MQGET call specifying the MQGMO_LOCK option is
treated as a nonbrowse call.

¢ |f one or more nonbrowse MQGET calls is waiting, one is
activated.

¢ |f one or more browse MQGET calls is waiting, but no
nonbrowse MQGET calls are waiting, all are activated.

¢ |f one or more nonbrowse MQGET calls, and one or more
browse MQGET calls are waiting, one nonbrowse MQGET call is
activated, and none, some, or all of the browse MQGET calls.
(The number of browse MQGET calls activated cannot be
predicted, because it depends on the scheduling considerations
of the operating system, and other factors.)

68 MQsSeries Application Programming Reference

MQGMO - Options field

If more than one nonbrowse MQGET call is waiting on the same
shared queue, only one is activated; in this situation the queue
manager attempts to give priority to waiting nonbrowse calls in the
following order:

1. Specific get-wait requests that can be satisfied only by certain
messages, for example, ones with a specific MsgId or Correlld
(or both).

2. General get-wait requests that can be satisfied by any message.
The following points should be noted:

¢ Within the first category, no additional priority is given to more
specific get-wait requests, for example those that specify both
MsglId and Correlld.

e Within either category, it cannot be predicted which application is
selected. In particular, the application waiting longest is not
necessarily the one selected.

¢ Path length, and priority-scheduling considerations of the
operating system, can mean that a waiting application of lower
operating system priority than expected retrieves the message.

¢ |t may also happen that an application that is not waiting
retrieves the message in preference to one that is.

On OS/390, if there is more than one MQGET call waiting for the
same message, with a mixture of wait and signal options, each
waiting call is considered equally. It is an error to specify
MQGMO_SET_SIGNAL with MQGMO_WAIT. It is also an error to
specify this option with a queue handle for which a signal is
outstanding.

MQGMO_WAIT is ignored if specified with
MQGMO_BROWSE_MSG_UNDER_CURSOR or
MQGMO_MSG_UNDER_CURSOR; no error is raised.

MQGMO_NO_WAIT
Return immediately if no suitable message.

The application is not to wait if no suitable message is available.
This is the opposite of the MQGMO_WAIT option, and is defined to
aid program documentation. It is the default if neither is specified.

MQGMO_SYNCPOINT
Get message with syncpoint control.

The request is to operate within the normal unit of work protocols.
The message is marked as being unavailable to other applications,
but it is deleted from the queue only when the unit of work is
committed. The message is made available again if the unit of work
is backed out.

If neither this option nor MQGMO_NO_SYNCPOINT is specified, the
inclusion of the get request in unit of work protocols is determined by
the environment:

e On 0OS/390 and VSE/ESA, the get request is within a unit of
work.

Chapter 2. Data type descriptions - structures 69

MQGMO - Options field

¢ In all other environments, the get request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either
MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT should be
specified explicitly.

This option is not valid with any of the following options:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_BROWSE_NEXT

MQGMO_LOCK

MQGMO_NO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_UNLOCK

MQGMO_SYNCPOINT_IF_PERSISTENT
Get message with syncpoint control if message is persistent.

The request is to operate within the normal unit of work protocols,
but only if the message retrieved is persistent. A persistent message
has the value MQPER_PERSISTENT in the Persistence field in
MQMD.

¢ |f the message is persistent, the queue manager processes the
call as though the application had specified
MQGMO_SYNCPOINT (see above for details).

¢ |f the message is not persistent, the queue manager processes
the call as though the application had specified
MQGMO_NO_SYNCPOINT (see below for details).

This option is not valid with any of the following options:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_BROWSE_NEXT
MQGMO_COMPLETE_MSG
MQGMO_MARK_SKIP_BACKOUT
MQGMO_NO_SYNCPOINT
MQGMO_SYNCPOINT

MQGMO_UNLOCK

This option is supported in the following environments: AlX, DOS
client, HP-UX, OS/390, OS/2, 0S/400, Sun Solaris, Windows client,
32-bit Windows, Windows NT.

MQGMO_NO_SYNCPOINT
Get message without syncpoint control.

The request is to operate outside the normal unit of work protocols.
The message is deleted from the queue immediately (unless this is a
browse request). The message cannot be made available again by
backing out a unit of work.

This option is assumed if MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT is specified.

70 MQSeries Application Programming Reference

MQGMO - Options field

If neither this option nor MQGMO_SYNCPOINT is specified, the
inclusion of the get request in unit of work protocols is determined by
the environment:

¢ On OS/390 and VSE/ESA, the get request is within a unit of
work.

¢ |n all other environments, the get request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either
MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT should be
specified explicitly.

This option is not valid with any of the following options:

MQGMO_MARK_SKIP_BACKOUT
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT

On VSE/ESA, this option is not supported.

MQGMO_MARK_SKIP_BACKOUT
Mark the get request as skipping backout.

This option allows a unit of work to be backed out, but without
reinstating on the queue the message that was marked with this
option.

When an application requests the backout of a unit of work
containing a get request, a message that was retrieved using this
option is not restored to its previous state. (Other resource updates,
however, are still backed out.) Instead, the message is treated as if
it had been retrieved by a get request without this option, in a new
unit of work started by the backout request.

This is useful if a message is retrieved by your application, but only
after some resource updates have been made does it become
apparent that the unit of work cannot complete successfully. A
normal backout, if this option had not been specified, would cause
the message to be reinstated on the queue, so that the same
sequence of events would occur when the message was next
retrieved. Using this option on the original MQGET, however, means
that the backout will cause the updates to the other resources to be
backed out, as is required, but the message is treated as if it had
been retrieved under a new unit of work. The application can now
perform some exception handling, such as informing the originator
that the message has been discarded, and commit this new unit of
work, which causes the message to be removed from the queue.

This option has an effect only if the unit of work containing the get
request is terminated by an application request to back it out. (Such
requests use calls or commands that depend on the environment.)
This option has no effect if the unit of work containing the get
request is backed out for any other reason (for example, the abend
of a transaction or the system). In this situation, any message
retrieved using this option is backed out on to the queue in the same
way as messages retrieved without this option.

Chapter 2. Data type descriptions - structures 71

MQGMO - Options field

Notes:

1. If you have not applied IMS APAR PN60855 (or PN57124 for
IMS V4), an IMS MPP or BMP application, returning a message
obtained with the MQGMO_MARK_SKIP_BACKOUT option to
the queue, must issue an MQ call (any MQ call will do) in
between the two ROLB commands.

2. A CICS application, returning a message obtained with the
MQGMO_MARK_SKIP_BACKOUT option to the queue, must
issue an MQ call (any MQ call will do) in between the two EXEC
CICS SYNCPOINT ROLLBACK commands.

Within a unit of work, there can be only one get request marked as
skipping backout, as well as none or several unmarked get requests.

If this option is specified, MQGMO_SYNCPOINT must also be
specified. MQGMO_MARK_SKIP_BACKOUT is not valid with any of
the following options:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_BROWSE_NEXT

MQGMO_LOCK

MQGMO_NO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_UNLOCK

This option is supported only on OS/390.

MQGMO_BROWSE_FIRST

Browse from start of queue.

When a queue is opened with the MQOO_BROWSE option, a
browse cursor is established, positioned logically before the first
message on the queue. Subsequent MQGET calls specifying the
MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT or
MQGMO_BROWSE_MSG_UNDER_CURSOR option can be used to
retrieve messages from the queue nondestructively. The browse
cursor marks the position, within the messages on the queue, from
which the next MQGET call with MQGMO_BROWSE_NEXT will
search for a suitable message.

An MQGET call with MQGMO_BROWSE_FIRST causes the
previous position of the browse cursor to be ignored. The first
message on the queue that satisfies the conditions specified in the
message descriptor is retrieved. The message remains on the
gueue, and the browse cursor is positioned on this message.

After this call, the browse cursor is positioned on the message that
has been returned. If the message is removed from the queue
before the next MQGET call with MQGMO_BROWSE_NEXT is
issued, the browse cursor remains at the position in the queue that
the message occupied, even though that position is now empty.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

72 MQSeries Application Programming Reference

MQGMO - Options field

Note that the browse cursor is not moved by a nonbrowse MQGET
call using the same Hobj handle. Nor is it moved by a browse
MQGET call that returns a completion code of MQCC_FAILED, or a
reason code of MQRC_TRUNCATED_MSG_FAILED.

The MQGMO_LOCK option can be specified together with this
option, to cause the message that is browsed to be locked.

MQGMO_BROWSE_FIRST can be specified with any valid
combination of the MQGMO_* and MQMO_* options that control the
processing of messages in groups and segments of logical
messages.

If MQGMO_LOGICAL_ORDER is specified, the messages are
browsed in logical order. If that option is omitted, the messages are
browsed in physical order. When MQGMO_BROWSE_FIRST is
specified, it is possible to switch between logical order and physical
order, but subsequent MQGET calls using
MQGMO_BROWSE_NEXT must browse the queue in the same
order as the most-recent call that specified
MQGMO_BROWSE_FIRST for the queue handle.

The group and segment information that the queue manager retains
for MQGET calls that browse messages on the queue is separate
from the group and segment information that the queue manager
retains for MQGET calls that remove messages from the queue.
When MQGMO_BROWSE_FIRST is specified, the queue manager
ignores the group and segment information for browsing, and scans
the queue as though there were no current group and no current
logical message. If the MQGET call is successful (completion code
MQCC_OK or MQCC_WARNING), the group and segment
information for browsing is set to that of the message returned; if the
call fails, the group and segment information remains the same as it
was prior to the call.

This option is not valid with any of the following options:

MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_BROWSE_NEXT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_MSG_UNDER_CURSOR
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_NEXT
Browse from current position in queue.

The browse cursor is advanced to the next message on the queue
that satisfies the selection criteria specified on the MQGET call. The
message is returned to the application, but remains on the queue.

After a queue has been opened for browse, the first browse call
using the handle has the same effect whether it specifies the
MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option.

If the message is removed from the queue before the next MQGET
call with MQGMO_BROWSE_NEXT is issued, the browse cursor

Chapter 2. Data type descriptions - structures /3

MQGMO - Options field

logically remains at the position in the queue that the message
occupied, even though that position is now empty.

Messages are stored on the queue in one of two ways:

¢ FIFO within priority (MQMDS_PRIORITY), or
¢ FIFO regardless of priority (MQMDS_FIFO)

The MsgDeliverySequence queue attribute indicates which method
applies (see “Attributes for local queues and model queues” on
page 389 for details).

If the queue has a MsgDeliverySequence of MQMDS_PRIORITY, and
a message arrives on the queue that is of a higher priority than the
one currently pointed to by the browse cursor, that message will not
be found during the current sweep of the queue using
MQGMO_BROWSE_NEXT. It can only be found after the browse
cursor has been reset with MQGMO_BROWSE_FIRST (or by
reopening the queue).

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

Note that the browse cursor is not moved by nonbrowse MQGET
calls using the same Hobj handle.

The MQGMO_LOCK option can be specified together with this
option, to cause the message that is browsed to be locked.

MQGMO_BROWSE_NEXT can be specified with any valid
combination of the MQGMO_* and MQMO_* options that control the
processing of messages in groups and segments of logical
messages.

If MQGMO_LOGICAL_ORDER is specified, the messages are
browsed in logical order. If that option is omitted, the messages are
browsed in physical order. When MQGMO_BROWSE_FIRST is
specified, it is possible to switch between logical order and physical
order, but subsequent MQGET calls using
MQGMO_BROWSE_NEXT must browse the queue in the same
order as the most-recent call that specified
MQGMO_BROWSE_FIRST for the queue handle. The call fails with
reason code MQRC_INCONSISTENT BROWSE if this condition is
not satisfied.

Note: Special care is needed if an MQGET call is used to browse
beyond the end of a message group (or logical message not
in a group) when MQGMO_LOGICAL_ORDER is not
specified. For example, if the last message in the group
happens to precede the first message in the group on the
gueue, using MQGMO_BROWSE_NEXT to browse beyond
the end of the group, specifying
MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber
set to 1 (to find the first message of the next group) would
return again the first message in the group already browsed.
This could happen immediately, or a number of MQGET calls
later (if there are intervening groups).

74 MQSeries Application Programming Reference

MQGMO - Options field

The possibility of an infinite loop can be avoided by opening
the queue twice for browse:

» Use the first handle to browse only the first message in
each group.

e Use the second handle to browse only the messages
within a specific group.

e Use the MQMO_x* options to move the second browse
cursor to the position of the first browse cursor, before
browsing the messages in the group.

e Do not use MQGMO_BROWSE_NEXT to browse beyond
the end of a group.

The group and segment information that the queue manager retains
for MQGET calls that browse messages on the queue is separate
from the group and segment information that it retains for MQGET
calls that remove messages from the queue.

This option is not valid with any of the following options:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_MARK_SKIP_BACKOUT
MQGMO_MSG_UNDER_CURSOR
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_MSG_UNDER_CURSOR
Browse message under browse cursor.

This option causes the message pointed to by the browse cursor to
be retrieved nondestructively, regardless of the MQMO_x* options
specified in the MatchOptions field in MQGMO.

The message pointed to by the browse cursor is the one that was
last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option. The call fails if neither of these
calls has been issued for this queue since it was opened, or if the
message that was under the browse cursor has since been retrieved
destructively.

The position of the browse cursor is not changed by this call.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

Note that the browse cursor is not moved by a nonbrowse MQGET
call using the same Hobj handle. Nor is it moved by a browse
MQGET call that returns a completion code of MQCC_FAILED, or a
reason code of MQRC_TRUNCATED_MSG_FAILED.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified with
MQGMO_LOCK:

Chapter 2. Data type descriptions - structures /5

MQGMO - Options field

¢ |f there is already a message locked, it must be the one under
the cursor, so that is returned without unlocking and relocking it;
the message remains locked.

¢ |f there is no locked message, the message under the browse
cursor (if there is one) is locked and returned to the application; if
there is no message under the browse cursor the call fails.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified without
MQGMO_LOCK:

¢ |[f there is already a message locked, it must be the one under
the cursor. This message is returned to the application and then
unlocked. Because the message is now unlocked, there is no
guarantee that it can be browsed again, or retrieved destructively
(it may be retrieved destructively by another application getting
messages from the queue).

¢ |[f there is no locked message, the message under the browse
cursor (if there is one) is returned to the application; if there is no
message under the browse cursor the call fails.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor
must identify a message whose 0ffset field in MQMD is zero. If this
condition is not satisfied, the call fails with reason code
MQRC_INVALID_MSG_UNDER_CURSOR.

The group and segment information that the queue manager retains
for MQGET calls that browse messages on the queue is separate
from the group and segment information that it retains for MQGET
calls that remove messages from the queue.

This option is not valid with any of the following options:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_MSG_UNDER_CURSOR
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.
On 0OS/390 and VSE/ESA, this option is not supported.

MQGMO_MSG_UNDER_CURSOR

Get message under browse cursor.

This option causes the message pointed to by the browse cursor to
be retrieved, regardless of the MQMO_* options specified in the
MatchOptions field in MQGMO. The message is removed from the
queue.

The message pointed to by the browse cursor is the one that was
last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_MSG_UNDER_CURSOR, the browse cursor must identify

76 MQSeries Application Programming Reference

MQGMO - Options field

a message whose Offset field in MQMD is zero. If this condition is
not satisfied, the call fails with reason code
MQRC_INVALID_MSG_UNDER_CURSOR.

This option is not valid with any of the following options:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_BROWSE_NEXT
MQGMO_UNLOCK

It is also an error if the queue was not opened both for browse and
for input. If the browse cursor is not currently pointing to a
retrievable message, an error is returned by the MQGET call.

MQGMO_LOCK
Lock message.

This option locks the message that is browsed, so that the message
becomes invisible to any other handle open for the queue. The
option can be specified only if one of the following options is also
specified:

MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_BROWSE_MSG_UNDER_CURSOR

Only one message can be locked per handle, but this can be a
logical message or a physical message:

¢ |[f MQGMO_COMPLETE_MSG is specified, all of the message
segments that comprise the logical message are locked to the
gueue handle (provided that they are all present on the queue
and available for retrieval).

¢ If MQGMO_COMPLETE_MSG is not specified, only a single
physical message is locked to the queue handle. If this
message happens to be a segment of a logical message, the
locked segment prevents other applications using
MQGMO_COMPLETE_MSG to retrieve or browse the logical
message.

The locked message is always the one under the browse cursor, and
the message can be removed from the queue by a later MQGET call
that specifies the MQGMO_MSG_UNDER_CURSOR option. Other
MQGET calls for that queue handle can also remove the message
(for example, a call that specifies the message identifier of the locked
message).

If MQCC_FAILED is returned (or MQCC_WARNING with
MQRC_TRUNCATED_MSG_FAILED), no message is locked.

If the application decides not to remove the message from the
queue, the lock is released by:

¢ |ssuing another MQGET call for this handle, with either
MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT
specified (with or without MQGMO_LOCK); the message is
unlocked if the call completes with MQCC_OK or
MQCC_WARNING, but remains locked if the call completes with
MQCC_FAILED. However, the following exceptions apply:

Chapter 2. Data type descriptions - structures 7 7

MQGMO - Options field

— The message is not unlocked if MQCC_WARNING is
returned with MQRC_TRUNCATED_MSG_FAILED.

— The message is unlocked if MQCC_FAILED is returned with
MQRC_NO_MSG_AVAILABLE.

If MQGMO_LOCK is also specified, the new message is locked.
If MQGMO_LOCK is not specified, there is no locked message
after the call.

If MQGMO_WAIT is specified, and no message is immediately
available, the unlock on the original message occurs before the
start of the wait (providing the call is otherwise free from error).

¢ |ssuing another MQGET call for this handle, with
MQGMO_BROWSE_MSG_UNDER_CURSOR (without
MQGMO_LOCK); the message is unlocked if the call completes
with MQCC_OK or MQCC_WARNING, but remains locked if the
call completes with MQCC_FAILED. However, the following
exception applies:

— The message is not unlocked if MQCC_WARNING is
returned with MQRC_TRUNCATED_MSG_FAILED.

¢ [ssuing another MQGET call for this handle with
MQGMO_UNLOCK.

¢ |ssuing an MQCLOSE call for this handle (either explicitly, or
implicitly by the application ending).

No special open option is required to specify this option, other than
MQOO_BROWSE, which is needed in order to specify the
accompanying browse option.

This option is not valid with any of the following options:

MQGMO_MARK_SKIP_BACKOUT
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_UNLOCK

This option is not supported in the following environments: OS/390,
16-bit Windows, 32-bit Windows.

MQGMO_UNLOCK

Unlock message.

The message to be unlocked must have been previously locked by
an MQGET call with the MQGMO_LOCK option. If there is no
message locked for this handle, the call completes with
MQCC_WARNING and MQRC_NO_MSG_LOCKED.

The MsgDesc, BufferLength, Buffer, and Datalength parameters are
not checked or altered if MQGMO_UNLOCK is specified. No
message is returned in Buffer.

No special open option is required to specify this option (although
MQOO_BROWSE is needed to issue the lock request in the first
place).

This option is not valid with any options except the following:
MQGMO_NO_WAIT

78 MQsSeries Application Programming Reference

MQGMO - Options field

MQGMO_NO_SYNCPOINT
Both of these options are assumed whether specified or not.

This option is not supported in the following environments: OS/390,
16-bit Windows, 32-bit Windows.

MQGMO_ACCEPT_TRUNCATED_MSG
Allow truncation of message data.

If the message buffer is too small to hold the complete message, this
option allows the MQGET call to fill the buffer with as much of the
message as the buffer can hold, issue a warning completion code,
and complete its processing. This means:

¢ When browsing messages, the browse cursor is advanced to the
returned message.

¢ When removing messages, the returned message is removed
from the queue.

¢ Reason code MQRC_TRUNCATED_ MSG_ACCEPTED is
returned if no other error occurs.

Without this option, the buffer is still filled with as much of the
message as it can hold, a warning completion code is issued, but
processing is not completed. This means:

¢ When browsing messages, the browse cursor is not advanced.

¢ When removing messages, the message is not removed from the
queue.

¢ Reason code MQRC_TRUNCATED_MSG_FAILED is returned if
no other error occurs.

MQGMO_SET_SIGNAL
Request signal to be set.

This option is used in conjunction with the Signall and Signal2
fields to allow applications to proceed with other work while waiting
for a message to arrive, and also (if suitable operating system
facilities are available) to wait for messages arriving on more than
one queue.

The MQGMO_SET_SIGNAL option is environment specific, and
should not be used by applications which are intended to be
portable.

If a currently available message satisfies the criteria specified in the
message descriptor, or if a parameter error or other synchronous
error is detected, the call completes in the same way as if this option
had not been specified.

If no message satisfying the criteria specified in the message
descriptor is currently available, control returns to the application
without waiting for a message to arrive. The output fields in the
message descriptor and the output parameters of the MQGET call
are not set, other than the CompCode and Reason parameters (which
are set to MQCC_WARNING and
MQRC_SIGNAL_REQUEST_ACCEPTED respectively). When a

Chapter 2. Data type descriptions - structures 79

MQGMO - Options field

suitable message arrives subsequently, the signal is delivered in a
manner dependent on the environment:

¢ On 0OS/390, the signal is delivered by posting the ECB.

¢ On 32-bit Windows, a Windows message is sent to the
application.

The caller should then reissue the MQGET call to retrieve the
message. The application can wait for this signal, using functions
provided by the operating system.

If the operating system provides a multiple wait mechanism, the
application can use this technique to wait for a message arriving on
any one of several queues.

If a nonzero WaitiInterval is specified, after this time the signal is
delivered. The wait may also be canceled by the queue manager, in
which case again the signal is delivered.

If more than one MQGET call has set a signal for the same
message, the order in which applications are activated is the same
as that described for MQGMO_WAIT.

If there is more than one MQGET call waiting for the same message,
with a mixture of wait and signal options, each waiting call is
considered equally.

Under certain conditions it is possible for a message to be retrieved
by the MQGET call, and for a signal resulting from the arrival of the
same message to be delivered. When a signal is delivered, an
application must be prepared for no message to be available.

A given handle can have no more than one signal outstanding.
This option is not valid with any of the following options:

MQGMO_UNLOCK
MQGMO_WAIT

This option is supported only in the following environments: 0S/390,
32-bit Windows.

MQGMO_FAIL_IF_QUIESCING

Fail if queue manager is quiescing.

This option forces the MQGET call to fail if the queue manager is in
the quiescing state.

On 0S/390, this option also forces the MQGET call to fail if the
connection (for a CICS or IMS application) is in the quiescing state.

If this option is specified together with MQGMO_WAIT or
MQGMO_SET_SIGNAL, and the wait or signal is outstanding at the
time the queue manager enters the quiescing state:

¢ The wait is canceled and the call returns completion code
MQCC_FAILED with reason code MQRC_Q_MGR_QUIESCING
or MQRC_CONNECTION_QUIESCING.

¢ The signal is canceled with an environment-specific signal
completion code.

80 MQsSeries Application Programming Reference

MQGMO - Options field

On 0S/390, the signal completes with event completion code
MQEC_Q_MGR_QUIESCING or
MQEC_CONNECTION_QUIESCING.

If MQGMO_FAIL_IF_QUIESCING is not specified and the queue
manager or connection enters the quiescing state, the wait or signal
is not canceled.

On 16-bit Windows and 32-bit Windows, this option is accepted but
ignored.

On VSE/ESA, this option is not supported.

MQGMO_CONVERT
Convert message data.

This option requests that the application data in the message should
be converted, to conform to the CodedCharSetId and Encoding values
specified in the MsgDesc parameter on the MQGET call, before the
data is copied to the Buffer parameter.

The Format field specified when the message was put is assumed by
the conversion process to identify the nature of the data in the
message. Conversion of the message data is by the queue manager
for built-in formats, and by a user-written exit for other formats. See
Appendix D, “Data-conversion” on page 579 for details of the
data-conversion exit.

¢ If conversion is performed successfully, the CodedCharSetId and
Encoding fields specified in the MsgDesc parameter are
unchanged on return from the MQGET call.

¢ If conversion cannot be performed successfully (but the MQGET
call otherwise completes without error), the message data is
returned unconverted, and the CodedCharSetId and Encoding
fields in MsgDesc are set to the values for the unconverted
message. The completion code is MQCC_WARNING in this
case.

In either case, therefore, these fields describe the character-set
identifier and encoding of the message data that is returned in the
Buffer parameter.

See the Format field described in “MQMD - Message descriptor” on
page 110 for a list of format names for which the queue manager
performs the conversion.

This option is not supported in the following environments: OS/390
using CICS Version 2, VSE/ESA, 16-bit Windows, 32-bit Windows.

Group and segment options : The options described below control the
way that messages in groups and segments of logical messages are
returned by the MQGET call. The following definitions may be of help in
understanding these options:

Physical message
This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).

Chapter 2. Data type descriptions - structures 81

MQGMO - Options field

Generally, physical messages are distinguished by differing values
for the message identifier (MsgId field in MQMD), although this is not
enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a
physical message. But where logical messages are extremely large,
system constraints may make it advisable or necessary to split a
logical message into two or more physical messages, called
segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier
(GroupId field in MQMD), and the same message sequence number
(MsgSegNumber field in MQMD). The segments are distinguished by
differing values for the segment offset (0ffset field in MQMD), which
gives the offset of the data in the physical message from the start of
the data in the logical message. Because each segment is a
physical message, the segments in a logical message usually have
differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also
has a nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message
does not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a
null group identifier (MQGI_NONE), unless the logical message
belongs to a message group.

Message group
This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number
of logical messages in the group. If one or more of the logical
messages is segmented, there will be more than n physical
messages in the group.

MQGMO_LOGICAL_ORDER
Messages in groups and segments of logical messages are returned
in logical order.

This option controls the order in which messages are returned by
successive MQGET calls for the queue handle. The option must be
specified on each of those calls in order to have an effect.

If MQGMO_LOGICAL_ORDER is specified for successive MQGET
calls for the queue handle, messages in groups are returned in the
order given by their message sequence numbers, and segments of
logical messages are returned in the order given by their segment
offsets. This order may be different from the order in which those
messages and segments occur on the queue.

Note: Specifying MQGMO_LOGICAL_ORDER has no adverse
consequences on messages that do not belong to groups

82 MQsSeries Application Programming Reference

MQGMO - Options field

and that are not segments. In effect, such messages are
treated as though each belonged to a message group
consisting of only one message. Thus it is perfectly safe to
specify MQGMO_LOGICAL_ORDER when retrieving
messages from queues that may contain a mixture of
messages in groups, message segments, and unsegmented
messages not in groups.

To return the messages in the required order, the queue manager
retains the group and segment information between successive
MQGET calls. This information identifies the current message group
and current logical message for the queue handle, the current
position within the group and logical message, and whether the
messages are being retrieved within a unit of work. Because the
gueue manager retains this information, the application does not
need to set the group and segment information prior to each MQGET
call. Specifically, it means that the application does not need to set
the Groupld, MsgSeqNumber, and Offset fields in MQMD. However,
the application does need to set the MQGMO_SYNCPOINT or
MQGMO_NO_SYNCPOINT option correctly on each call.

When the queue is opened, there is no current message group and
no current logical message. A message group becomes the current
message group when a message that has the
MQMF_MSG_IN_GROUP flag is returned by the MQGET call. With
MQGMO_LOGICAL_ORDER specified on successive calls, that
group remains the current group until a message is returned that
has:

¢ MQMF_LAST _MSG_IN_GROUP without MQMF_SEGMENT
(that is, the last logical message in the group is not segmented),
or

e MQMF_LAST MSG_IN_GROUP with MQMF_LAST_SEGMENT
(that is, the message returned is the last segment of the last
logical message in the group).

When such a message is returned, the message group is terminated,
and on successful completion of that MQGET call there is no longer
a current group. In a similar way, a logical message becomes the
current logical message when a message that has the
MQMF_SEGMENT flag is returned by the MQGET call, and that
logical message is terminated when the message that has the
MQMF_LAST_SEGMENT flag is returned.

If no selection criteria are specified, successive MQGET calls return
(in the correct order) the messages for the first message group on
the queue, then the messages for the second message group, and
so on, until there are no more messages available. It is possible to
select the particular message groups returned by specifying one or
more of the following options in the MatchOptions field:

MQMO_MATCH_MSG_ID
MQMO_MATCH_CORREL_ID
MQMO_MATCH_GROUP_ID

However, these options are effective only when there is no current
message group or logical message; see the MatchOptions field

Chapter 2. Data type descriptions - structures 83

MQGMO - Options field

described in “MQGMO - Get-message options” on page 66 for
further details.

Table 31 shows the values of the MsgId, Correlld, GroupId,
MsgSeqNumber, and Offset fields that the queue manager looks for
when attempting to find a message to return on the MQGET call.
This applies both to removing messages from the queue, and
browsing messages on the queue. The columns in the table have

the following meanings:

LOG ORD

Cur grp

Cur log msg

Other columns

A “¥" means that the row applies only when the

MQGMO_LOGICAL_ORDER option is specified.

A “¥" means that the row applies only when a
current message group exists prior to the call.

A “(v)” means that the row applies whether or not a
current message group exists prior to the call.

A “¥" means that the row applies only when a

current logical message exists prior to the call.

A “(v)” means that the row applies whether or not a
current logical message exists prior to the call.

looks for.

These show the values that the queue manager
“Previous” denotes the value returned for

the field in the previous message for the queue

handle.

Table 31. MQGET options relating to messages in groups and segments of logical messages

Options Group and Values the queue manager looks for
you log-msg status
specify prior to call
LOG Cur Cur MsglId Correlld Groupld MsgSeqNumber Offset
ORD arp log
msg
v Controlled by Controlled by Controlled by 1 0
MatchOptions MatchOptions MatchOptions
v v Any message Any correlation Previous 1 Previous offset
identifier identifier group identifier + previous
segment
length
v v Any message Any correlation Previous Previous 0
identifier identifier group identifier sequence
number + 1
v v v Any message Any correlation Previous Previous Previous offset
identifier identifier group identifier sequence + previous
number segment
length
W) W) Controlled by Controlled by Controlled by Controlled by Controlled by
MatchOptions MatchOptions MatchOptions MatchOptions MatchOptions

When multiple message groups are present on the queue and
eligible for return, the groups are returned in the order determined by
the position on the queue of the first segment of the first logical

message in each group (that is, the physical messages that have
message sequence numbers of 1, and offsets of 0, determine the
order in which eligible groups are returned).

84 MQseries Application Programming Reference

MQGMO - Options field

The MQGMO_LOGICAL_ORDER option affects units of work as
follows:

¢ |f the first logical message or segment in a group is retrieved
within a unit of work, all of the other logical messages and
segments in the group must be retrieved within a unit of work, if
the same queue handle is used. However, they need not be
retrieved within the same unit of work. This allows a message
group consisting of many physical messages to be split across
two or more consecutive units of work for the queue handle.

¢ |[f the first logical message or segment in a group is not retrieved
within a unit of work, none of the other logical messages and
segments in the group can be retrieved within a unit of work, if
the same queue handle is used.

If these conditions are not satisfied, the MQGET call fails with reason
code MQRC_INCONSISTENT_UOW.

When MQGMO_LOGICAL_ORDER is specified, the MQGMO
supplied on the MQGET call must not be less than
MQGMO_VERSION_2, and the MQMD must not be less than
MQMD_VERSION_2. If this condition is not satisfied, the call fails
with reason code MQRC_WRONG_GMO_VERSION or
MQRC_WRONG_MD_VERSION, as appropriate.

If MQGMO_LOGICAL_ORDER is not specified for successive
MQGET calls for the queue handle, messages are returned without
regard for whether they belong to message groups, or whether they
are segments of logical messages. This means that messages or
segments from a particular group or logical message may be
returned out of order, or they may be intermingled with messages or
segments from other groups or logical messages, or with messages
that are not in groups and are not segments. In this situation, the
particular messages that are returned by successive MQGET calls is
controlled by the MQMO_* options specified on those calls (see the
MatchOptions field described in “MQGMO - Get-message options” on
page 66 for details of these options).

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.
When the system restarts, the application can set the GroupId,
MsgSeqNumber, Offset, and MatchOptions fields to the appropriate
values, and then issue the MQGET call with MQGMO_SYNCPOINT
or MQGMO_NO_SYNCPOINT set as desired, but without specifying
MQGMO_LOGICAL_ORDER. If this call is successful, the queue
manager retains the group and segment information, and subsequent
MQGET calls using that queue handle can specify
MQGMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains
for the MQGET call is separate from the group and segment
information that it retains for the MQPUT call. In addition, the queue
manager retains separate information for:

¢ MQGET calls that remove messages from the queue.
¢ MQGET calls that browse messages on the queue.

Chapter 2. Data type descriptions - structures 85

MQGMO - Options field

For any given queue handle, the application is free to mix MQGET
calls that specify MQGMO_LOGICAL_ORDER with MQGET calls
that do not, but the following points should be noted:

¢ Each successful MQGET call that does not specify
MQGMO_LOGICAL_ORDER causes the queue manager to set
the saved group and segment information to the values
corresponding to the message returned; this replaces the
existing group and segment information retained by the queue
manager for the queue handle. Only the information appropriate
to the action of the call (browse or remove) is modified.

e |[f MQGMO_LOGICAL_ORDER is not specified, the call does not
fail if there is a current message group or logical message, but
the message or segment retrieved is not the next one in the
group or logical message. The call may however succeed with
an MQCC_WARNING completion code. Table 32 shows the
various cases that can arise. In these cases, if the completion
code is not MQCC_OK, the reason code is one of the following
(as appropriate):

MQRC_INCOMPLETE_GROUP
MQRC_INCOMPLETE_MSG
MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and
segment information when browsing a queue, or when
closing a queue that was opened for browse but not
input; in those cases the completion code is always
MQCC_OK (assuming no other errors).

Table 32. Outcome when MQGET or MQCLOSE call not consistent with group and segment information

Current call Previous call
MQGET with MQGET without
MQGMO_LOGICAL_ORDER MQGMO_LOGICAL_ORDER
MQGET with MQCC_FAILED MQCC_FAILED
MQGMO_LOGICAL_ORDER
MQGET without MQCC_WARNING MQCC_OK
MQGMO_LOGICAL_ORDER
MQCLOSE with an unterminated group MQCC_WARNING MQCC_OK
or logical message

Applications that simply want to retrieve messages and segments in
logical order are recommended to specify
MQGMO_LOGICAL_ORDER, as this is the simplest option to use.
This option relieves the application of the need to manage the group
and segment information, because the queue manager manages that
information. However, specialized applications may need more
control than provided by the MQGMO_LOGICAL_ORDER option,
and this can be achieved by not specifying that option. If this is
done, the application must ensure that the MsgId, Correlld, GrouplId,
MsgSeqNumber, and Offset fields in MQMD, and the MQMO_* options
in MatchOptions in MQGMO, are set correctly, prior to each MQGET
call.

86 MQsSeries Application Programming Reference

MQGMO - Options field

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify
MQGMO_LOGICAL_ORDER. This is because in a complex network
with multiple paths between sending and receiving queue managers,
the physical messages may arrive out of order. By specifying neither
MQGMO_LOGICAL_ORDER, nor the corresponding
MQPMO_LOGICAL_ORDER on the MQPUT call, the forwarding
application can retrieve and forward each physical message as soon
as it arrives, without having to wait for the next one in logical order to
arrive.

MQGMO_LOGICAL_ORDER can be specified with any of the other
MQGMO_* options, and with various of the MQMO_* options in
appropriate circumstances (see above).

This option is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQGMO_COMPLETE_MSG
Only complete logical messages are retrievable.

This option specifies that only a complete logical message can be
returned by the MQGET call. If the logical message is segmented,
the queue manager reassembles the segments and returns the
complete logical message to the application; the fact that the logical
message was segmented is not apparent to the application retrieving
it.

Note: This is the only option that causes the queue manager to
reassemble message segments. If not specified, segments
are returned individually to the application if they are present
on the queue (and they satisfy the other selection criteria
specified on the MQGET call). Applications that do not wish
to receive individual segments should therefore always
specify MQGMO_COMPLETE_MSG.

To use this option, the application must provide a buffer which is big
enough to accommodate the complete message, or specify the
MQGMO_ACCEPT_TRUNCATED_MSG option.

If the queue contains segmented messages with some of the
segments missing (perhaps because they have been delayed in the
network and have not yet arrived), specifying
MQGMO_COMPLETE_MSG prevents the retrieval of segments
belonging to incomplete logical messages. However, those message
segments still contribute to the value of the CurrentQDepth queue
attribute; this means that there may be no retrievable logical
messages, even though CurrentQDepth is greater than zero.

For persistent messages, the queue manager can reassemble the
segments only within a unit of work:

¢ |If the MQGET call is operating within a user-defined unit of work,
that unit of work is used. If the call fails partway through the
reassembly process, the queue manager reinstates on the queue
any segments that were removed during reassembly. However,

Chapter 2. Data type descriptions - structures 87

MQGMO - Options field

the failure does not prevent the unit of work being committed
successfully.

¢ |f the call is operating outside a user-defined unit of work, and
there is no user-defined unit of work in existence, the queue
manager creates a unit of work just for the duration of the call. If
the call is successful, the queue manager commits the unit of
work automatically (the application does not need to do this). If
the call fails, the queue manager backs out the unit of work.

¢ |If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is
unable to perform reassembly. If the message does not require
reassembly, the call can still succeed. But if the message does
require reassembly, the call fails with reason code
MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a
unit of work to be available in order to perform reassembly.

Each physical message which is a segment has its own message
descriptor. For the segments constituting a single logical message,
most of the fields in the message descriptor will be the same for all
segments in the logical message — usually it is only the MsgId,
Offset, and MsgFlags fields that differ between segments in the
logical message. However, when segments take different paths
through the network, and some of those paths have MCA sender
conversion enabled, it is possible for the CodedCharSetId and
Encoding fields to differ between segments when the segments
eventually arrive at the destination queue. A logical message
consisting of segments in which the CodedCharSetId and/or Encoding
fields differ cannot be reassembled by the queue manager into a
single logical message. Instead, the queue manager reassembles
and returns the first few consecutive segments at the start of the
logical message that have the same character-set identifiers and
encodings, and the MQGET call completes with completion code
MQCC_WARNING and reason code
MQRC_INCONSISTENT_CCSIDS or
MQRC_INCONSISTENT_ENCODINGS, as appropriate. This
happens regardless of whether MQGMO_CONVERT is specified. To
retrieve the remaining segments, the application must reissue the
MQGET call without the MQGMO_COMPLETE_MSG option,
retrieving the segments one by one. MQGMO_LOGICAL_ORDER
can be used to retrieve the remaining segments in order.

It is also possible for an application which puts segments to set other
fields in the message descriptor to values that differ between
segments. However, there is no advantage in doing this if the
receiving application uses MQGMO_COMPLETE_MSG to retrieve
the logical message. When the queue manager reassembles a
logical message, it returns in the message descriptor the values from
the message descriptor for the first segment; the only exception is
the MsgFlags field, which the queue manager sets to indicate that the
reassembled message is the only segment.

If MQGMO_COMPLETE_MSG is specified for a report message, the
gueue manager performs special processing. The queue manager

88 MQseries Application Programming Reference

MQGMO - Options field

checks the queue to see if all of the report messages of that report
type relating to the different segments in the logical message are
present on the queue. If they are, they can be retrieved as a single
message by specifying MQGMO_COMPLETE_MSG. For this to be
possible, either the report messages must be generated by a queue
manager or MCA which supports segmentation, or the originating
application must request at least 100 bytes of message data (that is,
the appropriate MQRO_x WITH_DATA or

MQRO_»_ WITH_FULL_DATA options must be specified). If less
than the full amount of application data is present for a segment, the
missing bytes are replaced by nulls in the report message returned.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor
must be positioned on a message whose 0ffset field in MQMD has
a value of 0. If this condition is not satisfied, the call fails with
reason code MQRC_INVALID_MSG_UNDER_CURSOR.

MQGMO_COMPLETE_MSG implies
MQGMO_ALL _SEGMENTS_AVAILABLE, which need not therefore
be specified.

MQGMO_COMPLETE_MSG can be specified with any of the other
MQGMO_* options apart from
MQGMO_SYNCPOINT_IF_PERSISTENT, and with any of the
MQMO_* options apart from MQMO_MATCH_OFFSET.

This option is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQGMO_ALL_MSGS_AVAILABLE
All messages in group must be available.

This option specifies that messages in a group become available for
retrieval only when all messages in the group are available. If the
gueue contains message groups with some of the messages missing
(perhaps because they have been delayed in the network and have
not yet arrived), specifying MQGMO_ALL_MSGS_AVAILABLE
prevents retrieval of messages belonging to incomplete groups.
However, those messages still contribute to the value of the
CurrentQDepth queue attribute; this means that there may be no
retrievable message groups, even though CurrentQDepth is greater
than zero. If there are no other messages that are retrievable,
reason code MQRC_NO_MSG_AVAILABLE is returned after the
specified wait interval (if any) has expired.

The processing of MQGMO_ALL MSGS_AVAILABLE depends on
whether MQGMO_LOGICAL_ORDER is also specified:

¢ If both options are specified, MQGMO_ALL_MSGS_AVAILABLE
has an effect only when there is no current group or logical
message. If there /s a current group or logical message,
MQGMO_ALL MSGS_AVAILABLE is ignored. This means that
MQGMO_ALL_MSGS_AVAILABLE can remain on when
processing messages in logical order.

Chapter 2. Data type descriptions - structures 89

MQGMO - Options field

¢ If MQGMO_ALL_MSGS_AVAILABLE is specified without
MQGMO_LOGICAL_ORDER,
MQGMO_ALL _MSGS_AVAILABLE always has an effect. This
means that the option must be turned off after the first message
in the group has been removed from the queue, in order to be
able to remove the remaining messages in the group.

If this option is not specified, messages belonging to groups can be
retrieved even when the group is incomplete.

MQGMO_ALL_MSGS_AVAILABLE implies
MQGMO_ALL_SEGMENTS_AVAILABLE, which need not therefore
be specified.

MQGMO_ALL_MSGS_AVAILABLE can be specified with any of the
other MQGMO_* options, and with any of the MQMO_* options.

This option is supported in the following environments: AlIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQGMO_ALL_SEGMENTS_AVAILABLE

All segments in a logical message must be available.

This option specifies that segments in a logical message become
available for retrieval only when all segments in the logical message
are available. If the queue contains segmented messages with some
of the segments missing (perhaps because they have been delayed
in the network and have not yet arrived), specifying
MQGMO_ALL_SEGMENTS_AVAILABLE prevents retrieval of
segments belonging to incomplete logical messages. However those
segments still contribute to the value of the CurrentQDepth queue
attribute; this means that there may be no retrievable logical
messages, even though CurrentQDepth is greater than zero. If there
are no other messages that are retrievable, reason code
MQRC_NO_MSG_AVAILABLE is returned after the specified wait
interval (if any) has expired.

The processing of MQGMO_ALL_SEGMENTS_AVAILABLE depends
on whether MQGMO_LOGICAL_ORDER is also specified:

¢ If both options are specified,
MQGMO_ALL _SEGMENTS_AVAILABLE has an effect only
when there is no current logical message. If there /s a current
logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is
ignored. This means that
MQGMO_ALL SEGMENTS_AVAILABLE can remain on when
processing messages in logical order.

e |[f MQGMO_ALL SEGMENTS_AVAILABLE is specified without
MQGMO_LOGICAL_ORDER,
MQGMO_ALL _SEGMENTS_AVAILABLE always has an effect.
This means that the option must be turned off after the first
segment in the logical message has been removed from the
gueue, in order to be able to remove the remaining segments in
the logical message.

If this option is not specified, message segments can be retrieved
even when the logical message is incomplete.

90 MQsSeries Application Programming Reference

MQGMO - WaitInterval field

While both MQGMO_COMPLETE_MSG and
MQGMO_ALL_SEGMENTS_AVAILABLE require all segments to be
available before any of them can be retrieved, the former returns the
complete message, whereas the latter allows the segments to be
retrieved one by one.

If MQGMO_ALL _SEGMENTS_AVAILABLE is specified for a report
message, the queue manager performs special processing. The
gueue manager checks the queue to see if there is at least one
report message for each of the segments that comprise the complete
logical message. If there is, the
MQGMO_ALL_SEGMENTS_AVAILABLE condition is satisfied.
However, the queue manager does not check the type of the report
messages present, and so there may be a mixture of report types in
the report messages relating to the segments of the logical message.
As a result, the success of MQGMO_ALL_SEGMENTS_AVAILABLE
does not imply that MQGMO_COMPLETE_MSG will succeed. If
there is a mixture of report types present for the segments of a
particular logical message, those report messages must be retrieved
one by one.

MQGMO_ALL SEGMENTS_AVAILABLE can be specified with any
of the other MQGMO_* options, and with any of the MQMO_*
options.

This option is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQGMO_NONE
No options specified.

This value can be used to indicate that no other options have been
specified; all options assume their default values. MQGMO_NONE
is defined to aid program documentation; it is not intended that this
option be used with any other, but as its value is zero, such use
cannot be detected.

The initial value of the Options field is MQGMO_NO_WAIT.

WaitInterval (MQLONG)
Wait interval.

This is the approximate time, expressed in milliseconds, that the MQGET
call waits for a suitable message to arrive (that is, a message satisfying
the selection criteria specified in the MsgDesc parameter of the MQGET
call; see the MsgId field described in “MQMD - Message descriptor” on
page 110 for more details). If no suitable message has arrived after this
time has elapsed, the call completes with MQCC_FAILED and reason
code MQRC_NO_MSG_AVAILABLE.

On 0S/390, the period of time that the MQGET call actually waits is
affected by system loading and work-scheduling considerations, and can
vary between the value specified for WaitInterval and approximately 250
milliseconds greater than WaitInterval.

WaitInterval is used in conjunction with the MQGMO_WAIT or
MQGMO_SET_SIGNAL option. It is ignored if neither of these is

Chapter 2. Data type descriptions - structures 91

MQGMO - Signall field

specified. If one of these is specified, WaitInterval must be greater than
or equal to zero, or the following special value:

MQW!I_UNLIMITED
Unlimited wait interval.

The initial value of this field is 0.

Signall (MQLONG)
Signal.

This is an input field that is used only in conjunction with the
MQGMO_SET_SIGNAL option; it identifies a signal that is to be delivered
when a message is available. The data type and usage of this field are
determined by the environment; for this reason, signals should not be used
by applications which are intended to be portable between different
environments.

¢ On 0OS/390, this field contains the address of an Event Control Block
(ECB). The ECB must be cleared by the application before the
MQGET call is issued. The storage containing the ECB must not be
freed until the queue is closed. The ECB is posted by the queue
manager with one of the signal completion codes described below.
These completion codes are set in bits 2 through 31 of the ECB—the
area defined in the OS/390 mapping macro IHAECB as being for a
user completion code.

¢ On 32-bit Windows, this field contains the window handle of a window
to which the signal is sent. If this is zero, the signal is sent to the
thread requesting the signal. The signal is a Windows message with
the identifier specified by the Signal2 field. The message contains a
signal completion code in the WPARAM field.

¢ In all other environments, this is a reserved field; its value is not
significant.

The signal completion codes are:

MQEC_MSG_ARRIVED
Message has arrived.

A suitable message has arrived on the queue. This message has
not been reserved for the caller; a second MQGET request must be
issued, but note that another application might retrieve the message
before the second request is made.

MQEC_WAIT_INTERVAL_EXPIRED
Requested wait period has expired.

The specified WaitInterval has expired without a suitable message
arriving.

MQEC_WAIT_CANCELED
Requested wait period has been canceled.

The wait was canceled for an indeterminate reason (such as the
gueue manager terminating, or the queue being disabled). The
request must be reissued if further diagnosis is required.

92 MQSeries Application Programming Reference

MQGMO - Signal2 field ¢ MQGMO — MatchOptions field

MQEC_Q_MGR_QUIESCING
Queue manager quiescing.

The wait was canceled because the queue manager has entered the
quiescing state (MQGMO_FAIL_IF_QUIESCING was specified on
the MQGET call).

MQEC_CONNECTION_QUIESCING
Connection quiescing.

The wait was canceled because the connection has entered the
quiescing state (MQGMO_FAIL_IF_QUIESCING was specified on
the MQGET call).

The initial value of this field is determined by the environment:

e On 0S/390, the initial value is the null pointer.
¢ In all other environments, the initial value is 0.

Signal2 (MQLONG)
Signal identifier.
This is an input field that is used only in conjunction with the

MQGMO_SET_SIGNAL option. The data type and usage of this field are
determined by the environment:

¢ On 32-bit Windows, this field contains the identifier of a Windows
message that is sent to the application window (as specified by the
Signall field) to signal that a suitable message has arrived. The
Windows call RegisterWindowMessage should be used to obtain a
suitable identifier.

¢ In all other environments, this is a reserved field; its value is not
significant.

The initial value of this field is 0.

ResolvedQName (MQCHARA438)
Resolved name of destination queue.

This is an output field which is set by the queue manager to the local
name of the queue from which the message was retrieved, as defined to
the local queue manager. This will be different from the name used to
open the queue if:

¢ An alias queue was opened (in which case, the name of the local
gueue to which the alias resolved is returned), or

¢ A model queue was opened (in which case, the name of the dynamic
local queue is returned).

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

The remaining fields are not present if Version is less than MQGMO_VERSION_2.

MatchOptions (MQLONG)
Options controlling selection criteria used for MQGET.

These options allow the application to choose which fields in the MsgDesc

Chapter 2. Data type descriptions - structures 93

MQGMO — MatchOptions field

parameter will be used to select the message returned by the MQGET
call. The application sets the required options in this field, and then sets
the corresponding fields in the MsgDesc parameter to the values required
for those fields. Only messages that have those values in the MQMD for
the message are candidates for retrieval using that MsgDesc parameter on
the MQGET call. Fields for which the corresponding match option is not
specified are ignored when selecting the message to be returned. If no
selection criteria are to be used on the MQGET call (that is, any message
is acceptable), MatchOptions should be set to MQMO_NONE.

If MQGMO_LOGICAL_ORDER is specified, only certain messages are
eligible for return by the next MQGET call:

¢ |f there is no current group or logical message, only messages that
have MsgSeqgNumber equal to 1 and Offset equal to 0 are eligible for
return. In this situation, one or more of the following match options
can be used to select which of the eligible messages is the one
actually returned:

MQMO_MATCH_MSG_ID
MQMO_MATCH_CORREL_ID
MQMO_MATCH_GROUP_ID

¢ |[f there is a current group or logical message, only the next message
in the group or next segment in the logical message is eligible for
return, and this cannot be altered by specifying MQMO_x* options.

In both of the above cases, match options which are not applicable can
still be specified, but the value of the relevant field in the MsgDesc
parameter must match the value of the corresponding field in the message
to be returned; the call fails with reason code
MQRC_MATCH_OPTIONS_ERROR is this condition is not satisfied.

MatchOptions is ignored if either MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR is specified.

One or more of the following match options can be specified:

MQMO_MATCH_MSG_ID
Retrieve message with specified message identifier.

This option specifies that the message to be retrieved must have a
message identifier that matches the value of the MsgId field in the
MsgDesc parameter of the MQGET call. This match is in addition to
any other matches that may apply (for example, the correlation
identifier).

If this option is not specified, the MsgId field in the MsgDesc parameter
is ignored, and any message identifier will match.

Note: The message identifier MQMI_NONE is a special value that
matches any message identifier in the MQMD for the
message. Therefore, specifying MQMO_MATCH_MSG_ID
with MQMI_NONE is the same as not specifying
MQMO_MATCH_MSG_ID.

MQMO_MATCH_CORREL_ID
Retrieve message with specified correlation identifier.

This option specifies that the message to be retrieved must have a

94 MQsSeries Application Programming Reference

MQGMO - MatchOptions field

correlation identifier that matches the value of the CorrellId field in
the MsgDesc parameter of the MQGET call. This match is in addition
to any other matches that may apply (for example, the message
identifier).

If this option is not specified, the Correlld field in the MsgDesc
parameter is ignored, and any correlation identifier will match.

Note: The correlation identifier MQCI_NONE is a special value that
matches any correlation identifier in the MQMD for the
message. Therefore, specifying
MQMO_MATCH_CORREL _ID with MQCI_NONE is the same
as not specifying MQMO_MATCH_CORREL _ID.

MQMO_MATCH_GROUP_ID
Retrieve message with specified group identifier.

This option specifies that the message to be retrieved must have a
group identifier that matches the value of the GroupId field in the
MsgDesc parameter of the MQGET call. This match is in addition to
any other matches that may apply (for example, the correlation
identifier).

If this option is not specified, the GroupId field in the MsgDesc
parameter is ignored, and any group identifier will match.

Note: The group identifier MQGI_NONE is a special value that
matches any group identifier in the MQMD for the message.
Therefore, specifying MQMO_MATCH_GROUP_ID with
MQGI_NONE is the same as not specifying
MQMO_MATCH_GROUP_ID.

This option is not supported on OS/390.

MQMO_MATCH_MSG_SEQ_NUMBER
Retrieve message with specified message sequence number.

This option specifies that the message to be retrieved must have a
message sequence number that matches the value of the
MsgSeqNumber field in the MsgDesc parameter of the MQGET call.
This match is in addition to any other matches that may apply (for
example, the group identifier).

If this option is not specified, the MsgSeqNumber field in the MsgDesc
parameter is ignored, and any message sequence number will
match.

This option is not supported on OS/390.

MQMO_MATCH_OFFSET
Retrieve message with specified offset.

This option specifies that the message to be retrieved must have an
offset that matches the value of the 0ffset field in the MsgDesc
parameter of the MQGET call. This match is in addition to any other
matches that may apply (for example, the message sequence
number).

If this option is not specified, the Offset field in the MsgDesc
parameter is ignored, and any offset will match.

This option is not supported on OS/390.

Chapter 2. Data type descriptions - structures 95

MQGMO — GroupStatus field

MQM

O_MATCH_MSG_TOKEN
Retrieve message with specified message token.

This option specifies that the message to be retrieved must have a
message token that matches the value of the MsgToken field in the
MQGMO structure specified on the MQGET call.

This option can be specified only for queues that have an IndexType
of MQIT_MSG_TOKEN. No other match options can be specified
with MQMO_MATCH_MSG_TOKEN.

If this option is not specified, the MsgToken field in MQGMO is
ignored, and any message token will match.

This option is supported only on OS/390.

If none of the options described above is specified, the following option
can be used:

MQMO_NONE

No matches.

This option specifies that no matches are to be used in selecting the
message to be returned; therefore, all messages on the queue are
eligible for retrieval (but subject to control by the
MQGMO_ALL_MSGS_AVAILABLE,
MQGMO_ALL_SEGMENTS_AVAILABLE, and
MQGMO_COMPLETE_MSG options).

MQMO_NONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

This is an input field. The initial value of this field is
MQMO_MATCH_MSG_ID with MQMO_MATCH_CORREL_ID. This field
is not present if Version is less than MQGMO_VERSION_2.

Note:

The initial value of the MatchOptions field is defined for
compatibility with earlier MQSeries queue managers. However,
when reading a series of messages from a queue without using
selection criteria, this initial value requires the application to reset
the MsgId and Correlld fields to MQMI_NONE and MQCI_NONE
prior to each MQGET call. The need to reset MsgId and Correlld
can be avoided by setting Version to MQGMO_VERSION_2, and
MatchOptions to MQMO_NONE.

GroupStatus (MQCHAR)
Flag indicating whether message retrieved is in a group.

It has one of the following values:

MQGS_NOT_IN_GROUP

Message is not in a group.

MQGS_MSG_IN_GROUP

Message is in a group, but is not the last in the group.

96 MQSeries Application Programming Reference

MQGMO - SegmentStatus field ¢ MQGMO — Reserved1 field

MQGS_LAST_MSG_IN_GROUP
Message is the last in the group.

This is also the value returned if the group consists of only one
message.

On 0OS/390, the queue manager always sets this field to
MQGS_NOT_IN_GROUP.

This is an output field. The initial value of this field is
MQGS_NOT_IN_GROUP. This field is not present if Version is less than
MQGMO_VERSION_2.

SegmentStatus (MQCHAR)

Flag indicating whether message retrieved is a segment of a logical
message.

It has one of the following values:

MQSS_NOT_A_SEGMENT
Message is not a segment.

MQSS_SEGMENT
Message is a segment, but is not the last segment of the logical
message.

MQSS_LAST_SEGMENT
Message is the last segment of the logical message.

This is also the value returned if the logical message consists of only
one segment.

On 0S/390, the queue manager always sets this field to
MQSS_NOT_A_SEGMENT.

This is an output field. The initial value of this field is
MQSS_NOT_A_SEGMENT. This field is not present if Version is less
than MQGMO_VERSION_2.

Segmentation (MQCHAR)

Flag indicating whether further segmentation is allowed for the message
retrieved.

It has one of the following values:

MQSEG_INHIBITED
Segmentation not allowed.

MQSEG_ALLOWED
Segmentation allowed.

On 0S/390, the queue manager always sets this field to
MQSEG_INHIBITED.

This is an output field. The initial value of this field is
MQSEG_INHIBITED. This field is not present if Version is less than
MQGMO_VERSION_2.

Reservedl (MQCHAR)

Reserved.

This is a reserved field. The initial value of this field is a blank character.
This field is not present if Version is less than MQGMO_VERSION_2.

Chapter 2. Data type descriptions - structures 97

MQGMO — MsgToken field ¢ MQGMO — ReturnedLength field

The remaining fields are not present if Version is less than MQGMO_VERSION_3.
MsgToken (MQBYTEL6)

Message token.

This is a byte string that is generated by the queue manager to identify a
message uniquely. The message token is generated when the message
is first placed on the queue manager, and remains with the message until
the message is permanently removed from the queue manager. The
message token persists across restarts of the queue manager. The token
is local to the queue manager that generates it, and does not travel with
the message when the message flows between queue managers. As a
result, a particular message has a different message token on each of the
gueue managers that it visits.

Message tokens are supported in the following environments: OS/390.

For the MQGET call, MsgToken is one of the fields that can be used to
select a particular message to be retrieved from the queue. Normally the
MQGET call returns the next message on the queue, but if a message
with a particular message token is required, this can be obtained by
setting the MsgToken field to the value required and specifying the
MQMO_MATCH_MSG_TOKEN option in the MatchOptions field.

Notes:

1. MQMO_MATCH_MSG_TOKEN can be specified only for queues that
have an IndexType of MQIT_MSG_TOKEN.

2. No other MQMO_* options can be specified with
MQMO_MATCH_MSG_TOKEN.

On return from an MQGET call, the MsgToken field is set to the message
token of the message returned (if any). If the message does not have a
message token, MsgToken is set to the following value:

MQMTOK_NONE
No message token.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQMTOK_NONE_ARRAY is also defined; this has the same value
as MQMTOK_NONE, but is an array of characters instead of a
string.

This is an input/output field if MQMO_MATCH_MSG_TOKEN is specified,
and an output field otherwise. The length of this field is given by
MQ_MSG_TOKEN_LENGTH. The initial value of this field is
MQMTOK_NONE. This field is not present if Version is less than
MQGMO_VERSION_3.

ReturnedlLength (MQLONG)

Length of message data returned (bytes).

This is an output field that is set by the queue manager to the length in
bytes of the message data returned by the MQGET call in the Buffer
parameter. If the queue manager does not support this capability,
ReturnedLength is set to the value MQRL_UNDEFINED.

98 MQseries Application Programming Reference

MQGMO - ReturnedLength field

When messages are converted between encodings or character sets, the

message data can sometimes change size. On return from the MQGET

call:

e If ReturnedLength is not MQRL_UNDEFINED, the number of bytes of

message data returned is given by ReturnedLength.

e If ReturnedLength has the value MQRL_UNDEFINED, the number of
bytes of message data returned is usually given by the smaller of
BufferlLength and Datalength, but can be less than this if the MQGET

call completes with reason code

MQRC_TRUNCATED_MSG_ACCEPTED. If this happens, the
insignificant bytes in the Buffer parameter are set to nulls.

The following special value is defined:

MQRL_UNDEFINED
Length of returned data not defined.

On 0S/390, the value returned for the ReturnedLength field is always

MQRL_UNDEFINED.

The initial value of this field is MQRL_UNDEFINED. This field is not

present if Version is less than MQGMO_VERSION_3.

Table 33 (Page 1 of 2). Initial values of fields in MQGMO

Field name Name of constant Value of constant
Strucld MQGMO_STRUC_ID 'GMOb'

(See note 1)
Version MQGMO_VERSION_1 1
Options MQGMO_NO_WAIT 0
WaitInterval None 0
Signall None Null pointer on

0S/390;

0 otherwise
Signal2 None 0
ResolvedQName None Blanks

(See note 2)
MatchOptions MQMO_MATCH_MSG_ID + 3

MQMO_MATCH_CORREL_ID

GroupStatus MQGS_NOT_IN_GROUP 'b!
SegmentStatus MQSS_NOT_A_SEGMENT 'b!
Segmentation MQSEG_INHIBITED 'b!
Reservedl None 'b!
MsgToken MQMTOK_NONE Nulls

Chapter 2. Data type descriptions - structures

99

MQGMO - C declaration * MQGMO — COBOL declaration

Table 33 (Page 2 of 2). Initial values of fields in MQGMO

Field name Name of constant Value of constant
ReturnedLength MQRL_UNDEFINED -1
Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQGMO_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQGMO MyGMO = {MQGMO_DEFAULT};

C language declaration

typedef struct tagMQGMO {

MQCHAR4
MQLONG
MQLONG

MQLONG
MQLONG
MQLONG
MQCHAR48
MQLONG
MQCHAR

MQCHAR

MQCHAR

MQCHAR
MQBYTE16
MQLONG

} MQGMO;

Strucld;
Version;
Options;

WaitInterval;
Signall;
Signal2;
ResolvedQName;
MatchOptions;

GroupStatus;

SegmentStatus;

Segmentation;

Reservedl;
MsgToken;
ReturnedLength;

COBOL language declaration
** MQGMO structure

10 MQGMO.

*k Structure identifier
15 MQGMO-STRUCID

** Structure version number
15 MQGMO-VERSION

15 MQGMO-OPTIONS
*k Wait interval
15 MQGMO-WAITINTERVAL

*k Signal

15 MQGMO-SIGNAL1
*k Signal identifier

100 MQsSeries Application Programming Reference

/*

/*
/*
/*

Structure identifier */

Structure version number */

Options that control the action of
MQGET =/

Wait interval */

Signal =/

Signal identifier =/

Resolved name of destination queue */
Options controlling selection criteria
used for MQGET =*/

Flag indicating whether message
retrieved is in a group */

Flag indicating whether message
retrieved is a segment of a Togical
message */

Flag indicating whether further segmen-
tation is allowed for the message
retrieved */

Reserved */

Message token */

Length of message data returned
(bytes) =/

PIC X(4).

PIC S9(9) BINARY.
*k Options that control the action of MQGET
PIC S9(9) BINARY.

PIC S9(9) BINARY.

PIC S9(9) BINARY.

MQGMO — PL/I declaration ¢ MQGMO — S/390 assembler declaration

15 MQGMO-SIGNAL2 PIC S9(9) BINARY.
*% Resolved name of destination queue
15 MQGMO-RESOLVEDQNAME PIC X(48).
*ok Options controlling selection criteria used for MQGET
15 MQGMO-MATCHOPTIONS PIC S9(9) BINARY.
*k Flag indicating whether message retrieved is in a group
15 MQGMO-GROUPSTATUS PIC X.
*k Flag indicating whether message retrieved is a segment of a

*% logical message
15 MQGMO-SEGMENTSTATUS PIC X.
*k Flag indicating whether further segmentation is allowed for

*k the message retrieved
15 MQGMO-SEGMENTATION PIC X.

*% Reserved
15 MQGMO-RESERVED1 PIC X.
*k Message token
15 MQGMO-MSGTOKEN PIC X(16).
*k Length of message data returned (bytes)

15 MQGMO-RETURNEDLENGTH PIC S9(9) BINARY.

PL/I declaration (AlX, OS/2, OS/390, VSE/ESA, and Windows NT)

dcl

1 MQGMO based,

3 Strucld char(4), /* Structure identifier */

3 Version fixed bin(31), /* Structure version number =*/

3 Options fixed bin(31), /* Options that control the action of
MQGET */

3 WaitInterval fixed bin(31), /* Wait interval =/

3 Signall fixed bin(31), /* Signal */

3 Signal2 fixed bin(31), /* Signal identifier =/

3 ResolvedQName char(48), /* Resolved name of destination
queue */

3 MatchOptions fixed bin(31), /* Options controlling selection cri-
teria used for MQGET =/

3 GroupStatus char(1), /* Flag indicating whether message
retrieved is in a group */

3 SegmentStatus char(1), /* Flag indicating whether message
retrieved is a segment of a logical
message */

3 Segmentation char(1), /* Flag indicating whether further

segmentation is allowed for the
message retrieved =/

3 Reservedl char(1), /* Reserved =/

3 MsgToken char(16), /* Message token */

3 ReturnedLength fixed bin(31); /* Length of message data returned
(bytes) x/

System/390 assembler-language declaration (OS/390 only)

MQGMO DSECT

MQGMO_STRUCID DS CL4 Structure identifier
MQGMO_VERSION DS F Structure version number
MQGMO_OPTIONS DS F Options that control the
* action of MQGET
MQGMO_WAITINTERVAL DS F Wait interval
MQGMO_SIGNAL1 DS F Signal

MQGMO_SIGNAL?2 DS F Signal identifier

Chapter 2. Data type descriptions - structures 101

MQGMO — TAL declaration ¢ MQGMO - Visual Basic declaration

MQGMO_RESOLVEDQNAME DS CL48 Resolved name of destination
* queue
MQGMO_MATCHOPTIONS DS F Options controlling
* selection criteria used for
* MQGET
MQGMO_GROUPSTATUS DS CL1 Flag indicating whether
* message retrieved is in a
* group
MQGMO_SEGMENTSTATUS DS CL1 Flag indicating whether
* message retrieved is a
* segment of a logical message
MQGMO_SEGMENTATION DS CL1 Flag indicating whether
* further segmentation is
* allowed for the message
* retrieved
MQGMO_RESERVED1 DS CLI Reserved
| MQGMO_MSGTOKEN DS XL16 Message token
[MQGMO_RETURNEDLENGTH DS F Length of message data
| * returned (bytes)
MQGMO_LENGTH EQU *-MQGMO Length of structure
ORG MQGMO
MQGMO_AREA DS CL(MQGMO_LENGTH)

TAL declaration (Tandem NSK only)

STRUCT MQGMO™DEF (*);
BEGIN
STRUCT STRUCID;

BEGIN STRING BYTE [0:3]; END;
INT(32) VERSION;
INT(32) OPTIONS;
INT(32) WAITINTERVAL;
INT(32) SIGNALL;
INT(32) SIGNALZ;
STRUCT RESOLVEDQNAME ;
BEGIN STRING BYTE [0:47]; END;
END;

Visual Basic declaration (Windows platforms only)

Type MQGMO
Strucld As String*4 'Structure identifier'
Version As Long 'Structure version number'
Options As Long 'Options that control the action of MQGET'
WaitInterval As Long 'Wait interval'
Signall As Long 'Signal'
Signal2 As Long 'Signal message identifier'
ResolvedQName As String*48 'Resolved name of destination queue'

'used for MQGET'
GroupStatus As Stringx*l 'Flag indicating whether message retrieved'
'is in a group'
SegmentStatus As Stringx*l 'Flag indicating whether message retrieved'
'retrieved is a segment of a logical message'
Segmentation As Stringx*l 'Flag indicating whether further segmentation'
'is allowed for the message retrieved'
Reservedl As String*l 'Reserved'

|

I

I

|

I

I

I

I

|

[MatchOptions As Long - 'Options controlling selection criteria’
I

I

I

I

I

|

I

I

| End Type

102 MQsSeries Application Programming Reference

MQIIH - IMS bridge header

MQIIH - IMS bridge header

The following table summarizes the fields in the structure.

Table 34. Fields in MQIIH

Field Description Page
Strucld Structure identifier 104
Version Structure version number 104
Struclength Length of MQIIH structure 104
Format MQ format name 104
LTermOverride Logical terminal override 105
MFSMapName Message format services map name 105
ReplyToFormat MQ format name of reply message 105
Authenticator RACF™ password or passticket 105
TranInstanceld Transaction instance identifier 106
TranState Transaction state 106
Commi tMode Commit mode 106
SecurityScope Security scope 106

The MQIIH structure describes the information that must be present at the start of a
message sent to the IMS bridge through MQSeries for 0S/390. The format name
of this structure is MQFMT _IMS.

Special conditions apply to the character set and encoding used for the MQIIH
structure and application message data:

* Applications that connect to the queue manager which owns the IMS bridge
gueue must provide an MQIIH structure that is in the character set and
encoding of the queue manager. This is because data conversion of the
MQIIH structure is not performed in this case.

e Applications that connect to other queue managers can provide an MQIIH
structure that is in any of the supported character sets and encodings;
conversion of the MQIIH and application message data is performed by the
gueue manager as necessary.

Note: There is one exception to this. If the queue manager which owns the
IMS bridge queue is using CICS for distributed queuing, the MQIIH
must be in the character set and encoding of that queue manager.

* The application message data following the MQIIH structure must be in the
same character set and encoding as the MQIIH structure. The CodedCharSetId
and Encoding fields in the MQIIH structure cannot be used to specify the
character set and encoding of the application message data.

This structure is not supported in the following environments: 16-bit Windows, 32-bit
Windows.

Chapter 2. Data type descriptions - structures 103

MQIIH — Strucld field ¢ MQIIH — Format field

Fields

StrucId (MQCHARA4)
Structure identifier.

The value must be:

MQIIH_STRUC_ID
Identifier for IMS information header structure.

For the C programming language, the constant

MQIIH_STRUC ID_ARRAY is also defined; this has the same value
as MQIIH_STRUC _ID, but is an array of characters instead of a
string.

The initial value of this field is MQIIH_STRUC _ID.

Version (MQLONG)
Structure version number.

The value must be:

MQIIH_VERSION_1
Version number for IMS information header structure.

The following constant specifies the version number of the current version:

MQIIH_CURRENT_VERSION
Current version of IMS information header structure.

The initial value of this field is MQIIH_VERSION_1.

StrucLength (MQLONG)
Length of MQIIH structure.

The value must be:

MQIH_LENGTH_1
Length of IMS information header structure.

The initial value of this field is MQIIH_LENGTH_1.

Encoding (MQLONG)
Reserved.

This is a reserved field; its value is not significant. The initial value of this
field is O.

CodedCharSetId (MQLONG)
Reserved.

This is a reserved field; its value is not significant. The initial value of this
field is O.

Format (MQCHARS)
MQ format name.

This is the MQ format name of the application message data which follows
the MQIIH structure. The rules for coding this are the same as those for
the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial
value of this field is MQFMT_NONE.

104 wmQsSeries Application Programming Reference

MQIIH — Flags field ¢ MQIIH — Authenticator field

Flags (MQLONG)
Reserved.

The value must be:

MQIIH_NONE
No flags.

The initial value of this field is MQIIH_NONE.

LTermOverride (MQCHARS)
Logical terminal override.

This is placed in the 10 PCB field. It is optional; if it is not specified the
TPIPE name is used. It is ignored if the first byte is blank, or null.

The length of this field is given by MQ_LTERM_OVERRIDE_LENGTH.
The initial value of this field is 8 blank characters.

MFSMapName (MQCHARS)
Message format services map name.

This is placed in the 10 PCB field. It is optional. On input it represents
the MID, on output it represents the MOD. It is ignored if the first byte is
blank or null.

The length of this field is given by MQ_MFS_MAP_NAME_LENGTH. The
initial value of this field is 8 blank characters.

ReplyToFormat (MQCHARS)
MQ format name of reply message.

This is the MQ format name of the reply message which will be sent in
response to the current message. The rules for coding this are the same
as those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial
value of this field is MQFMT_NONE.

Authenticator (MQCHARS)
RACF password or passticket.

This is optional; if specified, it is used with the user ID in the MQMD
security context to build a Utoken that is sent to IMS to provide a security
context. If it is not specified, the user ID is used without verification. This
depends on the setting of the RACF switches, which may require an
authenticator to be present.

This is ignored if the first byte is blank or null. The following special value
may be used:

MQIAUT_NONE
No authentication.

For the C programming language, the constant
MQIAUT_NONE_ARRAY is also defined; this has the same value as
MQIAUT_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_AUTHENTICATOR_LENGTH. The
initial value of this field is MQIAUT_NONE.

Chapter 2. Data type descriptions - structures 105

MQIIH — TranInstanceld field ¢ MQIIH — SecurityScope field

TranInstanceld (MQBYTE16)
Transaction instance identifier.

This field is used by output messages from IMS so is ignored on first
input. If TranState is set to MQITS_IN_CONVERSATION, this must be
provided in the next input, and all subsequent inputs, to enable IMS to
correlate the messages to the correct conversation. The following special
value may be used:

MQITII_NONE
No transaction instance id.

For the C programming language, the constant
MQITII_NONE_ARRAY is also defined; this has the same value as
MQITII_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_TRAN_INSTANCE_ID_LENGTH.
The initial value of this field is MQITII_NONE.

TranState (MQCHAR)
Transaction state.

This indicates the IMS conversation state. This is ignored on first input
because no conversation exists. On subsequent inputs it indicates
whether a conversation is active or not. On output it is set by IMS. The
value must be one of the following:

MQITS_IN_CONVERSATION
In conversation.

MQITS_NOT_IN_CONVERSATION
Not in conversation.

The initial value of this field is MQITS_NOT_IN_CONVERSATION.

CommitMode (MQCHAR)
Commit mode.

See the OTMA User’s Guide for more information about IMS commit
modes. The value must be one of the following:

MQICM_COMMIT_THEN_SEND
Commit then send.

This mode implies double queuing of output, but shorter region
occupancy times. Fast-path and conversational transactions cannot
run with this mode.

MQICM_SEND_THEN_COMMIT
Send then commit.

The initial value of this field is MQICM_COMMIT_THEN_SEND.

SecurityScope (MQCHAR)
Security scope.

This indicates the desired IMS security processing. The following values
are defined:

106 MQsSeries Application Programming Reference

MQIIH — Reserved field

MQISS_CHECK
Check security scope.

An ACEE is built in the control region, but not in the dependent
region.

MQISS_FULL
Full security scope.

A cached ACEE is built in the control region and a non-cached
ACEE is built in the dependent region. If you use MQISS_FULL, you
must ensure that the user ID for which the ACEE is built has access
to the resources used in the dependent region.

If neither MQISS_CHECK nor MQISS _FULL is specified for this field,
MQISS_ CHECK is assumed.

The initial value of this field is MQISS_CHECK.

Reserved (MQCHAR)
Reserved.

This is a reserved field; it must be blank.

Table 35. Initial values of fields in MQIIH

Field name Name of constant Value of constant
Strucld MQIIH_STRUC_ID 'TIHD'

(See note 1)
Version MQIIH_VERSION_1 1
StruclLength MQIIH_LENGTH_1 84
Encoding None 0
CodedCharSetId None 0
Format MQFMT_NONE "bbbbbbbb
Flags MQIIH_NONE 0
LTermOverride None "bbbbbbbd’
MFSMapName None "bhbbbbbh '
ReplyToFormat MQFMT_NONE "bbbbbbbb '
Authenticator MQIAUT_NONE "bbbbbbbb
TranInstanceld MQITI_NONE Nulls
TranState MQITS_NOT_IN_CONVERSATION b
Commi tMode MQICM_COMMIT_THEN_SEND 0"
SecurityScope MQISS_CHECK ¢
Reserved None b’
Notes:

1. The symbol ‘b’ represents a single blank character.

2. In the C programming language, the macro variable MQIIH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQIIH MyIIH = {MQIIH_DEFAULT};

Chapter 2. Data type descriptions - structures 107

MQIIH — C declaration * MQIIH — COBOL declaration

C language declaration
typedef struct tagMQIIH {

MQCHAR4 Strucld; /* Structure identifier =/

MQLONG Version; /* Structure version number =*/

MQLONG StrucLength; /* Length of MQIIH structure x/

MQLONG Encoding; /* Reserved =/

MQLONG CodedCharSetId; /* Reserved */

MQCHAR8 Format; /* Format name =/

MQLONG Flags; /* Reserved =/

MQCHAR8 LTermOverride; /+* Logical terminal override */
MQCHAR8 MFSMapName; /* Message format services map name */

MQCHAR8 ReplyToFormat; /* Format name of reply message */
MQCHAR8 Authenticator; /+ RACF password or passticket =*/
MQBYTE16 TranInstanceld; /% Transaction instance id */

MQCHAR TranState; /* Transaction state */
MQCHAR CommitMode; /* Commit mode */
MQCHAR SecurityScope; /* Security scope x/
MQCHAR Reserved; /* Reserved =/

} MQIIH;

COBOL language declaration
#% MQIIH structure
10 MQIIH.
*k Structure identifier
15 MQIIH-STRUCID PIC X(4).
*% Structure version number
15 MQITH-VERSION PIC S9(9) BINARY.
*k Length of MQIIH structure
15 MQITH-STRUCLENGTH PIC S9(9) BINARY.

*k Reserved

15 MQITH-ENCODING PIC S9(9) BINARY.
*k Reserved

15 MQITH-CODEDCHARSETID PIC S9(9) BINARY.
% Format name

15 MQITH-FORMAT PIC X(8).
*k Reserved

15 MQIIH-FLAGS PIC S9(9) BINARY.
*k Logical terminal override

15 MQITIH-LTERMOVERRIDE PIC X(8).
*k Message format services map name

15 MQIIH-MFSMAPNAME PIC X(8).
*k Format name of reply message

15 MQITH-REPLYTOFORMAT PIC X(8).
** RACF password or passticket

15 MQITH-AUTHENTICATOR PIC X(8).
*% Transaction instance id

15 MQITH-TRANINSTANCEID PIC X(16).
*k Transaction state

15 MQIIH-TRANSTATE PIC X.
*% Commit mode

15 MQIIH-COMMITMODE PIC X.
*% Security scope

15 MQIIH-SECURITYSCOPE PIC X.
*k Reserved

15 MQIIH-RESERVED PIC X.

108 MQsSeries Application Programming Reference

MQIIH — PL/I declaration ¢ MQIIH — S/390 assembler declaration

PL/I language declaration (AIX, OS/2, OS/390, and Windows NT)

dcl
1 MQIIH based,
3 Strucld char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number =*/
3 Struclength fixed bin(31), /* Length of MQIIH structure x/
3 Encoding fixed bin(31), /* Reserved */
3 CodedCharSetId fixed bin(31), /* Reserved =/
3 Format char(8), /* Format name */
3 Flags fixed bin(31), /* Reserved =*/
3 LTermOverride char(8), /* Logical terminal override =/
3 MFSMapName char(8), /* Message format services map name */
3 ReplyToFormat char(8), /* Format name of reply message */
3 Authenticator char(8), /* RACF password or passticket x/
3 TranInstanceld char(16), /* Transaction instance id */
3 TranState char(1), /* Transaction state */
3 Commi tMode char(1), /* Commit mode */
3 SecurityScope char(1), /* Security scope */
3 Reserved char(1); /* Reserved =/

System/390 assembler-language declaration (OS/390 only)

MQIIH DSECT
MQIIH_STRUCID DS CL4 Structure identifier
MQIIH_VERSION DS F Structure version number
MQIIH_STRUCLENGTH DS F Length of MQIIH structure
MQIIH_ENCODING DS F Reserved
MQIIH_CODEDCHARSETID DS F Reserved
MQIIH_FORMAT DS CL8 Format name
MQIIH_FLAGS DS F Reserved
MQIIH_LTERMOVERRIDE DS CL8 Logical terminal override
MQIIH_MFSMAPNAME DS CL8 Message format services map
* name
MQITH_REPLYTOFORMAT DS CL8 Format name of reply message
MQIIH AUTHENTICATOR DS (L8 RACF password or passticket
MQIIH_TRANINSTANCEID DS XL16 Transaction instance id
MQIIH_TRANSTATE DS CLI Transaction state
MQIIH_COMMITMODE DS CL1 Commit mode
MQITH_SECURITYSCOPE DS CL1 Security scope
MQIIH_RESERVED DS CL1 Reserved
MQIIH_LENGTH EQU *-MQIIH Length of structure

ORG MQIIH
MQIIH_AREA DS CL(MQIIH_LENGTH)

Chapter 2. Data type descriptions - structures 109

MQMD - Message descriptor

MQMD - Message descriptor

The following table summarizes the fields in the structure.

Table 36. Fields in MQMD
Field Description Page
Strucld Structure identifier 112
Version Structure version number 112
Report Options for report messages 113
MsgType Message type 124
Expiry Message lifetime 125
Feedback Feedback or reason code 128
Encoding Data encoding 132
CodedCharSetId Coded character set identifier 132
Format Format name 133
Priority Message priority 138
Persistence Message persistence 139
Msgld Message identifier 141
Correlld Correlation identifier 143
BackoutCount Backout counter 144
ReplyToQ Name of reply queue 144
ReplyToQMgr Name of reply queue manager 145
Userldentifier User identifier 146
AccountingToken Accounting token 147
ApplIdentityData Application data relating to identity 149
PutApplType Type of application that put the message 150
PutApplName Name of application that put the message 152
PutDate Date when message was put 153
PutTime Time when message was put 154
ApplOriginData Application data relating to origin 155
Note: The remaining fields are not present if Version is less than MQMD_VERSION_2.
GroupId Group identifier 155
MsgSeqNumber Sequence number of logical message within 157
group
Offset Offset of data in physical message from start of 157
logical message
MsgFlags Message flags 158
Originallength Length of original message 163

The MQMD structure contains the control information that accompanies the
application data when a message travels between the sending and receiving

applications.

110 MQseries Application Programming Reference

MQMD - Message descriptor

Character data in the message descriptor is in the character set of the queue
manager to which the application is connected; this is given by the CodedCharSetId
gueue-manager attribute. Numeric data in the message descriptor is in the native
machine encoding (given by MQENC_NATIVE).

If the sending and receiving queue managers use different character sets or
encodings, the data in the message descriptor is converted automatically—it is not
necessary for the receiving application to perform these conversions.

If the application message data requires conversion, this can be accomplished by
means of a user-written exit invoked when the message is retrieved using the
MQGET call. For further information, see:

e The MQGMO_CONVERT option described in “MQGMO - Get-message options”
on page 66

¢ The usage note describing MQGMO_CONVERT in “MQGET - Get message”
on page 302

e “Writing a data-conversion exit program” in the MQSeries Application
Programming Guide

When a message is on a transmission queue, some of the fields in MQMD are set
to particular values; see “"MQXQH - Transmission queue header” on page 254 for
detalils.

The current version of MQMD is MQMD_VERSION_2. Fields that exist only in the
version-2 structure are identified as such in the descriptions that follow. The
declarations of MQMD provided in the header, COPY, and INCLUDE files for the
supported programming languages contain the new fields, but the initial value
provided for the Version field is MOQMD_VERSION_1; this ensures compatibility
with existing applications. To use the new fields, the application must set the
version number to MQMD_VERSION_2. A declaration for the version-1 structure is
available with the name MQMD1. Applications which are intended to be portable
between several environments should use a version-2 MQMD only if all of those
environments support version 2.

The version-2 structure is supported in the following environments: AlX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

A version-2 MQMD is generally equivalent to using a version-1 MQMD and
prefixing the application message data with an MQMDE structure. However, if all
of the fields in the MQMDE structure have their default values, the MQMDE can be
omitted. A version-1 MQMD plus MQMDE are used as follows:

e On the MQPUT and MQPUT1 calls, if the application provides a version-1
MQMD, the application can optionally prefix the message data with an
MQMDE, setting the Format field in MQMD to MQFMT_MD_EXTENSION to
indicate that an MQMDE is present. If the application does not provide an
MQMDE, the queue manager assumes default values for the fields in the
MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the
version-1 MQMD are input/output fields on MQPUT and MQPUT1.
However, the queue manager does not return any values in the
equivalent fields in the MQMDE on output from the MQPUT and
MQPUT1 calls; if the application requires those output values, it must
use a version-2 MQMD.

Chapter 2. Data type descriptions - structures 111

MQMD - Strucld field ¢ MQMD - Version field

e On the MQGET call, if the application provides a version-1 MQMD, the queue
manager prefixes the message returned with an MQMDE, but only if one or
more of the fields in the MQMDE has a non-default value. The Format field in
MQMD will have the value MQFMT_MD_EXTENSION to indicate that an
MQMDE is present.

The default values that the queue manager used for the fields in the MQMDE are
the same as the initial values of those fields, shown in Table 40 on page 174.

This structure is an input/output parameter for the MQGET, MQPUT, and MQPUT1
calls.

Fields

Strucld (MQCHARA4)
Structure identifier.

The value must be:

MQMD_STRUC_ID
Identifier for message descriptor structure.

For the C programming language, the constant
MQMD_STRUC_ID_ARRAY is also defined; this has the same value
as MQMD_STRUC_ID, but is an array of characters instead of a
string.

This is always an input field. The initial value of this field is
MQMD_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQMD_VERSION_1
Version-1 message descriptor structure.

This version is supported in all environments.

MQMD_VERSION_2
Version-2 message descriptor structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

Note: When a version-2 MQMD is used, the queue manager
performs additional checks on any MQ header structures that
may be present at the beginning of the application message
data; for further details see usage note 3 on page 359 for the
MQPUT call.

The following constant specifies the version number of the current version:

MQMD_CURRENT_VERSION
Current version of message descriptor structure.

112 MQsSeries Application Programming Reference

MQMD - Report field

This is always an input field. The initial value of this field is
MQMD_VERSION_1.

Report (MQLONG)
Options for report messages.

A report is a message about another message, used to inform an
application about expected or unexpected events that relate to the original
message. The Report field enables the application sending the original
message to specify which report messages are required, whether the
application message data is to be included in them, and also (for both
reports and replies) how the message and correlation identifiers in the
report or reply message are to be set. Any or all (or none) of the following
report types can be requested:

¢ Exception

e Expiration

¢ Confirm on arrival (COA)

¢ Confirm on delivery (COD)

¢ Positive action notification (PAN)
¢ Negative action notification (NAN)

If more than one type of report message is required, or other report
options are needed, the values can be:

¢ Added together (do not add the same constant more than once), or

e Combined using the bitwise OR operation (if the programming
language supports bit operations).

The application that receives the report message can determine the
reason the report was generated by examining the Feedback field in the
MQMD; see the Feedback field for more details.

Exception options : You can specify one of the options listed below to
request an exception report message.

On VSE/ESA, these options are not supported.

MQRO_EXCEPTION
Exception reports required.

This type of report can be generated by a message channel agent
when a message is sent to another queue manager and the
message cannot be delivered to the specified destination queue. For
example, the destination queue or an intermediate transmission
gueue might be full, or the message might be too big for the queue.

Generation of the exception report message depends on the
persistence of the original message, and the speed of the message
channel (normal or fast) through which the original message travels:

e For all persistent messages, and for nonpersistent messages
traveling through normal message channels, the exception report
is generated only if the action specified by the sending
application for the error condition can be completed successfully.
The sending application can specify one of the following actions
to control the disposition of the original message when the error
condition arises:

Chapter 2. Data type descriptions - structures 113

MQMD - Report field

— MQRO_DEAD_LETTER_Q (this causes the original message
to be placed on the dead-letter queue).

— MQRO_DISCARD_MSG (this causes the original message to
be discarded).

If the action specified by the sending application cannot be
completed successfully, the original message is left on the
transmission queue, and no exception report message is
generated.

¢ For nonpersistent messages traveling through fast message
channels, the original message is removed from the transmission
gueue and the exception report generated even if the specified
action for the error condition cannot be completed successfully.
For example, if MQRO_DEAD_LETTER_Q is specified, but the
original message cannot be placed on the dead-letter queue
because (say) that queue is full, the exception report message is
generated and the original message discarded.

Refer to “Fast, nonpersistent messages” in the MQSeries
Intercommunication book for more information about normal and
fast message channels.

An exception report is not generated if the application that put the
original message can be notified synchronously of the problem by
means of the reason code returned by the MQPUT or MQPUT1 call.

Applications can also send exception reports, to indicate that a
message that it has received cannot be processed (for example,
because it is a debit transaction that would cause the account to
exceed its credit limit).

Message data from the original message is not included with the
report message.

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_DATA
Exception reports with data required.

This is the same as MQRO_EXCEPTION, except that the first 100
bytes of the application message data from the original message are
included in the report message. If the length of the message data in
the original message is less than 100 bytes, the length of the
message data in the report is the same length as the original
message.

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_FULL_DATA
Exception reports with full data required.

This is the same as MQRO_EXCEPTION, except that all of the
application message data from the original message is included in
the report message.

114 wmQsSeries Application Programming Reference

MQMD - Report field

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

On 0S/390, the MQRO_EXCEPTION_WITH_FULL_DATA option is
not supported.

Expiration options : You can specify one of the options listed below to
request an expiration report message.

On VSE/ESA, these options are not supported.

MQRO_EXPIRATION
Expiration reports required.

This type of report is generated by the queue manager if the
message is discarded prior to delivery to an application because its
expiry time has passed (see the Expiry field). If this option is not
set, no report message is generated if a message is discarded for
this reason (even if one of the MQRO_EXCEPTION_* options is
specified).

Message data from the original message is not included with the
report message.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_DATA
Expiration reports with data required.

This is the same as MQRO_EXPIRATION, except that the first 100
bytes of the application message data from the original message are
included in the report message. If the length of the message data in
the original message is less than 100 bytes, the length of the
message data in the report is the same length as the original
message.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_FULL_DATA
Expiration reports with full data required.

This is the same as MQRO_EXPIRATION, except that all of the
application message data from the original message is included in
the report message.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

On 0S/390, the MQRO_EXPIRATION_WITH_FULL_DATA option is
not supported.

Confirm-on-arrival options : You can specify one of the options listed
below to request a confirm-on-arrival report message.

Chapter 2. Data type descriptions - structures 115

MQMD - Report field

MQRO_COA
Confirm-on-arrival reports required.

This type of report is generated by the queue manager that owns the
destination queue, when the message is placed on the destination
gueue. Message data from the original message is not included with
the report message.

If the message is put as part of a unit of work, and the destination
gueue is a local queue, the COA report message generated by the
gueue manager becomes available for retrieval only if and when the
unit of work is committed.

A COA report is not generated if the Format field in the message
descriptor is MQFMT_XMIT_Q_HEADER or
MQFMT_DEAD_LETTER_HEADER. This prevents a COA report
being generated if the message is put on a transmission queue, or is
undeliverable and put on a dead-letter queue.

Do not specify more than one of MQRO_COA,
MQRO_COA_ WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_DATA
Confirm-on-arrival reports with data required.

This is the same as MQRO_COA, except that the first 100 bytes of
the application message data from the original message are included
in the report message. If the length of the message data in the
original message is less than 100 bytes, the length of the message
data in the report is the same length as the original message.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_FULL_DATA
Confirm-on-arrival reports with full data required.

This is the same as MQRO_COA, except that all of the application
message data from the original message is included in the report
message.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

On 0S/390, the MQRO_COA_WITH_FULL_DATA option is not
supported.

Confirm-on-delivery options : You can specify one of the options listed
below to request a confirm-on-delivery report message.

MQRO_COD
Confirm-on-delivery reports required.

This type of report is generated by the queue manager when an
application retrieves the message from the destination queue in a
way that causes the message to be deleted from the queue.
Message data from the original message is not included with the
report message.

If the message is retrieved as part of a unit of work, the report
message is generated within the same unit of work, so that the

116 MQsSeries Application Programming Reference

MQMD - Report field

report is not available until the unit of work is committed. If the unit
of work is backed out, the report is not sent.

A COD report is not always generated if a message is retrieved with
the MQGMO_MARK_SKIP_BACKOUT option. If the primary unit of
work is backed out but the secondary unit of work is committed, the
message is removed from the queue, but a COD report is not
generated.

A COD report is not generated if the Format field in the message
descriptor is MQFMT_DEAD_LETTER_HEADER. This prevents a
COD report being generated if the message is undeliverable and put
on a dead-letter queue.

MQRO_COD is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_DATA
Confirm-on-delivery reports with data required.

This is the same as MQRO_COD, except that the first 100 bytes of
the application message data from the original message are included
in the report message. If the length of the message data in the
original message is less than 100 bytes, the length of the message
data in the report is the same length as the original message.

If MQGMO_ACCEPT_TRUNCATED_MSG is specified on the
MQGET call for the original message, and the message returned is
truncated, the amount of message data placed in the report message
depends on the environment:

e On 0OS/390, it is the minimum of:

— The length of the original message
— The length of the buffer used to retrieve the message
— 100 bytes.

¢ In other environments, it is the minimum of:

— The length of the original message
— 100 bytes.

MQRO_COD_WITH_DATA is not valid if the destination queue is an
XCF queue.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_FULL_DATA
Confirm-on-delivery reports with full data required.

This is the same as MQRO_COD, except that all of the application
message data from the original message is included in the report
message.

MQRO_COD_WITH_FULL_DATA is not valid if the destination
gueue is an XCF queue.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

Chapter 2. Data type descriptions - structures 117

MQMD - Report field

On 0S/390, the MQRO_COD_WITH_FULL_DATA option is not
supported.

Action-notification options : You can specify one or both of the options
listed below to request that the receiving application send a positive-action
or negative-action report message.

On VSE/ESA, these options are not supported.

MQRO_PAN
Positive action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in
the message has been performed successfully. The application
generating the report determines whether or not any data is to be
included with the report.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this
option. It is the responsibility of the retrieving application to generate
the report if appropriate.

MQRO_NAN
Negative action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in
the message has not been performed successfully. The application
generating the report determines whether or not any data is to be
included with the report. For example, it may be desirable to include
some data indicating why the request could not be performed.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this
option. It is the responsibility of the retrieving application to generate
the report if appropriate.

Determination of which conditions correspond to a positive action and
which correspond to a negative action is the responsibility of the
application. However, it is recommended that if the request has been only
partially performed, a NAN report rather than a PAN report should be
generated if requested. It is also recommended that every possible
condition should correspond to either a positive action, or a negative
action, but not both.

Message-identifier options : You can specify one of the options listed
below to control how the MsgId of the report message (or of the reply
message) is to be set.

On VSE/ESA, these options are not supported.

MQRO_NEW_MSG_ID
New message identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, a new MsglId is to be
generated for the report or reply message.

118 MQsSeries Application Programming Reference

MQMD - Report field

MQRO_PASS MSG_ID
Pass message identifier.

If a report or reply is generated as a result of this message, the
MsgId of this message is to be copied to the MsgId of the report or
reply message.

If this option is not specified, MOQRO_NEW_MSG_ID is assumed.

Correlation-identifier options : You can specify one of the options listed
below to control how the Correlld of the report message (or of the reply
message) is to be set.

On VSE/ESA, these options are not supported.

MQRO_COPY_MSG_ID_TO_CORREL_ID
Copy message identifier to correlation identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, the MsgId of this message is
to be copied to the Correlld of the report or reply message.

MQRO_PASS CORREL_ID
Pass correlation identifier.

If a report or reply is generated as a result of this message, the
Correlld of this message is to be copied to the Correlld of the
report or reply message.

If this option is not specified,
MQRO_COPY_MSG_ID_TO_CORREL_ID is assumed.

Servers replying to requests or generating report messages are
recommended to check whether the MQRO_PASS_MSG_ID or
MQRO_PASS CORREL_ID options were set in the original message. If
they were, the servers should take the action described for those options.
If neither is set, the servers should take the corresponding default action.

Disposition options : You can specify one of the options listed below to
control the disposition of the original message when it cannot be delivered
to the destination queue.

On VSE/ESA, these options are not supported.

MQRO_DEAD_LETTER_Q
Place message on dead-letter queue.

This is the default action, and indicates that the message should be
placed on the dead-letter queue, if the message cannot be delivered
to the destination queue. An exception report message will be
generated, if one was requested by the sender.

MQRO_DISCARD_MSG
Discard message.

This indicates that the message should be discarded if it cannot be
delivered to the destination queue. An exception report message will
be generated, if one was requested by the sender.

On 0S/390, the MQRO_DISCARD_MSG option is not supported.

If it is desired to return the original message to the sender, without
the original message being placed on the dead-letter queue, the

Chapter 2. Data type descriptions - structures 119

MQMD - Report field

sender should specify MQRO_DISCARD_MSG with
MQRO_EXCEPTION_WITH_FULL_DATA.

Default option : You can specify the following if no report options are
required:

MQRO_NONE
No reports required.

This value can be used to indicate that no other options have been
specified. MQRO_NONE is defined to aid program documentation.
It is not intended that this option be used with any other, but as its
value is zero, such use cannot be detected.

General information : All report types required must be specifically
requested by the application sending the original message. For example,
if a COA report is requested, but an exception report is not (with or without
the data option in either case), a COA report is generated when the
message is placed on the destination queue, but no exception report is
generated if the destination queue is full when the message arrives there.
If no Report options are set, no report messages are generated by the
gueue manager or message channel agent (MCA).

Some report options can be specified even though the local queue
manager does not recognize them; this is useful when the option is to be
processed by the destination queue manager. See Appendix C, “Report
options and message flags” on page 573 for more details.

If a report message is requested, the name of the queue to which the
report should be sent must be specified in the ReplyToQ field. When a
report message is received, the nature of the report can be determined by
examining the Feedback field in the message descriptor.

If the queue manager or MCA that generates a report message is unable
to put the report message on the reply queue (for example, because the
reply queue or transmission queue is full), the report message is placed
instead on the dead-letter queue. If that also fails, or there is no
dead-letter queue, the action taken depends on the type of the report
message:

¢ |f the report message is an exception report, the message which
caused the exception report to be generated is left on its transmission
gueue; this ensures that the message is not lost.

¢ For all other report types, the report message is discarded and
processing continues normally. This is done because either the
original message has already been delivered safely (for COA or COD
report messages), or is no longer of any interest (for an expiration
report message).

Once a report message has been placed successfully on a queue (either
the destination queue or an intermediate transmission queue), the
message is no longer subject to special processing — it is treated just like
any other message.

When the report is generated, the ReplyToQ queue is opened and the
report message put using the authority of the UserIdentifier in the
MQMD of the message causing the report, except in the following cases:

120 MQsSeries Application Programming Reference

MQMD - Report field

¢ Exception reports generated by a receiving MCA are put with whatever
authority the MCA used when it tried to put the message causing the
report. The PutAuthority channel attribute determines the user
identifier used.

¢ COA reports generated by the queue manager are put with whatever
authority was used when the message causing the report was put on
the queue manager generating the report. For example, if the
message was put by a receiving MCA using the MCA'’s user identifier,
the queue manager puts the COA report using the MCA's user
identifier.

Applications generating reports should normally use the same authority as
they would have used to generate a reply; this should normally be the
authority of the user identifier in the original message.

If the report has to travel to a remote destination, senders and receivers
can decide whether or not to accept it, in the same way as they do for
other messages.

If a report message with data is requested:

¢ The report message is always generated with the amount of data
requested by the sender of the original message. If the report
message is too big for the reply queue, the processing described
above occurs; the report message is never truncated in order to fit on
the reply queue.

¢ If the Format of the original message is MOQFMT_XMIT_Q_HEADER,
the data included in the report does not include the MQXQH. The
report data starts with the first byte of the data beyond the MQXQH in
the original message. This occurs whether or not the queue is a
transmission queue.

If a COA, COD, or expiration report message is received at the reply
queue, it is guaranteed that the original message arrived, was delivered, or
expired, as appropriate. However, if one or more of these report
messages is requested and is not received, the reverse cannot be
assumed, since one of the following may have occurred:

1. The report message is held up because a link is down.

2. The report message is held up because a blocking condition exists at
an intermediate transmission queue or at the reply queue (for
example, the queue is full or inhibited for puts).

3. The report message is on a dead-letter queue.

4. When the queue manager was attempting to generate the report
message, it was unable to put it on the appropriate queue, and was
also unable to put it on the dead-letter queue, so the report message
could not be generated.

5. A failure of the queue manager occurred between the action being
reported (arrival, delivery or expiry), and generation of the
corresponding report message. (This does not happen for COD report
messages if the application retrieves the original message within a unit
of work, as the COD report message is generated within the same unit
of work.)

Chapter 2. Data type descriptions - structures 121

MQMD - Report field

Exception report messages may be held up in the same way for reasons
1, 2, and 3 above. However, when an MCA is unable to generate an
exception report message (the report message cannot be put either on the
reply queue or the dead-letter queue), the original message remains on
the transmission queue at the sender, and the channel is closed. This
occurs irrespective of whether the report message was to be generated at
the sending or the receiving end of the channel.

If the original message is temporarily blocked (resulting in an exception
report message being generated and the original message being put on a
dead-letter queue), but the blockage clears and an application then reads
the original message from the dead-letter queue and puts it again to its
destination, the following may occur:

¢ Even though an exception report message has been generated, the
original message eventually arrives successfully at its destination.

¢ More than one exception report message is generated in respect of a
single original message, since the original message may encounter
another blockage later.

Report messages for message segments : Report messages can be
requested for messages that have segmentation allowed (see the
description of the MQMF_SEGMENTATION_ALLOWED flag). If the
gueue manager finds it necessary to segment the message, a report
message can be generated for each of the segments that subsequently
encounters the relevant condition. Applications should therefore be
prepared to receive multiple report messages for each type of report
message requested. The Groupld field in the report message can be used
to correlate the multiple reports with the group identifier of the original
message, and the Feedback field used to identify the type of each report
message.

If MQGMO_LOGICAL_ORDER is used to retrieve report messages for
segments, be aware that reports of different types may be returned by the
successive MQGET calls. For example, if both COA and COD reports are
requested for a message that is segmented by the queue manager, the
MQGET calls for the report messages may return the COA and COD
report messages interleaved in an unpredictable fashion. This can be
avoided by using the MQGMO_COMPLETE_MSG option (optionally with
MQGMO_ACCEPT_TRUNCATED_MSG). MQGMO_COMPLETE_MSG
causes the queue manager to reassemble report messages that have the
same report type. For example, the first MQGET call might reassemble all
of the COA messages relating to the original message, and the second
MQGET call might reassemble all of the COD messages. Which is
reassembled first depends on which type of report message happens to
occur first on the queue.

Applications that themselves put segments can specify different report
options for each segment. However, the following points should be noted:

¢ |f the segments are retrieved using the MQGMO_COMPLETE_MSG
option, only the report options in the first segment are honored by the
gueue manager.

¢ If the segments are retrieved one by one, and most of them have one
of the MQRO_COD_* options, but at least one segment does not, it
will not be possible to use the MQGMO_COMPLETE_MSG option to

122 MQsSeries Application Programming Reference

MQMD - Report field

retrieve the report messages with a single MQGET call, or use the
MQGMO_ALL_SEGMENTS_AVAILABLE option to detect when all of
the report messages have arrived.

In an MQ network, it is possible for the queue managers to have differing
capabilities. If a report message for a segment is generated by a queue
manager or MCA that does not support segmentation, the queue manager
or MCA will not by default include the necessary segment information in
the report message, and this may make it difficult to identify the original
message that caused the report to be generated. This difficulty can be
avoided by requesting data with the report message, that is, by specifying
the appropriate MQRO_* WITH_DATA or MQRO_* WITH_FULL_DATA
options. However, be aware that if MQRO_»_WITH_DATA is specified,
less than 100 bytes of application message data may be returned to the
application which retrieves the report message, if the report message is
generated by a queue manager or MCA that does not support

segmentation.

Contents of the message descriptor for a report message

: When the

gueue manager or message channel agent (MCA) generates a report
message, it sets the fields in the message descriptor to the following
values, and then puts the message in the normal way:

Field in MQMD
Strucld
Version
Report
MsgType
Expiry
Feedback

Encoding
CodedCharSetId
Format
Priority
Persistence
Msgld

Correlld
BackoutCount
ReplyToQ
ReplyToQMgr

Userldentifier

AccountingToken

ApplldentityData

PutApplType

PutApplName

Value used

MQMD_STRUC_ID

MQMD_VERSION_1

MQRO_NONE

MQMT_REPORT

MQEI_UNLIMITED

As appropriate for the nature of the report
(MQFB_COA, MQFB_COD, MQFB_EXPIRATION,
or an MQRC_* value)

Copied from the original message descriptor
Copied from the original message descriptor
Copied from the original message descriptor
Copied from the original message descriptor
Copied from the original message descriptor
As specified by the report options in the original
message descriptor

As specified by the report options in the original
message descriptor

0

Blanks

Name of queue manager

As set by the
MQPMO_PASS_IDENTITY_CONTEXT option
As set by the
MQPMO_PASS_IDENTITY_CONTEXT option
As set by the
MQPMO_PASS_IDENTITY_CONTEXT option
MQAT_QMGR, or as appropriate for the message
channel agent

First 28 bytes of the queue-manager name or
message channel agent name. For report
messages generated by the IMS bridge, this field

Chapter 2. Data type descriptions - structures 123

MQMD — MsgType field

contains the XCF group name and XCF member
name of the IMS system to which the message

relates.
PutDate Date when report message is sent
PutTime Time when report message is sent
ApplOriginData Blanks
Groupld Copied from the original message descriptor
MsgSeqNumber Copied from the original message descriptor
Offset Copied from the original message descriptor
MsgFlags Copied from the original message descriptor
Originallength Copied from the original message descriptor if not

MQOL_UNDEFINED, and set to the length of the
original message data otherwise

An application generating a report is recommended to set similar values,
except for the following:

e The ReplyToQMgr field can be set to blanks (the queue manager will
change this to the name of the local queue manager when the
message is put).

¢ The context fields should be set using the option that would have been
used for a reply, normally MQPMO_PASS_IDENTITY_CONTEXT.

Analyzing the report field : The Report field contains subfields; because
of this, applications that need to check whether the sender of the message
requested a particular report should use one of the techniques described
in “Analyzing the report field” on page 575.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQRO_NONE.

MsgType (MQLONG)
Message type.

This indicates the type of the message. Message types are grouped as
follows:

MQMT_SYSTEM_FIRST
Lowest value for system-defined message types.

MQMT_SYSTEM_LAST
Highest value for system-defined message types.

The following values are currently defined within the system range:

MQMT_DATAGRAM
Message not requiring a reply.

The message is one that does not require a reply.

MQMT_REQUEST
Message requiring a reply.

The message is one that requires a reply.

The name of the queue to which the reply should be sent must be
specified in the ReplyToQ field. The Report field indicates how the
MsgId and Correlld of the reply are to be set.

124 mQsSeries Application Programming Reference

MQMD - Expiry field

MQMT_REPLY
Reply to an earlier request message.

The message is the reply to an earlier request message
(MQMT_REQUEST). The message should be sent to the queue
indicated by the ReplyToQ field of the request message. The Report
field of the request should be used to control how the MsgId and
Correlld of the reply are set.

Note: The queue manager does not enforce the request-reply
relationship; this is an application responsibility.

MQMT_REPORT
Report message.

The message is reporting on some expected or unexpected
occurrence, usually related to some other message (for example, a
request message was received which contained data that was not
valid). The message should be sent to the queue indicated by the
ReplyToQ field of the message descriptor of the original message.
The Feedback field should be set to indicate the nature of the report.
The Report field of the original message can be used to control how
the MsgId and Correlld of the report message should be set.

Report messages generated by the queue manager or message
channel agent are always sent to the ReplyToQ queue, with the
Feedback and Correlld fields set as described above.

Other values within the system range may be defined in future versions of
the MQI, and are accepted by the MQPUT and MQPUT1 calls without
error.

Application-defined values can also be used. They must be within the
following range:

MQMT_APPL_FIRST
Lowest value for application-defined message types.

MQMT_APPL_LAST
Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MsgType value must be within
either the system-defined range or the application-defined range; if it is
not, the call fails with reason code MQRC_MSG_TYPE_ERROR.

This is an output field for the MQGET call, and an input field for MQPUT
and MQPUT1 calls. The initial value of this field is MQMT_DATAGRAM.

Expiry (MQLONG)
Message lifetime.

This is a period of time expressed in tenths of a second, set by the
application that puts the message. The message becomes eligible to be
discarded if it has not been removed from the destination queue before
this period of time elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if
the put is to a remote queue. It may also be decremented by message
channel agents to reflect transmission times, if these are significant.

Chapter 2. Data type descriptions - structures 125

MQMD - Expiry field

Likewise, an application forwarding this message to another queue might
decrement the value if necessary, if it has retained the message for a
significant time. However, the expiration time is treated as approximate,
and the value need not be decremented to reflect small time intervals.

When the message is retrieved by an application using the MQGET call,
the Expiry field represents the amount of the original expiry time that still
remains.

After a message’s expiry time has elapsed, it becomes eligible to be
discarded by the queue manager. In the current implementations, the
message is discarded when a browse or nonbrowse MQGET call occurs
that would have returned the message had it not already expired. (On
0S/390, only a nonbrowse MQGET call can cause the message to be
discarded.) For example, a nonbrowse MQGET call with the MatchOptions
field in MQGMO set to MQMO_NONE reading from a FIFO ordered queue
will cause all the expired messages to be deleted up to the first unexpired
message. With a priority ordered queue, the same call will delete expired
messages of higher priority and messages of an equal priority that arrived
on the queue before the first unexpired message.

A message that has expired is never returned to an application (either by
a browse or a non-browse MQGET call), so the value in the Expiry field of
the message descriptor after a successful MQGET call is either greater
than zero, or the special value MQEI_UNLIMITED.

If a message is put on a remote queue, the message may expire (and be
discarded) whilst it is on an intermediate transmission queue, before the
message reaches the destination queue.

A report is generated when an expired message is discarded, if the
message specified one of the MQRO_EXPIRATION_* report options. If
none of these options is specified, no such report is generated; the
message is assumed to be no longer relevant after this time period
(perhaps because a later message has superseded it).

Any other program that discards messages based on expiry time must
also send an appropriate report message if one was requested.

Notes:

1. If a message is put with an Expiry time of zero, the MQPUT or
MQPUT1 call fails with reason code MQRC_EXPIRY_ERROR; no
report message is generated in this case.

2. Since a message whose expiry time has elapsed may not actually be
discarded until later, there may be messages on a queue that have
passed their expiry time, and which are not therefore eligible for
retrieval. These messages nevertheless count towards the number of
messages on the queue for all purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is
actually discarded, not when it becomes eligible for discarding.

4. Discarding of an expired message, and the generation of an expiration
report if requested, are never part of the application’s unit of work,
even if the message was scheduled for discarding as a result of an
MQGET call operating within a unit of work.

126 MQsSeries Application Programming Reference

MQMD - Expiry field

. If a nearly-expired message is retrieved by an MQGET call within a
unit of work, and the unit of work is subsequently backed out, the
message may become eligible to be discarded before it can be
retrieved again.

. If a nearly-expired message is locked by an MQGET call with
MQGMO_LOCK, the message may become eligible to be discarded
before it can be retrieved by an MQGET call with
MQGMO_MSG_UNDER_CURSOR; reason code
MQRC_NO_MSG_UNDER_CURSOR is returned on this subsequent
MQGET call if that happens.

. Servers should not normally reflect the unused expiry time of a request
in the reply; the default action should be to put the reply with
MQEI_UNLIMITED. However, the default action for putting messages
to a dead-letter (undelivered-message) queue is to preserve the
outstanding expiry time of the message, and to continue to decrement
it.

. Trigger messages are always generated with MQEI_UNLIMITED.

. A message (normally on a transmission queue) which has a Format
name of MQFMT_XMIT_Q_ HEADER has a second message
descriptor within the MQXQH. It therefore has two Expiry fields
associated with it. The following additional points should be noted in
this case:

¢ When an application puts a message on a remote queue, the
gueue manager places the message initially on a local
transmission queue, and prefixes the application message data
with an MQXQH structure. The queue manager sets the values of
the two Expiry fields to be the same as that specified by the
application.

If an application puts a message directly on a local transmission
gueue, the message data must already begin with an MQXQH
structure, and the format name must be
MQFMT_XMIT_Q_HEADER (but the queue manager does not
enforce this). In this case the application need not set the values
of these two Expiry fields to be the same. (The queue manager
does not check that the Expiry field within the MQXQH contains a
valid value, or even that the message data is long enough to
include it.)

¢ When a message with a Format name of
MQFMT_XMIT_Q_HEADER is retrieved from a queue (whether
this is a normal or a transmission queue), the queue manager
decrements both these Expiry fields with the time spent waiting on
the queue. No error is raised if the message data is not long
enough to include the Expiry field in the MQXQH.

¢ The queue manager uses the Expiry field in the separate
message descriptor (that is, not the one in the message descriptor
embedded within the MQXQH structure) to test whether the
message is eligible for discarding.

¢ [f the initial values of the two Expiry fields were different, it is
therefore possible for the Expiry time in the separate message
descriptor when the message is retrieved to be greater than zero

Chapter 2. Data type descriptions - structures 127

MQMD - Feedback field

(so the message is not eligible for discarding), while the time
according to the Expiry field in the MQXQH has elapsed. In this
case the Expiry field in the MQXQH is set to zero.

The following special value is recognized:

MQEI_UNLIMITED
Unlimited lifetime.

The message has an unlimited expiration time.

On VSE/ESA, the value of Expiry must be MQEI_UNLIMITED.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQEI_UNLIMITED.

Feedback (MQLONG)
Feedback or reason code.

This is used with a message of type MOQMT_REPORT to indicate the
nature of the report, and is only meaningful with that type of message.
The field can contain one of the MQFB_* values, or one of the MQRC_x*
values. Feedback codes are grouped as follows:

MQFB_NONE
No feedback provided.

MQFB_SYSTEM_FIRST
Lowest value for system-generated feedback.

MQFB_SYSTEM_LAST
Highest value for system-generated feedback.

The range of system-generated feedback codes
MQFB_SYSTEM_FIRST through MQFB_SYSTEM_LAST includes
the general feedback codes listed below (MQFB_x), and also the
reason codes (MQRC_x) that can occur when the message cannot
be put on the destination queue.

MQFB_APPL_FIRST
Lowest value for application-generated feedback.

MQFB_APPL_LAST
Highest value for application-generated feedback.

Applications that generate report messages should not use feedback
codes in the system range (other than MQFB_QUIT), unless they wish to
simulate report messages generated by the queue manager or message
channel agent.

On the MQPUT or MQPUT1 calls, the value specified must be within
either the system range or the application range. This is checked
whatever the value of MsgType.

General feedback codes :

MQFB_COA
Confirmation of arrival on the destination queue (see MQRO_COA).

128 MQsSeries Application Programming Reference

MQMD - Feedback field

MQFB_COD
Confirmation of delivery to the receiving application (see
MQRO_COD).

MQFB_EXPIRATION
Message expired.

Message was discarded because it had not been removed from the
destination queue before its expiry time had elapsed.

MQFB_PAN

Positive action natification (see MQRO_PAN).
MQFB_NAN

Negative action notification (see MQRO_NAN).

MQFB_QUIT
Application should end.

This can be used by a workload scheduling program to control the
number of instances of an application program that are running.
Sending an MQMT_REPORT message with this feedback code to an
instance of the application program indicates to that instance that it
should stop processing. However, adherence to this convention is a
matter for the application; it is not enforced by the queue manager.

IMS-bridge feedback codes : When the IMS bridge receives a nonzero
IMS-OTMA sense code, the IMS bridge converts the sense code from
hexadecimal to decimal, adds the value MQFB_IMS ERROR (300), and
places the result in the Feedback field of the reply message. This results
in the feedback code having a value in the range MQFB_IMS_FIRST (301)
through MQFB_IMS_LAST (399) when an IMS-OTMA error has occurred.

The following feedback codes can be generated by the IMS bridge:

MQFB_DATA_LENGTH_ZERO
Data length zero.

A segment length was zero in the application data of the message.

MQFB_DATA_LENGTH_NEGATIVE
Data length negative.

A segment length was negative in the application data of the
message.

MQFB_DATA_LENGTH_TOO_BIG
Data length too big.

A segment length was too big in the application data of the message.

MQFB_BUFFER_OVERFLOW
Buffer overflow.

The value of one of the length fields would cause the data to
overflow the MQSeries message buffer.

MQFB_LENGTH_OFF BY_ONE
Length in error by one.

The value of one of the length fields was one byte too short.

Chapter 2. Data type descriptions - structures 129

MQMD - Feedback field

MQFB_IIH_ERROR
MQIIH structure not valid or missing.

The Format field in MQMD specifies MQFMT_IMS, but the message
does not begin with a valid MQIIH structure.

MQFB_NOT_AUTHORIZED FOR_IMS
Userid not authorized for use in IMS.

The user ID contained in the message descriptor MQMD, or the
password contained in the Authenticator field in the MQIIH
structure, failed the validation performed by the IMS bridge. As a
result the message was not passed to IMS.

MQFB_IMS_ERROR
Unexpected error returned by IMS.

An unexpected error was returned by IMS. Consult the MQSeries
error log on the system on which the IMS bridge resides for more
information about the error.

MQFB_IMS_FIRST
Lowest value for IMS-generated feedback.

IMS-generated feedback codes occupy the range MQFB_IMS_FIRST
(300) through MQFB_IMS_LAST (399). The IMS-OTMA sense code
itself is Feedback minus MQFB_IMS_ERROR.

MQFB_IMS_LAST
Highest value for IMS-generated feedback.

CICS-bridge feedback codes : The following feedback codes can be
generated by the CICS bridge:

MQFB_CICS_APPL_ABENDED
Application abended.

The application program specified in the message abended. This
feedback code occurs only in the Reason field of the MQDLH
structure.

MQFB_CICS_APPL_NOT_STARTED
Application cannot be started.

The EXEC CICS LINK for the application program specified in the
message failed. This feedback code occurs only in the Reason field
of the MQDLH structure.

MQFB_CICS_BRIDGE_FAILURE
CICS bridge terminated abnormally without completing normal error
processing.

MQFB_CICS_CCSID_ERROR
Character set identifier not valid.

MQFB_CICS_CIH_ERROR
CICS information header structure missing or not valid.

MQFB_CICS_COMMAREA_ERROR
Length of CICS commarea not valid.

MQFB_CICS _CORREL_ID_ERROR
Correlation identifier not valid.

130 MQsSeries Application Programming Reference

MQMD - Feedback field

MQFB_CICS DLQ_ERROR
Dead-letter queue not available.

The CICS bridge task was unable to copy a reply to this request to
the dead-letter queue. The request was backed out.

MQFB_CICS_ENCODING_ERROR
Encoding not valid.

MQFB_CICS_INTERNAL_ERROR
CICS bridge encountered unexpected error.

This feedback code occurs only in the Reason field of the MQDLH
structure.

MQFB_CICS_NOT_AUTHORIZED
User identifier not authorized or password not valid.

This feedback code occurs only in the Reason field of the MQDLH
structure.

MQFB_CICS _UOW_BACKED_OUT
Unit of work backed out.

The unit of work was backed out, for one of the following reasons:

¢ A failure was detected whilst processing another request within
the same unit of work.

¢ A CICS abend occurred whilst the unit of work was in progress.

MQFB_CICS_UOW_ERROR
Unit-of-work control field UOWControl not valid.

Reason codes : For exception report messages, Feedback contains a
reason code. Among possible reason codes are:

MQRC_PUT_INHIBITED
(2051, X'803"') Put calls inhibited for the queue.

MQRC_Q_FULL
(2053, X'805"') Queue already contains maximum number of
messages.

MQRC_NOT_AUTHORIZED
(2035, X'7F3"') Not authorized for access.

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808"') No space available on disk for queue.

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

MQRC_MSG_TOO_BIG_FOR_Q_MGR
(2031, X'7EF'") Message length greater than maximum for queue
manager.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE"') Message length greater than maximum for queue.

For a full list of reason codes, see “Reason codes” on page 430.

This is an output field for the MQGET call, and an input field for MQPUT
and MQPUT1 calls. The initial value of this field is MQFB_NONE.

Chapter 2. Data type descriptions - structures 131

MQMD - Encoding field ¢ MQMD — CodedCharSetld field

Encoding (MQLONG)
Data encoding.

This identifies the representation used for numeric values in the application
message data; this applies to binary integer data, packed-decimal integer
data, and floating-point data. The following value is defined:

MQENC_NATIVE
Native machine encoding.

The encoding is the default for the programming language and
machine on which the application is running.

Note: The value of this constant is programming-language and
environment specific.

The queue manager does not validate the contents of this field.

Applications that put messages should normally specify MOENC_NATIVE.
Applications that retrieve messages should compare this field against the
value MQENC_NATIVE; if the values differ, the application may need to
convert numeric data in the message. See Appendix B, “Machine
encodings” on page 569 for details of how this field is constructed.

If the MQGMO_CONVERT option is specified on the MQGET call, this
field is an input/output field. The value specified by the application is the
encoding to which the message data should be converted if necessary. If
conversion is successful or unnecessary, the value is unchanged. If
conversion is unsuccessful, the value after the MQGET call represents the
encoding of the unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is
MQENC_NATIVE.

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of character data in the
application message data.

Note that character data in the message descriptor and the other MQI data
structures must be in the character set used by the queue manager. This
is defined by the queue manager’s CodedCharSetId attribute; see
“Attributes for the queue manager” on page 413 for details of this attribute.

The following values are defined:

MQCCSI_Q_MGR
Queue manager’s coded character set identifier.

Character data in the application message data is in the queue
manager’s character set.

MQCCSI_EMBEDDED
Embedded coded character set identifiers.

The coded character-set identifier for character data in the message
is embedded within the application message data itself. There can
be any number of character-set identifiers embedded within the
message, applying to different parts of the message.

132 MQsSeries Application Programming Reference

MQMD - Format field

Specify this value only on the MQPUT and MQPUT1 calls. If it is
specified on the MQGET call, it prevents conversion of the message.

On the MQPUT and MQPUTL1 calls, the queue manager changes the
value MQCCSI_Q_MGR to the value of the queue manager’'s
CodedCharSetId attribute; as a result, the value MQCCSI_Q_MGR is never
returned by the MQGET call. No other check is carried out on the value
specified.

Applications that retrieve messages should compare this field against the
value the application is expecting; if the values differ, the application may
need to convert character data in the message.

If the MQGMO_CONVERT option is specified on the MQGET call, this
field is an input/output field. The value specified by the application is the
coded character-set identifier to which the message data should be
converted if necessary. If conversion is successful or unnecessary, the
value is unchanged (except that the value MQCCSI_Q_MGR is converted
to the actual value). If conversion is unsuccessful, the value after the
MQGET call represents the coded character-set identifier of the
unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is
MQCCSI_Q_MGR.

Format (MQCHARS)
Format name.

This is a name that the sender of the message may use to indicate to the

receiver the nature of the data in the message. Any characters that are in
the queue manager’s character set may be specified for the name, but it is
recommended that the name be restricted to the following:

¢ Uppercase A through Z
¢ Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name
between the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field, or a null
character used to terminate the name before the end of the field; the null
and any subsequent characters are treated as blanks. Do not specify a
name with leading or embedded blanks. For the MQGET call, the queue
manager returns the name padded with blanks to the length of the field.

The queue manager does not check that the name complies with the
recommendations described above.

Names beginning “MQ” have meanings that are defined by the queue
manager; you should not use names beginning with these letters for your
own formats. The queue manager built-in formats are:

MQFMT_NONE
No format name.

The nature of the application message data is undefined. This
means that the data cannot be converted when the message is
retrieved from a queue.

Chapter 2. Data type descriptions - structures 133

MQMD - Format field

Note: If MQGMO_CONVERT is specified on the MQGET call for a
message that has a format name of MQFMT_NONE, and the
character set or encoding of the message differs from that
specified in the MsgDesc parameter, the message is still
returned in the Buffer parameter (assuming no other errors),
but the call completes with completion code
MQCC_WARNING and reason code
MQRC_FORMAT_ERROR.

For the C programming language, the constant
MQFMT_NONE_ARRAY is also defined; this has the same value as
MQFMT_NONE, but is an array of characters instead of a string.

MQFMT_ADMIN
Command server request/reply message.

The message is a command-server request or reply message in
programmable command format (PCF). Messages of this format can
be converted if the MQGMO_CONVERT option is specified on the
MQGET call. Refer to “PCF command messages” in the MQSeries
Programmable System Management book for more information about
using programmable command format messages.

For the C programming language, the constant
MQFMT_ADMIN_ARRAY is also defined; this has the same value as
MQFMT_ADMIN, but is an array of characters instead of a string.

MQFMT_CICS
CICS information header.

The message data begins with the CICS information header MQCIH,
which is followed by the application data. The format name of the
application data is given by the Format field in the MQCIH structure.

On 0S/390, the MQGMO_CONVERT option can be specified on the
MQGET call to convert messages that have format MQFMT_CICS.

For the C programming language, the constant
MQFMT_CICS_ARRAY is also defined; this has the same value as
MQFMT_CICS, but is an array of characters instead of a string.

MQFMT_COMMAND_1
Type 1 command reply message.

The message is an MQSC command-server reply message
containing the object count, completion code, and reason code.
Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_COMMAND_1_ARRAY is also defined; this has the same
value as MQFMT_COMMAND _1, but is an array of characters
instead of a string.

MQFMT_COMMAND_2
Type 2 command reply message.

The message is an MQSC command-server reply message
containing information about the object(s) requested. Messages of
this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

134 MmQsSeries Application Programming Reference

MQMD - Format field

For the C programming language, the constant
MQFMT_COMMAND_2_ARRAY is also defined; this has the same
value as MQFMT_COMMAND_2, but is an array of characters
instead of a string.

MQFMT_DEAD_LETTER_HEADER
Dead-letter header.

The message data begins with the dead-letter header MQDLH. The
data from the original message immediately follows the MQDLH
structure. The format name of the original message data is given by
the Format field in the MQDLH structure; see “MQDLH - Dead-letter
header” on page 55 for details of this structure. Messages of this
format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

COA and COD reports are not generated for messages which have a
Format of MQFMT_DEAD_LETTER_HEADER.

For the C programming language, the constant

MQFMT_DEAD LETTER_HEADER_ARRAY is also defined; this has
the same value as MQFMT_DEAD_LETTER_HEADER, but is an
array of characters instead of a string.

MQFMT_DIST_HEADER
Distribution-list header.

The message data begins with the distribution-list header MQDH;
this includes the arrays of MQOR and MQPMR records. The
distribution-list header may be followed by additional data. The
format of the additional data (if any) is given by the Format field in
the MQDH structure; see “MQDH - Distribution header” on page 48
for details of this structure. Messages with format
MQFMT_DIST_HEADER can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

For the C programming language, the constant
MQFMT_DIST_HEADER_ARRAY is also defined; this has the same
value as MQFMT_DIST_HEADER, but is an array of characters
instead of a string.

MQFMT_EVENT
Event message.

The message is an MQ event message that reports an event that
occurred. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call. Event
messages have the same structure as programmable commands;
Refer to “Event message formats” in the MQSeries Programmable
System Management book for more information about this structure.

For the C programming language, the constant
MQFMT_EVENT_ARRAY is also defined; this has the same value as
MQFMT_EVENT, but is an array of characters instead of a string.

Chapter 2. Data type descriptions - structures 135

MQMD - Format field

MQFMT_IMS

IMS information header.

The message data begins with the IMS information header MQIIH,
which is followed by the application data. The format name of the
application data is given by the Format field in the MQIIH structure.

In the following environments, the MQGMO_CONVERT option can
be specified on the MQGET call to convert messages that have
format MQFMT_IMS: AlX, DOS client, HP-UX, OS/390, OS/2,
0S/400, Sun Solaris, Windows client, Windows NT.

For the C programming language, the constant
MQFMT _IMS_ARRAY is also defined; this has the same value as
MQFMT_IMS, but is an array of characters instead of a string.

MQFMT_IMS_VAR_STRING

IMS variable string.

The message is an IMS variable string, which is a string of the form
11zzccc, where:

11 is a 2-byte length field specifying the total length of the IMS
variable string item. This length is equal to the length of 11 (2
bytes), plus the length of zz (2 bytes), plus the length of the
character string itself. 11 is a 2-byte binary integer in the
encoding specified by the Encoding field.

zz is a 2-byte field containing flags that are significant to IMS.
zz is a byte string consisting of two MQBYTE fields, and is
transmitted without change from sender to receiver (that is, zz
is not subject to any conversion).

ccc is a variable-length character string containing 11-4
characters. ccc is in the character set specified by the
CodedCharSetId field.

In the following environments, the MQGMO_CONVERT option can
be specified on the MQGET call to convert messages that have
format MQFMT_IMS: AIX, DOS client, HP-UX, OS/390, OS/2,
0S/400, Sun Solaris, Windows client, Windows NT.

For the C programming language, the constant
MQFMT_IMS_VAR_STRING_ARRAY is also defined; this has the
same value as MQFMT_IMS_VAR_STRING, but is an array of
characters instead of a string.

MQFMT_MD_EXTENSION

Message-descriptor extension.

The message data begins with the message-descriptor extension
MQMDE, and is optionally followed by other data (usually the
application message data). The format name, character set, and
encoding of the data which follows the MQMDE is given by the
Format, CodedCharSetId, and Encoding fields in the MQMDE. See
“MQMDE - Message descriptor extension” on page 170 for details of
this structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

136 MQsSeries Application Programming Reference

MQMD - Format field

This format is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

For the C programming language, the constant
MQFMT_MD_EXTENSION_ARRAY is also defined; this has the
same value as MQFMT_MD_EXTENSION, but is an array of
characters instead of a string.

MQFMT_PCF
User-defined message in programmable command format (PCF).

The message is a user-defined message that conforms to the
structure of a programmable command format (PCF) message.
Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call. Refer
to “PCF command messages” in the MQSeries Programmable
System Management book for more information about using
programmable command format messages.

For the C programming language, the constant
MQFMT_PCF_ARRAY is also defined; this has the same value as
MQFMT_PCF, but is an array of characters instead of a string.

MQFMT_REF_MSG_HEADER
Reference message header.

The message data begins with the reference message header
MQRMH, and is optionally followed by other data. The format name,
character set, and encoding of the data is given by the Format,
CodedCharSetId, and Encoding fields in the MQRMH. See “"MQRMH
- Message reference header” on page 219 for details of this
structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

For the C programming language, the constant
MQFMT_REF_MSG_HEADER_ARRAY is also defined; this has the
same value as MQFMT_REF_MSG_HEADER, but is an array of
characters instead of a string.

MQFMT_STRING
Message consisting entirely of characters.

The application message data can be either an SBCS string
(single-byte character set), or a DBCS string (double-byte character
set). Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_STRING_ARRAY is also defined; this has the same value
as MQFMT_STRING, but is an array of characters instead of a
string.

MQFMT_TRIGGER
Trigger message.

The message is a trigger message, described by the MQTM

Chapter 2. Data type descriptions - structures 137

MQMD - Priority field

structure; see “MQTM - Trigger message” on page 231 for details of
this structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_TRIGGER_ARRAY is also defined; this has the same value
as MQFMT_TRIGGER, but is an array of characters instead of a
string.

MQFMT_WORK_INFO_HEADER
Work information header.

The message data begins with the work information header MQWIH,
which is followed by the application data. The format name of the
application data is given by the Format field in the MQWIH structure.

On 0S/390, the MQGMO_CONVERT option can be specified on the
MQGET call to convert the user data in messages that have format
MQFMT_WORK_INFO_HEADER. However, the MQWIH structure
itself is always returned in the queue-manager’s character set and
encoding.

For the C programming language, the constant
MQFMT_WORK_INFO_HEADER_ARRAY is also defined; this has
the same value as MQFMT_WORK_INFO_HEADER, but is an array
of characters instead of a string.

MQFMT_XMIT_Q HEADER
Transmission queue header.

The message data begins with the transmission queue header
MQXQH. The data from the original message immediately follows
the MQXQH structure. The format name of the original message
data is given by the Format field in the MQMD structure which is part
of the transmission queue header MQXQH. See “MQXQH -
Transmission queue header” on page 254 for details of this
structure.

COA and COD reports are not generated for messages which have a
Format of MQFMT_XMIT_Q_HEADER.

For the C programming language, the constant
MQFMT_XMIT_Q HEADER_ARRAY is also defined; this has the
same value as MQFMT_XMIT_Q_ HEADER, but is an array of
characters instead of a string.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUTZ1 calls. The length of this field is given by
MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Priority (MQLONG)
Message priority.

For the MQPUT and MQPUT1 calls, the value must be greater than or
equal to zero; zero is the lowest priority.

The following special value can also be used:

138 MQsSeries Application Programming Reference

MQMD - Persistence field

MQPRI_PRIORITY_AS_Q DEF
Default priority for queue.

¢ If the queue is a cluster queue, the priority for the message is
taken from the DefPriority attribute as defined at the destination
gueue manager that owns the particular instance of the queue
on which the message is placed. Usually, all of the instances of
a cluster queue have the same value for the DefPriority
attribute, although this is not mandated.

¢ If the queue is not a cluster queue, the priority for the message
is taken from the DefPriority attribute as defined at the local
gueue manager, even if the destination queue manager is
remote.

The value of DefPriority is copied into the Priority field when the
message is put. If DefPriority is changed subsequently, messages
that have already been put are not affected.

If there is more than one definition in the queue-name resolution
path, the default priority is taken from the value of this attribute in the
first definition in the path (even if this is a queue-manager alias).

When replying to a message, applications should normally use for the
reply message the priority of the request message. In other situations,
defaulting to the queue definition allows priority tuning to be carried out
without changing the application.

If a message is put with a priority greater than the maximum supported by
the local queue manager (this maximum is given by the MaxPriority
gueue-manager attribute), the message is accepted by the queue
manager, but placed on the queue at the queue manager’'s maximum
priority; the MQPUT or MQPUTL1 call completes with MQCC_WARNING
and reason code MQRC_PRIORITY_EXCEEDS MAXIMUM. However,
the Priority field retains the value specified by the application which put
the message.

The value returned by the MQGET call is always greater than or equal to
zero; the value MQPRI_PRIORITY_AS_Q_DEF is never returned.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQPRI_PRIORITY_AS_Q_DEF.

Persistence (MQLONG)

Message persistence.

For the MQPUT and MQPUT1 calls, the value must be one of the
following:

MQPER_PERSISTENT
Message is persistent.

The message survives restarts of the queue manager. Because
temporary dynamic queues do not survive restarts of the queue
manager, persistent messages cannot be put on temporary dynamic
queues; persistent messages can however be put on permanent
dynamic queues, and predefined queues.

Chapter 2. Data type descriptions - structures 139

MQMD - Persistence field

Once a persistent message has been put (or the unit of work
committed, if the put request is part of a unit of work), the message
is available on auxiliary storage until such time as the message is
removed from the queue (or the unit of work committed, if the get
request is part of a unit of work).

When a persistent message is sent to a remote queue, a
store-and-forward mechanism is used to hold the message at each
gueue manager along the route to the destination, until the message
is known to have arrived at the next queue manager.

MQPER_NOT_PERSISTENT
Message is not persistent.

The message does not survive restarts of the queue manager. This
applies even if an intact copy of the message is found on auxiliary
storage during the restart procedure.

On VSE/ESA, this option is not supported.

MQPER_PERSISTENCE_AS Q DEF
Message has default persistence.

¢ |f the queue is a cluster queue, the persistence for the message
is taken from the DefPersistence attribute as defined at the
destination queue manager that owns the particular instance of
the queue on which the message is placed. Usually, all of the
instances of a cluster queue have the same value for the
DefPersistence attribute, although this is not mandated.

¢ |f the queue is not a cluster queue, the persistence for the
message is taken from the DefPersistence attribute as defined at
the local queue manager, even if the destination queue manager
is remote.

The value of DefPersistence is copied into the Persistence field
when the message is put. If DefPersistence is changed
subsequently, messages that have already been put are not affected.

If there is more than one definition in the queue-name resolution
path, the default persistence is taken from the value of this attribute
in the first definition in the path (even if this is a queue-manager
alias).

On VSE/ESA, this option is not supported.

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications should normally use for the
reply message the persistence of the request message. In other
situations, defaulting to the queue definition allows persistence to be
changed without changing the application.

For an MQGET call, the value returned is either MQPER_PERSISTENT or
MQPER_NOT_PERSISTENT.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQPER_PERSISTENCE_AS _Q_DEF.

140 MQsSeries Application Programming Reference

MQMD - Msgld field

MsgId (MQBYTE24)
Message identifier.

This is a byte string that is used to distinguish one message from another.
Generally, no two messages should have the same message identifier,
although this is not disallowed by the queue manager. The message
identifier is a permanent property of the message, and persists across
restarts of the queue manager. Because the message identifier is a byte
string and not a character string, the message identifier is not converted
between character sets when the message flows from one queue manager
to another.

For the MQPUT and MQPUT1 calls, if MQMI_NONE or
MQPMO_NEW_MSG_ID is specified by the application, the queue
manager generates a unique message identifier* when the message is put,
and places it in the message descriptor sent with the message. The
gueue manager also returns this message identifier in the message
descriptor belonging to the sending application. The application can use
this value to record information about particular messages, and to respond
to queries from other parts of the application.

If the message is being put to a distribution list, the queue manager
generates uniqgue message identifiers as necessary, but the value of the
MsglId field in MQMD is unchanged on return from the call, even if
MQMI_NONE or MQPMO_NEW_MSG_ID was specified. If the application
needs to know the message identifiers generated by the queue manager,
the application must provide MQPMR records containing the MsglId field.

The sending application can also specify a particular value for the
message identifier, other than MQMI_NONE; this stops the queue
manager generating a unique message identifier. An application that is
forwarding a message can use this facility to propagate the message
identifier of the original message.

The queue manager does not itself make any use of this field except to:

¢ Generate a unique value if requested, as described above

¢ Deliver the value to the application that issues the get request for the
message

¢ Copy the value to the CorrelId field of any report message that it
generates about this message (depending on the Report options)

When the queue manager or a message channel agent generates a report
message, it sets the MsgId field in the way specified by the Report field of
the original message, either MQRO_NEW_MSG _ID or

MQRO_PASS MSG_ID. Applications that generate report messages
should also do this.

4 A Msgld generated by the queue manager consists of a 4-byte product identifier (AMQb’ or ‘CSQb’ in either ASCII or EBCDIC,
where ‘b’ represents a blank), followed by a product-specific implementation of a unique string. In MQSeries this contains the first
12 characters of the queue-manager name, and a value derived from the system clock. All queue managers that can
intercommunicate must therefore have names that differ in the first 12 characters, in order to ensure that message identifiers are
unique. The ability to generate a unique string also depends upon the system clock not being changed backward. To eliminate
the possibility of a message identifier generated by the queue manager duplicating one generated by the application, the
application should avoid generating identifiers with initial characters in the range A through | in ASCIl or EBCDIC (X'41' through
X'49' and X'C1' through X'C9'). However, the application is not prevented from generating identifiers with initial characters in
these ranges.

Chapter 2. Data type descriptions - structures 141

MQMD - Msgld field

For the MQGET call, MsgId is one of the five fields that can be used to
select a particular message to be retrieved from the queue. Normally the
MQGET call returns the next message on the queue, but if a particular
message is required, this can be obtained by specifying one or more of
the five selection criteria, in any combination; these fields are:

Msgld
Correlld
Groupld
MsgSeqNumber

Offset

The application sets one or more of these field to the values required, and
then sets the corresponding MQMO_* match options in the MatchOptions
field in MQGMO to indicate that those fields should be used as selection
criteria. Only messages that have the specified values in those fields are
candidates for retrieval. The default for the MatchOptions field (if not
altered by the application) is to match both the message identifier and the
correlation identifier.

Normally, the message returned is the first message on the queue that
satisfies the selection criteria. But if MQGMO_BROWSE_NEXT is
specified, the message returned is the next message that satisfies the
selection criteria; the scan for this message starts with the message
following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the
selection criteria, so retrieval times will be slower than if no
selection criteria are specified, especially if many messages have
to be scanned before a suitable one is found.

See Table 31 on page 84 for more information about how selection
criteria are used in various situations.

Specifying MQMI_NONE as the message identifier has the same effect as
not specifying MQMO_MATCH_MSG_ID, that is, any message identifier
will match.

This field is ignored if the MQGMO_MSG_UNDER_CURSOR option is
specified in the GetMsgOpts parameter on the MQGET call.

On return from an MQGET call, the MsgId field is set to the message
identifier of the message returned (if any).

The following special value may be used:

MQMI_NONE
No message identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQMI_NONE_ARRAY is also defined; this has the same value as
MQMI_NONE, but is an array of characters instead of a string.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls.
The length of this field is given by MQ_MSG_ID_LENGTH. The initial
value of this field is MQMI_NONE.

142 MQSeries Application Programming Reference

MQMD - Correlld field

Correlld (MQBYTE24)
Correlation identifier.

This is a byte string that the application can use to relate one message to
another, or to relate the message to other work that the application is
performing. The correlation identifier is a permanent property of the
message, and persists across restarts of the queue manager. Because
the correlation identifier is a byte string and not a character string, the
correlation identifier is not converted between character sets when the
message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value.
The queue manager transmits this value with the message and delivers it
to the application that issues the get request for the message.

If the application specifies MQPMO_NEW_CORREL_ID, the queue
manager generates a unique correlation identifier which is sent with the
message, and also returned to the sending application on output from the
MQPUT or MQPUT1 call.

When the queue manager or a message channel agent generates a report
message, it sets the CorrelId field in the way specified by the Report field
of the original message, either MQRO_COPY_MSG_ID_TO_ CORREL_ID
or MQRO_PASS CORREL_ID. Applications which generate report
messages should also do this.

For the MQGET call, Correlld is one of the five fields that can be used to
select a particular message to be retrieved from the queue. See the
description of the MsgId field for details of how to specify values for this
field.

Specifying MQCI_NONE as the correlation identifier has the same effect
as not specifying MQMO_MATCH_CORREL _ID, that is, any correlation
identifier will match.

If the MQGMO_MSG_UNDER_CURSOR option is specified in the
GetMsgOpts parameter on the MQGET call, this field is ignored.

On return from an MQGET call, the CorrelId field is set to the correlation
identifier of the message returned (if any).

The following special values may be used:
MQCI_NONE

No correlation identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQCI_NONE_ARRAY is also defined; this has the same value as
MQCI_NONE, but is an array of characters instead of a string.

MQCI_NEW_SESSION
Message is the start of a new session.

This value is recognized by the CICS bridge as indicating the start of
a new session, that is, the start of a new sequence of messages.

For the C programming language, the constant
MQCI_NEW_SESSION_ARRAY is also defined; this has the same
value as MQCI_NEW_SESSION, but is an array of characters
instead of a string.

Chapter 2. Data type descriptions - structures 143

MQMD — BackoutCount field

* MQMD — ReplyToQ field

For the MQGET call, this is an input/output field. For the MQPUT and
MQPUT1 calls, this is an input field if MQPMO_NEW_CORREL_ID is not
specified, and an output field if MOQPMO_NEW_CORREL_ID is specified.
The length of this field is given by MQ_CORREL_ID_LENGTH. The initial
value of this field is MQCI_NONE.

BackoutCount (MQLONG)

Backout counter.

This is a count of the number of times the message has been previously
returned by the MQGET call as part of a unit of work, and subsequently
backed out. It is provided as an aid to the application in detecting
processing errors that are based on message content. The count
excludes MQGET calls that specified the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options.

The accuracy of this count is affected by the HardenGetBackout local
gueue attribute; see “Attributes for local queues and model queues” on
page 389.

On 0S/390, a value of 255 means that the message has been backed out
255 or more times; the value returned is never greater than 255.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. It is ignored for the MQPUT
and MQPUTL1 calls. The initial value of this field is 0.

ReplyToQ (MQCHARA4S)

Name of reply queue.

This is the name of the message queue to which the application that
issued the get request for the message should send MQMT_REPLY and
MQMT_REPORT messages. The name is the local name of a queue that
is defined on the queue manager identified by ReplyToQMgr. This queue
should not be a model queue, although the sending queue manager does
not verify this when the message is put.

For the MQPUT and MQPUT1 calls, this field must not be blank if the
MsgType field has the value MQMT_REQUEST, or if any reports are
requested by the Report field. However, the value specified (or
substituted; see below) is passed on to the application that issues the get
request for the message, whatever the message type.

If the ReplyToQMgr field is blank, the local queue manager looks up the
ReplyToQ name in its own queue definitions. If a local definition of a
remote queue exists with this name, the ReplyToQ value in the transmitted
message is replaced by the value of the RemoteQName attribute from the
definition of the remote queue, and this value will be returned in the
message descriptor when the receiving application issues an MQGET call
for the message. If a local definition of a remote queue does not exist,
ReplyToQ is unchanged.

If the name is specified, it may contain trailing blanks; the first null
character and characters following it are treated as blanks. Otherwise,
however, no check is made that the name satisfies the naming rules for
gueues; this is also true for the name transmitted, if the ReplyToQ is
replaced in the transmitted message. The only check made is that a
name has been specified, if the circumstances require it.

144 mQsSeries Application Programming Reference

MQMD — ReplyToQMgr field

If a reply-to queue is not required, it is recommended (although this is not
checked) that the ReplyToQ field should be set to blanks, or (in the C
programming language) to the null string, or to one or more blanks
followed by a null character; the field should not be left uninitialized.

For the MQGET call, the queue manager always returns the name padded
with blanks to the length of the field.

If a message that requires a report message cannot be delivered, and the
report message also cannot be delivered to the queue specified, both the
original message and the report message go to the dead-letter
(undelivered-message) queue (see the DeadlLetterQName attribute
described in “Attributes for the queue manager” on page 413).

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by

MQ_Q NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

ReplyToQMgr (MQCHARA48)
Name of reply queue manager.

This is the name of the queue manager to which the reply message or
report message should be sent. ReplyToQ is the local name of a queue
that is defined on this queue manager.

If the ReplyToQMgr field is blank, the local queue manager looks up the
ReplyToQ name in its queue definitions. If a local definition of a remote
gueue exists with this name, the ReplyToQMgr value in the transmitted
message is replaced by the value of the RemoteQMgrName attribute from the
definition of the remote queue, and this value will be returned in the
message descriptor when the receiving application issues an MQGET call
for the message. If a local definition of a remote queue does not exist, the
ReplyToQMgr that is transmitted with the message is the name of the local
gueue manager.

If the name is specified, it may contain trailing blanks; the first null
character and characters following it are treated as blanks. Otherwise,
however, no check is made that the name satisfies the naming rules for
gueue managers, or that this name is known to the sending queue
manager; this is also true for the name transmitted, if the ReplyToQMgr is
replaced in the transmitted message. For more information about names,
see “Rules for naming MQSeries objects” in the MQSeries Application
Programming Guide.

If a reply-to queue is not required, it is recommended (although this is not
checked) that the ReplyToQMgr field should be set to blanks, or (in the C
programming language) to the null string, or to one or more blanks
followed by a null character; the field should not be left uninitialized.

For the MQGET call, the queue manager always returns the name padded
with blanks to the length of the field.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by
MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

Chapter 2. Data type descriptions - structures 145

MQMD - Userldentifier field

Userldentifier (MQCHAR12)
User identifier.

This is part of the identity context of the message; it identifies the user
that originated the message. The queue manager treats this information
as character data, but does not define the format of it.

After a message has been received, UserIdentifier can be used in the
AlternatelUserlId field of the ObjDesc parameter of a subsequent MQOPEN
or MQPUTL1 call, so that the authorization check is performed for the
Userldentifier user instead of the application performing the open.

When the queue manager generates this information for an MQPUT or
MQPUT1 call:

¢ On 0S/390, the queue manager uses the AlternatelserId from the
ObjDesc parameter of the MQOPEN or MQPUT1 call if the
MQOO_ALTERNATE_USER_AUTHORITY or
MQPMO_ALTERNATE_USER_AUTHORITY option was specified. If
the relevant option was not specified, the queue manager uses a user
identifier determined from the environment.

¢ |n other environments, the queue manager always uses a user
identifier determined from the environment.

When the user identifier is determined from the environment:

¢ On 0OS/390, the queue manager uses:

For MVS (batch), the user identifier from the JES JOB card or
started task

For TSO, the user identifier propagated to the job during job
submission

For CICS, the user identifier associated with the task
For IMS, the user identifier depends on the type of application:
- For:

¢ Nonmessage BMP regions

¢ Nonmessage IFP regions

¢ Message BMP and message IFP regions that have not
issued a successful GU call

the queue manager uses the user identifier from the region
JES JOB card or the TSO user identifier. If these are blank or
null, it uses the name of the program specification block
(PSB).

- For:
¢ Message BMP and message IFP regions that have issued

a successful GU call
e MPP regions

the queue manager uses one of:

¢ The signed-on user identifier associated with the message
¢ The logical terminal (LTERM) name

¢ The user identifier from the region JES JOB card

e The TSO user identifier

146 MQsSeries Application Programming Reference

MQMD — AccountingToken field

e The PSB name
¢ On 0OS/2, the queue manager uses the string “0s2”.

¢ On 0S/400, the queue manager uses the name of the signed-on user
profile.

¢ On Digital OpenVMS, Tandem NonStop Kernel, and UNIX systems,
the queue manager uses:

— The application’s logon name

— The effective user identifier of the process if no logon is available

— The user identifier associated with the transaction, if the
application is a CICS transaction

¢ On VSE/ESA, this is a reserved field.
¢ On 16-bit Windows, the queue manager uses the string “WINDOWS”.

¢ On 32-bit Windows and Windows NT, the queue manager uses the
first 12 characters of the logged-on user name.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. Any information following a null
character within the field is discarded. The null character and any
following characters are converted to blanks by the queue manager. If
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
not specified, this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the UserlIdentifier that was transmitted with the message. If
the message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given
by MQ_USER_ID_LENGTH. The initial value of this field is the null string
in C, and 12 blank characters in other programming languages.

AccountingToken (MQBYTES32)
Accounting token.

This is part of the identity context of the message; it allows an
application to cause work done as a result of the message to be
appropriately charged.

The queue manager treats this information as a string of bits and does not
check its content. When the queue manager generates this information, it
is set as follows:

¢ The first byte of the field is set to the length of the accounting
information present in the bytes that follow; this length is in the range
zero through 30, and is stored in the first byte as a binary integer.

¢ The second and subsequent bytes (as specified by the length field)
are set to the accounting information appropriate to the environment.

— On 0S/390 the accounting information is set to:

- For OS/390 batch, the accounting information from the JES
JOB card or from a JES ACCT statement in the EXEC card
(comma separators are changed to X'FF'). This information
is truncated, if necessary, to 31 bytes.

- For TSO, the user’'s account number.

Chapter 2. Data type descriptions - structures 147

MQMD — AccountingToken field

- For CICS, the LU 6.2 unit of work identifier (UEPUOWDS) (26
bytes).

- For IMS, the 8-character PSB name concatenated with the
16-character IMS recovery token.

— On 0S/400, the accounting information is set to the accounting
code for the job.

— On Digital OpenVMS, Tandem NonStop Kernel, and UNIX
systems, the accounting information is set to the numeric user
identifier, in ASCII characters.

— On 0S/2, DOS client, Windows client, 16-bit Windows, and 32-bit
Windows, the accounting information is set to the ASCII character
"1

— On Windows NT, the accounting information is set to a Windows
NT security identifier (SID) in a compressed format. The SID
uniquely identifies the user identifier stored in the UserIdentifier
field. When the SID is stored in the AccountingToken field, the
6-byte Identifier Authority (located in the third and subsequent
bytes of the SID) is omitted. For example, if the Windows NT SID
is 28 bytes long, 22 bytes of SID information are stored in the
AccountingToken field.

The last byte is set to the accounting-token type, one of the following
values:

MQACTT_CICS_LUOW_ID

CICS LUOW identifier.
MQACTT_DOS_DEFAULT

DOS client default accounting token.
MQACTT_NT_SECURITY_ID

Windows NT security identifier.
MQACTT_OS2_DEFAULT

0S/2 default accounting token.
MQACTT_0OS400_ACCOUNT_TOKEN

0S/400 accounting token.
MQACTT_UNIX_NUMERIC_ID

UNIX systems numeric identifier.
MQACTT_WINDOWS_DEFAULT

Windows client, 16-bit Windows, or 32-bit Windows default

accounting token.
MQACTT_USER

User-defined accounting token.
MQACTT_UNKNOWN

Unknown accounting-token type.

The accounting-token type is set to an explicit value only in the
following environments: AlX, DOS client, HP-UX, OS/2, Sun Solaris,
Windows client, and Windows NT. In other environments, the
accounting-token type is set to the value MQACTT_UNKNOWN. In
these environments the PutApplType field can be used to deduce the
type of accounting token received.

All other bytes are set to binary zero.

On VSE/ESA, this is a reserved field.

148 WMQsSeries Application Programming Reference

MQMD - ApplidentityData field

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET IDENTITY_CONTEXT or MQPMO_SET_ALL CONTEXT is
specified in the PutMsgOpts parameter. If neither
MQPMO_SET_IDENTITY_CONTEXT nor MQPMO_SET_ALL_CONTEXT
is specified, this field is ignored on input and is an output-only field. For
more information on message context, see “Message context” in the
MQSeries Application Programming Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the AccountingToken that was transmitted with the message. If
the message has no context, the field is entirely binary zero.

This is an output field for the MQGET call.

This field is not subject to any translation based on the character set of the
gueue manager—the field is treated as a string of bits, and not as a string
of characters.

The queue manager does nothing with the information in this field. The
application must interpret the information if it wants to use the information
for accounting purposes.

The following special value may be used for the AccountingToken field:

MQACT_NONE
No accounting token is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQACT_NONE_ARRAY is also defined; this has the same value as
MQACT_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_ACCOUNTING_TOKEN_LENGTH.
The initial value of this field is MQACT_NONE.

ApplIdentityData (MQCHAR32)
Application data relating to identity.

This is part of the identity context of the message; it is information that is
defined by the application suite, and can be used to provide additional
information about the message or its originator.

The queue manager treats this information as character data, but does not
define the format of it. When the queue manager generates this
information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. If a null character is present, the
null and any following characters are converted to blanks by the queue
manager. If neither MQPMO_SET IDENTITY_CONTEXT nor
MQPMO_SET_ALL_CONTEXT is specified, this field is ignored on input
and is an output-only field. For more information on message context, see
“Message context” in the MQSeries Application Programming Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the ApplIdentityData that was transmitted with the message. If
the message has no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

Chapter 2. Data type descriptions - structures 149

MQMD — PutApplType field

This is an output field for the MQGET call. The length of this field is given
by MQ_APPL_IDENTITY_DATA_LENGTH. The initial value of this field is
the null string in C, and 32 blank characters in other programming
languages.

PutApplType (MQLONG)
Type of application that put the message.

This is part of the origin context of the message. For more information
on message context, see “Message context” in the MQSeries Application
Programming Guide.

It may have one of the following standard types. User-defined types can
also be used but should be restricted to values in the range
MQAT_USER_FIRST through MQAT_USER_LAST.

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

MQAT_CICS_BRIDGE
CICS bridge.

MQAT_CICS_VSE
CICS/VSE transaction.

MQAT_DOS
DOS client application.

MQAT_GUARDIAN
Tandem Guardian application (same value as MQAT_NSK).

MQAT_IMS
IMS application.

MQAT_IMS_BRIDGE
IMS bridge.

MQAT_MVS
0OS/390 or TSO application (same value as MQAT_0S390).

MQAT_NOTES_AGENT
Lotus Notes Agent application.

MQAT_NSK
Tandem NonStop Kernel application.

MQAT_0S2
OS/2 or Presentation Manager application.

MQAT_0S390
0S/390 application.

MQAT_0S400
0S/400 application.

MQAT_QMGR
Queue-manager-generated message.

MQAT_UNIX
UNIX application.

150 MQsSeries Application Programming Reference

MQMD — PutApplType field

MQAT_VMS

Digital OpenVMS application.
MQAT_VOS

Stratus VOS application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_XCF
XCF.

MQAT_DEFAULT
Default application type.

This is the default application type for the platform on which the
application is running.

Note: The value of this constant is environment-specific. Because
of this, the application must be compiled using the header,
include, or COPY files that are appropriate to the platform on
which the application will run.

MQAT_UNKNOWN
Unknown application type.

This value can be used to indicate that the application type is
unknown, even though other context information is present.

MQAT_USER_FIRST
Lowest value for user-defined application type.

MQAT_USER_LAST
Highest value for user-defined application type.

The following special value can also occur:

MQAT_NO_CONTEXT
No context information present in message.

This value is set by the queue manager when a message is put with
no context (that is, the MQPMO_NO_CONTEXT context option is
specified).

When a message is retrieved, PutApplType can be tested for this
value to decide whether the message has context (it is
recommended that PutApplType is never set to
MQAT_NO_CONTEXT, by an application using
MQPMO_SET_ALL_CONTEXT, if any of the other context fields are
nonblank).

When the queue manager generates this information as a result of an
application put, the field is set to a value that is determined by the
environment. Note that on OS/400, it is set to MQAT_0S400; the queue
manager never uses MQAT_CICS on OS/400.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
If MOQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on
input and is an output-only field.

Chapter 2. Data type descriptions - structures 151

MQMD - PutAppIName field

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutApplType that was transmitted with the message. If the
message has no context, the field is set to MQAT_NO_CONTEXT.

This is an output field for the MQGET call. The initial value of this field is
MQAT_NO_CONTEXT.

PutApplName (MQCHAR28)

Name of application that put the message.

This is part of the origin context of the message. The format of the
name depends on the PutApplType. For more information on message
context, see “Message context” in the MQSeries Application Programming
Guide.

When this field is set by the queue manager, (that is, for all options except
MQPMO_SET_ALL_CONTEXT), it is set to value which is determined by
the environment:

e On 0S/390, the queue manager uses:

— For OS/390 batch, the 8-character job name from the JES JOB
card

— For TSO, the 7-character TSO user identifier

— For CICS, the 8-character applid, followed by the 4-character
tranid

— For IMS, the 8-character IMS system identifier, followed by the
8-character PSB name

— For XCF, the 8-character XCF group name, followed by the
16-character XCF member name

— For a message generated by a queue manager, the first 28
characters of the queue manager name

— For distributed queuing without CICS, the 8-character jobname of
the channel initiator followed by the 8-character name of the
module putting to the dead-letter queue followed by an 8-character
task identifier.

— For MQSeries Java language bindings processing with MQSeries
for OS/390, the 8-character jobname of the address space created
for the OpenEdition™ environment. Typically, this will be a TSO
user identifier with a single numeric character appended.

The name or names are each padded to the right with blanks, as is
any space in the remainder of the field. Where there is more than one
name, there is no separator between them.

¢ On 0OS/2, DOS client, Windows client, and Windows NT, the queue
manager uses:

— For a CICS application, the CICS transaction name
— For a non-CICS application, the rightmost 28 characters of the
fully-qualified name of the executable

¢ On 0S/400, the queue manager uses the fully-qualified job name.

¢ On Digital OpenVMS and Tandem NonStop Kernel, the queue
manager uses: the rightmost 28 characters of the fully-qualified hame
of the executable, if this is available to the queue manager, and blanks
otherwise

¢ On UNIX systems, the queue manager uses:

152 MQsSeries Application Programming Reference

MQMD - PutDate field

— For a CICS application, the CICS transaction name

— For a non-CICS application, the rightmost 14 characters of the
fully-qualified name of the executable if this is available to the
gueue manager, and blanks otherwise (for example, on AlX)

— On VSE/ESA, the queue manager uses the 8-character applid,
followed by the 4-character tranid.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
Any information following a null character within the field is discarded. The
null character and any following characters are converted to blanks by the
gueue manager. If MQPMO_SET_ALL_CONTEXT is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutAppiName that was transmitted with the message. If the
message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_APPL_NAME_LENGTH. The initial value of this field is the
null string in C, and 28 blank characters in other programming languages.

PutDate (MQCHARS)

Date when message was put.

This is part of the origin context of the message. For more information
on message context, see “Message context” in the MQSeries Application
Programming Guide.

The format used for the date when this field is generated by the queue
manager is:

YYYYMMDD
where the characters represent:

YYYY year (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

On 0S/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration book.

If the message was put as part of a unit of work, the date is that when the
message was put, and not the date when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
The contents of the field are not checked by the queue manager, except
that any information following a null character within the field is discarded.
The null character and any following characters are converted to blanks by
the queue manager. If MOPMO_SET_ALL_CONTEXT is not specified,
this field is ignored on input and is an output-only field.

Chapter 2. Data type descriptions - structures 153

MQMD - PutTime field

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutDate that was transmitted with the message. If the
message has no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_DATE_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

PutTime (MQCHARS)

Time when message was put.

This is part of the origin context of the message. For more information
on message context, see “Message context” in the MQSeries Application
Programming Guide.

The format used for the time when this field is generated by the queue
manager is:

HHMMSSTH
where the characters represent (in order):

HH hours (00 through 23)
MM minutes (00 through 59)

SS seconds (00 through 59; see note below)
T tenths of a second (0 through 9)
H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time
standard, it is possible on rare occasions for 60 or 61 to be
returned for the seconds in PutTime. This happens when leap
seconds are inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

On 0S/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration book.

If the message was put as part of a unit of work, the time is that when the
message was put, and not the time when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
The contents of the field are not checked by the queue manager, except
that any information following a null character within the field is discarded.
The null character and any following characters are converted to blanks by
the queue manager. If MOPMO_SET_ALL_CONTEXT is not specified,
this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutTime that was transmitted with the message. If the
message has no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_TIME_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

154 mQsSeries Application Programming Reference

MQMD - ApplOriginData field « MQMD — Groupld field

ApplOriginData (MQCHARA4)
Application data relating to origin.

This is part of the origin context of the message; it is information that is
defined by the application suite that can be used to provide additional
information about the origin of the message. For example, it could be set
by suitably authorized applications to indicate whether the identity data is
trusted. For more information on message context, see “Message context”
in the MQSeries Application Programming Guide.

The queue manager treats this information as character data, but does not
define the format of it. When the queue manager generates this
information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
Any information following a null character within the field is discarded. The
null character and any following characters are converted to blanks by the
gueue manager. If MOQPMO_SET_ALL CONTEXT is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the ApplOriginData that was transmitted with the message. |If the
message has no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given
by MQ_APPL_ORIGIN_DATA_LENGTH. The initial value of this field is
the null string in C, and 4 blank characters in other programming
languages.

The remaining fields are not present if Version is less than MQMD_VERSION_2.

GroupId (MQBYTE24)
Group identifier.

This is a byte string that is used to identify the particular message group
or logical message to which the physical message belongs. GrouplId is
also used if segmentation is allowed for the message. In all of these
cases, GroupId has a non-null value, and one or more of the following
flags is set in the MsgFlags field:

MQMF_MSG_IN_GROUP
MQMF_LAST_MSG_IN_GROUP
MQMF_SEGMENT
MQMF_LAST_SEGMENT
MQMF_SEGMENTATION_ALLOWED

If none of these flags is set, GroupId has the special null value

MQGI_NONE.
This field need not be set by the application on the MQPUT or MQGET
call if:

¢ On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
¢ On the MQGET call, MQMO_MATCH_GROUP_ID is not specified.

These are the recommended ways of using these calls for messages that
are not report messages. However, if the application requires more

Chapter 2. Data type descriptions - structures 155

MQMD - Groupld field

control, or the call is MQPUTL1, the application must ensure that GroupId is
set to an appropriate value.

Message groups and segments can be processed correctly only if the
group identifier is unique. For this reason, applications should not
generate their own group identifiers, instead, applications should do one of
the following:

¢ |If MQPMO_LOGICAL_ORDER is specified, the queue manager
automatically generates a unique group identifier for the first message
in the group or segment of the logical message, and uses that group
identifier for the remaining messages in the group or segments of the
logical message, so the application does not need to take any special
action. This is the recommended procedure.

¢ |[f MQPMO_LOGICAL_ORDER is not specified, the application should
request the queue manager to generate the group identifier, by setting
GroupId to MQGI_NONE on the first MQPUT or MQPUT1 call for a
message in the group or segment of the logical message. The group
identifier returned by the queue manager on output from that call
should then be used for the remaining messages in the group or
segments of the logical message. If a message group contains
segmented messages, the same group identifier must be used for all
segments and messages in the group.

When MQPMO_LOGICAL_ORDER is not specified, messages in
groups and segments of logical messages can be put in any order (for
example, in reverse order), but the group identifier must be allocated
by the first MQPUT or MQPUT1 call that is issued for any of those
messages.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the
value detailed in Table 46 on page 199. On output from the MQPUT and
MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message if the object opened is a single queue and not a
distribution list, but leaves it unchanged if the object opened is a
distribution list. In the latter case, if the application needs to know the
group identifiers generated, the application must provide MQPMR records
containing the GroupId field.

On input to the MQGET call, the queue manager uses the value detailed
in Table 31 on page 84. On output from the MQGET call, the queue
manager sets this field to the value for the message retrieved.

The following special value is defined:
MQGI_NONE
No group identifier specified.

The value is binary zero for the length of the field. This is the value
that is used for messages that are not in groups, not segments of
logical messages, and for which segmentation is not allowed.

For the C programming language, the constant
MQGI_NONE_ARRAY is also defined; this has the same value as
MQGI_NONE, but is an array of characters instead of a string.

156 MQsSeries Application Programming Reference

MQMD — MsgSegNumber field ¢ MQMD - Offset field

The length of this field is given by MQ_GROUP_ID_LENGTH. The initial
value of this field is MQGI_NONE. This field is not present if Version is
less than MQMD_VERSION_2.

MsgSeqNumber (MQLONG)
Sequence number of logical message within group.

Sequence numbers start at 1, and increase by 1 for each new logical
message in the group, up to a maximum of 999999999. A physical
message which is not in a group has a sequence number of 1.

This field need not be set by the application on the MQPUT or MQGET
call if:

¢ On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
¢ On the MQGET call, MQMO_MATCH_MSG_SEQ_NUMBER is not
specified.

These are the recommended ways of using these calls for messages that
are not report messages. However, if the application requires more
control, or the call is MQPUT1, the application must ensure that
MsgSeqNumber is set to an appropriate value.

On input to the MQPUT and MQPUTL1 calls, the queue manager uses the
value detailed in Table 46 on page 199. On output from the MQPUT and
MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message.

On input to the MQGET call, the queue manager uses the value detailed
in Table 31 on page 84. On output from the MQGET call, the queue
manager sets this field to the value for the message retrieved.

The initial value of this field is one. This field is not present if Version is
less than MQMD_VERSION_2.

Offset (MQLONG)
Offset of data in physical message from start of logical message.

This is the offset in bytes of the data in the physical message from the
start of the logical message of which the data forms part. This data is
called a segment. The offset is in the range 0 through 999999999. A
physical message which is not a segment of a logical message has an
offset of zero.

This field need not be set by the application on the MQPUT or MQGET
call if:

¢ On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
e On the MQGET call, MQMO_MATCH_OFFSET is not specified.

These are the recommended ways of using these calls for messages that
are not report messages. However, if the application does not comply with
these conditions, or the call is MQPUT1, the application must ensure that
Offset is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the
value detailed in Table 46 on page 199. On output from the MQPUT and
MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message.

Chapter 2. Data type descriptions - structures 157

MQMD — MsgFlags field

For a report message reporting on a segment of a logical message, the
Originallength field (provided it is not MQOL_UNDEFINED) is used to
update the offset in the segment information retained by the queue
manager.

On input to the MQGET call, the queue manager uses the value detailed
in Table 31 on page 84. On output from the MQGET call, the queue
manager sets this field to the value for the message retrieved.

The initial value of this field is zero. This field is not present if Version is
less than MQMD_VERSION_2.

MsgFlags (MQLONG)
Message flags.

These are flags that specify attributes of the message, or control its
processing. The flags are divided into the following categories:

e Segmentation flag
e Status flags

These are described in turn.

Segmentation flag : When a message is too big for a queue, an attempt
to put the message on the queue usually fails. Segmentation is a
technique whereby the queue manager or application splits the message
into smaller pieces called segments, and places each segment on the
gueue as a separate physical message. The application which retrieves
the message can either retrieve the segments one by one, or request the
gueue manager to reassemble the segments into a single message which
is returned by the MQGET call. The latter is achieved by specifying the
MQGMO_COMPLETE_MSG option on the MQGET call, and supplying a
buffer that is big enough to accommodate the complete message. (See
“MQGMO - Get-message options” on page 66 for details of the
MQGMO_COMPLETE_MSG option.) Segmentation of a message can
occur at the sending queue manager, at an intermediate queue manager,
or at the destination queue manager.

You can specify one of the following to control the segmentation of a
message:

MQMF_SEGMENTATION_INHIBITED
Segmentation inhibited.

This option prevents the message being broken into segments by the
gueue manager. If specified for a message that is already a
segment, this option prevents the segment being broken into smaller
segments.

The value of this flag in binary zero. This is the default.

MQMF_SEGMENTATION_ALLOWED
Segmentation allowed.

This option allows the message to be broken into segments by the
gueue manager. If specified for a message that is already a
segment, this option allows the segment to be broken into smaller
segments. MQMF_SEGMENTATION_ALLOWED can be set without
either MOQMF_SEGMENT or MQMF_LAST_SEGMENT being set.

158 MQsSeries Application Programming Reference

MQMD — MsgFlags field

Note: Care is needed when messages are put with
MQMF_SEGMENTATION_ALLOWED but without
MQPMO_LOGICAL_ORDER. If the message is:

e Not a segment, and
e Not in a group, and
¢ Not being forwarded,

the application must remember to reset the GrouplId field to
MQGI_NONE prior to each MQPUT or MQPUT1 call, in order
to cause a unique group identifier to be generated by the
gueue manager for each message. If this is not done,
unrelated messages could inadvertently end up with the
same group identifier, which might lead to incorrect
processing subsequently. See the descriptions of the
GroupId field and the MQPMO_LOGICAL_ORDER option for
more information about when the GroupId field must be reset.

The queue manager splits messages into segments as necessary in
order to ensure that the segments (plus any header data that may be
required) fit on the queue. However, there is a lower limit for the
size of a segment generated by the queue manager (see below), and
only the last segment created from a message can be smaller than
this limit. The lower limit for the size of an application-generated
segment is one byte. Segments generated by the queue manager
may be of unequal length. The queue-manager processes the
message as follows:

¢ User-defined formats are split on boundaries which are multiples
of 16 bytes. This means that the queue manager will not
generate segments that are smaller than 16 bytes (other than the
last segment).

¢ Built-in formats other than MQFMT_STRING are split at points
appropriate to the nature of the data present. However, the
gueue manager never splits a message in the middle of an MQ
header structure. This means that a segment containing a single
MQ header structure cannot be split further by the queue
manager, and as a result the minimum possible segment size for
that message is greater than 16 bytes.

The second or later segment generated by the queue manager
will begin with one of the following:

— An MQ header structure
— The start of the application message data
— Part-way through the application message data

¢ MQFMT_STRING is split without regard for the nature of the
data present (SBCS, DBCS, or mixed SBCS/DBCS). When the
string is DBCS or mixed SBCS/DBCS, this may result in
segments which cannot be converted from one character set to
another (see below). The queue manager never splits
MQFMT_STRING messages into segments that are smaller than
16 bytes (other than the last segment).

e The Format, CodedCharSetId, and Encoding fields in the MQMD
of each segment are set by the queue manager to describe
correctly the data present at the start of the segment; the format

Chapter 2. Data type descriptions - structures 159

MQMD — MsgFlags field

name will be either the name of a built-in format, or the name of
a user-defined format.

e The Report field in the MQMD of segments with Offset greater
than zero are modified as follows:

— For each report type, if the report option is
MQRO_» WITH_DATA, but the segment cannot possibly
contain any of the first 100 bytes of user data (that is, the
data following any MQ header structures that may be
present), the report option is changed to MQRO_ .

The queue manager follows the above rules, but otherwise splits
messages as it thinks fit; no assumptions should be made about the
way that the queue manager will choose to split a particular
message.

For persistent messages, the queue manager can perform
segmentation only within a unit of work:

e |f the MQPUT or MQPUTZ1 call is operating within a user-defined
unit of work, that unit of work is used. If the call fails partway
through the segmentation process, the queue manager removes
any segments that were placed on the queue as a result of the
failing call. However, the failure does not prevent the unit of
work being committed successfully.

¢ If the call is operating outside a user-defined unit of work, and
there is no user-defined unit of work in existence, the queue
manager creates a unit of work just for the duration of the call. If
the call is successful, the queue manager commits the unit of
work automatically (the application does not need to do this). If
the call fails, the queue manager backs out the unit of work.

¢ If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is
unable to perform segmentation. If the message does not
require segmentation, the call can still succeed. But if the
message does require segmentation, the call fails with reason
code MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a
unit of work to be available in order to perform segmentation.

Special consideration must be given to data conversion of messages
which may be segmented:

¢ |f data conversion is performed only by the receiving application
on the MQGET call, and the application specifies the
MQGMO_COMPLETE_MSG option, the data-conversion exit will
be passed the complete message for the exit to convert, and the
fact that the message was segmented will not be apparent to the
exit.

¢ If the receiving application retrieves one segment at a time, the
data-conversion exit will be invoked to convert one segment at a
time. The exit must therefore be capable of converting the data
in a segment independently of the data in any of the other
segments.

160 MQsSeries Application Programming Reference

MQMD — MsgFlags field

If the nature of the data in the message is such that arbitrary
segmentation of the data on 16-byte boundaries may result in
segments which cannot be converted by the exit, or the format is
MQFMT_STRING and the character set is DBCS or mixed
SBCS/DBCS, the sending application should itself create and put
the segments, specifying MQMF_SEGMENTATION_INHIBITED
to suppress further segmentation. In this way, the sending
application can ensure that each segment contains sufficient
information to allow the data-conversion exit to convert the
segment successfully.

¢ If sender conversion is specified for a sending message channel
agent (MCA), the MCA converts only messages which are not
segments of logical messages; the MCA never attempts to
convert messages which are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output
flag on the MQGET call. On the latter call, the queue manager also
echoes the value of the flag to the Segmentation field in MQGMO.

The initial value of this flag is MOQMF_SEGMENTATION_INHIBITED.

Status flags : These are flags that indicate whether the physical message
belongs to a message group, is a segment of a logical message, both, or
neither. One or more of the following can be specified on the MQPUT or
MQPUT1 call, or returned by the MQGET call:

MQMF_MSG_IN_GROUP
Message is a member of a group.

MQMF_LAST_MSG_IN_GROUP
Message is the last logical message in a group.

If this flag is set, the queue manager turns on
MQMF_MSG_IN_GROUP in the copy of MQMD that is sent with the
message, but does not alter the settings of these flags in the MQMD
provided by the application on the MQPUT or MQPUTL call.

It is valid for a group to consist of only one logical message. |If this
is the case, MQMF_LAST _MSG_IN_GROUP is set, but the
MsgSeqNumber field has the value one.

MQMF_SEGMENT
Message is a segment of a logical message.

When MQMF_SEGMENT is specified without
MQMF_LAST_SEGMENT, the length of the application message
data in the segment (excluding the lengths of any MQ header
structures that may be present) must be at least one. If the length is
zero, the MQPUT or MQPUT1 call fails with reason code
MQRC_SEGMENT_LENGTH_ZERO.

MQMF_LAST_SEGMENT
Message is the last segment of a logical message.

If this flag is set, the queue manager turns on MQMF_SEGMENT in
the copy of MQMD that is sent with the message, but does not alter
the settings of these flags in the MQMD provided by the application
on the MQPUT or MQPUT1 call.

Chapter 2. Data type descriptions - structures 161

MQMD — MsgFlags field

It is valid for a logical message to consist of only one segment. If
this is the case, MQMF_LAST_SEGMENT is set, but the 0ffset field
has the value zero.

When MQMF_LAST_SEGMENT is specified, it is permissible for the
length of the application message data in the segment (excluding the
lengths of any header structures that may be present) to be zero.

The application must ensure that these flags are set correctly when putting
messages. If MQPMO_LOGICAL_ORDER is specified, or was specified
on the preceding MQPUT call for the queue handle, the settings of the
flags must be consistent with the group and segment information retained
by the queue manager for the queue handle. The following conditions
apply to successive MQPUT calls for the queue handle when
MQPMO_LOGICAL_ORDER is specified:

¢ |[f there is no current group or logical message, all of these flags (and
combinations of them) are valid.

¢ Once MQMF_MSG_IN_GROUP has been specified, it must remain on
until MQMF_LAST_MSG_IN_GROUP is specified. The call fails with
reason code MQRC_INCOMPLETE_GROUP if this condition is not
satisfied.

¢ Once MQMF_SEGMENT has been specified, it must remain on until
MQMF_LAST_SEGMENT is specified. The call fails with reason code
MQRC_INCOMPLETE_MSG if this condition is not satisfied.

¢ Once MQMF_SEGMENT has been specified without
MQMF_MSG_IN_GROUP, MQMF_MSG_IN_GROUP must remain off
until after MQMF_LAST_SEGMENT has been specified. The call fails
with reason code MQRC_INCOMPLETE_MSG if this condition is not
satisfied.

Table 46 on page 199 shows the valid combinations of the flags, and the
values used for various fields.

These flags are input flags on the MQPUT and MQPUT1 calls, and output
flags on the MQGET call. On the latter call, the queue manager also
echoes the values of the flags to the GroupStatus and SegmentStatus
fields in MQGMO.

Default flags : The following can be specified to indicate that the message
has default attributes:

MQMF_NONE
No message flags (default message attributes).

This inhibits segmentation, and indicates that the message is not in a
group and is not a segment of a logical message. MQMF_NONE is
defined to aid program documentation. It is not intended that this
flag be used with any other, but as its value is zero, such use cannot
be detected.

The MsgFlags field is partitioned into subfields; for details see Appendix C,
“Report options and message flags” on page 573.

The initial value of this field is MQMF_NONE. This field is not present if
Version is less than MQMD_VERSION_2.

162 MQsSeries Application Programming Reference

MQMD - OriginLength field

Originallength (MQLONG)
Length of original message.

This field is of relevance only for report messages; it specifies the length
of the message to which the report relates. If the report message is
reporting on a segment, Originallength is the length of the segment, and
not the length of the logical message of which the segment forms part, nor
the length of the data in the report message.

Originallength should be set by the program which generates the report,
or which segments the original message, but if that program does not set
the field, OriginalLength has the following special value:

MQOL_UNDEFINED
Original length of message not defined.

This is an input field on the MQPUT and MQPUT1 calls, but the value
provided by the application is used only in particular circumstances:

¢ |f the message being put is a segment but not a report message, the
gueue manager ignores the field and uses the length of the application
message data instead.

¢ |If the message being put is a report message reporting on a segment,
the queue manager accepts the value specified. The value must be:

— Greater than zero if the segment is not the last segment
— Not less than zero if the segment is the last segment
— Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code
MQRC_ORIGINAL_LENGTH_ERROR.

¢ |n all other cases, the queue manager ignores the field and uses the
value MQOL_UNDEFINED instead.

This is an output field on the MQGET call.

The initial value of this field is MQOL_UNDEFINED. This field is not
present if Version is less than MQMD_VERSION_2.

Table 37 (Page 1 of 2). Initial values of fields in MQMD
Field name Name of constant Value of constant
Strucld MQMD_STRUC_ID 'MDbb*

(See note 1)
Version MQMD_VERSION_1 1
Report MQRO_NONE 0
MsgType MQMT_DATAGRAM 8
Expiry MQEI_UNLIMITED -1
Feedback MQFB_NONE 0
Encoding MQENC_NATIVE See note 2
CodedCharSetId MQCCSI_Q_MGR 0
Format MQFMT_NONE "bbbbbbbb '
Priority MQPRI_PRIORITY_AS_Q _DEF -1
Persistence MQPER_PERSISTENCE_AS_Q_DEF 2

Chapter 2. Data type descriptions - structures 163

MQMD - C declaration

Table 37 (Page 2 of 2). Initial values of fields in MQMD
Field name Name of constant Value of constant
MsgId MQMI_NONE Nulls
Correlld MQCI_NONE Nulls
BackoutCount None 0
ReplyToQ None Blanks
(See note 3)
ReplyToQMgr None Blanks
UserIdentifier None Blanks
AccountingToken MQACT_NONE Nulls
ApplldentityData None Blanks
PutApplType MQAT_NO_CONTEXT 0
PutApplName None Blanks
PutDate None Blanks
PutTime None Blanks
ApplOriginData None Blanks
GroupId MQGI_NONE Nulls
MsgSeqNumber None 1
Offset None 0
MsgFlags MQMF_NONE 0
Originallength MQOL_UNDEFINED -1
Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

3. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

4. In the C programming language, the macro variable MQMD_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQMD MyMD = {MQMD_DEFAULT};

C language declaration

typedef struct tagMQMD {

MQCHAR4
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQCHARS
MQLONG
MQLONG
MQBYTE24
MQBYTE24

Strucld;
Version;
Report;
MsgType;
Expiry;
Feedback;
Encoding;
CodedCharSetlId;
Format;
Priority;
Persistence;
Msgld;
Correlld;

164 MQseries Application Programming Reference

Structure identifier =/
Structure version number x/
Report options */

Message type */

Expiry time */

Feedback or reason code */
Data encoding =*/

Coded character set identifier */
Format name =*/

Message priority */

Message persistence */
Message identifier =/
Correlation identifier x/

MQLONG BackoutCount;
MQCHAR48 ReplyToQ;
MQCHAR48 ReplyToQMgr;
MQCHAR12 Userldentifier;
MQBYTE32 AccountingToken;
MQCHAR32 ApplldentityData;
MQLONG PutApplType;
MQCHAR28 PutAppTName;
MQCHAR8 PutDate;

MQCHAR8 PutTime;

MQCHAR4 ApplOriginData;
MQBYTE24 Groupld;

MQLONG MsgSegNumber;
MQLONG Offset;

MQLONG MsgFlags;

MQLONG Originallength;
} MQMD;

COBOL language declaration

**

**

%

**

*%x

%

**

**

%

*%x

*%x

%

**

**

%

*%x

*%x

10

15

15

15

15

15

15

15

15

15

15

15

15

15

15

15

MQMD structure

MQMD.

Structure identifier
MQMD-STRUCID PIC
Structure version number
MQMD-VERSION PIC
Report options
MQMD-REPORT PIC
Message type

MQMD-MSGTYPE PIC
Expiry time

MQMD-EXPIRY PIC
Feedback or reason code
MQMD-FEEDBACK PIC
Data encoding
MQMD-ENCODING PIC

Coded character set ident

MQMD-CODEDCHARSETID PIC
Format name

MQMD-FORMAT PIC
Message priority
MQMD-PRIORITY PIC
Message persistence
MQMD-PERSISTENCE PIC
Message identifier
MQMD-MSGID PIC
Correlation identifier
MQMD-CORRELID PIC

Backout counter
MQMD-BACKOUTCOUNT PIC
Name of reply-to queue
MQMD-REPLYTOQ PIC
Name of reply queue manag

MQMD — COBOL declaration

/* Backout counter */

/* Name of reply-to queue */

/* Name of reply queue manager */
/* User identifier */

/* Accounting token =/

/* Application data relating to

jdentity =/

/* Type of application that put the
message */

/* Name of application that put the
message */

/* Date when message was put */

/* Time when message was put */

/* Application data relating to origin */

/* Group identifier */

/* Sequence number of logical message
within group */

/* Offset of data in physical message
from start of logical message */

/* Message flags =*/

/* Length of original message */

X(4).
S9(9)
$9(9)
$9(9)
$9(9)
S9(9)
S9(9)
ifier
S9(9)
X(8).
$9(9)

S9(9)

X(24).

X(24).

S9(9)

X(48).

er

BINARY.

BINARY.

BINARY.

BINARY.

BINARY.

BINARY.

BINARY.

BINARY.

BINARY.

BINARY.

Chapter 2. Data type descriptions - structures 165

MQMD - PL/I declaration

15 MQMD-REPLYTOQMGR PIC X(48).
*% User identifier
15 MQMD-USERIDENTIFIER PIC X(12).
*k Accounting token
15 MQMD-ACCOUNTINGTOKEN PIC X(32).
*k Application data relating to identity
15 MQMD-APPLIDENTITYDATA PIC X(32).
*k Type of application that put the message

15 MQMD-PUTAPPLTYPE PIC S9(9) BINARY.
*k Name of application that put the message
15 MQMD-PUTAPPLNAME PIC X(28).
*k Date when message was put
15 MQMD-PUTDATE PIC X(8).
*% Time when message was put
15 MQMD-PUTTIME PIC X(8).

*k Application data relating to origin
15 MQMD-APPLORIGINDATA PIC X(4).
** Group identifier
15 MQMD-GROUPID PIC X(24).
*k Sequence number of logical message within group
15 MQMD-MSGSEQNUMBER PIC S9(9) BINARY.
*k Offset of data in physical message from start of Togical

*k message
15 MQMD-OFFSET PIC S9(9) BINARY.
*% Message flags
15 MQMD-MSGFLAGS PIC S9(9) BINARY.

*k Length of original message
15 MQMD-ORIGINALLENGTH PIC S9(9) BINARY.

PL/I declaration (AlX, OS/2, OS/390, VSE/ESA, and Windows NT)

dcl

1 MQMD based,

3 Strucld char(4), /* Structure identifier */

3 Version fixed bin(31), /* Structure version number =*/

3 Report fixed bin(31), /* Report options =/

3 MsgType fixed bin(31), /* Message type =/

3 Expiry fixed bin(31), /* Expiry time */

3 Feedback fixed bin(31), /* Feedback or reason code */

3 Encoding fixed bin(31), /* Data encoding */

3 CodedCharSetId fixed bin(31), /* Coded character set identifier */

3 Format char(8), /* Format name */

3 Priority fixed bin(31), /* Message priority */

3 Persistence fixed bin(31), /* Message persistence */

3 Msgld char(24), /* Message identifier */

3 Correlld char(24), /* Correlation identifier */

3 BackoutCount fixed bin(31), /* Backout counter */

3 ReplyToQ char(48), /* Name of reply-to queue */

3 ReplyToQMgr char(48), /* Name of reply queue manager */

3 Userldentifier char(12), /* User identifier */

3 AccountingToken char(32), /* Accounting token =/

3 ApplldentityData char(32), /* Application data relating to
identity */

3 PutApplType fixed bin(31), /* Type of application that put the
message */

3 PutAppIName char(28), /* Name of application that put the
message */

3 PutDate char(8), /* Date when message was put */

166 MQsSeries Application Programming Reference

PutTime
ApplOriginData

Groupld
MsgSegNumber

Offset

MsgFlags
OriginallLength

MQMD
MQMD_STRUCID
MQMD_VERSION
MQMD_REPORT
MQMD_MSGTYPE
MQMD_EXPIRY
MQMD_FEEDBACK
MQMD_ENCODING
MQMD_CODEDCHARSETID
*

MQMD_FORMAT
MQMD_PRIORITY
MQMD_PERSISTENCE
MQMD_MSGID
MQMD_CORRELID
MQMD_BACKOUTCOUNT
MQMD_REPLYTOQ
MQMD_REPLYTOQMGR
MQMD_USERIDENTIFIER
MQMD_ACCOUNT INGTOKEN
MQMD_APPLIDENTITYDATA

*

MQMD_PUTAPPLTYPE

*

MQMD_PUTAPPLNAME

*

MQMD_PUTDATE
MQMD_PUTTIME
MQMD_APPLORIGINDATA

*

MQMD_LENGTH

MQMD_AREA

char(8),
char(4),

char(24),
fixed bin(31),

fixed bin(31),

fixed bin(31),
fixed bin(31);

DSECT
DS
DS
DS
DS
DS
DS
DS
DS

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

DS
DS
DS
DS
DS
EQU

ORG
DS

MQMD — S/390 assembler declaration

/*
/*

Time when message was put */
Application data relating to
origin */

Group identifier */

Sequence number of Togical
message within group */
Offset of data in physical
message from start of logical
message */

Message flags */

Length of original message */

/*
/*

/*

/*
/*

System/390 assembler-language declaration (OS/390 only)

CL4 Structure identifier

F Structure version number

F Report options

F Message type

F Expiry time

F Feedback or reason code

F Data encoding

F Coded character set
identifier

CL8 Format name

F Message priority

F Message persistence

XL24 Message identifier

XL24 Correlation identifier

F Backout counter

CL48 Name of reply-to queue

CL48 Name of reply queue manager

CL12 User identifier

XL32 Accounting token

CL32 Application data relating to
identity

F Type of application that put
the message

CL28 Name of application that put
the message

CL8 Date when message was put

CL8 Time when message was put

CL4 Application data relating to
origin

*-MQMD Length of structure

MQMD

CL(MQMD_LENGTH)

167

Chapter 2. Data type descriptions - structures

MQMD — TAL declaration

STRUCT

BEGIN
STRUCT
BEGIN STRING
INT(32)
INT(32)
INT(32)
INT(32)
INT(32)
INT(32)
INT(32)
STRUCT
BEGIN STRING
INT(32)

INT(32)

STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
INT(32)
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
INT(32)
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING
STRUCT
BEGIN STRING

END;

TAL declaration (Tandem NSK only)

MQMDDEF (%)

STRUCID;

BYTE [0:3]; END;
VERSION;
REPORTOPTIONS;
MSGTYPE;
EXPIRY;
FEEDBACK;
ENCODING;
CODEDCHARSETID;
FORMAT;

BYTE [0:7]; END;
PRIORITY;
PERSISTENCE;
MSGID;

BYTE [0:23]; END;
CORRELID;

BYTE [0:23]; END;
BACKOUTCOUNT;
REPLYTOQ;

BYTE [0:47]; END;
REPLYTOQMGR;
BYTE [0:47]; END;

USERIDENTIFIER;

BYTE [0:11]; END;
ACCOUNTINGTOKEN;

BYTE [0:31]; END;
APPLIDENTITYDATA;

BYTE [0:31]; END;
PUTAPPLTYPE;
PUTAPPLNAME ;

BYTE [0:27]; END;
PUTDATE;

BYTE [0:7]; END;
PUTTIME;

BYTE [0:7]; END;
APPLORIGINDATA;

BYTE [0:3]; END;

168 MQsSeries Application Programming Reference

MQMD - Visual Basic declaration

Visual Basic declaration (Windows platforms only)

I

[Type MQMD

| Strucld

| Version

[Report

| MsgType

[Expiry

| Feedback

| Encoding

[CodedCharSetId
[Format

| Priority

| Persistence

[MsglId

| Correlld

| BackoutCount

| ReplyToQ

| ReplyToQMgr

| Userldentifier
| AccountingToken
| ApplldentityData
| PutAppl1Type

| PutApp1Name

| PutDate

| PutTime

| ApplOriginData
[Groupld

| MsgSegNumber

I Offset

|

I

I

I

MsgFlags
OriginallLength
End Type

As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As
As

As
As

String*4
Long

Long

Long

Long

Long

Long

Long
String=*8
Long

Long
String*24
String*24
Long
String*48
String*48
String*12
String*32
String*32
Long
String*28
String*8
String=*8
String*4
String*24
Long

Long

Long
Long

'Structure identifier!'
'Structure version number
'Report options'

'Message type'

"Expiry time'

'Feedback or reason code'
'Data encoding'

'Coded character set identifier'

'"Format name'

'Message priority'

'Message persistence’

'Message identifier'

'"Correlation identifier'

'Backout counter'

'"Name of reply-to queue'

'Name of reply queue manager'

'User identifier'

"Accounting token'

"Application data relating to identity'
'Type of application that put the message'
'"Name of application that put the message'
'Date when message was put'

'Time when message was put'

"Application data relating to origin'
'"Group identifier'

'Sequence number within group'

'Offset of data in phsyical message'

"from start of logical message'

'Message flags'

'"Length of original message'

169

Chapter 2. Data type descriptions - structures

MQMDE - Message descriptor extension

MQMDE - Message descriptor extension

The following table summarizes the fields in the structure.

Table 38. Fields in MQMDE

Field Description Page

Strucld Structure identifier 172

Version Structure version number 173

Struclength Length of MQMDE structure 173

Encoding Encoding of the data following the MQMDE 173

CodedCharSetId Character-set identifier of the data following the 173
MQMDE

Format Format name of the data following the MQMDE 173

Flags General flags 173

Groupld Group identifier 174

MsgSegNumber Sequence number of logical message within 174
group

Offset Offset of data in physical message from start of 174
logical message

MsgFlags Message flags 174

Originallength Length of original message 174

The MQMDE structure describes the data that sometimes occurs preceding the
application message data. Normal applications should use a version-2 MQMD, in
which case they will not encounter an MQMDE structure. However, specialized
applications, and applications that continue to use a version-1 MQMD, may
encounter an MQMDE in some situations.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
0S/2, 0S/400, Sun Solaris, Windows client, Windows NT.

The MQMDE structure contains those MQMD fields that exist in the version-2
MQMD, but not in the version-1 MQMD. It can occur in the following
circumstances:

e Specified on the MQPUT and MQPUT1 calls
¢ Returned by the MQGET call
¢ |In messages on transmission queues

These are described below.

MQMDE specified on MQPUT and MQPUT1 calls : On the MQPUT and MQPUT1
calls, if the application provides a version-1 MQMD, the application can optionally
prefix the message data with an MQMDE, setting the Format field in MQMD to
MQFMT_MD_EXTENSION to indicate that an MQMDE is present. If the
application does not provide an MQMDE, the queue manager assumes default
values for the fields in the MQMDE. The default values that the queue manager
uses are the same as the initial values for the structure — see Table 40 on

page 174.

170 MQsSeries Application Programming Reference

MQMDE - Message descriptor extension

If the application provides a version-2 MQMD and prefixes the application message
data with an MQMDE, the structures are processed as shown in Table 39 on
page 172.

There is one special case. If the application uses a version-2 MQMD to put a
message that is a segment (that is, the MQMF_SEGMENT or
MQMF_LAST_SEGMENT flag is set), and the format name in the MQMD is
MQFMT_DEAD_ LETTER_HEADER, the queue manager generates an MQMDE
structure and inserts it between the MQDLH structure and the data that follows it.
In the MQMD that the queue manager retains with the message, the version-2
fields are set to their default values.

The data in the MQMDE structure must be in the queue manager’s character set
and encoding. The former is given by the CodedCharSetId queue-manager attribute
(see “Attributes for the queue manager” on page 413), while in most cases the
latter is given by the value of MQENC_NATIVE. If this condition is not satisfied,
the MQMDE is accepted but not honored, that is, the MQMDE is treated as
message data.

Note: On OS/2 and Windows NT, applications compiled with Micro Focus COBOL
use a value of MQENC_NATIVE that is different from the queue-manager’s
encoding. Although numeric fields in the MQMD structure on the MQPUT,
MQPUT1, and MQGET calls must be in the Micro Focus COBOL encoding,
numeric fields in the MQMDE structure must be in the queue-manager’s
encoding. This latter is given by MQENC_NATIVE for the C programming
language, and has the value 546.

Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD
are input/output fields on MQPUT and MQPUT1. However, the queue manager
does not return any values in the equivalent fields in the MQMDE on output from
the MQPUT and MQPUTZ1 calls; if the application requires those output values, it
must use a version-2 MQMD.

MQMDE returned by MQGET call : On the MQGET call, if the application provides
a version-1 MQMD, the queue manager prefixes the message returned with an
MQMDE, but only if one or more of the fields in the MQMDE has a nondefault
value. The Format field in MQMD will have the value MQFMT_MD_EXTENSION to
indicate that an MQMDE is present.

If the application provides an MQMDE at the start of the Buffer parameter, the
MQMDE is ignored. On return from the MQGET call, it will have been replaced by
the MQMDE for the message (if one is needed), or overwritten by the application
message data (if the MQMDE is not needed).

If an MQMDE is returned by the MQGET call, the data in the MQMDE will usually
be in the queue manager’s character set and encoding. The one exception is if the
MQMDE was treated as data on the MQPUT or MQPUT1 call (see Table 39 on
page 172 for the circumstances that can cause this).

Note: On OS/2 and Windows NT, applications compiled with Micro Focus COBOL
use a value of MQENC_NATIVE that is different from the queue-manager’s
encoding (see above).

MQMDE in messages on transmission queues : Messages on transmission
gueues are prefixed with the MQXQH structure, which contains within it a version-1

Chapter 2. Data type descriptions - structures 171

MQMDE - Strucld field

Table 39. Queue-manager action when MQMDE specified on MQPUT or MQPUT1.
This table shows the action taken by the queue manager when the application specifies
an MQMDE structure at the start of the application message data on the MQPUT or
MQPUTI call.
MQMD Values of Values of corresponding Action taken by queue
version version-2 fields in MQMDE manager
fields
1 - Valid MQMDE is honored
1 - Not valid Call fails with an appropriate
reason code
1 - MQMDE is in the wrong MQMDE is treated as
character set or encoding, or message data
is an unsupported version
2 Default Valid MQMDE is honored
2 Default Not valid Call fails with an appropriate
reason code
2 Default MQMDE is in the wrong MQMDE is treated as
character set or encoding, or message data
is an unsupported version
2 Not default Valid, and same as MQMD MQMDE is honored
2 Not default Valid, but different from MQMDE is treated as
MQMD message data
2 Not default Not valid Call fails with an appropriate
reason code
2 Not default MQMDE is in the wrong MQMDE is treated as
character set or encoding, or message data
is an unsupported version

MQMD. An MQMDE may also be present, positioned between the MQXQH

structure and application message data, but it will usually be present only if one or
more of the fields in the MQMDE has a nondefault value.

Other MQ header structures can also occur between the MQXQH structure and the
application message data. For example, when the dead-letter header MQDLH is
present, and the message is not a segment, the order is:

e MQXQH (containing a version-1 MQMD)
e MQMDE

e MQDLH

e application message data

Fields

Strucld (MQCHARA4)
Structure identifier.

The value must be:

MQMDE_STRUC_ID
Identifier for message descriptor extension structure.

For the C programming language, the constant

MQMDE_STRUC ID_ARRAY is also defined; this has the same
value as MQMDE_STRUC_ID, but is an array of characters instead
of a string.

172 MQsSeries Application Programming Reference

MQMDE - Version field ¢ MQMDE - Flags field

The initial value of this field is MQMDE_STRUC _ID.

Version (MQLONG)
Structure version number.

The value must be:

MQMDE_VERSION_2
Version-2 message descriptor extension structure.

The following constant specifies the version number of the current version:

MQMDE_CURRENT_VERSION
Current version of message descriptor extension structure.

The initial value of this field is MQMDE_VERSION_2.

StrucLength (MQLONG)
Length of MQMDE structure.

The following value is defined:

MQMDE_LENGTH_2
Length of version-2 message descriptor extension structure.

The initial value of this field is MQMDE_LENGTH_2.

Encoding (MQLONG)
Encoding of the data following the MQMDE.

The gqueue manager does not check the value of this field. See the
Encoding field described in “MQMD - Message descriptor” on page 110 for
more information about data encodings.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
Character-set identifier of the data following the MQMDE.

The queue manager does not check the value of this field.

The initial value of this field is 0.

Format (MQCHARS)
Format name of the data following the MQMDE.

The queue manager does not check the value of this field. See the
Format field described in “MQMD - Message descriptor” on page 110 for
more information about format names.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
General flags.

The following flag can be specified:

MQMDEF_NONE
No flags.

The initial value of this field is MQMDEF_NONE.

Chapter 2. Data type descriptions - structures 173

MQMDE - Groupld field ¢ MQMDE - OriginalLength field

GroupId (MQBYTE24)
Group identifier.

See the GrouplId field described in “MQMD - Message descriptor” on
page 110. The initial value of this field is MQGI_NONE.

MsgSeqNumber (MQLONG)
Sequence number of logical message within group.

See the MsgSeqNumber field described in “MQMD - Message descriptor” on
page 110. The initial value of this field is 1.

Offset (MQLONG)
Offset of data in physical message from start of logical message.

See the Offset field described in “MQMD - Message descriptor” on
page 110. The initial value of this field is O.

MsgFlags (MQLONG)
Message flags.

See the MsgFlags field described in “MQMD - Message descriptor” on
page 110. The initial value of this field is MQMF_NONE.

Originallength (MQLONG)
Length of original message.

See the OriginallLength field described in “MQMD - Message descriptor
on page 110. The initial value of this field is MQOL_UNDEFINED.

Table 40. Initial values of fields in MOQMDE
Field name Name of constant Value of constant
Strucld MQMDE_STRUC_ID 'MDEDH'

(See note 1)
Version MQMDE_VERSION 2 2
Struclength MQMDE_LENGTH_2 72
Encoding MQENC_NATIVE See note 2
CodedCharSetId None 0
Format MQFMT_NONE "bbbbbbbd '
Flags MQMDEF_NONE 0
GroupId MQGI_NONE Nulls
MsgSeqNumber None 1
Offset None 0
MsgFlags MQMF_NONE 0
Originallength MQOL_UNDEFINED -1
Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

3. In the C programming language, the macro variable MQMDE_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQMDE MyMDE = {MQMDE_DEFAULT};

174 wmQsSeries Application Programming Reference

MQMDE - C declaration ¢ MQMDE — COBOL declaration

C language declaration
typedef struct tagMQMDE {

MQCHAR4 Strucld; /* Structure identifier =/

MQLONG Version; /* Structure version number =/

MQLONG StruclLength; /* Length of MQMDE structure =/

MQLONG Encoding; /* Encoding of message data */

MQLONG CodedCharSetId; /* Coded character-set identifier of
message data */

MQCHAR8 Format; /* Format name of message data =*/

MQLONG Flags; /* General flags =/

MQBYTE24 Groupld; /* Group identifier */

MQLONG MsgSeqNumber; /* Sequence number of logical message
within group =/

MQLONG Offset; /* Offset of data in physical message from
start of logical message */

MQLONG MsgFlags; /* Message flags =*/

MQLONG OriginalLength; /* Length of original message */

} MQMDE;

COBOL language declaration

%

**

*%x

**

**

**

%

*%x

*%x

**

**

**

*%x

**

10

15

15

15

15

15

15

15

15

15

15

15

15

MQMDE structure
MQMDE.
Structure identifier
MQMDE-STRUCID PIC X(4).
Structure version number
MQMDE-VERSION PIC S9(9) BINARY.
Length of MQMDE structure
MQMDE-STRUCLENGTH PIC S9(9) BINARY.
Encoding of message data
MQMDE-ENCODING PIC S9(9) BINARY.
Coded character-set identifier of message data

MQMDE-CODEDCHARSETID PIC S9(9) BINARY.
Format name of message data
MQMDE-FORMAT PIC X(8).

General flags

MQMDE-FLAGS PIC S9(9) BINARY.
Group identifier

MQMDE-GROUPID PIC X(24).

Sequence number of Togical message within group

MQMDE-MSGSEQNUMBER PIC S9(9) BINARY.

Offset of data in physical message from start of Togical
message

MQMDE-OFFSET PIC S9(9) BINARY.

Message flags

MQMDE-MSGFLAGS PIC S9(9) BINARY.

Length of original message
MQMDE-ORIGINALLENGTH PIC S9(9) BINARY.

Chapter 2. Data type descriptions - structures

175

MQMDE - PL/I declaration

* MQMDE - Visual Basic declaration

PL/I declaration (AlX, OS/2, and Windows NT)

dcl

1 MQMDE based,

w w w ww

w w w w

Strucld
Version
StruclLength
Encoding
CodedCharSetId

Format

Flags
Groupld
MsgSegNumber

Offset

MsgFlags
Originallength

Type MQMDE
Strucld
Version
Struclength
Encoding
CodedCharSetId
Format
Flags
GroupId
MsgSeqgNumber
Offset

MsgFlags
OriginalLength

End

Type

176 MQsSeries Application Programming Reference

char(4),

fixed bin(31),
fixed bin(31),
fixed bin(31),
fixed bin(31),

char(8),
fixed bin(31),
char(24),
fixed bin(31),

fixed bin(31),

fixed bin(31),
fixed bin(31);

As
As
As
As
As
As
As
As
As
As

String*4
Long
Long
Long
Long
String=*8
Long
String=*2
Long
Long

As
As

Long
Long

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*

/*
/*

Visual Basic declaration (Windows NT only)

4

Structure identifier */

Structure version number */

Length of MQMDE structure =/
Encoding of message data */

Coded character-set identifier of
message data */

Format name of message data */
General flags */

Group identifier */

Sequence number of Togical message
within group */

Offset of data in physical message
from start of logical message */
Message flags */

Length of original message =*/

'Structure identifier!'
'Structure version number'
"Length of MQMDE structure'
'Data encoding'

'Coded character set identifier'
"Format name'

'General flags'

'"Group identifier'

'Sequence number within group'
'0Offset of data in phsyical message'
"from start of logical message'
'Message flags'

'"Length of original message'

MQOD - Object descriptor

MQOD - Object descriptor

The following table summarizes the fields in the structure.

Table 41. Fields in MQOD

Field Description Page
Strucld Structure identifier 178
Version Structure version number 178
ObjectType Object type 178
ObjectName Object name 179
ObjectQMgrName Object queue manager name 180
DynamicQName Dynamic queue name 180
AlternateUserld Alternate user identifier 181

Note: The remaining fields are not present if Version is less than MQOD_VERSION_2.

RecsPresent Number of object records present 182
KnownDestCount Number of local queues opened successfully 182
UnknownDestCount Number of remote queues opened successfully 182
InvalidDestCount Number of queues that failed to open 183
ObjectRecOffset Offset of first object record from start of MQOD 183
ResponseRecOffset Offset of first response record from start of 184
MQOD
ObjectRecPtr Address of first object record 184
ResponseRecPtr Address of first response record 185

Note: The remaining fields are not present if Version is less than MQOD_VERSION_3.

AlternateSecuritylId Alternate security identifier 185
ResolvedQName Resolved queue name 186
ResolvedQMgriName Resolved queue manager name 186

The MQOD structure is used to specify an object by name. The following types of
object are valid:

¢ Queue or distribution list
e Namelist

¢ Process definition

e Queue manager

The current version of MQOD is given by MQOD_CURRENT_VERSION. Fields
that exist only in the more-recent versions of the structure are identified as such in
the descriptions that follow. The declarations of MQOD provided in the header,
COPY, and INCLUDE files for the supported programming languages contain the
additional fields, but the initial value provided for the Version field is
MQOD_VERSION_1. To use the additional fields, the application must set the
version number to MQOD_CURRENT_VERSION. Applications which are intended
to be portable between several environments should use a more-recent version
MQOD only if all of those environments support that version.

To open a distribution list, Version must be MQOD_VERSION_2 or greater.

Chapter 2. Data type descriptions - structures 177

MQOD - Strucld field ¢ MQOD - ObjectType field

This structure is an input/output parameter for the MQOPEN and MQPUT1 calls.

Fields

Strucld (MQCHARA4)
Structure identifier.

The value must be:

MQOD_STRUC_ID
Identifier for object descriptor structure.

For the C programming language, the constant

MQOD_STRUC ID_ARRAY is also defined; this has the same value
as MQOD_STRUC_ID, but is an array of characters instead of a
string.

This is always an input field. The initial value of this field is
MQOD_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQOD_VERSION_1
Version-1 object descriptor structure.

This version is supported in all environments.

MQOD_VERSION_2
Version-2 object descriptor structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, 0S/390, 0S/2, OS/400, Sun Solaris, Windows client,
Windows NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

MQOD_VERSION_3
Version-3 object descriptor structure.

This version is supported in the following environments: AlX, DOS
client, HP-UX, 0OS/390, OS/2, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-3 structure are identified as such
in the descriptions that follow.

The following constant specifies the version number of the current version:

MQOD_CURRENT_VERSION
Current version of object descriptor structure.

This is always an input field. The initial value of this field is
MQOD_VERSION_1.

ObjectType (MQLONG)
Object type.

Type of object being named in ObjectName. Possible values are:

178 MQsSeries Application Programming Reference

MQOD - ObjectName field

MQOT_Q
Queue.

MQOT_NAMELIST
Namelist.

This is supported in the following environments: AIX, DOS client,
HP-UX, OS/390, OS/2, Sun Solaris, Windows client, Windows NT.

MQOT_PROCESS
Process definition.

This is not supported in the following environments: VSE/ESA, 16-bit
Windows, 32-bit Windows.

MQOT_Q_MGR
Queue manager.

This is not supported on VSE/ESA.

MQOT_RESERVED 1
Reserved.

This is supported on OS/390 only.
This is always an input field. The initial value of this field is MQOT_Q.

ObjectName (MQCHARA4S8)
Object name.

The local name of the object as defined on the queue manager identified
by 0ObjectQMgrName.

The name must not contain leading or embedded blanks, but may contain
trailing blanks; the first null character and characters following it are
treated as blanks. For more information about names, see “Rules for
naming MQSeries objects” in the MQSeries Application Programming
Guide.

If ObjectType is MQOT_Q_MGR, special rules apply; in this case the
name must be entirely blank up to the first null character or the end of the
field.

If ObjectName is the name of a model queue, the queue manager creates a
dynamic queue with the attributes of the model queue, and returns in the
ObjectName field the name of the queue created. A model queue can be
specified only for the MQOPEN call.

If a distribution list is being opened (that is, RecsPresent is present and
greater than zero), ObjectName must be blank or the null string. If this
condition is not satisfied, the call fails with reason code
MQRC_OBJECT_NAME_ERROR.

This is an input/output field for the MQOPEN call when ObjectName is the
name of a model queue, and an input-only field in all other cases. The
length of this field is given by MQ_Q NAME_LENGTH. The initial value of
this field is the null string in C, and 48 blank characters in other
programming languages.

Chapter 2. Data type descriptions - structures 179

MQOD - ObjectQMgrName field ¢ MQOD — DynamicQueue field

ObjectQMgrName (MQCHARA4S8)

Object queue manager name.

This is the name of the queue manager on which the ObjectName object is
defined.

If the name is specified, it must not contain leading or embedded blanks,
but may contain trailing blanks; the first null character and characters
following it are treated as blanks.

A name that is entirely blank up to the first null character or the end of the
field denotes the queue manager to which the application is connected.

If ObjectType is MQOT_NAMELIST, MQOT_PROCESS, or
MQOT_Q_MGR, the name of the local queue manager must either be
specified explicitly, or specified as blank.

If ObjectName is the name of a model queue, the queue manager creates a
dynamic queue with the attributes of the model queue, and returns in the
ObjectQMgriame field the name of the queue manager on which the queue
is created; this is the hame of the local queue manager. A model queue
can be specified only for the MQOPEN call.

If ObjectName is the name of a cluster queue, and ObjectQMgriName is
blank, the actual destination of messages sent using the queue handle
returned by the MQOPEN call is chosen by the queue manager (or by a
cluster workload exit if there is one):

¢ |[f MQOO_BIND_ON_OPEN is specified, the queue manager selects a
particular instance of the cluster queue during the processing of the
MQOPEN call, and all messages put using this queue handle are sent
to that instance.

¢ |If MQOO_BIND_NOT_FIXED is specified, the queue manager may
choose a different instance of the destination queue (residing on a
different queue manager in the cluster) on each successive MQPUT
call that uses this queue handle.

If the application needs to send a message to a specific instance of a
cluster queue (that is, a queue instance that resides on a particular queue
manager), the application should specify the name of that queue manager
in the ObjectQ@MgrName field. This forces the local queue manager to send
the message to the specified destination queue manager.

If a distribution list is being opened (that is, RecsPresent is greater than
zero), ObjectQMgrName must be blank or the null string. If this condition is
not satisfied, the call fails with reason code

MQRC_OBJECT_Q MGR_NAME_ERROR.

This is an input/output field for the MQOPEN call when 0bjectName is the
name of a model queue, and an input-only field in all other cases. The
length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

DynamicQName (MQCHARA48)

Dynamic queue name.

This is an input field that is ignored unless 0ObjectName specifies the name

180 MQsSeries Application Programming Reference

MQOD - AlternateUserld field

of a model queue. If it does, this field specifies the name of the dynamic
gueue to be created.

The name must not contain leading or embedded blanks, but may contain
trailing blanks; the first null character and characters following it are
treated as blanks. A completely blank name (or one in which only blanks
appear before the first null character) is not valid if ObjectName specifies
the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue
manager replaces the asterisk with a string of characters that guarantees
that the name generated for the queue is unique at the local queue
manager. To allow a sufficient number of characters for this, the asterisk
is valid only in positions 1 through 33. There must be no characters other
than blanks or a null character following the asterisk.

It is valid for the asterisk to appear in the first character position, in which
case the name consists solely of the characters generated by the queue
manager.

On 0S/390, it is not recommended to use a name with the asterisk in the
first character position, as there can be no security checks made on a
gueue whose full name is generated automatically.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is determined by the environment:

e On 0OS/390, the value is 'CSQ.*".
¢ On other platforms, the value is 'AMQ.*".

In all cases, the value is a null-terminated string in C, and a blank-padded
string in other programming languages.

AlternateUserld (MQCHAR12)
Alternate user identifier.

If MQOO_ALTERNATE_USER_AUTHORITY is specified for the MQOPEN
call, or MQPMO_ALTERNATE_USER_AUTHORITY for the MQPUT1 call,
this field contains an alternate user identifier that is to be used to check
the authorization for the open, in place of the user identifier that the
application is currently running under. Some checks, however, are still
carried out with the current user identifier (for example, context checks).

If MQOO_ALTERNATE_USER_AUTHORITY or
MQPMO_ALTERNATE_USER_AUTHORITY is specified and this field is
entirely blank up to the first null character or the end of the field, the open
can succeed only if no user authorization is needed to open this object
with the options specified.

If neither MQOO_ALTERNATE_USER_AUTHORITY nor
MQPMO_ALTERNATE_USER_AUTHORITY is specified, this field is
ignored.

The following differences exist in the environments indicated:

e On 0OS/390, only the first 8 characters of AlternateUserId are used to
check the authorization for the open. However, the current user
identifier must be authorized to specify this particular alternate user
identifier; all 12 characters of the alternate user identifier are used for

Chapter 2. Data type descriptions - structures 181

MQOD — RecsPresent field ¢ MQOD — UnknownDestCount field

this check. The user identifier must contain only characters allowed by
the external security manager.

If AlternatelUserId is specified for a queue, the value may be used
subsequently by the queue manager when messages are put. If the
MQPMO_* CONTEXT options specified on the MQPUT or MQPUT1
call cause the queue manager to generate the identity context
information, the queue manager places the AlternateUserlId into the
Userldentifier field in the MQMD of the message.

¢ On 16-bit Windows and 32-bit Windows, this field is accepted but
ignored.

¢ In other environments, AlternatelUserlId is used only for access control
checks on the object being opened. If the object is a queue,
AlternatelUserId does not affect the content of the UserIdentifier
field in the MQMD of messages sent using that queue handle.

This is an input field. The length of this field is given by
MQ_USER_ID_LENGTH. The initial value of this field is the null string in
C, and 12 blank characters in other programming languages.

The remaining fields are not present if Version is less than MQOD_VERSION_2.

RecsPresent (MQLONG)
Number of object records present.

This is the number of MQOR object records that have been provided by
the application. If this number is greater than zero, it indicates that a
distribution list is being opened, with RecsPresent being the number of
destination queues in the list. It is valid for a distribution list to contain
only one destination.

The value of RecsPresent must not be less than zero, and if it is greater
than zero ObjectType must be MQOT_Q); the call fails with reason code
MQRC_RECS PRESENT_ERROR if these conditions are not satisfied.

On 0OS/390, this field must be zero.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

KnownDestCount (MQLONG)
Number of local queues opened successfully.

This is the number of queues in the distribution list that resolve to local
gueues and that were opened successfully. The count does not include
gueues that resolve to remote queues (even though a local transmission
gueue is used initially to store the message). If present, this field is also
set when opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

UnknownDestCount (MQLONG)
Number of remote queues opened successfully

This is the number of queues in the distribution list that resolve to remote
gueues and that were opened successfully. If present, this field is also set
when opening a single queue which is not in a distribution list.

182 MQsSeries Application Programming Reference

MQOD - InvalidDestCount field ¢ MQOD — ObjectRecOffset field

This is an output field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

InvalidDestCount (MQLONG)
Number of queues that failed to open.

This is the number of queues in the distribution list that failed to open
successfully. If present, this field is also set when opening a single queue
which is not in a distribution list.

Note: If present, this field is set only if the CompCode parameter on the
MQOPEN or MQPUT1 call is MQCC_OK or MQCC_WARNING; it
is not set if the CompCode parameter is MQCC_FAILED.

This is an output field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

ObjectRecOffset (MQLONG)
Offset of first object record from start of MQOD.

This is the offset in bytes of the first MQOR object record from the start of
the MQOD structure. The offset can be positive or negative.
ObjectRecOffset is used only when a distribution list is being opened.
The field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQOR
object records must be provided in order to specify the names of the
destination queues in the distribution list. This can be done in one of two
ways:

¢ By using the offset field ObjectRecOffset

In this case, the application should declare its own structure containing
an MQOD followed by the array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the
first element in the array from the start of the MQOD. Care must be
taken to ensure that this offset is correct.

Using ObjectRecOffset is recommended for programming languages
which do not support the pointer data type, or which implement the
pointer data type in a fashion which is not portable to different
environments (for example, the COBOL programming language).

¢ By using the pointer field ObjectRecPtr

In this case, the application can declare the array of MQOR structures
separately from the MQOD structure, and set ObjectRecPtr to the
address of the array.

Using ObjectRecPtr is recommended for programming languages
which support the pointer data type in a fashion which is portable to
different environments (for example, the C programming language).

Whichever technique is chosen, one of ObjectRecOffset and ObjectRecPtr
must be used; the call fails with reason code
MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are
nonzero.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

Chapter 2. Data type descriptions - structures 183

MQOD - ResponseRecOffset field ¢ MQOD — ObjectRecPtr field

ResponseRecOffset (MQLONG)
Offset of first response record from start of MQOD.

This is the offset in bytes of the first MQRR response record from the start
of the MQOD structure. The offset can be positive or negative.
ResponseRecOffset is used only when a distribution list is being opened.
The field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQRR
response records can be provided in order to identify the queues that
failed to open (CompCode field in MQRR), and the reason for each failure
(Reason field in MQRR). The data is returned in the array of response
records in the same order as the queue names occur in the array of object
records. The queue manager sets the response records only when the
outcome of the call is mixed (that is, some queues were opened
successfully while others failed, or all failed but for differing reasons);
reason code MQRC_MULTIPLE_REASONS from the call indicates this
case. If the same reason code applies to all queues, that reason is
returned in the Reason parameter of the MQOPEN or MQPUT1 call, and
the response records are not set. Response records are optional, but if
they are supplied there must be RecsPresent of them.

The response records can be provided in the same way as the object
records, either by specifying an offset in ResponseRecOffset, or by
specifying an address in ResponseRecPtr; see the description of
ObjectRecOffset above for details of how to do this. However, no more
than one of ResponseRecOffset and ResponseRecPtr can be used; the call
fails with reason code MQRC_RESPONSE_RECORDS_ERROR if both
are nonzero.

For the MQPUT1 call, these response records are used to return
information about errors that occur when the message is sent to the
gueues in the distribution list, as well as errors that occur when the
gueues are opened. The completion code and reason code from the put
operation for a queue replace those from the open operation for that
gueue only if the completion code from the latter was MQCC_OK or
MQCC_WARNING.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

ObjectRecPtr (MQPTR)
Address of first object record.

This is the address of the first MQOR object record. 0bjectRecPtr is
used only when a distribution list is being opened. The field is ignored if
RecsPresent is zero.

Either ObjectRecPtr or ObjectRecOffset can be used to specify the object
records, but not both; see the description of the ObjectRecOffset field
above for details. If ObjectRecPtr is not used, it must be set to the null
pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is not present if Version is less than
MQOD_VERSION_2.

184 mQsSeries Application Programming Reference

MQOD - ResponseRecPtr field ¢ MQOD — AlternateSecurityld field

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte
string.

ResponseRecPtr (MQPTR)
Address of first response record.

This is the address of the first MQRR response record. ResponseRecPtr
is used only when a distribution list is being opened. The field is ignored if
RecsPresent is zero.

Either ResponseRecPtr or ResponseRecOffset can be used to specify the
response records, but not both; see the description of the
ResponseRecOffset field above for details. If ResponseRecPtr is not used, it
must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is not present if Version is less than
MQOD_VERSION_2.

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte
string.

The remaining fields are not present if Version is less than MQOD_VERSION_3.

AlternateSecurityld (MQBYTE40)
Alternate security identifier.

This is a security identifier that is passed with the AlternatelUserlId to the
authorization service to allow appropriate authorization checks to be
performed. AlternateSecuritylId is used only if:

¢ MQOO_ALTERNATE_USER_AUTHORITY is specified on the
MQOPEN call, or

¢ MQPMO_ALTERNATE_USER_AUTHORITY is specified on the
MQPUT1 call,

and the AlternateUseriId field is not entirely blank up to the first null
character or the end of the field.

On Windows NT, AlternateSecuritylId can be used to supply the
Windows NT security identifier (SID) that uniquely identifies the
AlternateUserId. The SID for a user can be obtained from the Windows
NT system by use of the LookupAccountName () Windows API call.

On 0OS/390, this field is ignored.

The AlternateSecurityId field has the following structure:

¢ The first byte is a binary integer containing the length of the significant
data that follows; the length excludes the length byte itself. If no
security identifier is present, the length is zero.

¢ The second byte indicates the type of security identifier that is present;
the following values are possible:

Chapter 2. Data type descriptions - structures 185

MQOD - ResolvedQName field ¢ MQOD — ResolvedQMgrName field

MQSIDT_NT_SECURITY_ID
Windows NT security identifier.
MQSIDT_NONE
No security identifier.

¢ The third and subsequent bytes up to the length defined by the first
byte contain the security identifier itself.

¢ Remaining bytes in the field are set to binary zero.
The following special value may be used:

MQSID_NONE
No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQSID_NONE_ARRAY is also defined; this has the same value as
MQSID_NONE, but is an array of characters instead of a string.

This is an input field. The length of this field is given by
MQ_SECURITY_ID_LENGTH. The initial value of this field is
MQSID_NONE. This field is not present if Version is less than
MQOD_VERSION_3.

ResolvedQName (MQCHAR48)

Resolved queue name.

This is the name of the final destination queue, as known to the local
gueue manager. It is set to a nonblank value by the queue manager only
for queues that are opened for browse, input, or output (or any
combination).

ResolvedQName is set to blanks if the object opened is any of the following:

¢ A distribution list
¢ Not opened for browse, input, or output
e Not a queue

This is an output field. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages. This field is
not present if Version is less than MQOD_VERSION_3.

ResolvedQMgrName (MQCHARA48)

Resolved queue manager name.

This is the name of the final destination queue manager, as known to the
local queue manager. It is set to a nonblank value by the queue manager
only for queues that are opened for browse, input, or output (or any
combination).

ResolvedQMgrName is set to blanks if the object opened is any of the
following:

¢ A cluster queue with MQOO_BIND_NOT_FIXED specified (or with
MQOO_BIND_AS_Q_DEF in effect when the DefBind queue attribute
has the value MQBND_BIND_NOT_FIXED)

e A distribution list

¢ Not opened for browse, input, or output

186 MQsSeries Application Programming Reference

¢ Not a queue

MQOD — C declaration

This is an output field. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages. This field is
not present if Version is less than MQOD_VERSION_3.

Table 42. Initial values of fields in MQOD

1. The symbol ‘b’ represents a single blank character.

Field name Name of constant Value of constant
Strucld MQOD_STRUC_ID '0Dbb '
(See note 1)
Version MQOD_VERSION_1 1
ObjectType MQOT_Q 1
ObjectName None Blanks
(See note 2)
ObjectQMgrName None Blanks
DynamicQName None 'CSQ.*' on OS/390;
'AMQ.*"' otherwise
AlternateUserId None Blanks
RecsPresent None 0
KnownDestCount None 0
UnknownDestCount None 0
InvalidDestCount None 0
ObjectRecOffset None 0
ResponseRecOffset None 0
ObjectRecPtr None Null pointer or null bytes
ResponseRecPtr None Null pointer or null bytes
AlternateSecurityld MQSID_NONE Nulls
ResolvedQName None Blanks
ResolvedQMgrName None Blanks
Notes:

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other programming languages.

3. In the C programming language, the macro variable MQOD_DEFAULT contains the values listed above. It
can be used in the following way to provide initial values for the fields in the structure:

MQOD MyOD = {MQOD_DEFAULT};

C language declaration
typedef struct tagMQOD {

MQCHAR4
MQLONG
MQLONG
MQCHAR48
MQCHAR48
MQCHAR48
MQCHAR12

Strucld;
Version;
ObjectType;
ObjectName;
ObjectQMgrName;
DynamicQName;

AlternateUserld;

/*

/*
/*
/*
/*

Structure identifier =/
Structure version number */
Object type */

Object name */

Object queue manager name */
Dynamic queue name */
Alternate user identifier */

187

Chapter 2. Data type descriptions - structures

MQOD — COBOL declaration

MQL
MQL

MQL
MQL
MQL
MQL
MQP
MQP
MQB
MQC

MQC
b M

ONG RecsPresent; /* Number of object records present =*/

ONG KnownDestCount; /* Number of local queues opened suc-
cessfully =/

ONG UnknownDestCount; /* Number of remote queues opened suc-
cessfully =/

ONG InvalidDestCount; /* Number of queues that failed to
open */

ONG ObjectRecOffset; /* 0ffset of first object record from
start of MQOD */

ONG ResponseRecOffset; /* 0ffset of first response record
from start of MQOD */

TR ObjectRecPtr; /* Address of first object record */

TR ResponseRecPtr; /* Address of first response record */

YTE4Q AlternateSecurityld; /+ Alternate security identifier */

HAR48 ResolvedQName; /* Resolved queue name */

HAR48 ResolvedQMgrName; /* Resolved queue manager name */

0D;

COBOL language declaration

**

10

**

15

**

15

**

15

*%x

15

**

15

**

15

**

15

%

15

**

15

*%x

15

**

15

**

15

%

15

**

15

*%x

15

**

15

**

15

**

15

188 MQsSeries Application Prog

MQOD structure

MQOD.

Structure identifier

MQOD-STRUCID PIC X(4).
Structure version number

MQOD-VERSION PIC S9(9) BINARY.
Object type

MQOD-0BJECTTYPE PIC S9(9) BINARY.
Object name

MQOD-0BJECTNAME PIC X(48).

Object queue manager name
MQOD-0BJECTQMGRNAME PIC X(48).
Dynamic queue name

MQOD-DYNAMICQNAME PIC X(48).
Alternate user identifier
MQOD-ALTERNATEUSERID PIC X(12).

Number of object records present
MQOD-RECSPRESENT PIC S9(9) BINARY.
Number of local queues opened successfully
MQOD-KNOWNDESTCOUNT PIC S9(9) BINARY.
Number of remote queues opened successfully
MQOD-UNKNOWNDESTCOUNT PIC S9(9) BINARY.
Number of queues that failed to open
MQOD-INVALIDDESTCOUNT PIC S9(9) BINARY.
Offset of first object record from start of MQOD
MQOD-OBJECTRECOFFSET PIC S9(9) BINARY.
Offset of first response record from start of MQOD
MQOD-RESPONSERECOFFSET ~ PIC S9(9) BINARY.
Address of first object record
MQOD-0BJECTRECPTR POINTER.

Address of first response record
MQOD-RESPONSERECPTR POINTER.
Alternate security identifier
MQOD-ALTERNATESECURITYID PIC X(40).
Resolved queue name

MQOD-RESOLVEDQNAME PIC X(48).
Resolved queue manager name
MQOD-RESOLVEDQMGRNAME PIC X(48).

ramming Reference

MQOD - PL/I declaration ¢ MQOD - S/390 assembler declaration

PL/I declaration (AlX, OS/2, OS/390, VSE/ESA, and Windows NT)

dcl

1 MQOD based,

3 Strucld char(4), /* Structure identifier =/

3 Version fixed bin(31), /* Structure version number =*/

3 ObjectType fixed bin(31), /* Object type */

3 ObjectName char(48), /* Object name */

3 ObjectQMgrName char(48), /* Object queue manager name */

3 DynamicQName char(48), /* Dynamic queue name x/

3 AlternateUserlId char(12), /* Alternate user identifier =/

3 RecsPresent fixed bin(31), /* Number of object records
present */

3 KnownDestCount fixed bin(31), /* Number of Tocal queues opened
successfully */

3 UnknownDestCount fixed bin(31), /* Number of remote queues opened

successfully =/

3 InvalidDestCount fixed bin(31), /* Number of queues that failed
to open */

3 ObjectRecOffset fixed bin(31), /* Offset of first object record
from start of MQOD =*/

3 ResponseRecOffset fixed bin(31), /* Offset of first response
record from start of MQOD */

3 ObjectRecPtr pointer, /* Address of first object
record */

3 ResponseRecPtr pointer, /* Address of first response
record */

3 AlternateSecurityld char(40), /* Alternate security
identifier */

3 ResolvedQName char(48), /* Resolved queue name */

3 ResolvedQMgrName char(48); /* Resolved queue manager name */

System/390 assembler-language declaration (OS/390 only)

MQOD DSECT

MQOD_STRUCID DS CL4 Structure identifier
MQOD_VERSION DS F Structure version number
MQOD_OBJECTTYPE DS F Object type
MQOD_OBJECTNAME DS CL48 Object name
MQOD_OBJECTQMGRNAME DS CL48 Object queue manager name
MQOD_DYNAMICQNAME DS CL48 Dynamic queue name
MQOD_ALTERNATEUSERID DS CLI12 Alternate user identifier
MQOD_RECSPRESENT DS F Number of object records
* present
MQOD_KNOWNDESTCOUNT DS F Number of local queues

* opened successfully
MQOD_UNKNOWNDESTCOUNT DS F Number of remote queues

* opened successfully
MQOD_INVALIDDESTCOUNT DS F Number of queues that failed
* to open
MQOD_OBJECTRECOFFSET DS F Offset of first object

* record from start of MQOD
MQOD_RESPONSERECOFFSET DS F 0ffset of first response
* record from start of MQOD
MQOD_OBJECTRECPTR DS F Address of first object

* record
MQOD_RESPONSERECPTR DS F Address of first response
* record

Chapter 2. Data type descriptions - structures 189

MQOD -TAL declaration

MQOD_ALTERNATESECURITYID DS

*

MQOD_RESOLVEDQNAME DS

MQOD_RESOLVEDQMGRNAME DS

MQOD_LENGTH EQU
ORG

MQOD_AREA DS

TAL declaration (Tandem NSK only)

* MQOD -Visual Basic declaration

XL40 Alternate security
identifier

CL48 Resolved queue name

CL48 Resolved queue manager name

*-MQOD Length of structure

MQOD

CL(MQOD_LENGTH)

STRUCT MQOD™DEF (*) ;BEGINSTRUCT STRUCID;
BEGIN STRING BYTE [0:3]; END;INT(32) VERSION;
INT(32) OBJECTTYPE;STRUCT

OBJECTNAME;
BEGIN STRING BYTE [0:47]; END;STRUCT OBJECTQMGRNAME ;
BEGIN STRING BYTE [0:47]; END;STRUCT DYNAMICQNAME ;
BEGIN STRING BYTE [0:47]; END;STRUCT ALTERNATEUSERID;

BEGIN STRING BYTE [0:11]; END;

Visual Basic declaration (Windows platforms

Type MQOD
Strucld As String*4
Version As Long
ObjectType As Long
ObjectName As String*48
ObjectQMgrName As String*48
DynamicQName As String*48
AlternateUserId As String=*12
RecsPresent As Long
KnownDestCount As Long
UnknownDestCount As Long
InvalidDestCount As Long
ObjectRecOffset As Long
ResponseRecOffset As Long
ObjectRecPtr As String*32
ResponseRecPtr As String=*32
AlternateSecurityID As String*40
ResolvedQName As String*48
ResolvedQMgrName As String*48

End Type

Note:

32 null characters by default.

190 MQsSeries Application Programming Reference

only)

'Structure identifier'

'Structure version number'

'Object type'

'Object name'

'Object queue manager name'
'Dynamic queue name'

'"Alternate user identifier'
'"Number of object records present'
"Number of Tlocal queues opened
"successfully'

"Number of remote queues opened'
"successfully'

'"Number of queues that failed to
'0ffset of first object record
"from start of MQOD'

'0ffset of first response record
'start of MQOD'

'Address of first object record'
'"Address of first response record'
'Alternate security identifier'
'Resolved queue name'

'Resolved queue manager name'

open'

from'

The ObjectRecPtr and ResponseRecPtr fields are not used, and are set to

MQOR - Object record * MQOR — ObjectQMgrName field

MQOR - Object record

Fields

The following table summarizes the fields in the structure.

Table 43. Fields in MQOR

Field Description Page
ObjectName Object name 191
ObjectQ@MgrName Object queue manager name 191

The MQOR structure is used to specify the queue name and queue-manager name
of a single destination queue. By providing an array of these structures on the
MQOPEN call, it is possible to open a list of queues; this list is called a distribution
list. Each message put using the queue handle returned by that MQOPEN call is
placed on each of the queues in the list, provided that the queue was opened
successfully.

The character data in the MQOR structure must be in the queue-manager’s
character set. MQOR is an input structure for the MQOPEN and MQPUT1 calls.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
0S/2, 0S/400, Sun Solaris, Windows client, Windows NT.

ObjectName (MQCHARA48)
Object name.

This is the same as the ObjectName field in the MQOD structure (see
MQOD for details), except that:

¢ |t must be the name of a queue.
¢ |t must not be the name of a model queue.

This is always an input field. The initial value of this field is the null string
in C, and 48 blank characters in other programming languages.

ObjectQMgrName (MQCHAR48)
Object queue manager name.

This is the same as the Object@MgriName field in the MQOD structure (see
MQOD for details).

This is always an input field. The initial value of this field is the null string
in C, and 48 blank characters in other programming languages.

Chapter 2. Data type descriptions - structures 191

MQOR - language declarations

Table 44. Initial values of fields in MQOR

Field name Name of constant Value of constant
ObjectName None Blanks

(See note 1)
ObjectQMgrName None Blanks
Notes:

1. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

2. In the C programming language, the macro variable MQOR_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure

MQOR MyOR = {MQOR_DEFAULT};

C language declaration

typedef struct tagMQOR {

MQCHAR48 ObjectN

MQCHAR48 (ObjectQMgrName;

} MQOR;

COBOL language declaration

** MQOR structure
10 MQOR.
*ok Object name

15 MQOR-OBJECTNAME

ame; /* Object name =*/
/* Object queue manager name x/

*% Object queue manager name

15 MQOR-OBJECTQMGRNAME PIC X(48).

PL/l declaration (AlX, OS/2, and Windows NT)

dcl
1 MQOR based,
3 ObjectName

char(48), /* Object name */

PIC X(48).

3 ObjectQMgrName char(48); /* Object queue manager name x/

Visual Basic declaration (Windows NT only)

Type MQOR
ObjectName
ObjectQMgrName

End Type

192 MQsSeries Application Programming Reference

As String*48 'Object name'

As String*48 'Object queue manager name'

MQPMO - Put-message options

MQPMO - Put message options

The following table summarizes the fields in the structure.

Table 45. Fields in MQPMO

Field Description Page

Strucld Structure identifier 194

Version Structure version number 194

Options Options that control the action of MQPUT and 194
MQPUT1

Context Object handle of input queue 204

KnownDestCount Number of messages sent successfully to local 205
queues

UnknownDestCount Number of messages sent successfully to 205
remote queues

InvalidDestCount Number of messages that could not be sent 205

ResolvedQName Resolved name of destination queue 205

ResolvedQMgriName Resolved name of destination queue manager 206

Note: The remaining fields are not present if Version is less than

MQPMO_VERSION_2.

RecsPresent Number of put message records or response 206
records present

PutMsgRecFields Flags indicating which MQPMR fields are 206
present

PutMsgRecOffset Offset of first put-message record from start of 207
MQPMO

ResponseRecOffset Offset of first response record from start of 208
MQPMO

PutMsgRecPtr Address of first put message record 209

ResponseRecPtr Address of first response record 209

The current version of MQPMO is given by MQPMO_CURRENT_VERSION. Fields
that exist only in the more-recent versions of the structure are identified as such in
the descriptions that follow. The declarations of MQPMO provided in the header,
COPY, and INCLUDE files for the supported programming languages contain the
additional fields, but the initial value provided for the Version field is
MQPMO_VERSION_1. To use the additional fields, the application must set the
version number to MOQPMO_CURRENT_VERSION. Applications which are
intended to be portable between several environments should use a more-recent

version MQPMO only if all of those environments support that version.

The MQPMO structure is an input/output parameter for the MQPUT and MQPUT1

calls.

Chapter 2. Data type descriptions - structures

193

MQPMO - Strucld field ¢ MQPMO - Options field

Fields

StrucId (MQCHARA4)
Structure identifier.

The value must be:

MQPMO_STRUC_ID
Identifier for put-message options structure.

For the C programming language, the constant

MQPMO_STRUC _ID_ARRAY is also defined; this has the same
value as MQPMO_STRUC _ID, but is an array of characters instead
of a string.

This is always an input field. The initial value of this field is
MQPMO_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQPMO_VERSION_1
Version-1 put-message options structure.

This version is supported in all environments.

MQPMO_VERSION_2
Version-2 put-message options structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

The following constant specifies the version number of the current version:

MQPMO_CURRENT_VERSION
Current version of put-message options structure.

This is always an input field. The initial value of this field is
MQPMO_VERSION_1.

Options (MQLONG)
Options that control the action of MQPUT and MQPUT1.

Any or none of the following can be specified. If more than one is
required the values can be:

¢ Added together (do not add the same constant more than once), or

¢ Combined using the bitwise OR operation (if the programming
language supports bit operations).

Combinations that are not valid are noted; any other combinations are
valid. The following options are described:

MQPMO_SYNCPOINT
MQPMO_NO_SYNCPOINT
MQPMO_NEW_MSG_ID

194 mQsSeries Application Programming Reference

MQPMO - Options field

MQPMO_NEW_CORREL_ID
MQPMO_LOGICAL_ORDER
MQPMO_NO_CONTEXT
MQPMO_DEFAULT_CONTEXT
MQPMO_PASS_IDENTITY_CONTEXT
MQPMO_PASS_ALL_CONTEXT
MQPMO_SET_IDENTITY_CONTEXT
MQPMO_SET_ALL_CONTEXT
MQPMO_ALTERNATE_USER_AUTHORITY
MQPMO_FAIL_IF_QUIESCING
MQPMO_NONE

MQPMO_SYNCPOINT
Put message with syncpoint control.

The request is to operate within the normal unit of work protocols.
The message is not visible outside the unit of work until the unit of
work is committed. If the unit of work is backed out, the message is
deleted.

If neither this option nor MOQPMO_NO_SYNCPOINT is specified, the
inclusion of the put request in unit of work protocols is determined by
the environment:

¢ On OS/390 and VSE/ESA, the put request is within a unit of
work.

¢ In all other environments, the put request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT should be
specified explicitly.

MQPMO_SYNCPOINT must not be specified with
MQPMO_NO_SYNCPOINT.

MQPMO_NO_SYNCPOINT
Put message without syncpoint control.

The request is to operate outside the normal unit of work protocols.
The message is available immediately, and it cannot be deleted by
backing out a unit of work.

If neither this option nor MQPMO_SYNCPOINT is specified, the
inclusion of the put request in unit of work protocols is determined by
the environment:

¢ On 0OS/390 and VSE/ESA, the put request is within a unit of
work.

¢ |n all other environments, the put request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT should be
specified explicitly.

Chapter 2. Data type descriptions - structures 195

MQPMO — Options field

MQPMO_NO_SYNCPOINT must not be specified with
MQPMO_SYNCPOINT.

This option is not supported on VSE/ESA.

MQPMO_NEW_MSG_ID
Generate a new message identifier.

This option causes the queue manager to replace the contents of the
MsgId field in MQMD with a new message identifier. This message
identifier is sent with the message, and returned to the application on
output from the MQPUT or MQPUTL call.

This option can also be specified when the message is being put to
a distribution list; see the description of the MsgId field in the
MQPMR structure for details.

Using this option relieves the application of the need to reset the
MsgId field to MQMI_NONE prior to each MQPUT or MQPUT1 call.

This option is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQPMO_NEW_CORREL _ID
Generate a new correlation identifier.

This option causes the queue manager to replace the contents of the
Correlld field in MQMD with a new correlation identifier. This
correlation identifier is sent with the message, and returned to the
application on output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to
a distribution list; see the description of the CorrelId field in the
MQPMR structure for details.

MQPMO_NEW_CORREL_ID is useful in situations where the
application requires a unique correlation identifier.

This option is supported in the following environments: AlX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Group and segment option : The option described below relates to
messages in groups and segments of logical messages. The following
definitions may be of help in understanding this option:

Physical message
This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).
Generally, physical messages are distinguished by differing values
for the message identifier (MsgId field in MQMD), although this is not
enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a
physical message. But where logical messages are extremely large,
system constraints may make it advisable or necessary to split a

196 MQsSeries Application Programming Reference

MQPMO - Options field

logical message into two or more physical messages, called
segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier
(GroupId field in MQMD), and the same message sequence number
(MsgSegNumber field in MQMD). The segments are distinguished by
differing values for the segment offset (0ffset field in MQMD), which
gives the offset of the data in the physical message from the start of
the data in the logical message. Because each segment is a
physical message, the segments in a logical message usually have
differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also
has a nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message
does not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a
null group identifier (MQGI_NONE), unless the logical message
belongs to a message group.

Message group
This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number
of logical messages in the group. If one or more of the logical
messages is segmented, there will be more than n physical
messages in the group.

MQPMO_LOGICAL_ORDER
Messages in groups and segments of logical messages will be put in
logical order.

This option tells the queue manager how the application will put
messages in groups and segments of logical messages. It can be
specified only on the MQPUT call; it is not valid on the MQPUT1 call.

If MQPMO_LOGICAL_ORDER is specified, it indicates that the
application will use successive MQPUT calls to:

¢ Put the segments in each logical message in the order of
increasing segment offset, starting from 0, with no gaps.

e Put all of the segments in one logical message before putting the
segments in the next logical message.

¢ Put the logical messages in each message group in the order of
increasing message sequence number, starting from 1, with no
gaps.
¢ Put all of the logical messages in one message group before
putting logical messages in the next message group.
The above order is called “logical order”.

Because the application has told the queue manager how it will put
messages in groups and segments of logical messages, the
application does not have to maintain and update the group and

Chapter 2. Data type descriptions - structures 197

MQPMO — Options field

segment information on each MQPUT call, as the queue manager
does this. Specifically, it means that the application does not need
to set the Groupld, MsgSeqNumber, and Offset fields in MQMD, as the
gueue manager sets these to the appropriate values. The
application need set only the the Msgflags field in MQMD, to indicate
when messages belong to groups or are segments of logical
messages, and to indicate the last message in a group or last
segment of a logical message.

Once a message group or logical message has been started,
subsequent MQPUT calls must specify the appropriate MQMF_x
flags in MsgFlags in MQMD. If the application tries to put a message
not in a group when there is an unterminated message group, or put
a message which is not a segment when there is an unterminated
logical message, the call fails with reason code
MQRC_INCOMPLETE_GROUP or MQRC_INCOMPLETE_MSG, as
appropriate. However, the queue manager retains the information
about the current message group and/or current logical message,
and the application can terminate them by sending a message
(possibly with no application message data) specifying
MQMF_LAST MSG_IN_GROUP and/or MQMF_LAST SEGMENT
as appropriate, before reissuing the MQPUT call to put the message
that is not in the group or not a segment.

Table 46 on page 199 shows the combinations of options and flags
that are valid, and the values of the GroupId, MsgSeqNumber, and
Offset fields that the queue manager uses in each case.
Combinations of options and flags that are not shown in the table are
not valid. The columns in the table have the following meanings:

LOG ORD A “¥" means that the row applies only when the
MQGMO_LOGICAL_ORDER option is specified.
MIG A Y means that the row applies only when the

MQMF_MSG_IN_GROUP or
MQMF_LAST _MSG_IN_GROUP option is specified.

SEG A v means that the row applies only when the
MQMF_SEGMENT or MQMF_LAST_SEGMENT
option is specified.

A “(v)” means that the row applies whether or not
the MOQMF_SEGMENT or MQMF_LAST_SEGMENT
option is specified.

SEG OK A “¥" means that the row applies only when the
MQMF_SEGMENTATION_ALLOWED option is
specified.

A “(V)” means that the row applies whether or not

the MQMF_SEGMENTATION_ALLOWED option is
specified.

Cur grp A “v" means that the row applies only when a
current message group exists prior to the call.

A “(v)" means that the row applies whether or not a
current message group exists prior to the call.

198 MQsSeries Application Programming Reference

Cur log msg

Other columns

MQPMO - Options field

A “¥" means that the row applies only when a
current logical message exists prior to the call.

A “(v)” means that the row applies whether or not a
current logical message exists prior to the call.

uses.

These show the values that the queue manager
“Previous” denotes the value used for the

field in the previous message for the queue handle.

Table 46. MQPUT options relating to messages in groups and segments of logical messages

Options you specify Group and Values the queue manager uses
log-msg status
prior to call
LOG MIG SEG SEG Cur Cur GroupId MsgSeqNumber Offset
ORD OK arp log
msg
% MQGI_NONE 1 0
v v New group id 1 0
v v W) New group id 1 0
v W) v Previous group id 1 Previous offset +
previous segment
length
v v W) W) New group id 1 0
v v W) W) v Previous group id Previous sequence 0
number + 1
v v v) v v Previous group id Previous sequence Previous offset +
number previous segment
length
W) () MQGI_NONE 1 0
v W) W) New group id if 1 0
MQGI_NONE, else
value in field
v W) W) W) New group id if 1 Value in field
MQGI_NONE, else
value in field
v W) W) W) New group id if Value in field 0
MQGI_NONE, else
value in field
v v W) W) W) New group id if Value in field Value in field
MQGI_NONE, else
value in field
Notes:

MQPMO_LOGICAL_ORDER is not valid on the MQPUT1 call.

For the MsgId field, the queue manager generates a new message identifier if MQPMO_NEW_MSG_ID or MQMI_NONE is specified, and uses

the value in the field otherwise.

For the CorrelId field, the queue manager generates a new correlation identifier if MQPMO_NEW_CORREL_ID is specified, and uses the

value in the field otherwise.

When MQPMO_LOGICAL_ORDER is specified, the queue manager
requires that all messages in a group and segments in a logical
message be put with the same value in the Persistence field in
MQMD, that is, all must be persistent, or all must be nonpersistent.
If this condition is not satisfied, the MQPUT call fails with reason
code MQRC_INCONSISTENT_PERSISTENCE.

The MQPMO_LOGICAL_ORDER option affects units of work as

follows:

¢ |f the first physical message in a group or logical message is put
within a unit of work, all of the other physical messages in the

Chapter 2. Data type descriptions - structures

199

MQPMO — Options field

group or logical message must be put within a unit of work, if the
same queue handle is used. However, they need not be put
within the same unit of work. This allows a message group or
logical message consisting of many physical messages to be
split across two or more consecutive units of work for the queue
handle.

¢ |If the first physical message in a group or logical message is not
put within a unit of work, none of the other physical messages in
the group or logical message can be put within a unit of work, if
the same queue handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason
code MQRC_INCONSISTENT_UOW.

When MQPMO_LOGICAL_ORDER is specified, the MQMD supplied
on the MQPUT call must not be less than MQMD_VERSION_2. If
this condition is not satisfied, the call fails with reason code
MQRC_WRONG_MD_VERSION.

If MQPMO_LOGICAL_ORDER is not specified, messages in groups
and segments of logical messages can be put in any order, and it is
not necessary to put complete message groups or complete logical
messages. It is the application’s responsibility to ensure that the
Groupld, MsgSeqNumber, Offset, and MsgFlags fields have appropriate
values.

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.
When the system restarts, the application can set the GroupId,
MsgSeqNumber, Of fset, MsgFlags, and Persistence fields to the
appropriate values, and then issue the MQPUT call with
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT set as desired,
but without specifying MQPMO_LOGICAL_ORDER. If this call is
successful, the queue manager retains the group and segment
information, and subsequent MQPUT calls using that queue handle
can specify MQPMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains
for the MQPUT call is separate from the group and segment
information that it retains for the MQGET call.

For any given queue handle, the application is free to mix MQPUT
calls that specify MQPMO_LOGICAL_ORDER with MQPUT calls that
do not, but the following points should be noted:

e Each successful MQPUT call that does not specify
MQPMO_LOGICAL_ORDER causes the queue manager to set
the group and segment information for the queue handle to the
values specified by the application; this replaces the existing
group and segment information retained by the queue manager
for the queue handle.

e |If MQPMO_LOGICAL_ORDER is not specified, the call does not
fail if there is a current message group or logical message, but
the message or segment put is not the next one in the group or
logical message. The call may however succeed with an
MQCC_WARNING completion code. Table 47 on page 201
shows the various cases that can arise. In these cases, if the

200 MQsSeries Application Programming Reference

MQPMO - Options field

completion code is not MQCC_OK, the reason code is one of the
following (as appropriate):

MQRC_INCOMPLETE_GROUP
MQRC_INCOMPLETE_MSG
MQRC_INCONSISTENT_PERSISTENCE
MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and

segment information for the MQPUT1 call.

Table 47. Outcome when MQPUT or MQCLOSE call not consistent with group and segment information

Current call Previous call
MQPUT with MQPUT without
MQPMO_LOGICAL_ORDER MQPMO_LOGICAL_ORDER
MQPUT with MQCC_FAILED MQCC_FAILED
MQPMO_LOGICAL_ORDER
MQPUT without MQCC_WARNING MQCC_OK
MQPMO_LOGICAL_ORDER
MQCLOSE with an unterminated group MQCC_WARNING MQCC_OK
or logical message

Applications that simply want to put messages and segments in
logical order are recommended to specify
MQPMO_LOGICAL_ORDER, as this is the simplest option to use.
This option relieves the application of the need to manage the group
and segment information, because the queue manager manages that
information. However, specialized applications may need more
control than provided by the MQPMO_LOGICAL_ORDER option, and
this can be achieved by not specifying that option. If this is done,
the application must ensure that the GroupId, MsgSeqNumber, Offset,
and MsgFlags fields in MQMD are set correctly, prior to each MQPUT
or MQPUTL call.

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify
MQPMO_LOGICAL_ORDER. There are two reasons for this:

¢ |f the messages are retrieved and put in order, specifying
MQPMO_LOGICAL_ORDER will cause a new group identifier to
be assigned to the messages, and this may make it difficult or
impossible for the originator of the messages to correlate any
reply or report messages that result from the message group.

¢ In a complex network with multiple paths between sending and
receiving queue managers, the physical messages may arrive
out of order. By specifying neither MOQPMO_LOGICAL_ORDER,
nor the corresponding MQGMO_LOGICAL_ORDER on the
MQGET call, the forwarding application can retrieve and forward
each physical message as soon as it arrives, without having to
wait for the next one in logical order to arrive.

Chapter 2. Data type descriptions - structures 201

MQPMO — Options field

Applications that generate report messages for messages in groups
or segments of logical messages should also not specify
MQPMO_LOGICAL_ORDER when putting the report message.

MQPMO_LOGICAL_ORDER can be specified with any