MQSeries® ====5=

System Administration

SC33-1873-01

MQSeries® ====5=

System Administration

SC33-1873-01

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix |, “Notices” on
page 379.

Second edition (March 1999)

This edition applies to the following products:

e MQSeries for AIX® V5.1

e MQSeries for HP-UX V5.1

* MQSeries for OS/2® Warp V5.1
¢ MQSeries for Sun Solaris V5.1

* MQSeries for Windows NT® V5.1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

S021 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994,1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

About this book Xiii
Who this book is for Xiv
What you need to know to understand this book Xiv
Terms used in thisbook Xiv
Using MQSeries for UNIX systems Xiv
Using MQSeries for OS/2 Warp and Windows NT XV
The calls MQCONN and MQCONNX XV
MQSeries publications XVi
MQSeries cross-platform publications XVi
MQSeries platform-specific publications XiX
MQSeries Level 1 product publications XX
Softcopy books XX
MQSeries information available on the Internet XXii
Related publications XXil
Summary of Changes xXiii
MQSeries V5.1 xXiii
Part 1. Guidance 1
Chapter 1. Introduction to MQSeries 9
MQSeries and message queuing 9
Messages and qQUEUES 10
Objects 12
System default objects 18
Local and remote administration L 18
Clients and servers 19
Extending queue manager facilites 20
Security . .. 21
Transactional support 22
Chapter 2. An introduction to MQSeries administration 23
Local and remote administration 23
Performing administration tasks using control commands 23
Performing administrative tasks using MQSC commands 23
Performing administrative tasks using PCF commands 24
Administration on MQSeries for Windows NT 24
Understanding MQSeries file names 27
Chapter 3. Administration using the MQSeries Explorer 29
What you can do with the MQSeries Explorer 29
Prerequisite software 30
Required definitions for administration 31
Showing and hiding queue managers and clusters 31
Cluster membership 32
Security . .. 33
Data COnNversion 34
Saving and loading console files o000 34
Switching off the automatic population facility 35

© Copyright IBM Corp. 1994,1999 ili

Contents

Chapter 4. Administration using the MQSeries Services snap-in 37
What you can do with the MQSeries Services snap-in 37
Prerequisite software 38
Using the MQSeries Services snap-in 38
Security . .. 39
Chapter 5. Using MQSeries Web Administration 43
Points to consider when using MQSeries Web Administration 43
Prerequisite software 44
Encryption policies 45
Starting up MQSeries Web Administration server 45
Logging on as an MQSeries administrator (clientside) 45
Administering queue managers 46
Using MQSeries command scripts oo 47
Configuring the MQSeries Web Administration server 48
Chapter 6. Managing queue managers using control commands 49
Using control commands 49
Creating a queue manager 51
Creating a default queue manager 54
Starting a queue manager 54
Making an existing queue manager the default 55
Stopping a queue manager 55
Restarting a queue manager 57
Deleting a queue manager 57
Chapter 7. Administering local MQSeries objects 59
Supporting application programs that use the MQI 59
Performing local administration tasks using MQSC commands 60
Working with local queues 70
Monitoring local queues with the Windows NT Performance Monitor 76
Working with alias queues 77
Working with model queues 79
Managing objects for triggering 80
Chapter 8. Automating administration tasks 83
PCF commands 83
Managing the command server for remote administration 85
Chapter 9. Administering remote MQSeries objects 87
Channels, clusters, and remote queuing 87
Remote administration from a local queue manager using MQSC commands . 89
Creating a local definition of a remote queue 95
Using remote queue definitions as aliases 99
Data conversion 100

iv MQSeries System Administration

Contents

Chapter 10. Protecting MQSeries objects 103
Why you need to protect MQSeries resources 103
Before you begin (UNIX systems) 104
Before you begin (Windows NT) 104
Understanding the Object Authority Manager 107
Using Object Authority Manager commands 110
Object Authority Manager guidelines 113
Understanding the authorization specification tables 116
Authorization files 122
Chapter 11. Configuring MQSeries 127
MQSeries configuration files 127
Attributes for changing MQSeries configuration information 130
Changing queue manager configuration information 136
Example mgs.ini and gm.ini files for MQSeries for OS/2Warp 149
Example mgs.ini and gm.ini files for MQSeries for UNIX systems 154
Chapter 12. The MQSeries dead-letter queue handler 157
Invoking the DLQ handler 157
The DLQ handlerrulestable 158
How the rules table is processed 165
An example DLQ handler rules table 167
Chapter 13. Instrumentation events 169
What are instrumentation events? 169
Why use events? 170
Chapter 14. Transactional support 175
Database coordination 176
DB2 configuration 180
Oracle configuration 186
Sybase configuration 192
Multiple database configurations L. 200
Administration tasks 201
External syncpoint coordination 206
Using CICS 208
Chapter 15. Recovery and restart 213
Making sure that messages are not lost (logging) 213
Checkpointing — ensuring complete recovery 216
Calculating the size ofthellog 219
Managing logs 220
Using the log for recovery 222
Protecting MQSeries log files 225
Backing up and restoring MQSeries 225
Recovery scenarios 226
Dumping the contents of the log using the dmpmglog command 228

Contents V

Contents

Chapter 16. Problem determination 247
Preliminary checks 247
Whattodonext 251
Application design considerations L. 255
Incorrect output L 256
Errorlogs 259
Dead-letter queues 263
Configuration files and problem determination 263
Tracing 263
First-failure support technology (FFST) 270
Problem determination with clients 274
Part 2. Reference 277
Chapter 17. MQSeries control commands 279
Names of MQSeries objects 279
How to read syntax diagrams 280
Syntax help 281
crtmgevx (Data conversion) 282
crtmgm (Create queue manager) 284
ditmgm (Delete queue manager) 289
dmpmglog (Dumplog) 291
dspmgaut (Display authority) 293
dspmgcsv (Display command server) 297
dspmgfls (Display MQSeries files) 298
dspmgtrc (Display MQSeries formatted trace output) 300
dspmgtrn (Display MQSeries transactions) 301
endmqgcsv (End command server) 303
endmgqlsr (End listener) 305
endmgm (End queue manager) 306
endmgtrc (End MQSeries trace) 308
rcdmgimg (Record mediaimage) 310
rcrmgobj (Recreate object) 312
rsvmqgtrn (Resolve MQSeries transactions) 314
runmqgchi (Run channel initiator) oo 316
runmgchl (Runchannel) 317
runmgdlq (Run dead-letter queue handler) 318
runmglsr (Run listener) 320
runmgsc (Run MQSeries commands) 322
runmgtmc (Start client trigger monitor) 325
runmgtrm (Start trigger monitor) 326
setmqgaut (Set/reset authority) 327
strmqcsv (Start command server) 333
strmgm (Start queue manager) 334
strmqgtrc (Start MQSeries trace) 336

Vi MQSeries System Administration

Contents

Part 3. Appendixes 341
Appendix A. System and default objects 343
Windows NT default configuration objects 345
Appendix B. Directory structure (UNIX systems) 347
Queue manager log directory structure 350
Appendix C. Directory structure (0OS/2) 351
Queue manager log directory structure L. 353
Appendix D. Directory structure (Windows NT) 355
Queue manager log directory structure 357
Appendix E. Stopping and removing queue managers manually 359
Stopping a queue manager manually 359
Removing queue managers manually L. 360
Appendix F. User identifier service 365
Appendix G. Comparing command sets 367
Commands for queue manager administration 367
Commands for command server administration 368
Commands for queue administration 368
Commands for process administration 369
Commands for channel administration, 370
Other control commands 371
Appendix H. Using the User Datagram Protocol 373
Configuring MQSeries for UDP 373
Theretry exit 376
Hints and tips 378
Appendix I. Notices 379
Trademarks 381

Part 4. Glossary and index 383
Glossary of terms and abbreviations 385
Index 395

Contents Vil

Contents

viii MQSeries System Administration

Figures

CeNoO~ONE

el ol ol ol =
o U h~wWhEO

17.
18.
19.
20.
21.

22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.

© Copyright IBM Corp. 1994,1999

Figures

MQSeries Web Administration 44
Queues, messages, and applications 59
Typical output from a DISPLAY QMGR command 64
Extract from the MQSC command file, myprog.in 66
Extract from the MQSC report file, myprog.out 67
Typical results from queue browser 75
Remote administration using MQSC commands 90
Setting up channels and queues for remote administration 91
Commands to create channels and a transmission queue 92
Authority specification 125
Example of an mgs.ini file for MQSeries for OS/2 Warp 150
Example of gm.ini file for queue manager firstgm 151
Example of gm.ini file for queue manager secondgm 152
Example of gm.ini file for queue manager thirdgm 153
Example of an MQSeries configuration file for UNIX systems 154
Example queue manager configuration file for MQSeries for UNIX

SYSIEMS . . . 155
An example rule from a DLQ handler rulestable 160
Understanding instrumentation events 170
Monitoring queue managers across different platforms, on a single node 171
Source code for db2swit.c for platforms other than Windows NT 180
Source code for db2swit.c on Windows NT (Microsoft Visual

C+t-gpecific) 180
Source code for db2swit.defon OS/2 181
Makefile for DB2 switchon OS/2 181
Source code for db2swit.def on Windows NT 182
Makefile for DB2 switch on Windows NT 182
Makefile for DB2 switch on AIX 183
Makefile for DB2 switch on Sun Solaris 183
Makefile for DB2 switch on HP-UX 183
Sample XAResourceManager entry for DB2 on OS/2 and Windows NT 184
Sample XAResourceManager entry for DB2 on UNIX platforms 185
Sample commands to give connect user ID authority to MQBANKDB . 185
Source code for Oracle switch load file, oraswit.c 187
Makefile for Oracle7 switch load file on AIX 188
Makefile for Oracle8 switch load file on AIX 188
Makefile for Oracle7 switch load file on Sun Solaris 188
Makefile for Oracle8 switch load file on Sun Solaris 189
Makefile for Oracle7 switch load file on HP-UX 189
Makefile for Oracle8 switch load file on HP-UX 189
Sample XAResourceManager entry for Oracle on UNIX platforms . . . 191
Example contents of $SYBASE/xa_config 192
Source code for sybswit.c on UNIX platforms 193
Makefile for Sybase switch on AIX 194
Makefile for Sybase switch on Sun Solaris 194
Source code for sybswit.c on Windows NT 195
Source code for sybwit.def on Windows NT 197

Makefile for Sybase switch on Windows NT using Microsoft Visual C++ 198
Makefile for Sybase switch on Windows NT using IBM VisualAge for C++ 198
Sample XAResourceManager entry for Sybase on UNIX platforms . .. 199

Figures

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

65.
66.
67.
68.

Sample XAResourceManager entries for multiple DB2 databases
Sample XAResourceManager entries for a DB2 and Oracle database
Sample dspmqtrn output
Sample dspmqtrn output for a transaction inerror
Commented out XAResourceManager stanza
Checkpointing
Checkpointing with a long-running transaction
Example dmpmglog output
Extract from an MQSeries errorlog
Sample AlX trace
Sample HP-UX trace
Sample MQSeries for Sun Solaristrace
Sample MQSeries for Windows NT trace
FFEST report for MQSeries for UNIX systems
Sample MQSeries for Windows NT First Failure Symptom Report
Default directory structure (UNIX systems) after a queue manager has
beenstarted
Default file tree (OS/2) after a queue manager has been started

Default file tree (Windows NT) after a queue manager has been started
The supplied file EARTH.TST, UDP support
The supplied file MOON.TST, UDP support

X MQSeries System Administration

Tables

e B N

WWNNNNNNNNNNRRPRRPRPPRRPRPR
FOOCRIDTRNNRPOO®NDTRWN RO

© Copyright IBM Corp. 1994,1999

Tables

Platforms and command levels 31
Configuration options for MQSeries Web Administration 48
Categories of control commands 49
Security authorization needed for MQl calls 118
MQSC commands and security authorization needed 120
PCF commands and security authorization needed 121
Authorization directories for MQSeries for UNIX systems 123
Authorization directories for MQSeries for Windows NT 123
List of possible ISO CCSIDs 131
Default outstanding connection requests (TCP) 145
Default outstanding connection requests (SPX) 146
XA-compliant relational databases 177
XA-compliant external syncpoint coordinators 206
CICS task termination exits 210
Sample exits 211
Log overhead sizes 219
MQS_TRACE_OPTIONS settings 265
How to read syntax diagrams 280
Security authorities from the dspmgaut command 295
Specifying authorizations for different object types 330
System and default objects - queues 343
System and default objects - channels 344
System and default objects - namelists 344
System and default objects - processes 344
Objects created by the Windows NT Default Configuration application . 346
Commands for queue manager administration 367
Commands for command server administration 368
Commands for queue administration 368
Commands for process administration 369
Commands for channel administration 370
Other control commands 371

Xi

Tables

Xii MQSeries System Administration

About this book

About this book

This book applies to the MQSeries Version 5 products, which are:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

These products provide application programming services that enable application
programs to communicate with each other using message queues. This form of
communication is referred to as commercial messaging. The applications involved
can exist on different nodes on a wide variety of machine and operating system
types. They use a common application programming interface, called the Message
Queuing Interface or MQI, so that programs developed on one platform can readily
be transferred to another.

This book describes the system administration aspects of the MQSeries Version 5
products, and the services they provide to support commercial messaging. This
includes managing the queues that applications use to receive their messages, and
ensuring that applications have access to the queues that they require.

Installation of MQSeries is described in one of the following:

e “Chapter 3. Installing the MQSeries for AIX Server” in the MQSeries for AIX
V5.1 Quick Beginnings book

e “Chapter 3. Installing MQSeries for OS/2 Warp” in the MQSeries for 0OS/2
Warp V5.1 Quick Beginnings book

e “Chapter 3. Installing the MQSeries for HP-UX Server” in the MQSeries for
HP-UX V5.1 Quick Beginnings book

e “Chapter 3. Installing the MQSeries for Sun Solaris Server” in the MQSeries for
Sun Solaris V5.1 Quick Beginnings book

e Chapter 4, “Installing MQSeries for Windows NT” in the MQSeries for Windows
NT V5.1 Quick Beginnings book

Post-installation configuration of a distributed queuing network is described in
Chapter 2, “Making your applications communicate” in the MQSeries
Intercommunication book.

© Copyright IBM Corp. 1994,1999 Xiii

About this book

Who this book is for

This book is intended for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book

To use this book, you should have a good understanding of the operating systems
described here, and of the utilities associated with them. You do not need to have
worked with message queuing products before, but you should have an
understanding of the basic concepts of message queuing.

Terms used in this book
In this book, the term “the MQSeries Version 5 products " means:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

The term “MQSeries for UNIX ® systems ” means:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for Sun Solaris V5.1

Using MQSeries for UNIX systems

The following restrictions apply to the use of UNIX operating-system facilities with
the MQSeries product:

1. MQSeries for AIX and MQSeries for HP-UX use the UNIX subroutine ftok to
generate standard interprocess communication keys. Using ftok exclusively
within a node ensures that these keys are unique, which is a requirement of
MQSeries. Therefore, do not use any code that generates interprocess keys in
a different way.

2. MQCONN sets up its own signal handler for the signals:

SIGSEGV
SIGBUS

User handlers for these signals are restored after every MQI call.
The remaining signals are handled differently.

SIGINT
SIGQUIT
SIGFPE
SIGTERM
SIGHUP

If any handler for this second group of signals receives an interrupt within an
MQI call, the application handler must exit the application. MQI may not be
called.

Xiv MQSeries System Administration

About this book

3. For each MQI call, MQSeries uses the UNIX interval timer ITIMER_REAL to
generate SIGALRM signals. Any previous SIGALRM handler and timer interval
is saved on entry to MQI and restored on exit. Any timer interval set is
therefore frozen while within MQI.

The base directory
Throughout this book, the name mgmtop has been used to represent the name of
the base directory where MQSeries is installed on UNIX systems.

e For MQSeries for AIX, mgmtop represents the directory /usr/mgm .

e For other UNIX systems, the name of the actual directory is /opt/mgm .

Using MQSeries for OS/2 Warp and Windows NT
Examples in this book relevant to MQSeries for Windows NT may use New
Technology file system (NTFS), high performance file system (HPFS), or file
allocation table (FAT) file names. Examples relevant to MQSeries for OS/2 Warp
may use HPFS or FAT file names.

The examples are valid for all file-naming systems, the nhame being transformed if
necessary when the FAT system is in use. Name transformation is described in
“Understanding MQSeries file names” on page 27.

The calls MQCONN and MQCONNX

References in this book to the call MQCONN - Connect queue manager can be
replaced by references to the call MQCONNX - Connect queue manager
(extended); MQCONNX requires an additional parameter. For more information
about these calls, see “MQCONN - Connect queue manager” and “MQCONNX -
Connect queue manager (extended)” in the MQSeries Application Programming
Reference manual.

About this book XV

MQSeries publications

MQSeries publications

This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications

Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400® V4R2M1

e MQSeries for AT&T GIS UNIX V2.2

e MQSeries for Digital OpenVMS V2.2

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for OS/390® V2.1

e MQSeries for SINIX and DC/OSx V2.2
¢ MQSeries for Sun Solaris V5.1

e MQSeries for Tandem NonStop Kernel V2.2
e MQSeries for VSE/ESA™ V2.1

e MQSeries for Windows™ V2.0

¢ MQSeries for Windows V2.1

e MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xx. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure

The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing

MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide

The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication

The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

XVi MQSeries System Administration

MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration

The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries Command Reference

The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management

The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1
e MQSeries for Windows V2.0

e MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide

The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference

The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary

The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

About this book XVii

MQSeries publications

XVviii

MQSeries Using C ++

MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for AS/400 V4AR2M1
e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
¢ MQSeries for 0OS/390 V2.1

e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

e AIX

e HP-UX

e 0S/2

e Sun Solaris

e Windows NT

¢ Windows 3.1

¢ Windows 95 and Windows 98

MQSeries Using Java ™

MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries Bindings for Java and the MQSeries Client
for Java. MQSeries Java is supported by these MQSeries products:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference

The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a
programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries Queue Manager Clusters

MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a number of examples of
tasks you can perform to set up and maintain clusters of queue managers.

MQSeries System Administration

MQSeries publications

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications

Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AlX

MQSeries for AlX Version 5 Release 1 Quick Beginnings, GC33-1867
MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869
MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868
MQSeries for OS/390

MQSeries for 0S/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3
MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934

About this book ~ XiX

MQSeries publications

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries for Sun Solaris
MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870
MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’'s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387

MQSeries LotusScript® Extension, SC34-5404

MQSeries Level 1 product publications

Softcopy books

For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

BookManager format ®

The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

XX MQSeries System Administration

MQSeries publications

HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1

e MQSeries for Sun Solaris V5.1

e MQSeries for Windows NT V5.1 (compiled HTML)
¢ MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

http://www.software.ibm.com/ts/mgseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

¢ MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
¢ MQSeries for Windows NT V5.1
e MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

http://www.software.ibm.com/ts/mgseries/

PostScript format

The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format

The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

About this book XXi

MQSeries on the Internet e Related publications

MQSeries information available on the Internet

— MQSeries Web site

The MQSeries product family Web site is at:

http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:
e Obtain latest information about the MQSeries product family.
¢ Access the MQSeries books in HTML and PDF formats.

¢ Download MQSeries SupportPacs.

Related publications
This section lists other documentation referred to in this book.
IBM TXSeries™ Administration Reference, SC33-1563

IBM TXSeries for Windows NT, Version 4.2: CICS® Administration Guide,
SC33-1881

XXii MQSeries System Administration

Summary of changes

Summary of Changes

This edition of MQSeries System Administration applies to these new versions and
releases of MQSeries products:

e MQSeries for AIX V5.1

e MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
e MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

Major new function supplied with each of these MQSeries products is summarized
here.

MQSeries V5.1

The MQSeries Version 5 Release 1 products are:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

The following new function is provided in all of the V5.1 products:

MQSeries queue manager clusters
MQSeries queue managers can be connected to form a cluster of queue
managers. Within a cluster, queue managers can make the queues they host
available to every other queue manager. Any queue manager can send a
message to any other queue manager in the same cluster without the need for
explicit channel definitions, remote queue definitions, or transmission queues for
each destination. The main benefits of MQSeries clusters are:

¢ Fewer system administration tasks
¢ Increased availability
¢ Workload balancing

Clusters are supported by these MQSeries products:

¢ MQSeries for AIX V5.1

¢ MQSeries for HP-UX V5.1

e MQSeries for OS/2 Warp V5.1
¢ MQSeries for 0S/390 V2.1

¢ MQSeries for Sun Solaris V5.1
e MQSeries for Windows NT V5.1

See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
description of this function.

MQSeries Administration Interface (MQAI)
The MQSeries Administration Interface is an MQSeries programming interface
that simplifies manipulation of MQSeries PCF messages for administrative tasks.
It is described in a new book, MQSeries Administration Interface Programming
Guide and Reference, SC34-5390.

© Copyright IBM Corp. 1994,1999 XXili

Summary of changes

XXV

Support for Windows 98 clients
A Windows 98 client can connect to any MQSeries V5.1 server.

Message queue size
A message queue can be up to 2 GB.

Controlled, synchronous shutdown of a queue manager
A new option has been added to the endmgm command to allow controlled,
synchronous shutdown of a queue manager.

Java support
The MQSeries Client for Java and MQSeries Bindings for Java are provided with
all MQSeries V5.1 products. The client, bindings, and common files have been
packaged into .jar files for ease of installation.

Euro support
MQSeries supports new and changed code pages that use the euro currency
symbol. Details of code pages that include the euro symbol are provided in the
MQSeries Application Programming Reference book.

Conversion of the EBCDIC new-line character
You can control the conversion of EBCDIC new-line characters to ensure that
data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
unaltered by the ASCII conversion.

Client connections via MQCONNX
A client application can specify the definition of the client-connection channel at
run time in the MQCNO structure of the MQCONNX call.

Additional new function in MQSeries for AIX V5.1
e The UDP transport protocol is supported.
e Sybase databases can participate in global units of work.
e Multithreaded channels are supported.

Additional new function in MQSeries for HP-UX V5.1
e MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
e Multithreaded channels are supported.
e Both HP-UX kernel threads and DCE threads are supported.

Additional new function in MQSeries for OS/2 Warp V5.1
0OS/2 high memory support is provided.

Additional new function in MQSeries for Sun Solaris V5.1
¢ MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris
7.

¢ Sybase databases can participate in global units of work.

e Multithreaded channels are supported.

MQSeries System Administration

Summary of changes

Additional new function in MQSeries for Windows NT V5.1
MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
NT. New function in this release includes:

e Close integration with Microsoft Windows NT Version 4.0, including exploitation
of extra function provided by additional Microsoft offerings. The main highlights

are:

— Graphical tools and applications for managing, controlling, and exploring
MQSeries:

MQSeries Explorer—a snap-in for the Microsoft management console
(MMC) that allows you to query, change, and create the local, remote,
and cluster objects across an MQSeries network.

MQSeries Services—an MMC snap-in that controls the operation of
MQSeries components, either locally or remotely within the Windows
NT domain. It monitors the operation of MQSeries servers and
provides extensive error detection and recovery functions.

MQSeries API Exerciser—a graphical application for exploring the
messaging and queuing programming functions that MQSeries
provides. It can also be used in conjunction with the MQSeries
Explorer to gain a deeper understanding of the effects of MQSeries
operations on objects and messages.

MQSeries Postcard—a sample application that can be used to verify an
MQSeries installation, for either local or remote messaging.

— Support for the following features of Windows NT has been added:

— An

Windows NT performance monitor—used to access and display
MQSeries information, such as the current depth of a queue and the
rate at which message data is put onto and taken off queues.

ActiveDirectory—programmable access to MQSeries objects is
available through the Active Directory Service Interfaces (ADSI).

Windows NT user IDs—previous MQSeries restrictions on the validity of
Windows NT user IDs have been removed. All valid Windows NT user
IDs are now valid identifiers for MQSeries operations. MQSeries uses
the associated Windows NT Security Identifier (SID) and the Security
Account Manager (SAM). The SID allows the MQSeries Object
Authority Manager (OAM) to identify the specific user for an
authorization request.

Windows NT registry—now used to hold all configuration and related
data. The contents of any configuration (.INI) files from previous
MQSeries installations of MQSeries for Windows NT products are
migrated into the registry; the .INI files are then deleted.

A set of Component Object Model (COM) classes, which allow ActiveX
applications to access the MQSeries Message Queue Interface (MQI)
and the MQSeries Administration Interface (MQAI).

online Quick Tour of the product concepts and functions.

Summary of Changes XXV

Summary of changes

XXVi

— An online Information Center that gives you quick access to task help
information, reference information, and Web-based online books and home
pages.

— Simplified installation of MQSeries for Windows NT, with default options
and automatic configuration.

e Support for web-based administration of an MQSeries network, which provides
a simplified way of using the MQSC commands and scripts and allows you to
create powerful macros for standard administration tasks.

e Support for MQSeries LotusScript Extension (MQLSX), which allows Lotus
Notes applications that are written in LotusScript to communicate with
applications that run in non-Notes environments.

e Support for Microsoft Visual Basic for Windows Version 5.0.

e Performance improvements over the MQSeries for Windows NT Version 5.0
product.

¢ Information and examples on how MQSeries applications can interface with and
exploit the lightweight directory access protocol (LDAP) directories.

e Support for Sybase patrticipation in global units of work.

MQSeries System Administration

Part 1. Guidance

Chapter 1. Introduction to MQSeries 9
MQSeries and message queuing 9
Time-independent applications 9
Message-driven processing 9
Messages and qUEUES 10
What is a message? 10
What is a queue? 10
Objects 12
Object names 12
Managing objects 13
Object attributes 13
MQSeries queue managers 13
MQSeries queueS 14
Process definitions 17
Channels 17
Clusters 18
Namelists 18
System default objects 18
Local and remote administration 18
Clients and servers 19
MQSeries applications in a client-server environment 19
Extending queue manager facilites 20
User exits 20
Installable services 20
Security . . . 21
Object Authority Manager (OAM) facility 21
DCE security e 22
Transactional support 22
Chapter 2. An introduction to MQSeries administration 23
Local and remote administration 23
Performing administration tasks using control commands 23
Performing administrative tasks using MQSC commands 23
Performing administrative tasks using PCF commands 24
Administration on MQSeries for Windows NT 24
Using commands on MQSeries for Windows NT 25
Using the MQSeries Explorer 25
Using the MQSeries Services snap-in 25
Using the Windows NT default configuration application 26
Using MQSeries Web Administration 26
Editing configuration information 26
Understanding MQSeries file names 27
Queue manager name transformation 27
Object name transformation 28
Chapter 3. Administration using the MQSeries Explorer 29
What you can do with the MQSeries Explorer 29
Points to consider when using the MQSeries Explorer 30
Prerequisite software 30
Required definitions for administration 31

© Copyright IBM Corp. 1994,1999 1

Showing and hiding queue managers and clusters 31

Cluster membership 32
Security . . 33
Authorization to run the MQSeries Explorer 33
Security for connecting to remote queue managers 33
Using a security exit 33
Data conversion 34
Saving and loading console files 34
Switching off the automatic population facility 35
Chapter 4. Administration using the MQSeries Services snap-in 37
What you can do with the MQSeries Services snap-in 37
Prerequisite software 38
Using the MQSeries Services snap-in- 38
Using the MQSeries alert monitor application 38
MQSeries Services snap-in recovery facilities 39
Security . .. 39
Controlling access 40
Changing the MQAdmin user account 41
Chapter 5. Using MQSeries Web Administration 43
Points to consider when using MQSeries Web Administration 43
Prerequisite software 44
Prerequisite software for the serverside 44
Prerequisite software for the clientside 44
Encryption policies 45
Starting up MQSeries Web Administration server 45
Logging on as an MQSeries administrator (clientside) 45
Authorization to run MQSeries Web Administration 46
Security for connecting to remote queue managers 46
Administering queue managers 46
Administering local queue managers 46
Administering remote queue managers 46
Using MQSeries command scripts 47
Configuring the MQSeries Web Administration server 48
Chapter 6. Managing queue managers using control commands 49
Using control commands 49
Using control commands (MQSeries for UNIX systems) 50
Using control commands (MQSeries for OS/2 Warp and MQSeries for
Windows NT) 50
Creating a queue manager 51
Guidelines for creating queue managers 51
Backing up configuration files after creating a queue manager 53
Creating a default queue manager 54
Starting a queue manager 54
Making an existing queue manager the default 55
Stopping a queue manager e 55
Restarting a queue manager 57
Deleting a queue manager 57
Chapter 7. Administering local MQSeries objects 59
Supporting application programs that use the MQI 59
Performing local administration tasks using MQSC commands 60

2 MQSeries System Administration

MQSeries object names 61

Using the MQSC facility interactively 61
Feedback from MQSC commands 62
Ending interactive inputto MQSC 63
Displaying queue manager attributes oL 63
Using a queue manager that is not the default 65
Altering queue manager attributes 65
Running MQSC commands from textfiles 65
Resolving problems with MQSC 68
Working with local queues 70
Defining a local queue 70
Defining a dead-letter queue 71
Displaying default object attributes L 71
Copying a local queue definition 72
Changing local queue attributes, 72
Clearing a local queue 73
Deleting a local queue 73
Browsing queues 74
Monitoring local queues with the Windows NT Performance Monitor 76
Working with alias queues 77
Defining an alias queue 77
Using other commands with alias queues 78
Working with model queues 79
Defining a model queue 79
Using other commands with model queues 79
Managing objects for triggering 80
Defining an application queue for triggering 80
Defining an initiation queue 81
Creating a process definiton L 81
Displaying your process definiton 82
Chapter 8. Automating administration tasks 83
PCF commands 83
Attributes in MQSC and PCFs 84
Escape PCFs 84
Using the MQAI to simplify the use of PCFs 84
Active Directory Services 85
Managing the command server for remote administration 85
Starting the command server 86
Displaying the status of the command server 86
Stopping a command server 86
Chapter 9. Administering remote MQSeries objects 87
Channels, clusters, and remote queuing 87
Remote administration using clusters 88
Remote administration from a local queue manager using MQSC commands . 89
Preparing queue managers for remote administration 89
Preparing channels and transmission queues for remote administration . . 90
Defining channels and transmission queues 91
Starting the channels 92
Issuing MQSC commands remotely 93
Working with queue managers on OS/390 94
If you have problems using MQSC remotely 95
Creating a local definition of a remote queue 95

Part 1. Guidance 3

Understanding how local definitions of remote queues work 95

An alternative way of putting messages on a remote queue 97
Using other commands with remote queues 97
Creating a transmission queue 98
Using remote queue definitions as aliases, 99
Queue manager aliases 99
Reply-to queue aliases 99
Data Conversion 100
When a queue manager cannot convert messages in built-in formats . . . 100
File ccsidtbl 100
Conversion of messages in user-defined formats 101
Chapter 10. Protecting MQSeries objects 103
Why you need to protect MQSeries resources 103
Before you begin (UNIX systems) 104
User IDs in user group mgm (UNIX systems) 104
Before you begin (Windows NT) 104
User IDs for administration 105
Restricted-access Windows NT objects 106
Security policies 106
Understanding the Object Authority Manager 107
How the OAM works 108
Managing access through user groups 108
Default user group (UNIX systemsonly) 109
Resources you can protect with the OAM 109
Using groups for authorizations 109
Disabling the object authority manager 110
Using Object Authority Manager commands 110
Using the OAM set or reset authority control command, setmqaut 110
Using the OAM display authority control command (dspmgaut) 112
Object Authority Manager guidelines 113
User IDs (MQSeries for UNIX systemsonly) 113
Queue manager directories 113
Queues . .. 113
Alternate-user authority 113
Context authority 114
Remote security considerations L 115
Channel command security 115
Understanding the authorization specification tables 116
MQI authorizations 117
Administration authorizations 120
Authorizations for MQSC commands in escape PCFs 120
Authorization files 122
Types of authorization 122
Authorization file pathso 123
Authorization file contents — MQSeries for UNIX systems 124
Authorization file contents — MQSeries for Windows NT 124
Authority stanza 124
Managing authorization files oL 126
Chapter 11. Configuring MQSeries 127
MQSeries configuration files 127
Editing configuration files 128
The MQSeries configuration file, mgs.ini 128

4 MQSeries System Administration

Queue manager configuration files, gm.ini 129
Attributes for changing MQSeries configuration information 130
The AllQueueManagers stanza 130
The ClientExitPath stanza 131
The DefaultQueueManager stanza 131
The ExitProperties stanza 132
The LogDefaults stanza 132
The QueueManager stanza 134
Changing queue manager configuration information 136
The Service stanza 136
The ServiceComponent stanza 137
The Log stanza 138
The RestrictedMode stanza 140
The XAResourceManager stanza 140
The Channels stanza 142
The LU62, NETBIOS, TCP, and SPX stanzas 144
The ExitPath stanza 147
The UDP stanza 147
The Transport stanza 149
Example mgs.ini and gm.ini files for MQSeries for OS/2Warp 149
Resultant mgs.ini file (MQSeries for OS/2 Warp) 150

Resultant gm.ini file for queue manager firstgm (MQSeries for OS/2 Warp) 151
Resultant gm.ini file for queue manager secondgm (MQSeries for OS/2

Warp) . . 152
Resultant gm.ini file for queue manager thirdgm (MQSeries for OS/2 Warp) 153
Example mgs.ini and gm.ini files for MQSeries for UNIX systems 154
Chapter 12. The MQSeries dead-letter queue handler 157
Invoking the DLQ handler 157
The sample DLQ handler, amgsdlq 158
The DLQ handler rulestable 158
Controldata 159
Rules (patterns and actions) 160
Rules table conventions 163
How the rules table is processed 165
Ensuring that all DLQ messages are processed 166
An example DLQ handler rules table 167
Chapter 13. Instrumentation events 169
What are instrumentation events? 169
Why use events? 170
Typesofevent 171
Event notification through event queues 172
Enabling and disabling events 172
Eventmessages 173
Chapter 14. Transactional support 175
Database coordination 176
Restrictions L 177
Database connections 177
Configuring database managers 178
DB2 configuration 180
Checking the environment variable settings 180
Creating the DB2 switch load file 180

Part 1. Guidance 5

Adding the XAResourceManager stanza forDB2 184

Changing DB2 configuration parameters 185
Oracle configuration 186
Minimum supported levels for Oracle and applying patches 186
Checking the environment variable settings 186
Enabling Oracle XA support 186
Creating the Oracle switch load file 187
Adding XAResourceManager configuration information for Oracle 189
Changing Oracle configuration parameters 191
Sybase configuration 192
Enabling Sybase XA support 192
Creating the Sybase switch load file 193
Adding XAResourceManager configuration information for Sybase 199
Multiple database configurations L. 200
Security considerations 200
Administration tasks 201
In-doubt units of work 201
Using the dspmqgtrn command L 202
Using the rsvmqgtrn command 203
Mixed outcomes and errors 204
Changing configuration information 205
External syncpoint coordination 206
The MQSeries XA switch structure 207
Using CICS 208
The CICS two-phase commit process 208
The CICS single-phase commit process 210
Chapter 15. Recovery and restart 213
Making sure that messages are not lost (logging) 213
What logs look like 214
Typesoflogging 214
Checkpointing — ensuring complete recovery 216
Calculating the size ofthellog 219
Managing logs 220
What happens when a disk gets full 221
Managing log files 221
Using the log for recovery 222
Recovering from problems o 222
Media recovery 223
Recovering damaged objects during startup 224
Recovering damaged objects at othertimes 225
Protecting MQSeries log files 225
Backing up and restoring MQSeries L. 225
Backing up MQSeries 225
Restoring MQSeries 226
Recovery scenarios 226
Disk drive failures 226
Damaged queue manager object L. 227
Damaged single object 228
Automatic media recovery failure oL 228
Dumping the contents of the log using the dmpmglog command 228
Chapter 16. Problem determination 247
Preliminary checks 247

6 MQSeries System Administration

Has MQSeries run successfully before? 248

Are there any error messages? 248
Are there any return codes explaining the problem? 248
Can you reproduce the problem? 248
Have any changes been made since the last successful run? 249
Has the application run successfully before? 249
Problems with commands 250
Does the problem affect specific parts of the network? 250
Does the problem occur at specific times of the day? 251
Is the problem intermittent? 251
Have you applied any service updates? 251
Whattodonext 251
Have you obtained incorrect output? 252
Have you failed to receive a response from a PCF command? 252
Are some of your queues failing? 253
Does the problem affect only remote queues? 254
Is your application or system running slowly? 254
Application design considerations L 255
Effect of message length 255
Effect of message persistence L. 255
Searching for a particular message L. 255
Queues that contain messages of different lengths 255
Frequency of syncpoints 256
Use of the MQPUT1 call 256
Number of threads inuse 256
Incorrect output 256
Messages that do not appear onthe queue 256
Messages that contain unexpected or corrupted information 258
Problems with incorrect output when using distributed queues 258
Errorlogs 259
Log files 260
Early errors 261
Operator messages 261
An example MQSeries errorlog L 261
The MQSeries log-dump utility 262
Dead-letter queues 263
Configuration files and problem determination 263
Tracing 263
Tracing MQSeries for AIX 263
Tracing MQSeries for HP-UX and MQSeries for Sun Solaris 266
Tracing MQSeries for OS/2 Warp and MQSeries for Windows NT 268
First-failure support technology (FFST) 270
FFST: MQSeries for UNIX systems 270
FFST: MQSeries for OS/2 Warp and Windows NT 271
FFST: MQSeries for OS/2Warp 272
Problem determination with clients 274
Terminating clients 274
Error messages with clients 275

Part 1. Guidance 7

8 MQSeries System Administration

Introduction ¢ MQSeries and message queuing

Chapter 1.

Introduction to MQSeries

This chapter introduces the MQSeries Version 5.1 products from an administrator’s
perspective, and describes the basic concepts of MQSeries and messaging. It
contains these sections:

e “MQSeries and message queuing”

* “Messages and queues” on page 10

e “Objects” on page 12

e “System default objects” on page 18

e “Clients and servers” on page 19

» “Extending queue manager facilities” on page 20
e “Security” on page 21

e “Transactional support” on page 22

MQSeries and message queuing

MQSeries allows application programs to use message queuing to participate in
message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.
For example, HP-UX and OS/390 applications can communicate through MQSeries
for HP-UX and MQSeries for OS/390 respectively. The applications are shielded
from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface known
as the message queue interface (or MQI) whatever platform the applications are
run on. This makes it easier for you to port application programs from one platform
to another.

The MQI is described in detail in Chapter 6, “Introducing the Message Queue
Interface” in the MQSeries Application Programming Reference manual.

Time-independent applications

With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving application programs are decoupled so that the sender can continue
processing without having to wait for the receiver to acknowledge receipt of the
message. In fact, the target application does not even have to be running when
the message is sent. It can retrieve the message after it is has been started.

Message-driven processing

© Copyright IBM Corp. 1994,1999

Upon arrival on a queue, messages can automatically start an application using a
mechanism known as triggering . If necessary, the applications can be stopped
when the message (or messages) have been processed.

Messages and queues

Messages and queues

Messages and queues are the basic components of a message queuing system.

What is a message?
A message is a string of bytes that is meaningful to the applications that use it.
Messages are used for transferring information from one application program to
another (or to different parts of the same application). The applications can be
running on the same platform, or on different platforms.

MQSeries messages have two parts:

e The application data
The content and structure of the application data is defined by the application
programs that use them.

* A message descriptor
The message descriptor identifies the message and contains additional control
information such as the type of message, and the priority assigned to the
message by the sending application.

The format of the message descriptor is defined by MQSeries. For a complete
description of the message descriptor, see “MQMD - Message descriptor” in the
MQSeries Application Programming Reference manual.

Message lengths
The maximum length a message can be is 100 MB (where 1 MB equals 1 048 576
bytes). In practice, the message length may be limited by:

e The maximum message length defined for the receiving queue
¢ The maximum message length defined for the queue manager

e The maximum message length defined by either the sending or receiving
application

e The amount of storage available for the message

It may take several messages to send all the information that an application
requires.

What is a queue?

A queue is a data structure used to store messages. The messages may be put
on the queue by application programs, or by a queue manager as part of its
normal operation.

Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns and for storing all the messages it receives onto the
appropriate queues.

The maximum size of a queue is 2 GB. For information about planning the amount
of storage you require for queues, see the MQSeries Planning Guide or visit the
following web site for platform-specific performance reports:

http://www.software.ibm.com/ts/mgseries/txppacs/txpml.html

10 MQSeries System Administration

Messages and queues

How do applications send and receive messages?
Application programs send and receive messages using MQI calls .

For example, to put a message onto a queue, an application:
1. Opens the required queue by issuing an MQI MQOPEN call

2. Issues an MQI MQPUT call to put the message onto the queue

3. Another application can retrieve the message from the same queue by issuing
an MQI MQGET call.

For more information about MQI calls, see Chapter 3, “Call descriptions” in the
MQSeries Application Programming Reference manual.

Predefined queues and dynamic queues
Queues can be characterized by the way they are created:

* Predefined queues are created by an administrator using the appropriate
MQSeries commands. Predefined queues are permanent; they exist
independently of the applications that use them and survive MQSeries restarts.

¢ Dynamic queues are created when an application issues an OPEN request
specifying the name of a model queue . The queue created is based on a
template queue definition, which is the model queue. You can create a model
gueue using the MQSeries DEFINE QMODEL command. The attributes of a
model queue, for example the maximum number of messages that can be
stored on it, are inherited by any dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues
Suitably authorized applications can retrieve messages from a queue according to
the following retrieval algorithms:

e First-in-first-out (FIFO)

e Message priority, as defined in the message descriptor. Messages that have
the same priority are retrieved on a FIFO basis.

e A program request for a specific message.

The MQGET request from the application determines the method used.

Chapter 1. Introduction to MQSeries 11

Objects

Objects

Object names

Many of the tasks described in this book involve manipulating MQSeries objects .

In the MQSeries Version 5.1, the object types include queue managers, queues,
process definitions, channels, clusters, and namelists.

The manipulation or administration of objects includes:
e Starting and stopping queue managers.
e Creating objects, particularly queues, for applications.

» Working with channels to create communication paths to queue managers on
other (remote) systems. This is described in detail in “How to send a message
to another queue manager” in the MQSeries Intercommunication book.

e Creating clusters of queue managers to simplify the overall administration
process, or to achieve workload balancing.

This book contains detailed information about administration in the following
chapters:

e Chapter 2, “An introduction to MQSeries administration” on page 23

e Chapter 3, “Administration using the MQSeries Explorer” on page 29

e Chapter 4, “Administration using the MQSeries Services snap-in” on page 37

e Chapter 6, “Managing queue managers using control commands” on page 49

e Chapter 7, “Administering local MQSeries objects” on page 59

e Chapter

2
3
4
e Chapter 5, “Using MQSeries Web Administration” on page 43
6
7
8, “Automating administration tasks” on page 83
9

e Chapter 9, “Administering remote MQSeries objects” on page 87

The naming convention adopted for MQSeries objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any given
message should be sent.

For the other types of object, each object has a name associated with it and can be
referenced by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters. For more information about
names, see “Names of MQSeries objects” on page 279.

12 MQSeries System Administration

Managing objects

Objects

You can create, alter, display, and delete objects using:

Control commands, which are typed in from a keyboard

MQSeries commands (MQSC), which can be typed in from a keyboard or read
from a file

Programmable Command Format (PCF) messages, which can be used in an
automation program

MQSeries Administration Interface (MQAI) calls in a program
For MQSeries for Windows NT only:
— MQAI Component Object Model (COM) calls in a program
— Active Directory Service interface (ADSI) calls in a program

— The MQSeries Explorer snap-in and MQSeries Services snap-in running
under the Microsoft Management Console (MMC)

— The Windows NT default configuration application
— MQSeries Web Administration

For more information about these methods, see Chapter 2, “An introduction to
MQSeries administration” on page 23.

Object attributes

The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a
gueue can accommodate is defined by its MaxMsgLength attribute; you can specify
this attribute when you create a queue. The DefinitionType attribute specifies how
the queue was created; you can only display this attribute.

In MQSeries, there are two ways of referring to an attribute:

Using its PCF name, for example, MaxMsgLength.
Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the MQSC facility
is an important part of this book, you are more likely to see the MQSC name in
examples than the PCF name of a given attribute.

MQSeries queue managers

A queue manager provides queuing services to applications, and manages the
gueues that belong to it. It ensures that:

Object attributes are changed according to the commands received.

Special events such as trigger events or instrumentation events are generated
when the appropriate conditions are met.

Messages are put on the correct queue, as requested by the application
making the MQPUT call. The application is informed if this cannot be done,
and an appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager.

Chapter 1. Introduction to MQSeries 13

Objects

The queue manager to which an application is connected is said to be the local
gueue manager for that application. For the application, the queues that belong to
its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager.

A remote queue manager is any queue manager other than the local queue
manager. A remote queue manager may exist on a remote machine across the
network, or may exist on the same machine as the local queue manager.

MQSeries supports multiple queue managers on the same machine.

A gueue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call

MQINQ.

Note: You cannot put messages on a queue manager object; messages are
always put on queue objects, not on queue manager objects.

MQSeries queues
Queues are defined to MQSeries using:

e The appropriate MQSC DEFINE command
¢ The PCF Create Queue command

The commands specify the type of queue and its attributes. For example, a local
gueue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:

* Whether applications can retrieve messages from the queue (GET enabled).
* Whether applications can put messages on the queue (PUT enabled).

¢ Whether access to the queue is exclusive to one application or shared between
applications.

¢ The maximum number of messages that can be stored on the queue at the
same time (maximum queue depth).

¢ The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see “DEFINE QALIAS” through
“DEFINE QREMOTE” in the MQSeries Command Reference manual or “Create
Queue” in the MQSeries Programmable System Management manual.

Using queue objects

There are four types of queue object available in MQSeries. Each type of object
can be manipulated by the product commands and is associated with real queues
in different ways.

1. Local queue object
A local queue object identifies a local queue belonging to the queue manager
to which the application is connected. All queues are local queues in the sense
that each queue belongs to a queue manager and, for that queue manager, the
gueue is a local queue.

14 MQSeries System Administration

Objects

2. A remote queue object
A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the local
gueue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.

Before applications can send messages to a queue on another queue
manager, you must have defined a transmission queue and channels between
the queue managers, unless you have grouped one or more queue managers
together into a cluster. For more information about clusters, see “Remote
administration using clusters” on page 88.

3. An alias queue object
An alias queue allows applications to access a queue by referring to it indirectly
in MQI calls. When an alias queue name is used in an MQI call, the name is
resolved to the name of either a local or a remote queue at run time. This
allows you to change the queues that applications use without changing the
application in any way—you merely change the alias queue definition to reflect
the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access
another queue.

4. A model queue object
A model queue defines a set of queue attributes that are used as a template
for creating a dynamic queue. Dynamic queues are created by the queue
manager when an application issues an MQOPEN request specifying a queue
name that is the name of a model queue. The dynamic queue that is created
in this way is a local queue whose attributes are taken from the model queue
definition. The dynamic queue name can be specified by the application or the
gueue manager can generate the name and return it to the application.

Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Specific local queues used by MQSeries
MQSeries uses some local queues for specific purposes related to its operation.
You must define these queues before MQSeries can use them.

e Application queues
This is a queue that is used by an application through the MQI. It can be a
local queue on the queue manager to which an application is linked, or it can
be a remote queue that is owned by another queue manager.

Applications can put messages on local or remote queues. However, they can
only get messages from a local queue.

* Initiation queues
Initiation queues are queues that are used in triggering. A queue manager puts
a trigger message on an initiation queue when a trigger event occurs. A trigger
event is a logical combination of conditions that is detected by a queue
manager. For example, a trigger event may be generated when the number of
messages on a queue reaches a predefined depth. This event causes the
gueue manager to put a trigger message on a specified initiation queue. This
trigger message is retrieved by a trigger monitor, a special application that
monitors an initiation queue. The trigger monitor then starts up the application
program that was specified in the trigger message.

Chapter 1. Introduction to MQSeries 15

Objects

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

See “Managing objects for triggering” on page 80 and “runmqtrm (Start trigger
monitor)” on page 326. For more information about triggering, see Chapter 14,
“Starting MQSeries applications using triggers” in the MQSeries Application
Programming Guide.

Transmission queues

Transmission queues are queues that temporarily stores messages that are
destined for a remote queue manager. You must define at least one
transmission queue for each remote queue manager to which the local queue
manager is to send messages directly. These queues are also used in remote
administration; see “Remote administration from a local queue manager using
MQSC commands” on page 89. For information about the use of transmission
gueues in distributed queuing, see Chapter 1, “Concepts of
intercommunication” in the MQSeries Intercommunication book.

Cluster transmission queues

Each queue manager within a cluster has a cluster transmission queue called
SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition of this queue is created
by default on every qgueue manager on Version 5.1 of MQSeries for AlX,
HP-UX, OS/2, Warp, Sun Solaris, and Windows NT.

A queue manager that is part of the cluster can send messages on the cluster
transmission queue to any other queue manager that is in the same cluster.

Cluster queue managers can communicate with queue managers that are not
part of the cluster. In order to do this, the queue manager must define
channels and a transmission queue to the other queue manager in the same
way as in a traditional distributed-queuing environment.

During name resolution, the cluster transmission queue takes precedence over
the default transmission queue. When a queue manager that is not part of the
cluster puts a message onto a remote queue, the default action, if there is no
transmission queue with the same name as the destination queue manager, is
to use the default transmission queue.

When a queue manager is part of a cluster, the default action is to use the
SYSTEM.CLUSTER.TRANSMIT.QUEUE, except when the destination queue
manager is not part of the cluster.

Dead-letter queues

A dead-letter queue is a queue that stores messages that cannot be routed to
their correct destinations. This occurs when, for example, the destination
queue is full. The supplied dead-letter queue is called
SYSTEM.DEAD.LETTER.QUEUE. These queues are sometimes referred to as
undelivered-message queues.

For distributed queuing, you should define a dead-letter queue on each queue
manager involved.

Command queues

The command queue, named SYSTEM.ADMIN.COMMAND.QUEUE, is a local
gueue to which suitably authorized applications can send MQSeries commands
for processing. These commands are then retrieved by an MQSeries
component called the command server. The command server validates the
commands, passes the valid ones on for processing by the queue manager,
and returns any responses to the appropriate reply-to queue.

16 MQSeries System Administration

Objects

A command queue is created automatically for each queue manager when that
gueue manager is created.

* Reply-to queues
When an application sends a request message, the application that receives
the message can send back a reply message to the sending application. This
message is put on a queue, called a reply-to queue, which is normally a local
gueue to the sending application. The name of the reply-to queue is specified
by the sending application as part of the message descriptor.

e Event queues
The MQSeries Version 5 products support instrumentation events, which can
be used to monitor queue managers independently of MQI applications.
Instrumentation events can be generated in several ways, for example:

— An application attempting to put a message on a queue that is not available
or does not exist.

— A queue becoming full.
— A channel being started.

When an instrumentation event occurs, the queue manager puts an event
message on an event queue. This message can then be read by a monitoring
application which may inform an administrator or initiate some remedial action if
the event indicates a problem. Note: Trigger events are quite different from
instrumentation events in that trigger events are not caused by the same
conditions, and do not generate event messages.

For more information about instrumentation events, see Chapter 1, “Using
instrumentation events to monitor queue managers” in the MQSeries
Programmable System Management manual.

Process definitions

Channels

A process definition object defines an application that is to be started in response
to a trigger event on an MQSeries queue manager. See the “Initiation queues”
entry under “Specific local queues used by MQSeries” on page 15 for more
information.

The process definition attributes include the application ID, the application type, and
data specific to the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create
Process to create a process definition.

Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages,
and another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see “Preparing channels and

transmission queues for remote administration” on page 90 and “Message
channels” in the MQSeries Intercommunication book,

Chapter 1. Introduction to MQSeries 17

System default objects

Clusters

|

| In a traditional MQSeries network using distributed queuing, every queue manager
| is independent. If one queue manager needs to send messages to another queue
| manager it must have defined a transmission queue, a channel to the remote

| gueue manager, and a remote queue definition for every queue to which it wants to
| send messages.

| A cluster is a group of queue managers set up in such a way that the queue
| managers can communicate directly with one another over a single network,
| without the need for complex transmission queue, channels, and queue definitions.

| For information about clusters, see Chapter 9, “Administering remote MQSeries
| objects” on page 87 and the MQSeries Queue Manager Clusters book.

Namelists

|

| A namelist is an MQSeries object that contains a list of other MQSeries objects.

| Typically, namelists are used by applications such as trigger monitors, where they

| are used to identify a group of queues. The advantage of using a namelist is that it
| is maintained independently of applications; that is, it can be updated without

| stopping any of the applications that use it. Also, if one application fails, the

| namelist is not affected and other applications can continue using it.

| Namelists are also used with queue manager clusters so that you can maintain a
| list of clusters referenced by more than one MQSeries object.

System default objects

The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify
any of these object definitions for use in applications at your installation.

Default object names have the stem SYSTEM.DEF; for example, the default local
queue is SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of

these names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
gueue, those attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

| See Appendix A, “System and default objects” on page 343 for more information
| about system defaults.

Local and remote administration

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet, and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is, the communication is managed by the
operating system.

18 MQSeries System Administration

Clients and servers

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For
example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
gueue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Clients and servers

MQSeries supports client-server configurations for MQSeries applications.

An MQSeries client is a part of the MQSeries product that is installed on a machine
to accept MQI calls from applications and pass them to an MQ/ server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues, exist only on the queue
manager machine, that is, on the MQI server machine. A server can support
normal local MQSeries applications as well.

The difference between an MQI server and an ordinary queue manager is that a
server has a dedicated communications link with each client. For more information
about creating channels for clients and servers, see Chapter 1, “Concepts of
intercommunication” in the MQSeries Intercommunication book.

For information about client support in general, see the MQSeries Clients book.

MQSeries applications in a client-server environment

When linked to a server, client MQSeries applications can issue most MQI calls in
the same way as local applications. The client application issues an MQCONN call
to connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
gueue manager.

You must link your applications to the appropriate client libraries. See Chapter 10,

“Using the message queue interface (MQI)” through Chapter 13, “Solving
problems” in the MQSeries Clients book for further information.

Chapter 1. Introduction to MQSeries 19

Extending facilities

Extending queue manager facilities
The facilities provided by a queue manager can be extended by:

e User exits
¢ |nstallable services

User exits
User exits provide a mechanism for you to insert your own code into a queue
manager function. The user exits supported include:

e Channel exits
These exits change the way that channels operate. Channel exits are
described in Chapter 35, “Channel-exit programs” in the MQSeries
Intercommunication book.

e Data conversion exits
These exits create source code fragments that can be put into application
programs to convert data from one format to another. Data conversion exits
are described in Chapter 11, “Writing data-conversion exits” in the MQSeries
Application Programming Guide.

e The cluster workload exit
The function performed by this exit is defined by the provider of the exit. Call
definition information is given in “MQWXP - Cluster workload exit parameter
structure” in the MQSeries Queue Manager Clusters book. The exit is
supported in the following environments: AIX, HP-UX, OS/2, Sun Solaris,
Windows NT, and OS/390.

Installable services
Installable services are more extensive than exits in that they have formalized
interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with the MQSeries product, or you can write your
own component to perform the functions that you require.

Currently, the following installable services are provided:

Authorization service
The authorization service allows you to build your own security facility.

The default service component that implements the service is the Object
Authority Manager (OAM), which is supplied with MQSeries for UNIX systems
and the MQSeries for Windows NT product. (The OAM is not supplied with
MQSeries for OS/2 Warp.) By default, the OAM is active, and you do not have
to do anything to configure it. You can use the authorization service interface to
create other components to replace or augment the OAM. For more information
about the OAM, see Chapter 10, “Protecting MQSeries objects” on page 103.

Under MQSeries for OS/2 Warp, you must write your own service component if
you want to implement the authorization service. For example, you can create
your own security features based on a third-party security product.

Name service
The name service enables the sharing of queues by allowing applications to
identify remote queues as though they were local queues.

20 MQSeries System Administration

Security

A default service component that implements the name service is provided with
the MQSeries Version 5 products. It uses the Open Software Foundation (OSF)
Distributed Computing Environment (DCE). You can also write your own name
service component. (You might want to do this if you do not have DCE installed,
for example.) By default, the name service is inactive.

For more information, see Chapter 13, “Name service” in the MQSeries
Programmable System Management book.

User identifier service
The user identifier service is supported by MQSeries for OS/2 Warp only. It
allows MQI applications in an OS/2 environment to associate a user ID (other
than the default user ID, 0S2) with MQSeries messages. The receiving
applications are then able to identify the source of the messages. A sample user
identifier service component is supplied.

Note that this is not intended to provide a secure service. There is no
mechanism to prevent applications from copying this user ID.

For more information, see Appendix F, “User identifier service” on page 365.
See Chapter 11, “Installable services and components” in the MQSeries

Programmable System Management manual for more information about the
installable services.

Security

In the MQSeries Version 5 products, there are two methods of providing security:

e The Object Authority Manager (OAM) facility
* DCE security

Object Authority Manager (OAM) facility

In MQSeries for UNIX systems and MQSeries for Windows NT, authorization for
using MQI calls, commands, and access to objects is provided by the Object
Authority Manager (OAM), which by default is enabled. Access to MQSeries
entities is controlled through MQSeries user groups and the OAM. A command line
interface is provided to enable administrators to grant or revoke authorizations as
required.

No OAM security features are provided either by MQSeries for OS/2 Warp or by
0S/2 itself. You should consider what your security requirements are, and design
your system to provide these facilities or, in their absence, to ensure that your
applications are aware of the lack of security and are not therefore compromised.

Note: The authorization service is available in MQSeries for OS/2 Warp, but no
authorization service component is supplied. If security is essential to your
enterprise, consider writing your own authorization service component. This
component would use the supplied interface to access the facilities provided by a
third-party security manager.

For more information about creating authorization service components, see

Chapter 12, “Authorization service” in the MQSeries Programmable System
Management book.

Chapter 1. Introduction to MQSeries 21

Transactional support

DCE security

Channel exits that use the DCE Generic Security Service (GSS) are provided by
MQSeries. For more information, see “Supplied channel-exit programs using DCE
security services” in the MQSeries Intercommunication book.

Transactional support

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of

work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
gueue manager itself, or externally by another XA-compliant transaction manager
such as IBM CICS, Transarc Encina, or BEA Tuxedo.

For more information, see Chapter 14, “Transactional support” on page 175.

22 MQSeries System Administration

Administration ¢ Using MQSC commands

Chapter 2. An introduction to MQSeries administration

This chapter introduces the subject of MQSeries administration.

Administration tasks include creating, starting, altering, viewing, stopping, and
deleting MQSeries objects (queue managers, queues, clusters, processes, and
channels).

Local and remote administration

You administer MQSeries objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet, and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is the communication is managed by the
operating system.

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For
example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
gueue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Chapter 9, “Administering remote MQSeries objects” on page 87 describes the
subject of remote administration in greater detail.

Performing administration tasks using control commands
Control commands allow you to perform administrative tasks on queue managers
themselves.

See Chapter 6, “Managing queue managers using control commands” on page 49
for more information about control commands.

Performing administrative tasks using MQSC commands

You use MQSeries commands (MQSC) to manage queue manager objects,
including the queue manager itself, channels, queues, and process definitions.

You issue MQSC commands to a queue manager using the runmgsc command.
You can do this interactively, issuing commands from a keyboard, or you can
redirect the standard input device (stdin) to run a sequence of commands from an
ASCII text file. In both cases, the format of the commands is the same.

© Copyright IBM Corp. 1994,1999 23

Using PCFs e« MQSeries for Windows NT

You can run the runmgsc command in three modes, depending on the flags set on
the command:

» Verification mode, where the MQSC commands are verified on a local queue
manager, but are not actually run.

e Direct mode, where the MQSC commands are run on a local queue manager.
e Indirect mode, where the MQSC commands are run on a remote queue
manager.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

MQSC commands are available on other platforms, including AS/400, and OS/390.

MQSC commands are summarized in Appendix G, “Comparing command sets” on
page 367.

Chapter 2, “The MQSeries commands” in the MQSeries Command Reference
manual contains a description of each MQSC command and its syntax.

See “Performing local administration tasks using MQSC commands” on page 60 for
more information about using MQSC commands in local administration.

Performing administrative tasks using PCF commands

The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In
this way you can create queues and process definitions, and change queue
managers, from a program.

PCF commands cover the same range of functions provided by the MQSC facility.
See “PCF commands” on page 83 for more information.
You can use the MQSeries Administration Interface (MQAI) to obtain easier

programming access to PCF messages. This is described in greater detail in
“Using the MQAI to simplify the use of PCFs” on page 84.

Administration on MQSeries for Windows NT
On MQSeries for Windows NT you can perform administration tasks using:
e PCF, MQSC, and control commands

e The MQSeries Explorer snap-in and the MQSeries Services snap-in
applications running under the Microsoft Management Console (MMC)

e The Windows NT Default Configuration application

¢ MQSeries Web Administration

24 MQSeries System Administration

MQSeries for Windows NT

Using commands on MQSeries for Windows NT
You can perform administration tasks using:

e Control commands that you enter through the Windows NT command line

e The runmgsc control command to cause MQSC commands from standard
input to be executed

e Any local or remote MQSeries application program that generates PCF
commands in messages, putting them onto the command queue,
SYSTEM.ADMIN.COMMAND.QUEUE, to be processed by the MQSeries
command server

Using the MQSeries Explorer

The MQSeries Explorer is an application that runs under the Microsoft Management
Console (MMC). It provides a graphical user interface for controlling resources in a
network. Using the online guidance, you can:

e Define and control various resources including queue managers, queues,
channels, process definitions, client connections, namelists, and clusters.

e Start or stop a queue manager and its associated processes.

* View queue managers and their associated objects on your workstation or from
other workstations.

e Check the status of queue managers, clusters, and channels.

You can invoke the MQSeries Explorer from the First Steps application, or from the
Windows NT Start prompt.

See Chapter 3, “Administration using the MQSeries Explorer” on page 29 for more
information.

Using the MQSeries Services snap-in

The MQSeries Services shap-in is an application that runs under the MMC. It
allows you to perform more advanced tasks, typically associated with setting up
and fine tuning the working environment for MQSeries. For example, you can:

e Start or stop a queue manager.
e Change the default queue manager.

e Start or stop individual MQSeries processes such as a channel initiator, or a
listener.

e Start or stop the command server.
e Start or stop the service trace.
e Set a queue manager to start up automatically when you start up your

workstation.

For more information, see Chapter 4, “Administration using the MQSeries Services
shap-in” on page 37.

Chapter 2. An introduction to MQSeries administration 25

MQSeries for Windows NT

Using the Windows NT default configuration application

You can use the Windows NT Default Configuration program from the MQSeries
First Steps application or the MQSeries Postcard application to create a “starter
set” (or default set) of MQSeries objects which you can then administer. A
summary of the default objects created is listed in Table 25 on page 346.

Using MQSeries Web Administration

MQSeries for Windows NT provides a web-based application that allows you to
administer MQSeries objects on all systems in your MQSeries network from a web
browser running on Windows NT, Windows 95, and Windows 98. MQSeries Web
Administration shows you how to use MQSC command facilities either as individual
commands or multiple commands from a script.

You start the MQSeries Web Administration server from an icon within the
MQSeries Services snap-in.

For more information, see Chapter 5, “Using MQSeries Web Administration” on
page 43.

Editing configuration information

All MQSeries configuration information is stored in the Windows NT Registry . The
MQSeries configuration files, gm.ini and mgs.ini, are no longer used in MQSeries
Version 5.1 There should be a simple, or close correlation between the contents of
the Windows NT Registry and the MQSeries configuration files.

You edit configuration information from the MQSeries Services snap-in.

However, you may find it useful to read the descriptions of the individual attributes
in the configuration files in Chapter 11, “Configuring MQSeries” on page 127. The
descriptions themselves are still relevant for reference purposes.

Use the MQSeries Services snap-in to make configuration changes only. Do not
attempt to edit the registry system file directly as this may cause your system to
behave unpredictably and adversely affect the smooth running of both your
MQSeries system and your Windows NT operating system.

Migrating to the Windows NT Registry

The Windows NT Registry is created when you install the operating system. When
you migrate to MQSeries for Windows NT Version 5.1, the information in the
configuration files you used in previous release is automatically stored in the
registry by the MQSeries Services snhap-in.

If you want to refer back to these files in the future, you are recommended to back
them up before starting the migration process.

Viewing configuration information

You can view a description of the keys used by the Windows NT Registry from the
MQSeries Information Center. You can access the MQSeries Information Center
from:

e An icon in the Windows NT Start menu
e An option in the MQseries First Steps application

26 MQSeries System Administration

Understanding MQSeries names

Understanding MQSeries file names
Each MQSeries queue, queue manager, namelist, and process object is
represented by a file. Because object names are not necessarily valid file names,
the queue manager converts the object name into a valid file name where
necessary.
The path to a queue manager directory is formed from the following:
e A prefix, which is defined in the queue manager configuration file, gm.ini.
In MQSeries for UNIX systems, the default prefix is:
/var/mgm

In MQSeries for OS/2 Warp and MQSeries for Windows NT, the default prefix
is:

c:\mgm
e A literal:
gqmgrs

e A coded queue manager name, which is the queue manager name transformed
into a valid directory name. For example, the queue manager:

queue.manager
would be represented as:
queue!manager

This process is referred to as name transformation.

Queue manager name transformation
In MQSeries, you can give a queue manager a name containing up to 48
characters.
For example, you could nhame a queue manager:
QUEUE .MANAGER.ACCOUNTING.SERVICES
However, each queue manager is represented by a file and there are limitations to
the maximum length a file name can be, and to the characters that can be used in

the name. As a result, the names of files representing objects are automatically
transformed to meet the requirements of the file system.

The rules governing the transformation of a queue manager name, using the
example of a queue manager with the name queue.manager, are as follows:
1. Transform individual characters:

. becomes !
/ becomes &

2. If the name is still not valid:

a. Truncate it to eight characters
b. Append a three-character numeric suffix

Chapter 2. An introduction to MQSeries administration 27

Understanding MQSeries names

For example, assuming the default prefix, the queue manager name in MQSeries
for UNIX systems becomes:

/var/mgm/gmgrs/queue!manager

In MQSeries for OS/2 Warp and MQSeries for Windows NT with HPFS (or NTFS),
the queue manager name becomes:

c:\mgm\gmgrs\queue!manager

In MQSeries for OS/2 Warp and MQSeries for Windows NT with FAT, the queue
manager name becomes:

c:\mgm\gmgrs\queue!ma

The transformation algorithm also allows distinction between names that differ only
in case, on file systems that are not case sensitive.

Object name transformation
Object names are not necessarily valid file system names. Therefore the object
names may need to be transformed. The method used is different from that for
gueue manager names because, although there only a few queue manager names
per machine, there can be a large number of other objects for each queue
manager. Only process definitions, queues, and namelists are represented in the
file system; channels are not affected by these considerations.

When a new name is generated by the transformation process there is no simple
relationship with the original object name. You can use the dspmgfls command to
convert between real and transformed object names.

28 MQSeries System Administration

The MQSeries Explorer e Introduction

| Chapter 3. Administration using the MQSeries Explorer

This information applies to MQSeries for Windows NT V5.1 only

MQSeries for Windows NT Version 5.1 provides an administration interface called
the MQSeries Explorer to perform administration tasks as an alternative to using
control or MQSC commands. (Appendix G, “Comparing command sets” on

page 367 shows you which operations you can perform using the MQSeries
Explorer.)

The MQSeries Explorer allows you to perform remote administration of your
network from a computer running Windows NT simply by pointing the MQSeries
Explorer at the queue managers and clusters you are interested in. The platforms
and levels of MQSeries which can be administered using the MQSeries Explorer
are described in “Prerequisite software” on page 30.

The configuration steps you must perform on remote MQSeries queue managers to
allow the MQSeries Explorer to administer them are outlined in “Required
definitions for administration” on page 31.

This chapter contains the following topics:

e “What you can do with the MQSeries Explorer”

* “Prerequisite software” on page 30

e “Required definitions for administration” on page 31

¢ “Showing and hiding queue managers and clusters” on page 31
e “Cluster membership” on page 32

e “Security” on page 33

e “Data conversion” on page 34

¢ “Saving and loading console files” on page 34

e “Switching off the automatic population facility” on page 35

What you can do with the MQSeries Explorer

With the MQSeries Explorer, you can:
e Start and stop a queue manager (on your local machine only).

» Define, display, and alter the definitions of MQSeries objects such as queues
and channels.

e Browse the messages on a queue.

e Start and stop a channel.

e View status information about a channel.

e View queue managers in a cluster.

e Create a new queue manager cluster using the Create New Cluster wizard.

e Add a queue manager to a cluster using the Add Queue Manager to Cluster
wizard.

e Add an existing queue manager to a cluster using the Join Cluster wizard.

© Copyright IBM Corp. 1994,1999 29

Prerequisites

The MQSeries Explorer presents information in a style consistent with that of the
Microsoft Management Console (MMC) and the other snap-in applications that the
MMC supports.

You perform administration tasks using a series of Property Sheets and Property
Pages. A Property Sheet is a tabbed dialog box made up of a collection of
Property Pages. The Property Sheet for an object contains all the attributes
relating to that object in a series of fields, some of which you can edit. For each of
the MQSeries objects, the attributes are divided into categories which then appear
as separate pages within the Property Sheet.

Points to consider when using the MQSeries Explorer

When deciding whether to use the MQSeries Explorer at your installation, bear the
following points in mind:

e The MQSeries Explorer works best with small queue managers. If you have a
large number of objects on a single queue manager you may experience
delays while the MQSeries Explorer extracts the required information to present
in a view. As a rough guide as to what a “large number” is, if your queue
managers have more than 200 queues or 100 channels, you may want to
consider using a third-party enterprise console product instead of the MQSeries
Explorer.

* MQSeries clusters can potentially contain hundreds or thousands of queue
managers. Because the MQSeries Explorer presents the queue managers in a
cluster using a tree structure, the view can become cumbersome for large
clusters. The physical size of a cluster does not affect the speed of the
MQSeries Explorer dramatically because the explorer does not connect to the
gueue managers in the cluster until you select them.

* The message browser displays the first 200 messages on a queue. Only the
first 1000 bytes of message data contained in a message are formatted and
displayed on your screen. Messages containing more than 1000 bytes of
message data are not displayed in their entirety.

* The MQSeries Explorer cannot administer a cluster whose repository queue
managers are on MQSeries for OS/390. To avoid this problem, nominate an
additional repository queue manager on a system which the MQSeries Explorer
can administer. By connecting the cluster through this new repository queue
manager, you can administer the queue managers in the cluster, subject to the
MQSeries Explorer’s usual restrictions for supported levels of MQSeries.

Prerequisite software

Before you can use the MQSeries Explorer, you must have the following installed
on your computer:

e The Microsoft Management Console Version 1.1 or higher (installed as part of
MQSeries for Windows NT 5.1 installation)

* Internet Explorer Version 4.01 (SP1) (installed as part of MQSeries for
Windows NT 5.1 installation)

The MQSeries Explorer can connect to remote queue managers using the TCP/IP
communication protocol only.

30 MQsSeries System Administration

Required definitions ¢ Showing and hiding

Table 1 summarizes the platforms and command levels that support the MQSeries
Explorer.

Table 1. Platforms and command levels

Platform Command level

AIX and UNIX variants Command level 221 and above
0S/400® Command level 320 and above
0S/2 and Windows NT Command level 201 and above
VMS and Tandem Command level 221 and above

The MQSeries Explorer handles the differences in the capabilities between the
different command levels and platforms. However, if it encounters a value which it
does not recognize as an attribute for an object, you won't be able to change the
value of that attribute.

Required definitions for administration

Ensure that you have satisfied the following requirements before attempting to use
the MQSeries Explorer. Check that:

1. A command server is running for any queue manager being administered.

2. A suitable TCP/IP listener exists for every remote queue manager. This may
be the MQSeries listener or the inetd daemon as appropriate.

3. The server connection channel, called SYSTEM.ADMIN.SVRCONN, exists on
every remote queue manager. This channel is mandatory for every remote
gueue manager being administered. Without it, remote administration is not
possible.

You can create the channel using the following MQSC command:

DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

The command cited creates a very basic channel definition. If you want a more
sophisticated definition, to set up security, for example, additional parameters
are required.

Showing and hiding queue managers and clusters

The MQSeries Explorer can display more than one queue manager at a time. The
Show Queue Manager dialog box (selectable from the pop-up menu for the Queue
Managers node) allows you to choose whether you display information for a local
queue manager or for a queue manager on another (remote) machine. To show a
local queue manager, you select the Show a local queue manager radio button,
and choose the appropriate queue manager from a list.

To show a remote queue manager, you must select the Show a remote queue
manager radio button and type in the name of the remote queue manager and the
connection name in the field provided. The connection name is the IP address, or
host name, of the machine you are trying to connect to, with an optional port

Chapter 3. Administration using the MQSeries Explorer 31

Cluster membership

number. This connection name is used to establish a client connection to the
remote queue manager using its SYSTEM.ADMIN.SVRCONN server connection
channel.

The Hide Queue Manager dialog box (which you select from the pop-up menu for
the Queue Managers node) displays a list of all visible queue managers and allows
you to select one to hide from view on the console.

Similar facilities exist for hiding and showing clusters. When you show a cluster in
the console, you select a repository queue manager in the cluster as the initial point
of connection. Within the cluster, the MQSeries Explorer determines the
connection information it needs for the member queue managers.

Cluster membership

The MQSeries Explorer needs to maintain up to date administration data about
clusters in order to be able to communicate effectively with them and to display
correct cluster information when requested to do so. In order to do this, the
MQSeries Explorer needs the following information from you:

¢ The name of a repository queue manager
* The connection name of the repository queue manager if it is on a remote
gueue manager
With this information, the MQSeries Explorer can:

* Use the repository queue manager to obtain a list of queue managers in the
cluster.

* Administer the queue managers that are members of the cluster and are on
supported platforms and command levels.
Administration is not possible if:

e The chosen repository becomes unavailable. The MQSeries Explorer does not
switch to an alternative repository.

e The chosen repository cannot be contacted over TCP/IP.
e The chosen repository is running on a queue manager that is running on a
platform and command level not supported by the MQSeries Explorer.

The cluster members that can be administered can be local, or they can be remote
if they can be contacted using TCP/IP. The MQSeries Explorer connects to local
gueue managers that are members of a cluster directly, without using a client
connection.

32 MQSeries System Administration

Security

Security

Authorization to

If you are using MQSeries in an environment where it is important for you to control
user access to particular objects, you may need to consider the security aspects of
using the MQSeries Explorer.

run the MQSeries Explorer
Before the MQSeries Explorer is enabled, you must:

e Ensure that chosen users have the correct level of authorization. This means
being one of the following:

— A member of the mgm group

— A member of the administrator group on the machine running the MQSeries
Explorer

— Logged on using the SYSTEM ID

Group membership at logon time is used for authorization purposes, if membership
is changed so that a user can access the MQSeries Explorer, that user must log off
and log back on again.

Furthermore, some operations may require you to have authorization to use
individual objects or object types. The MQSeries Explorer uses existing MQSeries
rules for security to ensure that this happens. For example, you must have display
authority for a queue to be able to view its attributes in the MQSeries Explorer.

Security for connecting to remote queue managers

The MQSeries Explorer connects to remote queue managers as an MQI client
application. This means that each remote queue manager must have a definition of
a server connection channel and a suitable TCP/IP listener. If you do not specify a
nonblank value for the MCAUSER attribute of the channel, or use a security exit, it
is possible for a malicious application to connect to the same server connection
channel and gain access to the queue manager objects with unlimited authority.

The default value of the MCAUSER attribute is a blank . If you specify a
nonblank user name as the MCAUSER attribute of the server connection channel,
all programs connecting to the queue manager using this channel run with the
identity of the named user and have the same level of authority.

Using a security exit

A more flexible approach is available by installing a security exit on the server
connection channel SYSTEM.ADMIN.SVRCONN on each queue manager which is
to remotely administered.

A matching security exit can be installed on the machine on which the MQSeries
Explorer is being used. This allows complete flexibility in the authentication
processing performed when a client connection is established to give consistency
with your enterprise’s MQSeries security policy.

Chapter 3. Administration using the MQSeries Explorer 33

Data conversion

e Console files

Enabling a security exit

The IBM MQSeries node Property Sheet allows you to specify the name of a
security exit and provide security exit data to be used for all client connections to
remote queue managers that are established by the MQSeries Explorer. This
Property Sheet is also displayed when the MQSeries Explorer is added to a
console using the MMC Add/Remove Snap-in dialog box.

If you change this information after client connections have been established, the
new information affects only those connections set up after the change has been
made. Existing connections are not broken and re-established.

Data conversion

When the connection to a queue manager is established, the queue manager’s
CCSID is also established. This enables the MQSeries Explorer to perform any
character set conversions needed to display the data from remote queue managers
correctly.

The tables for converting from the UNICODE CCSID to the queue manager CCSID
(and vice versa) must be available to the MQSeries Explorer machine otherwise the
MQSeries Explorer cannot communicate with the queue manager.

An error message is issued if you try to establish a connection between the
MQSeries Explorer and a queue manager whose CCSID the MQSeries Explorer
does not recognize.

Supported conversions are described in Appendix F, “Code page conversion
tables” in the MQSeries Application Programming Reference manual.

Saving and loading console files

The MQSeries Explorer can save the contents of a console in a file called a .MSC
file.
The following information is saved in a .MSC file:

e Details of the queue managers and clusters showing in the console. The
names of the queue managers that are members of the visible clusters are not
saved.

» The security exit name and the security exit data for client connections to
remote queue managers.

* Whether the MQSeries Explorer automatically loads the local queue managers
and the clusters of which they are members when the .MSC file is loaded.

* Any non-default configuration of columns visible in each view.

 Filtering options for the objects visible in each view.

You can save different views of the network into each .MSC file.

34 MQSeries System Administration

Automatic population facility

| Switching off the automatic population facility

If you load the MQSeries Explorer into the MMC console using the MMC
Add/Remove Snap-in, the MQSeries Explorer starts up in its default state.

The default behavior is to automatically determine:

e The names of the queue managers on the local machine and add them into the
Queue Managers node

e Which clusters the local queue managers are part of and add these clusters to
the Clusters node

If you do not want this default behavior to occur (perhaps you want to save a
console with a particular set of queue managers) switch off the automatic
population facility by unchecking the checkbox on the properties page for the
top-level MQSeries node and then save the console.

Chapter 3. Administration using the MQSeries Explorer 35

Automatic population facility

36 MQSeries System Administration

Using the MQSeries Services snap-in e Introduction

| Chapter 4. Administration using the MQSeries Services

| Shap-in

This information applies to MQSeries for Windows NT V5.1 only

The MQSeries Services snap-in runs under the Microsoft Management Console
(MMC). It allows you to perform more advanced tasks, typically associated with
setting up and fine tuning the working environment for MQSeries, either locally or
remotely within the Windows NT domain. It monitors the operation of MQSeries
servers and provides extensive error detection and recovery functions.

The MQSeries Services shap-in is an administration tool that should only be used
by experienced staff who are authorized to make changes to MQSeries objects and
services.

This chapter contains the following:

e “What you can do with the MQSeries Services snap-in”
* “Prerequisite software” on page 38

e “Using the MQSeries Services snap-in” on page 38

e “Security” on page 39

What you can do with the MQSeries Services shap-in

All the functions offered by the MQSeries Services snap-in can be used to
administer local or remote MQSeries for Windows NT servers, except for the Alert
monitor function which records and notifies you of problems in your MQSeries
system. This function can be used on your local system only. See “Using the
MQSeries alert monitor application” on page 38 for more information.

With the MQSeries Services snap-in, you can:

e Start or stop a queue manager (on your local machine or on remote NT
machines).

e Start or stop the command servers, channel initiators, trigger monitors, and
listeners.

e Create and delete queue managers, command servers, channel initiators,
trigger monitors, and listeners.

e Set any of the services to start up automatically or manually during system start
up.

* Modify the properties of queue managers. This function replaces the use of
stanzas in configuration (mgs.ini and gm.ini) files.

¢ Change the default queue manager.

* Modify the parameters for any service, such as the TCP port number for a
listener, or a channel initiator queue name.

* Modify the behavior of MQSeries if a particular service fails, for example, retry
starting the service x number of times.

e Start or stop the service trace.

© Copyright IBM Corp. 1994,1999 37

Prerequisites e Using

e Start or stop MQSeries Web Administration. (For more information, see
Chapter 5, “Using MQSeries Web Administration” on page 43.)

The MQSeries Services snap-in presents information in a style consistent with that
of the Microsoft Management Console (MMC) and the other snap-in applications
that the MMC supports.

Prerequisite software

Before you can use the MQSeries Services snap-in, you must have the following
software installed on your computer:

e The Microsoft Management Console Version 1.1 or higher (installed as part of
MQSeries for Windows NT 5.1 installation)

e Internet Explorer Version 4.01 (SP1) (installed as part of MQSeries for
Windows NT 5.1 installation)

Using the MQSeries Services snap-in

The MQSeries icon is in the system tray on the server and is overlaid with a
color-coded status symbol which can have one of the following meanings:

Green Healthy; no alerts at present
Blue Indeterminate; MQSeries is starting up or shutting down
Yellow Alert; one or more services are failing or have already failed

When you click on the icon with your right mouse button, a context menu appears.
From this menu, select the MQSeries Services option to bring up the MMC. The
MQSeries Services snap-in is already loaded and is ready to use.

You can save any changes you make to this console view so that each time you
start up the MQSeries Services snap-in from the task bar, it appears as you last
saved it.

The first time the MQSeries Services snap-in is started all the queues you currently
have defined show the services belonging to that queue manager on the right-hand
side of the console window. The MQSeries Services snap-in always contains an
up to date list of the current set of queue managers. You do not have to add or
remove any definitions manually. There are icons for the trace and alert monitor
functions in addition to those for the queue managers. The trace and alert monitor
functions are special services that do not belong to individual queue managers but
to the system as a whole.

The alert monitor application cannot be stopped. The trace service, when set to
automatic startup, starts before any other services or queue managers.

Using the MQSeries alert monitor application

The MQSeries alert monitor is an error detection tool that identifies and records
problems with MQSeries on a local machine.

The MQSeries alert monitor displays information about the current status of the
local installation of an MQSeries server.

38 MQsSeries System Administration

Recovery e Security

From the MQSeries alert monitor, you can:
e Access the MQSeries Services snap-in directly
¢ View information relating to all outstanding alerts
e Shut down the IBM MQSeries service on the local machine

e Route alert messages over the network to a configurable user account, or to an
NT workstation or server

Looking at MQSeries alert monitor information

If the task bar icon indicates that an alert has arisen, double click on the icon to
open the Alert Monitor display. This dialog shows a tree view, grouped by queue
manager, of all the alerts that are currently outstanding. Expand the nodes of the
tree to see which services are alerted and look at the following pieces of
information relating to the service:

e The date and time of the most recent alert for the service
e The command line that failed
e The error message describing why the service failed

MQSeries Services snap-in recovery facilities

If you have set your queue managers to start automatically during system start up,
you can configure the behavior of the MQSeries Services snap-in, in the
appropriate property pages, to take one of several actions if one or more queue
managers fail:

 Restart the queue managers.

e Execute a program. You may like to set up a paging to notify you of a failure,
or have electronic mail sent, for example.

¢ Restart the server.

e Log the fact that a failure has occurred, but take no action.

Security

The MQSeries Services shap-in and the components associated with it use the
Microsoft Windows NT security model. It is this security model that allows or
denies access to MQSeries services.

The MQSeries Services snap-in uses Component Object Model (COM) and
Distributed Component Object Model (DCOM) technology to communicate between
servers and between processes on a server.

The COM server application, called AMQMSRVN, is shared between any client
processes that need to use the MQSeries Services snap-in components (for
example, the MQSeries Services snap-in, the alert monitor task bar and the IBM
MQSeries service).

Because AMQMSRVN must be shared between non-interactive and interactive
logon sessions, it is launched under a special user account. This special user
account is called “MQAdmIn” and is created when MQSeries is installed.

The password for MQAdmin is generated at installation time and is used only
during the installation process to create the account itself and to configure the

Chapter 4. Administration using the MQSeries Services snap-in 39

Security

logon environment for AMQMSRVN. The password is not known outside this
“one-time” processing and is stored by the Windows NT operating system in a
secure part of the Windows NT Registry.

When the service is running, AMQMSRVN is launched and remains running for as
long as the service is running. An MQSeries administrator who logs onto the
server after AMQMSRVN is launched can use the MQSeries Services shap-in to
administer queue managers on the server. By doing this, the MQSeries
administrator causes the MQSeries Services snap-in to connect to the existing
AMQMSRVN process. These two actions need different levels of permission
before they can work:

e The launch process requires a launch permission.

¢ The MQSeries administrator requires “Access” permission.

Controlling access

When IBM MQSeries is installed, default access permissions are set up for the
AMQMSRVN process. These default access permissions grant the following
access permissions:

e mgm (local MQ Administrators Group)
e SYSTEM (local account that the IBM MQSeries service runs under)

e Administrators (local administrators of this machine)

These permissions restrict access to the alert monitor task bar application and the
MQSeries Services snap-in and MQSeries Explorer snap-in to members of the
mgm group alone. Other users attempting to access these functions are denied
access.

Before you can grant or deny users access to the MQSeries Services snap-in, you
must configure the access permissions of the objects involved. A tool called
DCOMCNFG.EXE which is shipped with Windows NT can be used to do this.

Using the DCOMCFNG.EXE tool
To start DCOMCNFG.EXE:

¢ Click on the Windows Start button

e Select “Run”

¢ Type “dcomcnfg” in the open input field
e Click OK

A list of applications is displayed. From this list:

¢ Find and highlight the “IBM MQSeries Services” entry.

¢ Click on the Properties button. This displays information about the location of
the DCOM server (AMQMSRVN.EXE) together with its identity and security
properties.

e Select the “Security” page to view or modify the launch, access or configuration
permissions.

e Stop the IBM MQSeries service from the Windows NT control panel and restart
it for your changes to take effect. (If your changes affect a user who is
currently logged on, that user must log off and log back on again.)

40 MQSeries System Administration

Security

In addition to being able to add to the list of users that are allowed access to a
service, you can deny access to specific users and groups. This means that you to
grant access to a group of users (by specifying a group name) but deny access to
individuals within that group.

Controlling remote access
You can also grant or deny access to users of remote machines using the
DCOMCNFG.EXE tool.

The DCOM server can be turned on or off for the entire server using the
appropriate setting on the Default Properties page.

Changing the MQAdmin user account

To change the password that has been generated for the MQAdmin user account:
e Stop the IBM MQSeries service.

* Close any MQSeries programs that are using the AMQMSRVN COM server
(this includes snap-ins, alert monitor, task bar and so on).

» Use the User Manager to change the MQAdmin password in the same way that
an individual’'s password would be changed. The User Manager is a Windows
NT system management tool which allows system administrators to add, delete,
or change users on an MQSeries system.

e Use the DCOMCNFG.EXE tool to bring up the properties pages for the IBM
MQSeries service.

e Select the Identity Page.

* Modify the password given for the MQAdmin user account.

Because the AMQMSRVN COM server runs under the MQAdmin user account, it is
this account that executes any MQSeries commands that are issued by user
interface applications, or performed automatically on system startup, shutdown, or
service recovery. Therefore the MQAdmin user account must have MQSeries
administration rights. By default it is added to the local mgm group on the server.
If this membership is removed, the MQSeries service fails to work properly.

If a security problem arises with the DCOM configuration or with the MQAdmin user
account, error messages and descriptions appear in the system event log. One
common error is for a user not to have access or launch rights to the server. This
error appears in the system log as a DCOM error with the following message
description:

Access denied attempting to launch a DCOM server. The server is:
{55B99860-F95E-11d1-ABB6-0004ACF79B59}

Chapter 4. Administration using the MQSeries Services snap-in 41

Security

42 MQSeries System Administration

MQSeries Web Administration e Points to consider

| Chapter 5. Using MQSeries Web Administration

| This information applies to MQSeries for Windows NT V5.1 only

| MQSeries for Windows NT Version 5.1 provides an administration interface called

| MQSeries Web Administration. This allows you to perform the following tasks using
| a Java-enabled browser such as Netscape Navigator or Microsoft Internet Explorer:
|
|
|

e Log on as an MQSeries Administrator
» Select a queue manager and issue MQSC commands against it
e Create, edit, and delete MQSC scripts

| Appendix G, “Comparing command sets” on page 367 shows you which operations
| you can perform using MQSeries Web Administration.

This chapter contains the following topics:

|
| » “Points to consider when using MQSeries Web Administration”

| * “Prerequisite software” on page 44

| e “Encryption policies” on page 45

| e “Starting up MQSeries Web Administration server” on page 45

| e “Logging on as an MQSeries administrator (client side)” on page 45
| e “Administering queue managers” on page 46

| e “Using MQSeries command scripts” on page 47

| e “Configuring the MQSeries Web Administration server” on page 48

Points to consider when using MQSeries Web Administration

When deciding whether or not to use MQSeries Web Administration at your
installation, bear the following points in mind:

¢ The MQSeries Web Administration web server requires a dedicated IP port
number.

|

|

|

|

|

| ¢ MQSeries Web Administration can be accessed from the Internet if permitted to
| do so by your network configuration.
|

|

|

|

|

|

|

e All users of MQSeries Web Administration require an active Windows NT user
ID on the server computer with sufficient user rights to run MQSC commands.
See “Authorization to run MQSeries Web Administration” on page 46 for more
information.

* To administer queue managers on computers other than the one running the
MQSeries Web Administration web server, MQSeries message channels must
be configured between the systems.

© Copyright IBM Corp. 1994,1999 43

Prerequisites

Web Administration
server machine MOQSeries
machines
Web browser
machine
Web %
prowser Qwp
MQWA
Client MQWA
Server

Figure 1. MQSeries Web Administration

Figure 1 shows a MQSeries Web Administration client which can administer the
following queue managers when the administrator is logged into the MQSeries Web
Administration server. (Note that MQWA is an abbreviation for MQSeries Web
Administration.)

The local queue managers QML1, QML2, QML3, and QMD reside on the MQSeries
Web Administration server machine. The remote queue managers QMR2 and
QMR3 are connected to the default queue manager, QMD, via the message
channels C1 and C2. Note that the remote queue managers QMR1 and QMR4
cannot be administered from this MQSeries Web Administration client because
there are no channels defined to connect them to the default queue manager,
QMD.

Prerequisite software

Before you can use MQSeries Web Administration, you must have the following
installed on your computers.

Prerequisite software for the server side

¢ Windows NT Version 4 (SP3)
¢ Microsoft Internet Explorer Version 4.01 (SP1)
e MQSeries for Windows NT Version 5.1 server and Web Administration

Prerequisite software for the client side

Install either of the following browsers:

¢ Netscape Navigator 4.04 with the Java AWT upgrade
e Microsoft Internet Explorer Version 4.01 (SP1)

44 MQSeries System Administration

Encryption policies e« Logging on

Encryption policies

Two levels of encryption are used for administering MQSeries objects over the web.
They are:

e Authentication during log on
The RSA Public Key Encryption Algorithm (PKA) with a 512-bit key is used for
the initial client (web browser) logon to the server. The server authenticates
the client, and a separate 40-bit key is created for the actual administration
tasks described in the rest of this chapter. Consequently 512-bit RSA PKA is
the level of encryption applied to the user’s Windows NT user name and
password.

A new RSA public and private key pair is generated each time the MQSeries
Web Administration server is started.

* Authentication when performing MQSeries Web Administration
The RC4 encryption algorithm using 40-bit keys is used for all other data
flowing between client and server.

Starting up MQSeries Web Administration server

The MQSeries Web Administration server can be started and stopped from an icon
in the MQSeries Services snap-in. The server is configured to start automatically
when installed.

Logging on as an MQSeries administrator (client side)

Connect your web browser to the MQSeries Web Administration web server using a
URL of the form:

http://<hostname> : <port_number>

where:
<hostname> is the IP host name of the computer running the web server.

<port number>
is the IP port number assigned to the web server. The default value
for port_number is 8081. However, this value may be changed using
the MQSeries Services shap-in.

This URL must be made known to all MQSeries administrators who will be using
MQSeries Web Administration.

The left-hand pane of the browser window contains a navigation area. To log on
as an MQSeries Web Administrator and administer MQSeries objects:
* Select the “Logon” option.

* Use the Logon panel to enter your Windows NT user ID and password for
MQSeries Web Administration.

e Click Enter to begin the logging on process.

Chapter 5. Using MQSeries Web Administration 45

Administration

Authorization to run MQSeries Web Administration

Your user ID needs the necessary administration privileges on the MQSeries server
to perform administration tasks. Therefore, before attempting to log on to
MQSeries Web Administration, ensure that you have the correct level of
authorization. This means being one or more of the following:

* A member of the mgm group

* A member of the administrator group on the machine running MQSeries Web
Administration

e Logged on using the SYSTEM ID
Some operations may require you to have authorization to use individual objects or

object types. MQSeries Web Administration uses existing MQSeries rules for
security to ensure that this happens.

Security for connecting to remote queue managers

MQSeries Web Administration connects to remote queue managers using MQSC.
The web administration server adopts the user ID of each logged-on administrator
prior to invoking MQSC commands on the administrator’s behalf. Therefore,
administrators have exactly the same privileges from MQSeries Web Administration
as they would have using the runmgsc command locally on the web administration
server.

Administering queue managers

Use the Administration panel to select the queue manager that you want to work
with and to run MQSC commands or command scripts against.

Detailed information about performing these functions can be found in the online
help for MQSeries Web Administration.

Administering local queue managers

To administer a local queue manager, either select the name from the drop-down
list or enter the name directly in the queue manager name field.

Administering remote queue managers

To administer a remote queue manager, enter the queue manager name in the
queue manager name field.

Before you can administer a remote queue manager through MQSeries Web
Administration, you must define a channel between the local default queue
manager and the remote queue manager.

For more information about defining channels for remote administration, see
Chapter 9, “Administering remote MQSeries objects” on page 87.

46 MQSeries System Administration

Using MQSC scripts

Using MQSeries command scripts

|

| MQSeries command scripts are files which a contain a sequence of MQSeries

| commands to be executed to perform a specific task. Script file names can be up
| to 251 characters in length, and can contain any alphanumeric characters other

| than\, /, :, *, ?,”, <, >, or |. Names longer than 251 characters are truncated.

| They have a suffix of .mqgs and are stored in a folder on the MQSeries Web

| Administration server.

| MQSeries Web Administration provides the following to assist with the creation and
| running of scripts:

| e A scripting language to simplify the writing of scripts which can be run on any
| platform supported by MQSeries Web Administration

| ¢ A script management tool to help you with the creation, editing, and deletion of
| scripts

| ¢ A user interface for the selection and running of scripts

| You use the Script Management panel to create and manage command scripts
| (create, edit, and delete).

| You can edit an existing script or create a hew one. Scripts are saved by
| MQSeries Web Administration in the public scripts directory if you have created a
| public script?, or in a private scripts directory if you have created a private script?.

| To delete a script from the server, you must open the script in the edit area, and,
| when the file is displayed, delete it using the Delete option.

| Detailed information about performing these functions can be found in the online
| help for MQSeries Web Administration.

| t A public script is a script that is available for use by all authorized administrators.
| 2 A private script is a script that is available for use by a specific administrator user ID only.

Chapter 5. Using MQSeries Web Administration 47

Configuration options

Configuring the MQSeries Web Administration server

There are several options that you can use to configure the MQSeries Web
Administration server, as shown in Table 2. You do this from the relevant property
pages in the MQSeries Services snap-in.

Table 2. Configuration options for MQSeries Web Administration

Value Type Default value Description

MaxClients REG_DWORD 50 The maximum number of
administrators that can
use MQSeries Web
Administration
simultaneously.

RemoteQMTimeout REG_DWORD 30 The number of seconds
before an attempt to
access a remote queue
manager times out.

SessionTimeout REG_DWORD 60 The number of minutes
of inactivity before an
administrators session
times out (that is, will
close).

Trace REG_SzZ Yes Enable or disable a
graphical trace
window(1) (MQSeries
trace is always enabled).

WebPort REG_DWORD 8081 The IP port used by the
web server.

Note for Table 2:

1. The graphical trace window is a window on the screen that contains a copy of
most of the information that is logged to MQSeries trace.

Because enabling this window can have a detrimental effect on the
performance of the MQSeries Web Administration server, you should only use it
on the recommendation of your IBM service representative.

48 MQSeries System Administration

Managing queue managers

Chapter 6. Managing queue managers using control

commands

This chapter describes how you can perform operations on queue managers and

command servers using control commands.

It contains the following sections:

e “Using control commands”

* “Creating a queue manager” on page 51

e “Creating a default queue manager” on page 54

e “Starting a queue manager” on page 54

* “Making an existing queue manager the default” on page 55
e “Stopping a queue manager” on page 55

e “Restarting a queue manager” on page 57

» “Deleting a queue manager” on page 57

Using control commands

You use control commands to perform operations on queue managers, command

servers, and channels. Control commands can be divided into three categories, as

shown in Table 3.

Table 3. Categories of control commands

Category

Description

Queue manager
commands

Queue manager control commands include commands for
creating, starting, stopping, and deleting queue managers and
command servers

Channel
commands

Channel commands include commands for starting and ending
channels and channel initiators

Utility commands

Utility commands include commands associated with:

Running MQSC commands

Conversion exits

Authority management

Recording and recovering media images of queue manager
resources

Displaying and resolving transactions

Trigger monitors

Displaying the file names of MQSeries objects

For information about administration tasks for channels, see Chapter 5, “DQM
implementation” in the MQSeries Intercommunication book.

© Copyright IBM Corp. 1994,1999

49

Managing queue managers

Using control commands (MQSeries for UNIX systems)

In MQSeries for UNIX systems, you enter control commands in a shell window. In
these environments, control commands, including the command name itself, the
flags, and any arguments, are case sensitive. For example, in the command:

crtmgm -u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

e The command name must be crtmgm, not CRTMQM.

e The flag must be -u, not -U.

¢ The dead-letter queue is SYSTEM.DEAD.LETTER.QUEUE.

e The argument is specified as jupiter.queue.manager, which is different from

JUPITER.queue.manager.

Therefore, take care to type the commands exactly as you see them in the
examples.

Using control commands (MQSeries for OS/2 Warp and MQSeries for

Windows NT)

In MQSeries for OS/2 Warp and MQSeries for Windows NT, you enter control
commands at a command prompt. In these environments, control commands and
their flags are not case sensitive, but arguments to those commands (such as
gueue names and queue-manager hames) are case sensitive.

For example, in the command:

crtmgm /u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

e The command name can be entered in uppercase or lowercase, or a mixture of
the two. These are all valid: crtmgm, CRTMQM, and CRTmgm.

e The flag can be entered as -u, -U, /u, or /U.

e The arguments SYSTEM.DEAD.LETTER.QUEUE and jupiter.queue.manager must
be entered exactly as shown.

Chapter 17, “MQSeries control commands” on page 279 describes the syntax and
purpose of each command.

Using the MQSeries Explorer (MQSeries for Windows NT only)
For MQSeries for Windows NT only, you can use the MQSeries Explorer to perform
the operations described in this chapter, except for:

e Making an existing queue manager the default
e Preemptive shutdown

The tables published in Appendix G, “Comparing command sets” on page 367
summarize which control commands have an equivalent MQSeries Explorer
implementation.

50 MQsSeries System Administration

Creating a queue manager

Creating a queue manager

A gqueue manager manages the resources associated with it, in particular the
gueues that it owns. It provides queuing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
MQSeries objects.

Before you can do anything with messages and queues, you must create at least
one queue manager and its associated objects. To create a queue manager, you
use the MQSeries control command crtmgm . The crtmgm command
automatically creates the required default objects and system objects. Default
objects form the basis of any object definitions that you make; system objects are
required for queue manager operation. When a queue manager and its objects
have been created, you use the strmgm command to start the queue manager.

Guidelines for creating queue managers

However, before you can create a queue manager, there are several points you
need to consider (especially in a production environment). Work through the
following checklist:

e Specify a uniqgue queue manager name
When you create a queue manager, ensure that no other queue manager has
the same name anywhere in your network. Queue manager names are not
checked at creation time, and names that are not unique will prevent you from
creating channels for distributed queuing.

One way of ensuring uniqueness is to prefix each queue manager name with
its own unique node name. For example, if a node is called accounts, you
could name your queue manager accounts.saturn.queue.manager, where
saturn identifies a particular queue manager and queue.manager is an
extension you can give to all queue managers. Alternatively, you can omit this,
but note that accounts.saturn and accounts.saturn.queue.manager are
different queue manager names.

If you are using MQSeries for communication with other enterprises, you can
also include your own enterprise as a prefix. We do not actually do this in the
examples, because it makes them more difficult to follow.

Note: Queue manager names in control commands are case-sensitive. This
means that you are allowed to create two queue managers with the names
jupiter.queue.manager and JUPITER.queue.manager. However, such
complications are best avoided.

e Limit the number of queue managers
You can create as many queue managers as resources allow. However,
because each queue manager requires its own resources, it is generally better
to have one queue manager with 100 queues on a node than to have ten
gueue managers with ten queues each.

In production systems, many nodes will be run with a single queue manager,
but larger server machines may run with multiple queue managers.

Chapter 6. Managing queue managers using control commands 51

Creating a queue manager

e Specify a default queue manager
Each node should have a default queue manager, though it is possible to
configure MQSeries on a node without one. The default queue manager is the
gueue manager that applications connect to if they do not specify a queue
manager name in an MQCONN call. It is also the queue manager that
processes MQSC commands when you invoke the runmgsc command without
specifying a queue manager name.

Specifying a queue manager as the default replaces any existing default queue
manager specification for the node.

If you decide to change the default queue manager, be aware that this can
affect other users or applications. The change has no effect on
currently-connected applications, because they can use the handle from their
original connect call in any further MQI calls. This handle ensures that the calls
are directed to the same queue manager. Any applications connecting after
you have changed the default queue manager will connect to the new default
gueue manager.

This may be what you intend, but you should take this into account before you
change the default.

To create a default queue manager, specify the -q flag on the crtmgm
command to specify that the queue manager you are creating is the default
gueue manager. Omit this flag if you do not want to create a default queue
manager.

For a detailed description of this command and its parameters, see “crtmgm
(Create queue manager)” on page 284.

e Specify a dead-letter queue
The dead-letter queue is a local queue where messages are put if they cannot
be routed to their correct destination.

It is vitally important to have a dead-letter queue on each queue manager in
your network. Failure to do so may mean that errors in application programs
cause channels to be closed or that replies to administration commands are not
received.

For example, if an application attempts to put a message on a queue on
another queue manager, but the wrong queue name is given, the channel is
stopped, and the message remains on the transmission queue. Other
applications cannot then use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues.
The undelivered message is simply put on the dead-letter queue at the
receiving end, leaving the channel and its transmission queue available.

Therefore when you create a queue manager, you should use the -u flag to
specify the name of the dead-letter queue. You can also use an MQSC
command to alter the attributes of a queue manager and specify the dead-letter
gueue to be used. See “Altering queue manager attributes” on page 65 for an
example of an MQSC ALTER command.

When you find messages on a dead-letter queue, you can use the dead-letter
gueue handler, supplied with MQSeries, to process these messages. See
Chapter 12, “The MQSeries dead-letter queue handler” on page 157 for further
information about the dead-letter queue handler.

52 MQsSeries System Administration

Creating a queue manager

e Specify a default transmission queue
A transmission queue is a local queue on which messages in transit to a
remote queue manager are queued pending transmission. The default
transmission queue is the queue that is used when no transmission queue is
explicitly defined. Each queue manager can be assigned a default
transmission queue.

When you create a queue manage, you should use the -d flag to specify the
name of the default transmission queue. This does not actually create the
gueue; you have to do this explicitly later on. See “Working with local queues”
on page 70 for more information.

» Specify the logging parameters you require
You can specify logging parameters on the crtmgm command, including the
type of logging, and the path and size of the log files.

In a development environment, the default logging parameters should be
adequate. However, you can change the defaults if, for example,

— You have a low-end system configuration that cannot support large logs.

— You anticipate a large number of long messages being on your queues at
the same time.

For more information about specifying logging parameters:

— Using the crtmgm command, see “crtmgm (Create queue manager)” on
page 284.

— Using configuration files, see “The LogDefaults stanza” on page 132, and
“The Log stanza” on page 138.

Backing up configuration files after creating a queue manager
There are two types of configuration file:

1. When you install the product, the MQSeries configuration file (mgs.ini) is
created. It contains a list of queue managers, which is updated each time you
create or delete a queue manager. There is one mgs.ini file per node.

2. When you create a new queue manager, a hew queue manager configuration
file (gm.ini) is automatically created. This contains configuration parameters for
the queue manager.

After creating a queue manager, you are recommended to back up your
configuration files.

If, later on, you create another queue manager that causes you problems, you can
reinstate the backups when you have removed the source of the problem. As a
general rule, you should back up your configuration files each time you create a
new queue manager.

For more information about configuration files, see Chapter 11, “Configuring
MQSeries” on page 127.

If you use MQSeries for Windows NT Version 5.1, or later, configuration information

is stored in the Windows NT Registry and not in configuration files. You use the
MQSeries Services snap-in to make changes to the Windows NT Registry.

Chapter 6. Managing queue managers using control commands 53

Creating a default queue manager e Starting a queue manager

Creating a default queue manager

You create a default queue manager using the crtmgm command. The crtmgm
command specified with the q flag:

e Creates a default queue manager called saturn.queue.manager
¢ Creates the default and system objects

e Specifies the names of both a default transmission queue and a dead-letter
queue

crtmgm -q -d MY.DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE saturn.queue.manager

where:

-q Indicates that this queue manager is the
default queue manager.

-d MY.DEFAULT.XMIT.QUEUE Is the name of the default transmission

queue.
-u SYSTEM.DEAD.LETTER.QUEUE Is the name of the dead-letter queue.

saturn.queue.manager Is the name of this queue manager. This
must be the last parameter specified on the
crtmgm command.

The system and default objects are listed in Appendix A, “System and default
objects” on page 343.

—— For MQSeries for UNIX systems only

You can create the queue manager directory /var/mgm/gmgrs/<gmgr>, even on
a separate local file system, before you use the crtmgm command. When you
use crtmgm , if the /var/mgm/gmgrs/<gmgr> directory exists, is empty, and is
owned by mgm, it is used for the queue manager data. If the directory is not
owned by mgm, the creation fails with an FFST™. If the directory is not empty,
then a new directory is created.

Starting a queue manager

Although you have created a queue manager, it cannot process commands or MQI
calls until you start it. You do using the strmgm command as follows:

strmgm saturn.queue.manager

The strmgm command does not return control until the queue manager has started
and is ready to accept connect requests.

54 MQsSeries System Administration

Changing the default queue manager e Stopping a queue manager

Starting a queue manager automatically

In MQSeries for Windows NT only, a queue manager can be invoked automatically
when the system starts using the MQSeries Services snap-in. See Chapter 4,
“Administration using the MQSeries Services snap-in” on page 37 for more
information.

Making an existing queue manager the default

When you create a default queue manager, the name of the default queue
manager is inserted in the Name attribute of the DefaultQueueManager stanza in the
MQSeries configuration file (mgs.ini). The stanza and its contents are automatically
created if they do not exist. You may need to edit the DefaultQueueManager stanza:

e To make an existing queue manager the default
To do this you have to change the queue manager name on the Name attribute
to the name of the new default queue manager. You must do this manually,
using a text editor.

e |If you do not have a default queue manager on the node, and you want to
make an existing queue manager the default
To do this you must create the DefaultQueueManager stanza—with the required
name—yourself.

 If you accidentally make another queue manager the default and wish to
revert to the original default queue manager
To do this, edit the DefaultQueueManager stanza in mgs.ini, replacing the
unwanted default queue manager with that of the one you do want.

See Chapter 11, “Configuring MQSeries” on page 127 for information about
configuration files.

If you use MQSeries for Windows NT Version 5.1, or later, use the MQSeries
Services shap-in to make changes to configuration information for Windows NT
gueue managers in the Windows NT Registry. See Chapter 4, “Administration
using the MQSeries Services snap-in” on page 37 for more information.

When you have provided the required information configuration information, stop
the queue manager and restart it. See “Stopping a queue manager” for information
about how to do this.

Stopping a queue manager

You use the endmgm command to stop a queue manager. For example, to stop a
gueue manager called saturn.queue.manager, type:

endmgm saturn.queue.manager

Chapter 6. Managing queue managers using control commands 55

Stopping a queue manager

Quiesced shutdown

By default, the endmgm command performs a quiesced shutdown of the specified
gueue manager. This may take a while to complete—a quiesced shutdown waits
until all connected applications have disconnected.

Use this type of shutdown to notify applications to stop. If you issue:

endmgm -c saturn.queue.manager

you are not told when all applications have stopped. (An endmgm -c
saturn.queue.manager command is equivalent to an endmgm
saturn.queue.manager command.)

However, if you issue:

endmgm -w saturn.queue.manager

the command waits until all applications have stopped and the queue manager has
ended.

Immediate shutdown

For an immediate shutdown any current MQI calls are allowed to complete, but any
new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager.

Use this as the normal way to stop the queue manager, optionally after a quiesce
period. For an immediate shutdown, type:

endmgm -i saturn.queue.manager

Preemptive shutdown

— Attention!

Do not use this method unless all other attempts to stop the queue manager
using the endmgm command have failed. This method can have unpredictable
consequences for connected applications.

If an immediate shutdown does not work, you must resort to a preemptive
shutdown, specifying the -p flag. For example:

endmgm -p saturn.queue.manager

This stops all queue manager code immediately.

If this method still does not work, see “Stopping a queue manager manually” on
page 359 for an alternative solution.

56 MQSeries System Administration

Restarting a queue manager e Deleting a queue manager

For a detailed description of the endmgm command and its options, see “endmgm
(End queue manager)” on page 306.

If you have problems shutting down a queue manager
Problems in shutting down a queue manager are often caused by applications. For
example, when applications:

e Do not check MQI return codes properly

» Do not request a notification of a quiesce

e Terminate without disconnecting from the queue manager (by issuing an
MQDISC call)

If a problem does occur while stopping the queue manager, break out of the
endmgm command using Ctrl-C.

You can then issue another endmgm command, but this time with a flag that
specifies the type of shutdown that you require.

Restarting a queue manager

To restart a queue manager, type:

strmgm saturn.queue.manager

Deleting a queue manager

To delete a queue manager, first stop it, then issue the following command:

d1tmgm saturn.queue.manager

Notes:

1. Deleting a queue manager is a drastic step, because you also delete all
resources associated with that queue manager, including all queues and their
messages, and all object definitions.

2. In MQSeries for Windows NT, the ditmgm command also removes a queue
manager from the automatic start-up list (described in “Starting a queue
manager automatically” on page 55).

For a description of the ditmgm command and its options, see “ditmgm (Delete
gueue manager)” on page 289. You should ensure that only trusted administrators
have the authority to use this command.

If the usual methods for deleting a queue manager do not work, see “Removing
gueue managers manually” on page 360 for an alternative.

Chapter 6. Managing queue managers using control commands 57

Deleting a queue manager

58 MQseries System Administration

Administering local objects ¢ Application programs

Chapter 7. Administering local MQSeries objects

This chapter describes how to administer local MQSeries objects to support
application programs that use the Message Queuing Interface (MQI). In this
context, local administration means creating, displaying, changing, copying, and
deleting MQSeries objects.

This chapter contains these sections:

“Supporting application programs that use the MQI”
“Performing local administration tasks using MQSC commands” on page 60
“Working with local queues” on page 70

“Monitoring local queues with the Windows NT Performance Monitor” on
page 76

“Working with alias queues” on page 77
“Working with model queues” on page 79

“Managing objects for triggering” on page 80

Supporting application programs that use the MQI

MQSeries application programs need certain objects before they can run
successfully. For example, Figure 2 shows an application that removes messages
from a queue, processes them, and then sends some results to another queue on
the same queue manager.

Queue Manager

Application
get 7 r PUt Erom other
< < " applications
put ; [get . To other
applications

Figure 2. Queues, messages, and applications

Whereas applications can put messages onto local or remote queues (using
MQPUT), they can only get (using MQGET) messages directly from local queues.

Before this application can be run, the following conditions must be satisfied:

The queue manager must exist and be running.

The first application queue, from which the messages are to be removed, must
be defined.

© Copyright IBM Corp. 1994,1999 59

Using MQSC for local administration

e The second queue, on which the application puts the messages, must also be
defined.

e The application must be able to connect to the queue manager. To do this it
must be linked to the product code. See Chapter 7, “Connecting and
disconnecting a queue manager” in the MQSeries Application Programming
Guide for more information.

e The applications that put the messages on the first queue must also connect to
a queue manager. If they are remote, they must also be set up with
transmission queues and channels. This part of the system is not shown in
Figure 2 on page 59.

Performing local administration tasks using MQSC commands

In this section, we assume that you will be issuing commands using the runmgsc
command. It gives you a general but detailed introduction to MQSC commands
and shows you how to use them on some commonly performed tasks. However, if
you use MQSeries for Windows NT Version 5.1 or later, you can perform the
operations described in this section using the MQSeries Explorer or MQSeries Web
Administration. See Chapter 3, “Administration using the MQSeries Explorer” on
page 29 and Chapter 5, “Using MQSeries Web Administration” on page 43 for
more information.

You can use MQSeries script commands (MQSC) to manage queue manager
objects, including the queue manager itself, clusters, channels, queues, namelists,
and process definitions. This section deals with queue managers, queues and
process definitions; for information about administering channel objects, see
Chapter 5, “DQM implementation” in the MQSeries Intercommunication book.

You issue MQSC commands to a queue manager using the runmgsc command.
You can do this interactively, issuing commands from a keyboard, or you can
redirect the standard input device (stdin) to run a sequence of commands from an
ASCII text file. In both cases, the format of the commands is the same.

You can run the runmgsc command in three modes, depending on the flags set on
the command:

» Verification mode, where the MQSC commands are verified on a local queue
manager, but are not actually run.

e Direct mode, where the MQSC commands are run on a local queue manager.
e Indirect mode, where the MQSC commands are run on a remote queue
manager.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, ROMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

MQSC commands are available on other platforms, including AS/400 and OS/390.

MQSC commands are summarized in Appendix G, “Comparing command sets” on
page 367.

Chapter 2, “The MQSeries commands” in the MQSeries Command Reference
manual contains a description of each MQSC command and its syntax.

60 MQSeries System Administration

Using MQSC for local administration

MQSeries object names

In examples, we use some long names for objects. This is to help you identify the
type of object you are dealing with.

When you are issuing MQSC commands, you need only specify the local name of
the queue. In our examples, we use queue names such as:

ORANGE.LOCAL.QUEUE

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a local
queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name.

The queue.manager part of the hame is simply to illustrate that this object is a
gueue manager. It is not required for the names of queue managers in general.

You do not have to use these names, but if you do not, you must modify any
commands in examples that specify them.

Case-sensitivity in MQSC commands

MQSC commands, including their attributes, can be written in uppercase or
lowercase. Object names in MQSC commands are folded (that is, QUEUE and
gueue are not differentiated), unless the names are within single quotation marks.
If quotation marks are not used, the object is processed with a name in uppercase.
See “Rules for naming MQSeries objects” in the MQSeries Command Reference
manual for more information.

However, the runmgsc command invocation, in common with all MQSeries control
commands, is case sensitive in some MQSeries environments. See “Using control
commands” on page 49 for more information.

Standard input and output

The standard input device, also referred to as stdin, is the device from which input
to the system is taken. Typically, this is the keyboard, but you can specify that
input is to come from a serial port or a disk file, for example. The standard output
device, also referred to as stdout, is the device to which output from the system is
sent. Typically, this is a display, but output can be redirected to a serial port or a
file.

On operating-system commands and MQSeries control commands, the ‘<’ operator
redirects input. If this operator is followed by a file name, input is taken from the
file. Similarly, the ‘>’ operator redirects output; if this operator is followed by a file
name, output is directed to that file.

Using the MQSC facility interactively

To enter MQSC commands interactively, open a command window or shell and
enter:

runmgsc

Chapter 7. Administering local MQSeries objects 61

Using MQSC for local administration

In this command, a queue manager name has not been specified, therefore the
MQSC commands will be processed by the default queue manager. Now you can
type in any MQSC commands, as required. For example, try this one:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

Continuation characters must used to indicate that a command is continued on the
following line:

e A minus sign (-) indicates that the command is to be continued from the start
of the following line.

e A plus sign (+) indicates that the command is to be continued from the first
nonblank character on the following line.

Command input terminates with the final character of a nonblank line that is not a
continuation character. You can also terminate command input explicitly by
entering a semicolon (;). (This is especially useful if you accidentally enter a
continuation character at the end of the final line of command input.)

Feedback from MQSC commands

When you issue commands from the MQSC facility, the queue manager returns
operator messages that confirm your actions or tell you about the errors you have
made. For example:

AMQ8006: MQSeries queue created.

AMQ8405: Syntax error detected at or near end of command segment below:-
VA
AMQ8426: Valid MQSC commands are:

ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
RESET
REFRESH
RESOLVE
RESUME
START
STOP
SUSPEND
4 : end

The first message confirms that a queue has been created; the second indicates
that you have made a syntax error.

62 MQSeries System Administration

Using MQSC for local administration

These messages are sent to the standard output device. If you have not entered
the command correctly, refer to Chapter 2, “The MQSeries commands” in the
MQSeries Command Reference manual for the correct syntax.

Ending interactive input to MQSC

To end interactive input of MQSC commands, enter the MQSC END command:

END

Alternatively, you can use the EOF character for your operating system.

If you are redirecting input from other sources, such as a text file, you do not havi
to do this.

Displaying queue manager attributes

To display the attributes of the queue manager specified on the runmqgsc
command, use the following MQSC command:

e

DISPLAY QMGR

Typical output from this command is shown in Figure 3 on page 64.

Chapter 7. Administering local MQSeries objects

63

Using MQSC for local administration

1 : display gmgr all
AMQ8408: Display Queue Manager details.

DESCR() DEADQ()

DEFXMITQ() CHADEXIT()
CLWLEXIT() CLWLDATA()

REPOS() REPOSNL()
COMMANDQ (SYSTEM.ADMIN.COMMAND.QUEUE) QMNAME (saturn.queue.manager)
CRDATE(1998-09-25) CRTIME(09.40.06)
ALTDATE(1998-09-25) ALTTIME(09.40.06)
QMID(saturn.queue.manager 1998-09-25 09.40.06)
TRIGINT(999999999) MAXHANDS (256)
MAXUMSGS (10000) AUTHOREV (DISABLED)
INHIBTEV (DISABLED) LOCALEV (DISABLED)
REMOTEEV (DISABLED) PERFMEV (DISABLED)
STRSTPEV (ENABLED) CHAD (DISABLED)
CHADEV (DISABLED) CLWLLEN(100)
MAXMSGL (4194304) CCSID(850)

MAXPRTY (9) CMDLEVEL(510)
PLATFORM(WINDOWSNT) SYNCPT

DISTL(YES)

2 : display gmgr
AMQ8408: Display Queue Manager details.

DESCR() DEADQ()

DEFXMITQ() CHADEXIT()
CLWLEXIT() CLWLDATA()

REPOS() REPOSNL()
COMMANDQ (SYSTEM.ADMIN.COMMAND.QUEUE) QMNAME (saturn.queue.manager)
CRDATE (1998-09-25) CRTIME(09.40.06)
ALTDATE(1998-09-25) ALTTIME(09.40.06)
QMID(saturn.queue.manager 1998-09-25 09.40.06)
TRIGINT(999999999) MAXHANDS (256)
MAXUMSGS (10000) AUTHOREV (DISABLED)
INHIBTEV (DISABLED) LOCALEV (DISABLED)
REMOTEEV (DISABLED) PERFMEV (DISABLED)
STRSTPEV (ENABLED) CHAD (DISABLED)
CHADEV (DISABLED) CLWLLEN(100)
MAXMSGL (4194304) CCSID(850)

MAXPRTY (9) CMDLEVEL(510)
PLATFORM (WINDOWSNT) SYNCPT

DISTL(YES)

Figure 3. Typical output from a DISPLAY QMGR command

The ALL parameter on the DISPLAY QMGR command causes all the queue
manager attributes to be displayed. In particular, the output tells us the default
gueue manager name (saturn.queue.manager), and the names of the dead-letter
queue (SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE).

You can confirm that these queues exist by entering the command:

DISPLAY QUEUE (SYSTEM.x*)

64 MQSeries System Administration

Running MQSC commands

This displays a list of queues that match the stem ‘SYSTEM.*. The parentheses
are required.

Using a queue manager that is not the default

To run MQSC commands on a local queue manager other than the default queue
manager, you specify the name of the queue manager on input to the runmqgsc
command. For example, to run MQSC commands on queue manager
jupiter.queue.manager, use the command:

runmgsc jupiter.queue.manager

After this, all the MQSC commands you type in are processed by this queue
manager—assuming that it is on the same node and is already running.

You can also run MQSC commands on a remote queue manager; see “Issuing
MQSC commands remotely” on page 93.

Altering queue manager attributes

Running MQSC

To alter the attributes of the queue manager specified on the runmgsc command,
use the MQSC command ALTER QMGR, specifying the attributes and values that
you want to change. For example, use the following commands to alter the
attributes of jupiter.queue.manager:

runmgsc jupiter.queue.manager

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

commands from text files

Running MQSC commands interactively is suitable for quick tests, but if you have
very long commands, or are using a particular sequence of commands repeatedly,
consider redirecting stdin from a text file. (See “Standard input and output” on
page 61 for information about stdin and stdout.) To do this, first create a text file
containing the MQSC commands using your usual text editor. When you use the
runmgsc command, use the redirection operators. For example, the following
command runs a sequence of commands contained in the text file myprog.in:

runmgsc < myprog.in

Similarly, you can also redirect the output to a file. A file containing the MQSC
commands for input is called an MQSC command file. The output file containing
replies from the queue manager is called the report file. To redirect both stdin and
stdout on the runmgsc command, use this form of the command:

Chapter 7. Administering local MQSeries objects 65

Running MQSC commands

runmgsc < myprog.in > myprog.out

This command invokes the MQSC commands contained in the MQSC command
file myprog.in. Because we have not specified a queue manager name, the
MQSC commands are run against the default queue manager. The output is sent
to the report file myprog.out. Figure 4 shows an extract from the MQSC command
file myprog.in and Figure 5 on page 67 shows the corresponding extract of the
output in myprog.out.

To redirect stdin and stdout on the runmgsc command, for a queue manager
(saturn.queue.manager) that is not the default, use this form of the command:

runmgsc saturn.queue.manager < myprog.in > myprog.out

MQSC command files

MQSC commands are written in human-readable form, that is, in ASCII text.
Figure 4 is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes. Chapter 2, “The MQSeries commands” in
the MQSeries Command Reference manual contains a description of each MQSC
command and its syntax.

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) REPLACE +
DESCR(' ') +
PUT (ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET (ENABLED) +
MAXDEPTH (5000) +
MAXMSGL (1024) +
DEFSOPT (SHARED) +
NOHARDENBO +
USAGE (NORMAL) +
NOTRIGGER;

Figure 4. Extract from the MQSC command file, myprog.in
For portability among MQSeries environments, you are recommended to limit the

line length in MQSC command files to 72 characters. The plus sign indicates that
the command is continued on the next line.

66 MQSeries System Administration

Running MQSC commands

MQSC reports
The runmgsc command returns a report, which is sent to stdout. The report
contains:

¢ A header identifying MQSC as the source of the report:
Starting MQSeries Commands.

¢ An optional nhumbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 5. However, you can use
the -e flag on the runmgsc command to suppress the output.

* A syntax error message for any commands found to be in error.

* An operator message indicating the outcome of running each command. For
example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8006: MQSeries queue created.
e Other messages resulting from general errors when running the script file.

* A brief statistical summary of the report indicating the number of commands
read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager attempts to process only those commands that
have no syntax errors.

Starting MQSeries Commands.

12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +
: DESCR(' ') +
PUT (ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET (ENABLED) +
MAXDEPTH (5000) +
MAXMSGL (1024) +
DEFSOPT (SHARED) +
USAGE (NORMAL) +
: NOTRIGGER;
AMQ8006: MQSeries queue created.

Figure 5. Extract from the MQSC report file, myprog.out

Running the supplied MQSC command files
These MQSC command files are supplied with MQSeries:

amqscos0.tst Definitions of objects used by sample programs.

amgscicO.tst Definitions of queues for CICS transactions.

Chapter 7. Administering local MQSeries objects 67

Problems with MQSC

In MQSeries for UNIX systems, these files are located in the directory mgmtop/samp;
see “The base directory” on page xv for details of the installation directory mgmtop.

In MQSeries for OS/2 Warp and MQSeries for Windows NT, these files are located
in the directory c:\mgm\tools\mgsc\samples.

Using runmgsc to verify commands

You can use the runmgsc command to verify MQSC commands on a local queue
manager without actually running them. To do this, set the -v flag in the runmqgsc
command, for example:

runmgsc -v < myprog.in > myprog.out

When you invoke runmgsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This allows you to check the syntax of all the commands in your
command file. This is particularly important if you are:

e Running a large number of commands from a command file.

e Using an MQSC command file many times over.
This report is similar to that shown in Figure 5 on page 67.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:

runmgsc -w 30 -v jupiter.queue.manager < myprog.in > myprog.out

the -w flag, which you use to indicate that the queue manager is remote, is ignored,
and the command is run locally in verification mode.

Resolving problems with MQSC

68

If you cannot get MQSC commands to run, use the following checklist to see if any
of these common problems apply to you. It is not always obvious what the problem
is when you read the error generated.

When you use the runmgsc command, remember the following:

¢ Use the indirection operator < when redirecting input from a file. If you omit the
indirection operator, the queue manager interprets the file name as a queue
manager name, and issues the following error message:

AMQ8118: MQSeries queue manager does not exist.

 If you redirect output to a file, use the > redirection operator. By default, the file
is put in the current working directory at the time runmgsc is invoked. Specify
a fully-qualified file name to send your output to a specific file and directory.

e Check that you have created the queue manager that is going to run the
commands.

MQSeries System Administration

Problems with MQSC

To do this, look in the MQSeries configuration file, mgs.ini. This file contains
the names of the queue managers and the name of the default queue
manager, if you have one.

e The queue manager should already be started, if it is not, start it; see “Starting
a queue manager” on page 54. You get an error message if it is already
started.

e Specify a queue manager name on the runmgsc command if you have not
defined a default queue manager, otherwise you get this error:

AMQ8146: MQSeries queue manager not available.

To correct this type of problem, see “Making an existing queue manager the
default” on page 55.

e You cannot specify an MQSC command as parameter of the runmqgsc
command. For example, this is invalid:

runmgsc DEFINE QLOCAL(FRED)

e You cannot enter MQSC commands before you issue the runmgsc command.

e You cannot run control commands from runmgsc . For example, you cannot
issue the strmgm command to start a queue manager while you are running
MQSC interactively.

runmgsc

Starting MQSeries Commands.

1 : strmgm saturn.queue.manager
AMQ8405: Syntax error detected at or near end of command segment below:-
S

AMQ8426: Valid MQSC commands are:
ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING
REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND

2 : end

Chapter 7. Administering local MQSeries objects 69

Working with local queues

See also “If you have problems using MQSC remotely” on page 95.

Working with local queues

This section contains examples of some of the MQSC commands that you can use
to manage local, model, and alias queues. See the MQSeries Command
Reference manual for detailed information about these commands.

Defining a local queue

For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager
are said to be local to that queue manager.

Use the MQSC command DEFINE QLOCAL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify
the queue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:

* |t is enabled for gets, disabled for puts, and operates on a first-in-first-out
(FIFO) basis.

e |tis an ‘ordinary’ queue, that is, it is not an initiation queue or a transmission
gueue, and it does not generate trigger messages.

e The maximum queue depth is 1000 messages; the maximum message length
is 2000 bytes.

The following MQSC command does this:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +
DESCR('Queue for messages from other systems') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFOQ) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL);

Notes:

1. Most of these attributes are the defaults as supplied with the product.
However, they are shown here for purposes of illustration. You can omit them
if you are sure that the defaults are what you want or have not been changed.
See also “Displaying default object attributes” on page 71.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.

3. If you already have a local queue on the same queue manager with the name
ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if
you want to overwrite the existing definition of a queue, but see also “Changing
local queue attributes” on page 72.

70 MQSeries System Administration

Working with local queues

Defining a dead-letter queue

Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval. You must explicitly tell the queue manager about the dead-letter
gueue. You can do this by specifying a dead-letter queue on the crtmgm
command, or you can use the ALTER QMGR command to specify one later. You
must also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product. This queue is automatically created when you create the queue
manager. You can modify this definition if required. There is no need to rename it,
although you can if you like.

A dead-letter queue has no special requirements except that:
e |t must be a local queue

e |ts MAXMSGL (maximum message length) attribute must enable the queue to
accommodate the largest messages that the queue manager has to handle
plus the size of the dead-letter header (MQDLH)

MQSeries provides a dead-letter queue handler that allows you to specify how
messages found on a dead-letter queue are to be processed or removed. For
further information, see Chapter 12, “The MQSeries dead-letter queue handler” on
page 157.

Displaying default object attributes

When you define an MQSeries object, it takes any attributes that you do not specify
from the default object. For example, when you define a local queue, the queue
inherits any attributes that you omit in the definition from the default local queue,
which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what these
attributes are, use the following command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE)

Note: The syntax of this command is different from that of the corresponding
DEFINE command.

You can selectively display attributes by specifying them individually. For example:

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
MAXDEPTH +
MAXMSGL +
CURDEPTH;

Chapter 7. Administering local MQSeries objects 71

Working with local queues

This command displays the three specified attributes as follows:

AMQ8409: Display Queue details.

QUEUE (ORANGE . LOCAL.QUEUE) MAXDEPTH (5000)
MAXMSGL (4194304) CURDEPTH(0)
5 : end

CURDEPTH is the current queue depth, that is, the number of messages on the
gueue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition

You can copy a queue definition using the LIKE attribute on the DEFINE command.
For example:

DEFINE QLOCAL (MAGENTA.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE)

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition, but
substituting one or more changes to the attributes of the original. For example:

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL (1024) ;

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
gueue THIRD.QUEUE, but specifies that the maximum message length on the new
gueue is to be 1024 bytes, rather than 2000.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
gueue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes
You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 70, we defined the queue
ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the
maximum message length on this queue to 10 000 bytes.

72 MQSeries System Administration

Working with local queues

e Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

This command changes a single attribute, that of the maximum message
length; all the other attributes remain the same.

e Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

This command changes not only the maximum message length, but all the
other attributes, which are given their default values. The queue is now put
enabled whereas previously it was put inhibited. Put enabled is the default, as
specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have
changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue

To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:

CLEAR QLOCAL (MAGENTA.QUEUE)

You cannot clear a queue if:
e There are uncommitted messages that have been put on the queue under
syncpoint.

e An application currently has the queue open.

Deleting a local queue
Use the MQSC command DELETE QLOCAL to delete a local queue. A gueue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages, and no uncommitted messages, it can only be
deleted if you specify the PURGE option. For example:

DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

Chapter 7. Administering local MQSeries objects 73

Working with local queues

Browsing queues
MQSeries provides a sample queue browser that you can use to look at the

contents of the messages on a queue. The browser is supplied in both source and
executable formats.

In MQSeries for UNIX systems, the default file names and paths are:

Source mgmtop/samp/amgsbcg0.c

Executable mgmtop/samp/bin/amgsbcg

In MQSeries for OS/2 Warp and MQSeries for Windows NT, the default file names
and paths are:

Source c:\mgm\tools\c\samples\amgsbcg0.c

Executable c:\mgm\tools\c\samples\bin\amgsbcg.exe

The sample requires two input parameters, the queue manager name and the
queue name. For example:

amgsbcg SYSTEM.ADMIN.QMGREVENT.tpp0l saturn.queue.manager

Typical results from this command are shown in Figure 6 on page 75.

74 MQSeries System Administration

Working with local queues

AMQSBCGO - starts here

kkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkkx

MQOPEN - 'SYSTEM.ADMIN.QMGR.EVENT'

MQGET of message number 1
***xxMessage descriptorsx*x

Strucld : 'MD ' Version : 2

Report : 0 MsgType : 8

Expiry : -1 Feedback : 0

Encoding : 546 CodedCharSetId : 850

Format : 'MQEVENT '

Priority : @ Persistence : 0

Msgld : X'414D512073617475726E2E71756575650005D30033563DB8'
Correlld : X'00"
BackoutCount : 0

ReplyToQ .

ReplyToQMgr : 'saturn.queue.manager
** Identity Context

Userldentifier : '

AccountingToken :
X'00

ApplldentityData : '

** Origin Context

PutAppl1Type A

PutAppTName : 'saturn.queue.manager '

PutDate : '19970417' PutTime : '15115208'

ApplOriginData : ' '

GroupId : X'00'
MsgSegNumber : '1'

Offset :'o!

MsgFlags . 'o!

OriginallLength : '104'

Figure 6 (Part 1 of 2). Typical results from queue browser

Chapter 7. Administering local MQSeries objects

75

Performance Monitor

*h Kk Message *k Kk

length - 104 bytes

00000000: 0700 0000 2400 0000 0100 0000 2CO0 0000 '....¢....... see
00000010: 0100 0000 0100 0000 0100 0000 AEG8 0000 '................
00000020: 0100 0000 0400 0000 4400 0000 DFO7 0060 '........ Dovennn

00000040: 7565 7565 2E6D 616E 6167 6572 2020 2020 'ueue.manager
00000050: 2020 2020 2020 2020 2020 2020 2020 2020 '

00000030: 0000 0000 3000 0000 7361 7475 726E 2E71 '....0...saturn.q'
00000060: 2020 2020 2020 2020 ' :

No more messages
MQCLOSE
MQDISC

Figure 6 (Part 2 of 2). Typical results from queue browser

| Monitoring local queues with the Windows NT Performance Monitor

| Administrators of MQSeries for Windows NT can monitor the performance of local
| gueues using the Windows NT Performance Monitor.

| The Windows NT Performance Monitor displays a new object type called MQSeries
| Queues in which performance data for local queues is stored.

| Active local queues defined in running queue managers are displayed as

| QueueName:QMName in the Performance Monitor Instance list when the MQSeries

| Queues object type is selected. (QMName denotes the name of the queue manager
| owning the queue, and QueueName denotes the name of the local queue.

For each queue, you can view information relating to the following:

|
| e The current queue depth

| ¢ The queue depth as a percentage of the maximum queue depth

| e The number of messages being placed on the queue per second

| e The number of messages being removed from the queue per second

| For messages sent to a distribution list, the Performance Monitor counts the
| number of messages being put onto each queue.

| In the case of segmented messages, the Performance Monitor counts the
| appropriate number of small messages.

| Performance data is obtained from statistical data maintained by the MQSeries
| gueue managers for each local queue. However, note that performance data is
| only available for queues that are accessed after the Performance Monitor has
| been started.

| The performance of queues on computers other than that on which the
| Performance Monitor is running can be monitored. To monitor the queues on

76 MQSeries System Administration

Working with alias queues

another computer, select your target computer from the Performance Monitor,
which works using the Windows Network Neighborhood hierarchy.

Working with alias queues

An alias queue (also known as a queue alias) provides a method of redirecting MQI
calls. An alias queue is not a real queue but a definition that resolves to a real
gueue. The alias queue definition contains a target queue name which is specified
by the TARGQ attribute (Base@QName in PCF). When an application specifies an
alias queue in an MQI call, the queue manager resolves the real queue name at
run time.

For example, an application has been developed to put messages on a queue
called MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an
MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for
maintenance, migration, and load-balancing.

Defining an alias queue
The following command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls that specify MY.ALIAS.QUEUE to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

ALTER QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE)

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear
to have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:

e Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed
to get messages from it.

e Application BETA can get messages from YELLOW.QUEUE, but is not allowed
to put messages on it.

Chapter 7. Administering local MQSeries objects 77

Working with alias queues

You can do this using the following commands:

* This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

* This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use these attributes with local queues.

Using other commands with alias queues

You can use the appropriate MQSC commands to display or alter queue alias
attributes, or delete the queue alias object. For example,

* Display the queue alias's attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE)

* ALTER the base queue name, to which the alias resolves.
* FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

* Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete a queue alias if, for example, an application currently has the
queue open or has a queue open that resolves to this queue. See Chapter 2, “The
MQSeries commands” in the MQSeries Command Reference manual for more
information about this and other queue alias commands.

78 MQsSeries System Administration

Working with model queues

Working with model queues

A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue

You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not). For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues

You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or delete the model queue object. For example:

Chapter 7. Administering local MQSeries objects 79

Managing objects for triggering

* Display the model queue's attributes
DISPLAY QUEUE (GREEN.MODEL.QUEUE)

* ALTER the model to enable puts on any
* dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

* Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Managing objects for triggering

MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called
triggering and is described in detail in Chapter 14, “Starting MQSeries applications
using triggers” in the MQSeries Application Programming Guide.

This section describes how to set up the required objects to support triggering on
MQSeries.

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined

on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue MOTOR.INSURANCE.QUEUE, as follows:

DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

where:

QLOCAL (MOTOR.INSURANCE.QUEUE)
Specifies the name of the application queue being defined.

80 MQseries System Administration

Managing objects for triggering

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGL (2000)
Specifies the maximum length of messages on the queue.

DEFPSIST (YES)
Specifies that messages on this queue are persistent by default.

INITQ (MOTOR.INS.INIT.QUEUE)
Is the name of the initiation queue on which the queue manager is to put the
trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRIMPRI) reaches the number specified in TRIGDPTH.

TRIGDPTH (100)
Specifies the number of messages required to generate a trigger event.

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority 5
or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues have

no special settings, but you can use the following definition of the local queue
MOTOR.INS.INIT.QUEUE for guidance:

DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +
GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (1000)

Creating a process definition
Use the DEFINE PROCESS command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command
defines the required process, MOTOR.INSURANCE.QUOTE.PROCESS, identified
in this example:

Chapter 7. Administering local MQSeries objects 81

Managing objects for triggering

DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
DESCR ('Insurance request message processing') +
APPLTYPE (UNIX) +
APPLICID ('/u/admin/test/IRMPO1') +
USERDATA ('open, close, 235')

Where:

MOTOR. INSURANCE.QUOTE.PROCESS
Is the name of the process definition.

DESCR ('Insurance request message processing')
Is a description of the application program to which this definition relates.
This text is displayed when you use the DISPLAY PROCESS command.
This can help you to identify what the process does. If you use spaces in
the string, you must enclose the string in single quotation marks.

APPLTYPE (UNIX)
Is the type of application to be started.

APPLICID ('/u/admin/test/IRMPO1')
Is the name of the application executable file, specified as a fully qualified
file name. In MQSeries for OS/2 Warp and Windows NT, a typical APPLICID
value would be c:\appT\test\irmp01l.exe.

USERDATA ('open, close, 235')
Is user-defined data, which can be used by the application.

Displaying your process definition
Use the DISPLAY PROCESS command to examine the results of your definition.
For example:

DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL

AMQ8407: Display Process details.
DESCR ('Insurance request message processing') APPLICID ('/u/admin/test/IRMPO1')
USERDATA (open, close, 235) PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

APPLTYPE (UNIX)

You can also use the MQSC command ALTER PROCESS to alter an existing
process definition, and the DELETE PROCESS command to delete a process
definition.

82 MQsSeries System Administration

Automating administration ¢ PCF commands

| Chapter 8. Automating administration tasks

This chapter assumes that you have experience of administering MQSeries objects.

There may come a time when you decide that it would be beneficial to your
installation to automate some administration and monitoring tasks. You can
automate administration tasks for both local and remote queue managers using
programmable command format (PCF) commands.

This chapter describes:

¢ How to use programmable command formats to automate administration tasks
in “PCF commands,” which includes a description of support for Microsoft's
Active Directory Service Interfaces (ADSI).

e How to use the command server in “Managing the command server for remote
administration” on page 85

PCF commands

The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In
this way you can create queues, process definitions, channels, and namelists, and
change queue managers, from a program.

PCF commands cover the same range of functions provided by the MQSC facility.

Therefore, you can write a program to issue PCF commands to any queue
manager in the network from a single node. In this way, you can both centralize
and automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue
manager using the MQI function MQPUT in the same way as any other message.
The command server on the queue manager receiving the message interprets it as
a command message and runs the command. To get the replies, the application
issues an MQGET call and the reply data is returned in another data structure.
The application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:

Message type (MsqType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type (Type) specifies MQCFT_COMMAND.

© Copyright IBM Corp. 1994,1999 83

PCF commands

The command identifier specifies the command, for example, Change Queue
(MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,
see “PCF command messages” in the MQSeries Programmable System
Management manual.

Attributes in MQSC and PCFs

Escape PCFs

Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

Object attributes in PCF, which are not limited to eight characters, are shown in this
book in italics. For example, the PCF equivalent of RQMNAME is RemoteQMgrName.

Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see “Escape” in the MQSeries
Programmable System Management manual.

| Using the MQAI to simplify the use of PCFs

The MQAI is an administration interface to MQSeries that is available on the AlX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT platforms.

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that is
easier than using PCFs.

The MQAI can be used:

e To simplify the use of PCF messages
The MQAI is an easy way to administer MQSeries; you do not have to write
your own PCF messages and this avoids the problems associated with complex
data structures.

To pass parameters in programs that are written using MQI calls, the PCF
message must contain the command and details of the string or integer data.
To do this, several statements are needed in your program for every structure,
and memory space must be allocated. This task is long and laborious.

On the other hand, programs written using the MQAI pass parameters into the
appropriate data bag and only one statement is required for each structure.
The use of MQAI data bags removes the need for you to handle arrays and
allocate storage, and provides some degree of isolation from the details of the
PCF.

e To implement self-administering applications and administration tools
For example, the Active Directory Services provided by MQSeries for Windows
NT Version 5.1 uses the MQAI.

e To handle error conditions more easily
It is difficult to get return codes back from MQSC commands, but the MQAI
makes it easier for the program to handle error conditions.

84 MQsSeries System Administration

Command server remote administration

After you have created and populated your data bag, you can then send an
administration command message to the command server of a queue manager,
using the mgExecute call, which will wait for any response messages. The
mgExecute call handles the exchange with the command server and returns
responses in a response bag.

For more information about using the MQAI, see the MQSeries Administration
Interface Programming Guide and Reference book.

For more information about PCFs in general, see Chapter 7, “Using Programmable
Command Formats” in the MQSeries Programmable System Management book.

Active Directory Services

Active Directory Service Interfaces (ADSI) support allows client applications to use
a common set of Component Object Model (COM) interfaces to communicate with,
and control, any application that implements them.

Unlike tools written using other MQSeries administration interfaces, those that use
the ADSI are not limited to manipulating MQSeries servers. The same tool can
control Windows NT, Lotus Notes, or any application implementing the ADSI.

IBM MQSeries support for the ADSI is implemented through the use of the
IBMMQSeries namespace .

Any programming language that supports the COM interfaces can be used to
implement ADSI clients.

For more information about the ADSI, visit the Microsoft web site at:
www.microsoft.com

For more information about Component Object Model (COM) interfaces, see the
MQSeries for Windows NT Using the Component Object Model Interface book.

Note: To access a queue manager, it must be running and have an associated
command server.

Managing the command server for remote administration

Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

A command server is mandatory for all administration involving PCFs, the MQAI,
and also for remote administration.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
gueue manager from which they are issued. Instead, these messages are queued
in the local transmission queue that serves the remote queue manager. This
situation should be avoided, if at all possible.

Chapter 8. Automating administration tasks 85

Command server remote administration

There are separate control commands for starting and stopping the command
server. Users of MQSeries for Windows NT Version 5.1 and later can perform the
operations described in the following sections using the MQSeries Services snhap-in.
For more information, see Chapter 4, “Administration using the MQSeries Services
shap-in” on page 37.

Starting the command server
To start the command server use this command:

strmgcsv saturn.queue.manager

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server
For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the command is:

dspmgcsv saturn.queue.manager

You must issue this command on the target machine. If the command server is
running, the following message is returned:

AMQ8027 MQSeries Command Server Status ..: Running

Stopping a command server
To end a command server, the command, using the previous example is:

endmgcsv saturn.queue.manager

You can stop the command server in two different ways:

e For a controlled stop, use the endmgcsv command with the -c flag, which is
the default.

e For an immediate stop, use the endmqgcsv command with the -i flag.

Note: Stopping a queue manager also ends the command server associated with
it (if one has been started).

86 MQsSeries System Administration

Administering remote objects e« Channels, clusters, and remote queuing

Chapter 9. Administering remote MQSeries objects

This chapter describes how to administer MQSeries objects on a remote queue
manager using MQSC commands as well as describing how you can use remote
gueue objects to control the destination of messages and reply messages.

For information about administration using the MQSeries Explorer, see Chapter 3,
“Administration using the MQSeries Explorer” on page 29.

Channels, clusters, and remote queuing

A queue manager communicates with another queue manager by sending a
message and, if required, receiving back a response. The receiving queue
manager could be:

e On the same machine

e On another machine in the same location or on the other side of the world
e Running on the same platform as the local queue manager

* Running on another platform supported by MQSeries

These messages may originate from:
» User-written application programs that transfer data from one node to another.
» User-written administration applications that use PCFs, the MQAI, or the ADSI
¢ Queue managers sending:
— Instrumentation event messages to another queue manager.

— MQSC commands issued from a runmgsc command in indirect mode
(where the commands are run on another queue manager).

Before a message can be sent to a remote queue manager, the local queue
manager needs a mechanism to detect the arrival of messages and transport them,
consisting of:

e At least one channel

e A transmission queue

¢ A message channel agent (MCA)
¢ A channel listener

e A channel initiator

A channel is a one-way communication link between two queue managers and can
carry messages destined for any number of queues at the remote queue manager.

Each end of the channel has a separate definition. For example, if one end is a
sender or a server, the other end must be a receiver or a requester. A simple
channel consists of a sender channel definition at the local queue manager end
and a receiver channel definition at the remote queue manager end. The two
definitions must have the same name and together constitute a single channel.

If the remote queue manager is expected to respond to messages sent by the local
gueue manager, a second channel needs to be set up to send responses back to
the local queue manager.

© Copyright IBM Corp. 1994,1999 87

Channels, clusters, and remote queuing

Channels are defined using the MQSC DEFINE CHANNEL command. In this
chapter, the examples relating to channels use the default channel attributes unless
otherwise specified.

There is a message channel agent (MCA) at each end of a channel which controls
the sending and receiving of messages. It is the job of the MCA to take messages
from the transmission queue and put them on the communication link between the
gueue managers.

A transmission queue is a specialized local queue that temporarily holds messages
before they are picked up by the MCA and sent to the remote queue manager.
You specify the name of the transmission queue on a remote queue definition.

“Preparing channels and transmission queues for remote administration” on
page 90 shows how to use these definitions to set up remote administration.

For more information about setting up distributed queuing in general, see the
MQSeries Intercommunication book.

Remote administration using clusters

In a traditional MQSeries network using distributed queuing, every queue manager
is independent. If one queue manager needs to send messages to another queue
manager it must have defined a transmission queue, a channel to the remote
gueue manager, and a remote queue definition for every queue to which it wants to
send messages.

A cluster is a group of queue managers set up in such a way so that the queue
managers can communicate directly with one another over a single network without
the need for complex transmission queue, channels, and queue definitions.
Clusters can be set up easily, and typically contain queue managers that are
logically related in some way and need to share data or applications.

Once a cluster has been created the queue managers within it can communicate
with each other without the need for complicated channel or remote queue
definitions. Even the smallest cluster will reduce system administration overheads.

Establishing a network of queue managers in a cluster involves fewer definitions
than establishing a traditional distributed queuing environment. With fewer
definitions to make, you can set up or change your network more quickly and
easily, and the risk in making an error in your definitions is reduced.

To set up a cluster, you usually need one cluster sender (CLUSSDR) definition and
one cluster receiver (CLUSRCVR) definition per queue manager. You do not need
any transmission queue definitions or remote queue definitions. The principles of
remote administration are the same when used within a cluster, but the definitions
themselves are greatly simplified.

For more information about clusters, their attributes, and how to set them up, refer
to the MQSeries Queue Manager Clusters book.

88 MQsSeries System Administration

Remote administration

Remote administration from a local queue manager using MQSC

commands

This section tells you how to administer a remote queue manager from a local
gueue manager using MQSC and PCF commands.

Preparing the queues and channels is essentially the same for both MQSC and
PCF commands. In this book, the examples show MQSC commands, because
they are easier to understand. However, you can convert the examples to PCFs if
you wish. For more information about writing administration programs using PCFs,
see “PCF command messages” in the MQSeries Programmable System
Management book and the MQSeries Administration Interface Programming Guide
and Reference book.

You send MQSC commands to a remote queue manager either interactively or
from a text file containing the commands. The remote queue manager may be on
the same machine or, more typically, on a different machine. You can remotely
administer queue managers in other MQSeries environments, including UNIX
systems, AS/400, OS/390, OS/2, and Windows NT.

To implement remote administration, you must create specific objects. Unless you
have specialized requirements, you should find that the default values (for example,
for message length) are sufficient.

Preparing queue managers for remote administration

Figure 7 on page 90 shows the configuration of queue managers and channels
that are required for remote administration using the runmgsc command. The
object source.queue.manager is the source queue manager from which you can
issue MQSC commands and to which the results of these commands (operator
messages) are returned. The object target.queue.manager is the name of the
target queue manager, which processes the commands and generates any
operator messages.

Note: If you are using MQSC with the -w option, source.queue.manager must be
the default queue manager. For further information on creating a queue manager,
see “crtmgm (Create queue manager)” on page 284.

Chapter 9. Administering remote MQSeries objects 89

Remote administration

1
1
source.queue.manager | target.queue.manager
1
1

runmgsc
MQSC commands
L . >
Process commands
| for example:
replies DEFINE QLOCAL
<= <

Local system Remote system

Figure 7. Remote administration using MQSC commands

On both systems, if you have not already done so, you must:

* Create the queue manager and the default objects using the crtmgm
command.
e Start the queue manager, using the strmgm command.

You have to run these commands locally or over a network facility such as Telnet.

On the target queue manager:

e The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.
This queue is created by default when a queue manager is created.
e The command server must be started, using the strmgcsv command.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, you must set up two channels, one for each
direction, and their associated transmission queues. This example assumes that
TCPI/IP is being used as the transport type and that you know the TCP/IP address
involved.

The channel source.to.target is for sending MQSC commands from the source
gueue manager to the target queue manager. lIts sender is at
source.queue.manager and its receiver is at queue manager target.queue.manager.
The channel target.to.source is for returning the output from commands and any
operator messages that are generated to the source queue manager. You must
also define a transmission queue for each sender. This queue is a local queue that
is given the name of the receiving queue manager. The XMITQ name must match
the remote queue manager name in order for remote administration to work, unless
you are using a queue manager alias.

Figure 8 on page 91 summarizes this configuration.

90 MQSeries System Administration

Remote administration

runmgsc

source.queue.manager

commands
| —

replies

[—

target.queue.manager

— L
XMITQ=target.queue.manager

>’ source.to.target ‘:

—— <

SYSTEM.MQSC.REPLY.QUEUE

Local system

\{ target.to.source ‘<}

=
—1llIIII |

SYSTEM.ADMIN.COMMAND.QUEUE

- =

XMITQ=source.queue.manager

Remote system

Figure 8. Setting up channels and queues for remote administration

See Chapter 1, “Concepts of intercommunication” in the MQSeries

Intercommunication book for more information about setting up remote channels.

Defining channels and transmission queues

On the source queue manager, issue these MQSC commands to define the

channels and the transmission queue:

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +
TRPTYPE(TCP)

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(RCVR) +
TRPTYPE(TCP)

* Define the sender channel at the source queue manager

* Define the receiver channel at the source queue manager

* Define the transmission queue on the source

DEFINE QLOCAL ('target.queue.manager') +
USAGE (XMITQ)

Issue the commands shown in Figure 9 on page 92 on the target queue manager
(target.queue.manager), to create the channels and the transmission queue there:

Chapter 9. Administering remote MQSeries objects

91

Remote administration

* Define the sender channel on the target queue manager

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(SDR) +
CONNAME (RHX7721) +
XMITQ ('source.queue.manager') +
TRPTYPE(TCP)

* Define the receiver channel on the target queue manager
DEFINE CHANNEL ('source.to.target') +

CHLTYPE(RCVR) +

TRPTYPE(TCP)

* Define the transmission queue on the target queue manager

DEFINE QLOCAL ('source.queue.manager') +
USAGE (XMITQ)

Figure 9. Commands to create channels and a transmission queue

Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name of the
machine at the other end of the connection. Use the values appropriate for your
network.

Starting the channels

The way in which you start the channels depends on the environments in which
MQSeries is running.

In MQSeries for UNIX systems, ensure that the inetd daemons have been
configured for MQSeries and are running. Then start the channels as background
processes:

« On the source queue manager, type:

runmgchl -c source.to.target -m source.queue.manager &

» On the target queue manager, type:

runmgchl -c target.to.source -m source.queue.manager &

In MQSeries for OS/2 Warp and Windows NT, start a listener as a background
process at the receiver end of each channel.

» On the source queue manager, type:

START runmglsr -t TCP -m source.queue.manager

« On the target queue.manager, type:

92 MQSeries System Administration

Remote administration

START runmglsr -t TCP -m target.queue.manager

Then start the channels, again as background processes:

« On the source queue manager, type:

START runmgchl -c source.to.target -m source.queue.manager

« On the target queue manager, type:

START runmgchl -c target.to.source -m source.queue.manager

The runmglsr and runmgchl commands are MQSeries control commands. They
cannot be issued using runmgsc . Channels can however be started using
runmgsc commands or scripts (start channel).

Automatic definition of channels

Automatic definition of channels applies only if the target queue manager is running
on MQSeries Version 5.1 products. If an inbound attach request, or higher, is
received and an appropriate receiver or server-connection definition cannot be
found in the channel definition file (CDF), MQSeries creates a definition
automatically and adds it to the CDF. Automatic definitions are based on two
default definitions supplied with MQSeries: SYSTEM.AUTO.RECEIVER and
SYSTEM.AUTO.SVRCONN.

You enable automatic definition of receiver and server-connection definitions by
updating the queue manager object using the MQSC command, ALTER QMGR (or
the PCF command Change Queue Manager).

For more information about the automatic creation of channel definitions, see
“Auto-definition of channels” in the MQSeries Intercommunication book.

For information about the automatic definition of channels for clusters, see
“Auto-definition of remote queues and channels” in the MQSeries Queue Manager
Clusters book.

Issuing MQSC commands remotely

The command server must be running on the target queue manager, if it is going
to process MQSC commands remotely. (This is not necessary on the source
gueue manager.)

» On the target queue manager, type:

strmgcsv target.queue.manager

e On the source queue manager, you can then run MQSC interactively in indirect
mode by typing:

Chapter 9. Administering remote MQSeries objects 93

Remote administration

runmgsc -w 30 target.queue.manager

This form of the runmgsc command—with the -w flag—runs the MQSC commands
in indirect mode, where commands are put (in a modified form) on the
command-server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if
a reply is not received within 30 seconds, the following message is generated on
the local (source) queue manager:

AMQ8416: MQSC timed out waiting for a response from the command server.

At the end of the MQSC session, the local queue manager displays any timed-out
responses that have arrived. When the MQSC session is finished, any further
responses are discarded.

In indirect mode, you can also run an MQSC command file on a remote queue
manager. For example:

runmgsc -w 60 target.queue.manager < mycomds.in > report.out

where mycomds.in is a file containing MQSC commands and report.out is the
report file.

| Working with queue managers on OS/390

| You can issue MQSC commands to an 0S/390 queue manager from an MQSeries
Version 5.1 queue manager. However, to do this, you must modify the runmgsc
command and the channel definitions at the sender.

In particular, you add the -x flag to the runmgsc command on the source node:

runmgsc -w 30 -x target.queue.manager

You must define the receiver channel and the transmission queue at the source
gueue manager. The example assumes that TCP/IP is the transmission protocol
being used.

* Define the sender channel at the source queue manager

DEFINE CHANNEL (source.to.target) +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ (target.queue.manager) +
TRPTYPE(TCP) +

94 MQSeries System Administration

Local definition of remote queue

Recommendations for remote queuing
When you are implementing remote queuing:

1. Put the MQSC commands to be run on the remote system in a command file.

2. Verify your MQSC commands locally, by specifying the -v flag on the runmgsc
command.

You cannot use runmgsc to verify MQSC commands on another queue
manager.

3. Check that the command file runs locally without error.

4. Finally, run the command file against the remote system.

If you have problems using MQSC remotely

If you have difficulty in running MQSC commands remotely, use the following
checklist to see if you have:

e Started the command server on the target queue manager.
e Defined a valid transmission queue.
» Defined the two ends of the message channels for both:

— The channel along which the commands are being sent.
— The channel along which the replies are to be returned.

e Specified the correct connection name (CONNAME) in the channel definition.
e Started the listeners before you started the message channels.

e Checked that the disconnect interval has not expired, for example, if a channel
started but then shut down after some time. This is especially important if you
start the channels manually.

e Ensure that you are not sending requests from a source queue manager that
do not make sense to the target queue manager (for example, requests that
include new parameters).

See also “Resolving problems with MQSC” on page 68.

Creating a local definition of a remote queue

You can use a remote queue definition as a local definition of a remote queue.
You create a remote queue definition on your local queue manager to identify a
local queue on another queue manager.

Understanding how local definitions of remote queues work

An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of
the target queue, the target queue manager, and optionally, a transmission queue.
To put a message on the remote queue, the application issues an MQPUT call,
specifying the handle returned from the MQOPEN call. The queue manager uses
the remote queue name and the remote queue manager name in a transmission
header prepended to the message. This information is used to route the message
to its correct destination in the network.

Chapter 9. Administering remote MQSeries objects 95

Local definition of remote queue

As administrator, you can control the destination of the message by altering the
remote queue definition.

Example
Purpose: An application is required to put a message on a queue owned by a
remote queue manager.

How it works: The application connects to a queue manager, for example,
saturn.queue.manager. The target queue is owned by another queue manager.

On the MQOPEN call, the application specifies these fields:

Field value Description
ObjectName Specifies the local name of the remote queue object.
CYAN.REMOTE.QUEUE This defines the target queue and the target queue
manager.
ObjectType Identifies this object as a queue.
(Queue)
ObjectQmgrName This field is optional.
B|at:k If blank, the name of the local queue manager is
g assumed. (This is the queue manager on which the
saturn.queue.manager remote queue definition exists.)

After this, the application issues an MQPUT call to put a message on to this queue.

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +
RQMNAME (jupiter.queue.manager) +
XMITQ (INQUOTE.XMIT.QUEUE)

where:

QREMOTE (CYAN.REMOTE.QUEUE)
Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the MQOPEN
call to open the queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the
remote queue manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Additional text that describes the use of the queue.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)
Specifies the name of the target queue on the remote queue manager. This
is the real target queue for messages that are sent by applications that
specify the queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local
queue on the remote queue manager.

96 MQSeries System Administration

Local definition of remote queue

RQMNAME (jupiter.queue.manager)
Specifies the name of the remote queue manager that owns the target
queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)
Specifies the name of the transmission queue. This is optional; if the name
of a transmission queue is not specified, a queue with the same name as the
remote queue manager is used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMITQ) in MQSC).

An alternative way of putting messages on a remote queue

Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, which includes
the remote queue manager name, as part of the MQOPEN call. In this case, a
local definition of a remote queue is not required. However, this alternative means
that applications must either know or have access to the name of the remote queue
manager at run time.

Using other commands with remote queues

You can use the appropriate MQSC commands to display or alter the attributes of a
remote queue object, or you can delete the remote queue object. For example:

* Display the remote queue's attributes.

DISPLAY QUEUE (CYAN.REMOTE.QUEUE)

* ALTER the remote queue to enable puts.
* This does not affect the target queue,
* only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

* Delete this remote queue
* This does not affect the target queue
* only its local definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: When you delete a remote queue, you delete only the local representation
of the remote queue. You do not delete the remote queue itself or any messages
on it.

Chapter 9. Administering remote MQSeries objects 97

Local definition of remote queue

Creating a transmission queue

A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel.

The channel provides a one-way link to the remote queue manager. Messages are
gueued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues

Optionally, you can specify a transmission queue in a remote queue object, using
the XmitQName attribute (XMITQ in MQSC). If no transmission queue is defined, a
default is used. When applications put messages on a remote queue, if a
transmission queue with the same name as the target queue manager exists, that
queue is used. If this queue does not exist, the queue specified by the
DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target gm') +
USAGE (XMITQ)

Applications can put messages directly on a transmission queue, or they can be put
there indirectly, for example, through a remote queue definition. See also “Creating
a local definition of a remote queue” on page 95.

98 MQsSeries System Administration

Aliases

Using remote queue definitions as aliases

In addition to locating a queue on another qgueue manager, you can also use a
local definition of a remote queue for both:

e Queue manager aliases
* Reply-to queue aliases

Both types of alias are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the
message is to arrive at its destination.

Queue manager aliases

An alias is the process by which the name of the target queue manager—as
specified in a message—is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see “Queue manager alias
definitions” in the MQSeries Intercommunication book.

Reply-to queue aliases

Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue.

If the application that processes the message extracts the name of the reply-to
gueue, it knows where to send the reply message, if required.

A reply-to queue alias is the process by which a reply-to queue — as specified in a
request message — is altered by a queue manager on the message route. The
sending application is not aware that the reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
gueues, see Chapter 3, “MQSeries messages” in the MQSeries Application
Programming Guide.

For more information about reply-to queue aliases, see “Reply-to queue alias
definitions” in the MQSeries Intercommunication book.

Chapter 9. Administering remote MQSeries objects 99

Data conversion

Data conversion

Message data in MQSeries-defined formats (also known as built-in formats) can be
converted by the queue manager from one coded character set to another,
provided that both character sets relate to a single language or a group of similar
languages.

For example, conversion between coded character sets whose identifiers (CCSIDs)
are 850 and 500 is supported, because both apply to Western European
languages.

For EBCDIC new line (NL) character conversions to ASCII, see “The
AllQueueManagers stanza” on page 130.

Supported conversions are defined in Appendix F, “Code page conversion tables”
in the MQSeries Application Programming Reference manual.

When a queue manager cannot convert messages in built-in formats

File ccsid.tbl

The queue manager cannot automatically convert messages in built-in formats if
their CCSIDs represent different national-language groups. For example,
conversion between CCSID 850 and CCSID 1025 (which is an EBCDIC coded
character set for languages using Cyrillic script) is not supported because many of
the characters in one coded character set cannot be represented in the other. If
you have a network of queue managers working in different national languages,
and data conversion among some of the coded character sets is not supported, you
can enable a default conversion. Default data conversion is described in “Default
data conversion” on page 101.

The file ccsid.tbl is used for the following purposes:

e In MQSeries for Windows NT it records all the supported code sets. In
MQSeries for OS/2 Warp and UNIX systems the supported code sets are held
internally by the operating system.

¢ |t specifies any additional code sets. To specify additional code sets, you need
to edit ccsid.tbl (guidance on how to do this is provided in the file).

¢ |t specifies any default data conversion.

You can update the information recorded in ccsid.tbl; you might want to do this if,
for example, a future release of your operating system supports additional coded
character sets.

In UNIX environments, a sample ccsid.tbl file is provided as
mgmtop /samp/ccsid.tbl.

In MQSeries for UNIX systems, ccsid.tbl is located in directory /var/mgm/convi/table.

In MQSeries for OS/2 Warp and MQSeries for Windows NT, ccsid.tbl is located on
the boot drive in directory \MQM\CONWV\TABLE.

100 MQsSeries System Administration

Data conversion

Default data conversion

To implement default data conversion, you edit ccsid.tbl to specify a default
EBCDIC CCSID and a default ASCIl CCSID, and also to specify the defaulting
CCSIDs. Instructions for doing this are included in the file.

If you update ccsid.tbl to implement default data conversion, the queue manager
must be restarted before the change can take effect.

The default data-conversion process is as follows:

e |f conversion between the source and target CCSIDs is not supported, but the
CCSIDs of the source and target environments are either both EBCDIC or both
ASCII, the character data is passed to the target application without conversion.

e |f one CCSID represents an ASCII coded character set, and the other
represents an EBCDIC coded character set, MQSeries converts the data using
the default data-conversion CCSIDS defined in ccsid.tbl.

Note: You should try to restrict the characters being converted to those that have
the same code values in the coded character set specified for the message and in
the default coded character set. If you use only that set of characters that is valid
for MQSeries object names (as defined in “Names of MQSeries objects” on

page 279) you will, in general, satisfy this requirement. Exceptions occur with
EBCDIC CCSIDs 290, 930, 1279, and 5026 used in Japan, where the lowercase
characters have different codes from those used in other EBCDIC CCSIDs.

Conversion of messages in user-defined formats
Messages in user-defined formats cannot be converted from one coded character
set to another by the queue manager. If data in a user-defined format requires
conversion, you must supply a data-conversion exit for each such format. The use
of default CCSIDs for converting character data in user-defined formats is not
recommended, although it is possible. For more information about converting data
in user-defined formats and about writing data conversion exits, see Chapter 11,
“Writing data-conversion exits” in the MQSeries Application Programming Guide.

Chapter 9. Administering remote MQSeries objects 101

Data conversion

102 WMQsSeries System Administration

Security e Protecting MQSeries resources

Chapter 10. Protecting MQSeries objects

This information does not apply to MQSeries for OS/2 Warp

This chapter describes how to prevent unauthorized access to MQSeries objects in
these environments:

e MQSeries for AlX

e MQSeries for HP-UX

e MQSeries for Sun Solaris
¢ MQSeries for Windows NT

Detailed information about installable services is given in the Chapter 11,
“Installable services and components” in the MQSeries Programmable System
Management manual.

This chapter contains these sections:

e “Why you need to protect MQSeries resources”

¢ “Understanding the Object Authority Manager” on page 107

e “Using Object Authority Manager commands” on page 110

* “Object Authority Manager guidelines” on page 113

* “Understanding the authorization specification tables” on page 116
e “Authorization files” on page 122

Why you need to protect MQSeries resources

Because MQSeries queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This ensures
that the resources that a queue manager owns and manages are protected from
unauthorized access, which could lead to the loss or disclosure of the information.

In a secure system, it is essential that none of the following are accessed or
changed by any unauthorized user or application:
» Connections to a queue manager

* Access to MQSeries objects such as queues, clusters, channels, and
processes

e Commands for queue manager administration, including MQSC commands and
PCF commands

e Access to MQSeries messages

» Context information associated with messages

You should develop your own policy with respect to which users have access to
which resources.

© Copyright IBM Corp. 1994,1999 103

Before you begin

Before you begin (UNIX systems)

In MQSeries for UNIX systems, UNIX restrictions mean that all user IDs must be
defined in lowercase.

All queue manager processes run with these IDs:

User ID mgm
Group mqgm

A user ID with the name mgm whose primary group is mgm is automatically
created during installation. You can create the user ID and group yourself, but you
must do this before you install MQSeries.

For an explanation of how to create the ID and group yourself, see one of the
following:

e “Chapter 3. Installing the MQSeries for AIX Server” in the MQSeries for AIX
V5.1 Quick Beginnings book

e “Chapter 3. Installing the MQSeries for HP-UX Server” in the MQSeries for
HP-UX V5.1 Quick Beginnings book

e “Chapter 3. Installing the MQSeries for Sun Solaris Server” in the MQSeries for
Sun Solaris V5.1 Quick Beginnings book

User IDs in user group mgm (UNIX systems)

If your user ID belongs to group mgm, you have all authorities to all MQSeries
resources. Your user ID must belong to group mgm to be able to use all the
MQSeries control commands, except crtmgcvx . In particular, you need this
authority to:

e Use the runmgsc command to run MQSC commands
e Administer authorities using the setmgaut command
e Create a queue manager using the crtmgm command

If you are sending channel commands to remote queue managers, you must make
sure that your user ID is a member of group mgm on the target system. For a list
of PCF and MQSC channel commands, see “Channel command security” on

page 115.

It is not essential for your user ID to belong to group mgm for issuing:

e PCF commands—including Escape PCFs—from an administration program.

e MQI calls from an application program. However, the special MQI call,
MQCONNX, does require mgm group membership if the option
MQCNO_FASTPATH_BINDING is used.

Before you begin (Windows NT)

If the local mgm group does not already exist on the local computer, it is created
automatically when MQSeries for Windows NT is installed. In addition, a Domain
mgm group may be created on the domain controller. This global group allows
control of mgm user access. All privileged user IDs active within this domain
should be added to the Domain mgm group.

104 wmQsSeries System Administration

Before you begin

| User IDs for administration

If your user ID belongs to the local mgm or Administrators group, you can
administer any queue manager on that system. The system-defined user ID
‘SYSTEM'’ can also administer any queue manager.

The name of the local mgm group to be used for privileged MQSeries
administration is fixed, and it can contain (directly, or indirectly by the inclusion of
global groups) users who require MQSeries authority to any queue manager on the
workstation or server.

In order to run all the MQSeries for Windows NT control commands, your user 1D
must belong to the local mgm or Administrators group. In particular, you need this
authority to:

e Use the runmgsc command to run MQSC commands

e Administer authorities on MQSeries for Windows NT using the setmgaut
command

« Create a queue manager using crtmgm

If you are sending channel commands to queue managers on a remote Windows
NT system, you must ensure that your user ID is a member of the mgm or
Administrators group on the target system. For a list of PCF and MQSC channel
commands, see “Channel command security” on page 115.

Some control commands, for example, crtmgm , manipulate authorities on
MQSeries objects using the Object Authority Manager (OAM). As described in
“Understanding the Object Authority Manager” on page 107, the OAM uses a
predefined search order to determine the authority rights for a given user ID.
Consequently the authorities granted to your user ID may differ from those
determined by the OAM. For example, if you issue crtmgm from a user ID
authenticated by a domain controller that has membership of the local mgm group
through a global group, the command fails if the system has a local user of the
same name who is not in the local mgm group.

Your user ID does not have to belong to group mgm in order to issue:

e PCF commands—including Escape PCFs—from an administration program.
| e MQI calls from an application program. However, the special MQI call,
| MQCONNX, does require mgm group membership.

When you use a Domain user ID defined on a remote machine, you must be a
member of the local mgm or Administrators group to:

1. Issue commands (such as create queue manager), and
2. Grant MQSeries authorities.

| Name lengths for user IDs and groups
| For MQSeries authorizations, names of user IDs, groups, and domains are limited
| to:

| e 20 characters for user IDs
| e 64 characters for group names
| * 15 characters for domain names

Chapter 10. Protecting MQSeries objects 105

Before you begin

Qualifying a user ID with a domain name
You can optionally qualify a user ID on both the setmgaut and dspmqgaut
commands with a domain name using the following syntax:

user@domain

For example,

setmgaut -m gmgrname -t gmgr -p userID@domain +all
where user is the user ID and domain is the domain name.

Note: Group names always refer to local groups, therefore domain qualification is
not necessary.

Using the @ symbol in user ID names

The at sign (@ symbol) is used as a delimiter. However, some user IDs may
contain the @ symbol as part of the user ID name. If you do this, use two @
symbols together (@ @) to signify that the symbol is to be used as part of the user
ID string and not as a delimiter between the user ID and the domain name. So, for
example, the user ID aBb becomes a@@b.

Using spaces in names for user IDs and groups

Spaces in user IDs and group names are allowed when they are specified as
parameters on the setmgaut and dspmgaut commands, as long as they are
enclosed in double quotation marks (*).

Authorizing user IDs on different domains

You can give different levels of authorization to user IDs that are not unique
residing on different domains. For example, user ID Fred on domain A can be
given different authorizations to user ID Fred on domain B.

See “dspmgaut (Display authority)” on page 293, and “setmgaut (Set/reset
authority)” on page 327 for command descriptions.

Restricted-access Windows NT objects
When MQSeries creates restricted-access Windows NT objects, full control
permission is given to the following entities:

e The local mgm group on the local computer
e The local Administrators group on the local computer
e The SYSTEM user ID

Security policies

A security policy can be specified for each queue manager by setting the
SecurityPolicy attribute of the Service stanza in the Windows NT Registry. See
“The Service stanza” on page 136 for a description of the attribute.

106 MQsSeries System Administration

Object authority manager

A security policy dictates how the OAM behaves when it receives authority requests
which do not contain Windows NT security identifier (NT SID) information3.

When using the default security policy, it is permissible for the OAM to receive
authority requests that do not contain SID information. In such situations, the OAM
attempts to resolve the user ID into a Windows NT SID by searching:

e The local security database
e The security database of the primary domain
* The security database of trusted domains

If the security policy is set to the value NTSIDsRequired, then both the user ID and
NT SID information must be passed to the OAM.

In cases where both a user ID and NT SID information are passed to the OAM, a
check is made to ensure that the two are consistent. The supplied user ID is
compared with the user ID (or the first 12 characters if the user ID is longer than 12
characters) associated with the NT SID. If the two are unequal, then authorization
fails. This consistency check is performed regardless of the security policy setting.

Understanding the Object Authority Manager

By default, access to queue-manager resources is controlled through an
authorization service installable component formally called the Object Authority
Manager (OAM) for MQSeries. It is supplied with MQSeries, and is automatically
installed and enabled for each queue manager you create, unless you specify
otherwise. In this chapter, the term OAM is used to denote the Object Authority
Manager supplied with MQSeries.

The OAM is an installable component of the authorization service. Providing the
OAM as an installable service gives you the flexibility to:

* Replace the supplied OAM with your own authorization service component
using the interface provided.

e Augment the facilities supplied by the OAM with those of your own
authorization service component, again using the interface provided.

¢ Remove or disable the OAM, and run with no authorization service at all.

For more information on installable services, see Chapter 11, “Installable services
and components” in the MQSeries Programmable System Management manual.

The OAM manages users’ authorizations to manipulate MQSeries objects, including
gueues and process definitions. It also provides a command interface through
which you can grant or revoke access authority to an object for a specific group of
users. The decision to allow access to a resource is made by the OAM, and the
gueue manager follows that decision. If the OAM cannot make a decision, the
gueue manager prevents access to that resource.

3 The Windows NT security identifier (NT SID) supplements the 12-character user ID. It contains information that identifies the full
user account details on the Windows NT security account manager (SAM) database where the user is defined. When a message
is created on MQSeries for Windows NT, MQSeries stores the SID in the message descriptor. When MQSeries for Windows NT
performs authorization checks, it uses the SID to query the full information from the SAM database. The SAM database in which
the user is defined must be accessible for this query to succeed.

Chapter 10. Protecting MQSeries objects 107

Object authority manager

How the OAM works

The OAM works by exploiting the security features of the underlying operating
system. In particular, the OAM uses operating system user and group IDs. Users
can access queue manager objects only if they have the required authority.

Managing access through user groups
In the command interface, we use the term principal rather than user ID. The
reason for this is that authorities granted to a user ID can also be granted to other
entities, for example, an application program that issues MQI calls, or an
administration program that issues PCF commands. In these cases, the principal
associated with the program is not necessarily the user ID that was used when the
program was started. However, in this discussion, principals are always user IDs.

Group sets and the primary group

Managing access permissions to MQSeries resources is based on user groups
(that is, on groups of principals). A principal can belong to one or more groups. If
it belongs to more than one group, the groups to which it belongs are known as its
group set.

Group sets and the primary group—MQSeries for UNIX systems: One of the
groups in the group set is the primary group.

Group sets and the primary group—MQSeries for Windows NT: For MQSeries
for Windows NT, the role of the primary group is fulfilled by the user ID. The
Windows NT primary group associated with a user ID is given no special treatment
by MQSeries; it is handled in the same way as any other group.

The OAM searches for the specified user in the following order:

1. The local security database
2. The security database of the primary domain
3. The security database of trusted domains

The first user ID encountered is used when checking for group membership.

Note that each of these user IDs may have different group memberships on a
particular computer.

When a principal belongs to more than one group

The authorizations that a principal has are derived from the union of the
authorizations of its group set. Whenever a principal requests access to a
resource, the OAM computes this union and uses the resultant authorization to
check the principal’s access to the resource. You can use the control command
setmgaut to set the authorizations for a specific principal. However, for MQSeries
for UNIX systems, this also gives the same authorizations to the principal’'s primary

group.

The group set associated with a principal is cached when the group authorizations
are computed by the OAM. Any changes made to a principal’'s group memberships
after the group set has been cached are not recognized until the queue manager is
restarted.

108 MQsSeries System Administration

Object authority manager

| Default user group (UNIX systems only)

The OAM recognizes a default user group to which all users are nominally
assigned. This group has a group ID of 'nobody'. By default, no authorizations
are given to this group. Users without specific authorizations can be granted
access to MQSeries resources through this group ID.

Resources you can protect with the OAM
Through OAM you can control;

e Access to MQSeries objects through the MQI. When an application program
attempts to access an object, the OAM checks that the user ID making the
request has the authorization for the operation requested.

In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

¢ Permission to use PCF commands.

Different groups of users may be granted different kinds of access authority to the
same object. For example, for a specific queue, one group may be allowed to
perform both put and get operations; another group may be allowed only to browse
the queue (MQGET with browse option). Similarly, some groups may have get and
put authority to a queue, but are not allowed to alter or delete the queue.

Using groups for authorizations

Using groups, rather than individual principals, for authorization reduces the amount
of administration required. Typically, a particular kind of access is required by more
than one principal. For example, you might define a group consisting of end users
who want to run a particular application. New users can be given access simply by
adding their user ID to the appropriate group.

Try to keep the number of groups as small as possible. For example, dividing
principals into one group for application users and one for administrators is a good
place to start.

Notes:

1. In MQSeries for UNIX systems, if a principal in a PRIMARY group is added to
the MQM group, then all members of the PRIMARY group inherit the authority
of the member added, unless you use SETMQAUT to change the authority of
the existing members. It is important to ensure that you do not change the
authorization of a principal inadvertently, simply because it belongs to the same
primary group as the principal you specified when you changed an
authorization.

2. MQSeries for Windows NT treats the local Administrators group and the local
mgm group in a special manner. Members of these groups are always granted
full access rights which cannot be removed. Membership of these local groups
may be established by the user being a member of a domain global group
which is included in the local group.

Chapter 10. Protecting MQSeries objects 109

Using OAM commands

Disabling the object authority manager

By default the OAM is enabled. You can disable it by setting the operating system
variable MQSNOAUT before the queue manager is created.

In MQSeries for UNIX systems, you set MQSNOAUT as follows:

export MQSNOAUT=yes

For MQSeries for Windows NT, you set MOQSNOAUT as follows:

SET MQSNOAUT=yes

However, if you do this you cannot, in general, restart the OAM later. A better
approach is to have the OAM enabled and ensure that all users and applications
have access through an appropriate group or user ID.

You can also disable the OAM, for testing purposes only, by removing the
authorization service stanza in the queue manager configuration file (gm.ini).

Using Object Authority Manager commands

The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be suitably authorized:

e In MQSeries for UNIX systems, your user ID must belong to the group mgm,
which you define when you install MQSeries.

* In MQSeries for Windows NT, your user ID must belong to either the local mgm
group or the local Administrators group.

If your user ID is a member of mgm, or, for MQSeries for Windows NT, of either
mgm or the local Administrators group, you have a ‘super user’ authority to the
gueue manager, which means that you are authorized to issue any MQI request or
command from your user ID.

Using the OAM set or reset authority control command, setmqgaut

The OAM provides two control commands that allow you to manage the
authorizations of users. These are:

e setmgaut (Set or reset authority)
e dspmgaut (Display authority).

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUTL,
and MQCLOSE. Therefore, any changes made to the authority of an object using
setmqgaut do not take effect until you reset the object.

The authority commands setmgaut and dspmgaut apply to the specified queue
manager; if you do not specify the name of a queue manager, the default queue
manager is assumed. On these commands, you must also identify the object
uniquely (that is, you must specify the object name and its type). You also have to
specify the principal or group name to which the authority applies.

110 MQsSeries System Administration

Using OAM commands

Authorization lists

On the setmgaut command you specify a list of authorizations. This is simply a
shorthand way of specifying whether authorization is to be granted or revoked, and
of identifying the resources to which the change in authorization applies. Each
authorization in the list is specified as a lowercase keyword, prefixed with a plus
sign (+) or a minus sign (-). Use a plus sign to add the specified authorization,
and a minus sign to remove the authorization. You can specify any number of
authorizations in a single command. For example:

+browse -get +put

Using the setmgaut command

Provided you have the required authorization, you can use the setmgaut command
to grant or revoke authorization of a principal or user group to access a particular
object. The following example shows how the setmgaut command is used:

setmgaut -m saturn.queue.manager -t queue -n RED.LOCAL.QUEUE -g groupa +browse -get +put

In this example:
e saturn.queue.manager is the queue manager name.
e queue is the object type.
e RED.LOCAL.QUEUE is the object name.
e groupa is the ID of the group whose authorizations are to change.

e +browse -get +put is the authorization list for the specified queue. There must
be no spaces between the ‘+’ or ‘-’ signs and the keyword.

— +browse adds authorization to browse messages on the queue (to issue
MQGET with the browse option).

— -get removes authorization to get (MQGET) messages from the queue.

— +put adds authorization to put (MQPUT) messages on the queue.
In summary, applications started with user IDs that belong to user group groupa
have at least these authorizations.

You can specify one or more principals and, at the same time, one or more groups.
For example, the following command revokes put authority on the queue MyQueue
from the principal fvuser and from groups groupa and groupb.

setmgaut -m saturn.queue.manager -t queue -n MyQueue -p fvuser -g groupa -g groupb -put

Note: For MQSeries for UNIX systems, this command also revokes put authority
for all principals in the primary group of FvUser.

For a formal definition of the command and its syntax, see “setmqaut (Set/reset
authority)” on page 327.

Chapter 10. Protecting MQSeries objects 111

Using OAM commands

Authority commands and installable services: The setmgaut command takes
an additional parameter that specifies the name of the installable service
component to which the update applies. You must specify this parameter if you
have multiple installable components running at the same time. By default, this is
not the case. If the parameter is omitted, the update is made to the first installable
service of that type, if one exists. By default, this is the supplied OAM.

See “setmgaut (Set/reset authority)” on page 327 for detailed command
information.

Access authorizations
Authorizations defined by the authorization list associated with the setmgaut
command can be categorized as follows:

¢ Authorizations related to MQI calls

¢ Authorization related administration commands

e Context authorizations

e General authorizations, that is, for MQI calls, for commands, or both

Each authorization is specified by a keyword used with the setmgaut and
dspmgaut commands. These are described in “setmqaut (Set/reset authority)” on
page 327.

Using the OAM display authority control command (dspmgaut)

You can use the command dspmqaut to view the authorizations that a specific
principal or group has for a particular object. The flags have the same meaning as
those in the setmgaut command. Authorization can be displayed for only one
group or principal at a time. See “dspmgaut (Display authority)” on page 293 for a
formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager
QueueManl.

dspmgaut -m QueueManl -t process -n Annuities -g GpAdmin

The keywords displayed as a result of this command identify the authorizations that
are active.

112 wMQsSeries System Administration

OAM guidelines

Object Authority Manager guidelines

Some operations are particularly sensitive and should be limited to privileged users.
For example,

* Accessing some special queues, such as transmission queues or the command
queue SYSTEM.ADMIN.COMMAND.QUEUE

* Running programs that use full MQI context options

e Creating and copying application queues

User IDs (MQSeries for UNIX systems only)

The special user ID mgm that you create is intended for use by the product only. It
should never be available to nonprivileged users.

If an MQ process is associated with a login session, then the authorization routines
check the real (logged-in) user ID.

If an MQ process is not associated with a login session (for example, if the process
is invoked from a daemon such as inetd), the effective user ID is used for
authorization. In a CICS environment, the CICS user ID associated with the
transaction is used.

All objects are owned by user ID mgm.

Queue manager directories

The directory containing queues and other queue manager data is private to the
product. Do not use standard operating system commands to grant or revoke
authorizations to MQI resources.

Queues

The authority to a dynamic queue is based on, but is not necessarily the same as,
that of the model queue from which it is derived. See note 1 on page 119 for more
information.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user ID to access an alias queue that resolves to a local queue to
which the user ID has no access permissions.

You should limit the authority to create queues to privileged users. If you do not,
users may bypass the normal access control simply by creating an alias.

Alternate-user authority

Alternate-user authority controls whether one user ID can use the authority of
another user ID when accessing an MQSeries object. This is essential where a
server receives requests from a program and the server wishes to ensure that the
program has the required authority for the request. The server may have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

Chapter 10. Protecting MQSeries objects 113

OAM guidelines

For example:

e A server program running under user ID PAYSERYV retrieves a request
message from a queue that was put on the queue by user ID USERL1.

¢ When the server program gets the request message, it processes the request
and puts the reply back into the reply-to queue specified with the request
message.

* Instead of using its own user ID (PAYSERV) to authorize opening the reply-to
gueue, the server can specify some other user ID, in this case, USER1. In this
example, you can use alternate-user authority to control whether PAYSERYV is
allowed to specify USER1 as an alternate-user ID when it opens the reply-to
queue.

The alternate-user ID is specified on the AlternatelUserId field of the object
descriptor.

Note: You can use alternate-user IDs on any MQSeries object. Use of an
alternate-user ID does not affect the user ID used by any other resource managers.

Context authority

Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section This part specifies who the message came from. It consists
of the following fields:

e Userldentifier
e AccountingToken
e ApplidentityData

Origin section This section specifies where the message came from, and
when it was put onto the queue. It consists of the following
fields:

e PutApplType

e PutApplName

e PutDate

e PutTime

e ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data may be generated by the application, it may be passed on
from another message, or it may be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application, running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user.

You use context authorization to control whether the user can specify any of the
context options on any MQOPEN or MQPUT1 call. For information about the
context options, see “Message context” in the MQSeries Application Programming
Guide.

114 wmQsSeries System Administration

OAM guidelines

For descriptions of the message descriptor fields relating to context, see “MQMD -
Message descriptor” on page 109 in the MQSeries Application Programming
Reference manual.

Remote security considerations
For remote security, you should consider:

Put authority For security across queue managers you can specify the put
authority that is used when a channel receives a message sent
from another queue manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. This is the user ID that the message
channel agent is running under.

CTX The user ID in the message context.

Transmission queues
Queue managers automatically put remote messages on a
transmission queue; no special authority is required for this.
However, putting a message directly on a transmission queue
requires special authorization; see Table 4 on page 118.

Channel exits Channel exits can be used for added security.

For more information about remote security, see Chapter 6, “Channel attributes”
and Chapter 35, “Channel-exit programs” in the MQSeries Intercommunication
book.

Channel command security

Channel commands can be issued as PCF commands, through the MQAI, MQSC
commands, and control commands.

PCF commands

You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote MQSeries system. The user ID,
as specified in the message descriptor of the PCF message, must belong to group
mgm (or the Administrator's group in the MQSeries for Windows NT) on the target
system. These commands are:

e ChangeChannel

e (CopyChannel

e (CreateChannel

e peleteChannel

e PingChannel

e ResetChannel

e StartChannel

e StartChannellnitiator
e StartChannellistener
e StopChannel

e ResolveChannel

See “Authority checking for PCF commands” in the MQSeries Programmable
System Management manual for the PCF security requirements.

Chapter 10. Protecting MQSeries objects 115

Authorization specification tables

MQSC channel commands

You can issue MQSC channel commands to a remote MQSeries system either by
sending the command directly in a PCF escape message or by issuing the
command using runmgsc in indirect mode. The user ID as specified in the
message descriptor of the associated PCF message must belong to group mgm (or
the Administrator’s group in MQSeries for Windows NT) on the target system.
(PCF commands are implicit in MQSC commands issued from runmgsc in indirect
mode.) These commands are:

e ALTER CHANNEL
 DEFINE CHANNEL

e DELETE CHANNEL
e PING CHANNEL

e RESET CHANNEL

e START CHANNEL

e START CHINIT

e START LISTENER

e STOP CHANNEL

* RESOLVE CHANNEL

For MQSC commands issued from the runmgsc command, the user ID in the PCF
message is normally that of the current user.

Control commands for channels

For the control commands for channels, the user ID that issues them must belong
to user group mgm (or the Administrator’s group in MQSeries for Windows NT).
These commands are:

e runmqgchi (Run channel initiator)
e runmqgchl (Run channel)
e runmglsr (Run listener)

Understanding the authorization specification tables

The authorization specification tables starting on page 118 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:

* Applications that issue MQI calls
e Administration programs that issue MQSC commands as escape PCFs
e Administration programs that issue PCF commands

In this section, the information is presented as a set of tables that specify the

following:

Action to be performed MQI option, MQSC command, or PCF command.
Access control object Queue, process, or queue manager.
Authorization required Expressed as an ‘MQZAOQO ' constant.

116 WMQsSeries System Administration

Authorization specification tables

In the tables, the constants prefixed by MQZAO __ correspond to the keywords in the
authorization list for the setmgaut command for the particular entity. For example,
MQZAO_BROWSE corresponds to the keyword +browse; similarly, the keyword
MQZAO_SET _ALL_CONTEXT corresponds to the keyword +setall and so on.
These constants are defined in the header file cmgzc.h, which is supplied with the
product. See “Authorization file contents — MQSeries for UNIX systems” on

page 124 for more information.

MQI authorizations
An application is allowed to issue specific MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the object
being opened, and not on the name, or names, resulting after a name has been
resolved. For example, an application may be granted authority to open an alias
gueue without having authority to open the base queue to which the alias resolves.
The rule is that the check is carried out on the first definition encountered during
the process of name resolution that is not a queue-manager alias, unless the
gueue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority—which is obtained through an authorization for the queue-manager
object—is required.

Table 4 on page 118 summarizes the authorizations needed for each call.

Chapter 10. Protecting MQSeries objects 117

Authorization specification tables

Table 4. Security authorization needed for MQI calls

Authorization
required for:

Queue object (1)

Process object

Queue manager
object

Namelists

MQCONN option

Not applicable

Not applicable

MQZAO_CONNECT

Not applicable

MQOPEN Option

MQOO_INQUIRE

MQZAO_INQUIRE
2

MQZAO_INQUIRE

&)

MQZAO_INQUIRE
2

MQZAO_INQUIRE

&)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check Not applicable
MQOO_INPUT_* MQZAO_INPUT Not applicable No check Not applicable
MQOO_SAVE_ MQZAO_INPUT Not applicable Not applicable Not applicable

ALL_CONTEXT (3)

MQOO_OUTPUT
(Normal queue) (4)

MQZAO_OUTPUT

Not applicable

Not applicable

Not applicable

MQOO_PASS_ MQZAO_PASS_ Not applicable No check Not applicable
IDENTITY_CONTEXT IDENTITY_CONTEXT

(5)

MQOO_PASS_ALL_ MQZAQO_PASS Not applicable No check Not applicable
CONTEXT (5, 6) _ALL_CONTEXT

MQOO_SET_ MQZAQO_SET_ Not applicable MQZAQO_SET_ Not applicable

IDENTITY_CONTEXT
(5.6)

IDENTITY_CONTEXT

IDENTITY_CONTEXT
Q)

MQOO_SET_ MQZAQO_SET_ Not applicable MQZAQO_SET_ Not applicable
ALL_CONTEXT (5, 8) ALL_CONTEXT ALL_CONTEXT (7)
MQOO_OUTPUT MQZAQO_SET _ Not applicable MQZAQO_SET _ Not applicable

(Transmission queue)

9

ALL_CONTEXT

ALL_CONTEXT (7)

MQOO_SET MQZAO_SET Not applicable No check Not applicable
MQOO_ALTERNATE_ | (10) (10) MQZAO_ALTERNATE_| (10)
USER_AUTHORITY USER_AUTHORITY
(10, 12)

MQPUT1 Option
MQPMO_PASS_ MQZAO_PASS_ Not applicable No check Not applicable
IDENTITY_CONTEXT IDENTITY_CONTEXT

(12)
MQPMO_PASS_ALL MQZAO_PASS_ Not applicable No check Not applicable
_CONTEXT ALL_CONTEXT (12)
MQPMO_SET_ MQZAQO_SET _ Not applicable MQZAQO_SET _ Not applicable

IDENTITY_CONTEXT

IDENTITY_CONTEXT
(12)

IDENTITY_CONTEXT
)

MQPMO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_ Not applicable
ALL_CONTEXT ALL_CONTEXT (12) ALL_CONTEXT (7)
(Transmission queue) MQZAO_SET_ Not applicable MQZAO_SET_ Not applicable
9) ALL_CONTEXT ALL_CONTEXT (7)
MQPMO_ALTERNATE_| (13) Not applicable MQZAO_ALTERNATE_| Not applicable

USER_AUTHORITY

USER_AUTHORITY
(11)

MQCLOSE Option

MQCO_DELETE

MQZAO_DELETE
(14)

Not applicable

Not applicable

Not applicable

MQCO_DELETE
_PURGE

MQZAO_DELETE
(14)

Not applicable

Not applicable

Not applicable

118 MQsSeries System Administration

Authorization specification tables

Notes for Table 4:

1.

10.

11.
12.

13.

14.

If a model queue is being opened:

e MQZAO_DISPLAY authority is needed for the model queue, in addition to
the authority to open the model queue for the type of access for which you
are opening.

¢ MQZAO_CREATE authority is not needed to create the dynamic queue.

e The user identifier used to open the model queue is automatically granted
all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

. Either the queue, process, namelist, or queue manager object is checked,

depending on the type of object being opened.

. MQOO_INPUT_* must also be specified. This is valid for a local, model, or

alias queue.

. This check is performed for all output cases, except the case specified in note

9.

. MQOO_OUTPUT must also be specified.
. MQOO_PASS IDENTITY_CONTEXT is also implied by this option.

. This authority is required for both the queue manager object and the particular

queue.

. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.

. This check is performed for a local or model queue that has a Usage queue

attribute of MQUS_TRANSMISSION, and is being opened directly for output. It
does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate-user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

This authorization allows any AlternateUserld to be specified.

An MQZAO_OUTPUT check is also carried out, if the queue does not have a
Usage queue attribute of MQUS_TRANSMISSION.

The check carried out is as for the other options specified, using the supplied
alternate-user identifier for the specific-named queue authority, and the current
application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER check.

The check is carried out only if both of the following are true:
e A permanent dynamic queue is being closed and deleted.

¢ The queue was not created by the MQOPEN which returned the object
handle being used.

Otherwise, there is no check.

Chapter 10. Protecting MQSeries objects 119

Authorization specification tables

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that

are relevant to the object type:

« MQZAO_CONNECT
« MQZAO_INQUIRE
« MQZAO_SET

« MQZAO_BROWSE
« MQZAO_INPUT

« MQZAO_OUTPUT

* MQZAO_PASS_IDENTITY_CONTEXT

« MQZAO_PASS_ALL_CONTEXT

« MQZAO_SET_IDENTITY_CONTEXT

« MQZAO_SET_ALL_CONTEXT

* MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14) and MQZAO_DISPLAY are classed as
administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.

4. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue an MQPUT call to a process object.

Administration authorizations

These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself.
These methods allow a program to send an administration command as a message
to a queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs

Table 5 summarizes the authorizations needed for each MQSC command that is

contained in Escape PCF.

Table 5. MQSC commands and security authorization needed

(2) Authorization
required for:

Queue object Process object

Queue manager
object

Namelists

MQSC command

ALTER object MQZAO_CHANGE MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

CLEAR QLOCAL MQZAO_CLEAR Not applicable

Not applicable

Not applicable

DEFINE object
NOREPLACE (3)

MQZAO_CREATE (4) | MQZAO_CREATE (4)

Not applicable

MQZAO_CREATE (4)

DEFINE object
REPLACE (3, 5)

MQZAO_CHANGE MQZAO_CHANGE

Not applicable

MQZAO_CHANGE

DELETE object MQZAO_DELETE MQZAO_DELETE

Not applicable

MQZAO_DELETE

DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

Notes for Table 5:

1. The user identifier, under which the program (for example, runmgsc) which
submits the command is running, must also have MQZAO_CONNECT authority

to the queue manager.

120 MQsSeries System Administration

Authorization specification tables

2. Either the queue, process, namelist, or queue manager object is checked,
depending on the type of object.

3. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the setmgaut command.

5. This applies if the object to be replaced does in fact already exist. If it does
not, the check is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the

gueue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue

manager object.

Authorizations for PCF commands

Table 6 summarizes the authorizations needed for each PCF command.

Table 6. PCF commands and security authorization needed

(2) Authorization
required for:

Queue object

Process object

Queue manager
object

Namelists

PCF command

Change object

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

MQZAO_CHANGE

Clear Queue

MQZAO_CLEAR

Not applicable

Not applicable

Not applicable

Copy object (without
replace) (3)

MQZAO_CREATE (4)

MQZAO_CREATE (4)

Not applicable

MQZAO_CREATE (4)

Copy object (with
replace) (3, 6)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

MQZAO_CHANGE

Create object (without
replace) (5)

MQZAO_CREATE (4)

MQZAO_CREATE (4)

Not applicable

MQZAO_CREATE (4)

Create object (with
replace) (5, 6)

MQZAO_CHANGE

MQZAO_CHANGE

Not applicable

MQZAO_CHANGE

Delete object

MQZAO_DELETE

MQZAO_DELETE

Not applicable

MQZAO_DELETE

Inquire object

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

Inquire object names

No check

No check

No check

No check

Reset queue statistics

MQZAO_DISPLAY
and
MQZAO_CHANGE

Not applicable

Not applicable

Not applicable

Notes for Table 6:

1. The user identifier under which the program submitting the command is running
must also have authority to connect to its local queue manager, and to open
the command administration queue for output.

Chapter 10. Protecting MQSeries objects

121

Authorization files

. Either the queue, process, namelist, or queue-manager object is checked,

depending on the type of object.

. For Copy commands, MQZAQO_DISPLAY authority is also needed for the From

object.

. The MQZAO_CREATE authority is not specific to a particular object or object

type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the setmgaut command.

. For Create commands, MQZAO_DISPLAY authority is also needed for the

appropriate SYSTEM.DEFAULT.* object.

. This applies if the object to be replaced already exists. If it does not, the check

is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the

queue manager.

. The special authorization MQZAO_ALL_ADMIN includes all of the following that

are relevant to the object type:

« MQZAO_CHANGE
« MQZAO_CLEAR

« MQZAO_DELETE
« MQZAO_DISPLAY

MQZAO_CREATE is not included because it is not specific to a particular
object or object type.

. ‘No check’ means that no authorization checking is carried out.

. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot use a Clear Queue command on a
process object.

Authorization files
— Attention!

The information in this section is given for problem determination purposes.
Under normal circumstances, use authorization commands to view and change
authorization information.

MQSeries uses a specific file structure to implement security. You should not have
to do anything with these files, except to ensure that all the authorization files are
themselves secure.

Security is implemented by authorization files.

Types of authorization

There are three types of authorization:

e Authorizations applying to single objects, for example, the authority to put a

message on an queue.

122 MQSeries System Administration

Authorization files

» Authorizations applying to a class of objects, for example, the authority to
create a queue.

» Authorizations applying across all classes of objects, for example, the authority
to perform operations on behalf of different users.

Authorization file paths
The path to an authorization file depends on its type. When you specify an
authorization for an object, for example, the queue manager creates the appropriate
authorization files. It puts these files into a subdirectory, the path of which is
defined by:

e The queue manager name
e The type of authorization
* Where appropriate, the object name

Not all authorizations apply directly to instances of objects. For example, the
authorization to create an object applies to the class of objects rather than to an
individual instance. Also, some authorizations apply across the entire queue
manager, for example, alternate-user authority means that a user can assume the
authorities associated with another user.

Authorization directories
In MQSeries for UNIX systems, the default authorization directories for a queue
manager called saturn are:

Table 7. Authorization directories for MQSeries for UNIX systems

Authorization directory Description
/var/mgm/gmgrs/saturn/auth/queues Authorization files for queues
/var/mgm/gmgrs/saturn/auth/procdef Authorization files for process definitions
/var/mgm/gmgrs/saturn/auth/gmanager Authorization files for the queue manager
/var/mgm/gmgrs/saturn/auth/namelist Authorization files for the namelists

In MQSeries for Windows NT, the default authorization directories for a queue
manager called saturn are:

Table 8. Authorization directories for MQSeries for Windows NT

Authorization directory Description
\mgm\gmgrs\saturn\auth\queues Authorization files for queues.
\mgm\gmgrs\saturn\auth\procdef Authorization files for process definitions.
\mgm\gmgrs\saturn\auth\gmanager Authorization files for the queue manager.
\mgm\gmgrs\saturn\auth\namelist Authorization files for the namelists.

In the auth directory, @class files hold the authorizations related to the entire class.

There is a difference between @class (the authorization file that specifies
authorization for a particular class) and @aclass (the authorization file that specifies
authorizations to all classes).

Chapter 10. Protecting MQSeries objects 123

Authorization files

Paths for object authorization files

The paths of the object authorization files are based on those of the object itself,
where auth is inserted ahead of the object type directory. You can use the
dspmgfls command to display the path to a specified object.

For example, if the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:
/var/mgm/qmgrs/saturn/queues/SYSTEM!DEFAULT! LOCAL!QUEUE

the name and path of the corresponding authorization file is:
/var/mgm/qmgrs/saturn/auth/queues/SYSTEM!DEFAULT!LOCAL!QUEUE

If the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:
\mgm\gmgrs\saturn\queues\SYSTEM!DEFAULT!LOCAL!QUEUE

the name and path of the corresponding authorization file is:
\mgm\gmgrs\saturn\auth\queues\SYSTEM!DEFAULT!LOCAL!QUEUE

Note: In this case, the actual names of the files associated with the queue are not
the same as the name of the queue itself. See “Understanding MQSeries file
names” on page 27 for details.

Authorization file contents — MQSeries for UNIX systems

The authorizations of a particular group are defined by a set of stanzas in the
authorization file. The authorizations apply to the object associated with this file.
For example:

groupB:
Authority=0x0040007

This stanza defines the authority of the group groupB.

Authorization file contents — MQSeries for Windows NT

The authorizations of a particular user ID or group are defined by a set of attributes
in the authorization file. The authorizations apply to the object associated with this
file. For example:

user@domainl:
Authority = 0x0040007
Sid = S§-1-5-21-1023809979-1377598139-60295696-1024

This stanza defines the authority of the user ID user.
Authority stanza

The authority specification is the union of the individual bit patterns based on the
assignments shown in Figure 10

124 mQsSeries System Administration

Authorization files

Authorization Formal name Hexadecimal
keyword Value

connect MQZAO_CONNECT 0x00000001
browse MQZAO_BROWSE 0x00000002
get MQZAO_INPUT 0x00000004
put MQZAQO_OUTPUT 0x00000008
ing MQZAO_INQUIRE 0x00000010
set MQZAO_SET 0x00000020
passid MQZAO _PASS_IDENTITY_ CONTEXT 0x00000040
passall MQZAO_PASS_ALL_CONTEXT 0x00000080
setid MQZAO SET IDENTITY CONTEXT 0x00000100
setall MQZAO_SET_ALL_CONTEXT 0x00000200
altusr MQZAO_ALTERNATE_USER_AUTHORITY 0x00000400
allmqi MQZAO_ALL MQI 0x000007FF
crt MQZAO_CREATE 0x00010000
dit MQZAO DELETE 0x00020000
dsp MQZAO_DISPLAY 0x00040000
chg MQZAO_CHANGE 0x00080000
clr MQZAO _CLEAR 0x00100000
alladm MQZAO_ALL_ADMIN 0x009E0000
none MQZAO_NONE 0x00000000
all MQZAO_ALL Ox009EO7FF

Figure 10. Authority specification
These definitions are made in the header file cmgzc.h.

In the following example, groupB and user have been granted authorizations based
on the hexadecimal number 0x40007. This corresponds to:

MQZAO_CONNECT 0x00000001
MQZAO_BROWSE 0x00000002
MQZAO_INPUT 0x00000004
MQZAO_DISPLAY 0x00040000
Authority is: 0x00040007

These access rights mean that anyone in groupB can issue the MQI calls:

MQCONN
MQGET (with browse)

They also have DISPLAY authority for the object associated with this authorization
file.

Class authorization files — MQSeries for UNIX systems and
MQSeries for Windows NT

The class authorization files hold authorizations that relate to the entire class.
These files are called “@class” and exist in the same directory as the files for
specific objects. The entry MQZAO_CRT in the @class file gives authorization to
create an object in the class. This is the only class authority.

Chapter 10. Protecting MQSeries objects 125

Authorization files

All class authorization files

The all class authorization file holds authorizations that apply to an entire queue
manager. This file is called “@aclass” and exists in the auth subdirectory of the
gueue manager.

The following authorizations apply to the entire queue manager and are held in the
all-class authorization file:

e The entry MQZAO_ALTERNATE_USER_AUTHORITY gives authorization to
assume the identity of another user when interacting with MQSeries objects.

e The entry MQZAO_SET_ALL_CONTEXT gives authorization to set the context
of a message when issuing MQPUT.

e The entry MQZAO_SET_IDENTITY_CONTEXT gives authorization to set the
identity context of a message when issuing MQPUT.

Managing authorization files

Here are some items that you need consider when managing your authorization
files:

1. You must ensure that the authorization files are secure and not write-accessible
by non-trusted general users. See “Authorizations to authorization files.”

2. To be able to reproduce your file authorizations, ensure that you do at least
one of the following:

e Back up the auth subdirectory after any significant updates
¢ Retain shell scripts or command files containing the commands used

3. You can copy and edit authorization files. However, you should not normally
have to create or repair them manually. Should an emergency occur, you can
use the information given here to recover lost or damaged authorization files.

Authorizations to authorization files

In MQSeries for UNIX systems, authorization files must be readable by any
principal. However, only the mgm user ID and the mgm group should be allowed
to update these files.

The permissions on authorization files, created by the OAM, are:
-rW-TrW-r-- mgm mgm

Do not alter these permissions without reviewing carefully whether there are any
security exposures.

To alter authorizations using the command supplied with MQSeries, your user 1D
must either be mgm, or it must belong to the mgm group.

For MQSeries for Windows NT, authorization files must be readable by any
principal. However, only the mgm or Administrator’s group should be allowed to
update these files.

To alter authorizations using the setmgaut command supplied with MQSeries for

Windows NT, your Windows NT user ID must belong to the local mgm group or the
local Administrators group.

126 MQsSeries System Administration

Configuring MQSeries ¢ Configuration files

| Chapter 11. Configuring MQSeries

| This chapter explains how to change the behavior of an individual queue manager,
| or of a node, to suit your installation’s needs.

| You change MQSeries configuration information by modifying the values specified
| on a set of configuration attributes (or parameters) which govern MQSeries.

How you change this configuration information, and where MQSeries stores your
changes, is platform-specific:

e MQSeries for Windows NT uses the MQSeries Services snap-in to make
changes to attribute information within the Windows NT Registry .

e Users on all other platforms change attribute values by editing the MQSeries
configuration files

This chapter:
e Describes the platform-specific methods for reconfiguring MQSeries in:

— “MQSeries configuration files” (for MQSeries for UNIX systems and
MQSeries for OS/2 Warp)

— “Editing configuration information” on page 26

|

|

|

|

|

| e Describes the attributes you can use to modify MQSeries configuration

| information in “Attributes for changing MQSeries configuration information” on
| page 130.

| e Describes the attributes you can use to modify queue manager configuration
|

|

|

|

|

|

information in “Changing queue manager configuration information” on
page 136.

e Provides examples of mgs.ini and gm.ini files for MQSeries for UNIX systems
and MQSeries for OS/2 Warp in “Example mgs.ini and gm.ini files for MQSeries
for OS/2 Warp” on page 149 and “Example mgs.ini and gm.ini files for
MQSeries for UNIX systems” on page 154.

MQSeries configuration files

Users of platforms other than MQSeries for Windows NT modify MQSeries
configuration attributes within:

e An MQSeries configuration file (mgs.ini) to effect changes for MQSeries on the
node as a whole. There is one mgs.ini file per node.

e A gueue manager configuration file (gm.ini) to effect changes for specific
gueue managers. There is one gm.ini file for each queue manager on the
node.

A configuration file (which can be referred to as a stanza file) contains one or more
stanzas, which are simply groups of lines in the .ini file that together have a
common function or define part of a system, for example, log functions, channel
functions, and installable services.

| Any changes you make to a configuration file will not take effect until the next time
| the queue manager is started.

© Copyright IBM Corp. 1994,1999 127

Configuration files

| Editing configuration files

Before attempting to edit a configuration file, back it up so that you have a copy
you can revert to if the need arises!
You can edit configuration files either:

e Automatically, using commands that change the configuration of queue
managers on the node

e Manually, using a standard text editor
You can edit the default values in the MQSeries configuration files after installation.

If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the
same as missing out the attribute entirely.)

When you create a new queue manager, you should:

e Back up the MQSeries configuration file
e Back up the new queue manager configuration file

When do you need to edit a configuration file?
You may need to edit a configuration file if, for example:

* You lose a configuration file; recover from backup if possible.
e You need to move one or more queue managers to a new directory.

¢ You need to change your default queue manager; this could happen if you
accidentally delete the existing queue manager.

e You are advised to do so by your IBM Support Center.

Configuration file priorities
The attribute values of a configuration file are set according to the following
priorities:

e Parameters entered on the command line take precedence over values defined
in the configuration files

¢ Values defined in the gm.ini files take precedence over values defined in the
mgs.ini file.

The MQSeries configuration file, mgs.ini

The MQSeries configuration file, mgs.ini, contains information relevant to all the
gueue managers on the node. It is created automatically during installation. In
particular, the mqgs.ini file is used to locate the data associated with each queue
manager.

When installing MQSeries, you can specify two target directories: one for programs
and one for data. The mgs.ini file is stored in the data directory, mgm.

These directories can be on different drives, although this is not mandatory.
However, to improve performance, it is best that the directories reside on different
drives.

128 MQsSeries System Administration

Configuration files

The default mgm directory for:
e MQSeries for UNIX systems can be found at /var/mgm

e MQSeries for OS/2 Warp is specified on the MQSWORKPATH environment
variable which is set at install time. The default is

<bootdrive>:\MQM
For many OS/2 machines this is usually C:\MQM

The mgs.ini file contains:

e The names of the queue managers
e The name of the default queue manager
e The location of the files associated with each of them.

Queue manager configuration files, gm.ini

A gueue manager configuration file, gm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
gueue manager. The gm.ini file is automatically created when the queue manager
with which it is associated is created.

A gm.ini file is held in the root of the directory tree occupied by the queue manager.

For example, in an MQSeries for UNIX systems system, the path and the name for
a configuration file for a queue manager called QMNAME is:

/var/mgm/qmgrs/QMNAME/qm. ini

For MQSeries for OS/2 Warp, the path and name for configuration file for a queue
manager called QMNAME is:

C:\MQM\QMGRS\QMNAME\QM. INI

Note: The queue manager name can be up to 48 characters in length. However,
this does not guarantee that the name is valid or unique. Therefore, a directory
name is generated based on the queue manager name. This process is known as
name transformation . For a description, see “Understanding MQSeries file
names” on page 27.

Chapter 11. Configuring MQSeries 129

mgs.ini stanzas

Attributes for changing MQSeries configuration information

The following groups of attributes appear in mgs.ini and have equivalents in the
Windows NT Registry:

e “The AllQueueManagers stanza”

e “The ClientExitPath stanza” on page 131

e “The DefaultQueueManager stanza” on page 131
e “The ExitProperties stanza” on page 132

e “The LogDefaults stanza” on page 132

e “The QueueManager stanza” on page 134

The AllQueueManagers stanza
The Al1QueueManagers stanza can specify:

e The path to the gmgrs directory where the files associated with a queue
manager are stored

e The path to the executable and DLL libraries
e The method for converting EBCDIC-format data to ASCII format

DefaultPrefix= directory name
This attribute specifies the path to the gmgrs directory, below which the queue
manager data is kept.

If you change the default prefix for the queue manager, you must replicate the
directory structure that was created at installation time (see Figure 64 on
page 348).

In particular, the gmgrs structure must be created. You must stop MQSeries
before changing the default prefix, and restart MQSeries only after the
structures have been moved to the new location and the default prefix has
been changed.

As an alternative to changing the default prefix, you can use the environment
variable MQSPREFIX to override the DefaultPrefix for the crtmgm command.

DefaultFilePrefix="path (OS/2 only)
This attribute specifies the path where the DLLs can be found.

ConvEBCDICNewline=NL_TO_LF|TABLE|ISO
EBCDIC code pages contain a new line (NL) character that is not supported by
ASCII code pages; although some ISO variants of ASCII do contain an
equivalent.

Use the ConvEBCDICNewline attribute to specify the method MQSeries is to
use when converting the EBCDIC NL character into ASCII format.

NL_TO_LF
Specify NL_TO_LF if you want the EBCDIC NL character (X'15")
converted to the ASCII line feed character, LF (X'0A"), for all EBCDIC to
ASCII conversions.

NL_TO_LF is the default.

TABLE
Specify TABLE if you want the EBCDIC NL character converted according
to the conversion tables used on your platform for all EBCDIC to ASCII
conversions.

130 MQsSeries System Administration

mgs.ini stanzas

Note that the effect of this type of conversion may vary from platform to
platform and from language to language; while on the same platform, the
behavior may vary if you use different CCSIDs.

ISO
Specify ISO if you want:

* |SO CCSIDs to be converted using the TABLE method
e All other CCSIDs to be converted using the NL_TO_CF method.

Possible ISO CCSIDs are shown in Table 9 on page 131.

Table 9. List of possible ISO CCSIDs

CCsID Code Set
819 1ISO8859-1
912 1SO8859-2
915 1SO8859-5
1089 1ISO8859-6
813 1ISO8859-7
916 1ISO8859-8
920 1SO8859-9
1051 roman8

If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline defaults to

NL_TO_LF.

For more information about data conversion, see “Application data conversion”
in the MQSeries Application Programming Guide.

The ClientExitPath stanza

The ClientExitPath stanza specifies the default path for location of the channel
exit on the client. This stanza applies to MQSeries clients on AIX, HP-UX, OS/2,
Sun Solaris, and the Windows 3.1 client. The client server information for
MQSeries for Windows NT is now in the Windows NT Registry.

ExitsDefaultPath=defaultprefix

The ExitsDefaultPath attribute specifies the default prefix for the platform. For
example, for OS/2 this could be C:\mgm\exits

The DefaultQueueManager stanza

The DefaultQueueManager stanza specifies the default queue manager for the node.

Name=default_queue _manager

The default queue manager processes any commands for which a queue
manager name is not explicitly specified. The DefaultQueueManager attribute is
automatically updated if you create a new default queue manager. If you
inadvertently create a new default queue manager and then want to revert to
the original, you must alter the DefaultQueueManager attribute manually.

Chapter 11. Configuring MQSeries 131

mgs.ini stanzas

The ExitProperties stanza

The ExitProperties stanza specifies configuration options used by queue manager
exit programs.

CLWLmMode=SAFE |FAST
The cluster workload exit, CLWL, allows you to specify which cluster queue in
the cluster is to be opened in response to an MQAPI call (MQOPEN or MQPUT
and so on). The CLWL exit runs either in FAST mode or SAFE mode
depending on the value you specify on the CLWLMode attribute. If the
CLWLMode attribute is not specified, the cluster workload exit runs in SAFE
mode.

SAFE
The SAFE option specifies that the CLWL exit is to run in a separate
process to the queue manager. This is the default.

If a problem arises with the user-written CLWL exit when running in SAFE
mode, the following happens:

e The CLWL server process (amgzlwa0) fails
¢ The queue manager restarts the CLWL server process

e The error is reported to you in the error log. If an MQAPI call is in
progress, you receive notification in the form of a bad return code.

The integrity of the queue manager is preserved.

Note: There is an overhead associated with running the CLWL exit in a
separate process, which can affect performance.

FAST
Specify FAST if you want the cluster exit to run inline in the queue
manager process.

Specifying this option improves performance by avoiding the overheads
associated with running in SAFE mode, but does so at the expense of
gueue manager integrity. Therefore, you should only run the CLWL exit in
FAST mode if you are convinced that there are no problems with your
CLWL exit, and you are particularly concerned about performance
overheads.

If a problem arises when the CLWL exit is running in FAST mode, the
gueue manager will fail and you run the risk of the integrity of the queue
manager being compromised.

The LogDefaults stanza
The LogDefaults stanza specifies the default log attributes for the node. The log
attributes are used as default values when you create a queue manager, but can
be overridden if you specify the log attributes on the crtmgm command. See
“crtmgm (Create queue manager)” on page 284 for details of this command.

Once a queue manager has been created, the log attributes for that queue
manager are read from its log stanza in the gm.ini file.

The DefaultPrefix attribute (in the Al1QueueManagers stanza) and the LogPath
attribute in the LogDefaults stanza allow for the queue manager and its log to be

132 MQsSeries System Administration

mgs.ini stanzas

on different physical drives. This is the recommended method, although, by
default, they are on the same drive.

For information about calculating log sizes, see “Calculating the size of the log” on
page 219.

Note: The limits given in the following parameter list are limits set by MQSeries.
Operating system limits may reduce the maximum possible log size.

LogPrimaryFiles=3_|2-62
Primary log files are the log files allocated during creation for future use.

The minimum number of primary log files you can have is 2 and the maximum
is 62. The default is 3.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

LogSecondaryFiles=2_|1-61
Secondary log files are the log files allocated when the primary files are
exhausted.

The minimum number of secondary log files is 1 and the maximum is 61. The
default number is 2.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

LogFilePages= number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

For MQSeries for UNIX systems, the default number of log file pages is 1024,
giving a log file size of 4 MB. The minimum number of log file pages 64 and
the maximum is 16 384.

For MQSeries for OS/2 Warp and MQSeries for Windows NT, the default
number of log file pages is 256, giving a log file size of 1 MB. The minimum
number of log file pages is 32 and the maximum is 4095.

LogType=CIRCULAR |LINEAR
The LogType attribute is used to define the type to be used. The default is
CIRCULAR.

CIRCULAR
Set this value if you want to start restart recovery using the log to roll back
transactions that were in progress when the system stopped.

See “Circular logging” on page 215 for a fuller explanation of circular
logging.
LINEAR

Set this value if you want both restart recovery and media or forward
recovery (creating lost or damaged data by replaying the contents of the

log).
See “Linear logging” on page 215 for a fuller explanation of linear logging.

If you want to change the default, you can either edit the LogType attribute, or
specify linear logging using the crtmgm command. You cannot change the
logging method after a queue manager has been created.

Chapter 11. Configuring MQSeries 133

mgs.ini stanzas

LogBufferPages=17 |4-32
The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

The default number of buffer pages is 17, equating to 68 KB.

The value is examined when the queue manager is created or started, and may
be increased or decreased at either of these times. However, a change in the
value is not effective until the queue manager is restarted.

LogDefaultPath=directory_name
You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default is:

e /var/mgm/log in MQSeries for UNIX systems

o <DefaultPrefix>\LOG for MQSeries for OS/2 Warp and MQSeries for
Windows NT where <DefaultPrefix> is the value specified on the
DefaultPrefix attribute in the A11QueueManagers stanza of the mgs.ini file.
This value is set at install time, and by default is

<bootdrive>\:MQM
For many machines, this is
C:\MQM\LOG

Alternatively, you can specify the name of a directory on the crtmgm command
using the -Id flag. When a queue manager is created, a directory is also
created under the queue manager directory, and this is used to hold the log
files. The name of this directory is based on the queue manager name. This
ensures that the Log File Path is unique, and also that it conforms to any
limitations on directory name lengths.

If you do not specify -Id on the crtmgm command, the value of the
LogDefaultPath attribute in the mgs.ini file is used.

The queue manager name is appended to the directory name to ensure that
multiple queue managers use different log directories.

When the queue manager has been created, a LogPath value is created in the
log attributes in the gm.ini file giving the complete directory name for the queue
manager’s log. This value is used to locate the log when the queue manager
is started or deleted.

The QueueManager stanza

There is one QueueManager stanza for every queue manager. These attributes
specify the queue manager name, and the name of the directory containing the files
associated with that queue manager. The name of the directory is based on the
gueue manager name, but is transformed if the queue manager name is not a valid
file name.

See “Understanding MQSeries file names” on page 27 for more information about
name transformation.

134 mQsSeries System Administration

mgs.ini stanzas

Name=queue_manager_name
This attribute specifies the name of the queue manager.

Prefix= prefix
This attribute specifies where the queue manager files are stored. By default,
this is the same as the value specified on the DefaultPrefix attribute of the
Al11QueueManager stanza in the mgs.ini file.

Directory= name
This attribute specifies the name of the subdirectory under the <prefix>\QMGRS
directory where the queue manager files are stored. This name is based on
the queue manager name but can be transformed if there is a duplicate name,
or if the queue manager name is not a valid file name.

Chapter 11. Configuring MQSeries 135

gm.ini stanzas

| Changing queue manager configuration information

| The following groups of attributes can appear in a gm.ini file particular to a given
| gueue manager, or used to override values set in mgs.ini.

e “The Service stanza” on page 136

e “The ServiceComponent stanza” on page 137

e “The Log stanza” on page 138

e “The RestrictedMode stanza” on page 140

e “The XAResourceManager stanza” on page 140

e “The Channels stanza” on page 142

e “The LU62, NETBIOS, TCP, and SPX stanzas” on page 144
e “The ExitPath stanza” on page 147

e “The UDP stanza” on page 147

e “The Transport stanza” on page 149

The Service stanza

|

| The Service stanza specifies the name of an installable service, and the number of
| entry points to that service. There must be one Service stanza for every service

| used.

| For each component within a service, there must be a ServiceComponent stanza,
| which identifies the name and path of the module containing the code for that
| component. See “The ServiceComponent stanza” for more information.

| Name=AuthorizationService|NameService|UserIDService
| Specifies the name of the required service.

| AuthorizationService
| For MQSeries, the Authorization Service component is known as the Object
| Authority Manager, or OAM.

e In MQSeries for UNIX systems, the AuthorizationService stanza and
its associated ServiceComponent stanza are added automatically when
the queue manager is created, but can be overridden through the use
of mgsnoaut. Any other ServiceComponent stanzas must be added
manually.

e In MQSeries for Windows NT systems, each queue manager has its
own key in the Windows NT Registry. The equivalents for the Service
and ServiceComponent stanzas for the default authorization component
are added to the Windows NT Registry automatically, but can be
overridden through the use of the mgsnoaut environment variable. Any
other ServiceComponent stanzas must be added manually.

e For MQSeries for OS/2 Warp, no authorization service component is
supplied with the product. Therefore, by default, no Service and
ServiceComponent stanzas are added to the gm.ini file. Facilities exist
for you to write your own authorization service component which you
then add as a AuthorizationService stanza to the gm.ini file manually to
enable that service. To disable the service, delete the relevant group
of attributes.

| NameService
| The NameService stanza must be added to the gm.ini file manually to
| enable the supplied name service.

136 MQsSeries System Administration

gm.ini stanzas

UserlDService (MQSeries for OS/2 Warp only)
The UserIDService stanza must be added to the gm.ini file manually to
enable the service.

EntryPoints= number-of-entries
Specifies the number of entry points defined for the service. This includes the
initialization and termination entry points.

SecurityPolicy=Default |[NTSIDsRequired (MQSeries for Windows NT only)
The SecurityPolicy attribute is applicable only if the service specified on the
Service stanza is the authorization service, that is, the default OAM. The
SecurityPolicy attribute allows you to specify the security policy for each queue
manager. The possible values are:

Default
Specify Default if you want the default security policy to take effect. If a
Windows NT security identifier (NT SID) is not passed to the OAM for a
particular user ID, then an attempt is made to obtain the appropriate SID by
searching the relevant security databases.

NTSIDsRequired
Requires that an NT SID is passed to the OAM when performing security
checks.

See “Security policies” on page 106 for more information.

For more information about installable services and components, see
Chapter 11, “Installable services and components” in the MQSeries
Programmable System Management book.

For more information about security services in general, see Chapter 10,
“Protecting MQSeries objects” on page 103.

The ServiceComponent stanza

The ServiceComponent stanza identifies the name and path of the module
containing the code for that component.

There can be more than one ServiceComponent stanza for each service, but each
ServiceComponent stanza must match the corresponding Service stanza.

In MQSeries for UNIX systems, the authorization service stanza is present by
default, and the associated component, the OAM, is active.

Service= service_name
Specifies the name of the required service. This name must match the value
specified on the Name attribute of the Service stanza.

Name=component_name
Specifies the descriptive name of the service component. This name must be
unigue, and must contain only those characters that are valid for the names of
MQSeries objects (for example, queue names). This name occurs in operator
messages generated by the service. It is recommended, therefore, that this
name begins with a company trademark or similar distinguishing string.

Module= module_name
Specifies the name of the module to contain the code for this component.

Note: Specify a full path name.

Chapter 11. Configuring MQSeries 137

gm.ini stanzas

The Log stanza

ComponentDataSize= size
Specifies the size, in bytes, of the component data area passed to the
component on each call. Specify zero if no component data is required.

For more information about installable services and components, see Chapter 11,
“Installable services and components” in the MQSeries Programmable System
Management book.

The Log stanza specifies the log attributes for a particular queue manager. By
default, these are inherited from the settings specified in the LogDefaults stanza in
the mgs.ini file when the queue manager is created.

Only change attributes of this stanza if this particular queue manager needs to be
configured differently from your other ones.

The values specified on the attributes in the gm.ini file are read when the queue
manager is started. The file is created when the queue manager is created.

For information about calculating log sizes, see “Calculating the size of the log” on
page 219.

Note: The limits given in the following parameter list are limits set by MQSeries.
Operating system limits may reduce the maximum possible log size.

LogPrimaryFiles=3_|2-62
Primary log files are the log files allocated during creation for future use.

The minimum number of primary log files you can have is 2 and the maximum
is 62. The default is 3.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

The value is examined when the queue manager is created or started. You
can change it after the queue manager has been created. However, a change
in the value is not effective until the queue manager is restarted, and the effect
may not be immediate.

LogSecondaryFiles=2_|1-61
Secondary log files are the log files allocated when the primary files are
exhausted.

The minimum number of secondary log files is 1 and the maximum is 61. The
default number is 2.

The total number of primary and secondary log files must not exceed 63, and
must not be less than 3.

The value is examined when the queue manager is started. You can change
this value, but changes do not become effective until the queue manager is
restarted, and even then the effect may not be immediate.

LogFilePages= number
The log data is held in a series of files called log files. The log file size is
specified in units of 4 KB pages.

138 MQsSeries System Administration

gm.ini stanzas

In MQSeries for UNIX systems, the default number of log file pages is 1024,
giving a log file size of 4 MB. The minimum number of log file pages 64 and
the maximum is 16 384.

In MQSeries for OS/2 Warp and MQSeries for Windows NT, the default number
of log file pages is 256, giving a log file size of 1 MB. The minimum number of
log file pages is 32 and the maximum is 4095.

Note: The size of the log files specified during queue manager creation
cannot be changed for a queue manager.

LogType=CIRCULAR |LINEAR

The LogType attribute defines the type of logging to be used by the queue
manager. However, you cannot change the type of logging to be used once
the queue manager has been created. Refer to the description of the LogType
attribute in “The LogDefaults stanza” on page 132 for information about
creating a queue manager with the type of logging you require.

CIRCULAR
Set this value if you want to start restart recovery using the log to roll back
transactions that were in progress when the system stopped.

See “Circular logging” on page 215 for a fuller explanation of circular
logging.
LINEAR

Set this value if you want both restart recovery and media or forward
recovery (creating lost or damaged data by replaying the contents of the

log).
See “Linear logging” on page 215 for a fuller explanation of linear logging.

LogBufferPages=17 |4-32

The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

The default number of buffer pages is 17, equating to 68 KB.

The value is examined when the queue manager is started, and may be
increased or decreased at either of these times. However, a change in the
value is not effective until the queue manager is restarted.

LogPath= directory _name

You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default is:

e /var/mgm/log in MQSeries for UNIX systems.

o <prefix>\LOG for MQSeries for OS/2 Warp and MQSeries for Windows NT,
where <prefix> is the value as defined in the Prefix attribute of the
corresponding QueueManager stanza in the mgs.ini file. On many
machines, this is C:\MQM\LOG

Chapter 11. Configuring MQSeries 139

gm.ini stanzas

You can specify the name of a directory on the crtmgm command using the -Id
flag. When a queue manager is created, a directory is also created under the
gueue manager directory, and this is used to hold the log files. The name of
this directory is based on the queue manager name. This ensures that the log
file path is unique, and also that it conforms to any limitations on directory
name lengths.

If you do not specify -Id on the crtmgm command, the value of the
LogDefaultPath attribute in the mgs.ini file is used.

Note: In MQSeries for UNIX systems, user ID mgm and group mgm must
have full authorities to the log files. If you change the locations of these files,
you must give these authorities yourself. This is not required if the logs files
are in the default locations supplied with the product.

The RestrictedMode stanza

The RestrictedMode stanza is set by the -g option on the crtmgm command. You
must not change this stanza after the queue manager has been created. If you do
not use the -g option, the stanza is not created in the gm.ini file.

ApplicationGroup
Specifies the name of the group whose members are allowed to :

¢ Run MQI applications
e Update all IPCC resources
e Change the contents of some queue manager directories.

This applies to MQSeries for AIX, Sun Solaris, and HP-UX systems only.

The XAResourceManager stanza

The XAResourceManager stanza specifies the resource managers to be involved in
global units of work coordinated by the queue manager.

One XAResourceManager stanza is required in gm.ini for each instance of a resource
manager participating in global units of work; no default values are supplied via
mgs.ini.

See “Database coordination” on page 176 for more information about adding
XAResourceManager attributes to gm.ini.

Name=name (mandatory)
This attribute identifies the resource manager instance.

The Name value can be up to 31 characters in length and must be unique within
gm.ini. You can use the name of the resource manager as defined in its
XA-switch structure. However, if you are using more than one instance of the
same resource manager, you must construct a uniqgue name for each instance.
You could ensure uniqueness by including the name of the database in the
Name string, for example.

MQSeries uses the Name value in messages and in output from the dspmqtrn
command.

You are recommended not to change the name of a resource manager
instance, or to delete its entry from gm.ini once the associated queue manager
has started and the resource-manager name is in effect.

140 MQsSeries System Administration

gm.ini stanzas

SwitchFile= name (mandatory)
This attribute specifies the fully-qualified name of the load file containing the
resource manager's XA switch structure.

XAOpenString= string (optional)
This attribute specifies the string of data to be passed to the resource
manager’'s xa_open entry point. The contents of the string depend on the
resource manager itself. For example, the string could identify the database
that this instance of the resource manager is to access. For more information
about defining this attribute, see:

e “Adding the XAResourceManager stanza for DB2” on page 184

e “Adding XAResourceManager configuration information for Oracle” on
page 189

¢ “Adding XAResourceManager configuration information for Sybase” on
page 199

and consult your resource manager documentation for the appropriate string.

XACloseString=string (optional)
This attribute specifies the string of data to be passed to the resource
manager’s xa_close entry point. The contents of the string depend on the
resource manager itself. For more information about defining this attribute,
see:

e “Adding the XAResourceManager stanza for DB2” on page 184

e “Adding XAResourceManager configuration information for Oracle” on
page 189

e “Adding XAResourceManager configuration information for Sybase” on
page 199

and consult your database documentation for the appropriate string.

ThreadOfControl=THREAD|PROCESS
This attribute is mandatory for MQSeries for OS/2 Warp and MQSeries for
Windows NT. The value set on the ThreadOfControl attribute is used by the
gueue manager for serialization purposes when it needs to call the resource
manager from one of its own multithreaded processes.

THREAD
Means that the resource manager is fully “thread aware”. In a
multithreaded MQSeries process, XA function calls can be made to the
external resource manager from multiple threads at the same time.

PROCESS
Means that the resource manager is not “thread safe”. In a multithreaded
MQSeries process, only one XA function call at a time can be made to the
resource manager.

The Thread0fControl entry does not apply to XA function calls issued by the
gueue manager in a multithreaded application process. In general, an
application that has concurrent units of work on different threads requires this
mode of operation to be supported by each of the resource managers.

Chapter 11. Configuring MQSeries 141

gm.ini stanzas

The Channels stanza
The Channels stanza contains information about the channels.

MaxChannels=100 |number
This attribute specifies the maximum number of channels allowed. The default
is 100.

MaxActiveChannels= MaxChannels_value
This attribute specifies the maximum number of channels allowed to be active
at any time. The default is the value specified on the MaxChannels attribute.

MaxInitiators=3_|number
This attribute specifies the maximum number of initiators.

MQIBINDTYPE=FASTPATH|STANDARD
This attribute specifies the binding for applications.

FASTPATH
Channels connect using MQCONNX FASTPATH. That is, there is no
agent process.

STANDARD
Channels connect using STANDARD.

AdoptNewMCA=NO |SVR|SNDR|RCVR|CLUSRCVR|ALL|FASTPATH
If MQSeries receives a request to start a channel but finds that an amqcrsta
process already exists for the same channel, the existing process must be
stopped before the new one can start. The AdoptNewMCA attribute allows you to
control the termination of an existing process and the startup of a new one for
a specified channel type.

If you specify the AdoptNewMCA attribute for a given channel type but the new
channel fails to start because the channel is already running:

1. The new channel tries to stop the previous one by politely inviting it to end.

2. If the previous channel server does not respond to this invitation by the
time the AdoptNewMCATimeout wait interval expires, the process (or the
thread) for the previous channel server is killed.

3. If the previous channel server has not ended after step 2, and after the
AdoptNewMCATimeout wait interval expires for a second time, MQSeries
ends the channel with a “CHANNEL IN USE” error.

You specify one or more values, separated by commas or blanks, from the
following list:

NO
The AdoptNewMCA feature is not required. This is the default.

SVR
Adopt server channels

SNDR
Adopt sender channels

RCVR
Adopt receiver channels

142 MQSeries System Administration

gm.ini stanzas

CLUSRCVR
Adopt cluster receiver channels

ALL
Adopt all channel types, except for FASTPATH channels

FASTPATH
Adopt the channel if it is a FASTPATH channel. This happens only if the
appropriate channel type is also specified, for example,
AdoptNewMCA=RCVR,SVR,FASTPATH

— Attention!

The AdoptNewMCA attribute may behave in an unpredictable fashion
with FASTPATH channels because of the internal design of the queue
manager. Therefore exercise great caution when enabling the
AdoptNewMCA attribute for FASTPATH channels.

AdoptNewMCATimeout=60 |1—3600
This attribute specifies the amount of time, in seconds, that the new process
should wait for the old process to end. Specify a value, in seconds, in the
range 1—3600. The default value is 60.

AdoptNewMCACheck=QM|ADDRESS|NAME|ALL
The AdoptNewMCACheck attribute allows you to specify the type checking required
when enabling the AdoptNewMCA attribute. It is important for you to perform all
three of the following checks, if possible, to protect your channels from being,
inadvertently or maliciously, shut down. At the very least check that the
channel names match.

Specify one or more values, separated by commas or blanks, from the
following:

QM
This means that listener process should check that the queue manager
names match

ADDRESS
This means that the listener process should check the communications
address. For example, the TCP/IP address.

NAME
This means that the listener process should check that the channel names
match.

ALL
You want the listener process to check for matching queue manager
names, the communications address, and for matching channel names.

AdoptNewMCACheck=NAME ,ADDRESS is the default for FAP1, FAP2, and FAP3,
while AdoptNewMCACheck=NAME ,ADDRESS,QM is the default for FAP4 and later.

Chapter 11. Configuring MQSeries 143

gm.ini stanzas

The LU62, NETBIOS, TCP, and SPX stanzas

These stanzas specify network protocol configuration parameters. They override
the default attributes for channels.

Note: Only attributes representing changes to the default values need to be
specified.

LU6G2 (MQSeries for OS/2 Warp and MQSeries for Windows NT only)
The following attributes can be specified:

TPName
This attribute specifies the TP name to start on the remote site.

Libraryl= DLLName 1
This attribute specifies the name of the APPC DLL.

The default value for MQSeries for OS/2 Warp is APPC.
The default value for MQSeries for Windows NT is WCPIC32.

Library2= DLLName2
This attribute is the same as Libraryl, and applies if the code is stored in
two separate libraries. The default value MQSeries for OS/2 Warp is
ACSSVC.

The default value MQSeries for Windows NT is WCPIC32.

LocalLU
This is the name of the logical unit to use on local systems.

NETBIOS (MQSeries for OS/2 Warp and MQSeries for Windows NT only)
The following attributes can be specified:

LocalName= name
This attribute specifies the name that this machine will be known as on the
LAN.

AdapterNum=0_|adapter_number
This attribute specifies the number of the LAN adapter. The default is
adapter 0.

NumSess=1 |number_of sessions
This attribute specifies the number of sessions to allocate. The default is 1.

NumCmds=1 |number_of_commands
This attribute specifies the number of commands to allocate. The default is
1.

NumNames=1 |number_of _names
This attribute specifies the number of names to allocate. The default is 1.

Libraryl= DLLNamel
This attribute specifies the name of the NetBIOS DLL. The default value
for MQSeries for OS/2 Warp is ACSNETB.

The default value for MQSeries for Windows NT is NETAPI32.

Library2= DLLName2 (MQSeries for OS/2 Warp only)
This attribute specifies the same value as Libraryl, if the code is in two
separate libraries. There are no defaults for this attribute.

144 mQsSeries System Administration

gm.ini stanzas

TCP
The following attributes can be specified:

Port=1414 |port_number
This attribute specifies the default port number, in decimal notation, for
TCP/IP sessions. The “well known” port number for MQSeries is 1414.

Libraryl= DLLNamel (MQSeries for OS/2 Warp and MQSeries for Windows
NT only)
Use this attribute to specify the name of the TCP/IP sockets DLL.

The default for MQSeries for OS/2 Warp is SO32DLL.
The default for MQSeries for Windows NT is WSOCK32.

Library2= DLLName 2 (MQSeries for OS/2 Warp only)
Same as Libraryl if the code is stored in two separate libraries.

The default for MQSeries for OS/2 Warp is TCP32DLL.

KeepAlive=YES |[NO
Use this attribute to switch the KeepAlive function on or off.
KeepAlive=YES causes TCP/IP to check periodically that the other end of
the connection is still available. If it is not, the channel is closed.

ListenerBacklog=number
When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered to be a backlog of requests waiting
on the TCP/IP port for the listener to accept the request. The default
listener backlog values are shown in Table 10.

Table 10. Default outstanding connection requests (TCP)
Platform Default ListenerBacklog value
0S/390 255

0S/2 Warp 10
Windows NT Server 100
Windows NT Workstation 5

AS/400 255

Sun Solaris 100
HP-UX 20

AIX V4.2 or later 100

AIX V4.1 or earlier 10

All other platforms 5

If the backlog reaches the values shown in Table 10, the TCP/IP
connection is rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state
and retrying the connection at a later time.

For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
should retry the connection at a later time.

Chapter 11. Configuring MQSeries 145

gm.ini stanzas

The ListenerBacklog attribute allows you to override the default number of
outstanding requests for the TCP/IP listener.

Note: Some operating systems support a larger value than the default
shown. If necessary, this can be used to avoid reaching the connection
limit.

SPX (MQSeries for OS/2 Warp and MQSeries for Windows NT only)

The following attributes can be specified:

Socket=5E86 |socket _number
This attribute specifies the SPX socket number in hexadecimal notation.
The default is X'5E86".

BoardNum=Q_|adapter_number
This attribute specifies the LAN adapter number. The default is adapter O.

KeepAlive=YES|NO
Use this attribute to switch the KeepAlive function on or off.

KeepAlive=YES causes SPX to check periodically that the other end of the
connection is still available. If it is not, the channel is closed.

LibraryNamel= DLLNamel
This attribute specifies the name of the SPX DLL.

The default for MQSeries for OS/2 Warp is IPXCALLS.DLL.
The default for MQSeries for Windows NT is WSOCK32.DLL.

LibraryName2= DLLNameZ2
This attribute specifies the same value as LibraryName 1 if the code is held
in two separate libraries.

The default for MQSeries for OS/2 Warp is SPXCALLS.DLL.

ListenerBacklog=number
When receiving on SPX, a maximum number of outstanding connection
requests is set. This can be considered a to be a backlog of requests
waiting on the SPX socket for the listener to accept the request. The
default listener backlog values are shown in Table 11.

Table 11. Default outstanding connection requests (SPX)

Platform Default ListenerBacklog value
0OS/2 Warp 10

Windows NT Server 100

Windows NT Workstation 5

If the backlog reaches the values shown in Table 10 on page 145, the
SPX connection is rejected and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state
and retrying the connection at a later time.

For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
should retry the connection at a later time.

146 MQSeries System Administration

gm.ini stanzas

| The ListenerBacklog attribute allows you to override the default number of
| outstanding requests for the SPX listener.

| Note: Some operating systems support a larger value than the default
| shown. If necessary, this can be used to avoid reaching the connection
| limit.

| The ExitPath stanza

| The ExitPath stanza applies to: Version 5.1 of:

e MQSeries for AIX
e HP-UX

e 0OS/2 Warp

e Sun Solaris

e Windows NT

| ExitDefaultPath=string
| The ExitDefaultPath attribute specifies the location of:

| e Channel exits for clients
| e Channel exits and data conversion exits for servers

The exit path is read from the ClientExitPath stanza in the mgs.ini file for clients
and from this (ExithPath) stanza for servers.

For MQSeries for Windows NT, ClientExithPath and ExitPath information is in
the Windows NT Registry.

The UDP stanza

|

| The UDP stanza can be used to tailor User Datagram Protocol (UDP) support on

| your MQSeries system and is applicable to MQSeries AlX 5.1 systems only. UDP
| is part of the Internet suite of protocols and may be used as an alternative to

| TCP/IP.

| You can use UDP to send message data between MQSeries for Windows Version
| 2.02 systems (that is with CSD 2 installed) and MQSeries for AlX Version 5.1
| server systems.

| A sample gm.ini file is shipped in the MOM\QMGRS\ directory. To use it, copy it to
| the sub-directory for the queue manager and edit it as required, using the following
| attribute descriptions to guide you.

ACKREQ_TIMEOUT=5|1-30 000
The request for acknowledgement timeout attribute, ACKREQ_TIMEOUT,
specifies the time, in seconds, that the internal state machines will wait for a
protocol datagram before assuming that the datagram has been lost and
retrying. The default is 5 but you can change this to a value in the range
1—30 000.

ACKREQ_RETRY=60|1-30 000
The request for acknowledgment retry attribute, ACKREQ_RETRY, specifies
the number of times that the internal state machines will resend protocol
datagrams before giving up completely and causing a channel to close. (All the
counts are reset to zero after success and thus are not cumulative.)

The default is 60 but you can change this to a value in the range 1—30 000.

Chapter 11. Configuring MQSeries 147

gm.ini stanzas

CONNECT_TIMEOUT=5|1-30 000
The connect request timeout attribute, CONNECT_TIMEOUT, specifies the
time, in seconds, that the internal state machines will wait for a protocol
datagram before assuming that the datagram has been lost and retrying. The
default is 5 but you can change this to a value in the range 1—30 000.

CONNECT_RETRY=60|1-30 000
The connect request retry attribute, CONNECT_RETRY, specifies the number
of times that the internal state machines will resend protocol datagrams before
giving up completely and causing a channel to close. (All the counts are reset
to zero after success and thus are not cumulative.)

The default is 60 but you can change this to a value in the range 1—30 000.

ACCEPT_TIMEOUT=5]1-30 000
The accept connection timeout attribute, ACCEPT_TIMEOUT, specifies the
time, in seconds, that the internal state machines will wait for a protocol
datagram before assuming that the datagram has been lost and retrying. The
default is 5 but you can change this to a value in the range 1-30 000.

ACCEPT_RETRY=60|1-30 000
The accept connection retry attribute, ACCEPT_RETRY, specifies the number
of times that the internal state machines will resend protocol datagrams before
giving up completely and causing a channel to close. (All the counts are reset
to zero after success and thus are not cumulative.)

The default is 60 but you can change this to a value in the range 1—30 000.

DROP_PACKETS=0|1-30 000
The DROP_PACKETS attribute tests for the robustness of the protocols against
lost datagrams. Changing the value to something other than 0 causes
datagrams to be thrown away and the protocol will cause them to be resent.
Therefore, you are advised not to change the value of this attribute to anything
other than 0 for normal usage.

BUNCH_SIZE=8|1-30 000
The BUNCH_SIZE attribute specifies the number of datagrams that are sent
before an acknowledgement datagram is sent from the receiving node. The
default is 8.

Changing the default to a value higher than 8 may reduce the number of
datagrams sent but may also affect other aspects of performance. Without
knowing the details of the network involved, it is difficult to suggest exactly how
to vary the values on this attribute, but a good rule of thumb is probably that
the longer the network delay, the larger the value of BUNCH_SIZE should be
for optimum performance.

PACKET_SIZE=2048|512—-8192
The PACKET_SIZE attribute specifies the maximum size of UDP datagrams
sent over the IP network. Some networks may have a limit as low as 512
bytes. The default value of 2048 appears to be successful most of the time.
However, if you experience problems with this value, you can slowly increase it
from 512 until you find your own optimum value.

PSEUDO_ACK=NO|YES
Set the PSEUDO_ACK attribute to YES if you want the datagram that is about
to be sent to be modified so that it requests the remote end of the link to send
an “information” datagram back to indicate that the node can be reached.

148 MQsSeries System Administration

MQSeries for OS/2 Warp examples

PSEUDO_ACK=YES must be set at both the remote and local ends of the
channel.

The default is NO.

The Transport stanza
The Transport stanza is used to tailor User Datagram Protocol (UDP) support on
your MQSeries system and must be coded in conjunction with the UDP stanza
above.

RETRY_EXIT=exitname
The RETRY_EXIT attribute specifies the name of the library that contains the
retry exit. The retry exit allows your application to suspend data being sent on
a channel when communication is not possible.

For Windows systems, the retry exit name takes the form xyz.DLL(myexit)
while for AIX systems, the retry exit name takes the form xyz (myexit).

For more information about the retry exit, see “The retry exit” on page 376.

Example mqgs.ini and gm.ini files for MQSeries for OS/2 Warp

The mgs.ini file shown in Figure 11 and the gm.ini files shown in Figure 12 on
page 151, Figure 13 on page 152, and Figure 14 on page 153, were created by:

1. Installing MQSeries for OS/2 Warp and specifying:

e G:\MQM as the file directory, which puts program files onto the G: drive
¢ M:\MQM as the work directory, which puts queues onto the M: drive.

2. Editing the M:\\MQM\MQS.INI file to change the value on the LogDefaultPath
attribute to

R:\MQM\LOG
This puts the log files to the R: drive rather than the M: drive.
3. Creating three queue managers using the following commands:

e crtmgm -q firstgm
e crtmgm secondgm
e crtmgm -1f 1024 -1p 10 -Ts 5 thirdgm

Chapter 11. Configuring MQSeries 149

MQSeries for OS/2 Warp examples

| Resultant mgs.ini file (MQSeries for OS/2 Warp)
| Path M:\MQM\MQS.INI

#***#

#* Module Name: mgs.ini #
#* Type : MQSeries Machine-Wide Configuration File #
#* Function : Define MQSeries resources for an entire machine #
#* #
#***#
#* Notes #
#+* 1) This is the installation time default configuration #
#* #

#***#

A11QueueManagers:
#***#
#* The path to the gmgrs directory, below which the queue manager #
#* data is stored #
#***#
DefaultPrefix=M:\MQM
DefaultFilePrefix=G:\MQM

LogDefaults:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=256
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=R:\MQM\LOG

QueueManager:
Name=firstgm
Prefix=M:\MQM
Directory=firstqm

| DefaultQueueManager:
| Name=firstqgm

QueueManager:
Name=secondqm
Prefix=M:\MQM
Directory=secondgm

QueueManager:
Name=thirdgm
Prefix=M:\MQM
Directory=thirdgm

| Figure 11. Example of an mgs.ini file for MQSeries for OS/2 Warp

150 MQsSeries System Administration

MQSeries for OS/2 Warp examples

| Resultant gm.ini file for qgueue manager firstgm (MQSeries for OS/2

| Warp)
|

Path M:\\MQM\QMGRS\FIRSTQM\QM.INI

#***#

#* Module Name: gm.ini #
#* Type : MQSeries queue manager configuration file #
#* Function : Define the configuration of a single queue #
#* manager #
#+ #
#***#
#+ Notes #
#+* 1) This file defines the configuration of the queue manager #
#

#***#
ExitPath:
ExitsDefaultPath=M:\MQM\exits

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=256
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=R:\MQM\LOG\firstqm\

Figure 12. Example of gm.ini file for queue manager firstgm

Chapter 11. Configuring MQSeries

151

MQSeries for OS/2 Warp examples

| Resultant gm.ini file for gueue manager secondgm (MQSeries for OS/2
| Warp)
| Path M:\\MQM\QMGRS\SECONDQM\QM.INI

#***#

|

| #+* Module Name: gm.ini #
| #* Type : MQSeries queue manager configuration file #
| #* Function : Define the configuration of a single queue #
| #+ manager #
| #+ #
| #***#
| #* Notes #
| #+* 1) This file defines the configuration of the queue manager #
| # #
| #***#
| ExitPath:

|

ExitsDefaultPath=M:\MQM\exits

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=256
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=R:\MQM\LOG\secondqm\

| Figure 13. Example of gm.ini file for queue manager secondgm

152 WMQsSeries System Administration

MQSeries for OS/2 Warp examples

Resultant gm.ini file for qgueue manager thirdgm (MQSeries for OS/2

Warp)

Path M:\\MQM\QMGRS\THIRDQM\QM.INI

#***#

#* Module Name: gm.ini #
#* Type : MQSeries queue manager configuration file #
#* Function : Define the configuration of a single queue #
#* manager #
#+ #
#***#
#+ Notes #
#+* 1) This file defines the configuration of the queue manager #
#

#***#
ExitPath:
ExitsDefaultPath=M:\MQM\exits

Log:
LogPrimaryFiles=10
LogSecondaryFiles=5
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=R:\MQM\LOG\thirdgm\

Figure 14. Example of gm.ini file for queue manager thirdgm

Chapter 11. Configuring MQSeries

153

MQSeries for UNIX systems examples

Example mqgs.ini and gm.ini files for MQSeries for UNIX systems

Figure 15 shows an example of an mgs.ini file in MQSeries for UNIX systems.

#***#

#* Module Name: mgs.ini *#
#* Type : MQSeries Configuration File *#
#* Function : Define MQSeries resources for the node *#
#* *
#***#
#* Notes : *#
#% 1) This is an example MQSeries configuration file *#
#+* *#

#***#

Al1QueueManagers:
#***#
#* The path to the gmgrs directory, below which queue manager data *#
#* is stored *#
#***#
DefaultPrefix=/var/mgm

LogDefaults:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=/var/mgm/1og

QueueManager:
Name=saturn.queue.manager
Prefix=/var/mqm
Directory=saturn!queue!manager

QueueManager:
Name=pluto.queue.manager
Prefix=/var/mgm
Directory=pluto!queue!manager

DefaultQueueManager:
Name=saturn.queue.manager

Figure 15. Example of an MQSeries configuration file for UNIX systems

Figure 16 on page 155 shows how groups of attributes might be arranged in a
gueue manager configuration file in MQSeries for UNIX systems.

154 mQsSeries System Administration

MQSeries for UNIX systems examples

#***#

#+* Module Name: gm.ini *#
#* Type : MQSeries queue manager configuration file *#
Function : Define the configuration of a single queue manager =*#
#+ *#
#***#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#+ *#

#***#
ExitPath:
ExitsDefaultPath=/var/mgm/exits

Service:
Name=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service
Module=mgmtop/bin/amgzfu.o
ComponentDataSize=0

Service:
Name=NameService
EntryPoints=5

ServiceComponent:
Service=NameService
Name=MQSeries.DCE.name.service
Module=mgqmtop/1ib/amgzfa
ComponentDataSize=0

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogPath=/var/mgm/log/saturn!queue!manager/

XAResourceManager:
Name=DB2 Resource Manager Bank
SwitchFile=/usr/bin/db2swit
XAOpenString=MQBankDB
XACloseString=
ThreadOfControl=PROCESS

Figure 16 (Part 1 of 2). Example queue manager configuration file for MQSeries for UNIX
systems

Chapter 11. Configuring MQSeries 155

MQSeries for UNIX systems examples

CHANNELS:
MaxChannels = 20 ; Maximum number of Channels allowed.
; Default is 100.
MaxActiveChannels = 10 ; Maximum number of Channels allowed to be
; active at any time. The default is the
; value of MaxChannels.

TCP: ; TCP/IP entries.
KeepAlive = Yes ; Switch KeepAlive on

Figure 16 (Part 2 of 2). Example queue manager configuration file for MQSeries for UNIX
systems

Notes for examples:

MQSeries on the node is using the default locations for queue managers and for
the logs.

The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the file system.

Because the MQSeries configuration file is used to locate the data associated with
gueue managers, a nonexistent or incorrect configuration file can cause some or all
MQSeries commands to fail. Also, applications cannot connect to a queue
manager that is not defined in the MQSeries configuration file.

156 MQsSeries System Administration

DLQ handler e Invoking DLQ handler

Chapter 12. The MQSeries dead-letter queue handler

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message
queue, is a holding queue for messages that cannot be delivered to their
destination queues. Every queue manager in a network should have an associated
DLQ.

Messages can be put on the DLQ by queue managers, by message channel
agents (MCAs), and by applications. All messages on the DLQ should be prefixed
with a dead-letter header structure, MQDLH.

Messages put on the DLQ by a queue manager or by a message channel agent
always have an MQDLH; applications putting messages on the DLQ are strongly
recommended to supply an MQDLH. The Reason field of the MQDLH structure
contains a reason code that identifies why the message is on the DLQ.

In all MQSeries environments, there should be a routine that runs regularly to
process messages on the DLQ. MQSeries supplies a default routine, called the
dead-letter queue handler (the DLQ handler), which you invoke using the
runmgdlg command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler
by means of a user-written rules table. That is, the DLQ handler matches
messages on the DLQ against entries in the rules table: when a DLQ message
matches an entry in the rules table, the DLQ handler performs the action
associated with that entry.

This chapter contains the following sections:

e “Invoking the DLQ handler”

e “The DLQ handler rules table” on page 158

e “How the rules table is processed” on page 165

* “An example DLQ handler rules table” on page 167

Invoking the DLQ handler

You invoke the DLQ handler using the runmqdlq command. You can name the
DLQ you want to process and the queue manager you want to use in two ways:

e As parameters to runmgdlg from the command prompt. For example:

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER <qrule.rul

e In the rules table. For example:

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

© Copyright IBM Corp. 1994,1999 157

Rules table

If you do not specify the DLQ or the queue manager as shown above, the default
gueue manager for the installation is used along with the DLQ belonging to that
gueue manager.

The runmqdlg command takes its input from stdin; you associate the rules table
with runmqdlg by redirecting stdin from the rules table.

In order to run the DLQ handler, you must be authorized to access both the DLQ
itself and any message queues to which messages on the DLQ are forwarded.
Furthermore, if the DLQ handler is to be able to put messages on queues with the
authority of the user ID in the message context, you must be authorized to assume
the identity of other users.

For more information about the runmqdlg command, see “runmqdlg (Run
dead-letter queue handler)” on page 318.

The sample DLQ handler, amqsdlq
In addition to the DLQ handler invoked using the runmqdlg command, MQSeries
provides the source of a sample DLQ handler, amgsdlq, whose function is similar to
that provided via runmqgdlq . You can customize amqsdlq to provide a DLQ
handler that meets specific, local requirements. For example, you might decide
that you want a DLQ handler that can process messages without dead-letter
headers. (Both the default DLQ handler and the sample, amqgsdlg, process only
those messages on the DLQ that begin with a dead-letter header, MQDLH.
Messages that do not begin with an MQDLH are identified as being in error, and
remain on the DLQ indefinitely.)

In MQSeries for UNIX systems, the source of amgsdlq is supplied in the directory:

mgmtop/samp/dlq

and the compiled version is supplied in the directory:

mgmtop/samp/bin

In MQSeries for OS/2 Warp and Windows NT, the source of amgsdlq is supplied in
the directory:

c:\mgm\tools\c\samples\diq

and the compiled version is supplied in the directory:

c:\mgm\tools\c\samples\bin

The DLQ handler rules table

The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:

* The first entry in the table, which is optional, contains control data.

¢ All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is
matched against, and an action to be taken when a message on the DLQ
matches the specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

158 MQsSeries System Administration

Rules table

Control data

This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Note the following:

e The default value for a keyword, if any, is underlined.
e The vertical line (]) separates alternatives, only one of which can be specified.
e All keywords are optional.

INPUTQ (QueueName|'_")
Allows you to name the DLQ you want to process:

1. If you specify an INPUTQ value as a parameter to the runmqdiq
command, this overrides any INPUTQ value in the rules table.

2. If you do not specify an INPUTQ value as a parameter to the
runmgdlg command, but you do specify a value in the rules table, the
INPUTQ value in the rules table is used.

3. If no DLQ is specified or you specify INPUTQ(' ") in the rules table, the
name of the DLQ belonging to the queue manager whose name is
supplied as a parameter to the runmqdlg command is used.

4. If you do not specify an INPUTQ value as a parameter to the
runmgdlg command or as a value in the rules table, the DLQ
belonging to the queue manager named on the INPUTQM keyword in
the rules table is used.

INPUTQM (QueueManagerName|'_")
Allows you to name the queue manager that owns the DLQ named on the
INPUTQ keyword:

1. If you specify an INPUTQM value as a parameter to the runmqdlq
command, this overrides any INPUTQM value in the rules table.

2. If you do not specify an INPUTQM value as a parameter to the
runmqgdlg command, the INPUTQM value in the rules table is used.

3. If no queue manager is specified or you specify INPUTQM(' ') in the
rules table, the default queue manager for the installation is used.

RETRYINT (/nterval|60)
Is the interval, in seconds, at which the DLQ handler should attempt to
reprocess messages on the DLQ that could not be processed at the first
attempt, and for which repeated attempts have been requested. By
default, the retry interval is 60 seconds.

WAIT (YES|NOJ|nnn)
Indicates whether the DLQ handler should wait for further messages to
arrive on the DLQ when it detects that there are no further messages that
it can process.

YES Causes the DLQ handler to wait indefinitely.

NO Causes the DLQ handler to terminate when it detects that the
DLQ is either empty or contains no messages that it can
process.

Chapter 12. The MQSeries dead-letter queue handler 159

Rules table

nnn Causes the DLQ handler to wait for nnn seconds for new
work to arrive before terminating, after it detects that the
gueue is either empty or contains no messages that it can
process.

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT
(NO) or WAIT (nnn) for DLQs that have a low level of activity. If the DLQ
handler is allowed to terminate, you are recommended to invoke it again
by means of triggering. For more information about triggering, see
Chapter 14, “Starting MQSeries applications using triggers” in the
MQSeries Application Programming Guide.

As an alternative to including control data in the rules table, you can supply the
names of the DLQ and its queue manager as input parameters of the runmqdiq
command. If any value is specified both in the rules table and on input to the
runmgdlg command, the value specified on the runmqdlg command takes
precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Figure 17 shows an example rule from a DLQ handler rules table.

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

Figure 17. An example rule from a DLQ handler rules table. This rule instructs the DLQ
handler to make 3 attempts to deliver to its destination queue any persistent message that
was put on the DLQ because MQPUT and MQPUT1 were inhibited.

All keywords that you can use on a rule are described in the remainder of this
section. Note the following:

e The default value for a keyword, if any, is underlined. For most keywords, the
default value is * (asterisk), which matches any value.

e The vertical line (]) separates alternatives, only one of which can be specified.

* All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords

The pattern-matching keywords, which you use to specify values against which
messages on the DLQ are matched, are described below. All pattern-matching
keywords are optional.

APPLIDAT (ApplidentityDatal*)
Is the ApplidentityData value specified in the message descriptor, MQMD,
of the message on the DLQ.

160 MQsSeries System Administration

Rules table

APPLNAME (PutAppINamel*)
Is the name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApp/Name field of the message descriptor, MQMD, of
the message on the DLQ.

APPLTYPE (PutApplTypel*)
Is the PutApplType value specified in the message descriptor, MQMD, of
the message on the DLQ.

DESTQ (QueueNamel*)
Is the name of the message queue for which the message is destined.

DESTQM (QueueManagerName|*)
Is the name of the queue manager of the message queue for which the
message is destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQFB_REPORT, Feedback describes the
nature of the report.

Symbolic names can be used. For example, you can use the symbolic
name MQFB_COA to identify those messages on the DLQ that require
confirmation of their arrival on their destination queues.

FORMAT (Format*)
Is the name that the sender of the message uses to describe the format of
the message data.

MSGTYPE (MsgTypel*)
Is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQMT_REQUEST to identify those messages on the DLQ that
require replies.

PERSIST (Persistencel*)
Is the persistence value of the message. (The persistence of a message
determines whether it survives restarts of the queue manager.)

Symbolic names can be used. For example, you can use the symbolic
name MQPER_PERSISTENT to identify those messages on the DLQ that
are persistent.

REASON (ReasonCode|*)
Is the reason code that describes why the message was put to the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQRC_Q_FULL to identify those messages placed on the DLQ
because their destination queues were full.

REPLYQ (QueueNamel*)
Is the name of the reply-to queue specified in the message descriptor,
MQMD, of the message on the DLQ.

REPLYQM (QueueManagerName|*)
Is the name of the queue manager of the reply-to queue, as specified in
the message descriptor, MQMD, of the message on the DLQ.

Chapter 12. The MQSeries dead-letter queue handler 161

Rules table

USERID (Userldentifien*)

Is the user ID of the user who originated the message on the DLQ, as
specified in the message descriptor, MQMD.

The action keywords
The action keywords, which you use to describe how a matching message is to be
processed, are described below.

ACTION (DISCARD|IGNORE|RETRY|FWD)

Is the action to be taken for any message on the DLQ that matches the
pattern defined in this rule.

DISCARD Causes the message to be deleted from the DLQ.
IGNORE Causes the message to be left on the DLQ.

RETRY Causes the DLQ handler to try again to put the message on
its destination queue.

FWD Causes the DLQ handler to forward the message to the
gueue named on the FWDQ keyword.

The ACTION keyword must be specified. The number of attempts made
to implement an action is governed by the RETRY keyword. The interval
between attempts is controlled by the RETRYINT keyword of the control

data.

FWDQ (QueueName|&DESTQ|&REPLYQ)

Is the name of the message queue to which the message should be
forwarded when ACTION (FWD) is requested.

QueueName
Is the name of a message queue. FWDQ(' ') is not valid.

&DESTQ Causes the queue name to be taken from the DestQName
field in the MQDLH structure.

&REPLYQ Causes the name to be taken from the ReplyToQ field in the
message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ
(&REPLYQ) matches a message with a blank ReplyToQ
field, you can specify REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM| '_")

Identifies the queue manager of the queue to which a message is to be
forwarded.

QueueManagerName
Is the name of the queue manager of the queue to which a
message is to be forwarded when ACTION (FWD) is requested.

&DESTQM
Causes the queue manager name to be taken from the
DestQMgrName field in the MQDLH structure.

&REPLYQM
Causes the name to be taken from the ReplyToQMgr field in the
message descriptor, MQMD.

162 MQSeries System Administration

Rules table

' FWDQM(' '), which is the default value, identifies the local
queue manager.

HEADER (YES|NO)

Specifies whether the MQDLH should remain on a message for which
ACTION (FWD) is requested. By default, the MQDLH remains on the
message. The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)

Defines the authority with which messages should be put by the DLQ
handler:

DEF Causes messages to be put with the authority of the DLQ handler
itself.

CTX Causes the messages to be put with the authority of the user ID
in the message context. If you specify PUTAUT (CTX), you must
be authorized to assume the identity of other users.

RETRY (RetryCount|1)

Is the number of times, in the range 1-999 999 999, that an action should
be attempted (at the interval specified on the RETRYINT keyword of the
control data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If the DLQ handler is restarted, the
count of attempts made to apply a rule is reset to zero.

Rules table conventions

The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:

A rules table must contain at least one rule.
Keywords can occur in any order.

A keyword can be included once only in any rule.
Keywords are not case sensitive.

A keyword and its parameter value must be separated from other keywords by
at least one blank or comma.

Any number of blanks can occur at the beginning or end of a rule, and between
keywords, punctuation, and values.

Each rule must begin on a new line.

For reasons of portability, the significant length of a line should not be greater
than 72 characters.

Use the plus sign (+) as the last nonblank character on a line to indicate that
the rule continues from the first nonblank character in the next line. Use the
minus sign (-) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

For example:

APPLNAME ('ABC+
D')

Chapter 12. The MQSeries dead-letter queue handler 163

Rules table

results in '"ABCD', and

APPLNAME ('ABC-
D')

results in '"ABC D'

Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

Blank lines are ignored.

Each entry in the DLQ handler rules table comprises one or more keywords
and their associated parameters. The parameters must follow these syntax
rules:

— Each parameter value must include at least one significant character. The

delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT (ABC) 3 significant characters
FORMAT('A") 1 significant character
FORMAT (A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant
characters:

FORMAT('")
FORMAT()
FORMAT ()
FORMAT

Wildcard characters are supported: you can use the question mark (?) in
place of any single character, except a trailing blank; you can use the
asterisk (*) in place of zero or more adjacent characters. The asterisk (*)
and the question mark (?) are always interpreted as wildcard characters in
parameter values.

Wildcard characters cannot be included in the parameters of these
keywords: ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard
matches. However, leading and embedded blanks within strings in
guotation marks are significant to wildcard matches.

Numeric parameters cannot include the question mark (?) wildcard
character. The asterisk (*) can be used in place of an entire numeric
parameter, but cannot be included as part of a numeric parameter. For
example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE (*) Any message type is eligible
MSGTYPE('*') Any message type is eligible

However, MSGTYPE('2x"') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

Numeric parameters must be in the range 0-999 999 999. If the
parameter value is in this range, it is accepted, even if it is not currently

164 MQsSeries System Administration

Rules table processing

valid in the field to which the keyword relates. Symbolic nhames can be
used for numeric parameters.

— If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character

field:
"ABCDEFGH' 8 characters
"AxC+E*G+*I" 5 characters excluding asterisks

'*AxCxExG*[*KxM*0+' 8 characters excluding asterisks

— Strings that contain blanks, lowercase characters, or special characters
other than period (.), forward slash (/), underscore (), and percent sign (%)
must be enclosed in single quotation marks. Lowercase characters not
enclosed in quotation marks are folded to uppercase. If the string includes
a quotation, two single quotation marks must be used to denote both the
beginning and the end of the quotation. When the length of the string is
calculated, each occurrence of double gquotation marks is counted as a
single character.

How the rules table is processed

The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the action from that rule is attempted. The DLQ handler increments the retry
count for a rule by 1 whenever it attempts to apply that rule. If the first attempt
fails, the attempt is repeated until the count of attempts made matches the number
specified on the RETRY keyword. If all attempts fail, the DLQ handler searches for
the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is
successful. When each matching rule has been attempted the number of times
specified on its RETRY keyword, and all attempts have failed, ACTION (IGNORE)
is assumed. ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule may consist of
an action only. Note, however, that action-only rules are applied to all
messages on the queue that have MQDLHs and that have not already been
processed in accordance with other rules in the table.

3. The rules table is validated when the DLQ handler is started, and errors are
flagged at that time. (Error messages issued by the DLQ handler are
described in “AMQ8000-AMQ8499 MQSeries administration messages” in the
MQSeries Messages book.) You can make changes to the rules table at any
time, but those changes do not come into effect until the DLQ handler is
restarted.

Chapter 12. The MQSeries dead-letter queue handler 165

Rules table processing

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
gueues with the message option MQPMO_PASS ALL CONTEXT.

5. Consecutive syntax errors in the rules table may not be recognized because
the implementation of the validation of the rules table is designed to eliminate
the generation of repetitive errors.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

7. Multiple instances of the DLQ handler could run concurrently against the same
gueue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed

The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still has to keep a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a periodic
rescan of the DLQ is performed to check all messages. For these reasons, you
should try to ensure that the DLQ contains as few messages as possible; if
messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
gueue. For example:

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, the final rule in the table should be a catchall to process messages that
have not been addressed by earlier rules in the table. For example, the final rule in
the table could be something like this:

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This action causes messages that fall through to the final rule in the table to be
forwarded to the queue REALLY.DEAD.QUEUE, where they can be processed
manually. If you do not have such a rule, messages are likely to remain on the
DLQ indefinitely.

166 MQSeries System Administration

Example rules table

An example DLQ handler rules table

Here is an example rules table that contains a single control-data entry and severa
rules:

kkhkkkkkhkkhkhkkhkhkkhkkhhkkhhkhkhkkhhkkhhkhkhkkhhkkhkkhkhkkhkhkhkhkkhkhkkhhkhkhkkhkhkkhhkkhkkhkhkkkkkkkkk*
* An example rules table for the runmgdlg command *
kkhkkhkkkhkkhkhkkhkhkkhkkhkhkkhhkhkhkkhhkkhkkhkkhkkhhkkhkkhkhkkhkhkhkkhkkhkhkkhkkkhkkhkhkkhkkkhkkhkhkkkkkkkkkx*
Control data entry

If no queue manager name is supplied as an explicit parameter to
runmqdlq, use the default queue manager for the machine.

If no queue name is supplied as an explicit parameter to runmqdlq,

use the DLQ defined for the local queue manager.

*

*

el G I

nputgm(' ') inputq(' ')

* We include rules with ACTION (RETRY) first to try to
deTiver the message to the intended destination.

*

If a message is placed on the DLQ because its destination
queue is full, attempt to forward the message to its
destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

* X F X

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

If a message is placed on the DLQ because of a put inhibited
condition, attempt to forward the message to its

destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

* X F X

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

The AAAA corporation are always sending messages with incorrect
addresses. When we find a request from the AAAA corporation,

we return it to the DLQ (DEADQ) of the reply-to queue manager
(&REPLYQM) .

The AAAA DLQ handler attempts to redirect the message.

* 0% kX %

MSGTYPE (MQMT REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdgm(bbbb.2) header(no)

The CCCC corporation considers itself very security
conscious, and believes that none of its messages

will ever end up on one of our DLQs.

Whenever we see a message from a CCCC queue manager on our

* % F X

Chapter 12. The MQSeries dead-letter queue handler 167

Example rules table

* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

Messages that are not persistent run the risk of being
lost when a queue manager terminates. If an application
is sending nonpersistent messages, it should be able

to cope with the message being Tost, so we can afford to
discard the message.

* X % F X

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

For performance and efficiency reasons, we like to keep
the number of messages on the DLQ small.

If we receive a message that has not been processed by
an earlier rule in the table, we assume that it
requires manual intervention to resolve the problem.
Some problems are best solved at the node where the
problem was detected, and others are best solved where
the message originated. We don't have the message origin,
but we can use the REPLYQM to identify a node that has
some interest in this message.

Attempt to put the message onto a manual intervention
queue at the appropriate node. If this fails,

put the message on the manual intervention queue at
this node.

L T R R T T S N S I

REPLYQM('?%') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

168 MQsSeries System Administration

Instrumentation events

Chapter 13. Instrumentation events

You can use MQSeries instrumentation events to monitor the operation of queue
managers. This chapter provides a short introduction to instrumentation events.
For a more complete description, see Chapter 1, “Using instrumentation events to
monitor queue managers” in the MQSeries Programmable System Management
book.

What are instrumentation events?

Instrumentation events cause special messages, called event messages, to be
generated whenever the queue manager detects a predefined set of conditions.
For example, the following conditions give rise to a Queue Full event:

e Queue Full events are enabled for a specified queue, and
e An application issues an MQPUT call to put a message on that queue, but the
call fails because the queue is full.
Other conditions that can give rise to instrumentation events include:
¢ A predefined limit for the number of messages on a queue being reached
e A queue not being serviced within a specified time
e A channel instance being started or stopped
* In MQSeries for UNIX systems, an application attempting to open a queue and

specifying a user ID that is not authorized

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

Figure 18 on page 170 summarizes the production of an event message.

© Copyright IBM Corp. 1994,1999 169

Use of events

1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Queue Manager

For exaﬁ

Queue full M

+ event enabled

0

Event message

J

Event queue

LT

User Application

Figure 18. Understanding instrumentation events. When a queue manager detects that the
conditions for an event have been met, it puts an event message on the appropriate event

queue.

The event message contains information about the conditions giving rise to the event. An
application can retrieve the event message from the event queue for analysis.

Why use events?

If you define your event queues as remote queues, you can put all the event
gueues on a single queue manager (for those nodes that support instrumentation
events). You can then use the events generated to monitor a network of queue
managers from a single node. Figure 19 on page 171 illustrates this.

170 WMQsSeries System Administration

Types of event

Use of events

MQSeries for
MQSeries UNIX MQSeries
for MVS/ESA OPERATING SYSTEMS for OS/2

J
)

Event
messages

Event monitoring
from a single node

Figure 19. Monitoring queue managers across different platforms, on a single node

MQSeries events are categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue managers.
For example, if an application attempts to update a resource but the associated

user ID is not authorized to perform that operation, a queue manager event is
generated.

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached or, following an
MQGET request, a queue has not been serviced within a predefined period of
time.

Channel events

These events are reported by channels as a result of conditions detected during
their operation. For example, a channel event is generated when a channel
instance is stopped.

Chapter 13. Instrumentation events 171

Use of events

— Trigger events

When we discuss triggering in this and other MQSeries books, we sometimes
refer to a trigger event. This occurs when a queue manager detects that the
conditions for a trigger event have been met. For example, a queue can be
configured to generate a trigger event each time a message arrives. (The
conditions for trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and,
optionally, an application program is started.

Event notification through event queues

When an event occurs, the queue manager puts an event message on the
appropriate event queue (if such a queue has been defined). The event message
contains information about the event that you can retrieve by writing a suitable MQI
application program that:

¢ Gets the message from the queue.

e Processes the message to extract the event data. For a description of event
message formats, see Chapter 4, “Event message reference” in the MQSeries
Programmable System Management book.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

This event queue... Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events

You can define event queues as either local or remote queues. If you define all
your event queues as remote queues on the same queue manager, you can
centralize your monitoring activities.

Using triggered event queues

You can set up the event queues with triggers so that, when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, some events can require that an operator be
informed, while others could start an application that performs some administration
tasks automatically.

Enabling and disabling events

You enable and disable events by specifying the appropriate values for the queue
manager, or queue attributes, or both, depending on the type of event. You do this
using one of the following:

¢ MQSC commands. For more information, see Chapter 2, “The MQSeries
commands” in the MQSeries Command Reference manual.

e PCF commands. For more information, see “Enabling and disabling events” in
the MQSeries Programmable System Management manual.

172 WMQSeries System Administration

Use of events

¢ MQAI commands. For more information, see the MQSeries Administration
Interface Programming Guide and Reference book.

Enabling an event depends on the category of the event:

* Queue manager events are enabled by setting attributes of the queue
manager.

e Performance events as a whole must be enabled on the queue manager, or no
performance events can occur. You enable the specific performance events by
setting the appropriate queue attribute. You also have to identify the
conditions, such as a queue depth high limit, that give rise to the event,

¢ Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can inhibit MQPUT requests to the
channel event queue.

Event messages

Event messages contain information relating to the origin of an event, including the
type of event, the name of the application that caused the event and, for
performance events, a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from them by user-written administration programs
using the data structures described in Chapter 4, “Event message reference” in the
MQSeries Programmable System Management manual.

Chapter 13. Instrumentation events 173

Use of events

174 wMQsSeries System Administration

Transactional support

Chapter 14. Transactional support

Chapter 13, “Committing and backing out units of work” in the MQSeries
Application Programming Guide contains a complete introduction to the subject of
this chapter. A brief introduction only is provided here.

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of

work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
queue manager itself, or externally by another XA-compliant transaction manager
such as IBM CICS, Transarc Encina, or BEA Tuxedo.

In summary, queue manager resources can be updated as part of local or global
units of work:

Local unit of work
Use local units of work when the only resources to be updated are those of the
MQSeries queue manager. Updates are committed using the MQCMIT verb or
backed out using MQBACK.

Global unit of work
Use global units of work when you also need to include updates to XA-compliant
database managers. Here the coordination may be internal or external to the
gueue manager.

Queue manager coordination

Global units of work are started using the MQBEGIN verb and then
committed using MQCMIT or backed out using MQBACK. A
two-phase commit process is used whereby XA-compliant resource
managers such as DB2®, Oracle, and Sybase are firstly all asked
to prepare to commit. Only if all are prepared successfully will they
then be asked to commit. If any resource manager signals that it
cannot prepare to commit, each will be asked to back out instead.

External coordination
Here the coordination is performed by an XA-compliant transaction
manager such as IBM CICS or BEA Tuxedo. Units of work are
started and committed under control of the transaction manager.
The MQBEGIN, MQCMIT and MQBACK verbs are unavailable.

© Copyright IBM Corp. 1994,1999 175

Database coordination

This chapter describes how to enable support for global units of work (support for
local units of work does not need to be specifically enabled).

It contains these sections:

e “Database coordination”

e “DB2 configuration” on page 180

e “Oracle configuration” on page 186

e “Sybase configuration” on page 192

e “Multiple database configurations” on page 200
e “Administration tasks” on page 201

e “External syncpoint coordination” on page 206
e “Using CICS” on page 208

Database coordination

When the queue manager coordinates global units of work itself it becomes
possible to integrate database updates within MQ units of work. That is, a mixed
MQI and SQL application can be written, and the MQCMIT and MQBACK verbs
can be used to commit or roll back the changes to the queues and databases
together.

The queue manager achieves this using a two-phase commit protocol. When a unit
of work is to be committed, the queue manager first asks each participating
database manager whether it is prepared to commit its updates. Only if all of the
participants, including the queue manager itself, are prepared to commit, are all of
the queue and database updates committed. If any participant cannot prepare its
updates, the unit of work is backed out instead.

Full recovery support is provided if the queue manager loses contact with any of
the database managers during the commit protocol. If a database manager
becomes unavailable while it is in doubt, that is, it has been called to prepare but
has yet to receive a commit or back out decision, the queue manager remembers
the outcome of the unit of work until it has been successfully delivered. Similarly, if
the queue manager terminates with incomplete commit operations outstanding,
these are remembered over queue manager restart.

The MQI verb, MQBEGIN, must be used to denote units of work that are also to
involve database updates. Chapter 13, “Committing and backing out units of work
in the MQSeries Application Programming Guide identifies sample programs that
make MQSeries and database updates within the same unit of work.

”

The queue manager communicates with the database managers using the XA
interface as described in X/Open Distributed Transaction Processing: The XA
Specification (ISBN 1 872630 24 3). This means that the queue manager can
communicate to database managers that also adhere to this standard. Such
database managers are known as XA-compliant database managers.

Table 12 on page 177 identifies XA-compliant database managers that are
supported by the MQSeries Version 5 products.

176 WMQsSeries System Administration

Restrictions e Database connections

Table 12. XA-compliant relational databases

MQSeries product DB2 Oracle Sybase
MQSeries for AlX Yes Yes Yes
MQSeries for HP-UX Yes Yes No
MQSeries for OS/2 Warp Yes No No
MQSeries for Sun Solaris Yes Yes Yes
MQSeries for Windows NT Yes No Yes

Restrictions
The following restrictions apply to the database coordination support:

e The ability to coordinate database updates within MQSeries units of work is not
supported in an MQI client application.

e The MQI updates and database updates must be made on the same queue
manager server machine.

e The database server may reside on a different machine from the queue
manager server. In this case, the database needs to be accessed via an
XA-compliant client feature provided by the database manager itself.

¢ Although the queue manager itself is XA-compliant, it is not possible to
configure another queue manager as a participant in global units of work. This
is because only one connection at a time can be supported.

Database connections

An application that establishes a standard connection to the queue manager will be
associated with a thread in a separate local queue manager agent process. When
the application issues MQBEGIN then both it and the agent process will need to
connect to the databases that are to be involved in the unit of work. The database
connections are maintained while the application remains connected to the queue
manager. This is an important consideration if the database only supports a limited
number of users or connections.

One method of reducing the number of connections is for the application to use the
MQCONNX call to request a fastpath binding. In this case the application and the
local queue manager agent become the same process and consequently can share
a single database connection. Before you do this, consult “Connecting to a queue
manager using the MQCONNX call” in the MQSeries Application Programming
Guide for a list of restrictions that apply to fastpath applications.

Chapter 14. Transactional support 177

Configuring database managers

Configuring database managers

There are several tasks that you must perform before a database manager can
participate in global units of works coordinated by the queue manager:

1. Create an XA switch load file* for the database manager.

2. Define the database manager in the queue manager’s configuration file, gm.ini,
or, for users of MQSeries for Windows NT Version 5.1 or later, the Windows
NT Registry.

Various items, including the name of the switch load file, must be defined in
gm.ini or, for MQSeries for Windows NT Version 5.1 only, in the Windows NT
Registry.

Creating switch load files
A sample makefile is shipped with each of the MQSeries Version 5.1 products
which can be used to build switch load files for the supported database managers

This makefile, together with all the associated files required to build the switch load
files, is installed in the following directories:

e For MQSeries for OS/2 Warp or Windows NT in the
\mgm\tools\c\samples\xatm\ directory

e For MQSeries for UNIX systems, in the mgmtop /samp/xatm/ directory

Refer to your MQSeries installation documentation for more information about the
installation procedure.

The sample source modules that are used to produce the switch load files all
contain a single function called MQStart. When the switch load file is loaded, the
gueue manager calls this function and it returns the address of a structure called an
XA switch. The switch load file is linked to a library provided by the database
manager, which enables MQSeries to call that database manager.

The sample source modules used to build the switch load files are:

e For DB2, db2swit.c
e For Oracle, oraswit.c
e For Sybase, sybswit.c

Defining database managers

When you have created a switch load file for your database manager, you must
specify its location to your queue manager. This is done in the queue manager’'s
gm.ini file in the XAResourceManager stanza, or for users of MQSeries for Windows
NT Version 5.1 or later, in the Windows NT Registry.

You need to add an XAResourceManager stanza for each database manager that
your queue manager is going to coordinate. More complicated configurations
involving multiple databases, or different database managers, are discussed in
“Multiple database configurations” on page 200.

4 An XA switch load file is a dynamically loaded object that enables the queue manager and the database manager to communicate
with each other.

178 MQsSeries System Administration

Configuring database managers

The attributes of the XAResourceManager stanza are as follows.

Name=name
User-chosen string that identifies the database manager instance.

The name is mandatory and can be up to 31 characters in length. It must be
unique. It could simply be the name of the database manager, although to
maintain its uniqueness in more complicated configurations it could, for
example, also include the name of the database being updated.

The name that you choose should be meaningful because the queue manager
uses it to refer to this database manager instance both in messages and in
output when the dspmqgtrn command is used.

Once you have chosen a name, do not change this attribute . Information
about changing configuration information is given in “Changing configuration
information” on page 205.

SwitchFile=name
This is the fully-qualified name of the database manager’s XA switch load file.
This is a mandatory attribute.

XAOpenString=string
This is a string of data that is passed in calls to the database manager’s
xa_open entry point. The format for this string depends on the particular
database manager, but it should usually identify the name of the database that
is to be updated.

This is an optional attribute; if it is omitted a blank string is assumed.

XACloseString=string
This is a string of data that is passed in calls to the database manager’s
xa_close entry point. The format for this string depends on the particular
database manager.

This is an optional attribute; if it is omitted a blank string is assumed.

ThreadOfControl=THREAD|PROCESS
This attribute applies only to MQSeries for OS/2 Warp and MQSeries for
Windows NT products, where it is mandatory. The ThreadOfControl value can
be THREAD or PROCESS. The queue manager uses it for serialization
purposes.

If the database manager is “thread-safe”, the value for ThreadOfControl can be
THREAD, and the queue manager can call the database manager from multiple
threads at the same time.

If the database manager is not thread-safe, the value for ThreadOfControl
should be PROCESS. The queue manager serializes all calls to the database
manager so that only one call at a time is made from within a particular
process.

See “The XAResourceManager stanza” on page 140 for fuller descriptions of these
attributes.

“DB2 configuration” on page 180, “Oracle configuration” on page 186, and “Sybase
configuration” on page 192 give more information about the specific tasks you
need to perform to configure MQSeries with each of the supported database
managers.

Chapter 14. Transactional support 179

DB2 configuration

DB2 configuration

The minimum supported level of DB2 is DB2 Universal Database®, Version 5.0.

You need to perform the following tasks:
* Check the environment variable settings.
e Create the DB2 switch load file.

¢ Add XAResourceManager configuration information to the gm.ini file, or, for
MQSeries for Windows NT only, to the Windows NT Registry.

e Change DB2 configuration parameters if necessary.

Checking the environment variable settings

Ensure that your DB2 environment variables are set for queue manager processes
as well as in your application processes. In particular, you must always set the
DB2INSTANCE environment variable before you start the queue manager. The
DB2INSTANCE environment variable identifies the DB2 instance containing the
DB2 databases that are being updated.

Creating the DB2 switch load file

The easiest method for creating the DB2 switch load file is to use the sample file
xaswit.mak. The source code used to create the DB2 switch on most platforms is
shown in Figure 20. The source for db2swit.c for Windows NT is different; it is
shown in Figure 21.

#include <cmqc.h>
#include "xa.h"

extern struct xa_switch_t db2xa_switch;

struct xa_switch_t = MQENTRY MQStart(void)
{
return(&db2xa_switch);

}

Figure 20. Source code for db2swit.c for platforms other than Windows NT

#include <cmgc.h>
#include "xa.h"

extern _ declspec(d1limport) struct xa_switch t db2xa_switch;

struct xa_switch_t * MQENTRY MQStart(void)

{
return(&db2xa_switch);

}

Figure 21. Source code for db2swit.c on Windows NT (Microsoft Visual C++-specific)

180 MQsSeries System Administration

DB2 configuration

The xa.h header file that is supplied with MQSeries is installed (for MQSeries for
0S/2 Warp or MQSeries for Windows NT) in the \mgm\tools\c\samples\xatm
directory, or (for MQSeries for UNIX systems) in the mgmtop /samp/xatm directory.

Creating the DB2 switch load file on OS/2
To create the DB2 switch load file on OS2, db2swit.c must be compiled and linked
against db2api.lib. The DEF file shown in Figure 22 is needed to produce the DLL:

LIBRARY DB2SWIT

CODE SHARED LOADONCALL
DATA NONSHARED MULTIPLE

EXPORTS
MQStart 01

Figure 22. Source code for db2swit.def on OS/2

To create the DLL:

1. Create a directory into which you want the switch file to be built. The switch file
must be defined to MQSeries as a fully-qualified name so the DLL does not
need to be built into a directory within LIBPATH.

2. Copy the following files from \mgm\tools\c\samples\xatm into your new
directory:

e xa.h

e db2swit.c
o db2swit.def
e xaswit.mak

3. Use the source code for xaswit.mak on OS/2 shown in Figure 23 to build the
switch load file.

CFLAGS=/c /Ss /Gm /Ge- /Q /Spl
LFLAGS=/NOFREE /noi /align:16 /exepack

.SUFFIXES: .c .obj
db2swit.d11: db2swit.obj db2swit.def {$(LIB)}db2api.lib

.obj.d11:
$(CC) /B"$(LFLAGS)" /Fe $@ $x*

.c.obj:
$(CC) $(CFLAGS) $~*.c

Figure 23. Makefile for DB2 switch on OS/2

4. Issue an nmake -f xaswit.mak db2swit.d11 command to make the DB2 switch
load file, db2swit.dll.

Chapter 14. Transactional support 181

DB2 configuration

Creating the DB2 switch load file on Windows NT

To create the DB2 switch load file on Windows NT, db2swit.c must be compiled
and linked against db2api.lib. The DEF file shown in Figure 24 is needed to
produce the DLL:

LIBRARY DB2SWIT

EXPORTS
MQStart

Figure 24. Source code for db2swit.def on Windows NT

To create the DLL:

1. Create a directory into which you want the switch file to be built. The switch file
must be defined to MQSeries as a fully-qualified name so the DLL does not
need to be built into a directory within PATH.

2. Copy the following files from \mgm\tools\c\samples\xatm into your new
directory:

e xa.h

e db2swit.c
e db2swit.def
e Xxaswit.mak

3. Use the source code shown in Figure 25, which forms part of xaswit.mak on
Windows NT, to build the switch load file:

'include <ntwin32.mak>

db2swit.1ib db2swit.exp: $*.obj $*.def
$(implib) -machine:$(CPU) \
-def:$*.def $x.0bj

db2swit.d11: $*.obj $*.def $*.exp
$(1ink) $(d111flags) \
-base:0x1C000000 \
$x.exp $*.obj \
$(conTibsd11) db2api.lib

.c.obj:
$(cc) $(cflags) $(cvarsdll) $=.c

Figure 25. Makefile for DB2 switch on Windows NT

4. Issue an nmake -f xaswit.mak db2swit.d11 command to make the DB2 switch
load file, db2swit.dll, using the Microsoft Visual C++ compiler.

182 MQsSeries System Administration

DB2 configuration

Creating the DB2 switch load file on UNIX systems
To create the DB2 switch load file on UNIX systems, db2swit.c must be compiled

and linked against libdb2.

To build the switch load file:
1. Create a directory into which the DB2 load file, db2swit, will be built.
2. Copy the following files from mgmtop /samp/xatm into this new directory:

e xa.h
e db2swit.c
e xaswit.mak

3. Use the source shown in Figure 26, which forms part of xaswit.mak on AlX, to
build the DB2 switch file on AlX.

DB2LIBS=-1 db2
DB2LIBPATH=-L /usr/1pp/db2_05 00/1ib

db2swit:
$(CC) -e MQStart $(DB2LIBPATH) $(DB2LIBS) -o $€ db2swit.c

Figure 26. Makefile for DB2 switch on AIX

4. Use the source shown in Figure 27, which forms part of xaswit.mak on Sun
Solaris, to build the DB2 switch file on Sun Solaris.

DB2LIBS=-1 db2
DB2LIBPATH=-L /opt/IBMdb2/V5.0/1ib -R /opt/IBMdb2/V5.0/1ib

db2swit:
$(CC) -G -e MQStart $(DB2LIBPATH) $(DB2LIBS) -o $@ db2swit.c

Figure 27. Makefile for DB2 switch on Sun Solaris

5. Use the source shown in Figure 28, which forms part of xaswit.mak on HP-UX,
to build the DB2 switch file on HP-UX systems.

DB2LIBS=-1 db2 -1 cl
DB2LIBPATH=-L /opt/IBMdb2/V5.0/1ib +b /opt/IBMdb2/V5.0/1ib

db2swit: db2swit.c
$(CC) -c -Ae +z db2swit.c

1d -b -e MQStart $(DB2LIBPATH) $(DB2LIBS) -o db2swit db2swit.o

Figure 28. Makefile for DB2 switch on HP-UX

6. Issue a make -f xaswit.mak db2swit command to build the DB2 switch load file
using the sample makefile.

Chapter 14. Transactional support 183

DB2 configuration

Adding the XAResourceManager stanza for DB2

The next step is to modify the configuration information for the queue manager to
define DB2 as a participant in global units of work in the gm.ini file or, for MQSeries
for Windows NT only, in the Windows NT Registry.

Add an XAResourceManager stanza with the following attributes:

Name=name
This attribute is mandatory. Choose a suitable name for this participant; you
could include the name of the database being updated.

SwitchFile=name
This attribute is mandatory. Specify the fully-qualified name of the DB2 switch
load file.

XAOpenString=string
The XA open string for DB2 must be of the following format:
database_alias<,username,password>

where:

e database_alias is the name of the database, unless you have explicitly
cataloged an alias name after the database was created in which case
specify the alias instead.

The following two parameters are optional. They provide alternative
authentication information to the database if it was set up with
authentication=server

e username specifies a user name defined to DB2.
e password is the password for the specified user ID.

See “Security considerations” on page 200 for more information about
security.

XACloseString=string
DB2 does not require an XA close string.

ThreadOfControl=THREAD|PROCESS
DB2 is not thread-aware so specify PROCESS.

For fuller descriptions of each of these attributes, see “The XAResourceManager
stanza” on page 140.

Figure 29, shows some sample XAResourceManager entries where the database
to be updated is called MQBankDB, this name being specified as the XAOpenString.

XAResourceManager:
Name=DB2 MQBankDB
SwitchFile=c:\user\d11\db2swit.d11
XAOpenString=MQBankDB
ThreadOfControl=PROCESS

Figure 29. Sample XAResourceManager entry for DB2 on OS/2 and Windows NT

Figure 30 on page 185 is a UNIX sample. It is assumed that the DB2 switch load
file was copied to the /usr/bin directory after it had been created:

184 mQsSeries System Administration

DB2 configuration

XAResourceManager:
Name=DB2 MQBankDB
SwitchFile=/usr/bin/db2swit
XAOpenString=MQBankDB

Figure 30. Sample XAResourceManager entry for DB2 on UNIX platforms

Changing DB2 configuration parameters
Perform each of the following steps to each DB2 database that is being coordinated
by the queue manager.

e Database privileges
The mgm user ID must be authorized to connect to the DB2 database so that
the queue manager can connect to DB2 from within its own processes.

For example, to give the mgm user ID connect authority to the MQBankDB
database the following commands shown in Figure 31 could be used:

db2 connect to MQBankDB

db2 grant connect on database to user mgm

Figure 31. Sample commands to give connect user ID authority to MQBANKDB

See “Security considerations” on page 200 for more information about security.
e tp_mon_name parameter

For DB2 for OS/2 and DB2 for Windows NT only, the TP_MON_NAME
configuration parameter must be updated to name the DLL that DB2 uses to
call the queue manager for dynamic registration.

This can be achieved using a db2 update dbm cfg using TP_MON_NAME mgmax
command.

This names MQMAX.DLL as the library that DB2 uses to call the queue
manager. This must be present in a directory within LIBPATH for OS/2, or
PATH for Windows NT.

e maxappls parameter
You may need to review your setting for the maxappls parameter, which limits
the maximum number of applications that can be connected to a database.

Refer to “Database connections” on page 177.

Chapter 14. Transactional support 185

Oracle configuration

Oracle configuration

You need to perform the following tasks:
e Check Oracle level and apply patches if you have not already done so.
e Check environment variable settings.
e Enable Oracle XA support.
e Create the Oracle switch load file.

¢ Add XAResourceManager configuration information to the gm.ini file, or, for
MQSeries for Windows NT only, to the Windows NT Registry.

¢ Change the Oracle configuration parameters, if necessary.

Minimum supported levels for Oracle and applying patches

e The minimum supported level of Oracle on AIX is 7.3.2.1.

e The minimum supported level of Oracle on HP-UX is 7.3.2.3.

e The minimum supported level of Oracle on Sun Solaris is 7.3.2.3.
¢ You need to install Oracle patches 437448 and 441647.

Checking the environment variable settings

Ensure that your Oracle environment variables are set for queue manager
processes as well as in your application processes. In particular, the following
environment variables should always be set prior to starting the queue manager:

ORACLE_HOME Is the Oracle home directory
ORACLE_SID Is the Oracle SID being used

Enabling Oracle XA support

You need to ensure that Oracle XA support is enabled. In particular, an Oracle
shared library must have been created; this happens during installation of the
Oracle XA library. On Oracle7, you may be prompted with:

Some TP Monitors require a shared version of the ORACLE7 Tibraries.
Do you want to install a shared version of the libraries?

Make sure you answer Yes to this prompt. This creates a shared library called
libcintsh in the $ORACLE_HOME/Ilib directory.

During installation of Oracle8, the library is built automatically. You are not
prompted as described for Oracle7 above.

If you need to rebuild the library, enter the appropriate command while you are
logged on as an Oracle administrator:

e For Oracle7:

cd $ORACLE_HOME/rdbms/1ib
make -f clntsh.mk TibcIntsh

186 MQsSeries System Administration

Oracle configuration

e For Oracle8:

cd $ORACLE_HOME/rdbms/11ib
make -f ins_rdbms.mk client sharedlib

For more information, refer to:
e The Oracle7 Administrator’'s Reference for UNIX publication.

* The Oracle8 Administrator’'s Reference publication appropriate to your platform.

The queue manager loads the XA switch when it starts up. The platform-specific
environment variables (LIBPATH for AIX, LD_LIBRARY_PATH for Sun Solaris, and
SHLIB_PATH for HP-UX) are not passed to the queue manager processes from the
shell in which strmgm is called. Therefore, another method must be used so that
the shared objects can be located during start up of the queue manager. You can
do this either by:

* Imbedding the path to libclntsh in the XA switch load file when it is built. This
is the recommended method.

e Providing a symbolic link to libcntsh from /usr/lib. (/usr/lib is, by default,
searched for shared objects if none are found in the paths included by the first
method.)

The example makefiles in “Creating the Oracle switch load file on UNIX systems”
on page 188, are written assuming that you have not placed a symbolic link to
libcIntsh in /usr/lib. If you wish to use a symbolic link, you are free to remove the
relevant switches from these sample makefiles (-R for Sun Solaris or +b for
HP-UX).

Creating the Oracle switch load file

The simplest method for creating the Oracle switch load file is to use the sample
file. The source code used to create the Oracle switch load file is shown in
Figure 32.

#include <cmgc.h>
#include "xa.h"

extern struct xa_switch_t xaosw;

struct xa_switch_t = MQENTRY MQStart(void)
{

}

return(&xaosw) ;

Figure 32. Source code for Oracle switch load file, oraswit.c

The xa.h header file that is included is shipped with MQSeries in the same directory
as oraswit.c.

Chapter 14. Transactional support 187

Oracle configuration

Creating the Oracle switch load file on UNIX systems
To create the Oracle switch load file on UNIX systems, oraswit.c must be compiled
and linked against libcIntsh.

To build the switch load file for:

e AlX, perform steps 1, 2, 3, and 6
e Sun Solaris, perform steps 1, 2, 4, and 6
e HP-UX, perform steps 1, 2, 5, and 6

1. Create the directory into which the Oracle switch load file, oraswit, will be built.
2. Copy the following files from mgmtop /samp/xatm into this directory:

e xa.h

e oraswit.c

e xaswit.mak (if using Oracle7)

e xaswito8.mak (if using Oracle8)

3. Use the source shown in Figure 33 on page 188, which forms part of
xaswit.mak on AlX, to build Oracle switch file.

ORALIBS=-1 clIntsh -1 m
ORALIBPATH=-L $(ORACLE_HOME)/1ib

oraswit:
x1c_r -e MQStart $(ORALIBPATH) $(ORALIBS) -o $@ oraswit.c

Figure 33. Makefile for Oracle7 switch load file on AIX

ORALIBS=-1 cIntsh -1 m
ORALIBPATH=-L $(ORACLE_HOME)/1ib

ora8swit:
x1c_r -e MQStart $(ORALIBPATH) $(ORALIBS) -o $@ oraswit.c

Figure 34. Makefile for Oracle8 switch load file on AlX

4. Use the source shown in Figure 35 and Figure 36, which form part of
xaswit.mak and xaswito8.mak on Sun Solaris, to build the appropriate Oracle
switch file on Sun Solaris.

ORALIBS=-1 cIntsh -1 m
ORALIBPATH=-L $(ORACLE_HOME)/1ib -R $(ORACLE_HOME)/1ib

oraswit:
$(CC) -G -e MQStart $(ORALIBPATH) $(ORALIBS) -o $@ oraswit.c

Figure 35. Makefile for Oracle7 switch load file on Sun Solaris

188 MQseries System Administration

Oracle configuration

ORALIBS=-1 cIntsh -1 m

include $(ORACLE_HOME)/precomp/1ib/env_precomp.mk

PROLDLIBS=$ (LLIBCLNTSH) $(SCOREPT) $(SSCOREED)$(DEF_ON) $(LLIBCLIENT) $(LLIBSQL)
$ (STATICTTLIBS)

ORALIBPATH=-R $(ORACLE_HOME)/1ib -L $(ORACLE_HOME)/1ib$ (PROLDLIBS)

ora8swit:
$(CC) -G -e MQStart $(ORALIBPATH) $(ORALIBS) -0 § @ oraswit.c

Figure 36. Makefile for Oracle8 switch load file on Sun Solaris

5. Use the source shown in Figure 37 and Figure 38, which form part of
xaswit.mak and xaswito8.mak on HP-UX, to build the appropriate Oracle switch
load file on HP-UX.

ORALIBS=-1 cIntsh -1 m
ORALIBPATH=+b §(ORACLE_HOME)/1ib -L $(ORACLE_HOME)/1ib

oraswit:
$(CC) -c -Ae +z oraswit.c

1d -b -e MQStart $(ORALIBPATH) $(ORALIBS) -0 oraswit oraswit.o

Figure 37. Makefile for Oracle7 switch load file on HP-UX

ORALIBS=-1 cIntsh -1 m
ORALIBPATH=+b $(ORACLE_HOME)/1ib $(LIBCLNTSH) $(LIBSQL)-L $(ORACLE_HOME)/1ib

ora8swit:
$(CC) -c -Ae +z oraswit.c

1d -b -e MQStart $(ORALIBPATH) $(ORALIBS) -0 oraswit oraswit.o

Figure 38. Makefile for Oracle8 switch load file on HP-UX

6. Issue a make -f xaswit.mak oraswit command (for Oracle7) or a make -f
xaswito8.mak ora8swit command (for Oracle8) to build the Oracle switch using
the sample makefile.

Adding XAResourceManager configuration information for Oracle

The next step is to modify the gm.ini configuration file of the queue manager, or, for
MQSeries for Windows NT only, the Windows NT Registry, to define Oracle as a
participant in global units of work. You need to add an XAResourceManager
stanza with the following attributes:

Name=name
This attribute is mandatory. Choose a suitable name for this participant. You
could include the name of the database being updated.

SwitchFile=name
This attribute is mandatory. The fully-qualified name of the Oracle switch load
file

Chapter 14. Transactional support 189

Oracle configuration

XAOpenString=string
The XA open string for Oracle has the following format:

Oracle_XA+Acc=P//|P/userName/passWord

where:

Acc=

SesTm=

DB=

GPwd=

LogDir=

MaxCur=

SqlNet=

+SesTm=sessionTimeLimit
[+DB=dataBaseName]
[+GPwd=P/groupPassWord]
[+LogDir=1ogDir]
[+MaxCur=maximumOpenCursors]
[+Sq1Net=connectString]

Is mandatory and is used to specify user access information. P//
indicates that no explicit user or password information is provided and
that the ops$login form is to be used. P/userName/passWord
indicates a valid ORACLE user ID and the corresponding password.

Is mandatory and is used to specify the maximum amount of time
that a transaction can be inactive before the system automatically
deletes it. The unit of time is in seconds.

Is used to specify the database name, where DataBaseName is the
name Oracle precompilers use to identify the database. This field is
required only when applications explicitly specify the database name
(that is, use an AT clause in their SQL statements).

GPwd is used to specify the server security password, where
P/groupPassWord is the server security group password name.
Server security groups provide an extra level of protection for
different applications running against the same ORACLE instance.
The default is an ORACLE-defined server security group.

LogDir is used to specify the directory on a local machine where the
Oracle XA library error and tracing information can be logged. If a
value is not specified, the current directory is assumed. Make sure
that user mgm has write-access to this directory.

MaxCur is used to specify the number of cursors to be allocated
when the database is opened. It serves the same purpose as the
precompiler option, maxopencursors.

SqlNet is used to specify the SQL*Net connect string that is used to
log on to the system. The connect string can be either an SQL*Net
V1 string, SQL*Net V2 string, or SQL*Net V2 alias. This field is
required when you are setting up Oracle on a machine separate from
the queue manager.

See the Oracle7 Server Distributed Systems, Volume 1: Distributed Data book
(Part Number A32543-1) or the Oracle8 Server Application Developer’s Guide
(Part Number A54642-01) for more information.

XACloseString=string
Oracle does not require an XA close string.

190 MQsSeries System Administration

Oracle configuration

ThreadOfControl=THREAD|PROCESS
You do not need to specify this parameter on UNIX platforms.

For fuller descriptions of each of these attributes, see “The XAResourceManager
stanza” on page 140.

In Figure 39, the database to be updated is called MQBankDB. Note that it is
recommended to add a LogDir to the XA open string so that all error and tracing
information is logged to the same place. It is assumed that the Oracle switch load
file was copied to the /usr/bin directory after it had been created.

XAResourceManager:
Name=0racle MQBankDB
SwitchFile=/usr/bin/oraswit
XAOpenString=Oracle_XA+Acc=P/scott/tiger+SesTm=35+LogDir=/tmp/ora.10g+DB=MQBankDB

Figure 39. Sample XAResourceManager entry for Oracle on UNIX platforms

Changing Oracle configuration parameters

The queue manager and user applications use the user ID specified in the XA open
string when they connect to Oracle.

e Database privileges (Oracle7 only)
The Oracle user ID specified in the open string must have the privileges to
access the VSXATRANSS view.

The necessary privilege can be given using the following command, where
userID is the user ID for which access is being given.

grant select on V$XATRANS$ to userID;

See “Security considerations” on page 200 for more information about security.

e Database privileges (Oracle8 only)
The Oracle user ID specified in the open string must have the privileges to
access the DBA_PENDING_TRANSACTIONS view.

The necessary privilege can be given using the following command, where
userID is the user ID for which access is being given.

grant select on DBA PENDING_TRANSACTIONS to userID;

See “Security considerations” on page 200 for more information about security.

¢ Additional database connections (Oracle7 and later)
You may need to review your LICENSE_MAX_SESSIONS and PROCESSES
settings to take into account the additional connections required by processes
belonging to the queue manager. See “Database connections” on page 177
for details about the database connections that the queue manager needs for
itself.

Chapter 14. Transactional support 191

Sybase configuration

Sybase configuration
MQSeries supports:

e Sybase XA Server Version 11.1.1 (with latest support level)

» Sybase OpenClient/C Version 11.1.1 (with latest support level)
e Sybase Adaptive Server Version 11.5

e Sybase Embedded SQL/C Version 11.1.1

when used in conjunction with the Sybase XA-Server component Version 11.1.1 on
the following platforms:

e AIX 4.2.0 or later (with Sybase patch SWR 7993 applied)
e Sun Solaris 2.6 or later
¢ Windows NT 4.0 Service Pack 3, or later

You need to perform the following tasks:

1. Check environment variable settings.

2. Create symbolic lines for Sybase libraries (Sun Solaris only).

3. Enable Sybase XA support.

4. Create the Sybase switch load file.

5. Add an XAResourceManager stanza to the gm.ini file, or to the Windows NT
Registry.

Enabling Sybase XA support
Within the Sybase XA configuration file, you need to define a Logical Resource
Manager (LRM) for each connection you will make to the Sybase server that is
being updated.

Refer to the Sybase publication, XA-Server Integration Guide for Tuxedo,
(Document ID 35002-01-1111-01), and to the Release Bulletin XA-Server Version
11.1.1 appropriate for your platform for information about configuring the Sybase
server for XA support and modifying the Sybase XA configuration file,
$SYBASE/xa_config.

An example of the contents of $SYBASE/xa_config is shown in Figure 40

The first Tine must always be a comment

[xa]

LRM=Trmname
server=servername
Xaserver=xaservername

Figure 40. Example contents of $SYBASE/xa_config

192 MQsSeries System Administration

Sybase configuration

Creating the Sybase switch load file

The simplest method for creating the Sybase switch load file is to use the sample
files installed under the mgmtop/samp/xatm directory. The source code used to
create the Sybase switch on UNIX platforms is shown in Figure 41.

| #include <cmgc.h>
| #include "xa.h"

| extern struct xa_switch_t sybase_xa_switch;

struct xa_switch_t = MQENTRY MQStart(void)
{

}

return(&sybase xa_switch);

| Figure 41. Source code for sybswit.c on UNIX platforms
| The xa.h header file is in the same directory as sybswit.c.

The source for the switch load file can be found in:
e The directory mgmtop/samp/xatm for UNIX platforms

|
|
| ¢ The directory c:\mgm\tools\c\samples\xatm for MQSeries for Windows NT and
| MQSeries for OS/2 Warp

Linking the XA switch load file with Sybase libraries

As already described in “Creating the Oracle switch load file on UNIX systems” on
page 188, the queue manager processes do not inherit the environment variables
(LD_LIBRARY_PATH on Sun Solaris, LIBPATH on AlX, and SHLIB_PATH on
HP-UX) from the shell. in which the strmgm command was issued. In order for
the libraries to be found during start up of the queue manager, you can specify a
run-time linking path when the switch load file is built. The sample makefiles in the
following sections operate in this way.

Creating the Sybase switch load file on UNIX systems

To create the Sybase switch load file on UNIX systems, sybswit.c must be
compiled and linked with the relevant Sybase libraries as shown in Figure 42 and
Figure 43.

| To build the switch load file:

| 1. Create the directory into which the Sybase switch load file, sybswit, will be built.
| 2. Copy the following files into this directory:

| e xa.h

| * sybswit.c

| e Xxaswit.mak

|

|

3. Use the source shown in Figure 42, which forms part of xaswit.mak, to build
the Sybase switch file on AIX.

Chapter 14. Transactional support 193

Sybase configuration

SYBLIBS = -Txaserver -lIct.so -1cs.so -Ttcl.so -1comn.so -Tintl.so -1m
SYBLIBPATH=-L $(SYBASE)/1ib

sybswit:
xlc_r -e MQStart $(SYBLIBPATH) $(SYBLIBS) -o $@ sybswit.c

Figure 42. Makefile for Sybase switch on AIX

4. Use the source shown in Figure 43, which forms part of xaswit.mak, to build
the Sybase switch file on Sun Solaris.

SYBLIBS = -1int1 -1xaserver -lIct -1cs -Tcomn -1tcl -1d1
SYBLIBPATH=-L $(SYBASE)/1ib -R $(SYBASE)/1ib

sybswit:
$(CC) -G -e MQStart $(SYBLIBPATH) $(SYBLIBS) -o $@ sybswit.c

Figure 43. Makefile for Sybase switch on Sun Solaris

5. Issue a make -f xaswit.mak sybswit command to build the Sybase switch
using the sample makefile.

Creating the Sybase switch load file on Windows NT
To create the Sybase switch load file on Windows NT, sybswit.c must be compiled
and linked with libxaserver.lib.

194 mQsSeries System Administration

Sybase configuration

#include <cmqc.h> /* MQ header */

#include "xa.h" /* MQ supplied XA header */

/ /

/* On NT __STDC__ is not defined */

/ /

struct stdcall_xa_switch_t /* as defined/used by Sybase on NT */

i
char name[RMNAMESZ] ; /* name of resource manager */
long flags; /* resource manager specific options */
long version; /* must be 0 */
int (__stdcall * xa_open_entry)(); /* xa_open function pointer */
int (__stdcall * xa_close_entry)(); /* xa_close function pointer */
int (__stdcall * xa_start_entry)(); /* xa_start function pointer */
int (__stdcall = xa_end_entry)(); /* xa_end function pointer */
int (__stdcall * xa_rollback entry)(); /* xa_rollback function pointer */
int (__stdcall * xa_prepare_entry)(); /* xa_prepare function pointer x/
int (__stdcall * xa_commit_entry)(); /* xa_commit function pointer */
int (__stdcall = xa_recover_entry)(); /* xa_recover function pointer */
int (__stdcall * xa_forget_entry)(); /* xa_forget function pointer */
int (__stdcall * xa_complete_entry)(); /* xa_complete function pointer */

1

/**/

/* External data declarations */

/ /

/* specify that the Sybase XA switch uses __stdcall conventions */
extern __declspec(d1limport) struct stdcall_xa_switch_t sybase_xa_switch;

/* Function Prototypes (called by queue manager) x/

int _ cdecl intermediate_xa_open_entry(char * a, int b, long c);
int _ cdecl intermediate_xa_close_entry(char * a, int b, Tong c);
int _ cdecl intermediate_xa_start_entry(XID *, int, long);

int _ cdecl intermediate_xa_end_entry(XID *, int, long);

int _ cdecl intermediate_xa_rollback entry(XID *, int, long);

int _ cdecl intermediate_xa_prepare_entry(XID *, int, long);

int _ cdecl intermediate_xa_commit_entry(XID *, int, long);

int __cdecl intermediate_xa_recover_entry(XID *, Tong, int, Tong);
int _ cdecl intermediate_xa_forget_entry(XID *, int, long);

int __cdecl intermediate_xa_complete_entry(int *, int *, int, long);

Figure 44 (Part 1 of 3). Source code for sybswit.c on Windows NT

Chapter 14. Transactional support

195

Sybase configuration

/* This intermediate switch is of type declared in xa.h - _ cdecl funs =/
struct xa_switch_t intermediate_xa_switch =
{

"SYBASE_XA_SERVER",

TMNOMIGRATE,

0,

intermediate_xa_open_entry,
intermediate_xa_close_entry,
intermediate_xa_start_entry,
intermediate_xa_end_entry,
intermediate_xa_rollback_entry,
intermediate_xa_prepare_entry,
intermediate_xa_commit_entry,
intermediate_xa_recover_entry,
intermediate_xa_forget_entry,
intermediate_xa_complete_entry

bs

/**/
/* */
/* Function name: MQStart */
/* */
/* Description: The queue manager calls this function to access the XA switch */
/* of Sybase */
/* */
/**/
/* */
/* Input Parameters: None */
/* */
/* Output Parameters: None */
/* */
/* Returns: Pointer to Sybase XA switch (now the intermediate swit) */
/* */

/**/

__declspec(dllexport) struct xa_switch_t * MQENTRY MQStart(void)

return(&intermediate_xa_switch);

}
int _ cdecl intermediate_xa_open_entry(char * a, int b, long c)
{
return(sybase_xa_switch.xa_open_entry(a, b, ¢))3
}
int _ cdecl intermediate_xa_close_entry(char * a, int b, long c)
{
return(sybase xa switch.xa_close entry(a, b, ¢));
}
int _ cdecl intermediate_xa_start_entry(XID *a, int b, Tong c)
{
return(sybase_xa_switch.xa_start_entry(a, b, ¢));
}
int _ cdecl intermediate_xa_end entry(XID *a, int b, long c)
{
return(sybase_xa_switch.xa_end_entry(a, b, ¢));
}

Figure 44 (Part 2 of 3). Source code for sybswit.c on Windows NT

196 MQsSeries System Administration

Sybase configuration

int _ cdecl intermediate xa_rollback entry(XID *a, int b, Tong c)

{
return(sybase_xa_switch.xa_rollback_entry(a, b, ¢));

}

int _ cdecl intermediate_xa_prepare_entry(XID *a, int b, long c)

{

return(sybase xa_switch.xa_prepare entry(a, b, ¢));

}

int _ cdecl intermediate_xa_commit_entry(XID *a, int b, long c)

{

return(sybase_xa_switch.xa_commit_entry(a, b, ¢));

}

int _ cdecl intermediate _xa_recover_entry(XID *a, lTong b, int c, long d)

it
return(sybase_xa_switch.xa_recover entry(a, b, ¢, d));

}

int _ cdecl intermediate_xa_forget_entry(XID *a, int b, long c)

{
return(sybase xa_switch.xa_forget entry(a, b, ¢));

}

int __cdecl intermediate_xa_complete_entry(int *a, int *b, int c, Tong d)
{
return(sybase_xa_switch.xa_complete_entry(a, b, c,d));

}

/* End of sybswit.c */

Figure 44 (Part 3 of 3). Source code for sybswit.c on Windows NT

The DEF file shown in Figure 45 is needed to produce the DLL.

LIBRARY SYBSWIT

EXPORTS
MQStart

Figure 45. Source code for sybwit.def on Windows NT

To create the DLL:

1. Create a directory into which you want the switch file to be built. The switch file
must be defined to MQSeries as a fully-qualified name so the DLL does not
need to be built into a directory with LIBPATH. Makefiles are provided for
building the switch file using both the Microsoft Visual C++ and IBM VisualAge®
for C++ compilers.

2. Copy the following files from \mgm\tools\c\samples\xatm into your new
directory:

e xa.h
e sybswit.c
e sybswit.def

3. Copy either :

e Xxaswit.mak if you are using Microsoft Visual C++
e Xxaswiti.mak if you are using IBM VisualAge for C++

Chapter 14. Transactional support 197

Sybase configuration

4. Use the source code shown in Figure 46 on page 198, which forms part of
xaswit.mak on Windows NT, to build the switch load file using the Microsoft
Visual C++ compiler.

Iinclude <ntwin32.mak>

sybswit.1ib sybswit.exp: $*.obj $x.def
$(implib) -machine:$(CPU) \
-def:$*.def $*.o0bj

sybswit.d11: $*.0bj $x.def $*.exp
$(1ink) $(d111f1ags) \
-base:0x1C000000 \
$*.exp $*.obj \
$(conlibsd11) Tibxaserver.lib

.c.obj:
$(cc) $(cflags) $(cvarsdll) $=.c

Figure 46. Makefile for Sybase switch on Windows NT using Microsoft Visual C++

5. Issue an nmake -f xaswit.mak sybswit.d11 command to create the Sybase
switch load file, sybswit.dll.

6. To create the switch load file using the IBM VisualAge for C++ compiler, use
the source code shown in Figure 47, which forms part of xaswiti.mak on
Windows NT, to build the switch load file.

Asybswit.obj: \
sybswit.c \
{$ (INCLUDE) ;}xa.h
@echo " Compile "
icc.exe /Gm /Ti- /Gd /Ge- /Gf- /Fosybswit.obj /C sybswit.c

A\sybswit.exp: \
.\sybswit.obj
@echo " Make exp and Tib files
ilib.exe /Gi:sybswit .\sybswit.obj

Asybswit.d11: \
Asybswit.exp \
.\sybswit.obj \
{$(LIB)}1ibxaserver.1ib
@echo " Link "
icc.exe BO<<

/B" /de /pmtype:vio /noe /code:RX /data:RW /d11"
/B" /def"

/B" /def:1ibxaserver"

/B" /nod:sybswit.Tib"

/Fesybswit.d11

libxaserver.1ib

.\sybswit.exp

.\sybswit.obj

Figure 47. Makefile for Sybase switch on Windows NT using IBM VisualAge for C++

198 MQseries System Administration

Sybase configuration

7. Issue an nmake -f xaswiti.mak sybswit.d11 command to make the Sybase
switch load file.

Adding XAResourceManager configuration information for Sybase

Edit the Windows NT Registry using the MQSeries Services snap-in to define
Sybase as a participant in global units of work.

You need to add the following XAResourceManager configuration information:

Name=Name
This attribute is mandatory. Choose a suitable name that this participant will be
known as. You could include the name of the database being updated.

SwitchFile=name
This attribute is mandatory The fully-qualified name of the Sybase switch load
file.

XAOpenString=string
The XA open string for Sybase must have the following syntax:

-Uusername -Ppassword -Nconnection name -Llogfile -Ttype

where:

-U Specifies the user access information; username is a valid Sybase
user ID.

-P Is the password of the specified user.

-N Is the LRM name corresponding to a connection to the database.
It should be defined in the Sybase xa_config file as described in
“Enabling Sybase XA support” on page 192.

-L Indicates the path name of the file where Sybase XA-Library error
information will be logged. Ensure that the user mgm has write
privileges over this file. This field is optional; no error information
is logged if it is not specified.

-T Specifies the type of logging used. See the Sybase publication

XA-Server Integration Guide for Tuxedo for a list of log types.

XACloseString=string
Sybase does not require an XA close string.

ThreadOfControl=THREAD|PROCESS
Sybase is not “threadaware”, so specify PROCESS.

In Figure 48, the MQBankDB database is associated with the Irmname LRM
definition in the Sybase XA configuration file, $SYBASE/xa_config. A log file should
be included if you want XA function calls to be logged.

XAResourceManager:
Name=Sybase MQBankDB
SwitchFile=/usr/bin/sybswit
XAOpenString=-Uuser -Ppassword -Nlrmname -L/tmp/sybase.log -Txa

Figure 48. Sample XAResourceManager entry for Sybase on UNIX platforms

Chapter 14. Transactional support 199

Multiple database configuration e Security considerations

Multiple database configurations

If you want to configure the queue manager so that updates to multiple databases
can be included within global units of work, then you need to add an
XAResourceManager stanza for each of the databases.

If the databases are all managed by the same database manager, each stanza
defines a separate database belonging to that database manager. Each stanza
should specify the same SwitchFile, but the contents of the XAOpenString will be
different because it specifies the name of the database being updated. For
example, the stanzas shown in Figure 49 configure the queue manager with the
DB2 databases MQBankDB and MQFeeDB on UNIX platforms.

XAResourceManager:
Name=DB2 MQBankDB
SwitchFile=/usr/bin/db2swit
XAOpenString=MQBankDB

XAResourceManager:
Name=DB2 MQFeeDB
SwitchFile=/usr/bin/db2swit
XAOpenString=MQFeeDB

Figure 49. Sample XAResourceManager entries for multiple DB2 databases

If the databases to be updated are managed by different database managers then
once again an XAResourceManager stanza needs to be added for each. In this

case, each stanza specifies a different SwitchFile. For example, if the MQFeeDB
was managed by Oracle instead of DB2 then the following stanzas could be used:

XAResourceManager:
Name=DB2 MQBankDB
SwitchFile=/usr/bin/db2swit
XAOpenString=MQBankDB

XAResourceManager:
Name=0racle MQFeeDB
SwitchFile=/usr/bin/oraswit
XAOpenString=0racle_XA+Acc=P/scott/tiger+SesTm=35+LogDir=/tmp/ora.10g+DB=MQFeeDB

Figure 50. Sample XAResourceManager entries for a DB2 and Oracle database

In principle, there is no limit to the number of database instances that can be
configured with a single queue manager.

Security considerations
The following information is provided for guidance only. In all cases you should
refer to the documentation provided by the database manager concerned to
determine the security implications of running your database under the XA model.

An application process denotes the start of a global unit of work using the
MQBEGIN verb. The first MQBEGIN call that an application issues connects to
each of the participating databases by calling them at their xa_open entry point. All
of the database managers provide a mechanism for supplying a user ID and
password in their XAOpenString.

200 MQsSeries System Administration

Administration tasks

If a user ID is specified in the XAOpenString then it is recommended that one with
a minimal set of authorizations be chosen. Consult the documentation of the
database manager to determine how the application can gain different privileges.
This can often be achieved using EXEC SQL CONNECT or EXEC SQL SET
CONNECTION.

Note that on UNIX platforms fastpath applications must run with an effective user
ID of mgm while making MQI calls.

Administration tasks

In normal operations only a minimal amount of administration is necessary after you
have completed the configuration steps. The administration job is made easier
because the queue manager is tolerant of database managers not being available.
In particular this means that:

e The queue manager can be started at any time without first starting each of the
database managers.

e The queue manager does not need to be stopped and restarted if one of the
database managers becomes unavailable.

This allows you to start and stop the queue manager independently from the
database managers, and vice versa if the database manager supports it.

Whenever contact is lost between the queue manager and a database manager
they need to resynchronize when both become available again.

Resynchronization is the process by which any in-doubt units of work involving that
database are completed. In general, this occurs automatically without the need for
user intervention. The queue manager asks the database manager for a list of
units of work in which it is in doubt. Next it instructs the database manager to
either commit or rollback each of these in-doubt units of work.

When the queue manager stops, it needs to resynchronize with each database
manager instance during restart. When an individual database manager becomes
unavailable, only that database manager need be resynchronized the next time the
gueue manager notices that the database manager is available again.

The queue manager attempts to regain contact with an unavailable database
manager automatically as new global units of work are started. Alternatively, the
rsvmqgtrn command can be used to resolve explicitly all in-doubt units of work.

In-doubt units of work
A database manager may be left with in-doubt units of work if contact with the
gueue manager is lost after the database manager has been instructed to
PREPARE. Until the database manager receives the COMMIT or ROLLBACK
outcome from the queue manager, it needs to retain the database locks associated
with the updates.

Because these locks prevent other applications from updating, or maybe reading,
database records, resynchronization needs to take place as soon as possible.

If for some reason you cannot wait for the queue manager to resynchronize with
the database automatically, you could use facilities provided by the database

Chapter 14. Transactional support 201

Administration tasks

manager to commit or rollback the database updates manually. This is called
making a heuristic decision and should be used only as a last resort because of the
possibility of compromising data integrity; you may end up committing the database
updates when all of the other participants rollback, or vice versa.

It is far better to restart the queue manager, or use the rsvmgtrn command when
the database has been restarted, to initiate automatic resynchronization.

Using the dspmgtrn command

While a database manager is unavailable it is possible to use the dspmqtrn
command to check the state of outstanding units of work (UOWS) involving that
database.

When a database manager becomes unavailable, before the two-phase commit
process is entered, any in-flight UOWSs in which it was participating are rolled back.
The database manager itself rolls back its in-flight UOWSs when it next restarts.

The dspmqgtrn command displays only those units of work in which one or more
participants are in doubt, awaiting the COMMIT or ROLLBACK from the queue
manager.

For each of these units of work the state of each of the participants is displayed. If
the unit of work did not update the resources of a particular resource manager, it is
not displayed.

With respect to an in-doubt unit of work, a resource manager is said to have done
one of the following things:

Prepared The resource manager is prepared to commit its updates.
Committed The resource manager has committed its updates.
Rolled-back The resource manager has rolled back its updates.
Participated The resource manager is a participant, but has not prepared,

committed, or rolled back its updates.

Note that the queue manager does not remember the individual states of the
participants when the queue manager restarts. If the queue manager is restarted,
but is unable to contact a database manager, then the in-doubt units of work in
which that database manager was participating are not resolved during restart. In
this case, the database manager is reported as being in prepared state until such
time as resynchronization has occurred.

Whenever the dspmqgtrn command displays an in-doubt UOW, it first lists all the
possible resource managers that could be participating. These are allocated a
unique identifier, RMId, which is used instead of the Name of the resource
managers when reporting their state with respect to an in-doubt UOW.

Figure 51 on page 203 shows the result of issuing the following command:

dspmgtrn -m MY_QMGR

202 MQSeries System Administration

Administration tasks

AMQ7107: Resource manager 0 is MQSeries.
AMQ7107: Resource manager 1 is DB2 MQBankDB
AMQ7107: Resource manager 2 is DB2 MQFeeDB

AMQ7056: Transaction number 0,1.
XID: formatID 5067085, gtrid Tength 12, bqual_length 4
gtrid [3291A5060000201374657374]
bqual [00000001]
AMQ7105: Resource manager O has committed.
AMQ7104: Resource manager 1 has prepared.
AMQ7104: Resource manager 2 has prepared.

Figure 51. Sample dspmaqtrn output

The output from Figure 51 shows that there are three resource managers
associated with the queue manager. The first is the resource manager 0, which is
the queue manager itself. The other two resource manager instances are the
MQBankDB and MQFeeDB DB2 databases.

The example shows only a single in-doubt unit of work. A message is issued for all
three resource managers, which means that updates had been made to the queue
manager and both DB2 databases within the unit of work.

The updates made to the queue manager, resource manager 0, have been
committed. The updates to the DB2 databases are in prepared state, which means
that DB2 must have become unavailable before it was called to commit the updates
to the MQBankDB and MQFeeDB databases.

The in-doubt unit of work has an external identifier called an XID. This is the
identifier that DB2 associates with the updates.

Using the rsvmqgtrn command

The output shown in Figure 51 showed a single in-doubt UOW in which the commit
decision had yet to be delivered to both DB2 databases.

In order to complete this unit of work, the queue manager and DB2 need to
resynchronize when DB2 next becomes available. The queue manager uses the
start of new units of work as an opportunity to attempt to regain contact with DB2.
Alternatively, you can instruct the queue manager to resynchronize explicitly using
the rsvmqgtrn command. You should do this soon after DB2 has been restarted so
that any database locks associated with the in-doubt unit of work are released as
quickly as possible.

This is achieved using the -a option which tells the queue manager to resolve all
in-doubt units of work. In the following example, DB2 had been restarted so the
queue manager was able to resolve the in-doubt unit of work:

> rsvmgtrn -mMY_QMGR -a

Any in-doubt transactions have been resolved.

Chapter 14. Transactional support 203

Administration tasks

Mixed outcomes and errors

Although the queue manager uses a two-phase commit protocol this does not
completely remove the possibility of some units of work completing with mixed
outcomes. This is where some participants commit their updates, and some back
out their updates.

Units of work that complete with a mixed outcome have serious implications
because shared resources are no longer in a consistent state.

Mixed outcomes are mainly caused when heuristic decisions are made about units
of work instead of allowing the queue manager to resolve in-doubt units of work
itself.

Whenever the queue manager detects heuristic damage it produces FFST
information and documents the failure in its error logs, with one of two messages:

» |f a database manager rolled back instead of committing:

AMQ7606 A transaction has been committed but one or more resource
managers have rolled back.

e |If a database manager committed instead of rolling back:

AMQ7607 A transaction has been rolled back but one or more resource
managers have committed.

Further messages are issued that identify the databases that are heuristically
damaged. It is then your responsibility to perform recovery steps local to the
affected databases so that consistency is restored. This is a complicated
procedure in which you need first to isolate the update that has been wrongly
committed or rolled back, then to undo or redo the database change manually.

Damage occurring due to software errors is less likely. Units of work affected in
this way have their transaction number reported by message AMQ7112. The
participants may be in an inconsistent state.

rsvmgtrn -m MY_QMGR

AMQ7107: Resource manager 0 is MQSeries.
AMQ7107: Resource manager 1 is DB2 MQBankDB
AMQ7107: Resource manager 2 is DB2 MQFeeDB

AMQ7112: Transaction number 0,1 has encountered an error.
XID: formatID 5067085, gtrid Tength 12, bqual_length 4
gtrid [3291A5060000201374657374]
bqual [00000001]
AMQ7105: Resource manager 0 has committed.
AMQ7104: Resource manager 1 has prepared.
AMQ7104: Resource manager 2 has rolled back.

Figure 52. Sample dspmaqtrn output for a transaction in error

The queue manager does not attempt to recover from such failures until the next
gueue manager restart. In Figure 52, this would mean that the updates to
resource manager 1, the MQBankDB database, would be left in prepared state
even if the rsvymgtrn was issued to resolve the unit of work.

204 MQsSeries System Administration

Administration tasks

Changing configuration information

After the queue manager has successfully started to coordinate global units of work
you should be wary about making changes to any of the XAResourceManager
stanzas in the gm.ini file, or in the Windows NT Registry.

If you do need to change the gm.ini file you can do so at any time, but the changes
do not take effect until after the queue manager has been restarted. For example,
if you need to alter the XA open string passed to a database manager, you need to
restart the queue manager for your change to take effect.

Note that if you remove an XAResourceManager stanza you are effectively
removing the ability for the queue manager to contact that database manager.

You should never change the Name attribute in any of your XAResourceManager
stanzas. This attribute uniquely identifies that database manager instance to the
gueue manager. If this unique identifier is changed, the queue manager assumes
that the database manager instance has been removed and a completely new
instance has been added. The queue manager still associates outstanding units of
work with the old Name, possibly leaving the database in an in-doubt state.

Removing database manager instances

If you do need to remove a database or database manager from your configuration
permanently, you should first ensure that the database is not in doubt. You should
perform this check before you restart the queue manager. Most database
managers provide commands for listing in-doubt transactions. If there are any
in-doubt transactions, first allow the queue manager to resynchronize with the
database manager before you remove its XAResourceManager stanza.

If you fail to observe this procedure the queue manager still remembers all in-doubt
units of work involving that database. A warning message, AMQ7623, is issued
every time the queue manager is restarted. If you are never going to configure this
database with the queue manager again you can instruct it to forget about these
in-doubt transactions using the -r option of the rsvmgtrn command.

There are times when you might need to remove an XAResourceManager stanza
temporarily. This is best achieved by commenting out the stanza so that it can be
easily reinstated at a later time. You may decide to take this action if you are
suffering errors every time the queue manager contacts a particular database or
database manager. Temporarily removing the XAResourceManager entry
concerned allows the queue manager to start global units of work involving all of
the other participants. An example of a commented out XAResourceManager
stanza follows:

This database has been temporarily removed
#XAResourceManager:

Name=DB2 MQBankDB

SwitchFile=/usr/bin/db2swit

XAOpenString=MQBankDB

Figure 53. Commented out XAResourceManager stanza

Chapter 14. Transactional support 205

External syncpoint coordination

Users of MQSeries for Windows NT Version 5.1 and later must use the MQSeries
Services shap-in to change XAResourceManager configuration information in the
Windows NT Registry.

Furthermore, because you have to delete a database manager instance when
editing configuration information in the Windows NT Registry as opposed to
commenting it out, you must take great care to type in the correct name in the Name
field when reinstating it.

External syncpoint coordination

A global unit of work may also be coordinated by an external X/Open XA-compliant
transaction manager. Here the MQSeries queue manager participates in, but does
not coordinate, the unit of work.

The flow of control in a global unit of work coordinated by an external transaction
manager is as follows:

1. An application informs the external syncpoint coordinator (for example, CICS)
that it wants to start a transaction.

2. The syncpoint coordinator informs known resource managers, such as
MQSeries, about the current transaction.

3. The application issues calls to resource managers that are associated with the
current transaction. For example, the application could issue MQGET calls to
MQSeries.

4. The application issues a commit or back-out request to the external syncpoint
coordinator.

5. The syncpoint coordinator completes the transaction by issuing the appropriate
calls to each resource manager, typically using two-phase commit protocols.

Table 13 lists the external syncpoint coordinators that can provide a two-phase
commit process for transactions in which the MQSeries Version 5 products can
participate. Minimum versions and releases are shown; later versions or releases,
if any, may be used.

Table 13. XA-compliant external syncpoint coordinators

MQSeries External syncpoint coordinator
MQSeries for AlX TXSeries for AIX V4.2

BEA Tuxedo V5.1 or V6.1
MQSeries for HP-UX TXSeries for HP-UX, V4.2

BEA Tuxedo V5.1 or V6.1

MQSeries for Sun Solaris TXSeries for Sun Solaris, V4.2
Transarc Encina Monitor V2.5
BEA Tuxedo V5.1 or V6.1

MQSeries for Windows NT TXSeries for Windows NT, V4.2
BEA TUXEDO V5.1 or V6.1

Note: For MQSeries for OS/2 Warp, and for MQSeries for Windows NT with CICS
for Windows NT, a single-phase commit process only is supported. For more
information, see “Using CICS” on page 208.

206 MQsSeries System Administration

External syncpoint coordination

See Chapter 13, “Committing and backing out units of work” in the MQSeries
Application Programming Guide for information about writing and building
transactions to be coordinated by an external syncpoint coordinator.

The remainder of this chapter describes how to enable external units of work.

The MQSeries XA switch structure

Each resource manager participating in an externally coordinated unit of work must
provide an XA switch structure. This structure defines both the capabilities of the
resource manager and the functions that are to be called by the syncpoint
coordinator.

MQSeries provides two versions of this structure:

e MQRMIXASwitch for static XA resource management
e MQRMIXASwitchDynamic for dynamic XA resource management

In the MQSeries for UNIX systems, these structures are located in the following
libraries:

1ibmgmxa.a (nonthreaded)
Tibmgmxa_r.a (threaded)

In MQSeries for Windows NT and MQSeries for OS/2 Warp the structures are
located in the following libraries:

mgmxa.d11 (contains only the MQRMIXASwitch version)
mgmenc.d11 (for use with Encina for Windows NT)
mgmcdswi.dl11 (for use with IBM TXSeries for Windows NT)

Some external syncpoint coordinators (not CICS) require that each resource
manager participating in a unit of work supplies its name in the name field of the
XA switch structure. The MQSeries resource manager name is “MQSeries XA
RML.”

The way in which the MQSeries XA switch structure is linked to a specific syncpoint
coordinator is defined by that coordinator. Information about linking the MQSeries
XA switch structure with CICS is provided in “Using CICS” on page 208. For
information about linking the MQSeries XA switch structure with other XA-compliant
syncpoint coordinators, consult the documentation supplied with those products.

The following considerations apply to the use of MQSeries with all XA-compliant
syncpoint coordinators:

* The xa_info structure passed on any xa_open call by the syncpoint coordinator
includes the name of an MQSeries queue manager. The name takes the same
form as the queue-manager name passed to the MQCONN call. If the name
passed on the xa_open call is blank, the default queue manager is used.

e Only one queue manager at a time may participate in a transaction coordinated
by an instance of an external syncpoint coordinator: the syncpoint coordinator
is effectively connected to the queue manager, and is therefore subject to the
rule that only one connection at a time is supported.

e All applications that include calls to an external syncpoint coordinator can
connect only to the queue manager that is participating in the transaction
managed by the external coordinator (because they are already effectively

Chapter 14. Transactional support 207

Using CICS

connected to that queue manager). However, such applications must issue an
MQCONN call to obtain a connection handle, and should issue an MQDISC call
before they exit.

A queue manager whose resource updates are coordinated by an external
syncpoint coordinator must be started before the external syncpoint coordinator
starts. Similarly, the syncpoint coordinator must be ended before the queue
manager is ended.

If you are using an external syncpoint coordinator that terminates abnormally,
you should stop and restart your queue manager before restarting the
syncpoint coordinator to ensure that any messaging operations uncommitted at
the time of the failure are properly resolved.

Using CICS

The versions of CICS and IBM TXSeries that are XA-compliant (and use a
two-phase commit process) are shown in Table 13 on page 206. The note
following the table shows the versions that support only a single-phase commit
process.

The CICS two-phase commit process

This process applies to those versions of MQSeries that support an XA-compliant
external syncpoint coordinator as shown in Table 13 on page 206.

Requirements of the two-phase commit process
When you use the CICS two-phase commit process with MQSeries, note the
following requirements:

MQSeries and CICS must reside on the same physical machine.
MQSeries does not support CICS on an MQSeries client.

You must start the queue manager whose name is specified in the XAD
resource definition stanza before you attempt to start CICS. Failure to do this
will prevent you from starting CICS if you have added an XAD resource
definition stanza for MQSeries to the CICS region.

Only one MQSeries queue manager can be accessed at a time from a single
CICS region.

A CICS transaction must issue an MQCONN request before it can access
MQSeries resources. The MQCONN call must specify the name of the
MQSeries queue manager specified on the XAOpen entry of the XAD resource
definition stanza for the CICS region. If this entry is blank, the MQCONN
request must specify the default queue manager.

A CICS transaction that accesses MQSeries resources must issue an MQDISC
call from the transaction before returning to CICS. Failure to do this may mean
that the CICS application server is still connected, leaving queues open.

You must ensure that the CICS user ID (cics) is a member of the mgm group,
so that the CICS code has the authority to call MQSeries.

For transactions running in a CICS environment, the queue manager adapts its
methods of authorization and determining context as follows:

208 MQsSeries System Administration

Using CICS

— The queue manager queries the user ID under which CICS runs the
transaction. This is the user ID checked by the Object Authority Manager,
and is used for context information.

— In the message context, the application type is MQAT_CICS.

— The application name in the context is copied from the CICS transaction
name.

Enabling the CICS two-phase commit process

To enable CICS to use a two-phase commit process to coordinate transactions that
include MQI calls, you must add a CICS XAD resource definition stanza entry to
the CICS region.

Here is an example of adding an XAD stanza entry for MQSeries for UNIX
systems:

cicsadd —cxad -r<cics_region> \
ResourceDescription="MQM XA Product Description" \
SwitchLoadFile="mgmtop/Tib/amgzsc" \
XAOpen=<queue_manager_name>

Here is an example of adding an XAD stanza entry for MQSeries for Windows NT,
where <Drive> is the drive where MQM is installed (for example, D:).

cicsadd —cxad —r<cics_region> \
ResourceDescription="MQM XA Product Description" \
SwitchLoadFile="<Drive>:\mgm\bin\mgmc4swi.d11" \
XAOpen=<queue_manager_name>

For information about using the cicsadd command, see the IBM TXSeries
Administration Reference manual, SC33-1563 or the IBM TXSeries Version 4.2
CICS Administration Guide for your platform.

Calls to MQSeries on UNIX systems, and MQSeries for Windows NT can be
included in a CICS transaction, and the MQSeries resources will be committed or
rolled back as directed by CICS. This support is not available to client applications.

You must issue an MQCONN from your CICS transaction, in order to access
MQSeries resources followed by a corresponding MQDISC on exit.

Enabling CICS user exits
Before you attempt to make use of a CICS user exit, you should read the /IBM
TXSeries Version 4.2 CICS Administration Guide for your platform.

A CICS user exit point (normally referred to as a “user exit”) is a place in a CICS
module at which CICS can transfer control to a program that you have written (a
user exit program), and at which CICS can resume control when your exit program
has finished its work.

Chapter 14. Transactional support 209

Using CICS

One of the user exits supplied with CICS is the “Task termination user exit
(UE014015).” This exit can be invoked at normal and abnormal task termination
(after any syncpoint has been taken).

MQSeries supplies a CICS task termination exit in source and executable form:

Table 14. CICS task termination exits

MQSeries for... Source Executable
Windows NT amqgzscgn.c mgmc1415.dll
UNIX systems amgzscgx.c amgqzscg

If you are currently using this exit, you must add the MQSeries calls from the
supplied exits to your current exits. Integrate the MQ calls into your existing exits
at the appropriate place in the program logic. See the comments in the sample
source file for help with this.

If you are not currently using this exit, you will need to add a CICS PD program
definition stanza entry to the CICS region.

Here is an example of adding a PD stanza entry for UNIX systems:

cicsadd —cpd —-r<cics_region> \
PathName="mgmtop/1ib/amgzscg" \
UserExitNumber=15

Here is an example of adding a PD stanza entry for Windows NT:

cicsadd —cpd —-r<cics_region> \
PathName="<Drive>:\mgm\d11\mgmc4swi.d11" \
UserExitNumber=15

The CICS single-phase commit process
The information in this section applies to CICS for OS/2 Version 2 which supports a

single-phase commit only.
Note the following:

¢ On a single physical machine, a CICS transaction can access any queue
manager, subject to the restriction that any transaction can connect to only one
gueue manager at a time.

e CICS transactions distributed among multiple physical machines are not
supported.

e For transactions running in a CICS environment, the queue manager changes
its methods of authorization and determining context as follows:

— For MQSeries for OS/2 Warp, the user ID remains 0s2.
— In the message context, the application type is MQAT_CICS.

210 MQsSeries System Administration

Using CICS

— The application name in the context is copied from the CICS transaction

name.

e To use CICS as an external syncpoint coordinator, you must install the

MQSeries-supplied code for the appropriate CICS user exits.

Enabling CICS user exits
To enable the CICS single-phase commit process, you need to enable the CICS
user exits 15 and 17 (see the information about user exits that customize the

operator interface in the CICS for OS/2 Customization Guide.

Sample exits, providing the minimum required function, are supplied in the forms

shown in Table 15.

Table 15. Sample exits

MQSeries for... CICS for... Sample Sample Library linking
source executable service

0s/2 0s/2, V2.0 amqzsc52.c FAAEXP15.DLL | mgmcics.lib
amgzsc72.c FAAEXP17.DLL

0s/2 0S/2, V3 amgzsc53.c FAAEX315.DLL | mgmcics3.lib
amgzsc73.c FAAEX317.DLL

Using the sample exits

If you are not currently using these CICS exits, then copy the relevant DLLs into a
directory from where they can be accessed by CICS at CICS runtime. This can be
a directory referenced by your OS/2 LIBPATH setting.

If you are currently using these CICS exits, you must add the MQSeries calls from
the supplied samples to your current exits. These MQSeries calls, which are valid
only within the context of exits 15 or 17, enable support for CICS and disable the
internal MQCMIT and MQBACK calls such that they will return
MQRC_ENVIRONMENT_ERROR. Integrate the MQ calls (AMQ?*) in your existing
exits at the appropriate place in the program logic. See the comments in the
sample source code for help with this.

Chapter 14. Transactional support 211

Using CICS

212 MQSeries System Administration

Recovery concepts e Logging

Chapter 15. Recovery and restart

A messaging system ensures that messages entered into the system are delivered
to their destination. This means that it must provide a method of tracking the
messages in the system, and of recovering messages if the system fails for any
reason.

MQSeries ensures that messages are not lost by maintaining records (logs) of the
activities of the queue managers that handle the receipt, transmission, and delivery
of messages. It uses these logs for three types of recovery:

1. Restart recovery, when you stop MQSeries in a planned way.
2. Crash recovery, when MQSeries is stopped by an unexpected failure.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped, except that any in-flight transactions are rolled back,
removing from the queues any messages that were not committed at the time the
gueue manager stopped. Recovery restores all persistent messages; nonpersistent
messages are lost during the process.

The remainder of this chapter introduces the concepts of recovery and restart in
more detail, and tells you how to recover if problems occur. It covers the following
topics:

* “Making sure that messages are not lost (logging)”

* “Checkpointing — ensuring complete recovery” on page 216

e “Calculating the size of the log” on page 219

e “Managing logs” on page 220

* “Using the log for recovery” on page 222

» “Protecting MQSeries log files” on page 225

e “Backing up and restoring MQSeries” on page 225

* “Recovery scenarios” on page 226

* “Dumping the contents of the log using the dmpmglog command” on page 228

Making sure that messages are not lost (logging)

MQSeries records all significant changes to the data controlled by the queue
manager in a log.

This includes the creation and deletion of objects (except channels), all persistent
message updates, transaction states, changes to object attributes, and channel
activities. Therefore, the log contains the information you need to recover all
updates to message queues by:

e Keeping records of queue manager changes.
e Keeping records of queue updates for use by the restart process.
e Enabling you to restore data after a hardware or software failure.

© Copyright IBM Corp. 1994,1999 213

Logging

What logs look like

An MQSeries log consists of two components:

1. One or more files of log data
2. A log control file

There are a number of log files that contain the data being recorded. You can
define the number and size (as explained in Chapter 11, “Configuring MQSeries”
on page 127), or take the system default of 3 files.

In MQSeries for UNIX systems, each of the three files defaults to 4 MB. In
MQSeries for OS/2 Warp and Windows NT, each of the three files defaults to
1 MB.

When you create a queue manager, the number of log files you define is the
number of primary log files allocated. If you do not specify a number, the default
value is used.

In MQSeries for UNIX systems, if you have not changed the log path, log files are
created in the directory:

/var/mgm/1og/QmName

In MQSeries for OS/2 Warp and Windows NT, if you have not changed the log
path, log files are created in the directory:

C:\MQM\LOG\<QMgrName>

MQSeries starts with these primary log files, but, if the log starts to get full,
allocates secondary log files. It does this dynamically, and removes them when the
demand for log space reduces. By default, up to 2 secondary log files can be
allocated. This default allocation can also be changed, as described in Chapter 11,
“Configuring MQSeries” on page 127.

The log control file
The log control file contains the information needed to monitor the use of log files,
such as their size and location, the name of the next available file, and so on.

Note: You should ensure that the logs created when you start a queue manager
are large enough to accommodate the size and volume of messages that your
applications will handle. The default log numbers and sizes are likely to require
modification to meet your requirements. For more information, see “Calculating the
size of the log” on page 219.

Types of logging
In MQSeries, the number of files that are required for logging depends on the file
size, the number of messages you have received, and the length of the messages.
There are two ways of maintaining records of queue manager activities: circular
logging and linear logging.

214 MQSeries System Administration

Logging

Circular logging
Use circular logging if all you want is restart recovery, using the log to roll back
transactions that were in progress when the system stopped.

Circular logging keeps all restart data in a ring of log files. Logging fills the first file
in the ring, then moves on to the next, and so on, until all the files are filled. It then
goes back to the first file in the ring and starts again. This continues as long as the
product is in use, and has the advantage that you never run out of log files.

The above is a simple explanation of circular logging. However, there is a
complication. The log entries required to restart the queue manager without loss of
data are kept until they are no longer required to ensure queue manager data
recovery. The mechanism for releasing log files for reuse is described in
“Checkpointing — ensuring complete recovery” on page 216. For now, you should
know that MQSeries uses secondary log files to extend the log capacity as
necessary.

Linear logging
Use linear logging if you want both restart recovery and media or forward recovery
(recreating lost or damaged data by replaying the contents of the log).

Linear logging keeps the log data in a continuous sequence of files. Space is not
reused, so you can always retrieve any record logged from the time that the queue
manager was created.

As disk space is finite, you may have to think about some form of archiving. It is
an administrative task to manage your disk space for the log, reusing or extending
the existing space as necessary.

The number of log files used with linear logging can be very large, depending on
your message flow and the age of your queue manager. However, there are a
number of files that are said to be active. Active files contain the log entries
required to restart the queue manager. The number of active log files is usually the
same as the number of primary log files as defined in the configuration files. (See
“Calculating the size of the log” on page 219 for information about defining the
number.)

The key event that controls whether a log file is termed active or not is a
checkpoint. An MQSeries checkpoint is a group of log records containing
information to allow a successful restart of the queue manager. Any information
recorded previously is not required to restart the queue manager and can therefore
be termed inactive. (See “Checkpointing — ensuring complete recovery” on

page 216 for further information about checkpointing.)

You must decide when inactive log files are no longer required. You can archive
them, or you can delete them if they are no longer of interest to your operation.
Refer to “Managing logs” on page 220 for further information about the disposition
of log files.

If a new checkpoint is recorded in the second, or later, primary log file, then the first
file becomes inactive and a new primary file is formatted and added to the end of
the primary pool, restoring the number of primary files available for logging. In this
way the primary log file pool can be seen to be a current set of files in an ever

Chapter 15. Recovery and restart 215

Checkpointing

extending list of log files. Again, it is an administrative task to manage the inactive
files according to the requirements of your operation.

Although secondary log files are defined for linear logging, they are not used in
normal operation. If a situation should arise when, probably due to long-lived
transactions, it is not possible to free a file from the active pool because it may still
be required for a restart, secondary files are formatted and added to the active log
file pool.

If the number of secondary files available is used up, requests for most further
operations requiring log activity will be refused with an
MQRC_RESOURCE_PROBLEM being returned to the application.

Both types of logging can cope with unexpected loss of power assuming that there
is no hardware failure.

Checkpointing — ensuring complete recovery

Persistent updates to message queues happen in two stages. First, the records
representing the update are written to the log, then the queue file is updated. The
log files can thus become more up-to-date than the queue files. To ensure that
restart processing begins from a consistent point, MQSeries uses checkpoints. A
checkpoint is a point in time when the record described in the log is the same as
the record in the queue. The checkpoint itself consists of the series of log records
needed to restart the queue manager; for example, the state of all transactions
(that is, units of work) active at the time of the checkpoint.

Checkpoints are generated automatically by MQSeries. They are taken when the
gueue manager starts, at shutdown, when logging space is running low, and after
every 1000 operations logged.

As the queues handle further messages, the checkpoint record becomes
inconsistent with the current state of the queues.

When MQSeries is restarted, it locates the latest checkpoint record in the log. This
information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. The data from this checkpoint is used to rebuild the
gueues as they existed at the checkpoint time. When the queues are recreated,
the log is then played forward to bring the queues back to the state they were in
before system failure or close down.

MQSeries maintains internal pointers to the head and tail of the log. It moves the
head pointer to the most recent checkpoint that is consistent with recovering
message data.

Checkpoints are used to make recovery more efficient, and to control the reuse of
primary and secondary log files.

216 MQSeries System Administration

Checkpointing

Log File 1
[
Checkpoint |—| Put |—| Get Get —4 Put [
1
v
Head 1
Log File 2
0
| Get | —| Put Checkpoint L | Get |—{ Put [
2
4
Head 2
Log File 3
| Get — Put Get | —4 Put — Get

Figure 54. Checkpointing. For simplicity, only the ends of the log files are shown.

In Figure 54, all records before the latest checkpoint, checkpoint 2, are no longer

needed by MQSeries. The queues can be recovered from the checkpoint

information and any later log entries. For circular logging, any freed files prior to
the checkpoint can be reused. For a linear log, the freed log files no longer need

to be accessed for normal operation and become inactive. In the example, the

gueue head pointer is moved to point at the latest checkpoint, Checkpoint 2, which

then becomes the new queue head, head 2. Log File 1 can now be reused.

Chapter 15. Recovery and restart

217

Checkpointing

Log File 1
1
Checkpoint -—| Put || Get Get | Put [
1
@ J0
Head 1 L¥1
Log File 2
L Get | — Put Checkpoint -— Get |—{ Put
2
Log File 3
1
L Get | — Put Checkpoint|__| Get || Put
3
| 5
N
Head 2 LR 2

Figure 55. Checkpointing with a long-running transaction. For simplicity, only the ends of
the log files are shown.

Figure 55 shows how a long-running transaction affects reuse of log files. In the
example, a long-running transaction has caused an entry to the log, shown as LR
1, after the first checkpoint shown. The transaction does not complete, shown as
LR 2, until after the third checkpoint. All the log information from LR 1 onwards is
retained to allow recovery of that transaction, if necessary, until it has completed.

After the long-running transaction has completed, at LR 2, the head of the log is
moved to checkpoint 3, the latest logged checkpoint. The files containing log
records prior to checkpoint 3, Head 2, are no longer needed. If you are using
circular logging, the space can be reused.

If the primary log files are completely filled before the long-running transaction
completes, secondary log files are used to avoid the risk of a log full situation if
possible.

When the log head is moved and you are using circular logging, the primary log
files may become eligible for reuse and the logger, after filling the current file,
reuses the first primary file available to it. If instead you are using linear logging,
the log head is still moved down the active pool and the first file becomes inactive.
A new primary file is formatted and added to the bottom of the pool in readiness for
future logging activities.

218 MQsSeries System Administration

Log size calculations

Calculating the size of the log

|

| After deciding whether the queue manager should use circular or linear logging,

| your next task is to estimate the size of the log that the queue manager will need.
| The size of the log is determined by the by the following log configuration

|

parameters:
LogFilePages The size of each primary and secondary log file in units of 4
pages

|

|

| LogPrimaryFiles The number of preallocated primary log files

| LogSecondaryFiles The number of secondary log files that can be created for
| use when the primary log files are full

Table 16 shows the amount of data the queue manager logs for various
operations. Most operations performed by the queue manager require a minimal
amount of log space, however, when a persistent message is put to a queue, all of
the message data must be written to the log to make recovery of the message
possible. Therefore, the size of the log depends, typically, upon the number and
size of the persistent messages the queue manager needs to handle.

Table 16. Log overhead sizes. (All values are approximate.)

Operation Size

Put persistent message 750 bytes + message length

If the message is large, it is divided into segments of
15700 bytes, each with a 300-byte overhead.

Get message 260 bytes

Syncpoint, commit 750 bytes

Syncpoint, roll-back 1000 bytes + 12 bytes for each get or put to be rolled
back

Create object 1500 bytes

Delete object 300 bytes

Alter attributes 1024 bytes

Record media image 800 bytes + image

The image is divided into segments of 15700 bytes, each
having a 300-byte overhead.

Checkpoint 750 bytes + 200 bytes for each active unit of work.

Additional data may be logged for any uncommitted puts
or gets that have been buffered for performance reasons.

| Notes:

| 1. The number of primary and secondary log files can be changed each time the
| gueue manager is started.

| 2. The log file size cannot be changed and needs to be determined before the
| gueue manager is created.

3. The number of primary log files and the log file size determine the amount of
log space that is preallocated when the queue manager is created. You are
advised to organize this space as a smaller number of larger log files rather
than a larger number of small log files.

Chapter 15. Recovery and restart 219

Managing logs

4. The total number of primary and secondary log files cannot exceed 63, which,
in the presence of long-running transactions, limits the maximum amount of log
space that can be made available to the queue manager for restart recovery.
The amount of log space the queue manager may need to use for media
recovery does not share this limit.

5. When circular logging is being used, the queue manager reuses primary log
space. This means that the queue manager’s log can be smaller than the
amount of data you have estimated that the queue manager needs to log. The
gueue manager will, up to a limit, allocate a secondary log file when a log file
becomes full, and the next primary log file in the sequence is not available.

6. Primary log files are made available for reuse during checkpoint. The queue
manager takes both the primary and secondary log space into consideration
before a checkpoint is taken because the amount of log space is running low.

If you do not define more primary log files than secondary log files, the queue
manager may allocate secondary log files before a checkpoint is taken. This
makes the primary log files available for reuse.

Managing logs

Over time, some of the log records written become unnecessary for restarting the
gueue manager. If you are using circular logging, the queue manager reclaims
freed space in the log files. This activity is transparent to the user and you do not
usually see the amount of disk space used reduce because the space allocated is
quickly reused.

Of the log records, only those written since the start of the last complete
checkpoint, and those written by any active transactions, are needed to restart the
gueue manager. Thus, the log may fill if a checkpoint has not been taken for a
long time, or if a long-running transaction wrote a log record a long time ago. The
gueue manager tries to take checkpoints sufficiently frequently to avoid the first
problem.

When a long-running transaction fills the log, attempts to write log records fail and
some MQI calls return MQRC_RESOURCE_PROBLEM. (Space is reserved to
commit or rollback all in-flight transactions, so MQCMIT or MQBACK should not
fail.)

The queue manager rolls back transactions that consume too much log space. An
application whose transaction is rolled back in this way is unable to perform
subsequent MQPUT or MQGET operations specifying syncpoint under the same
transaction. An attempt to put or get a message under syncpoint in this state
returns MQRC_BACKED_OUT. The application may then issue MQCMIT, which
returns MQRC_BACKED_OUT, or MQBACK and start a new transaction. When
the transaction consuming too much log space has been rolled back, its log space
is released and the queue manager continues to operate normally.

If the log fills, message AMQ7463 is issued. In addition, if the log fills because a
long-running transaction has prevented the space being released, message
AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous
housekeeping processes can handle them, message AMQ7466 is issued. If you

220 MQsSeries System Administration

Managing logs

see this message, you should increase the number of log files or reduce the
amount of data being processed by the queue manager.

What happens when a disk gets full

The queue manager logging component can cope with a full disk, and with full log
files. If the disk containing the log fills, the queue manager issues message
AMQ6708 and an error record is taken.

The log files are created at their maximum size, rather than being extended as log
records are written to them. This means that MQSeries can run out of disk space
only when it is creating a new file. Therefore, it cannot run out of space when it is
writing a record to the log. MQSeries always knows how much space is available
in the existing log files, and manages the space within the files accordingly.

If you fill the drive containing the log files, you may be able to free some disk
space. If you are using a linear log, there may be some inactive log files in the log
directory, and you can copy these files to another drive or device. If you still run
out of space, check that the configuration of the log in the queue manager
configuration file is correct. You may be able to reduce the number of primary or
secondary log files so that the log does not outgrow the available space. Note that
it is not possible to alter the size of the log files for an existing queue manager.
The queue manager assumes that all log files are the same size.

Managing log files
If you are using circular logging, ensure that there is sufficient space to hold the log
files. You do this when you configure your system (see “The LogDefaults stanza”
on page 132 and “The Log stanza” on page 138.) The amount of disk space used
by the log does not increase beyond the configured size, including space for
secondary files to be created when required.

If you are using a linear log, the log files are added continually as data is logged,
and the amount of disk space used increases with time. If the rate of data being
logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer required to restart the
gueue manager or perform media recovery of any damaged objects. Periodically,
the queue manager issues a pair of messages to indicate which of the log files is
required:

e Message AMQ7467 gives the name of the oldest log file needed to restart the
gueue manager. This log file and all newer log files must be available during
gueue manager restart.

* Message AMQ7468 gives the name of the oldest log file needed to do media
recovery.

Any log files older than these do not need to be online. You can copy them to an
archive medium such as tape for disaster recovery, and remove them from the
active log directory. Any log files needed for media recovery but not for restart can
also be off-loaded to an archive.

If any log file that is needed cannot be found, operator message AMQG6767 is

issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation.

Chapter 15. Recovery and restart 221

Using the log

Note: When performing media recovery, all the required log files must be available
in the log file directory at the same time. Make sure that you take regular media
images of any objects you may wish to recover to avoid running out of disk space
to hold all the required log files.

Log file location
When choosing a location for your log files, remember that operation is severely
impacted if MQSeries fails to format a new log because of lack of disk space.

In MQSeries for OS/2 Warp, for example, put the log directory on a different drive
from that used by the OS/2 swapper file: log files tend to be large, so could fill the
disk and prevent expansion of the swapper file.

If you are using a circular log, ensure that there is sufficient space on the drive for
at least the configured primary log files. You should also leave space for at least
one secondary log file, which is needed if the log has to grow.

If you are using a linear log, you should allow considerably more space; the space
consumed by the log increases continuously as data is logged.

Ideally, the log files should be placed on a separate disk drive from the queue
manager data. This has benefits in terms of performance. It may also be possible
to place the log files on multiple disk drives in a mirrored arrangement. This gives
protection against failure of the drive containing the log. Without mirroring, you
could be forced to go back to the last backup of your MQSeries system.

Using the log for recovery

There are several ways that your data can be damaged. MQSeries helps you
recover from:

* A damaged data object

e A power loss in the system
e A communications failure

¢ A damaged log volume

This section looks at how the logs are used to recover from these problems.

Recovering from problems

MQSeries can recover from both communications failures and loss of power. In
addition, it is sometimes possible to recover from other types of problem, such as
inadvertent deletion of a file.

In the case of a communications failure, messages remain on queues until they are
removed by a receiving application. If the message is being transmitted, it remains
on the transmission queue until it can be successfully transmitted. To recover from
a communications failure, it is normally sufficient simply to restart the channels
using the link that failed.

If you lose power, when the queue manager is restarted MQSeries restores the
gueues to their committed state at the time of the failure. This ensures that no
persistent messages are lost. Nonpersistent messages are discarded; they do not
survive when MQSeries stops.

222 MQSeries System Administration

Media recovery

Using the log

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. You then have to recover either your complete system
or some part of it. The action required depends on when the damage is detected,
whether the log method selected supports media recovery, and which objects are
damaged.

Media recovery is the re-creation of objects from information recorded in a linear
log. For example, if an object file is inadvertently deleted, or becomes unusable for
some other reason, media recovery can be used to recreate it. The information in
the log required for media recovery of an object is called a media image. Media
images can be recorded manually, using the rcdmgimg command, or automatically
in some circumstances.

A media image is a sequence of log records containing an image of an object from
which the object itself can be recreated.

The first log record required to recreate an object is known as its media recovery
record, it is the start of the latest media image for the object. The media recovery
record of each object is one of the pieces of information recorded during a
checkpoint.

When an object is recreated from its media image, it is also necessary to replay
any log records describing updates performed on the object since the last image
was taken.

Consider, for example, a local queue that has an image of the queue object taken
before a persistent message is put onto the queue. In order to recreate the latest
image of the object, it is necessary to replay the log entries recording the putting of
the message to the queue, as well as replaying the image itself.

When an object is created, the log records written contain enough information to
completely recreate the object. These records make up the object’s first media
image. Subsequently, media images are recorded automatically by the queue
manager at the following times:

* Images of all process objects and queues that are not local are taken at each
shutdown.

¢ Images of empty local queues are taken at each shutdown.

Media images can also be recorded manually using the rcdmgimg command,
described in “rcdmqgimg (Record media image)” on page 310. Issuing this
command causes a media image of the MQSeries object to be written. Once this
has been done, only the logs that hold the media image, and all the logs created
after this time, are needed to recreate damaged objects. The benefit of doing this
depends on such factors as the amount of free storage available, and the speed at
which log files are created.

Chapter 15. Recovery and restart 223

Using the log

Recovering media images

MQSeries automatically recovers some objects from their media image if it finds
that they are corrupt or damaged. In particular, this applies to objects found to be
damaged during the normal queue manager start up. If any transaction was
incomplete at the time of the last shutdown of the queue manager, any queue
affected is also recovered automatically in order to complete the start up operation.

You must recover other objects manually, using the rcrmgobj command.

This command replays the records in the log to recreate the MQSeries object. The
object is recreated from its latest image found in the log, together with all applicable
log events between the time the image was saved and the time the recreate
command is issued. Should an MQSeries object become damaged, the only valid
actions that can be performed are either to delete it or to recreate it by this method.
Note, however, that nonpersistent messages cannot be recovered in this way.

See “rcrmqobj (Recreate object)” on page 312 for further details of the rcrmqobj
command.

It is important to remember that you must have the log file containing the media
recovery record