

MQSeries IBM

System Administration

 SC33-1873-01

MQSeries IBM

System Administration

 SC33-1873-01

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix I, “Notices” on
page 379.

Second edition (March 1999)

This edition applies to the following products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994,1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . xiii
Who this book is for . xiv
What you need to know to understand this book xiv

Terms used in this book . xiv
Using MQSeries for UNIX systems . xiv
Using MQSeries for OS/2 Warp and Windows NT xv
The calls MQCONN and MQCONNX . xv

MQSeries publications . xvi
MQSeries cross-platform publications . xvi
MQSeries platform-specific publications . xix
MQSeries Level 1 product publications . xx
Softcopy books . xx

MQSeries information available on the Internet xxii
Related publications . xxii

| Summary of Changes . xxiii
| MQSeries V5.1 . xxiii

Part 1. Guidance . 1

Chapter 1. Introduction to MQSeries . 9
MQSeries and message queuing . 9
Messages and queues . 10
Objects . 12
System default objects . 18
Local and remote administration . 18
Clients and servers . 19
Extending queue manager facilities . 20
Security . 21
Transactional support . 22

Chapter 2. An introduction to MQSeries administration 23
Local and remote administration . 23
Performing administration tasks using control commands 23
Performing administrative tasks using MQSC commands 23
Performing administrative tasks using PCF commands 24
Administration on MQSeries for Windows NT 24
Understanding MQSeries file names . 27

| Chapter 3. Administration using the MQSeries Explorer 29
| What you can do with the MQSeries Explorer 29
| Prerequisite software . 30
| Required definitions for administration . 31
| Showing and hiding queue managers and clusters 31
| Cluster membership . 32
| Security . 33
| Data conversion . 34
| Saving and loading console files . 34
| Switching off the automatic population facility 35

 Copyright IBM Corp. 1994,1999 iii

 Contents

| Chapter 4. Administration using the MQSeries Services snap-in 37
| What you can do with the MQSeries Services snap-in 37
| Prerequisite software . 38
| Using the MQSeries Services snap-in . 38
| Security . 39

| Chapter 5. Using MQSeries Web Administration 43
| Points to consider when using MQSeries Web Administration 43
| Prerequisite software . 44
| Encryption policies . 45
| Starting up MQSeries Web Administration server 45
| Logging on as an MQSeries administrator (client side) 45
| Administering queue managers . 46
| Using MQSeries command scripts . 47
| Configuring the MQSeries Web Administration server 48

Chapter 6. Managing queue managers using control commands 49
Using control commands . 49
Creating a queue manager . 51
Creating a default queue manager . 54
Starting a queue manager . 54
Making an existing queue manager the default 55
Stopping a queue manager . 55
Restarting a queue manager . 57
Deleting a queue manager . 57

Chapter 7. Administering local MQSeries objects 59
Supporting application programs that use the MQI 59
Performing local administration tasks using MQSC commands 60
Working with local queues . 70

| Monitoring local queues with the Windows NT Performance Monitor 76
Working with alias queues . 77
Working with model queues . 79
Managing objects for triggering . 80

| Chapter 8. Automating administration tasks 83
PCF commands . 83
Managing the command server for remote administration 85

Chapter 9. Administering remote MQSeries objects 87
| Channels, clusters, and remote queuing . 87

Remote administration from a local queue manager using MQSC commands . 89
Creating a local definition of a remote queue . 95
Using remote queue definitions as aliases . 99
Data conversion . 100

iv MQSeries System Administration

 Contents

Chapter 10. Protecting MQSeries objects 103
Why you need to protect MQSeries resources 103
Before you begin (UNIX systems) . 104
Before you begin (Windows NT) . 104
Understanding the Object Authority Manager 107
Using Object Authority Manager commands 110
Object Authority Manager guidelines . 113
Understanding the authorization specification tables 116
Authorization files . 122

| Chapter 11. Configuring MQSeries . 127
| MQSeries configuration files . 127
| Attributes for changing MQSeries configuration information 130
| Changing queue manager configuration information 136
| Example mqs.ini and qm.ini files for MQSeries for OS/2 Warp 149

Example mqs.ini and qm.ini files for MQSeries for UNIX systems 154

Chapter 12. The MQSeries dead-letter queue handler 157
Invoking the DLQ handler . 157
The DLQ handler rules table . 158
How the rules table is processed . 165
An example DLQ handler rules table . 167

Chapter 13. Instrumentation events . 169
What are instrumentation events? . 169
Why use events? . 170

Chapter 14. Transactional support . 175
Database coordination . 176
DB2 configuration . 180
Oracle configuration . 186
Sybase configuration . 192
Multiple database configurations . 200
Administration tasks . 201
External syncpoint coordination . 206
Using CICS . 208

Chapter 15. Recovery and restart . 213
Making sure that messages are not lost (logging) 213
Checkpointing – ensuring complete recovery 216

| Calculating the size of the log . 219
Managing logs . 220
Using the log for recovery . 222

| Protecting MQSeries log files . 225
Backing up and restoring MQSeries . 225
Recovery scenarios . 226
Dumping the contents of the log using the dmpmqlog command 228

 Contents v

 Contents

Chapter 16. Problem determination . 247
Preliminary checks . 247
What to do next . 251
Application design considerations . 255
Incorrect output . 256
Error logs . 259
Dead-letter queues . 263
Configuration files and problem determination 263
Tracing . 263
First-failure support technology (FFST) . 270
Problem determination with clients . 274

Part 2. Reference . 277

Chapter 17. MQSeries control commands 279
Names of MQSeries objects . 279
How to read syntax diagrams . 280
Syntax help . 281
crtmqcvx (Data conversion) . 282
crtmqm (Create queue manager) . 284
dltmqm (Delete queue manager) . 289
dmpmqlog (Dump log) . 291
dspmqaut (Display authority) . 293
dspmqcsv (Display command server) . 297
dspmqfls (Display MQSeries files) . 298
dspmqtrc (Display MQSeries formatted trace output) 300
dspmqtrn (Display MQSeries transactions) . 301
endmqcsv (End command server) . 303
endmqlsr (End listener) . 305
endmqm (End queue manager) . 306
endmqtrc (End MQSeries trace) . 308
rcdmqimg (Record media image) . 310
rcrmqobj (Recreate object) . 312
rsvmqtrn (Resolve MQSeries transactions) . 314
runmqchi (Run channel initiator) . 316
runmqchl (Run channel) . 317
runmqdlq (Run dead-letter queue handler) . 318
runmqlsr (Run listener) . 320
runmqsc (Run MQSeries commands) . 322
runmqtmc (Start client trigger monitor) . 325
runmqtrm (Start trigger monitor) . 326
setmqaut (Set/reset authority) . 327
strmqcsv (Start command server) . 333
strmqm (Start queue manager) . 334
strmqtrc (Start MQSeries trace) . 336

vi MQSeries System Administration

 Contents

Part 3. Appendixes . 341

Appendix A. System and default objects 343
Windows NT default configuration objects . 345

Appendix B. Directory structure (UNIX systems) 347
Queue manager log directory structure . 350

Appendix C. Directory structure (OS/2) . 351
Queue manager log directory structure . 353

Appendix D. Directory structure (Windows NT) 355
Queue manager log directory structure . 357

Appendix E. Stopping and removing queue managers manually 359
Stopping a queue manager manually . 359
Removing queue managers manually . 360

Appendix F. User identifier service . 365

Appendix G. Comparing command sets . 367
Commands for queue manager administration 367
Commands for command server administration 368
Commands for queue administration . 368
Commands for process administration . 369
Commands for channel administration . 370
Other control commands . 371

Appendix H. Using the User Datagram Protocol 373
| Configuring MQSeries for UDP . 373
| The retry exit . 376
| Hints and tips . 378

Appendix I. Notices . 379
Trademarks . 381

Part 4. Glossary and index . 383

Glossary of terms and abbreviations . 385

Index . 395

 Contents vii

 Contents

viii MQSeries System Administration

 Figures

 Figures

| 1. MQSeries Web Administration . 44
2. Queues, messages, and applications . 59

| 3. Typical output from a DISPLAY QMGR command 64
4. Extract from the MQSC command file, myprog.in 66
5. Extract from the MQSC report file, myprog.out 67
6. Typical results from queue browser . 75
7. Remote administration using MQSC commands 90
8. Setting up channels and queues for remote administration 91
9. Commands to create channels and a transmission queue 92

| 10. Authority specification . 125
| 11. Example of an mqs.ini file for MQSeries for OS/2 Warp 150
| 12. Example of qm.ini file for queue manager firstqm 151
| 13. Example of qm.ini file for queue manager secondqm 152
| 14. Example of qm.ini file for queue manager thirdqm 153

15. Example of an MQSeries configuration file for UNIX systems 154
16. Example queue manager configuration file for MQSeries for UNIX

systems . 155
17. An example rule from a DLQ handler rules table 160
18. Understanding instrumentation events 170
19. Monitoring queue managers across different platforms, on a single node 171
20. Source code for db2swit.c for platforms other than Windows NT 180
21. Source code for db2swit.c on Windows NT (Microsoft Visual

C++-specific) . 180
22. Source code for db2swit.def on OS/2 . 181
23. Makefile for DB2 switch on OS/2 . 181
24. Source code for db2swit.def on Windows NT 182
25. Makefile for DB2 switch on Windows NT 182
26. Makefile for DB2 switch on AIX . 183
27. Makefile for DB2 switch on Sun Solaris 183
28. Makefile for DB2 switch on HP-UX . 183
29. Sample XAResourceManager entry for DB2 on OS/2 and Windows NT 184
30. Sample XAResourceManager entry for DB2 on UNIX platforms 185
31. Sample commands to give connect user ID authority to MQBANKDB . 185
32. Source code for Oracle switch load file, oraswit.c 187
33. Makefile for Oracle7 switch load file on AIX 188

| 34. Makefile for Oracle8 switch load file on AIX 188
| 35. Makefile for Oracle7 switch load file on Sun Solaris 188
| 36. Makefile for Oracle8 switch load file on Sun Solaris 189
| 37. Makefile for Oracle7 switch load file on HP-UX 189
| 38. Makefile for Oracle8 switch load file on HP-UX 189

39. Sample XAResourceManager entry for Oracle on UNIX platforms . . . 191
| 40. Example contents of $SYBASE/xa_config 192
| 41. Source code for sybswit.c on UNIX platforms 193
| 42. Makefile for Sybase switch on AIX . 194
| 43. Makefile for Sybase switch on Sun Solaris 194
| 44. Source code for sybswit.c on Windows NT 195
| 45. Source code for sybwit.def on Windows NT 197
| 46. Makefile for Sybase switch on Windows NT using Microsoft Visual C++ 198
| 47. Makefile for Sybase switch on Windows NT using IBM VisualAge for C++ 198
| 48. Sample XAResourceManager entry for Sybase on UNIX platforms . . . 199

 Copyright IBM Corp. 1994,1999 ix

 Figures

49. Sample XAResourceManager entries for multiple DB2 databases . . . 200
50. Sample XAResourceManager entries for a DB2 and Oracle database . 200
51. Sample dspmqtrn output . 203
52. Sample dspmqtrn output for a transaction in error 204
53. Commented out XAResourceManager stanza 205
54. Checkpointing . 217
55. Checkpointing with a long-running transaction 218
56. Example dmpmqlog output . 233
57. Extract from an MQSeries error log . 262
58. Sample AIX trace . 265
59. Sample HP-UX trace . 267
60. Sample MQSeries for Sun Solaris trace 268
61. Sample MQSeries for Windows NT trace 269

| 62. FFST report for MQSeries for UNIX systems 270
| 63. Sample MQSeries for Windows NT First Failure Symptom Report . . . 272
| 64. Default directory structure (UNIX systems) after a queue manager has
| been started . 348
| 65. Default file tree (OS/2) after a queue manager has been started 351
| 66. Default file tree (Windows NT) after a queue manager has been started 355
| 67. The supplied file EARTH.TST, UDP support 374
| 68. The supplied file MOON.TST, UDP support 375

x MQSeries System Administration

 Tables

 Tables

| 1. Platforms and command levels . 31
| 2. Configuration options for MQSeries Web Administration 48

3. Categories of control commands . 49
| 4. Security authorization needed for MQI calls 118
| 5. MQSC commands and security authorization needed 120
| 6. PCF commands and security authorization needed 121

7. Authorization directories for MQSeries for UNIX systems 123
8. Authorization directories for MQSeries for Windows NT 123

| 9. List of possible ISO CCSIDs . 131
| 10. Default outstanding connection requests (TCP) 145
| 11. Default outstanding connection requests (SPX) 146
| 12. XA-compliant relational databases . 177
| 13. XA-compliant external syncpoint coordinators 206

14. CICS task termination exits . 210
15. Sample exits . 211

| 16. Log overhead sizes . 219
17. MQS_TRACE_OPTIONS settings . 265
18. How to read syntax diagrams . 280

| 19. Security authorities from the dspmqaut command 295
| 20. Specifying authorizations for different object types 330

21. System and default objects - queues . 343
22. System and default objects - channels 344

| 23. System and default objects - namelists 344
24. System and default objects - processes 344

| 25. Objects created by the Windows NT Default Configuration application . 346
| 26. Commands for queue manager administration 367
| 27. Commands for command server administration 368
| 28. Commands for queue administration . 368
| 29. Commands for process administration 369
| 30. Commands for channel administration 370

31. Other control commands . 371

 Copyright IBM Corp. 1994,1999 xi

 Tables

xii MQSeries System Administration

 About this book

About this book

| This book applies to the MQSeries Version 5 products, which are:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

These products provide application programming services that enable application
programs to communicate with each other using message queues. This form of
communication is referred to as commercial messaging. The applications involved
can exist on different nodes on a wide variety of machine and operating system
types. They use a common application programming interface, called the Message
Queuing Interface or MQI, so that programs developed on one platform can readily
be transferred to another.

This book describes the system administration aspects of the MQSeries Version 5
products, and the services they provide to support commercial messaging. This
includes managing the queues that applications use to receive their messages, and
ensuring that applications have access to the queues that they require.

Installation of MQSeries is described in one of the following:

� “Chapter 3. Installing the MQSeries for AIX Server” in the MQSeries for AIX
V5.1 Quick Beginnings book

� “Chapter 3. Installing MQSeries for OS/2 Warp” in the MQSeries for OS/2
Warp V5.1 Quick Beginnings book

� “Chapter 3. Installing the MQSeries for HP-UX Server” in the MQSeries for
HP-UX V5.1 Quick Beginnings book

� “Chapter 3. Installing the MQSeries for Sun Solaris Server” in the MQSeries for
Sun Solaris V5.1 Quick Beginnings book

� Chapter 4, “Installing MQSeries for Windows NT” in the MQSeries for Windows
NT V5.1 Quick Beginnings book

Post-installation configuration of a distributed queuing network is described in
Chapter 2, “Making your applications communicate” in the MQSeries
Intercommunication book.

 Copyright IBM Corp. 1994,1999 xiii

 About this book

Who this book is for
This book is intended for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book
To use this book, you should have a good understanding of the operating systems
described here, and of the utilities associated with them. You do not need to have
worked with message queuing products before, but you should have an
understanding of the basic concepts of message queuing.

Terms used in this book
In this book, the term “the MQSeries Version 5 products ” means:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

The term “MQSeries for UNIX  systems ” means:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for Sun Solaris V5.1

Using MQSeries for UNIX systems
The following restrictions apply to the use of UNIX operating-system facilities with
the MQSeries product:

1. MQSeries for AIX and MQSeries for HP-UX use the UNIX subroutine ftok to
generate standard interprocess communication keys. Using ftok exclusively
within a node ensures that these keys are unique, which is a requirement of
MQSeries. Therefore, do not use any code that generates interprocess keys in
a different way.

2. MQCONN sets up its own signal handler for the signals:

 SIGSEGV
 SIGBUS

User handlers for these signals are restored after every MQI call.

The remaining signals are handled differently.

 SIGINT
 SIGQUIT
 SIGFPE
 SIGTERM
 SIGHUP

If any handler for this second group of signals receives an interrupt within an
MQI call, the application handler must exit the application. MQI may not be
called.

xiv MQSeries System Administration

 About this book

3. For each MQI call, MQSeries uses the UNIX interval timer ITIMER_REAL to
generate SIGALRM signals. Any previous SIGALRM handler and timer interval
is saved on entry to MQI and restored on exit. Any timer interval set is
therefore frozen while within MQI.

| The base directory
| Throughout this book, the name mqmtop has been used to represent the name of
| the base directory where MQSeries is installed on UNIX systems.

| � For MQSeries for AIX, mqmtop represents the directory /usr/mqm .

| � For other UNIX systems, the name of the actual directory is /opt/mqm .

Using MQSeries for OS/2 Warp and Windows NT
Examples in this book relevant to MQSeries for Windows NT may use New
Technology file system (NTFS), high performance file system (HPFS), or file
allocation table (FAT) file names. Examples relevant to MQSeries for OS/2 Warp
may use HPFS or FAT file names.

The examples are valid for all file-naming systems, the name being transformed if
necessary when the FAT system is in use. Name transformation is described in
“Understanding MQSeries file names” on page 27.

The calls MQCONN and MQCONNX
References in this book to the call MQCONN - Connect queue manager can be
replaced by references to the call MQCONNX - Connect queue manager
(extended); MQCONNX requires an additional parameter. For more information
about these calls, see “MQCONN - Connect queue manager” and “MQCONNX -
Connect queue manager (extended)” in the MQSeries Application Programming
Reference manual.

 About this book xv

 MQSeries publications

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2

| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1

� MQSeries for SINIX and DC/OSx V2.2
| � MQSeries for Sun Solaris V5.1

� MQSeries for Tandem NonStop Kernel V2.2
| � MQSeries for VSE/ESA V2.1

� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

| � MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xx. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

xvi MQSeries System Administration

 MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as

| security, recovery and restart, transactional support, problem determination, and the
| dead-letter queue handler. It also includes the syntax of the MQSeries control

commands.

This book applies to the following MQSeries products only:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

 About this book xvii

 MQSeries publications

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1

| � Windows 95 and Windows 98

| MQSeries Using Java 
| MQSeries Using Java, SC34-5456, provides both guidance and reference
| information for users of the MQSeries Bindings for Java and the MQSeries Client
| for Java. MQSeries Java is supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| MQSeries Administration Interface Programming Guide and Reference
| The MQSeries Administration Interface Programming Guide and Reference,
| SC34-5390, provides information for users of the MQAI. The MQAI is a
| programming interface that simplifies the way in which applications manipulate
| Programmable Command Format (PCF) messages and their associated data
| structures.

| This book applies to the following MQSeries products only:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

| MQSeries Queue Manager Clusters
| MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
| explains the concepts and terminology and shows how you can benefit by taking
| advantage of clustering. It details changes to the MQI, and summarizes the syntax
| of new and changed MQSeries commands. It shows a number of examples of
| tasks you can perform to set up and maintain clusters of queue managers.

xviii MQSeries System Administration

 MQSeries publications

| This book applies to the following MQSeries products only:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for OS/390 V2.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

| MQSeries for AIX Version 5 Release 1 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

| MQSeries for Digital UNIX

| MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
| GC34-5483

MQSeries for HP-UX

| MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869

| MQSeries for OS/2 Warp

| MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868

| MQSeries for OS/390

| MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
| GC34-5377

| MQSeries for OS/390 Version 2 Release 1 Program Directory

| MQSeries for OS/390 Version 2 Release 1 System Management Guide,
| SC34-5374

| MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

| MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
| GC34-5376

MQSeries link for R/3

| MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934

 About this book xix

 MQSeries publications

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries for Sun Solaris

| MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

| MQSeries for VSE/ESA

| MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
| GC34-5365

| MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
| GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

| MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
| MQSeries for Windows NT Using the Component Object Model Interface,
| SC34-5387
| MQSeries LotusScript Extension, SC34-5404

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format 
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

xx MQSeries System Administration

 MQSeries publications

 HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1 (compiled HTML)
| � MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

 http://www.software.ibm.com/ts/mqseries/

| Portable Document Format (PDF)
| PDF files can be viewed and printed using the Adobe Acrobat Reader.

| If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
| information about the platforms on which the Acrobat Reader is supported, visit the
| Adobe Systems Inc. Web site at:

| http://www.adobe.com/

| PDF versions of relevant MQSeries books are supplied with these MQSeries
| products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1
| � MQSeries link for R/3 V1.2

| PDF versions of all current MQSeries books are also available from the MQSeries
| product family Web site at:

| http://www.software.ibm.com/ts/mqseries/

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

 About this book xxi

 MQSeries on the Internet � Related publications

MQSeries information available on the Internet
MQSeries Web site

The MQSeries product family Web site is at:

 http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:

� Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML and PDF formats.

� Download MQSeries SupportPacs.

 Related publications
This section lists other documentation referred to in this book.

IBM TXSeries Administration Reference, SC33-1563

IBM TXSeries for Windows NT, Version 4.2: CICS Administration Guide,
SC33-1881

xxii MQSeries System Administration

 Summary of changes

| Summary of Changes

| This edition of MQSeries System Administration applies to these new versions and
| releases of MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| Major new function supplied with each of these MQSeries products is summarized
| here.

| MQSeries V5.1
| The MQSeries Version 5 Release 1 products are:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

| The following new function is provided in all of the V5.1 products:

| MQSeries queue manager clusters
| MQSeries queue managers can be connected to form a cluster of queue
| managers. Within a cluster, queue managers can make the queues they host
| available to every other queue manager. Any queue manager can send a
| message to any other queue manager in the same cluster without the need for
| explicit channel definitions, remote queue definitions, or transmission queues for
| each destination. The main benefits of MQSeries clusters are:

| � Fewer system administration tasks
| � Increased availability
| � Workload balancing

| Clusters are supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
| description of this function.

| MQSeries Administration Interface (MQAI)
| The MQSeries Administration Interface is an MQSeries programming interface
| that simplifies manipulation of MQSeries PCF messages for administrative tasks.
| It is described in a new book, MQSeries Administration Interface Programming
| Guide and Reference, SC34-5390.

 Copyright IBM Corp. 1994,1999 xxiii

 Summary of changes

| Support for Windows 98 clients
| A Windows 98 client can connect to any MQSeries V5.1 server.

| Message queue size
| A message queue can be up to 2 GB.

| Controlled, synchronous shutdown of a queue manager
| A new option has been added to the endmqm command to allow controlled,
| synchronous shutdown of a queue manager.

| Java support
| The MQSeries Client for Java and MQSeries Bindings for Java are provided with
| all MQSeries V5.1 products. The client, bindings, and common files have been
| packaged into .jar files for ease of installation.

| Euro support
| MQSeries supports new and changed code pages that use the euro currency
| symbol. Details of code pages that include the euro symbol are provided in the
| MQSeries Application Programming Reference book.

| Conversion of the EBCDIC new-line character
| You can control the conversion of EBCDIC new-line characters to ensure that
| data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
| unaltered by the ASCII conversion.

| Client connections via MQCONNX
| A client application can specify the definition of the client-connection channel at
| run time in the MQCNO structure of the MQCONNX call.

| Additional new function in MQSeries for AIX V5.1
| � The UDP transport protocol is supported.
| � Sybase databases can participate in global units of work.
| � Multithreaded channels are supported.

| Additional new function in MQSeries for HP-UX V5.1
| � MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
| � Multithreaded channels are supported.
| � Both HP-UX kernel threads and DCE threads are supported.

| Additional new function in MQSeries for OS/2 Warp V5.1
| OS/2 high memory support is provided.

| Additional new function in MQSeries for Sun Solaris V5.1
| � MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris
| 7.

| � Sybase databases can participate in global units of work.

| � Multithreaded channels are supported.

xxiv MQSeries System Administration

 Summary of changes

| Additional new function in MQSeries for Windows NT V5.1
| MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
| NT. New function in this release includes:

| � Close integration with Microsoft Windows NT Version 4.0, including exploitation
| of extra function provided by additional Microsoft offerings. The main highlights
| are:

| – Graphical tools and applications for managing, controlling, and exploring
| MQSeries:

| - MQSeries Explorer—a snap-in for the Microsoft management console
| (MMC) that allows you to query, change, and create the local, remote,
| and cluster objects across an MQSeries network.

| - MQSeries Services—an MMC snap-in that controls the operation of
| MQSeries components, either locally or remotely within the Windows
| NT domain. It monitors the operation of MQSeries servers and
| provides extensive error detection and recovery functions.

| - MQSeries API Exerciser—a graphical application for exploring the
| messaging and queuing programming functions that MQSeries
| provides. It can also be used in conjunction with the MQSeries
| Explorer to gain a deeper understanding of the effects of MQSeries
| operations on objects and messages.

| - MQSeries Postcard—a sample application that can be used to verify an
| MQSeries installation, for either local or remote messaging.

| – Support for the following features of Windows NT has been added:

| - Windows NT performance monitor—used to access and display
| MQSeries information, such as the current depth of a queue and the
| rate at which message data is put onto and taken off queues.

| - ActiveDirectory—programmable access to MQSeries objects is
| available through the Active Directory Service Interfaces (ADSI).

| - Windows NT user IDs—previous MQSeries restrictions on the validity of
| Windows NT user IDs have been removed. All valid Windows NT user
| IDs are now valid identifiers for MQSeries operations. MQSeries uses
| the associated Windows NT Security Identifier (SID) and the Security
| Account Manager (SAM). The SID allows the MQSeries Object
| Authority Manager (OAM) to identify the specific user for an
| authorization request.

| - Windows NT registry—now used to hold all configuration and related
| data. The contents of any configuration (.INI) files from previous
| MQSeries installations of MQSeries for Windows NT products are
| migrated into the registry; the .INI files are then deleted.

| - A set of Component Object Model (COM) classes, which allow ActiveX
| applications to access the MQSeries Message Queue Interface (MQI)
| and the MQSeries Administration Interface (MQAI).

| – An online Quick Tour of the product concepts and functions.

 Summary of Changes xxv

 Summary of changes

| – An online Information Center that gives you quick access to task help
| information, reference information, and Web-based online books and home
| pages.

| – Simplified installation of MQSeries for Windows NT, with default options
| and automatic configuration.

| � Support for web-based administration of an MQSeries network, which provides
| a simplified way of using the MQSC commands and scripts and allows you to
| create powerful macros for standard administration tasks.

| � Support for MQSeries LotusScript Extension (MQLSX), which allows Lotus
| Notes applications that are written in LotusScript to communicate with
| applications that run in non-Notes environments.

| � Support for Microsoft Visual Basic for Windows Version 5.0.

| � Performance improvements over the MQSeries for Windows NT Version 5.0
| product.

| � Information and examples on how MQSeries applications can interface with and
| exploit the lightweight directory access protocol (LDAP) directories.

| � Support for Sybase participation in global units of work.

xxvi MQSeries System Administration

 Part 1. Guidance

Chapter 1. Introduction to MQSeries . 9
MQSeries and message queuing . 9

Time-independent applications . 9
Message-driven processing . 9

Messages and queues . 10
What is a message? . 10
What is a queue? . 10

Objects . 12
Object names . 12
Managing objects . 13
Object attributes . 13
MQSeries queue managers . 13
MQSeries queues . 14
Process definitions . 17
Channels . 17

| Clusters . 18
| Namelists . 18

System default objects . 18
Local and remote administration . 18
Clients and servers . 19

MQSeries applications in a client-server environment 19
Extending queue manager facilities . 20

User exits . 20
Installable services . 20

Security . 21
Object Authority Manager (OAM) facility . 21
DCE security . 22

Transactional support . 22

Chapter 2. An introduction to MQSeries administration 23
Local and remote administration . 23
Performing administration tasks using control commands 23
Performing administrative tasks using MQSC commands 23
Performing administrative tasks using PCF commands 24
Administration on MQSeries for Windows NT 24

| Using commands on MQSeries for Windows NT 25
| Using the MQSeries Explorer . 25
| Using the MQSeries Services snap-in . 25
| Using the Windows NT default configuration application 26
| Using MQSeries Web Administration . 26
| Editing configuration information . 26

Understanding MQSeries file names . 27
Queue manager name transformation . 27
Object name transformation . 28

| Chapter 3. Administration using the MQSeries Explorer 29
| What you can do with the MQSeries Explorer 29
| Points to consider when using the MQSeries Explorer 30
| Prerequisite software . 30
| Required definitions for administration . 31

 Copyright IBM Corp. 1994,1999 1

| Showing and hiding queue managers and clusters 31
| Cluster membership . 32
| Security . 33
| Authorization to run the MQSeries Explorer 33
| Security for connecting to remote queue managers 33
| Using a security exit . 33
| Data conversion . 34
| Saving and loading console files . 34
| Switching off the automatic population facility 35

| Chapter 4. Administration using the MQSeries Services snap-in 37
| What you can do with the MQSeries Services snap-in 37
| Prerequisite software . 38
| Using the MQSeries Services snap-in . 38
| Using the MQSeries alert monitor application 38
| MQSeries Services snap-in recovery facilities 39
| Security . 39
| Controlling access . 40
| Changing the MQAdmin user account . 41

| Chapter 5. Using MQSeries Web Administration 43
| Points to consider when using MQSeries Web Administration 43
| Prerequisite software . 44
| Prerequisite software for the server side . 44
| Prerequisite software for the client side . 44
| Encryption policies . 45
| Starting up MQSeries Web Administration server 45
| Logging on as an MQSeries administrator (client side) 45
| Authorization to run MQSeries Web Administration 46
| Security for connecting to remote queue managers 46
| Administering queue managers . 46
| Administering local queue managers . 46
| Administering remote queue managers . 46
| Using MQSeries command scripts . 47
| Configuring the MQSeries Web Administration server 48

Chapter 6. Managing queue managers using control commands 49
Using control commands . 49

Using control commands (MQSeries for UNIX systems) 50
Using control commands (MQSeries for OS/2 Warp and MQSeries for

Windows NT) . 50
Creating a queue manager . 51

Guidelines for creating queue managers . 51
Backing up configuration files after creating a queue manager 53

Creating a default queue manager . 54
Starting a queue manager . 54
Making an existing queue manager the default 55
Stopping a queue manager . 55
Restarting a queue manager . 57
Deleting a queue manager . 57

Chapter 7. Administering local MQSeries objects 59
Supporting application programs that use the MQI 59
Performing local administration tasks using MQSC commands 60

2 MQSeries System Administration

MQSeries object names . 61
Using the MQSC facility interactively . 61
Feedback from MQSC commands . 62
Ending interactive input to MQSC . 63
Displaying queue manager attributes . 63
Using a queue manager that is not the default 65
Altering queue manager attributes . 65
Running MQSC commands from text files . 65
Resolving problems with MQSC . 68

Working with local queues . 70
Defining a local queue . 70
Defining a dead-letter queue . 71
Displaying default object attributes . 71
Copying a local queue definition . 72
Changing local queue attributes . 72
Clearing a local queue . 73
Deleting a local queue . 73
Browsing queues . 74

| Monitoring local queues with the Windows NT Performance Monitor 76
Working with alias queues . 77

Defining an alias queue . 77
Using other commands with alias queues . 78

Working with model queues . 79
Defining a model queue . 79
Using other commands with model queues 79

Managing objects for triggering . 80
Defining an application queue for triggering 80
Defining an initiation queue . 81
Creating a process definition . 81
Displaying your process definition . 82

| Chapter 8. Automating administration tasks 83
PCF commands . 83

Attributes in MQSC and PCFs . 84
Escape PCFs . 84

| Using the MQAI to simplify the use of PCFs 84
| Active Directory Services . 85

Managing the command server for remote administration 85
Starting the command server . 86
Displaying the status of the command server 86
Stopping a command server . 86

Chapter 9. Administering remote MQSeries objects 87
| Channels, clusters, and remote queuing . 87
| Remote administration using clusters . 88

Remote administration from a local queue manager using MQSC commands . 89
Preparing queue managers for remote administration 89
Preparing channels and transmission queues for remote administration . . 90
Defining channels and transmission queues 91
Starting the channels . 92
Issuing MQSC commands remotely . 93

| Working with queue managers on OS/390 . 94
If you have problems using MQSC remotely 95

Creating a local definition of a remote queue . 95

 Part 1. Guidance 3

Understanding how local definitions of remote queues work 95
An alternative way of putting messages on a remote queue 97
Using other commands with remote queues 97
Creating a transmission queue . 98

Using remote queue definitions as aliases . 99
Queue manager aliases . 99
Reply-to queue aliases . 99

Data conversion . 100
When a queue manager cannot convert messages in built-in formats . . . 100
File ccsid.tbl . 100
Conversion of messages in user-defined formats 101

Chapter 10. Protecting MQSeries objects 103
Why you need to protect MQSeries resources 103
Before you begin (UNIX systems) . 104

User IDs in user group mqm (UNIX systems) 104
Before you begin (Windows NT) . 104

| User IDs for administration . 105
Restricted-access Windows NT objects . 106

| Security policies . 106
Understanding the Object Authority Manager 107

How the OAM works . 108
Managing access through user groups . 108

| Default user group (UNIX systems only) . 109
Resources you can protect with the OAM 109
Using groups for authorizations . 109
Disabling the object authority manager . 110

Using Object Authority Manager commands 110
Using the OAM set or reset authority control command, setmqaut 110
Using the OAM display authority control command (dspmqaut) 112

Object Authority Manager guidelines . 113
User IDs (MQSeries for UNIX systems only) 113
Queue manager directories . 113
Queues . 113
Alternate-user authority . 113
Context authority . 114
Remote security considerations . 115
Channel command security . 115

Understanding the authorization specification tables 116
MQI authorizations . 117
Administration authorizations . 120
Authorizations for MQSC commands in escape PCFs 120

Authorization files . 122
Types of authorization . 122
Authorization file paths . 123
Authorization file contents — MQSeries for UNIX systems 124

| Authorization file contents — MQSeries for Windows NT 124
| Authority stanza . 124

Managing authorization files . 126

| Chapter 11. Configuring MQSeries . 127
| MQSeries configuration files . 127
| Editing configuration files . 128
| The MQSeries configuration file, mqs.ini . 128

4 MQSeries System Administration

| Queue manager configuration files, qm.ini 129
| Attributes for changing MQSeries configuration information 130
| The AllQueueManagers stanza . 130

The ClientExitPath stanza . 131
The DefaultQueueManager stanza . 131

| The ExitProperties stanza . 132
| The LogDefaults stanza . 132
| The QueueManager stanza . 134
| Changing queue manager configuration information 136
| The Service stanza . 136
| The ServiceComponent stanza . 137
| The Log stanza . 138
| The RestrictedMode stanza . 140
| The XAResourceManager stanza . 140
| The Channels stanza . 142
| The LU62, NETBIOS, TCP, and SPX stanzas 144
| The ExitPath stanza . 147
| The UDP stanza . 147
| The Transport stanza . 149
| Example mqs.ini and qm.ini files for MQSeries for OS/2 Warp 149
| Resultant mqs.ini file (MQSeries for OS/2 Warp) 150
| Resultant qm.ini file for queue manager firstqm (MQSeries for OS/2 Warp) 151
| Resultant qm.ini file for queue manager secondqm (MQSeries for OS/2
| Warp) . 152

Resultant qm.ini file for queue manager thirdqm (MQSeries for OS/2 Warp) 153
Example mqs.ini and qm.ini files for MQSeries for UNIX systems 154

Chapter 12. The MQSeries dead-letter queue handler 157
Invoking the DLQ handler . 157

The sample DLQ handler, amqsdlq . 158
The DLQ handler rules table . 158

Control data . 159
Rules (patterns and actions) . 160
Rules table conventions . 163

How the rules table is processed . 165
Ensuring that all DLQ messages are processed 166

An example DLQ handler rules table . 167

Chapter 13. Instrumentation events . 169
What are instrumentation events? . 169
Why use events? . 170

Types of event . 171
Event notification through event queues . 172
Enabling and disabling events . 172
Event messages . 173

Chapter 14. Transactional support . 175
Database coordination . 176

Restrictions . 177
Database connections . 177
Configuring database managers . 178

DB2 configuration . 180
Checking the environment variable settings 180
Creating the DB2 switch load file . 180

 Part 1. Guidance 5

Adding the XAResourceManager stanza for DB2 184
Changing DB2 configuration parameters . 185

Oracle configuration . 186
Minimum supported levels for Oracle and applying patches 186
Checking the environment variable settings 186
Enabling Oracle XA support . 186
Creating the Oracle switch load file . 187
Adding XAResourceManager configuration information for Oracle 189
Changing Oracle configuration parameters 191

Sybase configuration . 192
Enabling Sybase XA support . 192

| Creating the Sybase switch load file . 193
| Adding XAResourceManager configuration information for Sybase 199

Multiple database configurations . 200
Security considerations . 200

Administration tasks . 201
In-doubt units of work . 201
Using the dspmqtrn command . 202
Using the rsvmqtrn command . 203
Mixed outcomes and errors . 204
Changing configuration information . 205

External syncpoint coordination . 206
The MQSeries XA switch structure . 207

Using CICS . 208
The CICS two-phase commit process . 208
The CICS single-phase commit process . 210

Chapter 15. Recovery and restart . 213
Making sure that messages are not lost (logging) 213

What logs look like . 214
Types of logging . 214

Checkpointing – ensuring complete recovery 216
| Calculating the size of the log . 219

Managing logs . 220
What happens when a disk gets full . 221
Managing log files . 221

Using the log for recovery . 222
Recovering from problems . 222
Media recovery . 223
Recovering damaged objects during start up 224
Recovering damaged objects at other times 225

| Protecting MQSeries log files . 225
Backing up and restoring MQSeries . 225

Backing up MQSeries . 225
Restoring MQSeries . 226

Recovery scenarios . 226
Disk drive failures . 226
Damaged queue manager object . 227
Damaged single object . 228
Automatic media recovery failure . 228

Dumping the contents of the log using the dmpmqlog command 228

Chapter 16. Problem determination . 247
Preliminary checks . 247

6 MQSeries System Administration

Has MQSeries run successfully before? . 248
Are there any error messages? . 248
Are there any return codes explaining the problem? 248
Can you reproduce the problem? . 248
Have any changes been made since the last successful run? 249
Has the application run successfully before? 249
Problems with commands . 250
Does the problem affect specific parts of the network? 250
Does the problem occur at specific times of the day? 251
Is the problem intermittent? . 251
Have you applied any service updates? . 251

What to do next . 251
Have you obtained incorrect output? . 252
Have you failed to receive a response from a PCF command? 252
Are some of your queues failing? . 253
Does the problem affect only remote queues? 254
Is your application or system running slowly? 254

Application design considerations . 255
Effect of message length . 255
Effect of message persistence . 255
Searching for a particular message . 255
Queues that contain messages of different lengths 255
Frequency of syncpoints . 256
Use of the MQPUT1 call . 256
Number of threads in use . 256

Incorrect output . 256
Messages that do not appear on the queue 256
Messages that contain unexpected or corrupted information 258
Problems with incorrect output when using distributed queues 258

Error logs . 259
Log files . 260
Early errors . 261
Operator messages . 261
An example MQSeries error log . 261
The MQSeries log-dump utility . 262

Dead-letter queues . 263
Configuration files and problem determination 263
Tracing . 263

Tracing MQSeries for AIX . 263
Tracing MQSeries for HP-UX and MQSeries for Sun Solaris 266
Tracing MQSeries for OS/2 Warp and MQSeries for Windows NT 268

First-failure support technology (FFST) . 270
FFST: MQSeries for UNIX systems . 270
FFST: MQSeries for OS/2 Warp and Windows NT 271
FFST: MQSeries for OS/2 Warp . 272

Problem determination with clients . 274
Terminating clients . 274
Error messages with clients . 275

 Part 1. Guidance 7

8 MQSeries System Administration

 Introduction � MQSeries and message queuing

Chapter 1. Introduction to MQSeries

This chapter introduces the MQSeries Version 5.1 products from an administrator’s
perspective, and describes the basic concepts of MQSeries and messaging. It
contains these sections:

� “MQSeries and message queuing”
� “Messages and queues” on page 10
� “Objects” on page 12
� “System default objects” on page 18
� “Clients and servers” on page 19
� “Extending queue manager facilities” on page 20
� “Security” on page 21
� “Transactional support” on page 22

MQSeries and message queuing
MQSeries allows application programs to use message queuing to participate in
message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.

| For example, HP-UX and OS/390 applications can communicate through MQSeries
for HP-UX and MQSeries for OS/390 respectively. The applications are shielded
from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface known
as the message queue interface (or MQI) whatever platform the applications are
run on. This makes it easier for you to port application programs from one platform
to another.

The MQI is described in detail in Chapter 6, “Introducing the Message Queue
Interface” in the MQSeries Application Programming Reference manual.

 Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving application programs are decoupled so that the sender can continue
processing without having to wait for the receiver to acknowledge receipt of the
message. In fact, the target application does not even have to be running when
the message is sent. It can retrieve the message after it is has been started.

 Message-driven processing
Upon arrival on a queue, messages can automatically start an application using a
mechanism known as triggering . If necessary, the applications can be stopped
when the message (or messages) have been processed.

 Copyright IBM Corp. 1994,1999 9

 Messages and queues

Messages and queues
Messages and queues are the basic components of a message queuing system.

What is a message?
A message is a string of bytes that is meaningful to the applications that use it.
Messages are used for transferring information from one application program to
another (or to different parts of the same application). The applications can be
running on the same platform, or on different platforms.

MQSeries messages have two parts:

� The application data
The content and structure of the application data is defined by the application
programs that use them.

� A message descriptor
The message descriptor identifies the message and contains additional control
information such as the type of message, and the priority assigned to the
message by the sending application.

The format of the message descriptor is defined by MQSeries. For a complete
description of the message descriptor, see “MQMD - Message descriptor” in the
MQSeries Application Programming Reference manual.

 Message lengths
The maximum length a message can be is 100 MB (where 1 MB equals 1 048 576
bytes). In practice, the message length may be limited by:

� The maximum message length defined for the receiving queue

� The maximum message length defined for the queue manager

� The maximum message length defined by either the sending or receiving
application

� The amount of storage available for the message

It may take several messages to send all the information that an application
requires.

What is a queue?
A queue is a data structure used to store messages. The messages may be put
on the queue by application programs, or by a queue manager as part of its
normal operation.

Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns and for storing all the messages it receives onto the
appropriate queues.

| The maximum size of a queue is 2 GB. For information about planning the amount
| of storage you require for queues, see the MQSeries Planning Guide or visit the
| following web site for platform-specific performance reports:

| http://www.software.ibm.com/ts/mqseries/txppacs/txpm1.html

10 MQSeries System Administration

 Messages and queues

How do applications send and receive messages?
Application programs send and receive messages using MQI calls .

For example, to put a message onto a queue, an application:

1. Opens the required queue by issuing an MQI MQOPEN call

2. Issues an MQI MQPUT call to put the message onto the queue

3. Another application can retrieve the message from the same queue by issuing
an MQI MQGET call.

For more information about MQI calls, see Chapter 3, “Call descriptions” in the
MQSeries Application Programming Reference manual.

Predefined queues and dynamic queues
Queues can be characterized by the way they are created:

� Predefined queues are created by an administrator using the appropriate
MQSeries commands. Predefined queues are permanent; they exist
independently of the applications that use them and survive MQSeries restarts.

� Dynamic queues are created when an application issues an OPEN request
specifying the name of a model queue . The queue created is based on a
template queue definition, which is the model queue. You can create a model
queue using the MQSeries DEFINE QMODEL command. The attributes of a
model queue, for example the maximum number of messages that can be
stored on it, are inherited by any dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues
Suitably authorized applications can retrieve messages from a queue according to
the following retrieval algorithms:

 � First-in-first-out (FIFO)

� Message priority, as defined in the message descriptor. Messages that have
the same priority are retrieved on a FIFO basis.

� A program request for a specific message.

The MQGET request from the application determines the method used.

 Chapter 1. Introduction to MQSeries 11

 Objects

 Objects
Many of the tasks described in this book involve manipulating MQSeries objects .

In the MQSeries Version 5.1, the object types include queue managers, queues,
process definitions, channels, clusters, and namelists.

The manipulation or administration of objects includes:

� Starting and stopping queue managers.

� Creating objects, particularly queues, for applications.

� Working with channels to create communication paths to queue managers on
other (remote) systems. This is described in detail in “How to send a message
to another queue manager” in the MQSeries Intercommunication book.

| � Creating clusters of queue managers to simplify the overall administration
| process, or to achieve workload balancing.

| This book contains detailed information about administration in the following
| chapters:

| � Chapter 2, “An introduction to MQSeries administration” on page 23

| � Chapter 3, “Administration using the MQSeries Explorer” on page 29

| � Chapter 4, “Administration using the MQSeries Services snap-in” on page 37

| � Chapter 5, “Using MQSeries Web Administration” on page 43

| � Chapter 6, “Managing queue managers using control commands” on page 49

| � Chapter 7, “Administering local MQSeries objects” on page 59

| � Chapter 8, “Automating administration tasks” on page 83

| � Chapter 9, “Administering remote MQSeries objects” on page 87

 Object names
The naming convention adopted for MQSeries objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any given
message should be sent.

For the other types of object, each object has a name associated with it and can be
referenced by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters. For more information about
names, see “Names of MQSeries objects” on page 279.

12 MQSeries System Administration

 Objects

 Managing objects
You can create, alter, display, and delete objects using:

� Control commands, which are typed in from a keyboard

� MQSeries commands (MQSC), which can be typed in from a keyboard or read
from a file

� Programmable Command Format (PCF) messages, which can be used in an
automation program

| � MQSeries Administration Interface (MQAI) calls in a program

| � For MQSeries for Windows NT only:

| – MQAI Component Object Model (COM) calls in a program

| – Active Directory Service interface (ADSI) calls in a program

| – The MQSeries Explorer snap-in and MQSeries Services snap-in running
| under the Microsoft Management Console (MMC)

| – The Windows NT default configuration application

| – MQSeries Web Administration

| For more information about these methods, see Chapter 2, “An introduction to
| MQSeries administration” on page 23.

 Object attributes
The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a
queue can accommodate is defined by its MaxMsgLength attribute; you can specify
this attribute when you create a queue. The DefinitionType attribute specifies how
the queue was created; you can only display this attribute.

In MQSeries, there are two ways of referring to an attribute:

� Using its PCF name, for example, MaxMsgLength.
� Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the MQSC facility
is an important part of this book, you are more likely to see the MQSC name in
examples than the PCF name of a given attribute.

MQSeries queue managers
A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:

� Object attributes are changed according to the commands received.

� Special events such as trigger events or instrumentation events are generated
when the appropriate conditions are met.

� Messages are put on the correct queue, as requested by the application
making the MQPUT call. The application is informed if this cannot be done,
and an appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager.

 Chapter 1. Introduction to MQSeries 13

 Objects

The queue manager to which an application is connected is said to be the local
queue manager for that application. For the application, the queues that belong to
its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager.

A remote queue manager is any queue manager other than the local queue
manager. A remote queue manager may exist on a remote machine across the
network, or may exist on the same machine as the local queue manager.

MQSeries supports multiple queue managers on the same machine.

A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Note: You cannot put messages on a queue manager object; messages are
always put on queue objects, not on queue manager objects.

 MQSeries queues
Queues are defined to MQSeries using:

� The appropriate MQSC DEFINE command
� The PCF Create Queue command

The commands specify the type of queue and its attributes. For example, a local
queue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:

� Whether applications can retrieve messages from the queue (GET enabled).

� Whether applications can put messages on the queue (PUT enabled).

� Whether access to the queue is exclusive to one application or shared between
applications.

� The maximum number of messages that can be stored on the queue at the
same time (maximum queue depth).

� The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see “DEFINE QALIAS” through
“DEFINE QREMOTE” in the MQSeries Command Reference manual or “Create
Queue” in the MQSeries Programmable System Management manual.

Using queue objects
There are four types of queue object available in MQSeries. Each type of object
can be manipulated by the product commands and is associated with real queues
in different ways.

1. Local queue object
A local queue object identifies a local queue belonging to the queue manager
to which the application is connected. All queues are local queues in the sense
that each queue belongs to a queue manager and, for that queue manager, the
queue is a local queue.

14 MQSeries System Administration

 Objects

2. A remote queue object
A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the local
queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.

Before applications can send messages to a queue on another queue
manager, you must have defined a transmission queue and channels between

| the queue managers, unless you have grouped one or more queue managers
| together into a cluster. For more information about clusters, see “Remote
| administration using clusters” on page 88.

3. An alias queue object
An alias queue allows applications to access a queue by referring to it indirectly
in MQI calls. When an alias queue name is used in an MQI call, the name is
resolved to the name of either a local or a remote queue at run time. This
allows you to change the queues that applications use without changing the
application in any way—you merely change the alias queue definition to reflect
the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access
another queue.

4. A model queue object
A model queue defines a set of queue attributes that are used as a template
for creating a dynamic queue. Dynamic queues are created by the queue
manager when an application issues an MQOPEN request specifying a queue
name that is the name of a model queue. The dynamic queue that is created
in this way is a local queue whose attributes are taken from the model queue
definition. The dynamic queue name can be specified by the application or the
queue manager can generate the name and return it to the application.

Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Specific local queues used by MQSeries
MQSeries uses some local queues for specific purposes related to its operation.
You must define these queues before MQSeries can use them.

 � Application queues
This is a queue that is used by an application through the MQI. It can be a
local queue on the queue manager to which an application is linked, or it can
be a remote queue that is owned by another queue manager.

Applications can put messages on local or remote queues. However, they can
only get messages from a local queue.

 � Initiation queues
| Initiation queues are queues that are used in triggering. A queue manager puts

a trigger message on an initiation queue when a trigger event occurs. A trigger
event is a logical combination of conditions that is detected by a queue
manager. For example, a trigger event may be generated when the number of
messages on a queue reaches a predefined depth. This event causes the
queue manager to put a trigger message on a specified initiation queue. This
trigger message is retrieved by a trigger monitor, a special application that
monitors an initiation queue. The trigger monitor then starts up the application
program that was specified in the trigger message.

 Chapter 1. Introduction to MQSeries 15

 Objects

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

See “Managing objects for triggering” on page 80 and “runmqtrm (Start trigger
monitor)” on page 326. For more information about triggering, see Chapter 14,
“Starting MQSeries applications using triggers” in the MQSeries Application
Programming Guide.

 � Transmission queues
Transmission queues are queues that temporarily stores messages that are
destined for a remote queue manager. You must define at least one
transmission queue for each remote queue manager to which the local queue
manager is to send messages directly. These queues are also used in remote
administration; see “Remote administration from a local queue manager using
MQSC commands” on page 89. For information about the use of transmission
queues in distributed queuing, see Chapter 1, “Concepts of
intercommunication” in the MQSeries Intercommunication book.

| � Cluster transmission queues
| Each queue manager within a cluster has a cluster transmission queue called
| SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition of this queue is created
| by default on every queue manager on Version 5.1 of MQSeries for AIX,
| HP-UX, OS/2, Warp, Sun Solaris, and Windows NT.

| A queue manager that is part of the cluster can send messages on the cluster
| transmission queue to any other queue manager that is in the same cluster.

| Cluster queue managers can communicate with queue managers that are not
| part of the cluster. In order to do this, the queue manager must define
| channels and a transmission queue to the other queue manager in the same
| way as in a traditional distributed-queuing environment.

| During name resolution, the cluster transmission queue takes precedence over
| the default transmission queue. When a queue manager that is not part of the
| cluster puts a message onto a remote queue, the default action, if there is no
| transmission queue with the same name as the destination queue manager, is
| to use the default transmission queue.

| When a queue manager is part of a cluster, the default action is to use the
| SYSTEM.CLUSTER.TRANSMIT.QUEUE, except when the destination queue
| manager is not part of the cluster.

 � Dead-letter queues
A dead-letter queue is a queue that stores messages that cannot be routed to
their correct destinations. This occurs when, for example, the destination
queue is full. The supplied dead-letter queue is called
SYSTEM.DEAD.LETTER.QUEUE. These queues are sometimes referred to as
undelivered-message queues.

For distributed queuing, you should define a dead-letter queue on each queue
manager involved.

 � Command queues
The command queue, named SYSTEM.ADMIN.COMMAND.QUEUE, is a local
queue to which suitably authorized applications can send MQSeries commands
for processing. These commands are then retrieved by an MQSeries
component called the command server. The command server validates the
commands, passes the valid ones on for processing by the queue manager,
and returns any responses to the appropriate reply-to queue.

16 MQSeries System Administration

 Objects

A command queue is created automatically for each queue manager when that
queue manager is created.

 � Reply-to queues
When an application sends a request message, the application that receives
the message can send back a reply message to the sending application. This
message is put on a queue, called a reply-to queue, which is normally a local
queue to the sending application. The name of the reply-to queue is specified
by the sending application as part of the message descriptor.

 � Event queues
The MQSeries Version 5 products support instrumentation events, which can
be used to monitor queue managers independently of MQI applications.
Instrumentation events can be generated in several ways, for example:

– An application attempting to put a message on a queue that is not available
or does not exist.

– A queue becoming full.

– A channel being started.

When an instrumentation event occurs, the queue manager puts an event
message on an event queue. This message can then be read by a monitoring
application which may inform an administrator or initiate some remedial action if
the event indicates a problem. Note: Trigger events are quite different from
instrumentation events in that trigger events are not caused by the same
conditions, and do not generate event messages.

For more information about instrumentation events, see Chapter 1, “Using
instrumentation events to monitor queue managers” in the MQSeries
Programmable System Management manual.

 Process definitions
A process definition object defines an application that is to be started in response
to a trigger event on an MQSeries queue manager. See the “Initiation queues”
entry under “Specific local queues used by MQSeries” on page 15 for more
information.

The process definition attributes include the application ID, the application type, and
data specific to the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create
Process to create a process definition.

 Channels
Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages,
and another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see “Preparing channels and
transmission queues for remote administration” on page 90 and “Message
channels” in the MQSeries Intercommunication book,

 Chapter 1. Introduction to MQSeries 17

 System default objects

| Clusters
| In a traditional MQSeries network using distributed queuing, every queue manager
| is independent. If one queue manager needs to send messages to another queue
| manager it must have defined a transmission queue, a channel to the remote
| queue manager, and a remote queue definition for every queue to which it wants to
| send messages.

| A cluster is a group of queue managers set up in such a way that the queue
| managers can communicate directly with one another over a single network,
| without the need for complex transmission queue, channels, and queue definitions.

| For information about clusters, see Chapter 9, “Administering remote MQSeries
| objects” on page 87 and the MQSeries Queue Manager Clusters book.

| Namelists
| A namelist is an MQSeries object that contains a list of other MQSeries objects.
| Typically, namelists are used by applications such as trigger monitors, where they
| are used to identify a group of queues. The advantage of using a namelist is that it
| is maintained independently of applications; that is, it can be updated without
| stopping any of the applications that use it. Also, if one application fails, the
| namelist is not affected and other applications can continue using it.

| Namelists are also used with queue manager clusters so that you can maintain a
| list of clusters referenced by more than one MQSeries object.

System default objects
The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify
any of these object definitions for use in applications at your installation.

Default object names have the stem SYSTEM.DEF; for example, the default local
queue is SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of
these names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, those attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

| See Appendix A, “System and default objects” on page 343 for more information
| about system defaults.

Local and remote administration
Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet , and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is, the communication is managed by the
operating system.

18 MQSeries System Administration

 Clients and servers

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For
example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Clients and servers
MQSeries supports client-server configurations for MQSeries applications.

An MQSeries client is a part of the MQSeries product that is installed on a machine
to accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues, exist only on the queue
manager machine, that is, on the MQI server machine. A server can support
normal local MQSeries applications as well.

The difference between an MQI server and an ordinary queue manager is that a
server has a dedicated communications link with each client. For more information
about creating channels for clients and servers, see Chapter 1, “Concepts of
intercommunication” in the MQSeries Intercommunication book.

For information about client support in general, see the MQSeries Clients book.

MQSeries applications in a client-server environment
When linked to a server, client MQSeries applications can issue most MQI calls in
the same way as local applications. The client application issues an MQCONN call
to connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
queue manager.

You must link your applications to the appropriate client libraries. See Chapter 10,
“Using the message queue interface (MQI)” through Chapter 13, “Solving
problems” in the MQSeries Clients book for further information.

 Chapter 1. Introduction to MQSeries 19

 Extending facilities

Extending queue manager facilities
The facilities provided by a queue manager can be extended by:

 � User exits
 � Installable services

 User exits
User exits provide a mechanism for you to insert your own code into a queue
manager function. The user exits supported include:

 � Channel exits
These exits change the way that channels operate. Channel exits are
described in Chapter 35, “Channel-exit programs” in the MQSeries
Intercommunication book.

� Data conversion exits
These exits create source code fragments that can be put into application
programs to convert data from one format to another. Data conversion exits
are described in Chapter 11, “Writing data-conversion exits” in the MQSeries
Application Programming Guide.

| � The cluster workload exit
| The function performed by this exit is defined by the provider of the exit. Call
| definition information is given in “MQWXP - Cluster workload exit parameter
| structure” in the MQSeries Queue Manager Clusters book. The exit is
| supported in the following environments: AIX, HP-UX, OS/2, Sun Solaris,
| Windows NT, and OS/390.

 Installable services
Installable services are more extensive than exits in that they have formalized
interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component. You can
use the components supplied with the MQSeries product, or you can write your
own component to perform the functions that you require.

Currently, the following installable services are provided:

Authorization service
The authorization service allows you to build your own security facility.

The default service component that implements the service is the Object
Authority Manager (OAM), which is supplied with MQSeries for UNIX systems
and the MQSeries for Windows NT product. (The OAM is not supplied with
MQSeries for OS/2 Warp.) By default, the OAM is active, and you do not have
to do anything to configure it. You can use the authorization service interface to
create other components to replace or augment the OAM. For more information
about the OAM, see Chapter 10, “Protecting MQSeries objects” on page 103.

Under MQSeries for OS/2 Warp, you must write your own service component if
you want to implement the authorization service. For example, you can create
your own security features based on a third-party security product.

Name service
The name service enables the sharing of queues by allowing applications to
identify remote queues as though they were local queues.

20 MQSeries System Administration

 Security

A default service component that implements the name service is provided with
the MQSeries Version 5 products. It uses the Open Software Foundation (OSF)
Distributed Computing Environment (DCE). You can also write your own name
service component. (You might want to do this if you do not have DCE installed,
for example.) By default, the name service is inactive.

For more information, see Chapter 13, “Name service” in the MQSeries
Programmable System Management book.

User identifier service
The user identifier service is supported by MQSeries for OS/2 Warp only. It
allows MQI applications in an OS/2 environment to associate a user ID (other
than the default user ID, OS2) with MQSeries messages. The receiving
applications are then able to identify the source of the messages. A sample user
identifier service component is supplied.

Note that this is not intended to provide a secure service. There is no
mechanism to prevent applications from copying this user ID.

For more information, see Appendix F, “User identifier service” on page 365.

See Chapter 11, “Installable services and components” in the MQSeries
Programmable System Management manual for more information about the
installable services.

 Security
In the MQSeries Version 5 products, there are two methods of providing security:

� The Object Authority Manager (OAM) facility
 � DCE security

Object Authority Manager (OAM) facility
In MQSeries for UNIX systems and MQSeries for Windows NT, authorization for
using MQI calls, commands, and access to objects is provided by the Object
Authority Manager (OAM), which by default is enabled. Access to MQSeries
entities is controlled through MQSeries user groups and the OAM. A command line
interface is provided to enable administrators to grant or revoke authorizations as
required.

No OAM security features are provided either by MQSeries for OS/2 Warp or by
OS/2 itself. You should consider what your security requirements are, and design
your system to provide these facilities or, in their absence, to ensure that your
applications are aware of the lack of security and are not therefore compromised.

Note: The authorization service is available in MQSeries for OS/2 Warp, but no
authorization service component is supplied. If security is essential to your
enterprise, consider writing your own authorization service component. This
component would use the supplied interface to access the facilities provided by a
third-party security manager.

For more information about creating authorization service components, see
Chapter 12, “Authorization service” in the MQSeries Programmable System
Management book.

 Chapter 1. Introduction to MQSeries 21

 Transactional support

 DCE security
Channel exits that use the DCE Generic Security Service (GSS) are provided by
MQSeries. For more information, see “Supplied channel-exit programs using DCE
security services” in the MQSeries Intercommunication book.

 Transactional support
An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
queue manager itself, or externally by another XA-compliant transaction manager
such as IBM CICS, Transarc Encina, or BEA Tuxedo.

For more information, see Chapter 14, “Transactional support” on page 175.

22 MQSeries System Administration

 Administration � Using MQSC commands

Chapter 2. An introduction to MQSeries administration

This chapter introduces the subject of MQSeries administration.

Administration tasks include creating, starting, altering, viewing, stopping, and
deleting MQSeries objects (queue managers, queues, clusters, processes, and
channels).

Local and remote administration
You administer MQSeries objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. You can access other systems,
for example through the TCP/IP terminal emulation program telnet , and carry out
administration there. In MQSeries, you can consider this as local administration
because no channels are involved, that is the communication is managed by the
operating system.

MQSeries supports administration from a single point through what is known as
remote administration. This allows you to issue commands from your local system
that are processed on another system. You do not have to log on to that system,
although you do need to have the appropriate channels defined. The queue
manager and command server on the target system must be running. For
example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Chapter 9, “Administering remote MQSeries objects” on page 87 describes the
subject of remote administration in greater detail.

Performing administration tasks using control commands
Control commands allow you to perform administrative tasks on queue managers
themselves.

See Chapter 6, “Managing queue managers using control commands” on page 49
for more information about control commands.

Performing administrative tasks using MQSC commands
You use MQSeries commands (MQSC) to manage queue manager objects,
including the queue manager itself, channels, queues, and process definitions.

You issue MQSC commands to a queue manager using the runmqsc command.
You can do this interactively, issuing commands from a keyboard, or you can
redirect the standard input device (stdin) to run a sequence of commands from an
ASCII text file. In both cases, the format of the commands is the same.

 Copyright IBM Corp. 1994,1999 23

 Using PCFs � MQSeries for Windows NT

You can run the runmqsc command in three modes, depending on the flags set on
the command:

� Verification mode, where the MQSC commands are verified on a local queue
manager, but are not actually run.

� Direct mode, where the MQSC commands are run on a local queue manager.

� Indirect mode, where the MQSC commands are run on a remote queue
manager.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

| MQSC commands are available on other platforms, including AS/400, and OS/390.

MQSC commands are summarized in Appendix G, “Comparing command sets” on
page 367.

Chapter 2, “The MQSeries commands” in the MQSeries Command Reference
manual contains a description of each MQSC command and its syntax.

See “Performing local administration tasks using MQSC commands” on page 60 for
more information about using MQSC commands in local administration.

Performing administrative tasks using PCF commands
The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In
this way you can create queues and process definitions, and change queue
managers, from a program.

PCF commands cover the same range of functions provided by the MQSC facility.

See “PCF commands” on page 83 for more information.

| You can use the MQSeries Administration Interface (MQAI) to obtain easier
| programming access to PCF messages. This is described in greater detail in
| “Using the MQAI to simplify the use of PCFs” on page 84.

Administration on MQSeries for Windows NT
On MQSeries for Windows NT you can perform administration tasks using:

| � PCF, MQSC, and control commands

| � The MQSeries Explorer snap-in and the MQSeries Services snap-in
| applications running under the Microsoft Management Console (MMC)

| � The Windows NT Default Configuration application

| � MQSeries Web Administration

24 MQSeries System Administration

 MQSeries for Windows NT

| Using commands on MQSeries for Windows NT
| You can perform administration tasks using:

| � Control commands that you enter through the Windows NT command line

| � The runmqsc control command to cause MQSC commands from standard
| input to be executed

| � Any local or remote MQSeries application program that generates PCF
| commands in messages, putting them onto the command queue,
| SYSTEM.ADMIN.COMMAND.QUEUE, to be processed by the MQSeries
| command server

| Using the MQSeries Explorer
| The MQSeries Explorer is an application that runs under the Microsoft Management
| Console (MMC). It provides a graphical user interface for controlling resources in a
| network. Using the online guidance, you can:

| � Define and control various resources including queue managers, queues,
| channels, process definitions, client connections, namelists, and clusters.

| � Start or stop a queue manager and its associated processes.

| � View queue managers and their associated objects on your workstation or from
| other workstations.

| � Check the status of queue managers, clusters, and channels.

| You can invoke the MQSeries Explorer from the First Steps application, or from the
| Windows NT Start prompt.

| See Chapter 3, “Administration using the MQSeries Explorer” on page 29 for more
| information.

| Using the MQSeries Services snap-in
| The MQSeries Services snap-in is an application that runs under the MMC. It
| allows you to perform more advanced tasks, typically associated with setting up
| and fine tuning the working environment for MQSeries. For example, you can:

| � Start or stop a queue manager.

| � Change the default queue manager.

| � Start or stop individual MQSeries processes such as a channel initiator, or a
| listener.

| � Start or stop the command server.

| � Start or stop the service trace.

| � Set a queue manager to start up automatically when you start up your
| workstation.

| For more information, see Chapter 4, “Administration using the MQSeries Services
| snap-in” on page 37.

 Chapter 2. An introduction to MQSeries administration 25

 MQSeries for Windows NT

| Using the Windows NT default configuration application
| You can use the Windows NT Default Configuration program from the MQSeries
| First Steps application or the MQSeries Postcard application to create a “starter
| set” (or default set) of MQSeries objects which you can then administer. A
| summary of the default objects created is listed in Table 25 on page 346.

| Using MQSeries Web Administration
| MQSeries for Windows NT provides a web-based application that allows you to
| administer MQSeries objects on all systems in your MQSeries network from a web
| browser running on Windows NT, Windows 95, and Windows 98. MQSeries Web
| Administration shows you how to use MQSC command facilities either as individual
| commands or multiple commands from a script.

| You start the MQSeries Web Administration server from an icon within the
| MQSeries Services snap-in.

| For more information, see Chapter 5, “Using MQSeries Web Administration” on
| page 43.

| Editing configuration information
| All MQSeries configuration information is stored in the Windows NT Registry . The
| MQSeries configuration files, qm.ini and mqs.ini, are no longer used in MQSeries
| Version 5.1 There should be a simple, or close correlation between the contents of
| the Windows NT Registry and the MQSeries configuration files.

| You edit configuration information from the MQSeries Services snap-in.

| However, you may find it useful to read the descriptions of the individual attributes
| in the configuration files in Chapter 11, “Configuring MQSeries” on page 127. The
| descriptions themselves are still relevant for reference purposes.

| Use the MQSeries Services snap-in to make configuration changes only. Do not
| attempt to edit the registry system file directly as this may cause your system to
| behave unpredictably and adversely affect the smooth running of both your
| MQSeries system and your Windows NT operating system.

| Migrating to the Windows NT Registry
| The Windows NT Registry is created when you install the operating system. When
| you migrate to MQSeries for Windows NT Version 5.1, the information in the
| configuration files you used in previous release is automatically stored in the
| registry by the MQSeries Services snap-in.

| If you want to refer back to these files in the future, you are recommended to back
| them up before starting the migration process.

| Viewing configuration information
| You can view a description of the keys used by the Windows NT Registry from the
| MQSeries Information Center. You can access the MQSeries Information Center
| from:

| � An icon in the Windows NT Start menu
| � An option in the MQseries First Steps application

26 MQSeries System Administration

 Understanding MQSeries names

Understanding MQSeries file names
| Each MQSeries queue, queue manager, namelist, and process object is

represented by a file. Because object names are not necessarily valid file names,
the queue manager converts the object name into a valid file name where
necessary.

The path to a queue manager directory is formed from the following:

� A prefix, which is defined in the queue manager configuration file, qm.ini.

In MQSeries for UNIX systems, the default prefix is:

/var/mqm

In MQSeries for OS/2 Warp and MQSeries for Windows NT, the default prefix
is:

c:\mqm

 � A literal:

qmgrs

� A coded queue manager name, which is the queue manager name transformed
into a valid directory name. For example, the queue manager:

queue.manager

would be represented as:

queue!manager

This process is referred to as name transformation.

Queue manager name transformation
In MQSeries, you can give a queue manager a name containing up to 48
characters.

For example, you could name a queue manager:

QUEUE.MANAGER.ACCOUNTING.SERVICES

However, each queue manager is represented by a file and there are limitations to
the maximum length a file name can be, and to the characters that can be used in
the name. As a result, the names of files representing objects are automatically
transformed to meet the requirements of the file system.

The rules governing the transformation of a queue manager name, using the
example of a queue manager with the name queue.manager, are as follows:

1. Transform individual characters:

. becomes !
/ becomes &

2. If the name is still not valid:

a. Truncate it to eight characters
b. Append a three-character numeric suffix

 Chapter 2. An introduction to MQSeries administration 27

 Understanding MQSeries names

For example, assuming the default prefix, the queue manager name in MQSeries
for UNIX systems becomes:

/var/mqm/qmgrs/queue!manager

In MQSeries for OS/2 Warp and MQSeries for Windows NT with HPFS (or NTFS),
the queue manager name becomes:

c:\mqm\qmgrs\queue!manager

In MQSeries for OS/2 Warp and MQSeries for Windows NT with FAT, the queue
manager name becomes:

c:\mqm\qmgrs\queue!ma

The transformation algorithm also allows distinction between names that differ only
in case, on file systems that are not case sensitive.

Object name transformation
Object names are not necessarily valid file system names. Therefore the object
names may need to be transformed. The method used is different from that for
queue manager names because, although there only a few queue manager names
per machine, there can be a large number of other objects for each queue

| manager. Only process definitions, queues, and namelists are represented in the
file system; channels are not affected by these considerations.

When a new name is generated by the transformation process there is no simple
relationship with the original object name. You can use the dspmqfls command to
convert between real and transformed object names.

28 MQSeries System Administration

 The MQSeries Explorer � Introduction

| Chapter 3. Administration using the MQSeries Explorer

| This information applies to MQSeries for Windows NT V5.1 only .

| MQSeries for Windows NT Version 5.1 provides an administration interface called
| the MQSeries Explorer to perform administration tasks as an alternative to using
| control or MQSC commands. (Appendix G, “Comparing command sets” on
| page 367 shows you which operations you can perform using the MQSeries
| Explorer.)

| The MQSeries Explorer allows you to perform remote administration of your
| network from a computer running Windows NT simply by pointing the MQSeries
| Explorer at the queue managers and clusters you are interested in. The platforms
| and levels of MQSeries which can be administered using the MQSeries Explorer
| are described in “Prerequisite software” on page 30.

| The configuration steps you must perform on remote MQSeries queue managers to
| allow the MQSeries Explorer to administer them are outlined in “Required
| definitions for administration” on page 31.

| This chapter contains the following topics:

| � “What you can do with the MQSeries Explorer”
| � “Prerequisite software” on page 30
| � “Required definitions for administration” on page 31
| � “Showing and hiding queue managers and clusters” on page 31
| � “Cluster membership” on page 32
| � “Security” on page 33
| � “Data conversion” on page 34
| � “Saving and loading console files” on page 34
| � “Switching off the automatic population facility” on page 35

| What you can do with the MQSeries Explorer
| With the MQSeries Explorer, you can:

| � Start and stop a queue manager (on your local machine only).

| � Define, display, and alter the definitions of MQSeries objects such as queues
| and channels.

| � Browse the messages on a queue.

| � Start and stop a channel.

| � View status information about a channel.

| � View queue managers in a cluster.

| � Create a new queue manager cluster using the Create New Cluster wizard.

| � Add a queue manager to a cluster using the Add Queue Manager to Cluster
| wizard.

| � Add an existing queue manager to a cluster using the Join Cluster wizard.

 Copyright IBM Corp. 1994,1999 29

 Prerequisites

| The MQSeries Explorer presents information in a style consistent with that of the
| Microsoft Management Console (MMC) and the other snap-in applications that the
| MMC supports.

| You perform administration tasks using a series of Property Sheets and Property
| Pages. A Property Sheet is a tabbed dialog box made up of a collection of
| Property Pages. The Property Sheet for an object contains all the attributes
| relating to that object in a series of fields, some of which you can edit. For each of
| the MQSeries objects, the attributes are divided into categories which then appear
| as separate pages within the Property Sheet.

| Points to consider when using the MQSeries Explorer
| When deciding whether to use the MQSeries Explorer at your installation, bear the
| following points in mind:

| � The MQSeries Explorer works best with small queue managers. If you have a
| large number of objects on a single queue manager you may experience
| delays while the MQSeries Explorer extracts the required information to present
| in a view. As a rough guide as to what a “large number” is, if your queue
| managers have more than 200 queues or 100 channels, you may want to
| consider using a third-party enterprise console product instead of the MQSeries
| Explorer.

| � MQSeries clusters can potentially contain hundreds or thousands of queue
| managers. Because the MQSeries Explorer presents the queue managers in a
| cluster using a tree structure, the view can become cumbersome for large
| clusters. The physical size of a cluster does not affect the speed of the
| MQSeries Explorer dramatically because the explorer does not connect to the
| queue managers in the cluster until you select them.

| � The message browser displays the first 200 messages on a queue. Only the
| first 1000 bytes of message data contained in a message are formatted and
| displayed on your screen. Messages containing more than 1000 bytes of
| message data are not displayed in their entirety.

| � The MQSeries Explorer cannot administer a cluster whose repository queue
| managers are on MQSeries for OS/390. To avoid this problem, nominate an
| additional repository queue manager on a system which the MQSeries Explorer
| can administer. By connecting the cluster through this new repository queue
| manager, you can administer the queue managers in the cluster, subject to the
| MQSeries Explorer’s usual restrictions for supported levels of MQSeries.

| Prerequisite software
| Before you can use the MQSeries Explorer, you must have the following installed
| on your computer:

| � The Microsoft Management Console Version 1.1 or higher (installed as part of
| MQSeries for Windows NT 5.1 installation)

| � Internet Explorer Version 4.01 (SP1) (installed as part of MQSeries for
| Windows NT 5.1 installation)

| The MQSeries Explorer can connect to remote queue managers using the TCP/IP
| communication protocol only.

30 MQSeries System Administration

 Required definitions � Showing and hiding

| Table 1 summarizes the platforms and command levels that support the MQSeries
| Explorer.

| The MQSeries Explorer handles the differences in the capabilities between the
| different command levels and platforms. However, if it encounters a value which it
| does not recognize as an attribute for an object, you won’t be able to change the
| value of that attribute.

| Table 1. Platforms and command levels

| Platform| Command level

| AIX and UNIX variants| Command level 221 and above

| OS/400| Command level 320 and above

| OS/2 and Windows NT| Command level 201 and above

| VMS and Tandem| Command level 221 and above

| Required definitions for administration
| Ensure that you have satisfied the following requirements before attempting to use
| the MQSeries Explorer. Check that:

| 1. A command server is running for any queue manager being administered.

| 2. A suitable TCP/IP listener exists for every remote queue manager. This may
| be the MQSeries listener or the inetd daemon as appropriate.

| 3. The server connection channel, called SYSTEM.ADMIN.SVRCONN, exists on
| every remote queue manager. This channel is mandatory for every remote
| queue manager being administered. Without it, remote administration is not
| possible.

| You can create the channel using the following MQSC command:

| DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

| The command cited creates a very basic channel definition. If you want a more
| sophisticated definition, to set up security, for example, additional parameters
| are required.

| Showing and hiding queue managers and clusters
| The MQSeries Explorer can display more than one queue manager at a time. The
| Show Queue Manager dialog box (selectable from the pop-up menu for the Queue
| Managers node) allows you to choose whether you display information for a local
| queue manager or for a queue manager on another (remote) machine. To show a
| local queue manager, you select the Show a local queue manager radio button,
| and choose the appropriate queue manager from a list.

| To show a remote queue manager, you must select the Show a remote queue
| manager radio button and type in the name of the remote queue manager and the
| connection name in the field provided. The connection name is the IP address, or
| host name, of the machine you are trying to connect to, with an optional port

 Chapter 3. Administration using the MQSeries Explorer 31

 Cluster membership

| number. This connection name is used to establish a client connection to the
| remote queue manager using its SYSTEM.ADMIN.SVRCONN server connection
| channel.

| The Hide Queue Manager dialog box (which you select from the pop-up menu for
| the Queue Managers node) displays a list of all visible queue managers and allows
| you to select one to hide from view on the console.

| Similar facilities exist for hiding and showing clusters. When you show a cluster in
| the console, you select a repository queue manager in the cluster as the initial point
| of connection. Within the cluster, the MQSeries Explorer determines the
| connection information it needs for the member queue managers.

| Cluster membership
| The MQSeries Explorer needs to maintain up to date administration data about
| clusters in order to be able to communicate effectively with them and to display
| correct cluster information when requested to do so. In order to do this, the
| MQSeries Explorer needs the following information from you:

| � The name of a repository queue manager
| � The connection name of the repository queue manager if it is on a remote
| queue manager

| With this information, the MQSeries Explorer can:

| � Use the repository queue manager to obtain a list of queue managers in the
| cluster.

| � Administer the queue managers that are members of the cluster and are on
| supported platforms and command levels.

| Administration is not possible if:

| � The chosen repository becomes unavailable. The MQSeries Explorer does not
| switch to an alternative repository.

| � The chosen repository cannot be contacted over TCP/IP.

| � The chosen repository is running on a queue manager that is running on a
| platform and command level not supported by the MQSeries Explorer.

| The cluster members that can be administered can be local, or they can be remote
| if they can be contacted using TCP/IP. The MQSeries Explorer connects to local
| queue managers that are members of a cluster directly, without using a client
| connection.

32 MQSeries System Administration

 Security

| Security
| If you are using MQSeries in an environment where it is important for you to control
| user access to particular objects, you may need to consider the security aspects of
| using the MQSeries Explorer.

| Authorization to run the MQSeries Explorer
| Before the MQSeries Explorer is enabled, you must:

| � Ensure that chosen users have the correct level of authorization. This means
| being one of the following:

| – A member of the mqm group

| – A member of the administrator group on the machine running the MQSeries
| Explorer

| – Logged on using the SYSTEM ID

| Group membership at logon time is used for authorization purposes, if membership
| is changed so that a user can access the MQSeries Explorer, that user must log off
| and log back on again.

| Furthermore, some operations may require you to have authorization to use
| individual objects or object types. The MQSeries Explorer uses existing MQSeries
| rules for security to ensure that this happens. For example, you must have display
| authority for a queue to be able to view its attributes in the MQSeries Explorer.

| Security for connecting to remote queue managers
| The MQSeries Explorer connects to remote queue managers as an MQI client
| application. This means that each remote queue manager must have a definition of
| a server connection channel and a suitable TCP/IP listener. If you do not specify a
| nonblank value for the MCAUSER attribute of the channel, or use a security exit, it
| is possible for a malicious application to connect to the same server connection
| channel and gain access to the queue manager objects with unlimited authority.

| The default value of the MCAUSER attribute is a blank . If you specify a
| nonblank user name as the MCAUSER attribute of the server connection channel,
| all programs connecting to the queue manager using this channel run with the
| identity of the named user and have the same level of authority.

| Using a security exit
| A more flexible approach is available by installing a security exit on the server
| connection channel SYSTEM.ADMIN.SVRCONN on each queue manager which is
| to remotely administered.

| A matching security exit can be installed on the machine on which the MQSeries
| Explorer is being used. This allows complete flexibility in the authentication
| processing performed when a client connection is established to give consistency
| with your enterprise’s MQSeries security policy.

 Chapter 3. Administration using the MQSeries Explorer 33

 Data conversion � Console files

| Enabling a security exit
| The IBM MQSeries node Property Sheet allows you to specify the name of a
| security exit and provide security exit data to be used for all client connections to
| remote queue managers that are established by the MQSeries Explorer. This
| Property Sheet is also displayed when the MQSeries Explorer is added to a
| console using the MMC Add/Remove Snap-in dialog box.

| If you change this information after client connections have been established, the
| new information affects only those connections set up after the change has been
| made. Existing connections are not broken and re-established.

| Data conversion
| When the connection to a queue manager is established, the queue manager’s
| CCSID is also established. This enables the MQSeries Explorer to perform any
| character set conversions needed to display the data from remote queue managers
| correctly.

| The tables for converting from the UNICODE CCSID to the queue manager CCSID
| (and vice versa) must be available to the MQSeries Explorer machine otherwise the
| MQSeries Explorer cannot communicate with the queue manager.

| An error message is issued if you try to establish a connection between the
| MQSeries Explorer and a queue manager whose CCSID the MQSeries Explorer
| does not recognize.

| Supported conversions are described in Appendix F, “Code page conversion
| tables” in the MQSeries Application Programming Reference manual.

| Saving and loading console files
| The MQSeries Explorer can save the contents of a console in a file called a .MSC
| file.

| The following information is saved in a .MSC file:

| � Details of the queue managers and clusters showing in the console. The
| names of the queue managers that are members of the visible clusters are not
| saved.

| � The security exit name and the security exit data for client connections to
| remote queue managers.

| � Whether the MQSeries Explorer automatically loads the local queue managers
| and the clusters of which they are members when the .MSC file is loaded.

| � Any non-default configuration of columns visible in each view.

| � Filtering options for the objects visible in each view.

| You can save different views of the network into each .MSC file.

34 MQSeries System Administration

 Automatic population facility

| Switching off the automatic population facility
| If you load the MQSeries Explorer into the MMC console using the MMC
| Add/Remove Snap-in, the MQSeries Explorer starts up in its default state.

| The default behavior is to automatically determine:

| � The names of the queue managers on the local machine and add them into the
| Queue Managers node

| � Which clusters the local queue managers are part of and add these clusters to
| the Clusters node

| If you do not want this default behavior to occur (perhaps you want to save a
| console with a particular set of queue managers) switch off the automatic
| population facility by unchecking the checkbox on the properties page for the
| top-level MQSeries node and then save the console.

 Chapter 3. Administration using the MQSeries Explorer 35

 Automatic population facility

36 MQSeries System Administration

 Using the MQSeries Services snap-in � Introduction

| Chapter 4. Administration using the MQSeries Services
| snap-in

| This information applies to MQSeries for Windows NT V5.1 only .

| The MQSeries Services snap-in runs under the Microsoft Management Console
| (MMC). It allows you to perform more advanced tasks, typically associated with
| setting up and fine tuning the working environment for MQSeries, either locally or
| remotely within the Windows NT domain. It monitors the operation of MQSeries
| servers and provides extensive error detection and recovery functions.

| The MQSeries Services snap-in is an administration tool that should only be used
| by experienced staff who are authorized to make changes to MQSeries objects and
| services.

| This chapter contains the following:

| � “What you can do with the MQSeries Services snap-in”
| � “Prerequisite software” on page 38
| � “Using the MQSeries Services snap-in” on page 38
| � “Security” on page 39

| What you can do with the MQSeries Services snap-in
| All the functions offered by the MQSeries Services snap-in can be used to
| administer local or remote MQSeries for Windows NT servers, except for the Alert
| monitor function which records and notifies you of problems in your MQSeries
| system. This function can be used on your local system only. See “Using the
| MQSeries alert monitor application” on page 38 for more information.

| With the MQSeries Services snap-in, you can:

| � Start or stop a queue manager (on your local machine or on remote NT
| machines).

| � Start or stop the command servers, channel initiators, trigger monitors, and
| listeners.

| � Create and delete queue managers, command servers, channel initiators,
| trigger monitors, and listeners.

| � Set any of the services to start up automatically or manually during system start
| up.

| � Modify the properties of queue managers. This function replaces the use of
| stanzas in configuration (mqs.ini and qm.ini) files.

| � Change the default queue manager.

| � Modify the parameters for any service, such as the TCP port number for a
| listener, or a channel initiator queue name.

| � Modify the behavior of MQSeries if a particular service fails, for example, retry
| starting the service x number of times.

| � Start or stop the service trace.

 Copyright IBM Corp. 1994,1999 37

 Prerequisites � Using

| � Start or stop MQSeries Web Administration. (For more information, see
| Chapter 5, “Using MQSeries Web Administration” on page 43.)

| The MQSeries Services snap-in presents information in a style consistent with that
| of the Microsoft Management Console (MMC) and the other snap-in applications
| that the MMC supports.

| Prerequisite software
| Before you can use the MQSeries Services snap-in, you must have the following
| software installed on your computer:

| � The Microsoft Management Console Version 1.1 or higher (installed as part of
| MQSeries for Windows NT 5.1 installation)

| � Internet Explorer Version 4.01 (SP1) (installed as part of MQSeries for
| Windows NT 5.1 installation)

| Using the MQSeries Services snap-in
| The MQSeries icon is in the system tray on the server and is overlaid with a
| color-coded status symbol which can have one of the following meanings:

| Green Healthy; no alerts at present

| Blue Indeterminate; MQSeries is starting up or shutting down

| Yellow Alert; one or more services are failing or have already failed

| When you click on the icon with your right mouse button, a context menu appears.
| From this menu, select the MQSeries Services option to bring up the MMC. The
| MQSeries Services snap-in is already loaded and is ready to use.

| You can save any changes you make to this console view so that each time you
| start up the MQSeries Services snap-in from the task bar, it appears as you last
| saved it.

| The first time the MQSeries Services snap-in is started all the queues you currently
| have defined show the services belonging to that queue manager on the right-hand
| side of the console window. The MQSeries Services snap-in always contains an
| up to date list of the current set of queue managers. You do not have to add or
| remove any definitions manually. There are icons for the trace and alert monitor
| functions in addition to those for the queue managers. The trace and alert monitor
| functions are special services that do not belong to individual queue managers but
| to the system as a whole.

| The alert monitor application cannot be stopped. The trace service, when set to
| automatic startup, starts before any other services or queue managers.

| Using the MQSeries alert monitor application
| The MQSeries alert monitor is an error detection tool that identifies and records
| problems with MQSeries on a local machine.

| The MQSeries alert monitor displays information about the current status of the
| local installation of an MQSeries server.

38 MQSeries System Administration

 Recovery � Security

| From the MQSeries alert monitor, you can:

| � Access the MQSeries Services snap-in directly

| � View information relating to all outstanding alerts

| � Shut down the IBM MQSeries service on the local machine

| � Route alert messages over the network to a configurable user account, or to an
| NT workstation or server

| Looking at MQSeries alert monitor information
| If the task bar icon indicates that an alert has arisen, double click on the icon to
| open the Alert Monitor display. This dialog shows a tree view, grouped by queue
| manager, of all the alerts that are currently outstanding. Expand the nodes of the
| tree to see which services are alerted and look at the following pieces of
| information relating to the service:

| � The date and time of the most recent alert for the service
| � The command line that failed
| � The error message describing why the service failed

| MQSeries Services snap-in recovery facilities
| If you have set your queue managers to start automatically during system start up,
| you can configure the behavior of the MQSeries Services snap-in, in the
| appropriate property pages, to take one of several actions if one or more queue
| managers fail:

| � Restart the queue managers.

| � Execute a program. You may like to set up a paging to notify you of a failure,
| or have electronic mail sent, for example.

| � Restart the server.

| � Log the fact that a failure has occurred, but take no action.

| Security
| The MQSeries Services snap-in and the components associated with it use the
| Microsoft Windows NT security model. It is this security model that allows or
| denies access to MQSeries services.

| The MQSeries Services snap-in uses Component Object Model (COM) and
| Distributed Component Object Model (DCOM) technology to communicate between
| servers and between processes on a server.

| The COM server application, called AMQMSRVN, is shared between any client
| processes that need to use the MQSeries Services snap-in components (for
| example, the MQSeries Services snap-in, the alert monitor task bar and the IBM
| MQSeries service).

| Because AMQMSRVN must be shared between non-interactive and interactive
| logon sessions, it is launched under a special user account. This special user
| account is called “MQAdmin” and is created when MQSeries is installed.

| The password for MQAdmin is generated at installation time and is used only
| during the installation process to create the account itself and to configure the

 Chapter 4. Administration using the MQSeries Services snap-in 39

 Security

| logon environment for AMQMSRVN. The password is not known outside this
| “one-time” processing and is stored by the Windows NT operating system in a
| secure part of the Windows NT Registry.

| When the service is running, AMQMSRVN is launched and remains running for as
| long as the service is running. An MQSeries administrator who logs onto the
| server after AMQMSRVN is launched can use the MQSeries Services snap-in to
| administer queue managers on the server. By doing this, the MQSeries
| administrator causes the MQSeries Services snap-in to connect to the existing
| AMQMSRVN process. These two actions need different levels of permission
| before they can work:

| � The launch process requires a launch permission.

| � The MQSeries administrator requires “Access” permission.

| Controlling access
| When IBM MQSeries is installed, default access permissions are set up for the
| AMQMSRVN process. These default access permissions grant the following
| access permissions:

| � mqm (local MQ Administrators Group)

| � SYSTEM (local account that the IBM MQSeries service runs under)

| � Administrators (local administrators of this machine)

| These permissions restrict access to the alert monitor task bar application and the
| MQSeries Services snap-in and MQSeries Explorer snap-in to members of the
| mqm group alone. Other users attempting to access these functions are denied
| access.

| Before you can grant or deny users access to the MQSeries Services snap-in, you
| must configure the access permissions of the objects involved. A tool called
| DCOMCNFG.EXE which is shipped with Windows NT can be used to do this.

| Using the DCOMCFNG.EXE tool
| To start DCOMCNFG.EXE:

| � Click on the Windows Start button
| � Select “Run”
| � Type “dcomcnfg” in the open input field
| � Click OK

| A list of applications is displayed. From this list:

| � Find and highlight the “IBM MQSeries Services” entry.

| � Click on the Properties button. This displays information about the location of
| the DCOM server (AMQMSRVN.EXE) together with its identity and security
| properties.

| � Select the “Security” page to view or modify the launch, access or configuration
| permissions.

| � Stop the IBM MQSeries service from the Windows NT control panel and restart
| it for your changes to take effect. (If your changes affect a user who is
| currently logged on, that user must log off and log back on again.)

40 MQSeries System Administration

 Security

| In addition to being able to add to the list of users that are allowed access to a
| service, you can deny access to specific users and groups. This means that you to
| grant access to a group of users (by specifying a group name) but deny access to
| individuals within that group.

| Controlling remote access
| You can also grant or deny access to users of remote machines using the
| DCOMCNFG.EXE tool.

| The DCOM server can be turned on or off for the entire server using the
| appropriate setting on the Default Properties page.

| Changing the MQAdmin user account
| To change the password that has been generated for the MQAdmin user account:

| � Stop the IBM MQSeries service.

| � Close any MQSeries programs that are using the AMQMSRVN COM server
| (this includes snap-ins, alert monitor, task bar and so on).

| � Use the User Manager to change the MQAdmin password in the same way that
| an individual’s password would be changed. The User Manager is a Windows
| NT system management tool which allows system administrators to add, delete,
| or change users on an MQSeries system.

| � Use the DCOMCNFG.EXE tool to bring up the properties pages for the IBM
| MQSeries service.

| � Select the Identity Page.

| � Modify the password given for the MQAdmin user account.

| Because the AMQMSRVN COM server runs under the MQAdmin user account, it is
| this account that executes any MQSeries commands that are issued by user
| interface applications, or performed automatically on system startup, shutdown, or
| service recovery. Therefore the MQAdmin user account must have MQSeries
| administration rights. By default it is added to the local mqm group on the server.
| If this membership is removed, the MQSeries service fails to work properly.

| If a security problem arises with the DCOM configuration or with the MQAdmin user
| account, error messages and descriptions appear in the system event log. One
| common error is for a user not to have access or launch rights to the server. This
| error appears in the system log as a DCOM error with the following message
| description:

| Access denied attempting to launch a DCOM server. The server is:
| {55B9986ð-F95E-11d1-ABB6-ððð4ACF79B59}

 Chapter 4. Administration using the MQSeries Services snap-in 41

 Security

42 MQSeries System Administration

 MQSeries Web Administration � Points to consider

| Chapter 5. Using MQSeries Web Administration

| This information applies to MQSeries for Windows NT V5.1 only .

| MQSeries for Windows NT Version 5.1 provides an administration interface called
| MQSeries Web Administration. This allows you to perform the following tasks using
| a Java-enabled browser such as Netscape Navigator or Microsoft Internet Explorer:

| � Log on as an MQSeries Administrator
| � Select a queue manager and issue MQSC commands against it
| � Create, edit, and delete MQSC scripts

| Appendix G, “Comparing command sets” on page 367 shows you which operations
| you can perform using MQSeries Web Administration.

| This chapter contains the following topics:

| � “Points to consider when using MQSeries Web Administration”
| � “Prerequisite software” on page 44
| � “Encryption policies” on page 45
| � “Starting up MQSeries Web Administration server” on page 45
| � “Logging on as an MQSeries administrator (client side)” on page 45
| � “Administering queue managers” on page 46
| � “Using MQSeries command scripts” on page 47
| � “Configuring the MQSeries Web Administration server” on page 48

| Points to consider when using MQSeries Web Administration
| When deciding whether or not to use MQSeries Web Administration at your
| installation, bear the following points in mind:

| � The MQSeries Web Administration web server requires a dedicated IP port
| number.

| � MQSeries Web Administration can be accessed from the Internet if permitted to
| do so by your network configuration.

| � All users of MQSeries Web Administration require an active Windows NT user
| ID on the server computer with sufficient user rights to run MQSC commands.
| See “Authorization to run MQSeries Web Administration” on page 46 for more
| information.

| � To administer queue managers on computers other than the one running the
| MQSeries Web Administration web server, MQSeries message channels must
| be configured between the systems.

 Copyright IBM Corp. 1994,1999 43

 Prerequisites

Web
Browser

MQWA
Client

QML1

QML2

QML3

QMD

MQWA
Server

QMR1

QMR2

QMR3

QMR4

Web browser
machine

Web Administration
server machine MQSeries

machines

C1

C2

| Figure 1. MQSeries Web Administration

| Figure 1 shows a MQSeries Web Administration client which can administer the
| following queue managers when the administrator is logged into the MQSeries Web
| Administration server. (Note that MQWA is an abbreviation for MQSeries Web
| Administration.)

| The local queue managers QML1, QML2, QML3, and QMD reside on the MQSeries
| Web Administration server machine. The remote queue managers QMR2 and
| QMR3 are connected to the default queue manager, QMD, via the message
| channels C1 and C2. Note that the remote queue managers QMR1 and QMR4
| cannot be administered from this MQSeries Web Administration client because
| there are no channels defined to connect them to the default queue manager,
| QMD.

| Prerequisite software
| Before you can use MQSeries Web Administration, you must have the following
| installed on your computers.

| Prerequisite software for the server side
| � Windows NT Version 4 (SP3)
| � Microsoft Internet Explorer Version 4.01 (SP1)
| � MQSeries for Windows NT Version 5.1 server and Web Administration

| Prerequisite software for the client side
| Install either of the following browsers:

| � Netscape Navigator 4.04 with the Java AWT upgrade
| � Microsoft Internet Explorer Version 4.01 (SP1)

44 MQSeries System Administration

 Encryption policies � Logging on

| Encryption policies
| Two levels of encryption are used for administering MQSeries objects over the web.
| They are:

| � Authentication during log on
| The RSA Public Key Encryption Algorithm (PKA) with a 512-bit key is used for
| the initial client (web browser) logon to the server. The server authenticates
| the client, and a separate 40-bit key is created for the actual administration
| tasks described in the rest of this chapter. Consequently 512-bit RSA PKA is
| the level of encryption applied to the user’s Windows NT user name and
| password.

| A new RSA public and private key pair is generated each time the MQSeries
| Web Administration server is started.

| � Authentication when performing MQSeries Web Administration
| The RC4 encryption algorithm using 40-bit keys is used for all other data
| flowing between client and server.

| Starting up MQSeries Web Administration server
| The MQSeries Web Administration server can be started and stopped from an icon
| in the MQSeries Services snap-in. The server is configured to start automatically
| when installed.

| Logging on as an MQSeries administrator (client side)
| Connect your web browser to the MQSeries Web Administration web server using a
| URL of the form:

| http://<hostname> : <port_number>

| where:

| <hostname> is the IP host name of the computer running the web server.

| <port_number>
| is the IP port number assigned to the web server. The default value
| for port_number is 8081. However, this value may be changed using
| the MQSeries Services snap-in.

| This URL must be made known to all MQSeries administrators who will be using
| MQSeries Web Administration.

| The left-hand pane of the browser window contains a navigation area. To log on
| as an MQSeries Web Administrator and administer MQSeries objects:

| � Select the “Logon” option.

| � Use the Logon panel to enter your Windows NT user ID and password for
| MQSeries Web Administration.

| � Click Enter to begin the logging on process.

 Chapter 5. Using MQSeries Web Administration 45

 Administration

| Authorization to run MQSeries Web Administration
| Your user ID needs the necessary administration privileges on the MQSeries server
| to perform administration tasks. Therefore, before attempting to log on to
| MQSeries Web Administration, ensure that you have the correct level of
| authorization. This means being one or more of the following:

| � A member of the mqm group

| � A member of the administrator group on the machine running MQSeries Web
| Administration

| � Logged on using the SYSTEM ID

| Some operations may require you to have authorization to use individual objects or
| object types. MQSeries Web Administration uses existing MQSeries rules for
| security to ensure that this happens.

| Security for connecting to remote queue managers
| MQSeries Web Administration connects to remote queue managers using MQSC.
| The web administration server adopts the user ID of each logged-on administrator
| prior to invoking MQSC commands on the administrator’s behalf. Therefore,
| administrators have exactly the same privileges from MQSeries Web Administration
| as they would have using the runmqsc command locally on the web administration
| server.

| Administering queue managers
| Use the Administration panel to select the queue manager that you want to work
| with and to run MQSC commands or command scripts against.

| Detailed information about performing these functions can be found in the online
| help for MQSeries Web Administration.

| Administering local queue managers
| To administer a local queue manager, either select the name from the drop-down
| list or enter the name directly in the queue manager name field.

| Administering remote queue managers
| To administer a remote queue manager, enter the queue manager name in the
| queue manager name field.

| Before you can administer a remote queue manager through MQSeries Web
| Administration, you must define a channel between the local default queue
| manager and the remote queue manager.

| For more information about defining channels for remote administration, see
| Chapter 9, “Administering remote MQSeries objects” on page 87.

46 MQSeries System Administration

 Using MQSC scripts

| Using MQSeries command scripts
| MQSeries command scripts are files which a contain a sequence of MQSeries
| commands to be executed to perform a specific task. Script file names can be up
| to 251 characters in length, and can contain any alphanumeric characters other
| than \, /, :, *, ?, ”, <, >, or |. Names longer than 251 characters are truncated.
| They have a suffix of .mqs and are stored in a folder on the MQSeries Web
| Administration server.

| MQSeries Web Administration provides the following to assist with the creation and
| running of scripts:

| � A scripting language to simplify the writing of scripts which can be run on any
| platform supported by MQSeries Web Administration

| � A script management tool to help you with the creation, editing, and deletion of
| scripts

| � A user interface for the selection and running of scripts

| You use the Script Management panel to create and manage command scripts
| (create, edit, and delete).

| You can edit an existing script or create a new one. Scripts are saved by
| MQSeries Web Administration in the public scripts directory if you have created a
| public script1, or in a private scripts directory if you have created a private script2.

| To delete a script from the server, you must open the script in the edit area, and,
| when the file is displayed, delete it using the Delete option.

| Detailed information about performing these functions can be found in the online
| help for MQSeries Web Administration.

| 1 A public script is a script that is available for use by all authorized administrators.

| 2 A private script is a script that is available for use by a specific administrator user ID only.

 Chapter 5. Using MQSeries Web Administration 47

 Configuration options

| Configuring the MQSeries Web Administration server
| There are several options that you can use to configure the MQSeries Web
| Administration server, as shown in Table 2. You do this from the relevant property
| pages in the MQSeries Services snap-in.

| Table 2. Configuration options for MQSeries Web Administration

| Value| Type| Default value| Description

| MaxClients| REG_DWORD| 50| The maximum number of
| administrators that can
| use MQSeries Web
| Administration
| simultaneously.

| RemoteQMTimeout| REG_DWORD| 30| The number of seconds
| before an attempt to
| access a remote queue
| manager times out.

| SessionTimeout| REG_DWORD| 60| The number of minutes
| of inactivity before an
| administrators session
| times out (that is, will
| close).

| Trace| REG_SZ| Yes| Enable or disable a
| graphical trace
| window(1) (MQSeries
| trace is always enabled).

| WebPort| REG_DWORD| 8081| The IP port used by the
| web server.

| Note for Table 2:

| 1. The graphical trace window is a window on the screen that contains a copy of
| most of the information that is logged to MQSeries trace.

| Because enabling this window can have a detrimental effect on the
| performance of the MQSeries Web Administration server, you should only use it
| on the recommendation of your IBM service representative.

48 MQSeries System Administration

 Managing queue managers

Chapter 6. Managing queue managers using control
commands

This chapter describes how you can perform operations on queue managers and
command servers using control commands.

It contains the following sections:

� “Using control commands”
� “Creating a queue manager” on page 51
� “Creating a default queue manager” on page 54
� “Starting a queue manager” on page 54
� “Making an existing queue manager the default” on page 55
� “Stopping a queue manager” on page 55
� “Restarting a queue manager” on page 57
� “Deleting a queue manager” on page 57

Using control commands
You use control commands to perform operations on queue managers, command
servers, and channels. Control commands can be divided into three categories, as
shown in Table 3.

For information about administration tasks for channels, see Chapter 5, “DQM
implementation” in the MQSeries Intercommunication book.

Table 3. Categories of control commands

Category Description

Queue manager
commands

Queue manager control commands include commands for
creating, starting, stopping, and deleting queue managers and
command servers

Channel
commands

Channel commands include commands for starting and ending
channels and channel initiators

Utility commands Utility commands include commands associated with:

� Running MQSC commands
 � Conversion exits
 � Authority management
� Recording and recovering media images of queue manager

resources
� Displaying and resolving transactions

 � Trigger monitors
� Displaying the file names of MQSeries objects

 Copyright IBM Corp. 1994,1999 49

 Managing queue managers

Using control commands (MQSeries for UNIX systems)
In MQSeries for UNIX systems, you enter control commands in a shell window. In
these environments, control commands, including the command name itself, the
flags, and any arguments, are case sensitive. For example, in the command:

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

� The command name must be crtmqm, not CRTMQM.

� The flag must be -u, not -U.

� The dead-letter queue is SYSTEM.DEAD.LETTER.QUEUE.

� The argument is specified as jupiter.queue.manager, which is different from
JUPITER.queue.manager.

Therefore, take care to type the commands exactly as you see them in the
examples.

Using control commands (MQSeries for OS/2 Warp and MQSeries for
Windows NT)

In MQSeries for OS/2 Warp and MQSeries for Windows NT, you enter control
commands at a command prompt. In these environments, control commands and
their flags are not case sensitive, but arguments to those commands (such as
queue names and queue-manager names) are case sensitive.

For example, in the command:

crtmqm /u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

� The command name can be entered in uppercase or lowercase, or a mixture of
the two. These are all valid: crtmqm, CRTMQM, and CRTmqm.

� The flag can be entered as -u, -U, /u, or /U.

 � The arguments SYSTEM.DEAD.LETTER.QUEUE and jupiter.queue.manager must
be entered exactly as shown.

Chapter 17, “MQSeries control commands” on page 279 describes the syntax and
purpose of each command.

| Using the MQSeries Explorer (MQSeries for Windows NT only)
| For MQSeries for Windows NT only, you can use the MQSeries Explorer to perform
| the operations described in this chapter, except for:

| � Making an existing queue manager the default
| � Preemptive shutdown

| The tables published in Appendix G, “Comparing command sets” on page 367
| summarize which control commands have an equivalent MQSeries Explorer
| implementation.

50 MQSeries System Administration

 Creating a queue manager

Creating a queue manager
A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queuing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
MQSeries objects.

Before you can do anything with messages and queues, you must create at least
one queue manager and its associated objects. To create a queue manager, you
use the MQSeries control command crtmqm . The crtmqm command
automatically creates the required default objects and system objects. Default
objects form the basis of any object definitions that you make; system objects are
required for queue manager operation. When a queue manager and its objects
have been created, you use the strmqm command to start the queue manager.

Guidelines for creating queue managers
However, before you can create a queue manager, there are several points you
need to consider (especially in a production environment). Work through the
following checklist:

� Specify a unique queue manager name
When you create a queue manager, ensure that no other queue manager has
the same name anywhere in your network. Queue manager names are not
checked at creation time, and names that are not unique will prevent you from
creating channels for distributed queuing.

One way of ensuring uniqueness is to prefix each queue manager name with
its own unique node name. For example, if a node is called accounts, you
could name your queue manager accounts.saturn.queue.manager, where
saturn identifies a particular queue manager and queue.manager is an
extension you can give to all queue managers. Alternatively, you can omit this,
but note that accounts.saturn and accounts.saturn.queue.manager are
different queue manager names.

If you are using MQSeries for communication with other enterprises, you can
also include your own enterprise as a prefix. We do not actually do this in the
examples, because it makes them more difficult to follow.

Note: Queue manager names in control commands are case-sensitive. This
means that you are allowed to create two queue managers with the names
jupiter.queue.manager and JUPITER.queue.manager. However, such
complications are best avoided.

� Limit the number of queue managers
You can create as many queue managers as resources allow. However,
because each queue manager requires its own resources, it is generally better

| to have one queue manager with 100 queues on a node than to have ten
queue managers with ten queues each.

In production systems, many nodes will be run with a single queue manager,
but larger server machines may run with multiple queue managers.

 Chapter 6. Managing queue managers using control commands 51

 Creating a queue manager

� Specify a default queue manager
Each node should have a default queue manager, though it is possible to
configure MQSeries on a node without one. The default queue manager is the
queue manager that applications connect to if they do not specify a queue
manager name in an MQCONN call. It is also the queue manager that
processes MQSC commands when you invoke the runmqsc command without
specifying a queue manager name.

Specifying a queue manager as the default replaces any existing default queue
manager specification for the node.

If you decide to change the default queue manager, be aware that this can
affect other users or applications. The change has no effect on
currently-connected applications, because they can use the handle from their
original connect call in any further MQI calls. This handle ensures that the calls
are directed to the same queue manager. Any applications connecting after
you have changed the default queue manager will connect to the new default
queue manager.

This may be what you intend, but you should take this into account before you
change the default.

To create a default queue manager, specify the -q flag on the crtmqm
command to specify that the queue manager you are creating is the default
queue manager. Omit this flag if you do not want to create a default queue
manager.

For a detailed description of this command and its parameters, see “crtmqm
(Create queue manager)” on page 284.

� Specify a dead-letter queue
The dead-letter queue is a local queue where messages are put if they cannot
be routed to their correct destination.

It is vitally important to have a dead-letter queue on each queue manager in
your network. Failure to do so may mean that errors in application programs
cause channels to be closed or that replies to administration commands are not
received.

For example, if an application attempts to put a message on a queue on
another queue manager, but the wrong queue name is given, the channel is
stopped, and the message remains on the transmission queue. Other
applications cannot then use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues.
The undelivered message is simply put on the dead-letter queue at the
receiving end, leaving the channel and its transmission queue available.

Therefore when you create a queue manager, you should use the -u flag to
specify the name of the dead-letter queue. You can also use an MQSC
command to alter the attributes of a queue manager and specify the dead-letter
queue to be used. See “Altering queue manager attributes” on page 65 for an
example of an MQSC ALTER command.

When you find messages on a dead-letter queue, you can use the dead-letter
queue handler, supplied with MQSeries, to process these messages. See
Chapter 12, “The MQSeries dead-letter queue handler” on page 157 for further
information about the dead-letter queue handler.

52 MQSeries System Administration

 Creating a queue manager

� Specify a default transmission queue
A transmission queue is a local queue on which messages in transit to a
remote queue manager are queued pending transmission. The default
transmission queue is the queue that is used when no transmission queue is
explicitly defined. Each queue manager can be assigned a default
transmission queue.

When you create a queue manage, you should use the -d flag to specify the
name of the default transmission queue. This does not actually create the
queue; you have to do this explicitly later on. See “Working with local queues”
on page 70 for more information.

� Specify the logging parameters you require
You can specify logging parameters on the crtmqm command, including the
type of logging, and the path and size of the log files.

In a development environment, the default logging parameters should be
adequate. However, you can change the defaults if, for example,

– You have a low-end system configuration that cannot support large logs.

– You anticipate a large number of long messages being on your queues at
the same time.

For more information about specifying logging parameters:

– Using the crtmqm command, see “crtmqm (Create queue manager)” on
page 284.

– Using configuration files, see “The LogDefaults stanza” on page 132, and
“The Log stanza” on page 138.

Backing up configuration files after creating a queue manager
There are two types of configuration file:

1. When you install the product, the MQSeries configuration file (mqs.ini) is
created. It contains a list of queue managers, which is updated each time you
create or delete a queue manager. There is one mqs.ini file per node.

2. When you create a new queue manager, a new queue manager configuration
file (qm.ini) is automatically created. This contains configuration parameters for
the queue manager.

After creating a queue manager, you are recommended to back up your
configuration files.

If, later on, you create another queue manager that causes you problems, you can
reinstate the backups when you have removed the source of the problem. As a
general rule, you should back up your configuration files each time you create a
new queue manager.

For more information about configuration files, see Chapter 11, “Configuring
MQSeries” on page 127.

| If you use MQSeries for Windows NT Version 5.1, or later, configuration information
| is stored in the Windows NT Registry and not in configuration files. You use the
| MQSeries Services snap-in to make changes to the Windows NT Registry.

 Chapter 6. Managing queue managers using control commands 53

 Creating a default queue manager � Starting a queue manager

Creating a default queue manager
You create a default queue manager using the crtmqm command. The crtmqm
command specified with the q flag:

� Creates a default queue manager called saturn.queue.manager

� Creates the default and system objects

� Specifies the names of both a default transmission queue and a dead-letter
queue

crtmqm -q -d MY.DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE saturn.queue.manager

where:

-q Indicates that this queue manager is the
default queue manager.

-d MY.DEFAULT.XMIT.QUEUE Is the name of the default transmission
queue.

-u SYSTEM.DEAD.LETTER.QUEUE Is the name of the dead-letter queue.

saturn.queue.manager Is the name of this queue manager. This
must be the last parameter specified on the
crtmqm command.

The system and default objects are listed in Appendix A, “System and default
objects” on page 343.

For MQSeries for UNIX systems only

You can create the queue manager directory /var/mqm/qmgrs/<qmgr>, even on
a separate local file system, before you use the crtmqm command. When you
use crtmqm , if the /var/mqm/qmgrs/<qmgr> directory exists, is empty, and is
owned by mqm, it is used for the queue manager data. If the directory is not
owned by mqm, the creation fails with an FFST. If the directory is not empty,
then a new directory is created.

Starting a queue manager
Although you have created a queue manager, it cannot process commands or MQI
calls until you start it. You do using the strmqm command as follows:

strmqm saturn.queue.manager

The strmqm command does not return control until the queue manager has started
and is ready to accept connect requests.

54 MQSeries System Administration

 Changing the default queue manager � Stopping a queue manager

Starting a queue manager automatically
In MQSeries for Windows NT only, a queue manager can be invoked automatically
when the system starts using the MQSeries Services snap-in. See Chapter 4,
“Administration using the MQSeries Services snap-in” on page 37 for more
information.

Making an existing queue manager the default
When you create a default queue manager, the name of the default queue
manager is inserted in the Name attribute of the DefaultQueueManager stanza in the
MQSeries configuration file (mqs.ini). The stanza and its contents are automatically
created if they do not exist. You may need to edit the DefaultQueueManager stanza:

� To make an existing queue manager the default
To do this you have to change the queue manager name on the Name attribute
to the name of the new default queue manager. You must do this manually,
using a text editor.

� If you do not have a default queue manager on the node, and you want to
make an existing queue manager the default
To do this you must create the DefaultQueueManager stanza—with the required
name—yourself.

� If you accidentally make another queue manager the default and wish to
revert to the original default queue manager
To do this, edit the DefaultQueueManager stanza in mqs.ini, replacing the
unwanted default queue manager with that of the one you do want.

See Chapter 11, “Configuring MQSeries” on page 127 for information about
configuration files.

| If you use MQSeries for Windows NT Version 5.1, or later, use the MQSeries
| Services snap-in to make changes to configuration information for Windows NT
| queue managers in the Windows NT Registry. See Chapter 4, “Administration
| using the MQSeries Services snap-in” on page 37 for more information.

| When you have provided the required information configuration information, stop
the queue manager and restart it. See “Stopping a queue manager” for information
about how to do this.

Stopping a queue manager
You use the endmqm command to stop a queue manager. For example, to stop a
queue manager called saturn.queue.manager, type:

endmqm saturn.queue.manager

 Chapter 6. Managing queue managers using control commands 55

 Stopping a queue manager

 Quiesced shutdown
By default, the endmqm command performs a quiesced shutdown of the specified
queue manager. This may take a while to complete—a quiesced shutdown waits
until all connected applications have disconnected.

| Use this type of shutdown to notify applications to stop. If you issue:

| endmqm -c saturn.queue.manager

| you are not told when all applications have stopped. (An endmqm -c
| saturn.queue.manager command is equivalent to an endmqm
| saturn.queue.manager command.)

| However, if you issue:

| endmqm -w saturn.queue.manager

| the command waits until all applications have stopped and the queue manager has
| ended.

 Immediate shutdown
For an immediate shutdown any current MQI calls are allowed to complete, but any
new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager.

Use this as the normal way to stop the queue manager, optionally after a quiesce
period. For an immediate shutdown, type:

endmqm -i saturn.queue.manager

 Preemptive shutdown
 Attention!

Do not use this method unless all other attempts to stop the queue manager
using the endmqm command have failed. This method can have unpredictable
consequences for connected applications.

If an immediate shutdown does not work, you must resort to a preemptive
shutdown, specifying the -p flag. For example:

endmqm -p saturn.queue.manager

This stops all queue manager code immediately.

If this method still does not work, see “Stopping a queue manager manually” on
page 359 for an alternative solution.

56 MQSeries System Administration

 Restarting a queue manager � Deleting a queue manager

For a detailed description of the endmqm command and its options, see “endmqm
(End queue manager)” on page 306.

If you have problems shutting down a queue manager
Problems in shutting down a queue manager are often caused by applications. For
example, when applications:

� Do not check MQI return codes properly
� Do not request a notification of a quiesce
� Terminate without disconnecting from the queue manager (by issuing an

MQDISC call)

If a problem does occur while stopping the queue manager, break out of the
endmqm command using Ctrl-C.

You can then issue another endmqm command, but this time with a flag that
specifies the type of shutdown that you require.

Restarting a queue manager
To restart a queue manager, type:

strmqm saturn.queue.manager

Deleting a queue manager
To delete a queue manager, first stop it, then issue the following command:

dltmqm saturn.queue.manager

Notes:

1. Deleting a queue manager is a drastic step, because you also delete all
resources associated with that queue manager, including all queues and their
messages, and all object definitions.

2. In MQSeries for Windows NT, the dltmqm command also removes a queue
manager from the automatic start-up list (described in “Starting a queue
manager automatically” on page 55).

For a description of the dltmqm command and its options, see “dltmqm (Delete
queue manager)” on page 289. You should ensure that only trusted administrators
have the authority to use this command.

If the usual methods for deleting a queue manager do not work, see “Removing
queue managers manually” on page 360 for an alternative.

 Chapter 6. Managing queue managers using control commands 57

 Deleting a queue manager

58 MQSeries System Administration

 Administering local objects � Application programs

Chapter 7. Administering local MQSeries objects

This chapter describes how to administer local MQSeries objects to support
application programs that use the Message Queuing Interface (MQI). In this
context, local administration means creating, displaying, changing, copying, and
deleting MQSeries objects.

This chapter contains these sections:

� “Supporting application programs that use the MQI”

� “Performing local administration tasks using MQSC commands” on page 60

� “Working with local queues” on page 70

| � “Monitoring local queues with the Windows NT Performance Monitor” on
| page 76

� “Working with alias queues” on page 77

� “Working with model queues” on page 79

� “Managing objects for triggering” on page 80

Supporting application programs that use the MQI
MQSeries application programs need certain objects before they can run
successfully. For example, Figure 2 shows an application that removes messages
from a queue, processes them, and then sends some results to another queue on
the same queue manager.

Application

Queue Manager

From other
applications

To other
applications

getput

putget

Figure 2. Queues, messages, and applications

Whereas applications can put messages onto local or remote queues (using
MQPUT), they can only get (using MQGET) messages directly from local queues.

Before this application can be run, the following conditions must be satisfied:

� The queue manager must exist and be running.

� The first application queue, from which the messages are to be removed, must
be defined.

 Copyright IBM Corp. 1994,1999 59

 Using MQSC for local administration

� The second queue, on which the application puts the messages, must also be
defined.

� The application must be able to connect to the queue manager. To do this it
must be linked to the product code. See Chapter 7, “Connecting and
disconnecting a queue manager” in the MQSeries Application Programming
Guide for more information.

� The applications that put the messages on the first queue must also connect to
a queue manager. If they are remote, they must also be set up with
transmission queues and channels. This part of the system is not shown in
Figure 2 on page 59.

Performing local administration tasks using MQSC commands
In this section, we assume that you will be issuing commands using the runmqsc
command. It gives you a general but detailed introduction to MQSC commands

| and shows you how to use them on some commonly performed tasks. However, if
| you use MQSeries for Windows NT Version 5.1 or later, you can perform the
| operations described in this section using the MQSeries Explorer or MQSeries Web
| Administration. See Chapter 3, “Administration using the MQSeries Explorer” on
| page 29 and Chapter 5, “Using MQSeries Web Administration” on page 43 for
| more information.

You can use MQSeries script commands (MQSC) to manage queue manager
objects, including the queue manager itself, clusters, channels, queues, namelists,
and process definitions. This section deals with queue managers, queues and
process definitions; for information about administering channel objects, see
Chapter 5, “DQM implementation” in the MQSeries Intercommunication book.

You issue MQSC commands to a queue manager using the runmqsc command.
You can do this interactively, issuing commands from a keyboard, or you can
redirect the standard input device (stdin) to run a sequence of commands from an
ASCII text file. In both cases, the format of the commands is the same.

You can run the runmqsc command in three modes, depending on the flags set on
the command:

� Verification mode, where the MQSC commands are verified on a local queue
manager, but are not actually run.

� Direct mode, where the MQSC commands are run on a local queue manager.

� Indirect mode, where the MQSC commands are run on a remote queue
manager.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

| MQSC commands are available on other platforms, including AS/400 and OS/390.

MQSC commands are summarized in Appendix G, “Comparing command sets” on
page 367.

Chapter 2, “The MQSeries commands” in the MQSeries Command Reference
manual contains a description of each MQSC command and its syntax.

60 MQSeries System Administration

 Using MQSC for local administration

MQSeries object names
In examples, we use some long names for objects. This is to help you identify the
type of object you are dealing with.

When you are issuing MQSC commands, you need only specify the local name of
the queue. In our examples, we use queue names such as:

ORANGE.LOCAL.QUEUE

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a local
queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name.

The queue.manager part of the name is simply to illustrate that this object is a
queue manager. It is not required for the names of queue managers in general.

You do not have to use these names, but if you do not, you must modify any
commands in examples that specify them.

Case-sensitivity in MQSC commands
MQSC commands, including their attributes, can be written in uppercase or
lowercase. Object names in MQSC commands are folded (that is, QUEUE and
queue are not differentiated), unless the names are within single quotation marks.
If quotation marks are not used, the object is processed with a name in uppercase.
See “Rules for naming MQSeries objects” in the MQSeries Command Reference
manual for more information.

However, the runmqsc command invocation, in common with all MQSeries control
commands, is case sensitive in some MQSeries environments. See “Using control
commands” on page 49 for more information.

Standard input and output
The standard input device, also referred to as stdin, is the device from which input
to the system is taken. Typically, this is the keyboard, but you can specify that
input is to come from a serial port or a disk file, for example. The standard output
device, also referred to as stdout, is the device to which output from the system is
sent. Typically, this is a display, but output can be redirected to a serial port or a
file.

On operating-system commands and MQSeries control commands, the ‘<’ operator
redirects input. If this operator is followed by a file name, input is taken from the
file. Similarly, the ‘>’ operator redirects output; if this operator is followed by a file
name, output is directed to that file.

Using the MQSC facility interactively
To enter MQSC commands interactively, open a command window or shell and
enter:

runmqsc

 Chapter 7. Administering local MQSeries objects 61

 Using MQSC for local administration

In this command, a queue manager name has not been specified, therefore the
MQSC commands will be processed by the default queue manager. Now you can
type in any MQSC commands, as required. For example, try this one:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

Continuation characters must used to indicate that a command is continued on the
following line:

� A minus sign (−) indicates that the command is to be continued from the start
of the following line.

� A plus sign (+) indicates that the command is to be continued from the first
nonblank character on the following line.

Command input terminates with the final character of a nonblank line that is not a
continuation character. You can also terminate command input explicitly by
entering a semicolon (;). (This is especially useful if you accidentally enter a
continuation character at the end of the final line of command input.)

Feedback from MQSC commands
When you issue commands from the MQSC facility, the queue manager returns
operator messages that confirm your actions or tell you about the errors you have
made. For example:

AMQ8ðð6: MQSeries queue created.
 .
 .
 .
AMQ84ð5: Syntax error detected at or near end of command segment below:-
Z
AMQ8426: Valid MQSC commands are:

 ALTER
 CLEAR
 DEFINE
 DELETE
 DISPLAY
 END
 PING
 RESET

| REFRESH
 RESOLVE

| RESUME
 START
 STOP

| SUSPEND
4 : end

The first message confirms that a queue has been created; the second indicates
that you have made a syntax error.

62 MQSeries System Administration

 Using MQSC for local administration

These messages are sent to the standard output device. If you have not entered
the command correctly, refer to Chapter 2, “The MQSeries commands” in the
MQSeries Command Reference manual for the correct syntax.

Ending interactive input to MQSC
To end interactive input of MQSC commands, enter the MQSC END command:

 END

Alternatively, you can use the EOF character for your operating system.

If you are redirecting input from other sources, such as a text file, you do not have
to do this.

Displaying queue manager attributes
To display the attributes of the queue manager specified on the runmqsc
command, use the following MQSC command:

DISPLAY QMGR

Typical output from this command is shown in Figure 3 on page 64.

 Chapter 7. Administering local MQSeries objects 63

 Using MQSC for local administration

| 1 : display qmgr all
| AMQ84ð8: Display Queue Manager details.
| DESCR() DEADQ()
| DEFXMITQ() CHADEXIT()
| CLWLEXIT() CLWLDATA()
| REPOS() REPOSNL()
| COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE) QMNAME(saturn.queue.manager)
| CRDATE(1998-ð9-25) CRTIME(ð9.4ð.ð6)
| ALTDATE(1998-ð9-25) ALTTIME(ð9.4ð.ð6)
| QMID(saturn.queue.manager_1998-ð9-25_ð9.4ð.ð6)
| TRIGINT(999999999) MAXHANDS(256)
| MAXUMSGS(1ðððð) AUTHOREV(DISABLED)
| INHIBTEV(DISABLED) LOCALEV(DISABLED)
| REMOTEEV(DISABLED) PERFMEV(DISABLED)
| STRSTPEV(ENABLED) CHAD(DISABLED)
| CHADEV(DISABLED) CLWLLEN(1ðð)
| MAXMSGL(41943ð4) CCSID(85ð)
| MAXPRTY(9) CMDLEVEL(51ð)
| PLATFORM(WINDOWSNT) SYNCPT
| DISTL(YES)

| 2 : display qmgr
| AMQ84ð8: Display Queue Manager details.
| DESCR() DEADQ()
| DEFXMITQ() CHADEXIT()
| CLWLEXIT() CLWLDATA()
| REPOS() REPOSNL()
| COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE) QMNAME(saturn.queue.manager)
| CRDATE(1998-ð9-25) CRTIME(ð9.4ð.ð6)
| ALTDATE(1998-ð9-25) ALTTIME(ð9.4ð.ð6)
| QMID(saturn.queue.manager_1998-ð9-25_ð9.4ð.ð6)
| TRIGINT(999999999) MAXHANDS(256)
| MAXUMSGS(1ðððð) AUTHOREV(DISABLED)
| INHIBTEV(DISABLED) LOCALEV(DISABLED)
| REMOTEEV(DISABLED) PERFMEV(DISABLED)
| STRSTPEV(ENABLED) CHAD(DISABLED)
| CHADEV(DISABLED) CLWLLEN(1ðð)
| MAXMSGL(41943ð4) CCSID(85ð)
| MAXPRTY(9) CMDLEVEL(51ð)
| PLATFORM(WINDOWSNT) SYNCPT
| DISTL(YES)

| Figure 3. Typical output from a DISPLAY QMGR command

The ALL parameter on the DISPLAY QMGR command causes all the queue
manager attributes to be displayed. In particular, the output tells us the default
queue manager name (saturn.queue.manager), and the names of the dead-letter
queue (SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE).

You can confirm that these queues exist by entering the command:

DISPLAY QUEUE (SYSTEM.\)

64 MQSeries System Administration

 Running MQSC commands

This displays a list of queues that match the stem ‘SYSTEM.*’. The parentheses
are required.

Using a queue manager that is not the default
To run MQSC commands on a local queue manager other than the default queue
manager, you specify the name of the queue manager on input to the runmqsc
command. For example, to run MQSC commands on queue manager
jupiter.queue.manager, use the command:

runmqsc jupiter.queue.manager

After this, all the MQSC commands you type in are processed by this queue
manager—assuming that it is on the same node and is already running.

You can also run MQSC commands on a remote queue manager; see “Issuing
MQSC commands remotely” on page 93.

Altering queue manager attributes
To alter the attributes of the queue manager specified on the runmqsc command,
use the MQSC command ALTER QMGR, specifying the attributes and values that
you want to change. For example, use the following commands to alter the
attributes of jupiter.queue.manager:

runmqsc jupiter.queue.manager

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

Running MQSC commands from text files
Running MQSC commands interactively is suitable for quick tests, but if you have
very long commands, or are using a particular sequence of commands repeatedly,
consider redirecting stdin from a text file. (See “Standard input and output” on
page 61 for information about stdin and stdout.) To do this, first create a text file
containing the MQSC commands using your usual text editor. When you use the
runmqsc command, use the redirection operators. For example, the following
command runs a sequence of commands contained in the text file myprog.in:

runmqsc < myprog.in

Similarly, you can also redirect the output to a file. A file containing the MQSC
commands for input is called an MQSC command file. The output file containing
replies from the queue manager is called the report file. To redirect both stdin and
stdout on the runmqsc command, use this form of the command:

 Chapter 7. Administering local MQSeries objects 65

 Running MQSC commands

runmqsc < myprog.in > myprog.out

This command invokes the MQSC commands contained in the MQSC command
file myprog.in. Because we have not specified a queue manager name, the
MQSC commands are run against the default queue manager. The output is sent
to the report file myprog.out. Figure 4 shows an extract from the MQSC command
file myprog.in and Figure 5 on page 67 shows the corresponding extract of the
output in myprog.out.

To redirect stdin and stdout on the runmqsc command, for a queue manager
(saturn.queue.manager) that is not the default, use this form of the command:

runmqsc saturn.queue.manager < myprog.in > myprog.out

MQSC command files
MQSC commands are written in human-readable form, that is, in ASCII text.
Figure 4 is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes. Chapter 2, “The MQSeries commands” in
the MQSeries Command Reference manual contains a description of each MQSC
command and its syntax.

 .
 .
 .
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(' ') +
 PUT(ENABLED) +
 DEFPRTY(ð) +
 DEFPSIST(NO) +
 GET(ENABLED) +
 MAXDEPTH(5ððð) +
 MAXMSGL(1ð24) +
 DEFSOPT(SHARED) +
 NOHARDENBO +
 USAGE(NORMAL) +
 NOTRIGGER;
 .
 .
 .

Figure 4. Extract from the MQSC command file, myprog.in

For portability among MQSeries environments, you are recommended to limit the
line length in MQSC command files to 72 characters. The plus sign indicates that
the command is continued on the next line.

66 MQSeries System Administration

 Running MQSC commands

 MQSC reports
The runmqsc command returns a report, which is sent to stdout. The report
contains:

� A header identifying MQSC as the source of the report:

Starting MQSeries Commands.

� An optional numbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 5. However, you can use
the -e flag on the runmqsc command to suppress the output.

� A syntax error message for any commands found to be in error.

� An operator message indicating the outcome of running each command. For
example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8ðð6: MQSeries queue created.

� Other messages resulting from general errors when running the script file.

� A brief statistical summary of the report indicating the number of commands
read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager attempts to process only those commands that
have no syntax errors.

Starting MQSeries Commands.
 .
 .
 12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +

: DESCR(' ') +
 : PUT(ENABLED) +
 : DEFPRTY(ð) +
 : DEFPSIST(NO) +
 : GET(ENABLED) +
 : MAXDEPTH(5ððð) +
 : MAXMSGL(1ð24) +
 : DEFSOPT(SHARED) +
 : USAGE(NORMAL) +
 : NOTRIGGER;
AMQ8ðð6: MQSeries queue created.
 :
 .
 .

Figure 5. Extract from the MQSC report file, myprog.out

Running the supplied MQSC command files
These MQSC command files are supplied with MQSeries:

amqscos0.tst Definitions of objects used by sample programs.

amqscic0.tst Definitions of queues for CICS transactions.

 Chapter 7. Administering local MQSeries objects 67

 Problems with MQSC

In MQSeries for UNIX systems, these files are located in the directory mqmtop/samp;
see “The base directory” on page xv for details of the installation directory mqmtop.

In MQSeries for OS/2 Warp and MQSeries for Windows NT, these files are located
in the directory c:\mqm\tools\mqsc\samples.

Using runmqsc to verify commands
You can use the runmqsc command to verify MQSC commands on a local queue
manager without actually running them. To do this, set the -v flag in the runmqsc
command, for example:

runmqsc -v < myprog.in > myprog.out

When you invoke runmqsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This allows you to check the syntax of all the commands in your
command file. This is particularly important if you are:

� Running a large number of commands from a command file.

� Using an MQSC command file many times over.

This report is similar to that shown in Figure 5 on page 67.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:

runmqsc -w 3ð -v jupiter.queue.manager < myprog.in > myprog.out

the -w flag, which you use to indicate that the queue manager is remote, is ignored,
and the command is run locally in verification mode.

Resolving problems with MQSC
If you cannot get MQSC commands to run, use the following checklist to see if any
of these common problems apply to you. It is not always obvious what the problem
is when you read the error generated.

When you use the runmqsc command, remember the following:

� Use the indirection operator < when redirecting input from a file. If you omit the
indirection operator, the queue manager interprets the file name as a queue
manager name, and issues the following error message:

AMQ8118: MQSeries queue manager does not exist.

� If you redirect output to a file, use the > redirection operator. By default, the file
is put in the current working directory at the time runmqsc is invoked. Specify
a fully-qualified file name to send your output to a specific file and directory.

� Check that you have created the queue manager that is going to run the
commands.

68 MQSeries System Administration

 Problems with MQSC

To do this, look in the MQSeries configuration file, mqs.ini. This file contains
the names of the queue managers and the name of the default queue
manager, if you have one.

� The queue manager should already be started, if it is not, start it; see “Starting
a queue manager” on page 54. You get an error message if it is already
started.

� Specify a queue manager name on the runmqsc command if you have not
defined a default queue manager, otherwise you get this error:

AMQ8146: MQSeries queue manager not available.

To correct this type of problem, see “Making an existing queue manager the
default” on page 55.

� You cannot specify an MQSC command as parameter of the runmqsc
command. For example, this is invalid:

runmqsc DEFINE QLOCAL(FRED)

� You cannot enter MQSC commands before you issue the runmqsc command.

� You cannot run control commands from runmqsc . For example, you cannot
issue the strmqm command to start a queue manager while you are running
MQSC interactively.

| runmqsc
| .
| .
| Starting MQSeries Commands.

| 1 : strmqm saturn.queue.manager
| AMQ84ð5: Syntax error detected at or near end of command segment below:-
| s

| AMQ8426: Valid MQSC commands are:
| ALTER
| CLEAR
| DEFINE
| DELETE
| DISPLAY
| END
| PING
| REFRESH
| RESET
| RESOLVE
| RESUME
| START
| STOP
| SUSPEND
| 2 : end

 Chapter 7. Administering local MQSeries objects 69

 Working with local queues

See also “If you have problems using MQSC remotely” on page 95.

Working with local queues
This section contains examples of some of the MQSC commands that you can use
to manage local, model, and alias queues. See the MQSeries Command
Reference manual for detailed information about these commands.

Defining a local queue
For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager
are said to be local to that queue manager.

Use the MQSC command DEFINE QLOCAL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify
the queue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:

� It is enabled for gets, disabled for puts, and operates on a first-in-first-out
(FIFO) basis.

� It is an ‘ordinary’ queue, that is, it is not an initiation queue or a transmission
queue, and it does not generate trigger messages.

� The maximum queue depth is 1000 messages; the maximum message length
is 2000 bytes.

The following MQSC command does this:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +
DESCR('Queue for messages from other systems') +
PUT (DISABLED) +
GET (ENABLED) +

 NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1ððð) +
MAXMSGL (2ððð) +

 USAGE (NORMAL);

Notes:

1. Most of these attributes are the defaults as supplied with the product.
However, they are shown here for purposes of illustration. You can omit them
if you are sure that the defaults are what you want or have not been changed.
See also “Displaying default object attributes” on page 71.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.

3. If you already have a local queue on the same queue manager with the name
ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if
you want to overwrite the existing definition of a queue, but see also “Changing
local queue attributes” on page 72.

70 MQSeries System Administration

 Working with local queues

Defining a dead-letter queue
Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval. You must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on the crtmqm
command, or you can use the ALTER QMGR command to specify one later. You
must also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
| with the product. This queue is automatically created when you create the queue
| manager. You can modify this definition if required. There is no need to rename it,

although you can if you like.

A dead-letter queue has no special requirements except that:

| � It must be a local queue

| � Its MAXMSGL (maximum message length) attribute must enable the queue to
| accommodate the largest messages that the queue manager has to handle
| plus the size of the dead-letter header (MQDLH)

MQSeries provides a dead-letter queue handler that allows you to specify how
messages found on a dead-letter queue are to be processed or removed. For
further information, see Chapter 12, “The MQSeries dead-letter queue handler” on
page 157.

Displaying default object attributes
When you define an MQSeries object, it takes any attributes that you do not specify
from the default object. For example, when you define a local queue, the queue
inherits any attributes that you omit in the definition from the default local queue,
which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what these
attributes are, use the following command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE)

Note: The syntax of this command is different from that of the corresponding
DEFINE command.

You can selectively display attributes by specifying them individually. For example:

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
 MAXDEPTH +
 MAXMSGL +
 CURDEPTH;

 Chapter 7. Administering local MQSeries objects 71

 Working with local queues

This command displays the three specified attributes as follows:

AMQ84ð9: Display Queue details.
 QUEUE(ORANGE.LOCAL.QUEUE) MAXDEPTH(5ððð)
 MAXMSGL(41943ð4) CURDEPTH(ð)

5 : end

CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue depth
you can ensure that the queue does not become full.

Copying a local queue definition
You can copy a queue definition using the LIKE attribute on the DEFINE command.
For example:

DEFINE QLOCAL (MAGENTA.QUEUE) +
 LIKE (ORANGE.LOCAL.QUEUE)

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition, but
substituting one or more changes to the attributes of the original. For example:

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +

 MAXMSGL(1ð24);

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
queue THIRD.QUEUE, but specifies that the maximum message length on the new
queue is to be 1024 bytes, rather than 2000.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes
You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 70, we defined the queue
ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the
maximum message length on this queue to 10 000 bytes.

72 MQSeries System Administration

 Working with local queues

� Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(1ðððð)

This command changes a single attribute, that of the maximum message
length; all the other attributes remain the same.

� Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(1ðððð) REPLACE

This command changes not only the maximum message length, but all the
other attributes, which are given their default values. The queue is now put
enabled whereas previously it was put inhibited. Put enabled is the default, as
specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have
changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue
To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:

CLEAR QLOCAL (MAGENTA.QUEUE)

You cannot clear a queue if:

� There are uncommitted messages that have been put on the queue under
syncpoint.

� An application currently has the queue open.

Deleting a local queue
Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages, and no uncommitted messages, it can only be
deleted if you specify the PURGE option. For example:

DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

 Chapter 7. Administering local MQSeries objects 73

 Working with local queues

 Browsing queues
MQSeries provides a sample queue browser that you can use to look at the
contents of the messages on a queue. The browser is supplied in both source and
executable formats.

In MQSeries for UNIX systems, the default file names and paths are:

Source mqmtop/samp/amqsbcgð.c
Executable mqmtop/samp/bin/amqsbcg

In MQSeries for OS/2 Warp and MQSeries for Windows NT, the default file names
and paths are:

Source c:\mqm\tools\c\samples\amqsbcgð.c
Executable c:\mqm\tools\c\samples\bin\amqsbcg.exe

The sample requires two input parameters, the queue manager name and the
queue name. For example:

amqsbcg SYSTEM.ADMIN.QMGREVENT.tppð1 saturn.queue.manager

Typical results from this command are shown in Figure 6 on page 75.

74 MQSeries System Administration

 Working with local queues

AMQSBCGð - starts here
\\\\\\\\\\\\\\\\\\\\\\

 MQOPEN - 'SYSTEM.ADMIN.QMGR.EVENT'

 MQGET of message number 1
\\\\Message descriptor\\\\

 StrucId : 'MD ' Version : 2
Report : ð MsgType : 8
Expiry : -1 Feedback : ð
Encoding : 546 CodedCharSetId : 85ð
Format : 'MQEVENT '
Priority : ð Persistence : ð
MsgId : X'414D512ð73617475726E2E7175657565ððð5D3ðð33563DB8'
CorrelId : X'ðð'
BackoutCount : ð

 ReplyToQ : ' '
 ReplyToQMgr : 'saturn.queue.manager '
\\ Identity Context
UserIdentifier : ' '

 AccountingToken :
 X'ðð'
ApplIdentityData : ' '
\\ Origin Context

 PutApplType : '7'
 PutApplName : 'saturn.queue.manager '
 PutDate : '1997ð417' PutTime : '151152ð8'
ApplOriginData : ' '

GroupId : X'ðð'
 MsgSeqNumber : '1'
 Offset : 'ð'
 MsgFlags : 'ð'
OriginalLength : '1ð4'

Figure 6 (Part 1 of 2). Typical results from queue browser

 Chapter 7. Administering local MQSeries objects 75

 Performance Monitor

\\\\ Message \\\\

 length - 1ð4 bytes

ðððððððð: ð7ðð ðððð 24ðð ðððð ð1ðð ðððð 2Cðð ðððð '....¢.......,...'
ðððððð1ð: ð1ðð ðððð ð1ðð ðððð ð1ðð ðððð AEð8 ðððð '................'
ðððððð2ð: ð1ðð ðððð ð4ðð ðððð 44ðð ðððð DFð7 ðððð '........D.......'
ðððððð3ð: ðððð ðððð 3ððð ðððð 7361 7475 726E 2E71 '....ð...saturn.q'
ðððððð4ð: 7565 7565 2E6D 616E 6167 6572 2ð2ð 2ð2ð 'ueue.manager '
ðððððð5ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '
ðððððð6ð: 2ð2ð 2ð2ð 2ð2ð 2ð2ð ' '

 No more messages
 MQCLOSE
 MQDISC

Figure 6 (Part 2 of 2). Typical results from queue browser

| Monitoring local queues with the Windows NT Performance Monitor
| Administrators of MQSeries for Windows NT can monitor the performance of local
| queues using the Windows NT Performance Monitor.

| The Windows NT Performance Monitor displays a new object type called MQSeries
| Queues in which performance data for local queues is stored.

| Active local queues defined in running queue managers are displayed as
| QueueName:QMName in the Performance Monitor Instance list when the MQSeries
| Queues object type is selected. QMName denotes the name of the queue manager
| owning the queue, and QueueName denotes the name of the local queue.

| For each queue, you can view information relating to the following:

| � The current queue depth
| � The queue depth as a percentage of the maximum queue depth
| � The number of messages being placed on the queue per second
| � The number of messages being removed from the queue per second

| For messages sent to a distribution list, the Performance Monitor counts the
| number of messages being put onto each queue.

| In the case of segmented messages, the Performance Monitor counts the
| appropriate number of small messages.

| Performance data is obtained from statistical data maintained by the MQSeries
| queue managers for each local queue. However, note that performance data is
| only available for queues that are accessed after the Performance Monitor has
| been started.

| The performance of queues on computers other than that on which the
| Performance Monitor is running can be monitored. To monitor the queues on

76 MQSeries System Administration

 Working with alias queues

| another computer, select your target computer from the Performance Monitor,
| which works using the Windows Network Neighborhood hierarchy.

Working with alias queues
An alias queue (also known as a queue alias) provides a method of redirecting MQI
calls. An alias queue is not a real queue but a definition that resolves to a real
queue. The alias queue definition contains a target queue name which is specified
by the TARGQ attribute (BaseQName in PCF). When an application specifies an
alias queue in an MQI call, the queue manager resolves the real queue name at
run time.

For example, an application has been developed to put messages on a queue
called MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an
MQOPEN request and, indirectly, if it puts a message on this queue. The
application is not aware that the queue is an alias queue. For each MQI call using
this alias, the queue manager resolves the real queue name, which could be either
a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for
maintenance, migration, and load-balancing.

Defining an alias queue
The following command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls that specify MY.ALIAS.QUEUE to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

ALTER QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE)

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear
to have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:

� Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed
to get messages from it.

� Application BETA can get messages from YELLOW.QUEUE, but is not allowed
to put messages on it.

 Chapter 7. Administering local MQSeries objects 77

 Working with alias queues

You can do this using the following commands:

\ This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +

 GET (DISABLED)

\ This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +

 GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in
the same way that you use these attributes with local queues.

Using other commands with alias queues
You can use the appropriate MQSC commands to display or alter queue alias
attributes, or delete the queue alias object. For example,

\ Display the queue alias's attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE)

\ ALTER the base queue name, to which the alias resolves.
\ FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

\ Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete a queue alias if, for example, an application currently has the
queue open or has a queue open that resolves to this queue. See Chapter 2, “The
MQSeries commands” in the MQSeries Command Reference manual for more
information about this and other queue alias commands.

78 MQSeries System Administration

 Working with model queues

Working with model queues
A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not). For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +

 NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1ððð) +
MAXMSGL (2ððð) +
USAGE (NORMAL) +

 DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

Using other commands with model queues
You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or delete the model queue object. For example:

 Chapter 7. Administering local MQSeries objects 79

 Managing objects for triggering

\ Display the model queue's attributes

DISPLAY QUEUE (GREEN.MODEL.QUEUE)

\ ALTER the model to enable puts on any
\ dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

\ Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Managing objects for triggering
MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called
triggering and is described in detail in Chapter 14, “Starting MQSeries applications
using triggers” in the MQSeries Application Programming Guide.

This section describes how to set up the required objects to support triggering on
MQSeries.

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue MOTOR.INSURANCE.QUEUE, as follows:

DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2ððð) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +

 TRIGGER +
TRIGTYPE (DEPTH) +

 TRIGDPTH (1ðð)+
 TRIGMPRI (5)

where:

QLOCAL (MOTOR.INSURANCE.QUEUE)
Specifies the name of the application queue being defined.

80 MQSeries System Administration

 Managing objects for triggering

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGL (2ððð)
Specifies the maximum length of messages on the queue.

DEFPSIST (YES)
Specifies that messages on this queue are persistent by default.

INITQ (MOTOR.INS.INIT.QUEUE)
Is the name of the initiation queue on which the queue manager is to put the
trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRIMPRI) reaches the number specified in TRIGDPTH.

TRIGDPTH (1ðð)
Specifies the number of messages required to generate a trigger event.

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority 5
or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues have
no special settings, but you can use the following definition of the local queue
MOTOR.INS.INIT.QUEUE for guidance:

DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +
GET (ENABLED) +

 NOSHARE +
 NOTRIGGER +

MAXMSGL (2ððð) +
 MAXDEPTH (1ððð)

Creating a process definition
Use the DEFINE PROCESS command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command
defines the required process, MOTOR.INSURANCE.QUOTE.PROCESS, identified
in this example:

 Chapter 7. Administering local MQSeries objects 81

 Managing objects for triggering

DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
DESCR ('Insurance request message processing') +
APPLTYPE (UNIX) +
APPLICID ('/u/admin/test/IRMPð1') +
USERDATA ('open, close, 235')

Where:

MOTOR.INSURANCE.QUOTE.PROCESS
Is the name of the process definition.

DESCR ('Insurance request message processing')
Is a description of the application program to which this definition relates.
This text is displayed when you use the DISPLAY PROCESS command.
This can help you to identify what the process does. If you use spaces in
the string, you must enclose the string in single quotation marks.

APPLTYPE (UNIX)
Is the type of application to be started.

APPLICID ('/u/admin/test/IRMPð1')
Is the name of the application executable file, specified as a fully qualified
file name. In MQSeries for OS/2 Warp and Windows NT, a typical APPLICID
value would be c:\appl\test\irmpð1.exe.

USERDATA ('open, close, 235')
Is user-defined data, which can be used by the application.

Displaying your process definition
Use the DISPLAY PROCESS command to examine the results of your definition.
For example:

DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL
AMQ84ð7: Display Process details.

DESCR ('Insurance request message processing') APPLICID ('/u/admin/test/IRMPð1')
USERDATA (open, close, 235) PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

 APPLTYPE (UNIX)

You can also use the MQSC command ALTER PROCESS to alter an existing
process definition, and the DELETE PROCESS command to delete a process
definition.

82 MQSeries System Administration

 Automating administration � PCF commands

| Chapter 8. Automating administration tasks

| This chapter assumes that you have experience of administering MQSeries objects.

| There may come a time when you decide that it would be beneficial to your
| installation to automate some administration and monitoring tasks. You can
| automate administration tasks for both local and remote queue managers using
| programmable command format (PCF) commands.

| This chapter describes:

| � How to use programmable command formats to automate administration tasks
| in “PCF commands,” which includes a description of support for Microsoft’s
| Active Directory Service Interfaces (ADSI).

| � How to use the command server in “Managing the command server for remote
| administration” on page 85

 PCF commands
The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In

| this way you can create queues, process definitions, channels, and namelists, and
change queue managers, from a program.

PCF commands cover the same range of functions provided by the MQSC facility.

Therefore, you can write a program to issue PCF commands to any queue
manager in the network from a single node. In this way, you can both centralize
and automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue
manager using the MQI function MQPUT in the same way as any other message.
The command server on the queue manager receiving the message interprets it as
a command message and runs the command. To get the replies, the application
issues an MQGET call and the reply data is returned in another data structure.
The application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:

Message type (MsqType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type (Type) specifies MQCFT_COMMAND.

 Copyright IBM Corp. 1994,1999 83

 PCF commands

The command identifier specifies the command, for example, Change Queue
(MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,
see “PCF command messages” in the MQSeries Programmable System
Management manual.

Attributes in MQSC and PCFs
Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

Object attributes in PCF, which are not limited to eight characters, are shown in this
book in italics. For example, the PCF equivalent of RQMNAME is RemoteQMgrName.

 Escape PCFs
Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see “Escape” in the MQSeries
Programmable System Management manual.

| Using the MQAI to simplify the use of PCFs
| The MQAI is an administration interface to MQSeries that is available on the AIX,
| HP-UX, OS/2 Warp, Sun Solaris, and Windows NT platforms.

| It performs administration tasks on a queue manager through the use of data bags.
| Data bags allow you to handle properties (or parameters) of objects in a way that is
| easier than using PCFs.

| The MQAI can be used:

| � To simplify the use of PCF messages
| The MQAI is an easy way to administer MQSeries; you do not have to write
| your own PCF messages and this avoids the problems associated with complex
| data structures.

| To pass parameters in programs that are written using MQI calls, the PCF
| message must contain the command and details of the string or integer data.
| To do this, several statements are needed in your program for every structure,
| and memory space must be allocated. This task is long and laborious.

| On the other hand, programs written using the MQAI pass parameters into the
| appropriate data bag and only one statement is required for each structure.
| The use of MQAI data bags removes the need for you to handle arrays and
| allocate storage, and provides some degree of isolation from the details of the
| PCF.

| � To implement self-administering applications and administration tools
| For example, the Active Directory Services provided by MQSeries for Windows
| NT Version 5.1 uses the MQAI.

| � To handle error conditions more easily
| It is difficult to get return codes back from MQSC commands, but the MQAI
| makes it easier for the program to handle error conditions.

84 MQSeries System Administration

 Command server remote administration

| After you have created and populated your data bag, you can then send an
| administration command message to the command server of a queue manager,
| using the mqExecute call, which will wait for any response messages. The
| mqExecute call handles the exchange with the command server and returns
| responses in a response bag.

| For more information about using the MQAI, see the MQSeries Administration
| Interface Programming Guide and Reference book.

| For more information about PCFs in general, see Chapter 7, “Using Programmable
| Command Formats” in the MQSeries Programmable System Management book.

| Active Directory Services
| Active Directory Service Interfaces (ADSI) support allows client applications to use
| a common set of Component Object Model (COM) interfaces to communicate with,
| and control, any application that implements them.

| Unlike tools written using other MQSeries administration interfaces, those that use
| the ADSI are not limited to manipulating MQSeries servers. The same tool can
| control Windows NT, Lotus Notes, or any application implementing the ADSI.

| IBM MQSeries support for the ADSI is implemented through the use of the
| IBMMQSeries namespace .

| Any programming language that supports the COM interfaces can be used to
| implement ADSI clients.

| For more information about the ADSI, visit the Microsoft web site at:

| www.microsoft.com

| For more information about Component Object Model (COM) interfaces, see the
| MQSeries for Windows NT Using the Component Object Model Interface book.

| Note: To access a queue manager, it must be running and have an associated
| command server.

Managing the command server for remote administration
Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

| A command server is mandatory for all administration involving PCFs, the MQAI,
| and also for remote administration.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
queue manager from which they are issued. Instead, these messages are queued
in the local transmission queue that serves the remote queue manager. This
situation should be avoided, if at all possible.

 Chapter 8. Automating administration tasks 85

 Command server remote administration

There are separate control commands for starting and stopping the command
| server. Users of MQSeries for Windows NT Version 5.1 and later can perform the
| operations described in the following sections using the MQSeries Services snap-in.
| For more information, see Chapter 4, “Administration using the MQSeries Services
| snap-in” on page 37.

Starting the command server
To start the command server use this command:

strmqcsv saturn.queue.manager

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server
For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the command is:

dspmqcsv saturn.queue.manager

You must issue this command on the target machine. If the command server is
running, the following message is returned:

AMQ8ð27 MQSeries Command Server Status ..: Running

Stopping a command server
To end a command server, the command, using the previous example is:

endmqcsv saturn.queue.manager

You can stop the command server in two different ways:

� For a controlled stop, use the endmqcsv command with the -c flag, which is
the default.

� For an immediate stop, use the endmqcsv command with the -i flag.

Note: Stopping a queue manager also ends the command server associated with
it (if one has been started).

86 MQSeries System Administration

 Administering remote objects � Channels, clusters, and remote queuing

Chapter 9. Administering remote MQSeries objects

| This chapter describes how to administer MQSeries objects on a remote queue
| manager using MQSC commands as well as describing how you can use remote
| queue objects to control the destination of messages and reply messages.

| For information about administration using the MQSeries Explorer, see Chapter 3,
| “Administration using the MQSeries Explorer” on page 29.

| Channels, clusters, and remote queuing
| A queue manager communicates with another queue manager by sending a
| message and, if required, receiving back a response. The receiving queue
| manager could be:

| � On the same machine
| � On another machine in the same location or on the other side of the world
| � Running on the same platform as the local queue manager
| � Running on another platform supported by MQSeries

| These messages may originate from:

| � User-written application programs that transfer data from one node to another.

| � User-written administration applications that use PCFs, the MQAI, or the ADSI

| � Queue managers sending:

| – Instrumentation event messages to another queue manager.

| – MQSC commands issued from a runmqsc command in indirect mode
| (where the commands are run on another queue manager).

| Before a message can be sent to a remote queue manager, the local queue
| manager needs a mechanism to detect the arrival of messages and transport them,
| consisting of:

| � At least one channel
| � A transmission queue
| � A message channel agent (MCA)
| � A channel listener
| � A channel initiator

| A channel is a one-way communication link between two queue managers and can
| carry messages destined for any number of queues at the remote queue manager.

| Each end of the channel has a separate definition. For example, if one end is a
| sender or a server, the other end must be a receiver or a requester. A simple
| channel consists of a sender channel definition at the local queue manager end
| and a receiver channel definition at the remote queue manager end. The two
| definitions must have the same name and together constitute a single channel.

| If the remote queue manager is expected to respond to messages sent by the local
| queue manager, a second channel needs to be set up to send responses back to
| the local queue manager.

 Copyright IBM Corp. 1994,1999 87

 Channels, clusters, and remote queuing

| Channels are defined using the MQSC DEFINE CHANNEL command. In this
| chapter, the examples relating to channels use the default channel attributes unless
| otherwise specified.

| There is a message channel agent (MCA) at each end of a channel which controls
| the sending and receiving of messages. It is the job of the MCA to take messages
| from the transmission queue and put them on the communication link between the
| queue managers.

| A transmission queue is a specialized local queue that temporarily holds messages
| before they are picked up by the MCA and sent to the remote queue manager.
| You specify the name of the transmission queue on a remote queue definition.

| “Preparing channels and transmission queues for remote administration” on
| page 90 shows how to use these definitions to set up remote administration.

| For more information about setting up distributed queuing in general, see the
| MQSeries Intercommunication book.

| Remote administration using clusters
| In a traditional MQSeries network using distributed queuing, every queue manager
| is independent. If one queue manager needs to send messages to another queue
| manager it must have defined a transmission queue, a channel to the remote
| queue manager, and a remote queue definition for every queue to which it wants to
| send messages.

| A cluster is a group of queue managers set up in such a way so that the queue
| managers can communicate directly with one another over a single network without
| the need for complex transmission queue, channels, and queue definitions.
| Clusters can be set up easily, and typically contain queue managers that are
| logically related in some way and need to share data or applications.

| Once a cluster has been created the queue managers within it can communicate
| with each other without the need for complicated channel or remote queue
| definitions. Even the smallest cluster will reduce system administration overheads.

| Establishing a network of queue managers in a cluster involves fewer definitions
| than establishing a traditional distributed queuing environment. With fewer
| definitions to make, you can set up or change your network more quickly and
| easily, and the risk in making an error in your definitions is reduced.

| To set up a cluster, you usually need one cluster sender (CLUSSDR) definition and
| one cluster receiver (CLUSRCVR) definition per queue manager. You do not need
| any transmission queue definitions or remote queue definitions. The principles of
| remote administration are the same when used within a cluster, but the definitions
| themselves are greatly simplified.

| For more information about clusters, their attributes, and how to set them up, refer
| to the MQSeries Queue Manager Clusters book.

88 MQSeries System Administration

 Remote administration

Remote administration from a local queue manager using MQSC
commands

This section tells you how to administer a remote queue manager from a local
queue manager using MQSC and PCF commands.

Preparing the queues and channels is essentially the same for both MQSC and
PCF commands. In this book, the examples show MQSC commands, because
they are easier to understand. However, you can convert the examples to PCFs if
you wish. For more information about writing administration programs using PCFs,
see “PCF command messages” in the MQSeries Programmable System

| Management book and the MQSeries Administration Interface Programming Guide
| and Reference book.

You send MQSC commands to a remote queue manager either interactively or
from a text file containing the commands. The remote queue manager may be on
the same machine or, more typically, on a different machine. You can remotely
administer queue managers in other MQSeries environments, including UNIX

| systems, AS/400, OS/390, OS/2, and Windows NT.

To implement remote administration, you must create specific objects. Unless you
have specialized requirements, you should find that the default values (for example,
for message length) are sufficient.

Preparing queue managers for remote administration
Figure 7 on page 90 shows the configuration of queue managers and channels

| that are required for remote administration using the runmqsc command. The
object source.queue.manager is the source queue manager from which you can
issue MQSC commands and to which the results of these commands (operator
messages) are returned. The object target.queue.manager is the name of the
target queue manager, which processes the commands and generates any
operator messages.

Note: If you are using MQSC with the -w option, source.queue.manager must be
the default queue manager. For further information on creating a queue manager,
see “crtmqm (Create queue manager)” on page 284.

 Chapter 9. Administering remote MQSeries objects 89

 Remote administration

runmqsc
MQSC commands

replies

Process commands
for example:
DEFINE QLOCAL

Local system Remote system

source.queue.manager target.queue.manager

Figure 7. Remote administration using MQSC commands

On both systems, if you have not already done so, you must:

� Create the queue manager and the default objects using the crtmqm
command.

� Start the queue manager, using the strmqm command.

You have to run these commands locally or over a network facility such as Telnet.

On the target queue manager:

� The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.
This queue is created by default when a queue manager is created.

� The command server must be started, using the strmqcsv command.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, you must set up two channels, one for each
direction, and their associated transmission queues. This example assumes that
TCP/IP is being used as the transport type and that you know the TCP/IP address
involved.

The channel source.to.target is for sending MQSC commands from the source
queue manager to the target queue manager. Its sender is at
source.queue.manager and its receiver is at queue manager target.queue.manager.
The channel target.to.source is for returning the output from commands and any
operator messages that are generated to the source queue manager. You must
also define a transmission queue for each sender. This queue is a local queue that

| is given the name of the receiving queue manager. The XMITQ name must match
| the remote queue manager name in order for remote administration to work, unless
| you are using a queue manager alias.

Figure 8 on page 91 summarizes this configuration.

90 MQSeries System Administration

 Remote administration

repl ies

runmqsc

Local system Remote system

source.queue.manager target.queue.manager

XMITQ=target.queue.manager

source.to.target

target.to.source

XMITQ=source.queue.manager

SYSTEM.ADMIN.COMMAND.QUEUE

SYSTEM.MQSC.REPLY.QUEUE

commands

Figure 8. Setting up channels and queues for remote administration

See Chapter 1, “Concepts of intercommunication” in the MQSeries
Intercommunication book for more information about setting up remote channels.

Defining channels and transmission queues
On the source queue manager, issue these MQSC commands to define the
channels and the transmission queue:

\ Define the sender channel at the source queue manager

DEFINE CHANNEL ('source.to.target') +
 CHLTYPE(SDR) +

CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +

 TRPTYPE(TCP)

\ Define the receiver channel at the source queue manager

DEFINE CHANNEL ('target.to.source') +
 CHLTYPE(RCVR) +
 TRPTYPE(TCP)

\ Define the transmission queue on the source

DEFINE QLOCAL ('target.queue.manager') +
 USAGE (XMITQ)

Issue the commands shown in Figure 9 on page 92 on the target queue manager
(target.queue.manager), to create the channels and the transmission queue there:

 Chapter 9. Administering remote MQSeries objects 91

 Remote administration

\ Define the sender channel on the target queue manager

DEFINE CHANNEL ('target.to.source') +
 CHLTYPE(SDR) +

CONNAME (RHX7721) +
XMITQ ('source.queue.manager') +

 TRPTYPE(TCP)

\ Define the receiver channel on the target queue manager

DEFINE CHANNEL ('source.to.target') +
 CHLTYPE(RCVR) +
 TRPTYPE(TCP)

\ Define the transmission queue on the target queue manager

DEFINE QLOCAL ('source.queue.manager') +
 USAGE (XMITQ)

Figure 9. Commands to create channels and a transmission queue

Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name of the
machine at the other end of the connection. Use the values appropriate for your
network.

Starting the channels
The way in which you start the channels depends on the environments in which
MQSeries is running.

In MQSeries for UNIX systems, ensure that the inetd daemons have been
configured for MQSeries and are running. Then start the channels as background
processes:

� On the source queue manager, type:

| runmqchl -c source.to.target -m source.queue.manager &

� On the target queue manager, type:

| runmqchl -c target.to.source -m source.queue.manager &

In MQSeries for OS/2 Warp and Windows NT, start a listener as a background
process at the receiver end of each channel.

� On the source queue manager, type:

START runmqlsr -t TCP -m source.queue.manager

� On the target queue.manager, type:

92 MQSeries System Administration

 Remote administration

START runmqlsr -t TCP -m target.queue.manager

Then start the channels, again as background processes:

� On the source queue manager, type:

| START runmqchl -c source.to.target -m source.queue.manager

� On the target queue manager, type:

| START runmqchl -c target.to.source -m source.queue.manager

The runmqlsr and runmqchl commands are MQSeries control commands. They
cannot be issued using runmqsc . Channels can however be started using
runmqsc commands or scripts (start channel).

Automatic definition of channels
Automatic definition of channels applies only if the target queue manager is running
on MQSeries Version 5.1 products. If an inbound attach request, or higher, is
received and an appropriate receiver or server-connection definition cannot be
found in the channel definition file (CDF), MQSeries creates a definition
automatically and adds it to the CDF. Automatic definitions are based on two
default definitions supplied with MQSeries: SYSTEM.AUTO.RECEIVER and
SYSTEM.AUTO.SVRCONN.

You enable automatic definition of receiver and server-connection definitions by
updating the queue manager object using the MQSC command, ALTER QMGR (or
the PCF command Change Queue Manager).

For more information about the automatic creation of channel definitions, see
“Auto-definition of channels” in the MQSeries Intercommunication book.

| For information about the automatic definition of channels for clusters, see
| “Auto-definition of remote queues and channels” in the MQSeries Queue Manager
| Clusters book.

Issuing MQSC commands remotely
The command server must be running on the target queue manager, if it is going
to process MQSC commands remotely. (This is not necessary on the source
queue manager.)

� On the target queue manager, type:

 strmqcsv target.queue.manager

� On the source queue manager, you can then run MQSC interactively in indirect
mode by typing:

 Chapter 9. Administering remote MQSeries objects 93

 Remote administration

runmqsc -w 3ð target.queue.manager

This form of the runmqsc command—with the -w flag—runs the MQSC commands
in indirect mode, where commands are put (in a modified form) on the
command-server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if
a reply is not received within 30 seconds, the following message is generated on
the local (source) queue manager:

AMQ8416: MQSC timed out waiting for a response from the command server.

At the end of the MQSC session, the local queue manager displays any timed-out
responses that have arrived. When the MQSC session is finished, any further
responses are discarded.

In indirect mode, you can also run an MQSC command file on a remote queue
manager. For example:

runmqsc -w 6ð target.queue.manager < mycomds.in > report.out

where mycomds.in is a file containing MQSC commands and report.out is the
report file.

| Working with queue managers on OS/390
| You can issue MQSC commands to an OS/390 queue manager from an MQSeries

Version 5.1 queue manager. However, to do this, you must modify the runmqsc
command and the channel definitions at the sender.

In particular, you add the -x flag to the runmqsc command on the source node:

runmqsc -w 3ð -x target.queue.manager

You must define the receiver channel and the transmission queue at the source
queue manager. The example assumes that TCP/IP is the transmission protocol
being used.

\ Define the sender channel at the source queue manager

DEFINE CHANNEL (source.to.target) +
 CHLTYPE(SDR) +

CONNAME (RHX5498) +
XMITQ (target.queue.manager) +

 TRPTYPE(TCP) +

94 MQSeries System Administration

 Local definition of remote queue

Recommendations for remote queuing
When you are implementing remote queuing:

1. Put the MQSC commands to be run on the remote system in a command file.

2. Verify your MQSC commands locally, by specifying the -v flag on the runmqsc
command.

You cannot use runmqsc to verify MQSC commands on another queue
manager.

3. Check that the command file runs locally without error.

4. Finally, run the command file against the remote system.

If you have problems using MQSC remotely
If you have difficulty in running MQSC commands remotely, use the following
checklist to see if you have:

� Started the command server on the target queue manager.

� Defined a valid transmission queue.

� Defined the two ends of the message channels for both:

– The channel along which the commands are being sent.
– The channel along which the replies are to be returned.

� Specified the correct connection name (CONNAME) in the channel definition.

� Started the listeners before you started the message channels.

� Checked that the disconnect interval has not expired, for example, if a channel
started but then shut down after some time. This is especially important if you
start the channels manually.

| � Ensure that you are not sending requests from a source queue manager that
| do not make sense to the target queue manager (for example, requests that
| include new parameters).

See also “Resolving problems with MQSC” on page 68.

Creating a local definition of a remote queue
You can use a remote queue definition as a local definition of a remote queue.
You create a remote queue definition on your local queue manager to identify a
local queue on another queue manager.

Understanding how local definitions of remote queues work
An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of
the target queue, the target queue manager, and optionally, a transmission queue.
To put a message on the remote queue, the application issues an MQPUT call,
specifying the handle returned from the MQOPEN call. The queue manager uses
the remote queue name and the remote queue manager name in a transmission
header prepended to the message. This information is used to route the message
to its correct destination in the network.

 Chapter 9. Administering remote MQSeries objects 95

 Local definition of remote queue

As administrator, you can control the destination of the message by altering the
remote queue definition.

 Example
Purpose: An application is required to put a message on a queue owned by a
remote queue manager.

How it works: The application connects to a queue manager, for example,
saturn.queue.manager. The target queue is owned by another queue manager.

On the MQOPEN call, the application specifies these fields:

After this, the application issues an MQPUT call to put a message on to this queue.

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

Field value Description

ObjectName
 CYAN.REMOTE.QUEUE

Specifies the local name of the remote queue object.
This defines the target queue and the target queue
manager.

ObjectType
 (Queue)

Identifies this object as a queue.

ObjectQmgrName
 Blank
 or
 saturn.queue.manager

This field is optional.

If blank, the name of the local queue manager is
assumed. (This is the queue manager on which the
remote queue definition exists.)

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +
RQMNAME (jupiter.queue.manager) +

 XMITQ (INQUOTE.XMIT.QUEUE)

where:

QREMOTE (CYAN.REMOTE.QUEUE)
Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the MQOPEN
call to open the queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the
remote queue manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Additional text that describes the use of the queue.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)
Specifies the name of the target queue on the remote queue manager. This
is the real target queue for messages that are sent by applications that
specify the queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local
queue on the remote queue manager.

96 MQSeries System Administration

 Local definition of remote queue

RQMNAME (jupiter.queue.manager)
Specifies the name of the remote queue manager that owns the target
queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)
Specifies the name of the transmission queue. This is optional; if the name
of a transmission queue is not specified, a queue with the same name as the
remote queue manager is used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(USAGE(XMITQ) in MQSC).

An alternative way of putting messages on a remote queue
Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, which includes
the remote queue manager name, as part of the MQOPEN call. In this case, a
local definition of a remote queue is not required. However, this alternative means
that applications must either know or have access to the name of the remote queue
manager at run time.

Using other commands with remote queues
You can use the appropriate MQSC commands to display or alter the attributes of a
remote queue object, or you can delete the remote queue object. For example:

\ Display the remote queue's attributes.

DISPLAY QUEUE (CYAN.REMOTE.QUEUE)

\ ALTER the remote queue to enable puts.
\ This does not affect the target queue,
\ only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

\ Delete this remote queue
\ This does not affect the target queue
\ only its local definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: When you delete a remote queue, you delete only the local representation
of the remote queue. You do not delete the remote queue itself or any messages
on it.

 Chapter 9. Administering remote MQSeries objects 97

 Local definition of remote queue

Creating a transmission queue
A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel.

The channel provides a one-way link to the remote queue manager. Messages are
queued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues
Optionally, you can specify a transmission queue in a remote queue object, using
the XmitQName attribute (XMITQ in MQSC). If no transmission queue is defined, a
default is used. When applications put messages on a remote queue, if a
transmission queue with the same name as the target queue manager exists, that
queue is used. If this queue does not exist, the queue specified by the
DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target qm') +

 USAGE (XMITQ)

Applications can put messages directly on a transmission queue, or they can be put
there indirectly, for example, through a remote queue definition. See also “Creating
a local definition of a remote queue” on page 95.

98 MQSeries System Administration

 Aliases

Using remote queue definitions as aliases
In addition to locating a queue on another queue manager, you can also use a
local definition of a remote queue for both:

� Queue manager aliases
� Reply-to queue aliases

Both types of alias are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the
message is to arrive at its destination.

Queue manager aliases
An alias is the process by which the name of the target queue manager—as
specified in a message—is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see “Queue manager alias
definitions” in the MQSeries Intercommunication book.

Reply-to queue aliases
Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue.

If the application that processes the message extracts the name of the reply-to
queue, it knows where to send the reply message, if required.

A reply-to queue alias is the process by which a reply-to queue – as specified in a
request message – is altered by a queue manager on the message route. The
sending application is not aware that the reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
queues, see Chapter 3, “MQSeries messages” in the MQSeries Application
Programming Guide.

For more information about reply-to queue aliases, see “Reply-to queue alias
definitions” in the MQSeries Intercommunication book.

 Chapter 9. Administering remote MQSeries objects 99

 Data conversion

 Data conversion
Message data in MQSeries-defined formats (also known as built-in formats) can be
converted by the queue manager from one coded character set to another,
provided that both character sets relate to a single language or a group of similar
languages.

For example, conversion between coded character sets whose identifiers (CCSIDs)
are 850 and 500 is supported, because both apply to Western European
languages.

| For EBCDIC new line (NL) character conversions to ASCII, see “The
| AllQueueManagers stanza” on page 130.

Supported conversions are defined in Appendix F, “Code page conversion tables”
in the MQSeries Application Programming Reference manual.

When a queue manager cannot convert messages in built-in formats
The queue manager cannot automatically convert messages in built-in formats if
their CCSIDs represent different national-language groups. For example,
conversion between CCSID 850 and CCSID 1025 (which is an EBCDIC coded
character set for languages using Cyrillic script) is not supported because many of
the characters in one coded character set cannot be represented in the other. If
you have a network of queue managers working in different national languages,
and data conversion among some of the coded character sets is not supported, you
can enable a default conversion. Default data conversion is described in “Default
data conversion” on page 101.

 File ccsid.tbl
The file ccsid.tbl is used for the following purposes:

� In MQSeries for Windows NT it records all the supported code sets. In
MQSeries for OS/2 Warp and UNIX systems the supported code sets are held
internally by the operating system.

� It specifies any additional code sets. To specify additional code sets, you need
to edit ccsid.tbl (guidance on how to do this is provided in the file).

� It specifies any default data conversion.

You can update the information recorded in ccsid.tbl; you might want to do this if,
for example, a future release of your operating system supports additional coded
character sets.

In UNIX environments, a sample ccsid.tbl file is provided as
mqmtop /samp/ccsid.tbl.

In MQSeries for UNIX systems, ccsid.tbl is located in directory /var/mqm/conv/table.

In MQSeries for OS/2 Warp and MQSeries for Windows NT, ccsid.tbl is located on
the boot drive in directory \MQM\CONV\TABLE.

100 MQSeries System Administration

 Data conversion

Default data conversion
To implement default data conversion, you edit ccsid.tbl to specify a default
EBCDIC CCSID and a default ASCII CCSID, and also to specify the defaulting
CCSIDs. Instructions for doing this are included in the file.

If you update ccsid.tbl to implement default data conversion, the queue manager
must be restarted before the change can take effect.

The default data-conversion process is as follows:

� If conversion between the source and target CCSIDs is not supported, but the
CCSIDs of the source and target environments are either both EBCDIC or both
ASCII, the character data is passed to the target application without conversion.

� If one CCSID represents an ASCII coded character set, and the other
represents an EBCDIC coded character set, MQSeries converts the data using
the default data-conversion CCSIDS defined in ccsid.tbl.

Note: You should try to restrict the characters being converted to those that have
the same code values in the coded character set specified for the message and in
the default coded character set. If you use only that set of characters that is valid
for MQSeries object names (as defined in “Names of MQSeries objects” on
page 279) you will, in general, satisfy this requirement. Exceptions occur with
EBCDIC CCSIDs 290, 930, 1279, and 5026 used in Japan, where the lowercase
characters have different codes from those used in other EBCDIC CCSIDs.

Conversion of messages in user-defined formats
Messages in user-defined formats cannot be converted from one coded character
set to another by the queue manager. If data in a user-defined format requires
conversion, you must supply a data-conversion exit for each such format. The use
of default CCSIDs for converting character data in user-defined formats is not
recommended, although it is possible. For more information about converting data
in user-defined formats and about writing data conversion exits, see Chapter 11,
“Writing data-conversion exits” in the MQSeries Application Programming Guide.

 Chapter 9. Administering remote MQSeries objects 101

 Data conversion

102 MQSeries System Administration

 Security � Protecting MQSeries resources

Chapter 10. Protecting MQSeries objects

This information does not apply to MQSeries for OS/2 Warp

This chapter describes how to prevent unauthorized access to MQSeries objects in
these environments:

� MQSeries for AIX
� MQSeries for HP-UX
� MQSeries for Sun Solaris
� MQSeries for Windows NT

Detailed information about installable services is given in the Chapter 11,
“Installable services and components” in the MQSeries Programmable System
Management manual.

This chapter contains these sections:

� “Why you need to protect MQSeries resources”
� “Understanding the Object Authority Manager” on page 107
� “Using Object Authority Manager commands” on page 110
� “Object Authority Manager guidelines” on page 113
� “Understanding the authorization specification tables” on page 116
� “Authorization files” on page 122

Why you need to protect MQSeries resources
Because MQSeries queue managers handle the transfer of information that is
potentially valuable, you need the safeguard of an authority system. This ensures
that the resources that a queue manager owns and manages are protected from
unauthorized access, which could lead to the loss or disclosure of the information.

In a secure system, it is essential that none of the following are accessed or
changed by any unauthorized user or application:

� Connections to a queue manager

| � Access to MQSeries objects such as queues, clusters, channels, and
processes

� Commands for queue manager administration, including MQSC commands and
PCF commands

� Access to MQSeries messages

� Context information associated with messages

You should develop your own policy with respect to which users have access to
which resources.

 Copyright IBM Corp. 1994,1999 103

 Before you begin

Before you begin (UNIX systems)
In MQSeries for UNIX systems, UNIX restrictions mean that all user IDs must be
defined in lowercase.

All queue manager processes run with these IDs:

 User ID mqm
 Group mqm

| A user ID with the name mqm whose primary group is mqm is automatically
| created during installation. You can create the user ID and group yourself, but you
| must do this before you install MQSeries.

For an explanation of how to create the ID and group yourself, see one of the
following:

� “Chapter 3. Installing the MQSeries for AIX Server” in the MQSeries for AIX
V5.1 Quick Beginnings book

� “Chapter 3. Installing the MQSeries for HP-UX Server” in the MQSeries for
HP-UX V5.1 Quick Beginnings book

� “Chapter 3. Installing the MQSeries for Sun Solaris Server” in the MQSeries for
Sun Solaris V5.1 Quick Beginnings book

User IDs in user group mqm (UNIX systems)
If your user ID belongs to group mqm, you have all authorities to all MQSeries
resources. Your user ID must belong to group mqm to be able to use all the
MQSeries control commands, except crtmqcvx . In particular, you need this
authority to:

� Use the runmqsc command to run MQSC commands
� Administer authorities using the setmqaut command

| � Create a queue manager using the crtmqm command

If you are sending channel commands to remote queue managers, you must make
sure that your user ID is a member of group mqm on the target system. For a list
of PCF and MQSC channel commands, see “Channel command security” on
page 115.

It is not essential for your user ID to belong to group mqm for issuing:

� PCF commands—including Escape PCFs—from an administration program.
| � MQI calls from an application program. However, the special MQI call,
| MQCONNX, does require mqm group membership if the option
| MQCNO_FASTPATH_BINDING is used.

Before you begin (Windows NT)
If the local mqm group does not already exist on the local computer, it is created
automatically when MQSeries for Windows NT is installed. In addition, a Domain

| mqm group may be created on the domain controller. This global group allows
control of mqm user access. All privileged user IDs active within this domain
should be added to the Domain mqm group.

104 MQSeries System Administration

 Before you begin

| User IDs for administration
If your user ID belongs to the local mqm or Administrators group, you can
administer any queue manager on that system. The system-defined user ID
‘SYSTEM’ can also administer any queue manager.

The name of the local mqm group to be used for privileged MQSeries
administration is fixed, and it can contain (directly, or indirectly by the inclusion of
global groups) users who require MQSeries authority to any queue manager on the
workstation or server.

In order to run all the MQSeries for Windows NT control commands, your user ID
must belong to the local mqm or Administrators group. In particular, you need this
authority to:

� Use the runmqsc command to run MQSC commands

� Administer authorities on MQSeries for Windows NT using the setmqaut
command

� Create a queue manager using crtmqm

If you are sending channel commands to queue managers on a remote Windows
NT system, you must ensure that your user ID is a member of the mqm or
Administrators group on the target system. For a list of PCF and MQSC channel
commands, see “Channel command security” on page 115.

Some control commands, for example, crtmqm , manipulate authorities on
MQSeries objects using the Object Authority Manager (OAM). As described in
“Understanding the Object Authority Manager” on page 107, the OAM uses a
predefined search order to determine the authority rights for a given user ID.
Consequently the authorities granted to your user ID may differ from those
determined by the OAM. For example, if you issue crtmqm from a user ID
authenticated by a domain controller that has membership of the local mqm group
through a global group, the command fails if the system has a local user of the
same name who is not in the local mqm group.

Your user ID does not have to belong to group mqm in order to issue:

� PCF commands—including Escape PCFs—from an administration program.
| � MQI calls from an application program. However, the special MQI call,
| MQCONNX, does require mqm group membership.

When you use a Domain user ID defined on a remote machine, you must be a
member of the local mqm or Administrators group to:

1. Issue commands (such as create queue manager), and
2. Grant MQSeries authorities.

| Name lengths for user IDs and groups
| For MQSeries authorizations, names of user IDs, groups, and domains are limited
| to:

| � 20 characters for user IDs
| � 64 characters for group names
| � 15 characters for domain names

 Chapter 10. Protecting MQSeries objects 105

 Before you begin

| Qualifying a user ID with a domain name
| You can optionally qualify a user ID on both the setmqaut and dspmqaut
| commands with a domain name using the following syntax:

| user@domain

| For example,

| setmqaut -m qmgrname -t qmgr -p userID@domain +all

| where user is the user ID and domain is the domain name.

| Note: Group names always refer to local groups, therefore domain qualification is
| not necessary.

| Using the @ symbol in user ID names
| The at sign (@ symbol) is used as a delimiter. However, some user IDs may
| contain the @ symbol as part of the user ID name. If you do this, use two @
| symbols together (@@) to signify that the symbol is to be used as part of the user
| ID string and not as a delimiter between the user ID and the domain name. So, for
| example, the user ID a@b becomes a@@b.

| Using spaces in names for user IDs and groups
| Spaces in user IDs and group names are allowed when they are specified as
| parameters on the setmqaut and dspmqaut commands, as long as they are
| enclosed in double quotation marks (“ ”).

| Authorizing user IDs on different domains
| You can give different levels of authorization to user IDs that are not unique
| residing on different domains. For example, user ID Fred on domain A can be
| given different authorizations to user ID Fred on domain B.

| See “dspmqaut (Display authority)” on page 293, and “setmqaut (Set/reset
| authority)” on page 327 for command descriptions.

Restricted-access Windows NT objects
When MQSeries creates restricted-access Windows NT objects, full control
permission is given to the following entities:

� The local mqm group on the local computer
� The local Administrators group on the local computer
� The SYSTEM user ID

| Security policies
| A security policy can be specified for each queue manager by setting the
| SecurityPolicy attribute of the Service stanza in the Windows NT Registry. See
| “The Service stanza” on page 136 for a description of the attribute.

106 MQSeries System Administration

 Object authority manager

| A security policy dictates how the OAM behaves when it receives authority requests
| which do not contain Windows NT security identifier (NT SID) information3.

| When using the default security policy, it is permissible for the OAM to receive
| authority requests that do not contain SID information. In such situations, the OAM
| attempts to resolve the user ID into a Windows NT SID by searching:

| � The local security database
| � The security database of the primary domain
| � The security database of trusted domains

| If the security policy is set to the value NTSIDsRequired, then both the user ID and
| NT SID information must be passed to the OAM.

| In cases where both a user ID and NT SID information are passed to the OAM, a
| check is made to ensure that the two are consistent. The supplied user ID is
| compared with the user ID (or the first 12 characters if the user ID is longer than 12
| characters) associated with the NT SID. If the two are unequal, then authorization
| fails. This consistency check is performed regardless of the security policy setting.

Understanding the Object Authority Manager
By default, access to queue-manager resources is controlled through an
authorization service installable component formally called the Object Authority
Manager (OAM) for MQSeries. It is supplied with MQSeries, and is automatically
installed and enabled for each queue manager you create, unless you specify
otherwise. In this chapter, the term OAM is used to denote the Object Authority
Manager supplied with MQSeries.

The OAM is an installable component of the authorization service. Providing the
OAM as an installable service gives you the flexibility to:

� Replace the supplied OAM with your own authorization service component
using the interface provided.

� Augment the facilities supplied by the OAM with those of your own
authorization service component, again using the interface provided.

� Remove or disable the OAM, and run with no authorization service at all.

For more information on installable services, see Chapter 11, “Installable services
and components” in the MQSeries Programmable System Management manual.

The OAM manages users’ authorizations to manipulate MQSeries objects, including
queues and process definitions. It also provides a command interface through
which you can grant or revoke access authority to an object for a specific group of
users. The decision to allow access to a resource is made by the OAM, and the
queue manager follows that decision. If the OAM cannot make a decision, the
queue manager prevents access to that resource.

| 3 The Windows NT security identifier (NT SID) supplements the 12-character user ID. It contains information that identifies the full
| user account details on the Windows NT security account manager (SAM) database where the user is defined. When a message
| is created on MQSeries for Windows NT, MQSeries stores the SID in the message descriptor. When MQSeries for Windows NT
| performs authorization checks, it uses the SID to query the full information from the SAM database. The SAM database in which
| the user is defined must be accessible for this query to succeed.

 Chapter 10. Protecting MQSeries objects 107

 Object authority manager

How the OAM works
The OAM works by exploiting the security features of the underlying operating
system. In particular, the OAM uses operating system user and group IDs. Users
can access queue manager objects only if they have the required authority.

Managing access through user groups
In the command interface, we use the term principal rather than user ID. The
reason for this is that authorities granted to a user ID can also be granted to other
entities, for example, an application program that issues MQI calls, or an
administration program that issues PCF commands. In these cases, the principal
associated with the program is not necessarily the user ID that was used when the
program was started. However, in this discussion, principals are always user IDs.

Group sets and the primary group
Managing access permissions to MQSeries resources is based on user groups
(that is, on groups of principals). A principal can belong to one or more groups. If
it belongs to more than one group, the groups to which it belongs are known as its
group set.

Group sets and the primary group—MQSeries for UNIX systems: One of the
groups in the group set is the primary group.

Group sets and the primary group—MQSeries for Windows NT: For MQSeries
for Windows NT, the role of the primary group is fulfilled by the user ID. The
Windows NT primary group associated with a user ID is given no special treatment
by MQSeries; it is handled in the same way as any other group.

| The OAM searches for the specified user in the following order:

| 1. The local security database
| 2. The security database of the primary domain
| 3. The security database of trusted domains

The first user ID encountered is used when checking for group membership.

Note that each of these user IDs may have different group memberships on a
particular computer.

When a principal belongs to more than one group
The authorizations that a principal has are derived from the union of the
authorizations of its group set. Whenever a principal requests access to a
resource, the OAM computes this union and uses the resultant authorization to
check the principal’s access to the resource. You can use the control command
setmqaut to set the authorizations for a specific principal. However, for MQSeries
for UNIX systems, this also gives the same authorizations to the principal’s primary
group.

The group set associated with a principal is cached when the group authorizations
| are computed by the OAM. Any changes made to a principal’s group memberships

after the group set has been cached are not recognized until the queue manager is
restarted.

108 MQSeries System Administration

 Object authority manager

| Default user group (UNIX systems only)
The OAM recognizes a default user group to which all users are nominally
assigned. This group has a group ID of 'nobody'. By default, no authorizations
are given to this group. Users without specific authorizations can be granted
access to MQSeries resources through this group ID.

Resources you can protect with the OAM
Through OAM you can control:

� Access to MQSeries objects through the MQI. When an application program
attempts to access an object, the OAM checks that the user ID making the
request has the authorization for the operation requested.

In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

� Permission to use PCF commands.

Different groups of users may be granted different kinds of access authority to the
same object. For example, for a specific queue, one group may be allowed to
perform both put and get operations; another group may be allowed only to browse
the queue (MQGET with browse option). Similarly, some groups may have get and
put authority to a queue, but are not allowed to alter or delete the queue.

Using groups for authorizations
Using groups, rather than individual principals, for authorization reduces the amount
of administration required. Typically, a particular kind of access is required by more
than one principal. For example, you might define a group consisting of end users
who want to run a particular application. New users can be given access simply by
adding their user ID to the appropriate group.

Try to keep the number of groups as small as possible. For example, dividing
principals into one group for application users and one for administrators is a good
place to start.

Notes:

| 1. In MQSeries for UNIX systems, if a principal in a PRIMARY group is added to
| the MQM group, then all members of the PRIMARY group inherit the authority
| of the member added, unless you use SETMQAUT to change the authority of
| the existing members. It is important to ensure that you do not change the

authorization of a principal inadvertently, simply because it belongs to the same
primary group as the principal you specified when you changed an
authorization.

| 2. MQSeries for Windows NT treats the local Administrators group and the local
| mqm group in a special manner. Members of these groups are always granted
| full access rights which cannot be removed. Membership of these local groups
| may be established by the user being a member of a domain global group
| which is included in the local group.

 Chapter 10. Protecting MQSeries objects 109

 Using OAM commands

Disabling the object authority manager
By default the OAM is enabled. You can disable it by setting the operating system
variable MQSNOAUT before the queue manager is created.

In MQSeries for UNIX systems, you set MQSNOAUT as follows:

export MQSNOAUT=yes

For MQSeries for Windows NT, you set MQSNOAUT as follows:

SET MQSNOAUT=yes

However, if you do this you cannot, in general, restart the OAM later. A better
approach is to have the OAM enabled and ensure that all users and applications
have access through an appropriate group or user ID.

You can also disable the OAM, for testing purposes only, by removing the
authorization service stanza in the queue manager configuration file (qm.ini).

Using Object Authority Manager commands
The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be suitably authorized:

� In MQSeries for UNIX systems, your user ID must belong to the group mqm,
which you define when you install MQSeries.

� In MQSeries for Windows NT, your user ID must belong to either the local mqm
group or the local Administrators group.

If your user ID is a member of mqm, or, for MQSeries for Windows NT, of either
mqm or the local Administrators group, you have a ‘super user’ authority to the
queue manager, which means that you are authorized to issue any MQI request or
command from your user ID.

Using the OAM set or reset authority control command, setmqaut
The OAM provides two control commands that allow you to manage the
authorizations of users. These are:

� setmqaut (Set or reset authority)
� dspmqaut (Display authority).

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE. Therefore, any changes made to the authority of an object using
setmqaut do not take effect until you reset the object.

The authority commands setmqaut and dspmqaut apply to the specified queue
manager; if you do not specify the name of a queue manager, the default queue
manager is assumed. On these commands, you must also identify the object
uniquely (that is, you must specify the object name and its type). You also have to
specify the principal or group name to which the authority applies.

110 MQSeries System Administration

 Using OAM commands

 Authorization lists
On the setmqaut command you specify a list of authorizations. This is simply a
shorthand way of specifying whether authorization is to be granted or revoked, and
of identifying the resources to which the change in authorization applies. Each
authorization in the list is specified as a lowercase keyword, prefixed with a plus
sign (+) or a minus sign (−). Use a plus sign to add the specified authorization,
and a minus sign to remove the authorization. You can specify any number of
authorizations in a single command. For example:

+browse -get +put

Using the setmqaut command
Provided you have the required authorization, you can use the setmqaut command
to grant or revoke authorization of a principal or user group to access a particular
object. The following example shows how the setmqaut command is used:

setmqaut -m saturn.queue.manager -t queue -n RED.LOCAL.QUEUE -g groupa +browse -get +put

In this example:

� saturn.queue.manager is the queue manager name.

� queue is the object type.

� RED.LOCAL.QUEUE is the object name.

� groupa is the ID of the group whose authorizations are to change.

� +browse -get +put is the authorization list for the specified queue. There must
be no spaces between the ‘+’ or ‘−’ signs and the keyword.

– +browse adds authorization to browse messages on the queue (to issue
MQGET with the browse option).

– -get removes authorization to get (MQGET) messages from the queue.

– +put adds authorization to put (MQPUT) messages on the queue.

In summary, applications started with user IDs that belong to user group groupa
have at least these authorizations.

You can specify one or more principals and, at the same time, one or more groups.
For example, the following command revokes put authority on the queue MyQueue
from the principal fvuser and from groups groupa and groupb.

setmqaut -m saturn.queue.manager -t queue -n MyQueue -p fvuser -g groupa -g groupb -put

Note: For MQSeries for UNIX systems, this command also revokes put authority
for all principals in the primary group of FvUser.

For a formal definition of the command and its syntax, see “setmqaut (Set/reset
authority)” on page 327.

 Chapter 10. Protecting MQSeries objects 111

 Using OAM commands

Authority commands and installable services: The setmqaut command takes
an additional parameter that specifies the name of the installable service
component to which the update applies. You must specify this parameter if you
have multiple installable components running at the same time. By default, this is
not the case. If the parameter is omitted, the update is made to the first installable
service of that type, if one exists. By default, this is the supplied OAM.

| See “setmqaut (Set/reset authority)” on page 327 for detailed command
| information.

 Access authorizations
Authorizations defined by the authorization list associated with the setmqaut
command can be categorized as follows:

� Authorizations related to MQI calls
� Authorization related administration commands

 � Context authorizations
� General authorizations, that is, for MQI calls, for commands, or both

Each authorization is specified by a keyword used with the setmqaut and
dspmqaut commands. These are described in “setmqaut (Set/reset authority)” on
page 327.

Using the OAM display authority control command (dspmqaut)
You can use the command dspmqaut to view the authorizations that a specific
principal or group has for a particular object. The flags have the same meaning as
those in the setmqaut command. Authorization can be displayed for only one
group or principal at a time. See “dspmqaut (Display authority)” on page 293 for a
formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager
QueueMan1.

dspmqaut -m QueueMan1 -t process -n Annuities -g GpAdmin

The keywords displayed as a result of this command identify the authorizations that
are active.

112 MQSeries System Administration

 OAM guidelines

Object Authority Manager guidelines
Some operations are particularly sensitive and should be limited to privileged users.
For example,

� Accessing some special queues, such as transmission queues or the command
queue SYSTEM.ADMIN.COMMAND.QUEUE

� Running programs that use full MQI context options

� Creating and copying application queues

User IDs (MQSeries for UNIX systems only)
The special user ID mqm that you create is intended for use by the product only. It
should never be available to nonprivileged users.

If an MQ process is associated with a login session, then the authorization routines
check the real (logged-in) user ID.

If an MQ process is not associated with a login session (for example, if the process
is invoked from a daemon such as inetd), the effective user ID is used for
authorization. In a CICS environment, the CICS user ID associated with the
transaction is used.

All objects are owned by user ID mqm.

Queue manager directories
The directory containing queues and other queue manager data is private to the
product. Do not use standard operating system commands to grant or revoke
authorizations to MQI resources.

 Queues
The authority to a dynamic queue is based on, but is not necessarily the same as,
that of the model queue from which it is derived. See note 1 on page 119 for more
information.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user ID to access an alias queue that resolves to a local queue to
which the user ID has no access permissions.

You should limit the authority to create queues to privileged users. If you do not,
users may bypass the normal access control simply by creating an alias.

 Alternate-user authority
Alternate-user authority controls whether one user ID can use the authority of
another user ID when accessing an MQSeries object. This is essential where a
server receives requests from a program and the server wishes to ensure that the
program has the required authority for the request. The server may have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

 Chapter 10. Protecting MQSeries objects 113

 OAM guidelines

For example:

� A server program running under user ID PAYSERV retrieves a request
message from a queue that was put on the queue by user ID USER1.

� When the server program gets the request message, it processes the request
and puts the reply back into the reply-to queue specified with the request
message.

� Instead of using its own user ID (PAYSERV) to authorize opening the reply-to
queue, the server can specify some other user ID, in this case, USER1. In this
example, you can use alternate-user authority to control whether PAYSERV is
allowed to specify USER1 as an alternate-user ID when it opens the reply-to
queue.

The alternate-user ID is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate-user IDs on any MQSeries object. Use of an
alternate-user ID does not affect the user ID used by any other resource managers.

 Context authority
Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section This part specifies who the message came from. It consists
of the following fields:

 � UserIdentifier
 � AccountingToken
 � ApplIdentityData

Origin section This section specifies where the message came from, and
when it was put onto the queue. It consists of the following
fields:

 � PutApplType
 � PutApplName
 � PutDate
 � PutTime
 � ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data may be generated by the application, it may be passed on
from another message, or it may be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application, running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user.

You use context authorization to control whether the user can specify any of the
context options on any MQOPEN or MQPUT1 call. For information about the
context options, see “Message context” in the MQSeries Application Programming
Guide.

114 MQSeries System Administration

 OAM guidelines

For descriptions of the message descriptor fields relating to context, see “MQMD -
Message descriptor” on page 109 in the MQSeries Application Programming
Reference manual.

Remote security considerations
For remote security, you should consider:

Put authority For security across queue managers you can specify the put
authority that is used when a channel receives a message sent
from another queue manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. This is the user ID that the message
channel agent is running under.

CTX The user ID in the message context.

Transmission queues
Queue managers automatically put remote messages on a
transmission queue; no special authority is required for this.
However, putting a message directly on a transmission queue
requires special authorization; see Table 4 on page 118.

Channel exits Channel exits can be used for added security.

For more information about remote security, see Chapter 6, “Channel attributes”
and Chapter 35, “Channel-exit programs” in the MQSeries Intercommunication
book.

Channel command security
| Channel commands can be issued as PCF commands, through the MQAI, MQSC

commands, and control commands.

 PCF commands
You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote MQSeries system. The user ID,
as specified in the message descriptor of the PCF message, must belong to group
mqm (or the Administrator’s group in the MQSeries for Windows NT) on the target
system. These commands are:

 � ChangeChannel
 � CopyChannel
 � CreateChannel
 � DeleteChannel
 � PingChannel
 � ResetChannel
 � StartChannel
 � StartChannelInitiator

| � StartChannelListener
 � StopChannel
 � ResolveChannel

See “Authority checking for PCF commands” in the MQSeries Programmable
System Management manual for the PCF security requirements.

 Chapter 10. Protecting MQSeries objects 115

 Authorization specification tables

MQSC channel commands
You can issue MQSC channel commands to a remote MQSeries system either by
sending the command directly in a PCF escape message or by issuing the
command using runmqsc in indirect mode. The user ID as specified in the
message descriptor of the associated PCF message must belong to group mqm (or
the Administrator’s group in MQSeries for Windows NT) on the target system.
(PCF commands are implicit in MQSC commands issued from runmqsc in indirect
mode.) These commands are:

 � ALTER CHANNEL
 � DEFINE CHANNEL
 � DELETE CHANNEL
 � PING CHANNEL
 � RESET CHANNEL
 � START CHANNEL
 � START CHINIT

| � START LISTENER
 � STOP CHANNEL
 � RESOLVE CHANNEL

For MQSC commands issued from the runmqsc command, the user ID in the PCF
message is normally that of the current user.

Control commands for channels
For the control commands for channels, the user ID that issues them must belong
to user group mqm (or the Administrator’s group in MQSeries for Windows NT).
These commands are:

� runmqchi (Run channel initiator)
� runmqchl (Run channel)
� runmqlsr (Run listener)

Understanding the authorization specification tables
The authorization specification tables starting on page 118 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:

� Applications that issue MQI calls
� Administration programs that issue MQSC commands as escape PCFs
� Administration programs that issue PCF commands

In this section, the information is presented as a set of tables that specify the
following:

Action to be performed MQI option, MQSC command, or PCF command.

Access control object Queue, process, or queue manager.

Authorization required Expressed as an ‘MQZAO_’ constant.

116 MQSeries System Administration

 Authorization specification tables

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in the
authorization list for the setmqaut command for the particular entity. For example,
MQZAO_BROWSE corresponds to the keyword +browse; similarly, the keyword
MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall and so on.
These constants are defined in the header file cmqzc.h, which is supplied with the
product. See “Authorization file contents — MQSeries for UNIX systems” on
page 124 for more information.

 MQI authorizations
An application is allowed to issue specific MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the object
being opened, and not on the name, or names, resulting after a name has been
resolved. For example, an application may be granted authority to open an alias
queue without having authority to open the base queue to which the alias resolves.
The rule is that the check is carried out on the first definition encountered during
the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority—which is obtained through an authorization for the queue-manager
object—is required.

Table 4 on page 118 summarizes the authorizations needed for each call.

 Chapter 10. Protecting MQSeries objects 117

 Authorization specification tables

| Table 4. Security authorization needed for MQI calls

| Authorization
| required for:
| Queue object (1)| Process object| Queue manager
| object
| Namelists

| MQCONN option| Not applicable| Not applicable| MQZAO_CONNECT| Not applicable

| MQOPEN Option

| MQOO_INQUIRE| MQZAO_INQUIRE
| (2)
| MQZAO_INQUIRE
| (2)
| MQZAO_INQUIRE
| (2)
| MQZAO_INQUIRE
| (2)

| MQOO_BROWSE| MQZAO_BROWSE| Not applicable| No check| Not applicable

| MQOO_INPUT_*| MQZAO_INPUT| Not applicable| No check| Not applicable

| MQOO_SAVE_
| ALL_CONTEXT (3)
| MQZAO_INPUT| Not applicable| Not applicable| Not applicable

| MQOO_OUTPUT
| (Normal queue) (4)
| MQZAO_OUTPUT| Not applicable| Not applicable| Not applicable

| MQOO_PASS_
| IDENTITY_CONTEXT
| (5)

| MQZAO_PASS_
| IDENTITY_CONTEXT
| Not applicable| No check| Not applicable

| MQOO_PASS_ALL_
| CONTEXT (5, 6)
| MQZAO_PASS
| _ALL_CONTEXT
| Not applicable| No check| Not applicable

| MQOO_SET_
| IDENTITY_CONTEXT
| (5, 6)

| MQZAO_SET_
| IDENTITY_CONTEXT
| Not applicable| MQZAO_SET_
| IDENTITY_CONTEXT
| (7)

| Not applicable

| MQOO_SET_
| ALL_CONTEXT (5, 8)
| MQZAO_SET_
| ALL_CONTEXT
| Not applicable| MQZAO_SET_
| ALL_CONTEXT (7)
| Not applicable

| MQOO_OUTPUT
| (Transmission queue)
| (9)

| MQZAO_SET_
| ALL_CONTEXT
| Not applicable| MQZAO_SET_
| ALL_CONTEXT (7)
| Not applicable

| MQOO_SET| MQZAO_SET| Not applicable| No check| Not applicable

| MQOO_ALTERNATE_
| USER_AUTHORITY
| (10)| (10)| MQZAO_ALTERNATE_
| USER_AUTHORITY
| (10, 11)

| (10)

| MQPUT1 Option

| MQPMO_PASS_
| IDENTITY_CONTEXT
| MQZAO_PASS_
| IDENTITY_CONTEXT
| (12)

| Not applicable| No check| Not applicable

| MQPMO_PASS_ALL
| _CONTEXT
| MQZAO_PASS_
| ALL_CONTEXT (12)
| Not applicable| No check| Not applicable

| MQPMO_SET_
| IDENTITY_CONTEXT
| MQZAO_SET_
| IDENTITY_CONTEXT
| (12)

| Not applicable| MQZAO_SET_
| IDENTITY_CONTEXT
| (7)

| Not applicable

| MQPMO_SET_
| ALL_CONTEXT
| MQZAO_SET_
| ALL_CONTEXT (12)
| Not applicable| MQZAO_SET_
| ALL_CONTEXT (7)
| Not applicable

| (Transmission queue)
| (9)
| MQZAO_SET_
| ALL_CONTEXT
| Not applicable| MQZAO_SET_
| ALL_CONTEXT (7)
| Not applicable

| MQPMO_ALTERNATE_
| USER_AUTHORITY
| (13)| Not applicable| MQZAO_ALTERNATE_
| USER_AUTHORITY
| (11)

| Not applicable

| MQCLOSE Option

| MQCO_DELETE| MQZAO_DELETE
| (14)
| Not applicable| Not applicable| Not applicable

| MQCO_DELETE
| _PURGE
| MQZAO_DELETE
| (14)
| Not applicable| Not applicable| Not applicable

118 MQSeries System Administration

 Authorization specification tables

Notes for Table 4:

1. If a model queue is being opened:

� MQZAO_DISPLAY authority is needed for the model queue, in addition to
the authority to open the model queue for the type of access for which you
are opening.

� MQZAO_CREATE authority is not needed to create the dynamic queue.

� The user identifier used to open the model queue is automatically granted
all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

| 2. Either the queue, process, namelist, or queue manager object is checked,
depending on the type of object being opened.

3. MQOO_INPUT_* must also be specified. This is valid for a local, model, or
alias queue.

4. This check is performed for all output cases, except the case specified in note
9.

5. MQOO_OUTPUT must also be specified.

6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.

7. This authority is required for both the queue manager object and the particular
queue.

8. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and
MQOO_SET_IDENTITY_CONTEXT are also implied by this option.

9. This check is performed for a local or model queue that has a Usage queue
attribute of MQUS_TRANSMISSION, and is being opened directly for output. It
does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate-user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.

12. An MQZAO_OUTPUT check is also carried out, if the queue does not have a
Usage queue attribute of MQUS_TRANSMISSION.

13. The check carried out is as for the other options specified, using the supplied
alternate-user identifier for the specific-named queue authority, and the current
application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following are true:

� A permanent dynamic queue is being closed and deleted.

� The queue was not created by the MQOPEN which returned the object
handle being used.

Otherwise, there is no check.

 Chapter 10. Protecting MQSeries objects 119

 Authorization specification tables

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that
are relevant to the object type:

 � MQZAO_CONNECT
 � MQZAO_INQUIRE
 � MQZAO_SET
 � MQZAO_BROWSE
 � MQZAO_INPUT
 � MQZAO_OUTPUT
 � MQZAO_PASS_IDENTITY_CONTEXT
 � MQZAO_PASS_ALL_CONTEXT
 � MQZAO_SET_IDENTITY_CONTEXT
 � MQZAO_SET_ALL_CONTEXT
 � MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14) and MQZAO_DISPLAY are classed as
administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.

4. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue an MQPUT call to a process object.

 Administration authorizations
These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself.
These methods allow a program to send an administration command as a message
to a queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs
Table 5 summarizes the authorizations needed for each MQSC command that is
contained in Escape PCF.

| Table 5. MQSC commands and security authorization needed

| (2) Authorization
| required for:
| Queue object| Process object| Queue manager
| object
| Namelists

| MQSC command

| ALTER object| MQZAO_CHANGE| MQZAO_CHANGE| MQZAO_CHANGE| MQZAO_CHANGE

| CLEAR QLOCAL| MQZAO_CLEAR| Not applicable| Not applicable| Not applicable

| DEFINE object
| NOREPLACE (3)
| MQZAO_CREATE (4)| MQZAO_CREATE (4)| Not applicable| MQZAO_CREATE (4)

| DEFINE object
| REPLACE (3, 5)
| MQZAO_CHANGE| MQZAO_CHANGE| Not applicable| MQZAO_CHANGE

| DELETE object| MQZAO_DELETE| MQZAO_DELETE| Not applicable| MQZAO_DELETE

| DISPLAY object| MQZAO_DISPLAY| MQZAO_DISPLAY| MQZAO_DISPLAY| MQZAO_DISPLAY

Notes for Table 5:

1. The user identifier, under which the program (for example, runmqsc) which
submits the command is running, must also have MQZAO_CONNECT authority
to the queue manager.

120 MQSeries System Administration

 Authorization specification tables

| 2. Either the queue, process, namelist, or queue manager object is checked,
depending on the type of object.

3. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the setmqaut command.

5. This applies if the object to be replaced does in fact already exist. If it does
not, the check is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

Authorizations for PCF commands
Table 6 summarizes the authorizations needed for each PCF command.

| Table 6. PCF commands and security authorization needed

| (2) Authorization
| required for:
| Queue object| Process object| Queue manager
| object
| Namelists

| PCF command

| Change object| MQZAO_CHANGE| MQZAO_CHANGE| MQZAO_CHANGE| MQZAO_CHANGE

| Clear Queue| MQZAO_CLEAR| Not applicable| Not applicable| Not applicable

| Copy object (without
| replace) (3)
| MQZAO_CREATE (4)| MQZAO_CREATE (4)| Not applicable| MQZAO_CREATE (4)

| Copy object (with
| replace) (3, 6)
| MQZAO_CHANGE| MQZAO_CHANGE| Not applicable| MQZAO_CHANGE

| Create object (without
| replace) (5)
| MQZAO_CREATE (4)| MQZAO_CREATE (4)| Not applicable| MQZAO_CREATE (4)

| Create object (with
| replace) (5, 6)
| MQZAO_CHANGE| MQZAO_CHANGE| Not applicable| MQZAO_CHANGE

| Delete object| MQZAO_DELETE| MQZAO_DELETE| Not applicable| MQZAO_DELETE

| Inquire object| MQZAO_DISPLAY| MQZAO_DISPLAY| MQZAO_DISPLAY| MQZAO_DISPLAY

| Inquire object names| No check| No check| No check| No check

| Reset queue statistics| MQZAO_DISPLAY
| and
| MQZAO_CHANGE

| Not applicable| Not applicable| Not applicable

Notes for Table 6:

1. The user identifier under which the program submitting the command is running
must also have authority to connect to its local queue manager, and to open
the command administration queue for output.

 Chapter 10. Protecting MQSeries objects 121

 Authorization files

| 2. Either the queue, process, namelist, or queue-manager object is checked,
depending on the type of object.

3. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the setmqaut command.

5. For Create commands, MQZAO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

6. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all of the following that
are relevant to the object type:

 � MQZAO_CHANGE
 � MQZAO_CLEAR
 � MQZAO_DELETE
 � MQZAO_DISPLAY

MQZAO_CREATE is not included because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.

4. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot use a Clear Queue command on a
process object.

 Authorization files
 Attention!

The information in this section is given for problem determination purposes.
Under normal circumstances, use authorization commands to view and change
authorization information.

MQSeries uses a specific file structure to implement security. You should not have
to do anything with these files, except to ensure that all the authorization files are
themselves secure.

Security is implemented by authorization files.

Types of authorization
There are three types of authorization:

� Authorizations applying to single objects, for example, the authority to put a
message on an queue.

122 MQSeries System Administration

 Authorization files

� Authorizations applying to a class of objects, for example, the authority to
create a queue.

� Authorizations applying across all classes of objects, for example, the authority
to perform operations on behalf of different users.

Authorization file paths
The path to an authorization file depends on its type. When you specify an
authorization for an object, for example, the queue manager creates the appropriate
authorization files. It puts these files into a subdirectory, the path of which is
defined by:

� The queue manager name
� The type of authorization
� Where appropriate, the object name

Not all authorizations apply directly to instances of objects. For example, the
authorization to create an object applies to the class of objects rather than to an
individual instance. Also, some authorizations apply across the entire queue
manager, for example, alternate-user authority means that a user can assume the
authorities associated with another user.

 Authorization directories
In MQSeries for UNIX systems, the default authorization directories for a queue
manager called saturn are:

In MQSeries for Windows NT, the default authorization directories for a queue
manager called saturn are:

| In the auth directory, @class files hold the authorizations related to the entire class.

There is a difference between @class (the authorization file that specifies
authorization for a particular class) and @aclass (the authorization file that specifies
authorizations to all classes).

Table 7. Authorization directories for MQSeries for UNIX systems

Authorization directory Description

/var/mqm/qmgrs/saturn/auth/queues Authorization files for queues

/var/mqm/qmgrs/saturn/auth/procdef Authorization files for process definitions

/var/mqm/qmgrs/saturn/auth/qmanager Authorization files for the queue manager

| /var/mqm/qmgrs/saturn/auth/namelist| Authorization files for the namelists

Table 8. Authorization directories for MQSeries for Windows NT

Authorization directory Description

\mqm\qmgrs\saturn\auth\queues Authorization files for queues.

\mqm\qmgrs\saturn\auth\procdef Authorization files for process definitions.

\mqm\qmgrs\saturn\auth\qmanager Authorization files for the queue manager.

| \mqm\qmgrs\saturn\auth\namelist| Authorization files for the namelists.

 Chapter 10. Protecting MQSeries objects 123

 Authorization files

Paths for object authorization files
The paths of the object authorization files are based on those of the object itself,
where auth is inserted ahead of the object type directory. You can use the
dspmqfls command to display the path to a specified object.

For example, if the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:

/var/mqm/qmgrs/saturn/queues/SYSTEM!DEFAULT!LOCAL!QUEUE

the name and path of the corresponding authorization file is:

/var/mqm/qmgrs/saturn/auth/queues/SYSTEM!DEFAULT!LOCAL!QUEUE

If the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:

\mqm\qmgrs\saturn\queues\SYSTEM!DEFAULT!LOCAL!QUEUE

the name and path of the corresponding authorization file is:

\mqm\qmgrs\saturn\auth\queues\SYSTEM!DEFAULT!LOCAL!QUEUE

Note: In this case, the actual names of the files associated with the queue are not
the same as the name of the queue itself. See “Understanding MQSeries file
names” on page 27 for details.

Authorization file contents — MQSeries for UNIX systems
The authorizations of a particular group are defined by a set of stanzas in the
authorization file. The authorizations apply to the object associated with this file.
For example:

 groupB:
 Authority=ðxðð4ððð7

This stanza defines the authority of the group groupB.

| Authorization file contents — MQSeries for Windows NT
| The authorizations of a particular user ID or group are defined by a set of attributes
| in the authorization file. The authorizations apply to the object associated with this
| file. For example:

| user@domain1:
| Authority = ðxðð4ððð7
| Sid = S-1-5-21-1ð238ð9979-1377598139-6ð295696-1ð24

| This stanza defines the authority of the user ID user.

| Authority stanza
| The authority specification is the union of the individual bit patterns based on the
| assignments shown in Figure 10

124 MQSeries System Administration

 Authorization files

| Authorization Formal name Hexadecimal
| keyword Value

| connect MQZAO_CONNECT ðxððððððð1
| browse MQZAO_BROWSE ðxððððððð2
| get MQZAO_INPUT ðxððððððð4
| put MQZAO_OUTPUT ðxððððððð8
| inq MQZAO_INQUIRE ðxðððððð1ð
| set MQZAO_SET ðxðððððð2ð
| passid MQZAO_PASS_IDENTITY_CONTEXT ðxðððððð4ð
| passall MQZAO_PASS_ALL_CONTEXT ðxðððððð8ð
| setid MQZAO_SET_IDENTITY_CONTEXT ðxððððð1ðð
| setall MQZAO_SET_ALL_CONTEXT ðxððððð2ðð
| altusr MQZAO_ALTERNATE_USER_AUTHORITY ðxððððð4ðð
| allmqi MQZAO_ALL_MQI ðxððððð7FF
| crt MQZAO_CREATE ðxððð1ðððð
| dlt MQZAO_DELETE ðxððð2ðððð
| dsp MQZAO_DISPLAY ðxððð4ðððð
| chg MQZAO_CHANGE ðxððð8ðððð
| clr MQZAO_CLEAR ðxðð1ððððð
| alladm MQZAO_ALL_ADMIN ðxðð9Eðððð
| none MQZAO_NONE ðxðððððððð
| all MQZAO_ALL ðxðð9Eð7FF

| Figure 10. Authority specification

| These definitions are made in the header file cmqzc.h.

| In the following example, groupB and user have been granted authorizations based
| on the hexadecimal number ðx4ððð7. This corresponds to:

| MQZAO_CONNECT ðxððððððð1
| MQZAO_BROWSE ðxððððððð2
| MQZAO_INPUT ðxððððððð4
MQZAO_DISPLAY ðxððð4ðððð
Authority is: ðxððð4ððð7

| These access rights mean that anyone in groupB can issue the MQI calls:

| MQCONN
| MQGET (with browse)

| They also have DISPLAY authority for the object associated with this authorization
| file.

Class authorization files — MQSeries for UNIX systems and
MQSeries for Windows NT
The class authorization files hold authorizations that relate to the entire class.
These files are called “@class” and exist in the same directory as the files for
specific objects. The entry MQZAO_CRT in the @class file gives authorization to
create an object in the class. This is the only class authority.

 Chapter 10. Protecting MQSeries objects 125

 Authorization files

All class authorization files
The all class authorization file holds authorizations that apply to an entire queue
manager. This file is called “@aclass” and exists in the auth subdirectory of the
queue manager.

The following authorizations apply to the entire queue manager and are held in the
all-class authorization file:

� The entry MQZAO_ALTERNATE_USER_AUTHORITY gives authorization to
assume the identity of another user when interacting with MQSeries objects.

� The entry MQZAO_SET_ALL_CONTEXT gives authorization to set the context
of a message when issuing MQPUT.

� The entry MQZAO_SET_IDENTITY_CONTEXT gives authorization to set the
identity context of a message when issuing MQPUT.

Managing authorization files
Here are some items that you need consider when managing your authorization
files:

1. You must ensure that the authorization files are secure and not write-accessible
by non-trusted general users. See “Authorizations to authorization files.”

2. To be able to reproduce your file authorizations, ensure that you do at least
one of the following:

� Back up the auth subdirectory after any significant updates
� Retain shell scripts or command files containing the commands used

3. You can copy and edit authorization files. However, you should not normally
have to create or repair them manually. Should an emergency occur, you can
use the information given here to recover lost or damaged authorization files.

Authorizations to authorization files
In MQSeries for UNIX systems, authorization files must be readable by any
principal. However, only the mqm user ID and the mqm group should be allowed
to update these files.

The permissions on authorization files, created by the OAM, are:

-rw-rw-r-- mqm mqm

Do not alter these permissions without reviewing carefully whether there are any
security exposures.

To alter authorizations using the command supplied with MQSeries, your user ID
must either be mqm, or it must belong to the mqm group.

For MQSeries for Windows NT, authorization files must be readable by any
principal. However, only the mqm or Administrator’s group should be allowed to
update these files.

To alter authorizations using the setmqaut command supplied with MQSeries for
Windows NT, your Windows NT user ID must belong to the local mqm group or the
local Administrators group.

126 MQSeries System Administration

 Configuring MQSeries � Configuration files

| Chapter 11. Configuring MQSeries

| This chapter explains how to change the behavior of an individual queue manager,
| or of a node, to suit your installation’s needs.

| You change MQSeries configuration information by modifying the values specified
| on a set of configuration attributes (or parameters) which govern MQSeries.

| How you change this configuration information, and where MQSeries stores your
| changes, is platform-specific:

| � MQSeries for Windows NT uses the MQSeries Services snap-in to make
| changes to attribute information within the Windows NT Registry .

| � Users on all other platforms change attribute values by editing the MQSeries
| configuration files .

| This chapter:

| � Describes the platform-specific methods for reconfiguring MQSeries in:

| – “MQSeries configuration files” (for MQSeries for UNIX systems and
| MQSeries for OS/2 Warp)

| – “Editing configuration information” on page 26

| � Describes the attributes you can use to modify MQSeries configuration
| information in “Attributes for changing MQSeries configuration information” on
| page 130.

| � Describes the attributes you can use to modify queue manager configuration
| information in “Changing queue manager configuration information” on
| page 136.

| � Provides examples of mqs.ini and qm.ini files for MQSeries for UNIX systems
| and MQSeries for OS/2 Warp in “Example mqs.ini and qm.ini files for MQSeries
| for OS/2 Warp” on page 149 and “Example mqs.ini and qm.ini files for
| MQSeries for UNIX systems” on page 154.

| MQSeries configuration files
| Users of platforms other than MQSeries for Windows NT modify MQSeries
| configuration attributes within:

| � An MQSeries configuration file (mqs.ini) to effect changes for MQSeries on the
| node as a whole. There is one mqs.ini file per node.

| � A queue manager configuration file (qm.ini) to effect changes for specific
| queue managers. There is one qm.ini file for each queue manager on the
| node.

| A configuration file (which can be referred to as a stanza file) contains one or more
| stanzas, which are simply groups of lines in the .ini file that together have a
| common function or define part of a system, for example, log functions, channel
| functions, and installable services.

| Any changes you make to a configuration file will not take effect until the next time
| the queue manager is started.

 Copyright IBM Corp. 1994,1999 127

 Configuration files

| Editing configuration files
| Before attempting to edit a configuration file, back it up so that you have a copy
| you can revert to if the need arises!

| You can edit configuration files either:

| � Automatically, using commands that change the configuration of queue
| managers on the node

| � Manually, using a standard text editor

| You can edit the default values in the MQSeries configuration files after installation.

| If you set an incorrect value on a configuration file attribute, the value is ignored
| and an operator message is issued to indicate the problem. (The effect is the
| same as missing out the attribute entirely.)

| When you create a new queue manager, you should:

| � Back up the MQSeries configuration file
| � Back up the new queue manager configuration file

| When do you need to edit a configuration file?
| You may need to edit a configuration file if, for example:

| � You lose a configuration file; recover from backup if possible.

| � You need to move one or more queue managers to a new directory.

| � You need to change your default queue manager; this could happen if you
| accidentally delete the existing queue manager.

| � You are advised to do so by your IBM Support Center.

| Configuration file priorities
| The attribute values of a configuration file are set according to the following
| priorities:

| � Parameters entered on the command line take precedence over values defined
| in the configuration files

| � Values defined in the qm.ini files take precedence over values defined in the
| mqs.ini file.

| The MQSeries configuration file, mqs.ini
| The MQSeries configuration file, mqs.ini, contains information relevant to all the
| queue managers on the node. It is created automatically during installation. In
| particular, the mqs.ini file is used to locate the data associated with each queue
| manager.

| When installing MQSeries, you can specify two target directories: one for programs
| and one for data. The mqs.ini file is stored in the data directory, mqm .

| These directories can be on different drives, although this is not mandatory.
| However, to improve performance, it is best that the directories reside on different
| drives.

128 MQSeries System Administration

 Configuration files

| The default mqm directory for:

| � MQSeries for UNIX systems can be found at /var/mqm

| � MQSeries for OS/2 Warp is specified on the MQSWORKPATH environment
| variable which is set at install time. The default is

| <bootdrive>:\MQM

| For many OS/2 machines this is usually C:\MQM

| The mqs.ini file contains:

| � The names of the queue managers
| � The name of the default queue manager
| � The location of the files associated with each of them.

| Queue manager configuration files, qm.ini
| A queue manager configuration file, qm.ini, contains information relevant to a
| specific queue manager. There is one queue manager configuration file for each
| queue manager. The qm.ini file is automatically created when the queue manager
| with which it is associated is created.

| A qm.ini file is held in the root of the directory tree occupied by the queue manager.

| For example, in an MQSeries for UNIX systems system, the path and the name for
| a configuration file for a queue manager called QMNAME is:

| /var/mqm/qmgrs/QMNAME/qm.ini

| For MQSeries for OS/2 Warp, the path and name for configuration file for a queue
| manager called QMNAME is:

| C:\MQM\QMGRS\QMNAME\QM.INI

| Note: The queue manager name can be up to 48 characters in length. However,
| this does not guarantee that the name is valid or unique. Therefore, a directory
| name is generated based on the queue manager name. This process is known as
| name transformation . For a description, see “Understanding MQSeries file
| names” on page 27.

 Chapter 11. Configuring MQSeries 129

 mqs.ini stanzas

| Attributes for changing MQSeries configuration information
| The following groups of attributes appear in mqs.ini and have equivalents in the
| Windows NT Registry:

| � “The AllQueueManagers stanza”
| � “The ClientExitPath stanza” on page 131
| � “The DefaultQueueManager stanza” on page 131
| � “The ExitProperties stanza” on page 132
| � “The LogDefaults stanza” on page 132
| � “The QueueManager stanza” on page 134

| The AllQueueManagers stanza
| The AllQueueManagers stanza can specify:

| � The path to the qmgrs directory where the files associated with a queue
| manager are stored

| � The path to the executable and DLL libraries

| � The method for converting EBCDIC-format data to ASCII format

| DefaultPrefix= directory_name
| This attribute specifies the path to the qmgrs directory, below which the queue
| manager data is kept.

| If you change the default prefix for the queue manager, you must replicate the
| directory structure that was created at installation time (see Figure 64 on
| page 348).

| In particular, the qmgrs structure must be created. You must stop MQSeries
| before changing the default prefix, and restart MQSeries only after the
| structures have been moved to the new location and the default prefix has
| been changed.

| As an alternative to changing the default prefix, you can use the environment
| variable MQSPREFIX to override the DefaultPrefix for the crtmqm command.

| DefaultFilePrefix= path (OS/2 only)
| This attribute specifies the path where the DLLs can be found.

| ConvEBCDICNewline=NL_TO_LF|TABLE|ISO
| EBCDIC code pages contain a new line (NL) character that is not supported by
| ASCII code pages; although some ISO variants of ASCII do contain an
| equivalent.

| Use the ConvEBCDICNewline attribute to specify the method MQSeries is to
| use when converting the EBCDIC NL character into ASCII format.

| NL_TO_LF
| Specify NL_TO_LF if you want the EBCDIC NL character (X'15')
| converted to the ASCII line feed character, LF (X'0A'), for all EBCDIC to
| ASCII conversions.

| NL_TO_LF is the default.

| TABLE
| Specify TABLE if you want the EBCDIC NL character converted according
| to the conversion tables used on your platform for all EBCDIC to ASCII
| conversions.

130 MQSeries System Administration

 mqs.ini stanzas

| Note that the effect of this type of conversion may vary from platform to
| platform and from language to language; while on the same platform, the
| behavior may vary if you use different CCSIDs.

| ISO
| Specify ISO if you want:

| � ISO CCSIDs to be converted using the TABLE method
| � All other CCSIDs to be converted using the NL_TO_CF method.

| Possible ISO CCSIDs are shown in Table 9 on page 131.

| If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline defaults to
| NL_TO_LF.

| For more information about data conversion, see “Application data conversion”
| in the MQSeries Application Programming Guide.

| Table 9. List of possible ISO CCSIDs

| CCSID| Code Set

| 819| ISO8859-1

| 912| ISO8859-2

| 915| ISO8859-5

| 1089| ISO8859-6

| 813| ISO8859-7

| 916| ISO8859-8

| 920| ISO8859-9

| 1051| roman8

The ClientExitPath stanza
| The ClientExitPath stanza specifies the default path for location of the channel
| exit on the client. This stanza applies to MQSeries clients on AIX, HP-UX, OS/2,
| Sun Solaris, and the Windows 3.1 client. The client server information for
| MQSeries for Windows NT is now in the Windows NT Registry.

| ExitsDefaultPath= defaultprefix
| The ExitsDefaultPath attribute specifies the default prefix for the platform. For
| example, for OS/2 this could be C:\mqm\exits

The DefaultQueueManager stanza
| The DefaultQueueManager stanza specifies the default queue manager for the node.

| Name=default_queue_manager
| The default queue manager processes any commands for which a queue
| manager name is not explicitly specified. The DefaultQueueManager attribute is
| automatically updated if you create a new default queue manager. If you
| inadvertently create a new default queue manager and then want to revert to
| the original, you must alter the DefaultQueueManager attribute manually.

 Chapter 11. Configuring MQSeries 131

 mqs.ini stanzas

| The ExitProperties stanza
| The ExitProperties stanza specifies configuration options used by queue manager
| exit programs.

| CLWLmode=SAFE |FAST
| The cluster workload exit, CLWL, allows you to specify which cluster queue in
| the cluster is to be opened in response to an MQAPI call (MQOPEN or MQPUT
| and so on). The CLWL exit runs either in FAST mode or SAFE mode
| depending on the value you specify on the CLWLMode attribute. If the
| CLWLMode attribute is not specified, the cluster workload exit runs in SAFE
| mode.

| SAFE
| The SAFE option specifies that the CLWL exit is to run in a separate
| process to the queue manager. This is the default.

| If a problem arises with the user-written CLWL exit when running in SAFE
| mode, the following happens:

| � The CLWL server process (amqzlwa0) fails

| � The queue manager restarts the CLWL server process

| � The error is reported to you in the error log. If an MQAPI call is in
| progress, you receive notification in the form of a bad return code.

| The integrity of the queue manager is preserved.

| Note: There is an overhead associated with running the CLWL exit in a
| separate process, which can affect performance.

| FAST
| Specify FAST if you want the cluster exit to run inline in the queue
| manager process.

| Specifying this option improves performance by avoiding the overheads
| associated with running in SAFE mode, but does so at the expense of
| queue manager integrity. Therefore, you should only run the CLWL exit in
| FAST mode if you are convinced that there are no problems with your
| CLWL exit, and you are particularly concerned about performance
| overheads.

| If a problem arises when the CLWL exit is running in FAST mode, the
| queue manager will fail and you run the risk of the integrity of the queue
| manager being compromised.

| The LogDefaults stanza
| The LogDefaults stanza specifies the default log attributes for the node. The log
| attributes are used as default values when you create a queue manager, but can
| be overridden if you specify the log attributes on the crtmqm command. See
| “crtmqm (Create queue manager)” on page 284 for details of this command.

| Once a queue manager has been created, the log attributes for that queue
| manager are read from its log stanza in the qm.ini file.

| The DefaultPrefix attribute (in the AllQueueManagers stanza) and the LogPath
| attribute in the LogDefaults stanza allow for the queue manager and its log to be

132 MQSeries System Administration

 mqs.ini stanzas

| on different physical drives. This is the recommended method, although, by
| default, they are on the same drive.

| For information about calculating log sizes, see “Calculating the size of the log” on
| page 219.

| Note: The limits given in the following parameter list are limits set by MQSeries.
| Operating system limits may reduce the maximum possible log size.

| LogPrimaryFiles=3 |2-62
| Primary log files are the log files allocated during creation for future use.

| The minimum number of primary log files you can have is 2 and the maximum
| is 62. The default is 3.

| The total number of primary and secondary log files must not exceed 63, and
| must not be less than 3.

| LogSecondaryFiles=2 |1-61
| Secondary log files are the log files allocated when the primary files are
| exhausted.

| The minimum number of secondary log files is 1 and the maximum is 61. The
| default number is 2.

| The total number of primary and secondary log files must not exceed 63, and
| must not be less than 3.

| LogFilePages= number
| The log data is held in a series of files called log files. The log file size is
| specified in units of 4 KB pages.

| For MQSeries for UNIX systems, the default number of log file pages is 1024,
| giving a log file size of 4 MB. The minimum number of log file pages 64 and
| the maximum is 16 384.

| For MQSeries for OS/2 Warp and MQSeries for Windows NT, the default
| number of log file pages is 256, giving a log file size of 1 MB. The minimum
| number of log file pages is 32 and the maximum is 4095.

| LogType=CIRCULAR |LINEAR
| The LogType attribute is used to define the type to be used. The default is
| CIRCULAR.

| CIRCULAR
| Set this value if you want to start restart recovery using the log to roll back
| transactions that were in progress when the system stopped.

| See “Circular logging” on page 215 for a fuller explanation of circular
| logging.

| LINEAR
| Set this value if you want both restart recovery and media or forward
| recovery (creating lost or damaged data by replaying the contents of the
| log).

| See “Linear logging” on page 215 for a fuller explanation of linear logging.

| If you want to change the default, you can either edit the LogType attribute, or
| specify linear logging using the crtmqm command. You cannot change the
| logging method after a queue manager has been created.

 Chapter 11. Configuring MQSeries 133

 mqs.ini stanzas

| LogBufferPages=17 |4-32
| The amount of memory allocated to buffer records for writing is configurable.
| The size of the buffers is specified in units of 4 KB pages.

| The minimum number of buffer pages is 4 and the maximum is 32. Larger
| buffers lead to higher throughput, especially for larger messages.

| The default number of buffer pages is 17, equating to 68 KB.

| The value is examined when the queue manager is created or started, and may
| be increased or decreased at either of these times. However, a change in the
| value is not effective until the queue manager is restarted.

| LogDefaultPath= directory_name
| You can specify the directory in which the log files for a queue manager reside.
| The directory should exist on a local device to which the queue manager can
| write and, preferably, should be on a different drive from the message queues.
| Specifying a different drive gives added protection in case of system failure.

| The default is:

| � /var/mqm/log in MQSeries for UNIX systems

| � <DefaultPrefix>\LOG for MQSeries for OS/2 Warp and MQSeries for
| Windows NT where <DefaultPrefix> is the value specified on the
| DefaultPrefix attribute in the AllQueueManagers stanza of the mqs.ini file.
| This value is set at install time, and by default is

| <bootdrive>\:MQM

| For many machines, this is

| C:\MQM\LOG

| Alternatively, you can specify the name of a directory on the crtmqm command
| using the -ld flag. When a queue manager is created, a directory is also
| created under the queue manager directory, and this is used to hold the log
| files. The name of this directory is based on the queue manager name. This
| ensures that the Log File Path is unique, and also that it conforms to any
| limitations on directory name lengths.

| If you do not specify -ld on the crtmqm command, the value of the
| LogDefaultPath attribute in the mqs.ini file is used.

| The queue manager name is appended to the directory name to ensure that
| multiple queue managers use different log directories.

| When the queue manager has been created, a LogPath value is created in the
| log attributes in the qm.ini file giving the complete directory name for the queue
| manager’s log. This value is used to locate the log when the queue manager
| is started or deleted.

| The QueueManager stanza
| There is one QueueManager stanza for every queue manager. These attributes
| specify the queue manager name, and the name of the directory containing the files
| associated with that queue manager. The name of the directory is based on the
| queue manager name, but is transformed if the queue manager name is not a valid
| file name.

| See “Understanding MQSeries file names” on page 27 for more information about
| name transformation.

134 MQSeries System Administration

 mqs.ini stanzas

| Name=queue_manager_name
| This attribute specifies the name of the queue manager.

| Prefix= prefix
| This attribute specifies where the queue manager files are stored. By default,
| this is the same as the value specified on the DefaultPrefix attribute of the
| AllQueueManager stanza in the mqs.ini file.

| Directory= name
| This attribute specifies the name of the subdirectory under the <prefix>\QMGRS
| directory where the queue manager files are stored. This name is based on
| the queue manager name but can be transformed if there is a duplicate name,
| or if the queue manager name is not a valid file name.

 Chapter 11. Configuring MQSeries 135

 qm.ini stanzas

| Changing queue manager configuration information
| The following groups of attributes can appear in a qm.ini file particular to a given
| queue manager, or used to override values set in mqs.ini.

| � “The Service stanza” on page 136
| � “The ServiceComponent stanza” on page 137
| � “The Log stanza” on page 138
| � “The RestrictedMode stanza” on page 140
| � “The XAResourceManager stanza” on page 140
| � “The Channels stanza” on page 142
| � “The LU62, NETBIOS, TCP, and SPX stanzas” on page 144
| � “The ExitPath stanza” on page 147
| � “The UDP stanza” on page 147
| � “The Transport stanza” on page 149

| The Service stanza
| The Service stanza specifies the name of an installable service, and the number of
| entry points to that service. There must be one Service stanza for every service
| used.

| For each component within a service, there must be a ServiceComponent stanza,
| which identifies the name and path of the module containing the code for that
| component. See “The ServiceComponent stanza” for more information.

| Name=AuthorizationService|NameService|UserIDService
| Specifies the name of the required service.

| AuthorizationService
| For MQSeries, the Authorization Service component is known as the Object
| Authority Manager, or OAM.

| � In MQSeries for UNIX systems, the AuthorizationService stanza and
| its associated ServiceComponent stanza are added automatically when
| the queue manager is created, but can be overridden through the use
| of mqsnoaut. Any other ServiceComponent stanzas must be added
| manually.

| � In MQSeries for Windows NT systems, each queue manager has its
| own key in the Windows NT Registry. The equivalents for the Service
| and ServiceComponent stanzas for the default authorization component
| are added to the Windows NT Registry automatically, but can be
| overridden through the use of the mqsnoaut environment variable. Any
| other ServiceComponent stanzas must be added manually.

| � For MQSeries for OS/2 Warp, no authorization service component is
| supplied with the product. Therefore, by default, no Service and
| ServiceComponent stanzas are added to the qm.ini file. Facilities exist
| for you to write your own authorization service component which you
| then add as a AuthorizationService stanza to the qm.ini file manually to
| enable that service. To disable the service, delete the relevant group
| of attributes.

| NameService
| The NameService stanza must be added to the qm.ini file manually to
| enable the supplied name service.

136 MQSeries System Administration

 qm.ini stanzas

| UserIDService (MQSeries for OS/2 Warp only)
| The UserIDService stanza must be added to the qm.ini file manually to
| enable the service.

| EntryPoints= number-of-entries
| Specifies the number of entry points defined for the service. This includes the
| initialization and termination entry points.

| SecurityPolicy=Default |NTSIDsRequired (MQSeries for Windows NT only)
| The SecurityPolicy attribute is applicable only if the service specified on the
| Service stanza is the authorization service, that is, the default OAM. The
| SecurityPolicy attribute allows you to specify the security policy for each queue
| manager. The possible values are:

| Default
| Specify Default if you want the default security policy to take effect. If a
| Windows NT security identifier (NT SID) is not passed to the OAM for a
| particular user ID, then an attempt is made to obtain the appropriate SID by
| searching the relevant security databases.

| NTSIDsRequired
| Requires that an NT SID is passed to the OAM when performing security
| checks.

| See “Security policies” on page 106 for more information.

| For more information about installable services and components, see
| Chapter 11, “Installable services and components” in the MQSeries
| Programmable System Management book.

| For more information about security services in general, see Chapter 10,
| “Protecting MQSeries objects” on page 103.

| The ServiceComponent stanza
| The ServiceComponent stanza identifies the name and path of the module
| containing the code for that component.

| There can be more than one ServiceComponent stanza for each service, but each
| ServiceComponent stanza must match the corresponding Service stanza.

| In MQSeries for UNIX systems, the authorization service stanza is present by
| default, and the associated component, the OAM, is active.

| Service= service_name
| Specifies the name of the required service. This name must match the value
| specified on the Name attribute of the Service stanza.

| Name=component_name
| Specifies the descriptive name of the service component. This name must be
| unique, and must contain only those characters that are valid for the names of
| MQSeries objects (for example, queue names). This name occurs in operator
| messages generated by the service. It is recommended, therefore, that this
| name begins with a company trademark or similar distinguishing string.

| Module= module_name
| Specifies the name of the module to contain the code for this component.

| Note: Specify a full path name.

 Chapter 11. Configuring MQSeries 137

 qm.ini stanzas

| ComponentDataSize= size
| Specifies the size, in bytes, of the component data area passed to the
| component on each call. Specify zero if no component data is required.

| For more information about installable services and components, see Chapter 11,
| “Installable services and components” in the MQSeries Programmable System
| Management book.

| The Log stanza
| The Log stanza specifies the log attributes for a particular queue manager. By
| default, these are inherited from the settings specified in the LogDefaults stanza in
| the mqs.ini file when the queue manager is created.

| Only change attributes of this stanza if this particular queue manager needs to be
| configured differently from your other ones.

| The values specified on the attributes in the qm.ini file are read when the queue
| manager is started. The file is created when the queue manager is created.

| For information about calculating log sizes, see “Calculating the size of the log” on
| page 219.

| Note: The limits given in the following parameter list are limits set by MQSeries.
| Operating system limits may reduce the maximum possible log size.

| LogPrimaryFiles=3 |2-62
| Primary log files are the log files allocated during creation for future use.

| The minimum number of primary log files you can have is 2 and the maximum
| is 62. The default is 3.

| The total number of primary and secondary log files must not exceed 63, and
| must not be less than 3.

| The value is examined when the queue manager is created or started. You
| can change it after the queue manager has been created. However, a change
| in the value is not effective until the queue manager is restarted, and the effect
| may not be immediate.

| LogSecondaryFiles=2 |1-61
| Secondary log files are the log files allocated when the primary files are
| exhausted.

| The minimum number of secondary log files is 1 and the maximum is 61. The
| default number is 2.

| The total number of primary and secondary log files must not exceed 63, and
| must not be less than 3.

| The value is examined when the queue manager is started. You can change
| this value, but changes do not become effective until the queue manager is
| restarted, and even then the effect may not be immediate.

| LogFilePages= number
| The log data is held in a series of files called log files. The log file size is
| specified in units of 4 KB pages.

138 MQSeries System Administration

 qm.ini stanzas

| In MQSeries for UNIX systems, the default number of log file pages is 1024,
| giving a log file size of 4 MB. The minimum number of log file pages 64 and
| the maximum is 16 384.

| In MQSeries for OS/2 Warp and MQSeries for Windows NT, the default number
| of log file pages is 256, giving a log file size of 1 MB. The minimum number of
| log file pages is 32 and the maximum is 4095.

| Note: The size of the log files specified during queue manager creation
| cannot be changed for a queue manager.

| LogType=CIRCULAR |LINEAR
| The LogType attribute defines the type of logging to be used by the queue
| manager. However, you cannot change the type of logging to be used once
| the queue manager has been created. Refer to the description of the LogType
| attribute in “The LogDefaults stanza” on page 132 for information about
| creating a queue manager with the type of logging you require.

| CIRCULAR
| Set this value if you want to start restart recovery using the log to roll back
| transactions that were in progress when the system stopped.

| See “Circular logging” on page 215 for a fuller explanation of circular
| logging.

| LINEAR
| Set this value if you want both restart recovery and media or forward
| recovery (creating lost or damaged data by replaying the contents of the
| log).

| See “Linear logging” on page 215 for a fuller explanation of linear logging.

| LogBufferPages=17 |4-32
| The amount of memory allocated to buffer records for writing is configurable.
| The size of the buffers is specified in units of 4 KB pages.

| The minimum number of buffer pages is 4 and the maximum is 32. Larger
| buffers lead to higher throughput, especially for larger messages.

| The default number of buffer pages is 17, equating to 68 KB.

| The value is examined when the queue manager is started, and may be
| increased or decreased at either of these times. However, a change in the
| value is not effective until the queue manager is restarted.

| LogPath= directory_name
| You can specify the directory in which the log files for a queue manager reside.
| The directory should exist on a local device to which the queue manager can
| write and, preferably, should be on a different drive from the message queues.
| Specifying a different drive gives added protection in case of system failure.

| The default is:

| � /var/mqm/log in MQSeries for UNIX systems.

| � <prefix>\LOG for MQSeries for OS/2 Warp and MQSeries for Windows NT,
| where <prefix> is the value as defined in the Prefix attribute of the
| corresponding QueueManager stanza in the mqs.ini file. On many
| machines, this is C:\MQM\LOG

 Chapter 11. Configuring MQSeries 139

 qm.ini stanzas

| You can specify the name of a directory on the crtmqm command using the -ld
| flag. When a queue manager is created, a directory is also created under the
| queue manager directory, and this is used to hold the log files. The name of
| this directory is based on the queue manager name. This ensures that the log
| file path is unique, and also that it conforms to any limitations on directory
| name lengths.

| If you do not specify -ld on the crtmqm command, the value of the
| LogDefaultPath attribute in the mqs.ini file is used.

| Note: In MQSeries for UNIX systems, user ID mqm and group mqm must
| have full authorities to the log files. If you change the locations of these files,
| you must give these authorities yourself. This is not required if the logs files
| are in the default locations supplied with the product.

| The RestrictedMode stanza
| The RestrictedMode stanza is set by the -g option on the crtmqm command. You
| must not change this stanza after the queue manager has been created. If you do
| not use the -g option, the stanza is not created in the qm.ini file.

| ApplicationGroup
| Specifies the name of the group whose members are allowed to :

| � Run MQI applications
| � Update all IPCC resources
| � Change the contents of some queue manager directories.

| This applies to MQSeries for AIX, Sun Solaris, and HP-UX systems only.

| The XAResourceManager stanza
| The XAResourceManager stanza specifies the resource managers to be involved in
| global units of work coordinated by the queue manager.

| One XAResourceManager stanza is required in qm.ini for each instance of a resource
| manager participating in global units of work; no default values are supplied via
| mqs.ini.

| See “Database coordination” on page 176 for more information about adding
| XAResourceManager attributes to qm.ini.

| Name=name (mandatory)
| This attribute identifies the resource manager instance.

| The Name value can be up to 31 characters in length and must be unique within
| qm.ini. You can use the name of the resource manager as defined in its
| XA-switch structure. However, if you are using more than one instance of the
| same resource manager, you must construct a unique name for each instance.
| You could ensure uniqueness by including the name of the database in the
| Name string, for example.

| MQSeries uses the Name value in messages and in output from the dspmqtrn
| command.

| You are recommended not to change the name of a resource manager
| instance, or to delete its entry from qm.ini once the associated queue manager
| has started and the resource-manager name is in effect.

140 MQSeries System Administration

 qm.ini stanzas

| SwitchFile= name (mandatory)
| This attribute specifies the fully-qualified name of the load file containing the
| resource manager’s XA switch structure.

| XAOpenString= string (optional)
| This attribute specifies the string of data to be passed to the resource
| manager’s xa_open entry point. The contents of the string depend on the
| resource manager itself. For example, the string could identify the database
| that this instance of the resource manager is to access. For more information
| about defining this attribute, see:

| � “Adding the XAResourceManager stanza for DB2” on page 184

| � “Adding XAResourceManager configuration information for Oracle” on
| page 189

| � “Adding XAResourceManager configuration information for Sybase” on
| page 199

| and consult your resource manager documentation for the appropriate string.

| XACloseString= string (optional)
| This attribute specifies the string of data to be passed to the resource
| manager’s xa_close entry point. The contents of the string depend on the
| resource manager itself. For more information about defining this attribute,
| see:

| � “Adding the XAResourceManager stanza for DB2” on page 184

| � “Adding XAResourceManager configuration information for Oracle” on
| page 189

| � “Adding XAResourceManager configuration information for Sybase” on
| page 199

| and consult your database documentation for the appropriate string.

| ThreadOfControl=THREAD|PROCESS
| This attribute is mandatory for MQSeries for OS/2 Warp and MQSeries for
| Windows NT. The value set on the ThreadOfControl attribute is used by the
| queue manager for serialization purposes when it needs to call the resource
| manager from one of its own multithreaded processes.

| THREAD
| Means that the resource manager is fully “thread aware”. In a
| multithreaded MQSeries process, XA function calls can be made to the
| external resource manager from multiple threads at the same time.

| PROCESS
| Means that the resource manager is not “thread safe”. In a multithreaded
| MQSeries process, only one XA function call at a time can be made to the
| resource manager.

| The ThreadOfControl entry does not apply to XA function calls issued by the
| queue manager in a multithreaded application process. In general, an
| application that has concurrent units of work on different threads requires this
| mode of operation to be supported by each of the resource managers.

 Chapter 11. Configuring MQSeries 141

 qm.ini stanzas

| The Channels stanza
| The Channels stanza contains information about the channels.

| MaxChannels=100 |number
| This attribute specifies the maximum number of channels allowed. The default
| is 100.

| MaxActiveChannels= MaxChannels_value
| This attribute specifies the maximum number of channels allowed to be active
| at any time. The default is the value specified on the MaxChannels attribute.

| MaxInitiators=3 |number
| This attribute specifies the maximum number of initiators.

| MQIBINDTYPE=FASTPATH|STANDARD
| This attribute specifies the binding for applications.

| FASTPATH
| Channels connect using MQCONNX FASTPATH. That is, there is no
| agent process.

| STANDARD
| Channels connect using STANDARD.

| AdoptNewMCA=NO |SVR|SNDR|RCVR|CLUSRCVR|ALL|FASTPATH
| If MQSeries receives a request to start a channel but finds that an amqcrsta
| process already exists for the same channel, the existing process must be
| stopped before the new one can start. The AdoptNewMCA attribute allows you to
| control the termination of an existing process and the startup of a new one for
| a specified channel type.

| If you specify the AdoptNewMCA attribute for a given channel type but the new
| channel fails to start because the channel is already running:

| 1. The new channel tries to stop the previous one by politely inviting it to end.

| 2. If the previous channel server does not respond to this invitation by the
| time the AdoptNewMCATimeout wait interval expires, the process (or the
| thread) for the previous channel server is killed.

| 3. If the previous channel server has not ended after step 2, and after the
| AdoptNewMCATimeout wait interval expires for a second time, MQSeries
| ends the channel with a “CHANNEL IN USE” error.

| You specify one or more values, separated by commas or blanks, from the
| following list:

| NO
| The AdoptNewMCA feature is not required. This is the default.

| SVR
| Adopt server channels

| SNDR
| Adopt sender channels

| RCVR
| Adopt receiver channels

142 MQSeries System Administration

 qm.ini stanzas

| CLUSRCVR
| Adopt cluster receiver channels

| ALL
| Adopt all channel types, except for FASTPATH channels

| FASTPATH
| Adopt the channel if it is a FASTPATH channel. This happens only if the
| appropriate channel type is also specified, for example,
| AdoptNewMCA=RCVR,SVR,FASTPATH
| Attention!

| The AdoptNewMCA attribute may behave in an unpredictable fashion
| with FASTPATH channels because of the internal design of the queue
| manager. Therefore exercise great caution when enabling the
| AdoptNewMCA attribute for FASTPATH channels.

| AdoptNewMCATimeout=60 |1—3600
| This attribute specifies the amount of time, in seconds, that the new process
| should wait for the old process to end. Specify a value, in seconds, in the
| range 1—3600. The default value is 60.

| AdoptNewMCACheck=QM|ADDRESS|NAME|ALL
| The AdoptNewMCACheck attribute allows you to specify the type checking required
| when enabling the AdoptNewMCA attribute. It is important for you to perform all
| three of the following checks, if possible, to protect your channels from being,
| inadvertently or maliciously, shut down. At the very least check that the
| channel names match.

| Specify one or more values, separated by commas or blanks, from the
| following:

| QM
| This means that listener process should check that the queue manager
| names match

| ADDRESS
| This means that the listener process should check the communications
| address. For example, the TCP/IP address.

| NAME
| This means that the listener process should check that the channel names
| match.

| ALL
| You want the listener process to check for matching queue manager
| names, the communications address, and for matching channel names.

| AdoptNewMCACheck=NAME,ADDRESS is the default for FAP1, FAP2, and FAP3,
| while AdoptNewMCACheck=NAME,ADDRESS,QM is the default for FAP4 and later.

 Chapter 11. Configuring MQSeries 143

 qm.ini stanzas

| The LU62, NETBIOS, TCP, and SPX stanzas
| These stanzas specify network protocol configuration parameters. They override
| the default attributes for channels.

| Note: Only attributes representing changes to the default values need to be
| specified.

| LU62 (MQSeries for OS/2 Warp and MQSeries for Windows NT only)
| The following attributes can be specified:

| TPName
| This attribute specifies the TP name to start on the remote site.

| Library1= DLLName 1
| This attribute specifies the name of the APPC DLL.

| The default value for MQSeries for OS/2 Warp is APPC.

| The default value for MQSeries for Windows NT is WCPIC32.

| Library2= DLLName2
| This attribute is the same as Library1, and applies if the code is stored in
| two separate libraries. The default value MQSeries for OS/2 Warp is
| ACSSVC.

| The default value MQSeries for Windows NT is WCPIC32.

| LocalLU
| This is the name of the logical unit to use on local systems.

| NETBIOS (MQSeries for OS/2 Warp and MQSeries for Windows NT only)
| The following attributes can be specified:

| LocalName= name
| This attribute specifies the name that this machine will be known as on the
| LAN.

| AdapterNum=0 |adapter_number
| This attribute specifies the number of the LAN adapter. The default is
| adapter 0.

| NumSess=1 |number_of_sessions
| This attribute specifies the number of sessions to allocate. The default is 1.

| NumCmds=1 |number_of_commands
| This attribute specifies the number of commands to allocate. The default is
| 1.

| NumNames=1 |number_of_names
| This attribute specifies the number of names to allocate. The default is 1.

| Library1= DLLName1
| This attribute specifies the name of the NetBIOS DLL. The default value
| for MQSeries for OS/2 Warp is ACSNETB.

| The default value for MQSeries for Windows NT is NETAPI32.

| Library2= DLLName2 (MQSeries for OS/2 Warp only)
| This attribute specifies the same value as Library1, if the code is in two
| separate libraries. There are no defaults for this attribute.

144 MQSeries System Administration

 qm.ini stanzas

| TCP
| The following attributes can be specified:

| Port=1414 |port_number
| This attribute specifies the default port number, in decimal notation, for
| TCP/IP sessions. The “well known” port number for MQSeries is 1414.

| Library1= DLLName1 (MQSeries for OS/2 Warp and MQSeries for Windows
| NT only)
| Use this attribute to specify the name of the TCP/IP sockets DLL.

| The default for MQSeries for OS/2 Warp is SO32DLL.

| The default for MQSeries for Windows NT is WSOCK32.

| Library2= DLLName 2 (MQSeries for OS/2 Warp only)
| Same as Library1 if the code is stored in two separate libraries.

| The default for MQSeries for OS/2 Warp is TCP32DLL.

| KeepAlive=YES |NO
| Use this attribute to switch the KeepAlive function on or off.
| KeepAlive=YES causes TCP/IP to check periodically that the other end of
| the connection is still available. If it is not, the channel is closed.

| ListenerBacklog=number
| When receiving on TCP/IP, a maximum number of outstanding connection
| requests is set. This can be considered to be a backlog of requests waiting
| on the TCP/IP port for the listener to accept the request. The default
| listener backlog values are shown in Table 10.

| If the backlog reaches the values shown in Table 10, the TCP/IP
| connection is rejected and the channel will not be able to start.

| For MCA channels, this results in the channel going into a RETRY state
| and retrying the connection at a later time.

| For client connections, the client receives an
| MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
| should retry the connection at a later time.

| Table 10. Default outstanding connection requests (TCP)

| Platform| Default ListenerBacklog value

| OS/390| 255

| OS/2 Warp| 10

| Windows NT Server| 100

| Windows NT Workstation| 5

| AS/400| 255

| Sun Solaris| 100

| HP-UX| 20

| AIX V4.2 or later| 100

| AIX V4.1 or earlier| 10

| All other platforms| 5

 Chapter 11. Configuring MQSeries 145

 qm.ini stanzas

| The ListenerBacklog attribute allows you to override the default number of
| outstanding requests for the TCP/IP listener.

| Note: Some operating systems support a larger value than the default
| shown. If necessary, this can be used to avoid reaching the connection
| limit.

| SPX (MQSeries for OS/2 Warp and MQSeries for Windows NT only)
| The following attributes can be specified:

| Socket=5E86 |socket_number
| This attribute specifies the SPX socket number in hexadecimal notation.
| The default is X'5E86'.

| BoardNum=0 |adapter_number
| This attribute specifies the LAN adapter number. The default is adapter 0.

| KeepAlive=YES|NO
| Use this attribute to switch the KeepAlive function on or off.

| KeepAlive=YES causes SPX to check periodically that the other end of the
| connection is still available. If it is not, the channel is closed.

| LibraryName1= DLLName1
| This attribute specifies the name of the SPX DLL.

| The default for MQSeries for OS/2 Warp is IPXCALLS.DLL.

| The default for MQSeries for Windows NT is WSOCK32.DLL.

| LibraryName2= DLLName2
| This attribute specifies the same value as LibraryName 1 if the code is held
| in two separate libraries.

| The default for MQSeries for OS/2 Warp is SPXCALLS.DLL.

| ListenerBacklog=number
| When receiving on SPX, a maximum number of outstanding connection
| requests is set. This can be considered a to be a backlog of requests
| waiting on the SPX socket for the listener to accept the request. The
| default listener backlog values are shown in Table 11.

| If the backlog reaches the values shown in Table 10 on page 145, the
| SPX connection is rejected and the channel will not be able to start.

| For MCA channels, this results in the channel going into a RETRY state
| and retrying the connection at a later time.

| For client connections, the client receives an
| MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
| should retry the connection at a later time.

| Table 11. Default outstanding connection requests (SPX)

| Platform| Default ListenerBacklog value

| OS/2 Warp| 10

| Windows NT Server| 100

| Windows NT Workstation| 5

146 MQSeries System Administration

 qm.ini stanzas

| The ListenerBacklog attribute allows you to override the default number of
| outstanding requests for the SPX listener.

| Note: Some operating systems support a larger value than the default
| shown. If necessary, this can be used to avoid reaching the connection
| limit.

| The ExitPath stanza
| The ExitPath stanza applies to: Version 5.1 of:

| � MQSeries for AIX
| � HP-UX
| � OS/2 Warp
| � Sun Solaris
| � Windows NT

| ExitDefaultPath= string
| The ExitDefaultPath attribute specifies the location of:

| � Channel exits for clients
| � Channel exits and data conversion exits for servers

| The exit path is read from the ClientExitPath stanza in the mqs.ini file for clients
| and from this (ExithPath) stanza for servers.

| For MQSeries for Windows NT, ClientExithPath and ExitPath information is in
| the Windows NT Registry.

| The UDP stanza
| The UDP stanza can be used to tailor User Datagram Protocol (UDP) support on
| your MQSeries system and is applicable to MQSeries AIX 5.1 systems only. UDP
| is part of the Internet suite of protocols and may be used as an alternative to
| TCP/IP.

| You can use UDP to send message data between MQSeries for Windows Version
| 2.02 systems (that is with CSD 2 installed) and MQSeries for AIX Version 5.1
| server systems.

| A sample qm.ini file is shipped in the MQM\QMGRS\ directory. To use it, copy it to
| the sub-directory for the queue manager and edit it as required, using the following
| attribute descriptions to guide you.

| ACKREQ_TIMEOUT=5|1–30 000
| The request for acknowledgement timeout attribute, ACKREQ_TIMEOUT,
| specifies the time, in seconds, that the internal state machines will wait for a
| protocol datagram before assuming that the datagram has been lost and
| retrying. The default is 5 but you can change this to a value in the range
| 1—30 000.

| ACKREQ_RETRY=60|1–30 000
| The request for acknowledgment retry attribute, ACKREQ_RETRY, specifies
| the number of times that the internal state machines will resend protocol
| datagrams before giving up completely and causing a channel to close. (All the
| counts are reset to zero after success and thus are not cumulative.)

| The default is 60 but you can change this to a value in the range 1—30 000.

 Chapter 11. Configuring MQSeries 147

 qm.ini stanzas

| CONNECT_TIMEOUT=5|1–30 000
| The connect request timeout attribute, CONNECT_TIMEOUT, specifies the
| time, in seconds, that the internal state machines will wait for a protocol
| datagram before assuming that the datagram has been lost and retrying. The
| default is 5 but you can change this to a value in the range 1—30 000.

| CONNECT_RETRY=60|1–30 000
| The connect request retry attribute, CONNECT_RETRY, specifies the number
| of times that the internal state machines will resend protocol datagrams before
| giving up completely and causing a channel to close. (All the counts are reset
| to zero after success and thus are not cumulative.)

| The default is 60 but you can change this to a value in the range 1—30 000.

| ACCEPT_TIMEOUT=5|1–30 000
| The accept connection timeout attribute, ACCEPT_TIMEOUT, specifies the
| time, in seconds, that the internal state machines will wait for a protocol
| datagram before assuming that the datagram has been lost and retrying. The
| default is 5 but you can change this to a value in the range 1–30 000.

| ACCEPT_RETRY=60|1–30 000
| The accept connection retry attribute, ACCEPT_RETRY, specifies the number
| of times that the internal state machines will resend protocol datagrams before
| giving up completely and causing a channel to close. (All the counts are reset
| to zero after success and thus are not cumulative.)

| The default is 60 but you can change this to a value in the range 1—30 000.

| DROP_PACKETS=0|1–30 000
| The DROP_PACKETS attribute tests for the robustness of the protocols against
| lost datagrams. Changing the value to something other than 0 causes
| datagrams to be thrown away and the protocol will cause them to be resent.
| Therefore, you are advised not to change the value of this attribute to anything
| other than 0 for normal usage.

| BUNCH_SIZE=8|1–30 000
| The BUNCH_SIZE attribute specifies the number of datagrams that are sent
| before an acknowledgement datagram is sent from the receiving node. The
| default is 8.

| Changing the default to a value higher than 8 may reduce the number of
| datagrams sent but may also affect other aspects of performance. Without
| knowing the details of the network involved, it is difficult to suggest exactly how
| to vary the values on this attribute, but a good rule of thumb is probably that
| the longer the network delay, the larger the value of BUNCH_SIZE should be
| for optimum performance.

| PACKET_SIZE=2048|512–8192
| The PACKET_SIZE attribute specifies the maximum size of UDP datagrams
| sent over the IP network. Some networks may have a limit as low as 512
| bytes. The default value of 2048 appears to be successful most of the time.
| However, if you experience problems with this value, you can slowly increase it
| from 512 until you find your own optimum value.

| PSEUDO_ACK=NO|YES
| Set the PSEUDO_ACK attribute to YES if you want the datagram that is about
| to be sent to be modified so that it requests the remote end of the link to send
| an “information” datagram back to indicate that the node can be reached.

148 MQSeries System Administration

 MQSeries for OS/2 Warp examples

| PSEUDO_ACK=YES must be set at both the remote and local ends of the
| channel.

| The default is NO.

| The Transport stanza
| The Transport stanza is used to tailor User Datagram Protocol (UDP) support on
| your MQSeries system and must be coded in conjunction with the UDP stanza
| above.

| RETRY_EXIT=exitname
| The RETRY_EXIT attribute specifies the name of the library that contains the
| retry exit. The retry exit allows your application to suspend data being sent on
| a channel when communication is not possible.

| For Windows systems, the retry exit name takes the form xyz.DLL(myexit)
| while for AIX systems, the retry exit name takes the form xyz(myexit).

| For more information about the retry exit, see “The retry exit” on page 376.

| Example mqs.ini and qm.ini files for MQSeries for OS/2 Warp
| The mqs.ini file shown in Figure 11 and the qm.ini files shown in Figure 12 on
| page 151, Figure 13 on page 152, and Figure 14 on page 153, were created by:

| 1. Installing MQSeries for OS/2 Warp and specifying:

| � G:\MQM as the file directory, which puts program files onto the G: drive
| � M:\MQM as the work directory, which puts queues onto the M: drive.

| 2. Editing the M:\MQM\MQS.INI file to change the value on the LogDefaultPath
| attribute to

| R:\MQM\LOG

| This puts the log files to the R: drive rather than the M: drive.

| 3. Creating three queue managers using the following commands:

| � crtmqm -q firstqm
| � crtmqm secondqm
| � crtmqm -lf 1ð24 -lp 1ð -ls 5 thirdqm

 Chapter 11. Configuring MQSeries 149

 MQSeries for OS/2 Warp examples

| Resultant mqs.ini file (MQSeries for OS/2 Warp)
| Path M:\MQM\MQS.INI

| #\\\#
| #\ Module Name: mqs.ini #
| #\ Type : MQSeries Machine-Wide Configuration File #
| #\ Function : Define MQSeries resources for an entire machine #
| #\ #
| #\\\#
| #\ Notes #
| #\ 1) This is the installation time default configuration #
| #\ #
| #\\\#
| AllQueueManagers:
| #\\\#
| #\ The path to the qmgrs directory, below which the queue manager #
| #\ data is stored #
| #\\\#
| DefaultPrefix=M:\MQM
| DefaultFilePrefix=G:\MQM

| LogDefaults:
| LogPrimaryFiles=3
| LogSecondaryFiles=2
| LogFilePages=256
| LogType=CIRCULAR
| LogBufferPages=17
| LogDefaultPath=R:\MQM\LOG

| QueueManager:
| Name=firstqm
| Prefix=M:\MQM
| Directory=firstqm

| DefaultQueueManager:
| Name=firstqm

| QueueManager:
| Name=secondqm
| Prefix=M:\MQM
| Directory=secondqm

| QueueManager:
| Name=thirdqm
| Prefix=M:\MQM
| Directory=thirdqm

| Figure 11. Example of an mqs.ini file for MQSeries for OS/2 Warp

150 MQSeries System Administration

 MQSeries for OS/2 Warp examples

| Resultant qm.ini file for queue manager firstqm (MQSeries for OS/2
| Warp)
| Path M:\MQM\QMGRS\FIRSTQM\QM.INI

| #\\\#
| #\ Module Name: qm.ini #
| #\ Type : MQSeries queue manager configuration file #
| #\ Function : Define the configuration of a single queue #
| #\ manager #
| #\ #
| #\\\#
| #\ Notes #
| #\ 1) This file defines the configuration of the queue manager #
| #\ #
| #\\\#
| ExitPath:
| ExitsDefaultPath=M:\MQM\exits

| Log:
| LogPrimaryFiles=3
| LogSecondaryFiles=2
| LogFilePages=256
| LogType=CIRCULAR
| LogBufferPages=17
| LogDefaultPath=R:\MQM\LOG\firstqm\

| Figure 12. Example of qm.ini file for queue manager firstqm

 Chapter 11. Configuring MQSeries 151

 MQSeries for OS/2 Warp examples

| Resultant qm.ini file for queue manager secondqm (MQSeries for OS/2
| Warp)
| Path M:\MQM\QMGRS\SECONDQM\QM.INI

| #\\\#
| #\ Module Name: qm.ini #
| #\ Type : MQSeries queue manager configuration file #
| #\ Function : Define the configuration of a single queue #
| #\ manager #
| #\ #
| #\\\#
| #\ Notes #
| #\ 1) This file defines the configuration of the queue manager #
| #\ #
| #\\\#
| ExitPath:
| ExitsDefaultPath=M:\MQM\exits

| Log:
| LogPrimaryFiles=3
| LogSecondaryFiles=2
| LogFilePages=256
| LogType=CIRCULAR
| LogBufferPages=17
| LogDefaultPath=R:\MQM\LOG\secondqm\

| Figure 13. Example of qm.ini file for queue manager secondqm

152 MQSeries System Administration

 MQSeries for OS/2 Warp examples

Resultant qm.ini file for queue manager thirdqm (MQSeries for OS/2
Warp)

Path M:\MQM\QMGRS\THIRDQM\QM.INI

| #\\\#
| #\ Module Name: qm.ini #
| #\ Type : MQSeries queue manager configuration file #
| #\ Function : Define the configuration of a single queue #
| #\ manager #
| #\ #
| #\\\#
| #\ Notes #
| #\ 1) This file defines the configuration of the queue manager #
| #\ #
| #\\\#
| ExitPath:
| ExitsDefaultPath=M:\MQM\exits

| Log:
| LogPrimaryFiles=1ð
| LogSecondaryFiles=5
| LogFilePages=1ð24
| LogType=CIRCULAR
| LogBufferPages=17
| LogDefaultPath=R:\MQM\LOG\thirdqm\

| Figure 14. Example of qm.ini file for queue manager thirdqm

 Chapter 11. Configuring MQSeries 153

 MQSeries for UNIX systems examples

Example mqs.ini and qm.ini files for MQSeries for UNIX systems
Figure 15 shows an example of an mqs.ini file in MQSeries for UNIX systems.

#\\\#
#\ Module Name: mqs.ini \#
#\ Type : MQSeries Configuration File \#
#\ Function : Define MQSeries resources for the node \#
#\ \#
#\\\#
#\ Notes : \#
#\ 1) This is an example MQSeries configuration file \#
#\ \#
#\\\#
AllQueueManagers:
#\\\#
#\ The path to the qmgrs directory, below which queue manager data \#
#\ is stored \#
#\\\#
DefaultPrefix=/var/mqm

LogDefaults:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1ð24
 LogType=CIRCULAR
 LogBufferPages=17
 LogDefaultPath=/var/mqm/log

QueueManager:
 Name=saturn.queue.manager
 Prefix=/var/mqm
 Directory=saturn!queue!manager

QueueManager:
 Name=pluto.queue.manager
 Prefix=/var/mqm
 Directory=pluto!queue!manager

DefaultQueueManager:
 Name=saturn.queue.manager

Figure 15. Example of an MQSeries configuration file for UNIX systems

Figure 16 on page 155 shows how groups of attributes might be arranged in a
queue manager configuration file in MQSeries for UNIX systems.

154 MQSeries System Administration

 MQSeries for UNIX systems examples

#\\\#
#\ Module Name: qm.ini \#
#\ Type : MQSeries queue manager configuration file \#
Function : Define the configuration of a single queue manager \#
#\ \#
#\\\#
#\ Notes : \#
#\ 1) This file defines the configuration of the queue manager \#
#\ \#
#\\\#
ExitPath:
 ExitsDefaultPath=/var/mqm/exits

Service:
 Name=AuthorizationService
 EntryPoints=9

ServiceComponent:
 Service=AuthorizationService
 Name=MQSeries.UNIX.auth.service
 Module=mqmtop/bin/amqzfu.o
 ComponentDataSize=ð

Service:
 Name=NameService
 EntryPoints=5

ServiceComponent:
 Service=NameService
 Name=MQSeries.DCE.name.service
 Module=mqmtop/lib/amqzfa
 ComponentDataSize=ð

Log:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1ð24
 LogType=CIRCULAR
 LogBufferPages=17
 LogPath=/var/mqm/log/saturn!queue!manager/

XAResourceManager:
Name=DB2 Resource Manager Bank

 SwitchFile=/usr/bin/db2swit
 XAOpenString=MQBankDB
 XACloseString=
 ThreadOfControl=PROCESS

Figure 16 (Part 1 of 2). Example queue manager configuration file for MQSeries for UNIX
systems

 Chapter 11. Configuring MQSeries 155

 MQSeries for UNIX systems examples

CHANNELS:
MaxChannels = 2ð ; Maximum number of Channels allowed.

; Default is 1ðð.
MaxActiveChannels = 1ð ; Maximum number of Channels allowed to be

; active at any time. The default is the
; value of MaxChannels.

TCP: ; TCP/IP entries.
KeepAlive = Yes ; Switch KeepAlive on

Figure 16 (Part 2 of 2). Example queue manager configuration file for MQSeries for UNIX
systems

Notes for examples:

MQSeries on the node is using the default locations for queue managers and for
the logs.

The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the file system.

Because the MQSeries configuration file is used to locate the data associated with
queue managers, a nonexistent or incorrect configuration file can cause some or all
MQSeries commands to fail. Also, applications cannot connect to a queue
manager that is not defined in the MQSeries configuration file.

156 MQSeries System Administration

 DLQ handler � Invoking DLQ handler

Chapter 12. The MQSeries dead-letter queue handler

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message
queue, is a holding queue for messages that cannot be delivered to their
destination queues. Every queue manager in a network should have an associated
DLQ.

Messages can be put on the DLQ by queue managers, by message channel
agents (MCAs), and by applications. All messages on the DLQ should be prefixed
with a dead-letter header structure, MQDLH.

Messages put on the DLQ by a queue manager or by a message channel agent
always have an MQDLH; applications putting messages on the DLQ are strongly
recommended to supply an MQDLH. The Reason field of the MQDLH structure
contains a reason code that identifies why the message is on the DLQ.

In all MQSeries environments, there should be a routine that runs regularly to
process messages on the DLQ. MQSeries supplies a default routine, called the
dead-letter queue handler (the DLQ handler), which you invoke using the
runmqdlq command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler
by means of a user-written rules table. That is, the DLQ handler matches
messages on the DLQ against entries in the rules table: when a DLQ message
matches an entry in the rules table, the DLQ handler performs the action
associated with that entry.

This chapter contains the following sections:

� “Invoking the DLQ handler”
� “The DLQ handler rules table” on page 158
� “How the rules table is processed” on page 165
� “An example DLQ handler rules table” on page 167

Invoking the DLQ handler
You invoke the DLQ handler using the runmqdlq command. You can name the
DLQ you want to process and the queue manager you want to use in two ways:

� As parameters to runmqdlq from the command prompt. For example:

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER <qrule.rul

� In the rules table. For example:

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

 Copyright IBM Corp. 1994,1999 157

 Rules table

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The runmqdlq command takes its input from stdin; you associate the rules table
with runmqdlq by redirecting stdin from the rules table.

In order to run the DLQ handler, you must be authorized to access both the DLQ
itself and any message queues to which messages on the DLQ are forwarded.
Furthermore, if the DLQ handler is to be able to put messages on queues with the
authority of the user ID in the message context, you must be authorized to assume
the identity of other users.

For more information about the runmqdlq command, see “runmqdlq (Run
dead-letter queue handler)” on page 318.

The sample DLQ handler, amqsdlq
In addition to the DLQ handler invoked using the runmqdlq command, MQSeries
provides the source of a sample DLQ handler, amqsdlq, whose function is similar to
that provided via runmqdlq . You can customize amqsdlq to provide a DLQ
handler that meets specific, local requirements. For example, you might decide
that you want a DLQ handler that can process messages without dead-letter
headers. (Both the default DLQ handler and the sample, amqsdlq, process only
those messages on the DLQ that begin with a dead-letter header, MQDLH.
Messages that do not begin with an MQDLH are identified as being in error, and
remain on the DLQ indefinitely.)

In MQSeries for UNIX systems, the source of amqsdlq is supplied in the directory:

 mqmtop/samp/dlq

and the compiled version is supplied in the directory:

 mqmtop/samp/bin

In MQSeries for OS/2 Warp and Windows NT, the source of amqsdlq is supplied in
the directory:

 c:\mqm\tools\c\samples\dlq

and the compiled version is supplied in the directory:

 c:\mqm\tools\c\samples\bin

The DLQ handler rules table
The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:

� The first entry in the table, which is optional, contains control data.

� All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is
matched against, and an action to be taken when a message on the DLQ
matches the specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

158 MQSeries System Administration

 Rules table

 Control data
This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Note the following:

� The default value for a keyword, if any, is underlined.
� The vertical line (|) separates alternatives, only one of which can be specified.
� All keywords are optional.

INPUTQ (QueueName|' ')
Allows you to name the DLQ you want to process:

1. If you specify an INPUTQ value as a parameter to the runmqdlq
command, this overrides any INPUTQ value in the rules table.

2. If you do not specify an INPUTQ value as a parameter to the
runmqdlq command, but you do specify a value in the rules table, the
INPUTQ value in the rules table is used.

3. If no DLQ is specified or you specify INPUTQ(' ') in the rules table, the
name of the DLQ belonging to the queue manager whose name is
supplied as a parameter to the runmqdlq command is used.

4. If you do not specify an INPUTQ value as a parameter to the
runmqdlq command or as a value in the rules table, the DLQ
belonging to the queue manager named on the INPUTQM keyword in
the rules table is used.

INPUTQM (QueueManagerName|' ')
Allows you to name the queue manager that owns the DLQ named on the
INPUTQ keyword:

1. If you specify an INPUTQM value as a parameter to the runmqdlq
command, this overrides any INPUTQM value in the rules table.

2. If you do not specify an INPUTQM value as a parameter to the
runmqdlq command, the INPUTQM value in the rules table is used.

3. If no queue manager is specified or you specify INPUTQM(' ') in the
rules table, the default queue manager for the installation is used.

RETRYINT (Interval|60)
Is the interval, in seconds, at which the DLQ handler should attempt to
reprocess messages on the DLQ that could not be processed at the first
attempt, and for which repeated attempts have been requested. By
default, the retry interval is 60 seconds.

WAIT (YES|NO|nnn)
Indicates whether the DLQ handler should wait for further messages to
arrive on the DLQ when it detects that there are no further messages that
it can process.

YES Causes the DLQ handler to wait indefinitely.

NO Causes the DLQ handler to terminate when it detects that the
DLQ is either empty or contains no messages that it can
process.

 Chapter 12. The MQSeries dead-letter queue handler 159

 Rules table

nnn Causes the DLQ handler to wait for nnn seconds for new
work to arrive before terminating, after it detects that the
queue is either empty or contains no messages that it can
process.

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT
(NO) or WAIT (nnn) for DLQs that have a low level of activity. If the DLQ
handler is allowed to terminate, you are recommended to invoke it again

| by means of triggering. For more information about triggering, see
| Chapter 14, “Starting MQSeries applications using triggers” in the
| MQSeries Application Programming Guide.

As an alternative to including control data in the rules table, you can supply the
names of the DLQ and its queue manager as input parameters of the runmqdlq
command. If any value is specified both in the rules table and on input to the
runmqdlq command, the value specified on the runmqdlq command takes
precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Figure 17 shows an example rule from a DLQ handler rules table.

 PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

Figure 17. An example rule from a DLQ handler rules table. This rule instructs the DLQ
handler to make 3 attempts to deliver to its destination queue any persistent message that
was put on the DLQ because MQPUT and MQPUT1 were inhibited.

All keywords that you can use on a rule are described in the remainder of this
section. Note the following:

� The default value for a keyword, if any, is underlined. For most keywords, the
default value is * (asterisk), which matches any value.

� The vertical line (|) separates alternatives, only one of which can be specified.

� All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords
The pattern-matching keywords, which you use to specify values against which
messages on the DLQ are matched, are described below. All pattern-matching
keywords are optional.

APPLIDAT (ApplIdentityData|*)
Is the ApplIdentityData value specified in the message descriptor, MQMD,
of the message on the DLQ.

160 MQSeries System Administration

 Rules table

APPLNAME (PutApplName|*)
Is the name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApplName field of the message descriptor, MQMD, of
the message on the DLQ.

APPLTYPE (PutApplType|*)
Is the PutApplType value specified in the message descriptor, MQMD, of
the message on the DLQ.

DESTQ (QueueName|*)
Is the name of the message queue for which the message is destined.

DESTQM (QueueManagerName|*)
Is the name of the queue manager of the message queue for which the
message is destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQFB_REPORT, Feedback describes the
nature of the report.

Symbolic names can be used. For example, you can use the symbolic
name MQFB_COA to identify those messages on the DLQ that require
confirmation of their arrival on their destination queues.

FORMAT (Format|*)
Is the name that the sender of the message uses to describe the format of
the message data.

MSGTYPE (MsgType|*)
Is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQMT_REQUEST to identify those messages on the DLQ that
require replies.

PERSIST (Persistence|*)
Is the persistence value of the message. (The persistence of a message
determines whether it survives restarts of the queue manager.)

Symbolic names can be used. For example, you can use the symbolic
name MQPER_PERSISTENT to identify those messages on the DLQ that
are persistent.

REASON (ReasonCode|*)
Is the reason code that describes why the message was put to the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQRC_Q_FULL to identify those messages placed on the DLQ
because their destination queues were full.

REPLYQ (QueueName|*)
Is the name of the reply-to queue specified in the message descriptor,
MQMD, of the message on the DLQ.

REPLYQM (QueueManagerName|*)
Is the name of the queue manager of the reply-to queue, as specified in
the message descriptor, MQMD, of the message on the DLQ.

 Chapter 12. The MQSeries dead-letter queue handler 161

 Rules table

USERID (UserIdentifier|*)
Is the user ID of the user who originated the message on the DLQ, as
specified in the message descriptor, MQMD.

The action keywords
The action keywords, which you use to describe how a matching message is to be
processed, are described below.

ACTION (DISCARD|IGNORE|RETRY|FWD)
Is the action to be taken for any message on the DLQ that matches the
pattern defined in this rule.

DISCARD Causes the message to be deleted from the DLQ.

IGNORE Causes the message to be left on the DLQ.

RETRY Causes the DLQ handler to try again to put the message on
its destination queue.

FWD Causes the DLQ handler to forward the message to the
queue named on the FWDQ keyword.

The ACTION keyword must be specified. The number of attempts made
to implement an action is governed by the RETRY keyword. The interval
between attempts is controlled by the RETRYINT keyword of the control
data.

FWDQ (QueueName|&DESTQ|&REPLYQ)
Is the name of the message queue to which the message should be
forwarded when ACTION (FWD) is requested.

QueueName
Is the name of a message queue. FWDQ(' ') is not valid.

&DESTQ Causes the queue name to be taken from the DestQName
field in the MQDLH structure.

&REPLYQ Causes the name to be taken from the ReplyToQ field in the
message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ
(&REPLYQ) matches a message with a blank ReplyToQ
field, you can specify REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM| ' ')
Identifies the queue manager of the queue to which a message is to be
forwarded.

QueueManagerName
Is the name of the queue manager of the queue to which a
message is to be forwarded when ACTION (FWD) is requested.

&DESTQM
Causes the queue manager name to be taken from the
DestQMgrName field in the MQDLH structure.

&REPLYQM
Causes the name to be taken from the ReplyToQMgr field in the
message descriptor, MQMD.

162 MQSeries System Administration

 Rules table

' ' FWDQM(' '), which is the default value, identifies the local
queue manager.

HEADER (YES|NO)
Specifies whether the MQDLH should remain on a message for which
ACTION (FWD) is requested. By default, the MQDLH remains on the
message. The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
Defines the authority with which messages should be put by the DLQ
handler:

DEF Causes messages to be put with the authority of the DLQ handler
itself.

CTX Causes the messages to be put with the authority of the user ID
in the message context. If you specify PUTAUT (CTX), you must
be authorized to assume the identity of other users.

RETRY (RetryCount|1)
Is the number of times, in the range 1–999 999 999, that an action should
be attempted (at the interval specified on the RETRYINT keyword of the
control data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If the DLQ handler is restarted, the
count of attempts made to apply a rule is reset to zero.

Rules table conventions
The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:

� A rules table must contain at least one rule.

� Keywords can occur in any order.

� A keyword can be included once only in any rule.

� Keywords are not case sensitive.

� A keyword and its parameter value must be separated from other keywords by
at least one blank or comma.

� Any number of blanks can occur at the beginning or end of a rule, and between
keywords, punctuation, and values.

� Each rule must begin on a new line.

� For reasons of portability, the significant length of a line should not be greater
than 72 characters.

� Use the plus sign (+) as the last nonblank character on a line to indicate that
the rule continues from the first nonblank character in the next line. Use the
minus sign (−) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

For example:

APPLNAME('ABC+
 D')

 Chapter 12. The MQSeries dead-letter queue handler 163

 Rules table

results in 'ABCD', and

APPLNAME('ABC-
 D')

results in 'ABC D'.

� Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

� Blank lines are ignored.

� Each entry in the DLQ handler rules table comprises one or more keywords
and their associated parameters. The parameters must follow these syntax
rules:

– Each parameter value must include at least one significant character. The
delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT('A') 1 significant character
FORMAT(A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant
characters:

FORMAT('')
FORMAT()
FORMAT()
FORMAT

– Wildcard characters are supported: you can use the question mark (?) in
place of any single character, except a trailing blank; you can use the
asterisk (*) in place of zero or more adjacent characters. The asterisk (*)
and the question mark (?) are always interpreted as wildcard characters in
parameter values.

– Wildcard characters cannot be included in the parameters of these
keywords: ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard
matches. However, leading and embedded blanks within strings in
quotation marks are significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard
character. The asterisk (*) can be used in place of an entire numeric
parameter, but cannot be included as part of a numeric parameter. For
example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE(\) Any message type is eligible
MSGTYPE('\') Any message type is eligible

However, MSGTYPE('2\') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

– Numeric parameters must be in the range 0–999 999 999. If the
parameter value is in this range, it is accepted, even if it is not currently

164 MQSeries System Administration

 Rules table processing

valid in the field to which the keyword relates. Symbolic names can be
used for numeric parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character
field:

'ABCDEFGH' 8 characters
'A\C\E\G\I' 5 characters excluding asterisks
'\A\C\E\G\I\K\M\O\' 8 characters excluding asterisks

– Strings that contain blanks, lowercase characters, or special characters
other than period (.), forward slash (/), underscore (_), and percent sign (%)
must be enclosed in single quotation marks. Lowercase characters not
enclosed in quotation marks are folded to uppercase. If the string includes
a quotation, two single quotation marks must be used to denote both the
beginning and the end of the quotation. When the length of the string is
calculated, each occurrence of double quotation marks is counted as a
single character.

How the rules table is processed
The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the action from that rule is attempted. The DLQ handler increments the retry
count for a rule by 1 whenever it attempts to apply that rule. If the first attempt
fails, the attempt is repeated until the count of attempts made matches the number
specified on the RETRY keyword. If all attempts fail, the DLQ handler searches for
the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is
successful. When each matching rule has been attempted the number of times
specified on its RETRY keyword, and all attempts have failed, ACTION (IGNORE)
is assumed. ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule may consist of
an action only. Note, however, that action-only rules are applied to all
messages on the queue that have MQDLHs and that have not already been
processed in accordance with other rules in the table.

3. The rules table is validated when the DLQ handler is started, and errors are
flagged at that time. (Error messages issued by the DLQ handler are

| described in “AMQ8000-AMQ8499 MQSeries administration messages” in the
| MQSeries Messages book.) You can make changes to the rules table at any

time, but those changes do not come into effect until the DLQ handler is
restarted.

 Chapter 12. The MQSeries dead-letter queue handler 165

 Rules table processing

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table may not be recognized because
the implementation of the validation of the rules table is designed to eliminate
the generation of repetitive errors.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

7. Multiple instances of the DLQ handler could run concurrently against the same
queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed
The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still has to keep a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a periodic
rescan of the DLQ is performed to check all messages. For these reasons, you
should try to ensure that the DLQ contains as few messages as possible; if
messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:

 ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, the final rule in the table should be a catchall to process messages that
have not been addressed by earlier rules in the table. For example, the final rule in
the table could be something like this:

 ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This action causes messages that fall through to the final rule in the table to be
forwarded to the queue REALLY.DEAD.QUEUE, where they can be processed
manually. If you do not have such a rule, messages are likely to remain on the
DLQ indefinitely.

166 MQSeries System Administration

 Example rules table

An example DLQ handler rules table
Here is an example rules table that contains a single control-data entry and several
rules:

\\\
\ An example rules table for the runmqdlq command \
\\\
\ Control data entry
\ ------------------
\ If no queue manager name is supplied as an explicit parameter to
\ runmqdlq, use the default queue manager for the machine.
\ If no queue name is supplied as an explicit parameter to runmqdlq,
\ use the DLQ defined for the local queue manager.
\
inputqm(' ') inputq(' ')

\ Rules
\ -----
\ We include rules with ACTION (RETRY) first to try to
\ deliver the message to the intended destination.

\ If a message is placed on the DLQ because its destination
\ queue is full, attempt to forward the message to its
\ destination queue. Make 5 attempts at approximately
\ 6ð-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

\ If a message is placed on the DLQ because of a put inhibited
\ condition, attempt to forward the message to its
\ destination queue. Make 5 attempts at approximately
\ 6ð-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

\ The AAAA corporation are always sending messages with incorrect
\ addresses. When we find a request from the AAAA corporation,
\ we return it to the DLQ (DEADQ) of the reply-to queue manager
\ (&REPLYQM).
\ The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.\) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

\ The BBBB corporation never do things by half measures. If
\ the queue manager BBBB.1 is unavailable, try to
\ send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

\ The CCCC corporation considers itself very security
\ conscious, and believes that none of its messages
\ will ever end up on one of our DLQs.
\ Whenever we see a message from a CCCC queue manager on our

 Chapter 12. The MQSeries dead-letter queue handler 167

 Example rules table

\ DLQ, we send it to a special destination in the CCCC organization
\ where the problem is investigated.

REPLYQM(CCCC.\) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

\ Messages that are not persistent run the risk of being
\ lost when a queue manager terminates. If an application
\ is sending nonpersistent messages, it should be able
\ to cope with the message being lost, so we can afford to
\ discard the message.

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

\ For performance and efficiency reasons, we like to keep
\ the number of messages on the DLQ small.
\ If we receive a message that has not been processed by
\ an earlier rule in the table, we assume that it
\ requires manual intervention to resolve the problem.
\ Some problems are best solved at the node where the
\ problem was detected, and others are best solved where
\ the message originated. We don't have the message origin,
\ but we can use the REPLYQM to identify a node that has
\ some interest in this message.
\ Attempt to put the message onto a manual intervention
\ queue at the appropriate node. If this fails,
\ put the message on the manual intervention queue at
\ this node.

REPLYQM('?\') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

168 MQSeries System Administration

 Instrumentation events

 Chapter 13. Instrumentation events

You can use MQSeries instrumentation events to monitor the operation of queue
managers. This chapter provides a short introduction to instrumentation events.
For a more complete description, see Chapter 1, “Using instrumentation events to
monitor queue managers” in the MQSeries Programmable System Management
book.

What are instrumentation events?
Instrumentation events cause special messages, called event messages, to be
generated whenever the queue manager detects a predefined set of conditions.
For example, the following conditions give rise to a Queue Full event:

� Queue Full events are enabled for a specified queue, and

� An application issues an MQPUT call to put a message on that queue, but the
call fails because the queue is full.

Other conditions that can give rise to instrumentation events include:

� A predefined limit for the number of messages on a queue being reached

� A queue not being serviced within a specified time

� A channel instance being started or stopped

� In MQSeries for UNIX systems, an application attempting to open a queue and
specifying a user ID that is not authorized

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

Figure 18 on page 170 summarizes the production of an event message.

 Copyright IBM Corp. 1994,1999 169

 Use of events

Queue Manager

For example:
Queue full

+ event enabled1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Event message

Event queue

User Application

Figure 18. Understanding instrumentation events. When a queue manager detects that the
conditions for an event have been met, it puts an event message on the appropriate event
queue.

The event message contains information about the conditions giving rise to the event. An
application can retrieve the event message from the event queue for analysis.

Why use events?
If you define your event queues as remote queues, you can put all the event
queues on a single queue manager (for those nodes that support instrumentation
events). You can then use the events generated to monitor a network of queue
managers from a single node. Figure 19 on page 171 illustrates this.

170 MQSeries System Administration

 Use of events

Event monitoring
from a single node

Event
messages

MQSeries
for MVS/ESA

MQSeries
for OS/2

MQSeries for
UNIX
OPERATING SYSTEMS

Figure 19. Monitoring queue managers across different platforms, on a single node

Types of event
MQSeries events are categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue managers.
For example, if an application attempts to update a resource but the associated
user ID is not authorized to perform that operation, a queue manager event is
generated.

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached or, following an
MQGET request, a queue has not been serviced within a predefined period of
time.

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, a channel event is generated when a channel
instance is stopped.

 Chapter 13. Instrumentation events 171

 Use of events

 Trigger events

When we discuss triggering in this and other MQSeries books, we sometimes
refer to a trigger event. This occurs when a queue manager detects that the
conditions for a trigger event have been met. For example, a queue can be
configured to generate a trigger event each time a message arrives. (The
conditions for trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and,
optionally, an application program is started.

Event notification through event queues
When an event occurs, the queue manager puts an event message on the
appropriate event queue (if such a queue has been defined). The event message
contains information about the event that you can retrieve by writing a suitable MQI
application program that:

� Gets the message from the queue.

� Processes the message to extract the event data. For a description of event
message formats, see Chapter 4, “Event message reference” in the MQSeries
Programmable System Management book.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

You can define event queues as either local or remote queues. If you define all
your event queues as remote queues on the same queue manager, you can
centralize your monitoring activities.

This event queue... Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events

Using triggered event queues
You can set up the event queues with triggers so that, when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, some events can require that an operator be
informed, while others could start an application that performs some administration
tasks automatically.

Enabling and disabling events
You enable and disable events by specifying the appropriate values for the queue
manager, or queue attributes, or both, depending on the type of event. You do this
using one of the following:

� MQSC commands. For more information, see Chapter 2, “The MQSeries
commands” in the MQSeries Command Reference manual.

� PCF commands. For more information, see “Enabling and disabling events” in
the MQSeries Programmable System Management manual.

172 MQSeries System Administration

 Use of events

| � MQAI commands. For more information, see the MQSeries Administration
| Interface Programming Guide and Reference book.

Enabling an event depends on the category of the event:

� Queue manager events are enabled by setting attributes of the queue
manager.

� Performance events as a whole must be enabled on the queue manager, or no
performance events can occur. You enable the specific performance events by
setting the appropriate queue attribute. You also have to identify the
conditions, such as a queue depth high limit, that give rise to the event,

� Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can inhibit MQPUT requests to the
channel event queue.

 Event messages
Event messages contain information relating to the origin of an event, including the
type of event, the name of the application that caused the event and, for
performance events, a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from them by user-written administration programs
using the data structures described in Chapter 4, “Event message reference” in the
MQSeries Programmable System Management manual.

 Chapter 13. Instrumentation events 173

 Use of events

174 MQSeries System Administration

 Transactional support

 Chapter 14. Transactional support

Chapter 13, “Committing and backing out units of work” in the MQSeries
Application Programming Guide contains a complete introduction to the subject of
this chapter. A brief introduction only is provided here.

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit process.

A global unit of work is one in which resources belonging to other resource
managers, such as XA-compliant databases, are also updated. Here, a two-phase
commit procedure must be used and the unit of work may be coordinated by the
queue manager itself, or externally by another XA-compliant transaction manager
such as IBM CICS, Transarc Encina, or BEA Tuxedo.

In summary, queue manager resources can be updated as part of local or global
units of work:

Local unit of work
Use local units of work when the only resources to be updated are those of the
MQSeries queue manager. Updates are committed using the MQCMIT verb or
backed out using MQBACK.

Global unit of work
Use global units of work when you also need to include updates to XA-compliant
database managers. Here the coordination may be internal or external to the
queue manager.

Queue manager coordination
Global units of work are started using the MQBEGIN verb and then
committed using MQCMIT or backed out using MQBACK. A
two-phase commit process is used whereby XA-compliant resource

| managers such as DB2, Oracle, and Sybase are firstly all asked
to prepare to commit. Only if all are prepared successfully will they
then be asked to commit. If any resource manager signals that it
cannot prepare to commit, each will be asked to back out instead.

External coordination
Here the coordination is performed by an XA-compliant transaction
manager such as IBM CICS or BEA Tuxedo. Units of work are
started and committed under control of the transaction manager.
The MQBEGIN, MQCMIT and MQBACK verbs are unavailable.

 Copyright IBM Corp. 1994,1999 175

 Database coordination

This chapter describes how to enable support for global units of work (support for
local units of work does not need to be specifically enabled).

It contains these sections:

 � “Database coordination”
� “DB2 configuration” on page 180
� “Oracle configuration” on page 186

| � “Sybase configuration” on page 192
� “Multiple database configurations” on page 200
� “Administration tasks” on page 201
� “External syncpoint coordination” on page 206
� “Using CICS” on page 208

 Database coordination
When the queue manager coordinates global units of work itself it becomes
possible to integrate database updates within MQ units of work. That is, a mixed
MQI and SQL application can be written, and the MQCMIT and MQBACK verbs
can be used to commit or roll back the changes to the queues and databases
together.

The queue manager achieves this using a two-phase commit protocol. When a unit
of work is to be committed, the queue manager first asks each participating
database manager whether it is prepared to commit its updates. Only if all of the
participants, including the queue manager itself, are prepared to commit, are all of
the queue and database updates committed. If any participant cannot prepare its
updates, the unit of work is backed out instead.

Full recovery support is provided if the queue manager loses contact with any of
the database managers during the commit protocol. If a database manager
becomes unavailable while it is in doubt, that is, it has been called to prepare but
has yet to receive a commit or back out decision, the queue manager remembers
the outcome of the unit of work until it has been successfully delivered. Similarly, if
the queue manager terminates with incomplete commit operations outstanding,
these are remembered over queue manager restart.

The MQI verb, MQBEGIN, must be used to denote units of work that are also to
involve database updates. Chapter 13, “Committing and backing out units of work”
in the MQSeries Application Programming Guide identifies sample programs that
make MQSeries and database updates within the same unit of work.

The queue manager communicates with the database managers using the XA
interface as described in X/Open Distributed Transaction Processing: The XA
Specification (ISBN 1 872630 24 3). This means that the queue manager can
communicate to database managers that also adhere to this standard. Such
database managers are known as XA-compliant database managers.

Table 12 on page 177 identifies XA-compliant database managers that are
supported by the MQSeries Version 5 products.

176 MQSeries System Administration

 Restrictions � Database connections

| Table 12. XA-compliant relational databases

| MQSeries product| DB2| Oracle| Sybase

| MQSeries for AIX| Yes| Yes| Yes

| MQSeries for HP-UX| Yes| Yes| No

| MQSeries for OS/2 Warp| Yes| No| No

| MQSeries for Sun Solaris| Yes| Yes| Yes

| MQSeries for Windows NT| Yes| No| Yes

 Restrictions
The following restrictions apply to the database coordination support:

� The ability to coordinate database updates within MQSeries units of work is not
supported in an MQI client application.

� The MQI updates and database updates must be made on the same queue
manager server machine.

� The database server may reside on a different machine from the queue
manager server. In this case, the database needs to be accessed via an
XA-compliant client feature provided by the database manager itself.

� Although the queue manager itself is XA-compliant, it is not possible to
configure another queue manager as a participant in global units of work. This
is because only one connection at a time can be supported.

 Database connections
An application that establishes a standard connection to the queue manager will be
associated with a thread in a separate local queue manager agent process. When
the application issues MQBEGIN then both it and the agent process will need to
connect to the databases that are to be involved in the unit of work. The database
connections are maintained while the application remains connected to the queue
manager. This is an important consideration if the database only supports a limited
number of users or connections.

One method of reducing the number of connections is for the application to use the
MQCONNX call to request a fastpath binding. In this case the application and the
local queue manager agent become the same process and consequently can share
a single database connection. Before you do this, consult “Connecting to a queue
manager using the MQCONNX call” in the MQSeries Application Programming
Guide for a list of restrictions that apply to fastpath applications.

 Chapter 14. Transactional support 177

 Configuring database managers

Configuring database managers
There are several tasks that you must perform before a database manager can
participate in global units of works coordinated by the queue manager:

1. Create an XA switch load file4 for the database manager.

2. Define the database manager in the queue manager’s configuration file, qm.ini,
| or, for users of MQSeries for Windows NT Version 5.1 or later, the Windows
| NT Registry.

Various items, including the name of the switch load file, must be defined in
| qm.ini or, for MQSeries for Windows NT Version 5.1 only, in the Windows NT
| Registry.

Creating switch load files
A sample makefile is shipped with each of the MQSeries Version 5.1 products
which can be used to build switch load files for the supported database managers

This makefile, together with all the associated files required to build the switch load
files, is installed in the following directories:

� For MQSeries for OS/2 Warp or Windows NT in the
\mqm\tools\c\samples\xatm\ directory

� For MQSeries for UNIX systems, in the mqmtop /samp/xatm/ directory

Refer to your MQSeries installation documentation for more information about the
installation procedure.

The sample source modules that are used to produce the switch load files all
contain a single function called MQStart. When the switch load file is loaded, the
queue manager calls this function and it returns the address of a structure called an
XA switch. The switch load file is linked to a library provided by the database
manager, which enables MQSeries to call that database manager.

The sample source modules used to build the switch load files are:

� For DB2, db2swit.c
� For Oracle, oraswit.c

| � For Sybase, sybswit.c

Defining database managers
| When you have created a switch load file for your database manager, you must
| specify its location to your queue manager. This is done in the queue manager’s
| qm.ini file in the XAResourceManager stanza, or for users of MQSeries for Windows
| NT Version 5.1 or later, in the Windows NT Registry.

| You need to add an XAResourceManager stanza for each database manager that
| your queue manager is going to coordinate. More complicated configurations

involving multiple databases, or different database managers, are discussed in
“Multiple database configurations” on page 200.

4 An XA switch load file is a dynamically loaded object that enables the queue manager and the database manager to communicate
with each other.

178 MQSeries System Administration

 Configuring database managers

The attributes of the XAResourceManager stanza are as follows.

| Name=name
| User-chosen string that identifies the database manager instance.

The name is mandatory and can be up to 31 characters in length. It must be
unique. It could simply be the name of the database manager, although to
maintain its uniqueness in more complicated configurations it could, for
example, also include the name of the database being updated.

The name that you choose should be meaningful because the queue manager
uses it to refer to this database manager instance both in messages and in
output when the dspmqtrn command is used.

Once you have chosen a name, do not change this attribute . Information
about changing configuration information is given in “Changing configuration
information” on page 205.

SwitchFile=name
This is the fully-qualified name of the database manager’s XA switch load file.
This is a mandatory attribute.

XAOpenString=string
| This is a string of data that is passed in calls to the database manager’s

xa_open entry point. The format for this string depends on the particular
database manager, but it should usually identify the name of the database that
is to be updated.

This is an optional attribute; if it is omitted a blank string is assumed.

XACloseString=string
| This is a string of data that is passed in calls to the database manager’s

xa_close entry point. The format for this string depends on the particular
database manager.

This is an optional attribute; if it is omitted a blank string is assumed.

ThreadOfControl=THREAD|PROCESS
This attribute applies only to MQSeries for OS/2 Warp and MQSeries for
Windows NT products, where it is mandatory. The ThreadOfControl value can
be THREAD or PROCESS. The queue manager uses it for serialization
purposes.

| If the database manager is “thread-safe”, the value for ThreadOfControl can be
| THREAD, and the queue manager can call the database manager from multiple

threads at the same time.

If the database manager is not thread-safe, the value for ThreadOfControl
| should be PROCESS. The queue manager serializes all calls to the database

manager so that only one call at a time is made from within a particular
process.

See “The XAResourceManager stanza” on page 140 for fuller descriptions of these
attributes.

| “DB2 configuration” on page 180, “Oracle configuration” on page 186, and “Sybase
| configuration” on page 192 give more information about the specific tasks you

need to perform to configure MQSeries with each of the supported database
managers.

 Chapter 14. Transactional support 179

 DB2 configuration

 DB2 configuration
| The minimum supported level of DB2 is DB2 Universal Database, Version 5.0.

You need to perform the following tasks:

� Check the environment variable settings.

� Create the DB2 switch load file.

� Add XAResourceManager configuration information to the qm.ini file, or, for
MQSeries for Windows NT only, to the Windows NT Registry.

� Change DB2 configuration parameters if necessary.

Checking the environment variable settings
Ensure that your DB2 environment variables are set for queue manager processes
as well as in your application processes. In particular, you must always set the
DB2INSTANCE environment variable before you start the queue manager. The
DB2INSTANCE environment variable identifies the DB2 instance containing the
DB2 databases that are being updated.

Creating the DB2 switch load file
The easiest method for creating the DB2 switch load file is to use the sample file
xaswit.mak. The source code used to create the DB2 switch on most platforms is
shown in Figure 20. The source for db2swit.c for Windows NT is different; it is
shown in Figure 21.

#include <cmqc.h>
#include "xa.h"

extern struct xa_switch_t db2xa_switch;

struct xa_switch_t \ MQENTRY MQStart(void)
{
 return(&db2xa_switch);
}

Figure 20. Source code for db2swit.c for platforms other than Windows NT

#include <cmqc.h>
#include "xa.h"

extern __declspec(dllimport) struct xa_switch_t db2xa_switch;

struct xa_switch_t \ MQENTRY MQStart(void)
{
 return(&db2xa_switch);
}

Figure 21. Source code for db2swit.c on Windows NT (Microsoft Visual C++-specific)

180 MQSeries System Administration

 DB2 configuration

The xa.h header file that is supplied with MQSeries is installed (for MQSeries for
OS/2 Warp or MQSeries for Windows NT) in the \mqm\tools\c\samples\xatm
directory, or (for MQSeries for UNIX systems) in the mqmtop /samp/xatm directory.

Creating the DB2 switch load file on OS/2
To create the DB2 switch load file on OS2, db2swit.c must be compiled and linked
against db2api.lib. The DEF file shown in Figure 22 is needed to produce the DLL:

LIBRARY DB2SWIT

CODE SHARED LOADONCALL
DATA NONSHARED MULTIPLE

EXPORTS
 MQStart @1

Figure 22. Source code for db2swit.def on OS/2

To create the DLL:

1. Create a directory into which you want the switch file to be built. The switch file
must be defined to MQSeries as a fully-qualified name so the DLL does not

| need to be built into a directory within LIBPATH.

2. Copy the following files from \mqm\tools\c\samples\xatm into your new
directory:

 � xa.h
 � db2swit.c
 � db2swit.def
 � xaswit.mak

3. Use the source code for xaswit.mak on OS/2 shown in Figure 23 to build the
switch load file.

CFLAGS=/c /Ss /Gm /Ge- /Q /Sp1
LFLAGS=/NOFREE /noi /align:16 /exepack

.SUFFIXES: .c .obj

db2swit.dll: db2swit.obj db2swit.def {$(LIB)}db2api.lib

.obj.dll:
$(CC) /B"$(LFLAGS)" /Fe $@ $\\

.c.obj:
$(CC) $(CFLAGS) $\.c

Figure 23. Makefile for DB2 switch on OS/2

4. Issue an nmake -f xaswit.mak db2swit.dll command to make the DB2 switch
load file, db2swit.dll.

 Chapter 14. Transactional support 181

 DB2 configuration

Creating the DB2 switch load file on Windows NT
To create the DB2 switch load file on Windows NT, db2swit.c must be compiled
and linked against db2api.lib. The DEF file shown in Figure 24 is needed to
produce the DLL:

LIBRARY DB2SWIT

EXPORTS
 MQStart

Figure 24. Source code for db2swit.def on Windows NT

To create the DLL:

1. Create a directory into which you want the switch file to be built. The switch file
must be defined to MQSeries as a fully-qualified name so the DLL does not

| need to be built into a directory within PATH.

2. Copy the following files from \mqm\tools\c\samples\xatm into your new
directory:

 � xa.h
 � db2swit.c
 � db2swit.def
 � xaswit.mak

3. Use the source code shown in Figure 25, which forms part of xaswit.mak on
Windows NT, to build the switch load file:

!include <ntwin32.mak>

db2swit.lib db2swit.exp: $\.obj $\.def
$(implib) -machine:$(CPU) \

 -def:$\.def $\.obj

db2swit.dll: $\.obj $\.def $\.exp
 $(link) $(dlllflags) \
 -base:ðx1Cðððððð \
 $\.exp $\.obj \
 $(conlibsdll) db2api.lib

.c.obj:
$(cc) $(cflags) $(cvarsdll) $\.c

Figure 25. Makefile for DB2 switch on Windows NT

4. Issue an nmake -f xaswit.mak db2swit.dll command to make the DB2 switch
load file, db2swit.dll, using the Microsoft Visual C++ compiler.

182 MQSeries System Administration

 DB2 configuration

Creating the DB2 switch load file on UNIX systems
To create the DB2 switch load file on UNIX systems, db2swit.c must be compiled
and linked against libdb2.

To build the switch load file:

1. Create a directory into which the DB2 load file, db2swit, will be built.

2. Copy the following files from mqmtop /samp/xatm into this new directory:

 � xa.h
 � db2swit.c
 � xaswit.mak

3. Use the source shown in Figure 26, which forms part of xaswit.mak on AIX, to
build the DB2 switch file on AIX.

DB2LIBS=-l db2
| DB2LIBPATH=-L /usr/lpp/db2_ð5_ðð/lib

db2swit:
$(CC) -e MQStart $(DB2LIBPATH) $(DB2LIBS) -o $@ db2swit.c

Figure 26. Makefile for DB2 switch on AIX

4. Use the source shown in Figure 27, which forms part of xaswit.mak on Sun
Solaris, to build the DB2 switch file on Sun Solaris.

DB2LIBS=-l db2
| DB2LIBPATH=-L /opt/IBMdb2/V5.ð/lib -R /opt/IBMdb2/V5.ð/lib

db2swit:
$(CC) -G -e MQStart $(DB2LIBPATH) $(DB2LIBS) -o $@ db2swit.c

Figure 27. Makefile for DB2 switch on Sun Solaris

5. Use the source shown in Figure 28, which forms part of xaswit.mak on HP-UX,
to build the DB2 switch file on HP-UX systems.

DB2LIBS=-l db2 -l cl
| DB2LIBPATH=-L /opt/IBMdb2/V5.ð/lib +b /opt/IBMdb2/V5.ð/lib

db2swit: db2swit.c
$(CC) -c -Ae +z db2swit.c

ld -b -e MQStart $(DB2LIBPATH) $(DB2LIBS) -o db2swit db2swit.o

Figure 28. Makefile for DB2 switch on HP-UX

6. Issue a make -f xaswit.mak db2swit command to build the DB2 switch load file
using the sample makefile.

 Chapter 14. Transactional support 183

 DB2 configuration

Adding the XAResourceManager stanza for DB2
The next step is to modify the configuration information for the queue manager to

| define DB2 as a participant in global units of work in the qm.ini file or, for MQSeries
| for Windows NT only, in the Windows NT Registry.

Add an XAResourceManager stanza with the following attributes:

| Name=name
| This attribute is mandatory. Choose a suitable name for this participant; you

could include the name of the database being updated.

| SwitchFile=name
| This attribute is mandatory. Specify the fully-qualified name of the DB2 switch

load file.

XAOpenString=string
The XA open string for DB2 must be of the following format:

database_alias<,username,password>

where:

� database_alias is the name of the database, unless you have explicitly
cataloged an alias name after the database was created in which case
specify the alias instead.

The following two parameters are optional. They provide alternative
authentication information to the database if it was set up with
authentication=server .

| � username specifies a user name defined to DB2.

� password is the password for the specified user ID.

See “Security considerations” on page 200 for more information about
security.

XACloseString=string
DB2 does not require an XA close string.

ThreadOfControl=THREAD|PROCESS
| DB2 is not thread-aware so specify PROCESS.

| For fuller descriptions of each of these attributes, see “The XAResourceManager
| stanza” on page 140.

Figure 29, shows some sample XAResourceManager entries where the database
to be updated is called MQBankDB, this name being specified as the XAOpenString.

XAResourceManager:
 Name=DB2 MQBankDB
 SwitchFile=c:\user\dll\db2swit.dll
 XAOpenString=MQBankDB

| ThreadOfControl=PROCESS

Figure 29. Sample XAResourceManager entry for DB2 on OS/2 and Windows NT

Figure 30 on page 185 is a UNIX sample. It is assumed that the DB2 switch load
file was copied to the /usr/bin directory after it had been created:

184 MQSeries System Administration

 DB2 configuration

XAResourceManager:
 Name=DB2 MQBankDB
 SwitchFile=/usr/bin/db2swit
 XAOpenString=MQBankDB

Figure 30. Sample XAResourceManager entry for DB2 on UNIX platforms

Changing DB2 configuration parameters
Perform each of the following steps to each DB2 database that is being coordinated
by the queue manager.

 � Database privileges
The mqm user ID must be authorized to connect to the DB2 database so that
the queue manager can connect to DB2 from within its own processes.

For example, to give the mqm user ID connect authority to the MQBankDB
database the following commands shown in Figure 31 could be used:

db2 connect to MQBankDB

db2 grant connect on database to user mqm

Figure 31. Sample commands to give connect user ID authority to MQBANKDB

See “Security considerations” on page 200 for more information about security.

 � tp_mon_name parameter

For DB2 for OS/2 and DB2 for Windows NT only, the TP_MON_NAME
configuration parameter must be updated to name the DLL that DB2 uses to
call the queue manager for dynamic registration.

This can be achieved using a db2 update dbm cfg using TP_MON_NAME mqmax
command.

This names MQMAX.DLL as the library that DB2 uses to call the queue
| manager. This must be present in a directory within LIBPATH for OS/2, or
| PATH for Windows NT.

 � maxappls parameter
You may need to review your setting for the maxappls parameter, which limits
the maximum number of applications that can be connected to a database.

Refer to “Database connections” on page 177.

 Chapter 14. Transactional support 185

 Oracle configuration

 Oracle configuration
You need to perform the following tasks:

� Check Oracle level and apply patches if you have not already done so.

� Check environment variable settings.

� Enable Oracle XA support.

� Create the Oracle switch load file.

� Add XAResourceManager configuration information to the qm.ini file, or, for
MQSeries for Windows NT only, to the Windows NT Registry.

� Change the Oracle configuration parameters, if necessary.

Minimum supported levels for Oracle and applying patches
� The minimum supported level of Oracle on AIX is 7.3.2.1.
� The minimum supported level of Oracle on HP-UX is 7.3.2.3.
� The minimum supported level of Oracle on Sun Solaris is 7.3.2.3.
� You need to install Oracle patches 437448 and 441647.

Checking the environment variable settings
Ensure that your Oracle environment variables are set for queue manager
processes as well as in your application processes. In particular, the following
environment variables should always be set prior to starting the queue manager:

ORACLE_HOME Is the Oracle home directory

| ORACLE_SID Is the Oracle SID being used

Enabling Oracle XA support
You need to ensure that Oracle XA support is enabled. In particular, an Oracle
shared library must have been created; this happens during installation of the

| Oracle XA library. On Oracle7, you may be prompted with:

Some TP Monitors require a shared version of the ORACLE7 libraries.
Do you want to install a shared version of the libraries?

Make sure you answer Yes to this prompt. This creates a shared library called
libclntsh in the $ORACLE_HOME/lib directory.

| During installation of Oracle8, the library is built automatically. You are not
| prompted as described for Oracle7 above.

| If you need to rebuild the library, enter the appropriate command while you are
| logged on as an Oracle administrator:

| � For Oracle7:

| cd $ORACLE_HOME/rdbms/lib
| make -f clntsh.mk libclntsh

186 MQSeries System Administration

 Oracle configuration

| � For Oracle8:

| cd $ORACLE_HOME/rdbms/lib
| make -f ins_rdbms.mk client_sharedlib

| For more information, refer to:

| � The Oracle7 Administrator’s Reference for UNIX publication.

| � The Oracle8 Administrator’s Reference publication appropriate to your platform.

| The queue manager loads the XA switch when it starts up. The platform-specific
| environment variables (LIBPATH for AIX, LD_LIBRARY_PATH for Sun Solaris, and
| SHLIB_PATH for HP-UX) are not passed to the queue manager processes from the
| shell in which strmqm is called. Therefore, another method must be used so that
| the shared objects can be located during start up of the queue manager. You can
| do this either by:

| � Imbedding the path to libclntsh in the XA switch load file when it is built. This
| is the recommended method.

| � Providing a symbolic link to libclntsh from /usr/lib. (/usr/lib is, by default,
| searched for shared objects if none are found in the paths included by the first
| method.)

| The example makefiles in “Creating the Oracle switch load file on UNIX systems”
| on page 188, are written assuming that you have not placed a symbolic link to
| libclntsh in /usr/lib. If you wish to use a symbolic link, you are free to remove the
| relevant switches from these sample makefiles (-R for Sun Solaris or +b for
| HP-UX).

Creating the Oracle switch load file
The simplest method for creating the Oracle switch load file is to use the sample
file. The source code used to create the Oracle switch load file is shown in
Figure 32.

#include <cmqc.h>
#include "xa.h"

extern struct xa_switch_t xaosw;

struct xa_switch_t \ MQENTRY MQStart(void)
{
 return(&xaosw);
}

Figure 32. Source code for Oracle switch load file, oraswit.c

The xa.h header file that is included is shipped with MQSeries in the same directory
as oraswit.c.

 Chapter 14. Transactional support 187

 Oracle configuration

Creating the Oracle switch load file on UNIX systems
To create the Oracle switch load file on UNIX systems, oraswit.c must be compiled
and linked against libclntsh.

To build the switch load file for:

| � AIX, perform steps 1, 2, 3, and 6
| � Sun Solaris, perform steps 1, 2, 4, and 6
| � HP-UX, perform steps 1, 2, 5, and 6

1. Create the directory into which the Oracle switch load file, oraswit, will be built.

2. Copy the following files from mqmtop /samp/xatm into this directory:

 � xa.h
 � oraswit.c

| � xaswit.mak (if using Oracle7)
| � xaswito8.mak (if using Oracle8)

3. Use the source shown in Figure 33 on page 188, which forms part of
xaswit.mak on AIX, to build Oracle switch file.

ORALIBS=-l clntsh -l m
ORALIBPATH=-L $(ORACLE_HOME)/lib

oraswit:
xlc_r -e MQStart $(ORALIBPATH) $(ORALIBS) -o $@ oraswit.c

Figure 33. Makefile for Oracle7 switch load file on AIX

| ORALIBS=-l clntsh -l m
| ORALIBPATH=-L $(ORACLE_HOME)/lib

| ora8swit:
| xlc_r -e MQStart $(ORALIBPATH) $(ORALIBS) -o $@ oraswit.c

| Figure 34. Makefile for Oracle8 switch load file on AIX

4. Use the source shown in Figure 35 and Figure 36, which form part of
| xaswit.mak and xaswito8.mak on Sun Solaris, to build the appropriate Oracle

switch file on Sun Solaris.

ORALIBS=-l clntsh -l m
| ORALIBPATH=-L $(ORACLE_HOME)/lib -R $(ORACLE_HOME)/lib

oraswit:
$(CC) -G -e MQStart $(ORALIBPATH) $(ORALIBS) -o $@ oraswit.c

| Figure 35. Makefile for Oracle7 switch load file on Sun Solaris

188 MQSeries System Administration

 Oracle configuration

| ORALIBS=-l clntsh -l m
| include $(ORACLE_HOME)/precomp/lib/env_precomp.mk
| PROLDLIBS=$(LLIBCLNTSH) $(SCOREPT) $(SSCOREED)$(DEF_ON) $(LLIBCLIENT) $(LLIBSQL)
| $(STATICTTLIBS)
| ORALIBPATH=-R $(ORACLE_HOME)/lib -L $(ORACLE_HOME)/lib$(PROLDLIBS)

| ora8swit:
| $(CC) -G -e MQStart $(ORALIBPATH) $(ORALIBS) -o $ @ oraswit.c

| Figure 36. Makefile for Oracle8 switch load file on Sun Solaris

5. Use the source shown in Figure 37 and Figure 38, which form part of
| xaswit.mak and xaswito8.mak on HP-UX, to build the appropriate Oracle switch

load file on HP-UX.

ORALIBS=-l clntsh -l m
| ORALIBPATH=+b $(ORACLE_HOME)/lib -L $(ORACLE_HOME)/lib

| oraswit:
$(CC) -c -Ae +z oraswit.c

ld -b -e MQStart $(ORALIBPATH) $(ORALIBS) -o oraswit oraswit.o

| Figure 37. Makefile for Oracle7 switch load file on HP-UX

| ORALIBS=-l clntsh -l m
| ORALIBPATH=+b $(ORACLE_HOME)/lib $(LIBCLNTSH) $(LIBSQL)-L $(ORACLE_HOME)/lib

| ora8swit:
| $(CC) -c -Ae +z oraswit.c

| ld -b -e MQStart $(ORALIBPATH) $(ORALIBS) -o oraswit oraswit.o

| Figure 38. Makefile for Oracle8 switch load file on HP-UX

| 6. Issue a make -f xaswit.mak oraswit command (for Oracle7) or a make -f
| xaswito8.mak ora8swit command (for Oracle8) to build the Oracle switch using

the sample makefile.

Adding XAResourceManager configuration information for Oracle
| The next step is to modify the qm.ini configuration file of the queue manager, or, for
| MQSeries for Windows NT only, the Windows NT Registry, to define Oracle as a

participant in global units of work. You need to add an XAResourceManager
stanza with the following attributes:

Name=name
This attribute is mandatory. Choose a suitable name for this participant. You
could include the name of the database being updated.

SwitchFile=name
This attribute is mandatory. The fully-qualified name of the Oracle switch load
file

 Chapter 14. Transactional support 189

 Oracle configuration

XAOpenString=string
The XA open string for Oracle has the following format:

 Oracle_XA+Acc=P//|P/userName/passWord
 +SesTm=sessionTimeLimit
 [+DB=dataBaseName]
 [+GPwd=P/groupPassWord]
 [+LogDir=logDir]
 [+MaxCur=maximumOpenCursors]
 [+SqlNet=connectString]

where:

Acc= Is mandatory and is used to specify user access information. P//
indicates that no explicit user or password information is provided and
that the ops$login form is to be used. P/userName/passWord
indicates a valid ORACLE user ID and the corresponding password.

SesTm= Is mandatory and is used to specify the maximum amount of time
that a transaction can be inactive before the system automatically
deletes it. The unit of time is in seconds.

DB= Is used to specify the database name, where DataBaseName is the
name Oracle precompilers use to identify the database. This field is
required only when applications explicitly specify the database name
(that is, use an AT clause in their SQL statements).

GPwd= GPwd is used to specify the server security password, where
P/groupPassWord is the server security group password name.
Server security groups provide an extra level of protection for
different applications running against the same ORACLE instance.
The default is an ORACLE-defined server security group.

LogDir= LogDir is used to specify the directory on a local machine where the
Oracle XA library error and tracing information can be logged. If a

| value is not specified, the current directory is assumed. Make sure
| that user mqm has write-access to this directory.

MaxCur=
MaxCur is used to specify the number of cursors to be allocated
when the database is opened. It serves the same purpose as the
precompiler option, maxopencursors.

SqlNet= SqlNet is used to specify the SQL*Net connect string that is used to
log on to the system. The connect string can be either an SQL*Net
V1 string, SQL*Net V2 string, or SQL*Net V2 alias. This field is
required when you are setting up Oracle on a machine separate from
the queue manager.

| See the Oracle7 Server Distributed Systems, Volume 1: Distributed Data book
| (Part Number A32543-1) or the Oracle8 Server Application Developer’s Guide
| (Part Number A54642-01) for more information.

XACloseString=string
Oracle does not require an XA close string.

190 MQSeries System Administration

 Oracle configuration

ThreadOfControl=THREAD|PROCESS
You do not need to specify this parameter on UNIX platforms.

| For fuller descriptions of each of these attributes, see “The XAResourceManager
| stanza” on page 140.

In Figure 39, the database to be updated is called MQBankDB. Note that it is
recommended to add a LogDir to the XA open string so that all error and tracing
information is logged to the same place. It is assumed that the Oracle switch load
file was copied to the /usr/bin directory after it had been created.

XAResourceManager:
 Name=Oracle MQBankDB
 SwitchFile=/usr/bin/oraswit
 XAOpenString=Oracle_XA+Acc=P/scott/tiger+SesTm=35+LogDir=/tmp/ora.log+DB=MQBankDB

Figure 39. Sample XAResourceManager entry for Oracle on UNIX platforms

Changing Oracle configuration parameters
The queue manager and user applications use the user ID specified in the XA open
string when they connect to Oracle.

� Database privileges (Oracle7 only)
The Oracle user ID specified in the open string must have the privileges to
access the V$XATRANS$ view.

The necessary privilege can be given using the following command, where
userID is the user ID for which access is being given.

grant select on V$XATRANS$ to userID;

See “Security considerations” on page 200 for more information about security.

| � Database privileges (Oracle8 only)
| The Oracle user ID specified in the open string must have the privileges to
| access the DBA_PENDING_TRANSACTIONS view.

| The necessary privilege can be given using the following command, where
| userID is the user ID for which access is being given.

| grant select on DBA_PENDING_TRANSACTIONS to userID;

| See “Security considerations” on page 200 for more information about security.

� Additional database connections (Oracle7 and later)
You may need to review your LICENSE_MAX_SESSIONS and PROCESSES
settings to take into account the additional connections required by processes
belonging to the queue manager. See “Database connections” on page 177
for details about the database connections that the queue manager needs for
itself.

 Chapter 14. Transactional support 191

 Sybase configuration

 Sybase configuration
| MQSeries supports:

| � Sybase XA Server Version 11.1.1 (with latest support level)
| � Sybase OpenClient/C Version 11.1.1 (with latest support level)
| � Sybase Adaptive Server Version 11.5
| � Sybase Embedded SQL/C Version 11.1.1

| when used in conjunction with the Sybase XA-Server component Version 11.1.1 on
| the following platforms:

| � AIX 4.2.0 or later (with Sybase patch SWR 7993 applied)
| � Sun Solaris 2.6 or later
| � Windows NT 4.0 Service Pack 3, or later

| You need to perform the following tasks:

| 1. Check environment variable settings.
| 2. Create symbolic lines for Sybase libraries (Sun Solaris only).
| 3. Enable Sybase XA support.
| 4. Create the Sybase switch load file.
| 5. Add an XAResourceManager stanza to the qm.ini file, or to the Windows NT
| Registry.

Enabling Sybase XA support
| Within the Sybase XA configuration file, you need to define a Logical Resource
| Manager (LRM) for each connection you will make to the Sybase server that is
| being updated.

| Refer to the Sybase publication, XA-Server Integration Guide for Tuxedo,
| (Document ID 35002-01-1111-01), and to the Release Bulletin XA-Server Version
| 11.1.1 appropriate for your platform for information about configuring the Sybase
| server for XA support and modifying the Sybase XA configuration file,
| $SYBASE/xa_config.

| An example of the contents of $SYBASE/xa_config is shown in Figure 40

| # The first line must always be a comment

| [xa]

| LRM=lrmname
| server=servername
| xaserver=xaservername

| Figure 40. Example contents of $SYBASE/xa_config

192 MQSeries System Administration

 Sybase configuration

| Creating the Sybase switch load file
| The simplest method for creating the Sybase switch load file is to use the sample
| files installed under the mqmtop/samp/xatm directory. The source code used to
| create the Sybase switch on UNIX platforms is shown in Figure 41.

| #include <cmqc.h>
| #include "xa.h"

| extern struct xa_switch_t sybase_xa_switch;

| struct xa_switch_t \ MQENTRY MQStart(void)
| {
| return(&sybase_xa_switch);
| }

| Figure 41. Source code for sybswit.c on UNIX platforms

| The xa.h header file is in the same directory as sybswit.c.

| The source for the switch load file can be found in:

| � The directory mqmtop/samp/xatm for UNIX platforms

| � The directory c:\mqm\tools\c\samples\xatm for MQSeries for Windows NT and
| MQSeries for OS/2 Warp

| Linking the XA switch load file with Sybase libraries
| As already described in “Creating the Oracle switch load file on UNIX systems” on
| page 188, the queue manager processes do not inherit the environment variables
| (LD_LIBRARY_PATH on Sun Solaris, LIBPATH on AIX, and SHLIB_PATH on
| HP-UX) from the shell. in which the strmqm command was issued. In order for
| the libraries to be found during start up of the queue manager, you can specify a
| run-time linking path when the switch load file is built. The sample makefiles in the
| following sections operate in this way.

| Creating the Sybase switch load file on UNIX systems
| To create the Sybase switch load file on UNIX systems, sybswit.c must be
| compiled and linked with the relevant Sybase libraries as shown in Figure 42 and
| Figure 43.

| To build the switch load file:

| 1. Create the directory into which the Sybase switch load file, sybswit, will be built.

| 2. Copy the following files into this directory:

| � xa.h
| � sybswit.c
| � xaswit.mak

| 3. Use the source shown in Figure 42, which forms part of xaswit.mak, to build
| the Sybase switch file on AIX.

 Chapter 14. Transactional support 193

 Sybase configuration

| SYBLIBS = -lxaserver -lct.so -lcs.so -ltcl.so -lcomn.so -lintl.so -lm
| SYBLIBPATH=-L $(SYBASE)/lib

| sybswit:
| xlc_r -e MQStart $(SYBLIBPATH) $(SYBLIBS) -o $@ sybswit.c

| Figure 42. Makefile for Sybase switch on AIX

| 4. Use the source shown in Figure 43, which forms part of xaswit.mak, to build
| the Sybase switch file on Sun Solaris.

| SYBLIBS = -lintl -lxaserver -lct -lcs -lcomn -ltcl -ldl
| SYBLIBPATH=-L $(SYBASE)/lib -R $(SYBASE)/lib

| sybswit:
| $(CC) -G -e MQStart $(SYBLIBPATH) $(SYBLIBS) -o $@ sybswit.c

| Figure 43. Makefile for Sybase switch on Sun Solaris

| 5. Issue a make -f xaswit.mak sybswit command to build the Sybase switch
| using the sample makefile.

| Creating the Sybase switch load file on Windows NT
| To create the Sybase switch load file on Windows NT, sybswit.c must be compiled
| and linked with libxaserver.lib.

194 MQSeries System Administration

 Sybase configuration

| #include <cmqc.h> /\ MQ header \/
| #include "xa.h" /\ MQ supplied XA header \/

| /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
| /\ On NT __STDC__ is not defined \/
| /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
| struct stdcall_xa_switch_t /\ as defined/used by Sybase on NT \/
| {
| char name[RMNAMESZ]; /\ name of resource manager \/
| long flags; /\ resource manager specific options \/
| long version; /\ must be ð \/

| int (__stdcall \ xa_open_entry)(); /\ xa_open function pointer \/
| int (__stdcall \ xa_close_entry)(); /\ xa_close function pointer \/
| int (__stdcall \ xa_start_entry)(); /\ xa_start function pointer \/
| int (__stdcall \ xa_end_entry)(); /\ xa_end function pointer \/
| int (__stdcall \ xa_rollback_entry)(); /\ xa_rollback function pointer \/
| int (__stdcall \ xa_prepare_entry)(); /\ xa_prepare function pointer \/
| int (__stdcall \ xa_commit_entry)(); /\ xa_commit function pointer \/
| int (__stdcall \ xa_recover_entry)(); /\ xa_recover function pointer \/
| int (__stdcall \ xa_forget_entry)(); /\ xa_forget function pointer \/
| int (__stdcall \ xa_complete_entry)(); /\ xa_complete function pointer \/

| };

| /\\/
| /\ External data declarations \/
| /\\/
| /\ specify that the Sybase XA switch uses __stdcall conventions \/
| extern __declspec(dllimport) struct stdcall_xa_switch_t sybase_xa_switch;

| /\ Function Prototypes (called by queue manager) \/
| int __cdecl intermediate_xa_open_entry(char \ a, int b, long c);
| int __cdecl intermediate_xa_close_entry(char \ a, int b, long c);
| int __cdecl intermediate_xa_start_entry(XID \, int, long);
| int __cdecl intermediate_xa_end_entry(XID \, int, long);
| int __cdecl intermediate_xa_rollback_entry(XID \, int, long);
| int __cdecl intermediate_xa_prepare_entry(XID \, int, long);
| int __cdecl intermediate_xa_commit_entry(XID \, int, long);
| int __cdecl intermediate_xa_recover_entry(XID \, long, int, long);
| int __cdecl intermediate_xa_forget_entry(XID \, int, long);
| int __cdecl intermediate_xa_complete_entry(int \, int \, int, long);

| Figure 44 (Part 1 of 3). Source code for sybswit.c on Windows NT

 Chapter 14. Transactional support 195

 Sybase configuration

| /\ This intermediate switch is of type declared in xa.h - __cdecl funs \/
| struct xa_switch_t intermediate_xa_switch =
| {
| "SYBASE_XA_SERVER",
| TMNOMIGRATE,
| ð,
| intermediate_xa_open_entry,
| intermediate_xa_close_entry,
| intermediate_xa_start_entry,
| intermediate_xa_end_entry,
| intermediate_xa_rollback_entry,
| intermediate_xa_prepare_entry,
| intermediate_xa_commit_entry,
| intermediate_xa_recover_entry,
| intermediate_xa_forget_entry,
| intermediate_xa_complete_entry
| };
| /\\/
| /\ \/
| /\ Function name: MQStart \/
| /\ \/
| /\ Description: The queue manager calls this function to access the XA switch \/
| /\ of Sybase \/
| /\ \/
| /\\/
| /\ \/
| /\ Input Parameters: None \/
| /\ \/
| /\ Output Parameters: None \/
| /\ \/
| /\ Returns: Pointer to Sybase XA switch (now the intermediate swit) \/
| /\ \/
| /\\/
| __declspec(dllexport) struct xa_switch_t \ MQENTRY MQStart(void)
| {
| return(&intermediate_xa_switch);
| }

| int __cdecl intermediate_xa_open_entry(char \ a, int b, long c)
| {
| return(sybase_xa_switch.xa_open_entry(a, b, c));
| }

| int __cdecl intermediate_xa_close_entry(char \ a, int b, long c)
| {
| return(sybase_xa_switch.xa_close_entry(a, b, c));
| }

| int __cdecl intermediate_xa_start_entry(XID \a, int b, long c)
| {
| return(sybase_xa_switch.xa_start_entry(a, b, c));
| }

| int __cdecl intermediate_xa_end_entry(XID \a, int b, long c)
| {
| return(sybase_xa_switch.xa_end_entry(a, b, c));
| }

| Figure 44 (Part 2 of 3). Source code for sybswit.c on Windows NT

196 MQSeries System Administration

 Sybase configuration

| int __cdecl intermediate_xa_rollback_entry(XID \a, int b, long c)
| {
| return(sybase_xa_switch.xa_rollback_entry(a, b, c));
| }

| int __cdecl intermediate_xa_prepare_entry(XID \a, int b, long c)
| {
| return(sybase_xa_switch.xa_prepare_entry(a, b, c));
| }

| int __cdecl intermediate_xa_commit_entry(XID \a, int b, long c)
| {
| return(sybase_xa_switch.xa_commit_entry(a, b, c));
| }

| int __cdecl intermediate_xa_recover_entry(XID \a, long b, int c, long d)
| {
| return(sybase_xa_switch.xa_recover_entry(a, b, c, d));
| }

| int __cdecl intermediate_xa_forget_entry(XID \a, int b, long c)
| {
| return(sybase_xa_switch.xa_forget_entry(a, b, c));
| }

| int __cdecl intermediate_xa_complete_entry(int \a, int \b, int c, long d)
| {
| return(sybase_xa_switch.xa_complete_entry(a, b, c,d));
| }

| /\ End of sybswit.c \/

| Figure 44 (Part 3 of 3). Source code for sybswit.c on Windows NT

| The DEF file shown in Figure 45 is needed to produce the DLL.

| LIBRARY SYBSWIT

| EXPORTS
| MQStart

| Figure 45. Source code for sybwit.def on Windows NT

| To create the DLL:

| 1. Create a directory into which you want the switch file to be built. The switch file
| must be defined to MQSeries as a fully-qualified name so the DLL does not
| need to be built into a directory with LIBPATH. Makefiles are provided for
| building the switch file using both the Microsoft Visual C++ and IBM VisualAge
| for C++ compilers.

| 2. Copy the following files from \mqm\tools\c\samples\xatm into your new
| directory:

| � xa.h
| � sybswit.c
| � sybswit.def

| 3. Copy either :

| � xaswit.mak if you are using Microsoft Visual C++
| � xaswiti.mak if you are using IBM VisualAge for C++

 Chapter 14. Transactional support 197

 Sybase configuration

| 4. Use the source code shown in Figure 46 on page 198, which forms part of
| xaswit.mak on Windows NT, to build the switch load file using the Microsoft
| Visual C++ compiler.

| !include <ntwin32.mak>

| sybswit.lib sybswit.exp: $\.obj $\.def
| $(implib) -machine:$(CPU) \
| -def:$\.def $\.obj

| sybswit.dll: $\.obj $\.def $\.exp
| $(link) $(dlllflags) \
| -base:ðx1Cðððððð \
| $\.exp $\.obj \
| $(conlibsdll) libxaserver.lib

| .c.obj:
| $(cc) $(cflags) $(cvarsdll) $\.c

| Figure 46. Makefile for Sybase switch on Windows NT using Microsoft Visual C++

| 5. Issue an nmake -f xaswit.mak sybswit.dll command to create the Sybase
| switch load file, sybswit.dll.

| 6. To create the switch load file using the IBM VisualAge for C++ compiler, use
| the source code shown in Figure 47, which forms part of xaswiti.mak on
| Windows NT, to build the switch load file.

| .\sybswit.obj: \
| sybswit.c \
| {$(INCLUDE);}xa.h
| @echo " Compile "
| icc.exe /Gm /Ti- /Gd /Ge- /Gf- /Fosybswit.obj /C sybswit.c

| .\sybswit.exp: \
| .\sybswit.obj
| @echo " Make exp and lib files "
| ilib.exe /Gi:sybswit .\sybswit.obj

| .\sybswit.dll: \
| .\sybswit.exp \
| .\sybswit.obj \
| {$(LIB)}libxaserver.lib
| @echo " Link "
| icc.exe @<<
| /B" /de /pmtype:vio /noe /code:RX /data:RW /dll"
| /B" /def"
| /B" /def:libxaserver"
| /B" /nod:sybswit.lib"
| /Fesybswit.dll
| libxaserver.lib
| .\sybswit.exp
| .\sybswit.obj

| Figure 47. Makefile for Sybase switch on Windows NT using IBM VisualAge for C++

198 MQSeries System Administration

 Sybase configuration

| 7. Issue an nmake -f xaswiti.mak sybswit.dll command to make the Sybase
| switch load file.

| Adding XAResourceManager configuration information for Sybase
| Edit the Windows NT Registry using the MQSeries Services snap-in to define
| Sybase as a participant in global units of work.

| You need to add the following XAResourceManager configuration information:

| Name=Name
| This attribute is mandatory. Choose a suitable name that this participant will be
| known as. You could include the name of the database being updated.

| SwitchFile=name
| This attribute is mandatory The fully-qualified name of the Sybase switch load
| file.

| XAOpenString=string
| The XA open string for Sybase must have the following syntax:

| -Uusername -Ppassword -Nconnection_name -Llogfile -Ttype

| where:

| -U Specifies the user access information; username is a valid Sybase
| user ID.

| -P Is the password of the specified user.

| -N Is the LRM name corresponding to a connection to the database.
| It should be defined in the Sybase xa_config file as described in
| “Enabling Sybase XA support” on page 192.

| -L Indicates the path name of the file where Sybase XA-Library error
| information will be logged. Ensure that the user mqm has write
| privileges over this file. This field is optional; no error information
| is logged if it is not specified.

| -T Specifies the type of logging used. See the Sybase publication
| XA-Server Integration Guide for Tuxedo for a list of log types.

| XACloseString=string
| Sybase does not require an XA close string.

| ThreadOfControl=THREAD|PROCESS
| Sybase is not “threadaware”, so specify PROCESS.

| In Figure 48, the MQBankDB database is associated with the lrmname LRM
| definition in the Sybase XA configuration file, $SYBASE/xa_config. A log file should
| be included if you want XA function calls to be logged.

| XAResourceManager:
| Name=Sybase MQBankDB
| SwitchFile=/usr/bin/sybswit
| XAOpenString=-Uuser -Ppassword -Nlrmname -L/tmp/sybase.log -Txa

| Figure 48. Sample XAResourceManager entry for Sybase on UNIX platforms

 Chapter 14. Transactional support 199

 Multiple database configuration � Security considerations

Multiple database configurations
If you want to configure the queue manager so that updates to multiple databases
can be included within global units of work, then you need to add an
XAResourceManager stanza for each of the databases.

If the databases are all managed by the same database manager, each stanza
defines a separate database belonging to that database manager. Each stanza
should specify the same SwitchFile, but the contents of the XAOpenString will be
different because it specifies the name of the database being updated. For
example, the stanzas shown in Figure 49 configure the queue manager with the
DB2 databases MQBankDB and MQFeeDB on UNIX platforms.

XAResourceManager:
 Name=DB2 MQBankDB
 SwitchFile=/usr/bin/db2swit
 XAOpenString=MQBankDB

XAResourceManager:
 Name=DB2 MQFeeDB
 SwitchFile=/usr/bin/db2swit
 XAOpenString=MQFeeDB

Figure 49. Sample XAResourceManager entries for multiple DB2 databases

If the databases to be updated are managed by different database managers then
once again an XAResourceManager stanza needs to be added for each. In this
case, each stanza specifies a different SwitchFile. For example, if the MQFeeDB
was managed by Oracle instead of DB2 then the following stanzas could be used:

XAResourceManager:
 Name=DB2 MQBankDB
 SwitchFile=/usr/bin/db2swit
 XAOpenString=MQBankDB

 XAResourceManager:
 Name=Oracle MQFeeDB
 SwitchFile=/usr/bin/oraswit
 XAOpenString=Oracle_XA+Acc=P/scott/tiger+SesTm=35+LogDir=/tmp/ora.log+DB=MQFeeDB

Figure 50. Sample XAResourceManager entries for a DB2 and Oracle database

In principle, there is no limit to the number of database instances that can be
configured with a single queue manager.

 Security considerations
The following information is provided for guidance only. In all cases you should
refer to the documentation provided by the database manager concerned to
determine the security implications of running your database under the XA model.

An application process denotes the start of a global unit of work using the
MQBEGIN verb. The first MQBEGIN call that an application issues connects to
each of the participating databases by calling them at their xa_open entry point. All
of the database managers provide a mechanism for supplying a user ID and
password in their XAOpenString.

200 MQSeries System Administration

 Administration tasks

If a user ID is specified in the XAOpenString then it is recommended that one with
a minimal set of authorizations be chosen. Consult the documentation of the
database manager to determine how the application can gain different privileges.

| This can often be achieved using EXEC SQL CONNECT or EXEC SQL SET
| CONNECTION.

Note that on UNIX platforms fastpath applications must run with an effective user
ID of mqm while making MQI calls.

 Administration tasks
In normal operations only a minimal amount of administration is necessary after you
have completed the configuration steps. The administration job is made easier
because the queue manager is tolerant of database managers not being available.
In particular this means that:

� The queue manager can be started at any time without first starting each of the
database managers.

� The queue manager does not need to be stopped and restarted if one of the
database managers becomes unavailable.

This allows you to start and stop the queue manager independently from the
database managers, and vice versa if the database manager supports it.

Whenever contact is lost between the queue manager and a database manager
they need to resynchronize when both become available again.

Resynchronization is the process by which any in-doubt units of work involving that
database are completed. In general, this occurs automatically without the need for
user intervention. The queue manager asks the database manager for a list of
units of work in which it is in doubt. Next it instructs the database manager to
either commit or rollback each of these in-doubt units of work.

When the queue manager stops, it needs to resynchronize with each database
manager instance during restart. When an individual database manager becomes
unavailable, only that database manager need be resynchronized the next time the
queue manager notices that the database manager is available again.

The queue manager attempts to regain contact with an unavailable database
manager automatically as new global units of work are started. Alternatively, the
rsvmqtrn command can be used to resolve explicitly all in-doubt units of work.

In-doubt units of work
A database manager may be left with in-doubt units of work if contact with the
queue manager is lost after the database manager has been instructed to
PREPARE. Until the database manager receives the COMMIT or ROLLBACK
outcome from the queue manager, it needs to retain the database locks associated
with the updates.

Because these locks prevent other applications from updating, or maybe reading,
database records, resynchronization needs to take place as soon as possible.

If for some reason you cannot wait for the queue manager to resynchronize with
the database automatically, you could use facilities provided by the database

 Chapter 14. Transactional support 201

 Administration tasks

manager to commit or rollback the database updates manually. This is called
making a heuristic decision and should be used only as a last resort because of the
possibility of compromising data integrity; you may end up committing the database
updates when all of the other participants rollback, or vice versa.

It is far better to restart the queue manager, or use the rsvmqtrn command when
the database has been restarted, to initiate automatic resynchronization.

Using the dspmqtrn command
While a database manager is unavailable it is possible to use the dspmqtrn
command to check the state of outstanding units of work (UOWs) involving that
database.

| When a database manager becomes unavailable, before the two-phase commit
| process is entered, any in-flight UOWs in which it was participating are rolled back.

The database manager itself rolls back its in-flight UOWs when it next restarts.

The dspmqtrn command displays only those units of work in which one or more
participants are in doubt, awaiting the COMMIT or ROLLBACK from the queue
manager.

For each of these units of work the state of each of the participants is displayed. If
the unit of work did not update the resources of a particular resource manager, it is
not displayed.

| With respect to an in-doubt unit of work, a resource manager is said to have done
| one of the following things:

Prepared The resource manager is prepared to commit its updates.

Committed The resource manager has committed its updates.

Rolled-back The resource manager has rolled back its updates.

Participated The resource manager is a participant, but has not prepared,
committed, or rolled back its updates.

Note that the queue manager does not remember the individual states of the
participants when the queue manager restarts. If the queue manager is restarted,
but is unable to contact a database manager, then the in-doubt units of work in
which that database manager was participating are not resolved during restart. In
this case, the database manager is reported as being in prepared state until such
time as resynchronization has occurred.

Whenever the dspmqtrn command displays an in-doubt UOW, it first lists all the
possible resource managers that could be participating. These are allocated a
unique identifier, RMId, which is used instead of the Name of the resource
managers when reporting their state with respect to an in-doubt UOW.

| Figure 51 on page 203 shows the result of issuing the following command:

| dspmqtrn -m MY_QMGR

202 MQSeries System Administration

 Administration tasks

AMQ71ð7: Resource manager ð is MQSeries.
AMQ71ð7: Resource manager 1 is DB2 MQBankDB
AMQ71ð7: Resource manager 2 is DB2 MQFeeDB

AMQ7ð56: Transaction number ð,1.
XID: formatID 5ð67ð85, gtrid_length 12, bqual_length 4

 gtrid [3291A5ð6ðððð2ð1374657374]
 bqual [ððððððð1]
AMQ71ð5: Resource manager ð has committed.
AMQ71ð4: Resource manager 1 has prepared.
AMQ71ð4: Resource manager 2 has prepared.

Figure 51. Sample dspmqtrn output

| The output from Figure 51 shows that there are three resource managers
associated with the queue manager. The first is the resource manager ð, which is
the queue manager itself. The other two resource manager instances are the
MQBankDB and MQFeeDB DB2 databases.

The example shows only a single in-doubt unit of work. A message is issued for all
three resource managers, which means that updates had been made to the queue
manager and both DB2 databases within the unit of work.

The updates made to the queue manager, resource manager 0, have been
committed. The updates to the DB2 databases are in prepared state, which means
that DB2 must have become unavailable before it was called to commit the updates
to the MQBankDB and MQFeeDB databases.

The in-doubt unit of work has an external identifier called an XID. This is the
identifier that DB2 associates with the updates.

Using the rsvmqtrn command
| The output shown in Figure 51 showed a single in-doubt UOW in which the commit

decision had yet to be delivered to both DB2 databases.

In order to complete this unit of work, the queue manager and DB2 need to
resynchronize when DB2 next becomes available. The queue manager uses the
start of new units of work as an opportunity to attempt to regain contact with DB2.
Alternatively, you can instruct the queue manager to resynchronize explicitly using
the rsvmqtrn command. You should do this soon after DB2 has been restarted so
that any database locks associated with the in-doubt unit of work are released as
quickly as possible.

This is achieved using the -a option which tells the queue manager to resolve all
in-doubt units of work. In the following example, DB2 had been restarted so the
queue manager was able to resolve the in-doubt unit of work:

> rsvmqtrn -mMY_QMGR -a

Any in-doubt transactions have been resolved.

 Chapter 14. Transactional support 203

 Administration tasks

Mixed outcomes and errors
Although the queue manager uses a two-phase commit protocol this does not
completely remove the possibility of some units of work completing with mixed
outcomes. This is where some participants commit their updates, and some back
out their updates.

Units of work that complete with a mixed outcome have serious implications
because shared resources are no longer in a consistent state.

Mixed outcomes are mainly caused when heuristic decisions are made about units
of work instead of allowing the queue manager to resolve in-doubt units of work
itself.

Whenever the queue manager detects heuristic damage it produces FFST
information and documents the failure in its error logs, with one of two messages:

� If a database manager rolled back instead of committing:

AMQ76ð6 A transaction has been committed but one or more resource
managers have rolled back.

� If a database manager committed instead of rolling back:

AMQ76ð7 A transaction has been rolled back but one or more resource
managers have committed.

Further messages are issued that identify the databases that are heuristically
damaged. It is then your responsibility to perform recovery steps local to the
affected databases so that consistency is restored. This is a complicated
procedure in which you need first to isolate the update that has been wrongly
committed or rolled back, then to undo or redo the database change manually.

Damage occurring due to software errors is less likely. Units of work affected in
this way have their transaction number reported by message AMQ7112. The
participants may be in an inconsistent state.

rsvmqtrn -m MY_QMGR

AMQ71ð7: Resource manager ð is MQSeries.
AMQ71ð7: Resource manager 1 is DB2 MQBankDB
AMQ71ð7: Resource manager 2 is DB2 MQFeeDB

AMQ7112: Transaction number ð,1 has encountered an error.
XID: formatID 5ð67ð85, gtrid_length 12, bqual_length 4

 gtrid [3291A5ð6ðððð2ð1374657374]
 bqual [ððððððð1]
AMQ71ð5: Resource manager ð has committed.
AMQ71ð4: Resource manager 1 has prepared.
AMQ71ð4: Resource manager 2 has rolled back.

Figure 52. Sample dspmqtrn output for a transaction in error

The queue manager does not attempt to recover from such failures until the next
queue manager restart. In Figure 52, this would mean that the updates to
resource manager 1, the MQBankDB database, would be left in prepared state
even if the rsvmqtrn was issued to resolve the unit of work.

204 MQSeries System Administration

 Administration tasks

Changing configuration information
After the queue manager has successfully started to coordinate global units of work
you should be wary about making changes to any of the XAResourceManager

| stanzas in the qm.ini file, or in the Windows NT Registry.

If you do need to change the qm.ini file you can do so at any time, but the changes
do not take effect until after the queue manager has been restarted. For example,
if you need to alter the XA open string passed to a database manager, you need to
restart the queue manager for your change to take effect.

Note that if you remove an XAResourceManager stanza you are effectively
removing the ability for the queue manager to contact that database manager.

You should never change the Name attribute in any of your XAResourceManager
stanzas. This attribute uniquely identifies that database manager instance to the
queue manager. If this unique identifier is changed, the queue manager assumes
that the database manager instance has been removed and a completely new
instance has been added. The queue manager still associates outstanding units of
work with the old Name, possibly leaving the database in an in-doubt state.

Removing database manager instances
If you do need to remove a database or database manager from your configuration
permanently, you should first ensure that the database is not in doubt. You should
perform this check before you restart the queue manager. Most database
managers provide commands for listing in-doubt transactions. If there are any
in-doubt transactions, first allow the queue manager to resynchronize with the
database manager before you remove its XAResourceManager stanza.

If you fail to observe this procedure the queue manager still remembers all in-doubt
units of work involving that database. A warning message, AMQ7623, is issued
every time the queue manager is restarted. If you are never going to configure this
database with the queue manager again you can instruct it to forget about these
in-doubt transactions using the -r option of the rsvmqtrn command.

There are times when you might need to remove an XAResourceManager stanza
temporarily. This is best achieved by commenting out the stanza so that it can be
easily reinstated at a later time. You may decide to take this action if you are
suffering errors every time the queue manager contacts a particular database or
database manager. Temporarily removing the XAResourceManager entry
concerned allows the queue manager to start global units of work involving all of
the other participants. An example of a commented out XAResourceManager
stanza follows:

This database has been temporarily removed
#XAResourceManager:
Name=DB2 MQBankDB
SwitchFile=/usr/bin/db2swit
XAOpenString=MQBankDB

Figure 53. Commented out XAResourceManager stanza

 Chapter 14. Transactional support 205

 External syncpoint coordination

| Users of MQSeries for Windows NT Version 5.1 and later must use the MQSeries
| Services snap-in to change XAResourceManager configuration information in the
| Windows NT Registry.

| Furthermore, because you have to delete a database manager instance when
| editing configuration information in the Windows NT Registry as opposed to
| commenting it out, you must take great care to type in the correct name in the Name
| field when reinstating it.

External syncpoint coordination
A global unit of work may also be coordinated by an external X/Open XA-compliant
transaction manager. Here the MQSeries queue manager participates in, but does
not coordinate, the unit of work.

The flow of control in a global unit of work coordinated by an external transaction
manager is as follows:

1. An application informs the external syncpoint coordinator (for example, CICS)
that it wants to start a transaction.

2. The syncpoint coordinator informs known resource managers, such as
MQSeries, about the current transaction.

3. The application issues calls to resource managers that are associated with the
current transaction. For example, the application could issue MQGET calls to
MQSeries.

4. The application issues a commit or back-out request to the external syncpoint
coordinator.

5. The syncpoint coordinator completes the transaction by issuing the appropriate
calls to each resource manager, typically using two-phase commit protocols.

Table 13 lists the external syncpoint coordinators that can provide a two-phase
commit process for transactions in which the MQSeries Version 5 products can
participate. Minimum versions and releases are shown; later versions or releases,
if any, may be used.

Note: For MQSeries for OS/2 Warp, and for MQSeries for Windows NT with CICS
for Windows NT, a single-phase commit process only is supported. For more
information, see “Using CICS” on page 208.

| Table 13. XA-compliant external syncpoint coordinators

| MQSeries| External syncpoint coordinator

| MQSeries for AIX| TXSeries for AIX V4.2
| BEA Tuxedo V5.1 or V6.1

| MQSeries for HP-UX| TXSeries for HP-UX, V4.2
| BEA Tuxedo V5.1 or V6.1

| MQSeries for Sun Solaris| TXSeries for Sun Solaris, V4.2
| Transarc Encina Monitor V2.5
| BEA Tuxedo V5.1 or V6.1

| MQSeries for Windows NT| TXSeries for Windows NT, V4.2
| BEA TUXEDO V5.1 or V6.1

206 MQSeries System Administration

 External syncpoint coordination

See Chapter 13, “Committing and backing out units of work” in the MQSeries
Application Programming Guide for information about writing and building
transactions to be coordinated by an external syncpoint coordinator.

The remainder of this chapter describes how to enable external units of work.

The MQSeries XA switch structure
Each resource manager participating in an externally coordinated unit of work must
provide an XA switch structure. This structure defines both the capabilities of the
resource manager and the functions that are to be called by the syncpoint
coordinator.

MQSeries provides two versions of this structure:

� MQRMIXASwitch for static XA resource management
� MQRMIXASwitchDynamic for dynamic XA resource management

In the MQSeries for UNIX systems, these structures are located in the following
libraries:

libmqmxa.a (nonthreaded)
libmqmxa_r.a (threaded)

In MQSeries for Windows NT and MQSeries for OS/2 Warp the structures are
located in the following libraries:

mqmxa.dll (contains only the MQRMIXASwitch version)
mqmenc.dll (for use with Encina for Windows NT)

| mqmc4swi.dll (for use with IBM TXSeries for Windows NT)

Some external syncpoint coordinators (not CICS) require that each resource
manager participating in a unit of work supplies its name in the name field of the
XA switch structure. The MQSeries resource manager name is “MQSeries XA
RMI.”

The way in which the MQSeries XA switch structure is linked to a specific syncpoint
coordinator is defined by that coordinator. Information about linking the MQSeries
XA switch structure with CICS is provided in “Using CICS” on page 208. For
information about linking the MQSeries XA switch structure with other XA-compliant
syncpoint coordinators, consult the documentation supplied with those products.

The following considerations apply to the use of MQSeries with all XA-compliant
syncpoint coordinators:

� The xa_info structure passed on any xa_open call by the syncpoint coordinator
includes the name of an MQSeries queue manager. The name takes the same
form as the queue-manager name passed to the MQCONN call. If the name
passed on the xa_open call is blank, the default queue manager is used.

� Only one queue manager at a time may participate in a transaction coordinated
by an instance of an external syncpoint coordinator: the syncpoint coordinator
is effectively connected to the queue manager, and is therefore subject to the
rule that only one connection at a time is supported.

� All applications that include calls to an external syncpoint coordinator can
connect only to the queue manager that is participating in the transaction
managed by the external coordinator (because they are already effectively

 Chapter 14. Transactional support 207

 Using CICS

connected to that queue manager). However, such applications must issue an
MQCONN call to obtain a connection handle, and should issue an MQDISC call
before they exit.

� A queue manager whose resource updates are coordinated by an external
syncpoint coordinator must be started before the external syncpoint coordinator
starts. Similarly, the syncpoint coordinator must be ended before the queue
manager is ended.

� If you are using an external syncpoint coordinator that terminates abnormally,
you should stop and restart your queue manager before restarting the
syncpoint coordinator to ensure that any messaging operations uncommitted at
the time of the failure are properly resolved.

 Using CICS
| The versions of CICS and IBM TXSeries that are XA-compliant (and use a

two-phase commit process) are shown in Table 13 on page 206. The note
following the table shows the versions that support only a single-phase commit
process.

The CICS two-phase commit process
This process applies to those versions of MQSeries that support an XA-compliant
external syncpoint coordinator as shown in Table 13 on page 206.

Requirements of the two-phase commit process
When you use the CICS two-phase commit process with MQSeries, note the
following requirements:

� MQSeries and CICS must reside on the same physical machine.

� MQSeries does not support CICS on an MQSeries client.

� You must start the queue manager whose name is specified in the XAD
resource definition stanza before you attempt to start CICS. Failure to do this
will prevent you from starting CICS if you have added an XAD resource
definition stanza for MQSeries to the CICS region.

� Only one MQSeries queue manager can be accessed at a time from a single
CICS region.

� A CICS transaction must issue an MQCONN request before it can access
MQSeries resources. The MQCONN call must specify the name of the
MQSeries queue manager specified on the XAOpen entry of the XAD resource
definition stanza for the CICS region. If this entry is blank, the MQCONN
request must specify the default queue manager.

� A CICS transaction that accesses MQSeries resources must issue an MQDISC
call from the transaction before returning to CICS. Failure to do this may mean
that the CICS application server is still connected, leaving queues open.

� You must ensure that the CICS user ID (cics) is a member of the mqm group,
so that the CICS code has the authority to call MQSeries.

For transactions running in a CICS environment, the queue manager adapts its
methods of authorization and determining context as follows:

208 MQSeries System Administration

 Using CICS

– The queue manager queries the user ID under which CICS runs the
transaction. This is the user ID checked by the Object Authority Manager,
and is used for context information.

– In the message context, the application type is MQAT_CICS.

– The application name in the context is copied from the CICS transaction
name.

Enabling the CICS two-phase commit process
To enable CICS to use a two-phase commit process to coordinate transactions that
include MQI calls, you must add a CICS XAD resource definition stanza entry to
the CICS region.

Here is an example of adding an XAD stanza entry for MQSeries for UNIX
systems:

cicsadd –cxad –r<cics_region> \
ResourceDescription="MQM XA Product Description" \

 SwitchLoadFile="mqmtop/lib/amqzsc" \
 XAOpen=<queue_manager_name>

Here is an example of adding an XAD stanza entry for MQSeries for Windows NT,
where <Drive> is the drive where MQM is installed (for example, D:).

cicsadd –cxad –r<cics_region> \
ResourceDescription="MQM XA Product Description" \

| SwitchLoadFile="<Drive>:\mqm\bin\mqmc4swi.dll" \
 XAOpen=<queue_manager_name>

| For information about using the cicsadd command, see the IBM TXSeries
| Administration Reference manual, SC33-1563 or the IBM TXSeries Version 4.2
| CICS Administration Guide for your platform.

Calls to MQSeries on UNIX systems, and MQSeries for Windows NT can be
included in a CICS transaction, and the MQSeries resources will be committed or
rolled back as directed by CICS. This support is not available to client applications.

You must issue an MQCONN from your CICS transaction, in order to access
MQSeries resources followed by a corresponding MQDISC on exit.

Enabling CICS user exits
| Before you attempt to make use of a CICS user exit, you should read the IBM
| TXSeries Version 4.2 CICS Administration Guide for your platform.

A CICS user exit point (normally referred to as a “user exit”) is a place in a CICS
module at which CICS can transfer control to a program that you have written (a
user exit program), and at which CICS can resume control when your exit program
has finished its work.

 Chapter 14. Transactional support 209

 Using CICS

One of the user exits supplied with CICS is the “Task termination user exit
(UE014015).” This exit can be invoked at normal and abnormal task termination
(after any syncpoint has been taken).

MQSeries supplies a CICS task termination exit in source and executable form:

If you are currently using this exit, you must add the MQSeries calls from the
supplied exits to your current exits. Integrate the MQ calls into your existing exits
at the appropriate place in the program logic. See the comments in the sample
source file for help with this.

If you are not currently using this exit, you will need to add a CICS PD program
definition stanza entry to the CICS region.

Here is an example of adding a PD stanza entry for UNIX systems:

Table 14. CICS task termination exits

MQSeries for... Source Executable

Windows NT amqzscgn.c mqmc1415.dll

UNIX systems amqzscgx.c amqzscg

cicsadd –cpd –r<cics_region> \
 PathName="mqmtop/lib/amqzscg" \
 UserExitNumber=15

Here is an example of adding a PD stanza entry for Windows NT:

cicsadd –cpd –r<cics_region> \
 PathName="<Drive>:\mqm\dll\mqmc4swi.dll" \
 UserExitNumber=15

The CICS single-phase commit process
The information in this section applies to CICS for OS/2 Version 2 which supports a
single-phase commit only.

Note the following:

� On a single physical machine, a CICS transaction can access any queue
manager, subject to the restriction that any transaction can connect to only one
queue manager at a time.

� CICS transactions distributed among multiple physical machines are not
supported.

� For transactions running in a CICS environment, the queue manager changes
its methods of authorization and determining context as follows:

– For MQSeries for OS/2 Warp, the user ID remains os2.

– In the message context, the application type is MQAT_CICS.

210 MQSeries System Administration

 Using CICS

– The application name in the context is copied from the CICS transaction
name.

� To use CICS as an external syncpoint coordinator, you must install the
MQSeries-supplied code for the appropriate CICS user exits.

Enabling CICS user exits
To enable the CICS single-phase commit process, you need to enable the CICS
user exits 15 and 17 (see the information about user exits that customize the
operator interface in the CICS for OS/2 Customization Guide.

Sample exits, providing the minimum required function, are supplied in the forms
shown in Table 15.

Table 15. Sample exits

MQSeries for... CICS for... Sample
source

Sample
executable

Library linking
service

OS/2 OS/2, V2.0 amqzsc52.c
amqzsc72.c

FAAEXP15.DLL
FAAEXP17.DLL

mqmcics.lib

OS/2 OS/2, V3 amqzsc53.c
amqzsc73.c

FAAEX315.DLL
FAAEX317.DLL

mqmcics3.lib

Using the sample exits
If you are not currently using these CICS exits, then copy the relevant DLLs into a
directory from where they can be accessed by CICS at CICS runtime. This can be
a directory referenced by your OS/2 LIBPATH setting.

If you are currently using these CICS exits, you must add the MQSeries calls from
the supplied samples to your current exits. These MQSeries calls, which are valid
only within the context of exits 15 or 17, enable support for CICS and disable the
internal MQCMIT and MQBACK calls such that they will return
MQRC_ENVIRONMENT_ERROR. Integrate the MQ calls (AMQ*) in your existing
exits at the appropriate place in the program logic. See the comments in the
sample source code for help with this.

 Chapter 14. Transactional support 211

 Using CICS

212 MQSeries System Administration

 Recovery concepts � Logging

Chapter 15. Recovery and restart

A messaging system ensures that messages entered into the system are delivered
to their destination. This means that it must provide a method of tracking the
messages in the system, and of recovering messages if the system fails for any
reason.

MQSeries ensures that messages are not lost by maintaining records (logs) of the
activities of the queue managers that handle the receipt, transmission, and delivery
of messages. It uses these logs for three types of recovery:

1. Restart recovery, when you stop MQSeries in a planned way.
2. Crash recovery, when MQSeries is stopped by an unexpected failure.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped, except that any in-flight transactions are rolled back,
removing from the queues any messages that were not committed at the time the
queue manager stopped. Recovery restores all persistent messages; nonpersistent
messages are lost during the process.

The remainder of this chapter introduces the concepts of recovery and restart in
more detail, and tells you how to recover if problems occur. It covers the following
topics:

� “Making sure that messages are not lost (logging)”
� “Checkpointing – ensuring complete recovery” on page 216
� “Calculating the size of the log” on page 219
� “Managing logs” on page 220
� “Using the log for recovery” on page 222

| � “Protecting MQSeries log files” on page 225
� “Backing up and restoring MQSeries” on page 225
� “Recovery scenarios” on page 226
� “Dumping the contents of the log using the dmpmqlog command” on page 228

Making sure that messages are not lost (logging)
MQSeries records all significant changes to the data controlled by the queue
manager in a log.

This includes the creation and deletion of objects (except channels), all persistent
message updates, transaction states, changes to object attributes, and channel
activities. Therefore, the log contains the information you need to recover all
updates to message queues by:

� Keeping records of queue manager changes.
� Keeping records of queue updates for use by the restart process.
� Enabling you to restore data after a hardware or software failure.

 Copyright IBM Corp. 1994,1999 213

 Logging

What logs look like
An MQSeries log consists of two components:

1. One or more files of log data
2. A log control file

There are a number of log files that contain the data being recorded. You can
define the number and size (as explained in Chapter 11, “Configuring MQSeries”
on page 127), or take the system default of 3 files.

In MQSeries for UNIX systems, each of the three files defaults to 4 MB. In
MQSeries for OS/2 Warp and Windows NT, each of the three files defaults to
1 MB.

When you create a queue manager, the number of log files you define is the
number of primary log files allocated. If you do not specify a number, the default
value is used.

In MQSeries for UNIX systems, if you have not changed the log path, log files are
created in the directory:

/var/mqm/log/QmName

In MQSeries for OS/2 Warp and Windows NT, if you have not changed the log
path, log files are created in the directory:

C:\MQM\LOG\<QMgrName>

MQSeries starts with these primary log files, but, if the log starts to get full,
allocates secondary log files. It does this dynamically, and removes them when the
demand for log space reduces. By default, up to 2 secondary log files can be
allocated. This default allocation can also be changed, as described in Chapter 11,
“Configuring MQSeries” on page 127.

The log control file
The log control file contains the information needed to monitor the use of log files,
such as their size and location, the name of the next available file, and so on.

Note: You should ensure that the logs created when you start a queue manager
are large enough to accommodate the size and volume of messages that your
applications will handle. The default log numbers and sizes are likely to require
modification to meet your requirements. For more information, see “Calculating the
size of the log” on page 219.

Types of logging
In MQSeries, the number of files that are required for logging depends on the file
size, the number of messages you have received, and the length of the messages.
There are two ways of maintaining records of queue manager activities: circular
logging and linear logging.

214 MQSeries System Administration

 Logging

| Circular logging
Use circular logging if all you want is restart recovery, using the log to roll back
transactions that were in progress when the system stopped.

Circular logging keeps all restart data in a ring of log files. Logging fills the first file
in the ring, then moves on to the next, and so on, until all the files are filled. It then
goes back to the first file in the ring and starts again. This continues as long as the
product is in use, and has the advantage that you never run out of log files.

The above is a simple explanation of circular logging. However, there is a
complication. The log entries required to restart the queue manager without loss of
data are kept until they are no longer required to ensure queue manager data
recovery. The mechanism for releasing log files for reuse is described in
“Checkpointing – ensuring complete recovery” on page 216. For now, you should
know that MQSeries uses secondary log files to extend the log capacity as
necessary.

| Linear logging
Use linear logging if you want both restart recovery and media or forward recovery
(recreating lost or damaged data by replaying the contents of the log).

Linear logging keeps the log data in a continuous sequence of files. Space is not
reused, so you can always retrieve any record logged from the time that the queue
manager was created.

As disk space is finite, you may have to think about some form of archiving. It is
an administrative task to manage your disk space for the log, reusing or extending
the existing space as necessary.

The number of log files used with linear logging can be very large, depending on
your message flow and the age of your queue manager. However, there are a
number of files that are said to be active. Active files contain the log entries
required to restart the queue manager. The number of active log files is usually the
same as the number of primary log files as defined in the configuration files. (See
“Calculating the size of the log” on page 219 for information about defining the
number.)

The key event that controls whether a log file is termed active or not is a
checkpoint. An MQSeries checkpoint is a group of log records containing
information to allow a successful restart of the queue manager. Any information
recorded previously is not required to restart the queue manager and can therefore
be termed inactive. (See “Checkpointing – ensuring complete recovery” on
page 216 for further information about checkpointing.)

You must decide when inactive log files are no longer required. You can archive
them, or you can delete them if they are no longer of interest to your operation.
Refer to “Managing logs” on page 220 for further information about the disposition
of log files.

If a new checkpoint is recorded in the second, or later, primary log file, then the first
file becomes inactive and a new primary file is formatted and added to the end of
the primary pool, restoring the number of primary files available for logging. In this
way the primary log file pool can be seen to be a current set of files in an ever

 Chapter 15. Recovery and restart 215

 Checkpointing

extending list of log files. Again, it is an administrative task to manage the inactive
files according to the requirements of your operation.

Although secondary log files are defined for linear logging, they are not used in
normal operation. If a situation should arise when, probably due to long-lived
transactions, it is not possible to free a file from the active pool because it may still
be required for a restart, secondary files are formatted and added to the active log
file pool.

If the number of secondary files available is used up, requests for most further
operations requiring log activity will be refused with an
MQRC_RESOURCE_PROBLEM being returned to the application.

Both types of logging can cope with unexpected loss of power assuming that there
is no hardware failure.

Checkpointing – ensuring complete recovery
Persistent updates to message queues happen in two stages. First, the records
representing the update are written to the log, then the queue file is updated. The
log files can thus become more up-to-date than the queue files. To ensure that
restart processing begins from a consistent point, MQSeries uses checkpoints. A
checkpoint is a point in time when the record described in the log is the same as
the record in the queue. The checkpoint itself consists of the series of log records
needed to restart the queue manager; for example, the state of all transactions

| (that is, units of work) active at the time of the checkpoint.

Checkpoints are generated automatically by MQSeries. They are taken when the
queue manager starts, at shutdown, when logging space is running low, and after
every 1000 operations logged.

As the queues handle further messages, the checkpoint record becomes
inconsistent with the current state of the queues.

When MQSeries is restarted, it locates the latest checkpoint record in the log. This
information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. The data from this checkpoint is used to rebuild the
queues as they existed at the checkpoint time. When the queues are recreated,
the log is then played forward to bring the queues back to the state they were in
before system failure or close down.

MQSeries maintains internal pointers to the head and tail of the log. It moves the
head pointer to the most recent checkpoint that is consistent with recovering
message data.

Checkpoints are used to make recovery more efficient, and to control the reuse of
primary and secondary log files.

216 MQSeries System Administration

 Checkpointing

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put Put GetGetGet

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

Figure 54. Checkpointing. For simplicity, only the ends of the log files are shown.

In Figure 54, all records before the latest checkpoint, checkpoint 2, are no longer
needed by MQSeries. The queues can be recovered from the checkpoint
information and any later log entries. For circular logging, any freed files prior to
the checkpoint can be reused. For a linear log, the freed log files no longer need
to be accessed for normal operation and become inactive. In the example, the
queue head pointer is moved to point at the latest checkpoint, Checkpoint 2, which
then becomes the new queue head, head 2. Log File 1 can now be reused.

 Chapter 15. Recovery and restart 217

 Checkpointing

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put PutGetCheckpoint
3

Get

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

LR 1

LR 2

Figure 55. Checkpointing with a long-running transaction. For simplicity, only the ends of
the log files are shown.

Figure 55 shows how a long-running transaction affects reuse of log files. In the
example, a long-running transaction has caused an entry to the log, shown as LR
1, after the first checkpoint shown. The transaction does not complete, shown as
LR 2, until after the third checkpoint. All the log information from LR 1 onwards is
retained to allow recovery of that transaction, if necessary, until it has completed.

After the long-running transaction has completed, at LR 2, the head of the log is
moved to checkpoint 3, the latest logged checkpoint. The files containing log
records prior to checkpoint 3, Head 2, are no longer needed. If you are using
circular logging, the space can be reused.

If the primary log files are completely filled before the long-running transaction
completes, secondary log files are used to avoid the risk of a log full situation if
possible.

When the log head is moved and you are using circular logging, the primary log
files may become eligible for reuse and the logger, after filling the current file,
reuses the first primary file available to it. If instead you are using linear logging,
the log head is still moved down the active pool and the first file becomes inactive.
A new primary file is formatted and added to the bottom of the pool in readiness for
future logging activities.

218 MQSeries System Administration

 Log size calculations

| Calculating the size of the log
| After deciding whether the queue manager should use circular or linear logging,
| your next task is to estimate the size of the log that the queue manager will need.
| The size of the log is determined by the by the following log configuration
| parameters:

| LogFilePages The size of each primary and secondary log file in units of 4
| pages
| LogPrimaryFiles The number of preallocated primary log files
| LogSecondaryFiles The number of secondary log files that can be created for
| use when the primary log files are full

| Table 16 shows the amount of data the queue manager logs for various
| operations. Most operations performed by the queue manager require a minimal
| amount of log space, however, when a persistent message is put to a queue, all of
| the message data must be written to the log to make recovery of the message
| possible. Therefore, the size of the log depends, typically, upon the number and
| size of the persistent messages the queue manager needs to handle.

| Notes:

| 1. The number of primary and secondary log files can be changed each time the
| queue manager is started.

| 2. The log file size cannot be changed and needs to be determined before the
| queue manager is created.

| 3. The number of primary log files and the log file size determine the amount of
| log space that is preallocated when the queue manager is created. You are
| advised to organize this space as a smaller number of larger log files rather
| than a larger number of small log files.

| Table 16. Log overhead sizes. (All values are approximate.)

| Operation| Size

| Put persistent message| 750 bytes + message length

| If the message is large, it is divided into segments of
| 15700 bytes, each with a 300-byte overhead.

| Get message| 260 bytes

| Syncpoint, commit| 750 bytes

| Syncpoint, roll-back| 1000 bytes + 12 bytes for each get or put to be rolled
| back

| Create object| 1500 bytes

| Delete object| 300 bytes

| Alter attributes| 1024 bytes

| Record media image| 800 bytes + image

| The image is divided into segments of 15700 bytes, each
| having a 300-byte overhead.

| Checkpoint| 750 bytes + 200 bytes for each active unit of work.

| Additional data may be logged for any uncommitted puts
| or gets that have been buffered for performance reasons.

 Chapter 15. Recovery and restart 219

 Managing logs

| 4. The total number of primary and secondary log files cannot exceed 63, which,
| in the presence of long-running transactions, limits the maximum amount of log
| space that can be made available to the queue manager for restart recovery.
| The amount of log space the queue manager may need to use for media
| recovery does not share this limit.

| 5. When circular logging is being used, the queue manager reuses primary log
| space. This means that the queue manager’s log can be smaller than the
| amount of data you have estimated that the queue manager needs to log. The
| queue manager will, up to a limit, allocate a secondary log file when a log file
| becomes full, and the next primary log file in the sequence is not available.

| 6. Primary log files are made available for reuse during checkpoint. The queue
| manager takes both the primary and secondary log space into consideration
| before a checkpoint is taken because the amount of log space is running low.

| If you do not define more primary log files than secondary log files, the queue
| manager may allocate secondary log files before a checkpoint is taken. This
| makes the primary log files available for reuse.

 Managing logs
Over time, some of the log records written become unnecessary for restarting the
queue manager. If you are using circular logging, the queue manager reclaims
freed space in the log files. This activity is transparent to the user and you do not
usually see the amount of disk space used reduce because the space allocated is
quickly reused.

Of the log records, only those written since the start of the last complete
checkpoint, and those written by any active transactions, are needed to restart the
queue manager. Thus, the log may fill if a checkpoint has not been taken for a
long time, or if a long-running transaction wrote a log record a long time ago. The
queue manager tries to take checkpoints sufficiently frequently to avoid the first
problem.

When a long-running transaction fills the log, attempts to write log records fail and
some MQI calls return MQRC_RESOURCE_PROBLEM. (Space is reserved to
commit or rollback all in-flight transactions, so MQCMIT or MQBACK should not
fail.)

The queue manager rolls back transactions that consume too much log space. An
application whose transaction is rolled back in this way is unable to perform
subsequent MQPUT or MQGET operations specifying syncpoint under the same
transaction. An attempt to put or get a message under syncpoint in this state
returns MQRC_BACKED_OUT. The application may then issue MQCMIT, which
returns MQRC_BACKED_OUT, or MQBACK and start a new transaction. When
the transaction consuming too much log space has been rolled back, its log space
is released and the queue manager continues to operate normally.

If the log fills, message AMQ7463 is issued. In addition, if the log fills because a
long-running transaction has prevented the space being released, message
AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous
housekeeping processes can handle them, message AMQ7466 is issued. If you

220 MQSeries System Administration

 Managing logs

see this message, you should increase the number of log files or reduce the
amount of data being processed by the queue manager.

What happens when a disk gets full
The queue manager logging component can cope with a full disk, and with full log
files. If the disk containing the log fills, the queue manager issues message
AMQ6708 and an error record is taken.

The log files are created at their maximum size, rather than being extended as log
records are written to them. This means that MQSeries can run out of disk space
only when it is creating a new file. Therefore, it cannot run out of space when it is
writing a record to the log. MQSeries always knows how much space is available
in the existing log files, and manages the space within the files accordingly.

If you fill the drive containing the log files, you may be able to free some disk
space. If you are using a linear log, there may be some inactive log files in the log
directory, and you can copy these files to another drive or device. If you still run
out of space, check that the configuration of the log in the queue manager
configuration file is correct. You may be able to reduce the number of primary or
secondary log files so that the log does not outgrow the available space. Note that
it is not possible to alter the size of the log files for an existing queue manager.
The queue manager assumes that all log files are the same size.

Managing log files
If you are using circular logging, ensure that there is sufficient space to hold the log
files. You do this when you configure your system (see “The LogDefaults stanza”
on page 132 and “The Log stanza” on page 138.) The amount of disk space used
by the log does not increase beyond the configured size, including space for
secondary files to be created when required.

If you are using a linear log, the log files are added continually as data is logged,
and the amount of disk space used increases with time. If the rate of data being
logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer required to restart the
queue manager or perform media recovery of any damaged objects. Periodically,
the queue manager issues a pair of messages to indicate which of the log files is
required:

� Message AMQ7467 gives the name of the oldest log file needed to restart the
queue manager. This log file and all newer log files must be available during
queue manager restart.

� Message AMQ7468 gives the name of the oldest log file needed to do media
recovery.

Any log files older than these do not need to be online. You can copy them to an
archive medium such as tape for disaster recovery, and remove them from the
active log directory. Any log files needed for media recovery but not for restart can
also be off-loaded to an archive.

If any log file that is needed cannot be found, operator message AMQ6767 is
issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation.

 Chapter 15. Recovery and restart 221

 Using the log

Note: When performing media recovery, all the required log files must be available
in the log file directory at the same time. Make sure that you take regular media
images of any objects you may wish to recover to avoid running out of disk space
to hold all the required log files.

Log file location
When choosing a location for your log files, remember that operation is severely
impacted if MQSeries fails to format a new log because of lack of disk space.

In MQSeries for OS/2 Warp, for example, put the log directory on a different drive
from that used by the OS/2 swapper file: log files tend to be large, so could fill the
disk and prevent expansion of the swapper file.

If you are using a circular log, ensure that there is sufficient space on the drive for
at least the configured primary log files. You should also leave space for at least
one secondary log file, which is needed if the log has to grow.

If you are using a linear log, you should allow considerably more space; the space
consumed by the log increases continuously as data is logged.

Ideally, the log files should be placed on a separate disk drive from the queue
manager data. This has benefits in terms of performance. It may also be possible
to place the log files on multiple disk drives in a mirrored arrangement. This gives
protection against failure of the drive containing the log. Without mirroring, you
could be forced to go back to the last backup of your MQSeries system.

Using the log for recovery
There are several ways that your data can be damaged. MQSeries helps you
recover from:

� A damaged data object
� A power loss in the system
� A communications failure
� A damaged log volume

This section looks at how the logs are used to recover from these problems.

Recovering from problems
MQSeries can recover from both communications failures and loss of power. In
addition, it is sometimes possible to recover from other types of problem, such as
inadvertent deletion of a file.

In the case of a communications failure, messages remain on queues until they are
removed by a receiving application. If the message is being transmitted, it remains
on the transmission queue until it can be successfully transmitted. To recover from
a communications failure, it is normally sufficient simply to restart the channels
using the link that failed.

If you lose power, when the queue manager is restarted MQSeries restores the
queues to their committed state at the time of the failure. This ensures that no
persistent messages are lost. Nonpersistent messages are discarded; they do not
survive when MQSeries stops.

222 MQSeries System Administration

 Using the log

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. You then have to recover either your complete system
or some part of it. The action required depends on when the damage is detected,
whether the log method selected supports media recovery, and which objects are
damaged.

 Media recovery
Media recovery is the re-creation of objects from information recorded in a linear
log. For example, if an object file is inadvertently deleted, or becomes unusable for
some other reason, media recovery can be used to recreate it. The information in
the log required for media recovery of an object is called a media image. Media
images can be recorded manually, using the rcdmqimg command, or automatically
in some circumstances.

A media image is a sequence of log records containing an image of an object from
which the object itself can be recreated.

The first log record required to recreate an object is known as its media recovery
record; it is the start of the latest media image for the object. The media recovery
record of each object is one of the pieces of information recorded during a
checkpoint.

When an object is recreated from its media image, it is also necessary to replay
any log records describing updates performed on the object since the last image
was taken.

Consider, for example, a local queue that has an image of the queue object taken
before a persistent message is put onto the queue. In order to recreate the latest
image of the object, it is necessary to replay the log entries recording the putting of
the message to the queue, as well as replaying the image itself.

When an object is created, the log records written contain enough information to
completely recreate the object. These records make up the object’s first media
image. Subsequently, media images are recorded automatically by the queue
manager at the following times:

� Images of all process objects and queues that are not local are taken at each
shutdown.

| � Images of empty local queues are taken at each shutdown.

Media images can also be recorded manually using the rcdmqimg command,
described in “rcdmqimg (Record media image)” on page 310. Issuing this
command causes a media image of the MQSeries object to be written. Once this
has been done, only the logs that hold the media image, and all the logs created
after this time, are needed to recreate damaged objects. The benefit of doing this
depends on such factors as the amount of free storage available, and the speed at
which log files are created.

 Chapter 15. Recovery and restart 223

 Using the log

Recovering media images
MQSeries automatically recovers some objects from their media image if it finds
that they are corrupt or damaged. In particular, this applies to objects found to be
damaged during the normal queue manager start up. If any transaction was
incomplete at the time of the last shutdown of the queue manager, any queue
affected is also recovered automatically in order to complete the start up operation.

You must recover other objects manually, using the rcrmqobj command.

This command replays the records in the log to recreate the MQSeries object. The
object is recreated from its latest image found in the log, together with all applicable
log events between the time the image was saved and the time the recreate
command is issued. Should an MQSeries object become damaged, the only valid
actions that can be performed are either to delete it or to recreate it by this method.
Note, however, that nonpersistent messages cannot be recovered in this way.

See “rcrmqobj (Recreate object)” on page 312 for further details of the rcrmqobj
command.

It is important to remember that you must have the log file containing the media
recovery record, and all subsequent log files, available in the log file directory when
attempting media recovery of an object. If a required file cannot be found, operator
message AMQ6767 is issued and the media recovery operation fails. If you do not
take regular media images of the objects that you may wish to recreate, you can
get into the situation where you have insufficient disk space to hold all the log files
required to recreate an object.

Recovering damaged objects during start up
If the queue manager discovers a damaged object during start up, the action it
takes depends on the type of object and whether the queue manager is configured
to support media recovery.

If the queue manager object is damaged, the queue manager cannot start unless it
can recover the object. If the queue manager is configured with a linear log, and
thus supports media recovery, MQSeries automatically tries to recreate the
MQSeries object from its media images. If the log method selected does not
support media recovery, you can either restore a backup of the queue manager or
delete the queue manager.

If any transactions were active when the queue manager stopped, the local queues
containing the persistent, uncommitted messages put or got inside these
transactions are also needed to start the queue manager successfully. If any of
these local queues is found to be damaged, and the queue manager supports
media recovery, it automatically attempts to recreate them from their media images.
If any of the queues cannot be recovered, MQSeries cannot start.

If any damaged local queues containing uncommitted messages are discovered
during start up processing on a queue manager that does not support media
recovery, the queues are marked as damaged objects and the uncommitted
messages on them are ignored. This is because it is not possible to perform media
recovery of damaged objects on such a queue manager and the only action left is
to delete them. Message AMQ7472 is issued to report any damage.

224 MQSeries System Administration

 Protecting log files � Backup and restore

Recovering damaged objects at other times
Media recovery of objects is automatic only during start up. At other times, when
object damage is detected, operator message AMQ7472 is issued and most
operations using the object fail. If the queue manager object is damaged at any
time after the queue manager has started, the queue manager performs a
preemptive shutdown. When an object has been damaged you may delete it or, if
the queue manager is using a linear log, attempt to recover it from its media image
using the rcrmqobj command (see “rcrmqobj (Recreate object)” on page 312 for
further details).

| Protecting MQSeries log files
| It is important that when an MQSeries queue manager is running you do not
| remove the log files manually. If a user inadvertently (or maliciously) deletes the
| log files which a queue manager needs to restart, MQSeries does not issue any
| errors and continues to process data including persistent messages. The queue
| manager shuts down normally, but will fail to restart. Media recovery of messages
| then becomes impossible.

| Any user with the authority to remove logs that are being used by an active queue
| manager also has authority to delete other important queue manager resources
| (such as authorization files, queue files, the object catalog, and MQSeries
| executables). They therefore can damage, perhaps through inexperience or even
| intent, a running or dormant queue manager in a way against which MQSeries
| cannot protect itself.

| Exercise caution when conferring super user or mqm authority.

Backing up and restoring MQSeries
Periodically, you may want to take a backup of your queue manager data to
provide protection against possible corruption due to hardware failures. However,
because message data is often short-lived, you may choose not to take backups.

Backing up MQSeries
To take a backup of a queue manager’s data, you must:

1. Ensure that the queue manager is not running.

If your queue manager is running, stop it with the endmqm command.

Note: If you try to take a backup of a running queue manager, the backup
may not be consistent due to updates in progress when the files were copied.

2. Locate the directories under which the queue manager places its data and its
log files.

You can use the information in the configuration files to determine these
directories. For more information about this, see Chapter 11, “Configuring
MQSeries” on page 127.

Note: You may have some difficulty in understanding the names that appear
in the directory. This is because the names are transformed to ensure that
they are compatible with the platform on which you are using MQSeries. For

 Chapter 15. Recovery and restart 225

 Recovery scenarios

more information about name transformations, see “Understanding MQSeries
file names” on page 27.

3. Take copies of all the queue manager’s data and log file directories, including
all subdirectories.

Make sure that you do not miss any of the files, especially the log control file
and the configuration files. Some of the directories may be empty, but they will
all be required if you restore the backup at a later date, so it is advisable to
save them too.

4. Ensure that you preserve the ownerships of the files. For MQSeries for UNIX
systems, you can do this with the tar command.

 Restoring MQSeries
To restore a backup of a queue manager’s data, you must:

1. Ensure that the queue manager is not running.

2. Locate the directories under which the queue manager places its data and its
log files. This information is held in the configuration file.

3. Clear out the directories into which you are going to place the backed up data.

4. Copy the backed up queue manager data and log files into the correct places.

Check the resulting directory structure to ensure that you have all of the required
directories.

See Appendix B, “Directory structure (UNIX systems)” on page 347 for more
information about MQSeries directories and subdirectories.

Make sure that you have a log control file as well as the log files. Also check that
the MQSeries and queue manager configuration files are consistent so that
MQSeries can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager will now start.

Note: Even though the queue manager data and log files are held in different
directories, you should back up and restore the directories at the same time. If the
queue manager data and log files have different ages, the queue manager is not in
a valid state and will probably not start. If it does start, your data will almost
certainly be corrupt.

 Recovery scenarios
This section looks at a number of possible problems and indicates how to recover
from them.

Disk drive failures
You may suffer problems with a disk drive containing either the queue manager
data, the log, or both. Problems can include data loss or corruption. The three
cases differ only in the part of the data that survives, if any.

In all cases you must first check the directory structure for any damage and, if
necessary, repair such damage. If you lose queue manager data, there is a danger

226 MQSeries System Administration

 Recovery scenarios

that the queue manager directory structure has been damaged. If so, you must
recreate the directory tree manually before you try to restart the queue manager.

Having checked for structural damage, there are a number of alternative things you
can do, depending on the type of logging that you use.

� Where there is major damage to the directory structure or any damage to
the log , remove all the old files back to the QMgrName level, including the
configuration files, the log, and the queue manager directory, restore the last
backup, and try to restart the queue manager.

� For linear logging with media recovery , ensure the directory structure is
intact and try to restart the queue manager. If the queue manager does not
restart, restore a backup. If the queue manager restarts, check whether any
other objects have been damaged using MQSC commands, such as DISPLAY
QUEUE. Recover those you find, using the rcrmqobj command. For example:

rcrmqobj -m QMgrName -t all \

where QMgrName is the queue manager being recovered. -t all * indicates that
all objects of any type (except channels) are to be recovered. If only one or
two objects have been reported as damaged, you may want to specify those
objects by name and type here.

� For linear logging with media recovery and with an undamaged log , you
may be able to restore a backup of the queue manager data leaving the
existing log files and log control file unchanged. Starting the queue manager
applies the changes from the log to bring the queue manager back to its state
when the failure occurred.

This method relies on two facts. Firstly, it is vital that the checkpoint file be
restored as part of the queue manager data. This file contains the information
determining how much of the data in the log must be applied to give a
consistent queue manager.

Secondly, you must have the oldest log file that was required to start the queue
manager at the time of the backup, and all subsequent log files, available in the
log file directory.

If this is not possible, you must restore a backup of both the queue manager
data and the log, both of which were taken at the same time.

� For circular logging, or linear logging without media recovery , you must
restore the queue manager from the latest backup that you have. Once you
have restored the backup, restart the queue manager and check as above for
damaged objects. However, because you do not have media recovery, you
must find other ways of recreating the damaged objects.

Damaged queue manager object
If the queue manager object has been reported as damaged during normal
operation, the queue manager performs a preemptive shutdown. There are two
ways of recovering in these circumstances depending on the type of logging you
use:

� For linear logging only , manually delete the file containing the damaged
object and restart the queue manager. (You can use the dspmqfls command

 Chapter 15. Recovery and restart 227

 Using dmpmqlog

to determine the real, file-system name of the damaged object.) Media
recovery of the damaged object is automatic.

� For circular or linear logging , restore the last backup of the queue manager
data and log and restart the queue manager.

Damaged single object
If a single object is reported as damaged during normal operation, there are two
ways of recovering, depending on the type of logging you use:

� For linear logging , recreate the object from its media image.

� For circular logging , restore the last backup of the queue manager data and
log and restart the queue manager.

Automatic media recovery failure
If a local queue required for queue manager startup with a linear log is damaged,
and the automatic media recovery fails, restore the last backup of the queue
manager data and log and restart the queue manager.

Dumping the contents of the log using the dmpmqlog command
The dmpmqlog command can be used to dump the contents of the queue
manager log. By default all active log records are dumped, that is, the command
starts dumping from the head of the log. Normally this is from the start of the last
completed checkpoint.

The log can be dumped only when the queue manager is not running. Because
the queue manager takes a checkpoint during shutdown, the active portion of the
log usually contains a small number of log records. However, the dmpmqlog
command can be instructed to dump more log records using one of the following
options to change the start position of the dump:

� The simplest option is to start dumping from the base of the log. The base of
the log is the first log record in the log file that contains the head of the log.
The amount of additional data dumped in this case depends upon where the
head of the log is positioned in the log file. If it is near to the start of the log
file only a small amount of additional data is dumped. If the head is near to the
end of the log file then significantly more data is dumped.

� Another option enables the start position of the dump to be specified as an
individual log record. Each log record is identified by a unique log sequence
number (LSN). In the case of circular logging, this starting log record cannot
be prior to the base of the log; this restriction does not apply to linear logs.
Inactive log files may need to be reinstated before running the command. For
this option a valid LSN must be specified as the start position. This must be
taken from previous dmpmqlog output.

For example, with linear logging you could specify the nextlsn from your last
dmpmqlog output. The Next LSN appears in Log File Header and indicates
the LSN of the next log record to be written. This can therefore be used as a
start position to format all log records that have been written since the last time
the log was dumped.

� The third option is for linear logs only. The dumper can be instructed to start
formatting log records from any given log file extent. In this case the log

228 MQSeries System Administration

 Using dmpmqlog

dumper expects to find this log file, and each successive one, in the same
directory as the active log files. This option does not apply to circular logs,
because in this case the log dumper cannot access log records prior to the
base of the log.

The output from the dmpmqlog command is the Log File Header and a series of
formatted log records. The queue manager uses several log records to record
changes to its data.

Some of the information that is formatted is of use only internally. The following list
includes the most useful log records:

Log File Header
Each log has a single log file header, which is always the first thing formatted
by the dmpmqlog command. It contains the following fields:

logactive The number of primary log extents.

loginactive The number of secondary log extents.

logsize The number of 4 KB pages per extent.

baselsn The first LSN in the log extent containing the head of the log.

nextlsn The LSN of next log record to be written.

headlsn The LSN of the log record at the head of the log.

tailsn The LSN identifying the tail position of the log.

hflag1 Identifies whether log is CIRCULAR or LOG RETAIN (linear).

HeadExtentID The log extent containing the head of the log.

Log Record Header
Each log record within the log has a fixed header containing the following
information:

LSN The log sequence number.

LogRecdType The type of the log record.

XTranid The transaction identifier associated with this log record (if
any).

A TranType of MQI indicates an MQ-only transaction. A
TranType of XA is involved with other resource managers.
Updates involved within the same unit of work have the same
XTranid.

QueueName The queue associated with this log record (if any).

Qid The unique internal identifier for the queue.

PrevLSN LSN of previous log record within the same transaction (if any).

Start Queue Manager
This logs that the queue manager has been started.

StartDate The date that the queue manager was started.

StartTime The time that the queue manager was started.

 Chapter 15. Recovery and restart 229

 Using dmpmqlog

Stop Queue Manager
This logs that the queue manager has been stopped.

StopDate The date that the queue manager was stopped.

StopTime The time that the queue manager was stopped.

ForceFlag The type of shutdown that was used.

Start Checkpoint
This denotes the start of a queue manager checkpoint.

End Checkpoint
This denotes the end of a queue manager checkpoint.

ChkPtLSN The LSN of the log record that started this checkpoint.

Put Message
This logs a persistent message put to a queue. If the message was put under
syncpoint, then the log record header contains a nonnull XTranid. The
remainder of the record contains:

SpcIndex An identifier for the message on the queue. It can be used to
match the corresponding MQGET that was used to get this
message from the queue. In this case a subsequent Get
Message log record can be found containing the same
QueueName and SpcIndex. At this point the SpcIndex identifier
can be reused for a subsequent put message to that queue.

Data Contained in the hex dump for this log record is various
internal data followed by the Message Descriptor (eyecatcher
MD) and the message data itself.

Put Part
Persistent messages that are too large for a single log record are logged as a
single Put Message record followed by multiple Put Part log records.

Data Continues the message data where the previous log record left
off.

Get Message
Only gets of persistent messages are logged. If the message was got under
syncpoint then the log record header contains a nonnull XTranid. The
remainder of the record contains:

SpcIndex Identifies the message that was got from the queue. The most
recent Put Message log record containing the same QueueName
and SpcIndex identifies the message that was got.

QPriority The priority of the message got from the queue.

Start Transaction
Indicates the start of a new transaction. A TranType of MQI indicates an
MQ-only transaction. A TranType of XA indicates one that involves other
resource managers. All updates made by this transaction will have the same
XTranid.

Prepare Transaction
Indicates that the queue manager is prepared to commit the updates
associated with the specified XTranid. This log record is written as part of a
two-phase commit involving other resource managers.

230 MQSeries System Administration

 Using dmpmqlog

Commit Transaction
Indicates that the queue manager has committed all updates made by a
transaction.

Rollback Transaction
This log record denotes the queue manager’s intention to roll back a
transaction.

End Transaction
This log record denotes the end of a rolled-back transaction.

Transaction Table
This record is written during syncpoint. It records the state of each transaction
that has made persistent updates. For each transaction the following
information is recorded:

XTranid Transaction identifier.

FirstLSN LSN of first log record associated with transaction.

LastLSN LSN of last log record associated with transaction.

Transaction Participants
This log record is written by the XA Transaction Manager component of the
queue manager. It records the external resource managers that are
participating in transactions. For each participant the following is recorded:

RMName The name of the resource manager.

RMId Resource manager identifier. This is also logged in
subsequent Transaction Prepared log records which record
global transactions in which the resource manager is
participating.

SwitchFile The switch load file for this resource manager.

XAOpenString The XA open string for this resource manager.

XACloseString The XA open string for this resource manager.

Transaction Prepared
This log record is written by the XA Transaction Manager component of the
queue manager. It indicates that the specified global transaction has been
successfully prepared. Each of the participating resource managers will be
instructed to commit. The RMId of each prepared resource manager is recorded
in the log record. If the queue manager itself is participating in the transaction
a Participant Entry with an RMID of zero will be present.

Transaction Forget
This log record is written by the XA Transaction Manager component of the
queue manager. It follows the Transaction Prepared log record when the
commit decision has been delivered to each participant.

Purge Queue
This logs the fact that all messages on a queue have been purged, for
example, using the RUNMQSC CLEAR command.

Queue Attributes
This logs the initialization or change of the attributes of a queue

 Chapter 15. Recovery and restart 231

 Using dmpmqlog

Create Object
Logs the creation of an MQSeries object

ObjName The name of the object that was created.

UserId The user ID performing the creation.

Delete Object
Logs the deletion of an MQSeries object

ObjName The name of the object that was deleted.

Figure 56 on page 233 shows example output from a dmpmqlog command. The
dump, which started at the LSN of a specific log record, was produced using the
following command:

 dmpmqlog -mtestqm -sð:ð:ð:44162

232 MQSeries System Administration

 Using dmpmqlog

AMQ77ð1: DMPMQLOG command is starting.
LOG FILE HEADER
\\\\\\\\\\\\\\\

counter1 . . . : 23 counter2 . . . : 23
FormatVersion . : 2 logtype : 1ð
logactive . . . : 3 loginactive . . : 2
logsize : 1ð24 pages
baselsn : <ð:ð:ð:ð>
nextlsn : <ð:ð:ð:6ð864>
lowtranlsn . . : <ð:ð:ð:ð>
minbufflsn . . : <ð:ð:ð:5812ð>
headlsn : <ð:ð:ð:5812ð>
taillsn : <ð:ð:ð:6ð863>
logfilepath . . : ""
hflag1 : 1
 -> CONSISTENT
 -> CIRCULAR
HeadExtentID . : 1 LastEID : 846249ð92
LogId : 846249ð61 LastCommit . . : ð
FirstArchNum . : 4294967295 LastArchNum . . : 4294967295
nextArcFile . . : 4294967295 firstRecFile . : 4294967295
firstDlteFile . : 4294967295 lastDeleteFile : 4294967295
RecHeadFile . . : 4294967295 FileCount . . . : 3
frec_trunclsn . : <ð:ð:ð:ð>
frec_readlsn . : <ð:ð:ð:ð>
frec_extnum . . : ð LastCId : ð
onlineBkupEnd . : ð softmax : 41943ð4

LOG RECORD - LSN <ð:ð:ð:44162>
\\\\\\\\\\

HLG Header: lrecsize 212, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ALM Start Checkpoint (1ð25)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 192 LogRecdOwnr . . : 1ð24 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

No data for Start Checkpoint Record

Figure 56 (Part 1 of 13). Example dmpmqlog output

 Chapter 15. Recovery and restart 233

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:44374>
\\\\\\\\\\

HLG Header: lrecsize 22ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Transaction Table (773)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 2ðð LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 1
TranCount . . . : ð

LOG RECORD - LSN <ð:ð:ð:44594>
\\\\\\\\\\

HLG Header: lrecsize 1836, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : Transaction Participants (1537)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 1816 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Id. : TLPH
Version : 1 Flags : 3
Count : 2

Participant Entry ð
RMName : DB2 MQBankDB
RMId : 1
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

Participant Entry 1
RMName : DB2 MQBankDB
RMId : 2
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

Figure 56 (Part 2 of 13). Example dmpmqlog output

234 MQSeries System Administration

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:46448>
\\\\\\\\\\

HLG Header: lrecsize 236, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ALM End Checkpoint (1ð26)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 216 LogRecdOwnr . . : 1ð24 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

ChkPtLSN . . . : <ð:ð:ð:44162>
OldestLSN . . . : <ð:ð:ð:ð>
MediaLSN . . . : <ð:ð:ð:ð>

LOG RECORD - LSN <ð:ð:ð:52262>
\\\\\\\\\\

HLG Header: lrecsize 22ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Start Transaction (769)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 2ðð LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High ð, Low 1}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 1
SoftLogLimit . : 1ðððð

Figure 56 (Part 3 of 13). Example dmpmqlog output

 Chapter 15. Recovery and restart 235

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:52482>
\\\\\\\\\\

HLG Header: lrecsize 73ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : AQM Put Message (257)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 71ð LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: MQI TranNum{High ð, Low 1}
QueueName . . . : Queue1
Qid : {Hash 196836ð31, Counter: ð}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:52262>

Version : 3
SpcIndex . . . : 1
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High ð, Low 2ð48}
Data.Locn . . . : 2ð48 Data.Length . . : 486
Data :
ððððð: 41 51 52 48 ðð ðð ðð ð4 FF FF FF FF FF FF FF FF AQRH............
ððð16: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ð1 ðð ð1 ð1 Cð¿
ððð32: ðð ðð ðð ðð ðð ðð ðð ð1 ðð ðð ðð 22 ðð ðð ðð ðð"....
ððð48: ðð ðð ðð ðð 41 4D 51 2ð 74 65 73 74 71 6D 2ð 2ðAMQ testqm
ððð64: 2ð 2ð 2ð 2ð 33 8ð 2D D2 ðð ðð 1ð 13 ðð ðð ðð ðð 3ä-�........
ððð8ð: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ððð96: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð112: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ð1
ðð128: ðð ðð ðð ðð ðð ðð ðð 22 ðð ðð ðð ðð ðð ðð ðð ðð"........
ðð144: ðð ðð ðð ðð ðð ðð ðð C9 2C B5 Cð 25 FF FF FF FF�,[¿%....
ðð16ð: 4D 44 2ð 2ð ðð ðð ðð ð1 ðð ðð ðð ðð ðð ðð ðð ð8 MD
ðð176: ðð ðð ðð ðð ðð ðð ð1 11 ðð ðð ð3 33 2ð 2ð 2ð 2ð3
ðð192: 2ð 2ð 2ð 2ð ðð ðð ðð ðð ðð ðð ðð ð1 2ð 2ð 2ð 2ð
ðð2ð8: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð224: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð24ð: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 74 65 73 74 test
ðð256: 71 6D 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð qm
ðð272: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð288: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 73 62 6F 6C sbol
ðð3ð4: 61 6D 2ð 2ð 2ð 2ð 2ð 2ð ð4 37 34 38 3ð ðð ðð ðð am .748ð...
ðð32ð: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð336: ðð ðð ðð ðð ðð ðð ðð ðð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð352: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð368: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð ðð ðð ðð ð6 75 74 7A 61utza
ðð384: 7ð 69 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð pi
ðð4ðð: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 31 39 39 37 3ð 35 31 39 1997ð519
ðð416: 31 3ð 34 32 31 35 32 3ð 2ð 2ð 2ð 2ð ðð ðð ðð ðð 1ð42152ð
ðð432: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð448: 5ð 65 72 73 69 73 74 65 6E 74 2ð 6D 65 73 73 61 Persistent messa
ðð464: 67 65 2ð 7ð 75 74 2ð 75 6E 64 65 72 2ð 73 79 6E ge put under syn
ðð48ð: 63 7ð 6F 69 6E 74 cpoint

Figure 56 (Part 4 of 13). Example dmpmqlog output

236 MQSeries System Administration

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:53458>
\\\\\\\\\\

HLG Header: lrecsize 734, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : AQM Put Message (257)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 714 LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: NULL
QueueName . . . : Queue2
Qid : {Hash 184842943, Counter: 2}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 3
SpcIndex . . . : 1
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High ð, Low 2ð48}
Data.Locn . . . : 2ð48 Data.Length . . : 49ð
Data :
ððððð: 41 51 52 48 ðð ðð ðð ð4 FF FF FF FF FF FF FF FF AQRH............
ððð16: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ð1 ðð ð1 ð1 Cð¿
ððð32: ðð ðð ðð ðð ðð ðð ðð ð1 ðð ðð ðð 26 ðð ðð ðð ðð&....
ððð48: ðð ðð ðð ðð 41 4D 51 2ð 74 65 73 74 71 6D 2ð 2ðAMQ testqm
ððð64: 2ð 2ð 2ð 2ð 33 8ð 2D D2 ðð ðð 1ð 13 ðð ðð ðð ðð 3ä-�........
ððð8ð: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ððð96: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð112: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ð1
ðð128: ðð ðð ðð ðð ðð ðð ðð 26 ðð ðð ðð ðð ðð ðð ðð ðð&........
ðð144: ðð ðð ðð ðð ðð ðð ðð C9 2C B6 D8 DD FF FF FF FF�,.”.....
ðð16ð: 4D 44 2ð 2ð ðð ðð ðð ð1 ðð ðð ðð ðð ðð ðð ðð ð8 MD
ðð176: ðð ðð ðð ðð ðð ðð ð1 11 ðð ðð ð3 33 2ð 2ð 2ð 2ð3
ðð192: 2ð 2ð 2ð 2ð ðð ðð ðð ðð ðð ðð ðð ð1 2ð 2ð 2ð 2ð
ðð2ð8: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð224: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð24ð: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 74 65 73 74 test
ðð256: 71 6D 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð qm
ðð272: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð288: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 73 62 6F 6C sbol
ðð3ð4: 61 6D 2ð 2ð 2ð 2ð 2ð 2ð ð4 37 34 38 3ð ðð ðð ðð am .748ð...
ðð32ð: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð336: ðð ðð ðð ðð ðð ðð ðð ðð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð352: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð368: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð ðð ðð ðð ð6 75 74 7A 61utza
ðð384: 7ð 69 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð pi
ðð4ðð: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 31 39 39 37 3ð 35 31 39 1997ð519
ðð416: 31 3ð 34 33 32 37 3ð 36 2ð 2ð 2ð 2ð ðð ðð ðð ðð 1ð4327ð6
ðð432: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð448: 5ð 65 72 73 69 73 74 65 6E 74 2ð 6D 65 73 73 61 Persistent messa
ðð464: 67 65 2ð 6E 6F 74 2ð 7ð 75 74 2ð 75 6E 64 65 72 ge not put under
ðð48ð: 2ð 73 79 6E 63 7ð 6F 69 6E 74 syncpoint

Figure 56 (Part 5 of 13). Example dmpmqlog output

 Chapter 15. Recovery and restart 237

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:54192>
\\\\\\\\\\

HLG Header: lrecsize 216, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Commit Transaction (774)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High ð, Low 1}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:52482>

Version : 1
LOG RECORD - LSN <ð:ð:ð:544ð8>
\\\\\\\\\\

HLG Header: lrecsize 22ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Start Transaction (769)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 2ðð LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High ð, Low 3}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 1
SoftLogLimit . : 1ðððð

LOG RECORD - LSN <ð:ð:ð:54628>
\\\\\\\\\\

HLG Header: lrecsize 24ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : AQM Get Message (259)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 22ð LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: MQI TranNum{High ð, Low 3}
QueueName . . . : Queue1
Qid : {Hash 196836ð31, Counter: ð}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:544ð8>

Version : 2
SpcIndex . . . : 1 QPriority . . . : ð
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High 4294967295, Low 4294967295}

Figure 56 (Part 6 of 13). Example dmpmqlog output

238 MQSeries System Administration

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:54868>
\\\\\\\\\\

HLG Header: lrecsize 24ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : AQM Get Message (259)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 22ð LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: NULL
QueueName . . . : Queue2
Qid : {Hash 184842943, Counter: 2}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 2
SpcIndex . . . : 1 QPriority . . . : ð
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High 4294967295, Low 4294967295}
LOG RECORD - LSN <ð:ð:ð:551ð8>
\\\\\\\\\\

HLG Header: lrecsize 216, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Commit Transaction (774)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: MQI TranNum{High ð, Low 3}
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:54628>

Version : 1

LOG RECORD - LSN <ð:ð:ð:55324>
\\\\\\\\\\

HLG Header: lrecsize 22ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Start Transaction (769)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 2ðð LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: XA

XID: formatID 5ð67ð85, gtrid_length 14, bqual_length 4
 gtrid [327ðBDB4ðððð1ð2374657374716D]
 bqual [ððððððð1]
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 1
SoftLogLimit . : 1ðððð

Figure 56 (Part 7 of 13). Example dmpmqlog output

 Chapter 15. Recovery and restart 239

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:55544>
\\\\\\\\\\

HLG Header: lrecsize 738, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : AQM Put Message (257)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 718 LogRecdOwnr . . : 256 (AQM)
XTranid : TranType: XA

XID: formatID 5ð67ð85, gtrid_length 14, bqual_length 4
 gtrid [327ðBDB4ðððð1ð2374657374716D]
 bqual [ððððððð1]
QueueName . . . : Queue2
Qid : {Hash 184842943, Counter: 2}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:55324>

Version : 3
SpcIndex . . . : 1
PrevLink.Locn . : 36 PrevLink.Length : 8
PrevDataLink . : {High ð, Low 2ð48}
Data.Locn . . . : 2ð48 Data.Length . . : 494
Data :
ððððð: 41 51 52 48 ðð ðð ðð ð4 FF FF FF FF FF FF FF FF AQRH............
ððð16: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ð1 ðð ð1 ð1 Cð¿
ððð32: ðð ðð ðð ðð ðð ðð ðð ð1 ðð ðð ðð 2A ðð ðð ðð ðð\....
ððð48: ðð ðð ðð ð1 41 4D 51 2ð 74 65 73 74 71 6D 2ð 2ðAMQ testqm
ððð64: 2ð 2ð 2ð 2ð 33 8ð 2D D2 ðð ðð 1ð 13 ðð ðð ðð ðð 3ä-�........
ððð8ð: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ððð96: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð112: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ð1
ðð128: ðð ðð ðð ðð ðð ðð ðð 2A ðð ðð ðð ðð ðð ðð ðð ðð\........
ðð144: ðð ðð ðð ðð ðð ðð ðð C9 2C B8 3E E8 FF FF FF FF�,fl>.....
ðð16ð: 4D 44 2ð 2ð ðð ðð ðð ð1 ðð ðð ðð ðð ðð ðð ðð ð8 MD
ðð176: ðð ðð ðð ðð ðð ðð ð1 11 ðð ðð ð3 33 2ð 2ð 2ð 2ð3
ðð192: 2ð 2ð 2ð 2ð ðð ðð ðð ðð ðð ðð ðð ð1 2ð 2ð 2ð 2ð
ðð2ð8: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð224: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð24ð: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 74 65 73 74 test
ðð256: 71 6D 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð qm
ðð272: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð288: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 73 62 6F 6C sbol
ðð3ð4: 61 6D 2ð 2ð 2ð 2ð 2ð 2ð ð4 37 34 38 3ð ðð ðð ðð am .748ð...
ðð32ð: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð336: ðð ðð ðð ðð ðð ðð ðð ðð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð352: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð
ðð368: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð ðð ðð ðð ð6 75 74 7A 61utza
ðð384: 7ð 69 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð pi
ðð4ðð: 2ð 2ð 2ð 2ð 2ð 2ð 2ð 2ð 31 39 39 37 3ð 35 31 39 1997ð519
ðð416: 31 3ð 34 34 35 38 37 32 2ð 2ð 2ð 2ð ðð ðð ðð ðð 1ð445872
ðð432: ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð ðð
ðð448: 41 6E 6F 74 68 65 72 2ð 7ð 65 72 73 69 73 74 65 Another persiste
ðð464: 6E 74 2ð 6D 65 73 73 61 67 65 2ð 7ð 75 74 2ð 75 nt message put u
ðð48ð: 6E 64 65 72 2ð 73 79 6E 63 7ð 6F 69 6E 74 nder syncpoint

Figure 56 (Part 8 of 13). Example dmpmqlog output

240 MQSeries System Administration

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:56282>
\\\\\\\\\\

HLG Header: lrecsize 216, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Prepare Transaction (77ð)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: XA

XID: formatID 5ð67ð85, gtrid_length 14, bqual_length 4
 gtrid [327ðBDB4ðððð1ð2374657374716D]
 bqual [ððððððð1]
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:55544>

Version : 1

LOG RECORD - LSN <ð:ð:ð:56498>
\\\\\\\\\\

HLG Header: lrecsize 7ð8, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : Transaction Prepared (1538)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 688 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: XA

XID: formatID 5ð67ð85, gtrid_length 14, bqual_length 4
 gtrid [327ðBDB4ðððð1ð2374657374716D]
 bqual [ððððððð1]
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Id. : TLPR
Version : 1 Flags : 1
Count : 3

Participant Entry ð
RMId : ð State : 2

Participant Entry 1
RMId : 1 State : 2

Participant Entry 2
RMId : 2 State : 2

Figure 56 (Part 9 of 13). Example dmpmqlog output

 Chapter 15. Recovery and restart 241

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:572ð6>
\\\\\\\\\\

HLG Header: lrecsize 216, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Commit Transaction (774)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 196 LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: XA

XID: formatID 5ð67ð85, gtrid_length 14, bqual_length 4
 gtrid [327ðBDB4ðððð1ð2374657374716D]
 bqual [ððððððð1]
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:56282>

Version : 1
LOG RECORD - LSN <ð:ð:ð:5744ð>
\\\\\\\\\\

HLG Header: lrecsize 224, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : Transaction Forget (1539)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 2ð4 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: XA

XID: formatID 5ð67ð85, gtrid_length 14, bqual_length 4
 gtrid [327ðBDB4ðððð1ð2374657374716D]
 bqual [ððððððð1]
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Id. : TLFG
Version : 1 Flags : ð

Figure 56 (Part 10 of 13). Example dmpmqlog output

242 MQSeries System Administration

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:5812ð>
\\\\\\\\\\

HLG Header: lrecsize 212, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ALM Start Checkpoint (1ð25)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 192 LogRecdOwnr . . : 1ð24 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

No data for Start Checkpoint Record

LOG RECORD - LSN <ð:ð:ð:58332>
\\\\\\\\\\

HLG Header: lrecsize 22ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ATM Transaction Table (773)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 2ðð LogRecdOwnr . . : 768 (ATM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 1
TranCount . . . : ð

Figure 56 (Part 11 of 13). Example dmpmqlog output

 Chapter 15. Recovery and restart 243

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:58552>
\\\\\\\\\\

HLG Header: lrecsize 1836, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : Transaction Participants (1537)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 1816 LogRecdOwnr . . : 1536 (T)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Id. : TLPH
Version : 1 Flags : 3
Count : 2

Participant Entry ð
RMName : DB2 MQBankDB
RMId : 1
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

Participant Entry 1
RMName : DB2 MQFeeDB
RMId : 2
SwitchFile . . : /Development/sbolam/build/devlib/tstxasw
XAOpenString . :
XACloseString . :

LOG RECORD - LSN <ð:ð:ð:6ð388>
\\\\\\\\\\

HLG Header: lrecsize 236, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ALM End Checkpoint (1ð26)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 216 LogRecdOwnr . . : 1ð24 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

ChkPtLSN . . . : <ð:ð:ð:5812ð>
OldestLSN . . . : <ð:ð:ð:ð>
MediaLSN . . . : <ð:ð:ð:ð>

Figure 56 (Part 12 of 13). Example dmpmqlog output

244 MQSeries System Administration

 Using dmpmqlog

LOG RECORD - LSN <ð:ð:ð:6ð624>
\\\\\\\\\\

HLG Header: lrecsize 24ð, version 1, rmid ð, eyecatcher HLRH

LogRecdType . . : ALM Stop Queue Manager (1ð28)
Eyecatcher . . : ALRH Version : 1
LogRecdLen . . : 22ð LogRecdOwnr . . : 1ð24 (ALM)
XTranid : TranType: NULL
QueueName . . . : NULL
Qid : {NULL_QID}
ThisLSN : <ð:ð:ð:ð>
PrevLSN : <ð:ð:ð:ð>

Version : 1
StopDate . . . : 1997ð519 StopTime . . . : 1ð49ð868
SessionNumber . : ð ForceFlag . . . : Quiesce

AMQ77ð2: DMPMQLOG command has finished successfully.

Figure 56 (Part 13 of 13). Example dmpmqlog output

Notes for Figure 56 on page 233:

1. The headlsn in the Log File Header has a value of <0:0:0:58120>. This is
where the dump would have started had we not requested a different starting
LSN.

2. The nextlsn is <0:0:0:60864> which will be the LSN of the first log record that
the queue manager will write when it is next restarted.

3. The HeadExtentID is 1, indicating that the head of the log currently resides in
log file S0000001.LOG.

4. The first log record formatted is a Start Checkpoint log record. The
checkpoint spans a number of log records until the End CheckPoint record at
<0:0:0:46448>.

5. One of the records logged during checkpoint is the Transaction Participants
log record at <0:0:0:44594>. This details the resource managers that
participate in global transactions coordinated by the queue manager.

6. The Start Transaction log record at <0:0:0:52262> denotes the start of a
transaction. The XTranid shows a TranType of MQI, which indicates that it is a
local transaction including MQ updates only.

7. The next log record is a Put Message log record that records the persistent
MQPUT under the syncpoint that started the transaction. The MQPUT was
made to the queue Queue1 and the message data is logged as Persistent
message put under syncpoint. This message has been allocated a SpcIndex
of 1, which will be matched to the later MQGET of this message.

8. The next log record at LSN <0:0:0:53458> is also a Put Message record. This
persistent message was put to a different queue, Queue2, but was not made
under syncpoint since the XTranid is NULL. It too has a SpcIndex of 1, which is
a unique identifier for this particular queue.

9. The next log record at LSN <0:0:0:54192> commits the message that was put
under syncpoint.

 Chapter 15. Recovery and restart 245

 Using dmpmqlog

10. In log records <0:0:0:54408> and <0:0:0:54628> a new transaction is started by
an MQGET under syncpoint for queue Queue1. The SpcIndex in the Get
Message log record is 1 indicating that this was the same message that was put
to Queue1 in <0:0:0:52262>.

11. The next log record gets the message that was put to Queue2 by the other Put
Message log record.

12. The MQGET under syncpoint has been committed as indicated by the Commit
Transaction log record at <0:0:0:55108>.

13. Finally an MQBEGIN is used to start a global transaction in the Start
Transaction log record at <0:0:0:55324>. The XTranid in this log record has a
TranType of XA.

14. The following Put Message records a persistent message put to Queue2. This
shares the same XTranid as the previous log record.

15. If a Transaction Prepared log record is written for this Xtranid then the
transaction as a whole must be committed. The absence of such a log record
can be taken as an indication that the transaction was rolled back. In this case
a Transaction Prepared log record is found at <0:0:0:56498>. This records the
queue manager itself as a participant with an RMId of zero. There are two
further participants, their RMIds of 1 and 2 can be matched with the previous
Transaction Participants log record.

16. During the commit phase the XA Transaction Manager component of the queue
manager does not log individual responses from the participants. The log
indicates only whether the queue manager updates were committed or not.
The Commit Transaction log record at <0:0:0:57206> indicates that the
message was indeed committed to Queue2.

17. The Transaction Forget log record at <0:0:0:57440> indicates that the commit
decision was also delivered to the other two resource managers. Any failure of
these resource managers to commit their updates will have been diagnosed in
the queue manager’s error logs.

246 MQSeries System Administration

 Problem determination � Preliminary checks

 Chapter 16. Problem determination

This chapter suggests reasons for some of the problems you may have using
MQSeries. You usually start with a symptom, or set of symptoms, and trace them
back to their cause.

Problem determination is not problem solving. However, the process of problem
determination often enables you to solve a problem. For example, if you find that
the cause of the problem is an error in an application program, you can solve the
problem by correcting the error.

The process of problem determination is that you start with the symptoms and trace
them back to their cause.

Not all problems can be solved immediately, for example, performance problems
caused by the limitations of your hardware. Also, if you think that the cause of the
problem is in the MQSeries code, contact your IBM Support Center. This chapter
contains these sections:

 � “Preliminary checks”
� “What to do next” on page 251
� “Application design considerations” on page 255
� “Incorrect output” on page 256
� “Error logs” on page 259
� “Dead-letter queues” on page 263
� “Configuration files and problem determination” on page 263
� “Tracing” on page 263
� “First-failure support technology (FFST)” on page 270
� “Problem determination with clients” on page 274

 Preliminary checks
Before you start problem determination in detail, it is worth considering the facts to
see if there is an obvious cause of the problem, or a likely area in which to start
your investigation. This approach to debugging can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

The cause of your problem could be in:

 � MQSeries
 � The network
 � The application

The sections that follow raise some fundamental questions that you need to
consider. As you work through the questions, make a note of anything that might
be relevant to the problem. Even if your observations do not suggest a cause
immediately, they could be useful later if you have to carry out a systematic
problem determination exercise.

 Copyright IBM Corp. 1994,1999 247

 Preliminary checks

Has MQSeries run successfully before?
If MQSeries has not run successfully before, it is likely that you have not yet set it
up correctly. See one of the following publications to check that you have installed
the product correctly, and ensure that the Installation Verification Test (IVT) has
been run:

� “Chapter 3. Installing the MQSeries for AIX Server” in the MQSeries for AIX
V5.1 Quick Beginnings book

� “Chapter 3. Installing MQSeries for OS/2 Warp” in the MQSeries for OS/2
Warp V5.1 Quick Beginnings book

� “Chapter 3. Installing the MQSeries for HP-UX Server” in the MQSeries for
HP-UX V5.1 Quick Beginnings book

� “Chapter 3. Installing the MQSeries for Sun Solaris Server” in the MQSeries for
Sun Solaris V5.1 Quick Beginnings book

� Chapter 4, “Installing MQSeries for Windows NT” in the MQSeries for Windows
NT V5.1 Quick Beginnings book

Also look at the MQSeries Intercommunication book for information about
post-installation configuration of MQSeries.

Are there any error messages?
MQSeries uses error logs to capture messages concerning the operation of
MQSeries itself, any queue managers that you start, and error data coming from
the channels that are in use. Check the error logs to see if any messages have
been recorded that are associated with your problem.

See “Error logs” on page 259 for information about the contents of the error logs,
and their locations.

Are there any return codes explaining the problem?
If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, refer to Chapter 5, “Return codes” in the MQSeries
Application Programming Reference manual for a description of that return code.

Can you reproduce the problem?
If you can reproduce the problem, consider the conditions under which it is
reproduced:

� Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

� Is it caused by a program? Does it fail on all MQSeries systems and all queue
managers, or only on some?

� Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

248 MQSeries System Administration

 Preliminary checks

Have any changes been made since the last successful run?
When you are considering changes that might recently have been made, think
about the MQSeries system, and also about the other programs it interfaces with,
the hardware, and any new applications. Consider also the possibility that a new
application that you are not aware of might have been run on the system.

� Have you changed, added, or deleted any queue definitions?

� Have you changed or added any channel definitions? Changes may have
been made to either MQSeries channel definitions or any underlying
communications definitions required by your application.

� Do your applications deal with return codes that they might get as a result of
any changes you have made?

� Have you changed any component of the operating system that could affect the
operation of MQSeries? For example, have you modified the Windows NT
Registry hive?

Has the application run successfully before?
If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Before you answer Yes to this question, consider the following:

� Have any changes been made to the application since it last ran successfully?

If so, it is likely that the error lies somewhere in the new or modified part of the
application. Take a look at the changes and see if you can find an obvious
reason for the problem. Is it possible to retry using a back level of the
application?

� Have all the functions of the application been fully exercised before?

Could it be that the problem occurred when part of the application that had
never been invoked before was used for the first time? If so, it is likely that the
error lies in that part of the application. Try to find out what the application was
doing when it failed, and check the source code in that part of the program for
errors.

If a program has been run successfully on many previous occasions, check the
current queue status, and the files that were being processed when the error
occurred. It is possible that they contain some unusual data value that causes
a rarely used path in the program to be invoked.

� Does the application check all return codes?

Has your MQSeries system been changed, perhaps in a minor way, such that
your application does not check the return codes it receives as a result of the
change. For example, does your application assume that the queues it
accesses can be shared? If a queue has been redefined as exclusive, can
your application deal with return codes indicating that it can no longer access
that queue?

� Does the application run on other MQSeries systems?

Could it be that there is something different about the way that this MQSeries
system is set up which is causing the problem? For example, have the queues
been defined with the same message length or priority?

 Chapter 16. Problem determination 249

 Preliminary checks

If the application has not run successfully before
If your application has not yet run successfully, you need to examine it carefully to
see if you can find any errors.

Before you look at the code, and depending upon which programming language the
code is written in, examine the output from the translator, or the compiler and
linkage editor, if applicable, to see if any errors have been reported.

If your application fails to translate, compile, or link-edit into the load library, it will
also fail to run if you attempt to invoke it. See the MQSeries Application
Programming Guide for information about building your application.

If the documentation shows that each of these steps was accomplished without
error, you should consider the coding logic of the application. Do the symptoms of
the problem indicate the function that is failing and, therefore, the piece of code in
error? See “Common programming errors” for some examples of common errors
that cause problems with MQSeries applications.

Common programming errors
The errors in the following list illustrate the most common causes of problems
encountered while running MQSeries programs. You should consider the possibility
that the problem with your MQSeries system could be caused by one or more of
these errors:

� Assuming that queues can be shared, when they are in fact exclusive.

� Passing incorrect parameters in an MQI call.

� Passing insufficient parameters in an MQI call. This may mean that MQI
cannot set up completion and reason codes for your application to process.

� Failing to check return codes from MQI requests.

� Passing variables with incorrect lengths specified.

� Passing parameters in the wrong order.

� Failing to initialize MsgId and CorrelId correctly.

� Failing to initialize Encoding and CodedCharSetId following
MQRC_TRUNCATED_MSG_ACCEPTED.

Problems with commands
You should be careful when including special characters, for example, back slash
(\) and double quote (”) characters, in descriptive text for some commands. If you
use either of these characters in descriptive text, precede them with a \, that is,
enter \\ or \” if you want \ or ” in your text.

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of MQSeries has been started.

250 MQSeries System Administration

 What next

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue and any remote queues.

Have you made any network-related changes, or changed any MQSeries
definitions, that might account for the problem?

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon, so these are the times when load-dependent problems are most
likely to occur. (If your MQSeries network extends across more than one time
zone, peak system loading might seem to occur at some other time of day.)

Is the problem intermittent?
An intermittent problem could be caused by failing to take into account the fact that
processes can run independently of each other. For example, a program may
issue an MQGET call without specifying a wait option before an earlier process has
completed. An intermittent problem may also be seen if your application tries to get
a message from a queue while the call that put the message is in-doubt (that is,
before it has been committed or backed out).

Have you applied any service updates?
If a service update has been applied to MQSeries, check that the update action
completed successfully and that no error message was produced.

� Did the update have any special instructions?

� Was any test run to verify that the update had been applied correctly and
completely?

� Does the problem still exist if MQSeries is restored to the previous service
level?

� If the installation was successful, check with the IBM Support Center for any
PTF error.

� If a PTF has been applied to any other program, consider the effect it might
have on the way MQSeries interfaces with it.

What to do next
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the MQSeries library (see “MQSeries publications” on page xvi) and in the libraries
of other licensed programs.

If you have not yet found the cause, you must start to look at the problem in
greater detail.

The purpose of this section is to help you identify the cause of your problem if the
preliminary checks have not enabled you to find it.

When you have established that no changes have been made to your system, and
that there are no problems with your application programs, choose the option that
best describes the symptoms of your problem.

 Chapter 16. Problem determination 251

 What next

� “Have you obtained incorrect output?” on page 252
� “Have you failed to receive a response from a PCF command?”
� “Does the problem affect only remote queues?” on page 254
� “Is your application or system running slowly?” on page 254

If none of these symptoms describe your problem, consider whether it might have
been caused by another component of your system.

Have you obtained incorrect output?
In this book, “incorrect output” refers to your application:

� Not receiving a message that it was expecting.

� Receiving a message containing unexpected or corrupted information.

� Receiving a message that it was not expecting, for example, one that was
destined for a different application.

In all cases, check that any queue or queue manager aliases that your applications
are using are correctly specified and accommodate any changes that have been
made to your network.

If an MQSeries error message is generated, all of which are prefixed with the
letters “AMQ,” you should look in the error log. See “Error logs” on page 259 for
further information.

Have you failed to receive a response from a PCF command?
If you have issued a command but you have not received a response, consider the
following questions:

� Is the command server running?

Work with the dspmqcsv command to check the status of the command
server.

– If the response to this command indicates that the command server is not
running, use the strmqcsv command to start it.

– If the response to the command indicates that the
SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

� Has a reply been sent to the dead-letter queue?

The dead-letter queue header structure contains a reason or feedback code
describing the problem. See “MQDLH - Dead-letter header” in the MQSeries
Application Programming Reference manual for information about the
dead-letter queue header structure (MQDLH).

If the dead-letter queue contains messages, you can use the provided browse
sample application (amqsbcg) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for
a named queue manager, displaying both the message descriptor and the
message context fields for all the messages on the named queue.

� Has a message been sent to the error log?

See “Error logs” on page 259 for further information.

� Are the queues enabled for put and get operations?

252 MQSeries System Administration

 What next

� Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See “MQGMO -
Get-message options” and “MQGET - Get message” in the MQSeries
Application Programming Reference manual for information about the
WaitInterval field, and completion and reason codes from MQGET.)

� If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?

Unless you have specifically excluded your request message from syncpoint,
you need to take a syncpoint before attempting to receive reply messages.

� Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

� Are you using the CorrelId and MsgId fields correctly?

Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the MQSeries system. First try stopping individual queue
managers to try and isolate a failing queue manager. If this does not reveal the
problem, try stopping and restarting MQSeries, responding to any messages that
are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

Are some of your queues failing?
If you suspect that the problem occurs with only a subset of queues, check the
local queues that you think are having problems:

1. Display the information about each queue. You can use the MQSC command
DISPLAY QUEUE to display the information.

2. Use the data displayed to do the following checks:

� If CURDEPTH is at MAXDEPTH, this indicates that the queue is not being
processed. Check that all applications are running normally.

� If CURDEPTH is not at MAXDEPTH, check the following queue attributes
to ensure that they are correct:

– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth too great? That is, does it generate a trigger

event often enough?
- Is the process name correct?
- Is the process available and operational?

– Can the queue be shared? If not, another application could already
have it open for input.

– Is the queue enabled appropriately for GET and PUT?

 Chapter 16. Problem determination 253

 What next

� If there are no application processes getting messages from the queue,
determine why this is so. It could be because the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed
for some reason.

Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a
value is zero, it indicates that no operations of that type can occur. Note
that the values may have changed and that the queue was open but is now
closed.

You need to check the status at the time you expect to put or get a
message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:

� Check that required channels have been started, that they can be triggered,
and that any required initiators are running.

� Check that the programs that should be putting messages to the remote
queues have not reported problems.

� If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the trigger monitor
is running.

� Check the error logs for messages indicating channel errors or problems.

� If necessary, start the channel manually. See “Preparing channels” in the
MQSeries Intercommunication book for information about starting channels.

Is your application or system running slowly?
If your application is running slowly, this could indicate that it is in a loop, or waiting
for a resource that is not available.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity. This type of problem is probably
worst at peak system load times, typically at mid-morning and mid-afternoon. (If
your network extends across more than one time zone, peak system load might
seem to occur at some other time.)

A performance problem may be caused by a limitation of your hardware.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, a poorly designed
application program is probably to blame. This could manifest itself as a problem
that only occurs when certain queues are accessed.

The following symptoms might indicate that MQSeries is running slowly:

� Your system is slow to respond to MQSeries commands.

� Repeated displays of the queue depth indicate that the queue is being
processed slowly for an application with which you would expect a large
amount of queue activity.

254 MQSeries System Administration

 Application design considerations

If the performance of your system is still degraded after reviewing the above
possible causes, the problem may lie with MQSeries itself. If you suspect this, you
need to contact your IBM Support Center for assistance.

Application design considerations
There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making MQSeries calls are discussed in the following sections.

For more information about application design, see Chapter 2, “Overview of
application design” in the MQSeries Application Programming Guide.

Effect of message length
The amount of data in a message can affect the performance of the application that
processes the message. To achieve the best performance from your application,
you should send only the essential data in a message; for example, in a request to
debit a bank account, the only information that may need to be passed from the
client to the server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are logged. Logging messages reduces the performance of
your application, so you should use persistent messages for essential data only. If
the data in a message can be discarded if the queue manager stops or fails, use a
nonpersistent message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLength attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be as high as 100 MB, the maximum allowed by MQSeries.

 Chapter 16. Problem determination 255

 Incorrect output

Note also that if you do not set the MaxMsgLength attribute explicitly, it defaults to 4
MB, which may be very inefficient.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with
messages that are currently inaccessible, while other tasks might be waiting to get
these messages. This has implications in terms of storage, and in terms of threads
tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Number of threads in use
For MQSeries for OS/2 Warp and MQSeries for Windows NT, an application may
require a large number of threads. Each queue manager process is allocated a
maximum allowable number of threads.

If some applications are troublesome, it could be due to their design using too
many threads. Consider whether the application takes into account this possibility
and that it takes actions either to stop or to report this type of occurrence.

The maximum number of threads that OS/2 allows is 4095. However, the default is
64. The default can be changed with the THREADS=xxxx parameter in
CONFIG.SYS. MQSeries makes available up to 63 threads to its processes.

 Incorrect output
The term “incorrect output” can be interpreted in many different ways. For the
purpose of problem determination within this book, the meaning is explained in
“Have you obtained incorrect output?” on page 252.

Two types of incorrect output are discussed in this section:

� Messages that do not appear when you are expecting them

� Messages that contain the wrong information, or information that has been
corrupted

Additional problems that you might find if your application includes the use of
distributed queues are also discussed.

Messages that do not appear on the queue
If messages do not appear when you are expecting them, check for the following:

� Has the message been put on the queue successfully?

– Has the queue been defined correctly. For example, is MAXMSGL
sufficiently large?

– Is the queue enabled for putting?

256 MQSeries System Administration

 Incorrect output

– Is the queue already full? This could mean that an application was unable
to put the required message on the queue.

– Has another application got exclusive access to the queue?

� Are you able to get any messages from the queue?

– Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not
available to other tasks until the unit of recovery has been committed.

– Is your wait interval long enough?

You can set the wait interval as an option for the MQGET call. You should
ensure that you are waiting long enough for a response.

– Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?

Check that you are waiting for a message with the correct MsgId or
CorrelId. A successful MQGET call sets both these values to that of the
message retrieved, so you may need to reset these values in order to get
another message successfully.

Also, check whether you can get other messages from the queue.

– Can other applications get messages from the queue?

– Was the message you are expecting defined as persistent?

If not, and MQSeries has been restarted, the message has been lost.

– Has another application got exclusive access to the queue?

If you are unable to find anything wrong with the queue, and MQSeries is running,
make the following checks on the process that you expected to put the message on
to the queue:

� Did the application get started?

If it should have been triggered, check that the correct trigger options were
specified.

� Did the application stop?

� Is a trigger monitor running?

� Was the trigger process defined correctly?

� Did the application complete correctly?

Look for evidence of an abnormal end in the job log.

� Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multiple server environment must be designed to cope
with this situation.

 Chapter 16. Problem determination 257

 Incorrect output

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information” on page 258.

Messages that contain unexpected or corrupted information
If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:

� Has your application, or the application that put the message onto the queue,
changed?

Ensure that all changes are simultaneously reflected on all systems that need
to be aware of the change.

For example, the format of the message data may have been changed, in
which case, both applications must be recompiled to pick up the changes. If
one application has not been recompiled, the data will appear corrupt to the
other.

� Is an application sending messages to the wrong queue?

Check that the messages your application is receiving are not really intended
for an application servicing a different queue. If necessary, change your
security definitions to prevent unauthorized applications from putting messages
on to the wrong queues.

If your application has used an alias queue, check that the alias points to the
correct queue.

� Has the trigger information been specified correctly for this queue?

Check that your application should have been started; or should a different
application have been started?

If these checks do not enable you to solve the problem, you should check your
application logic, both for the program sending the message, and for the program
receiving it.

Problems with incorrect output when using distributed queues
If your application uses distributed queues, you should also consider the following
points:

� Has MQSeries been correctly installed on both the sending and receiving
systems, and correctly configured for distributed queuing?

� Are the links available between the two systems?

Check that both systems are available, and connected to MQSeries. Check
that the connection between the two systems is active.

You can use an MQSeries PING command against either the queue manager
(PING QMGR) or the channel (PING CHANNEL) to verify that the link is
operable.

� Is triggering set on in the sending system?

� Is the message you are waiting for a reply message from a remote system?

Check that triggering is activated in the remote system.

� Is the queue already full?

258 MQSeries System Administration

 Error logs

This could mean that an application was unable to put the required message
onto the queue. If this is so, check if the message has been put onto the
dead-letter queue.

The dead-letter queue header contains a reason or feedback code explaining
why the message could not be put onto the target queue. See “MQDLH -
Dead-letter header” in the MQSeries Application Programming Reference
manual for information about the dead-letter queue header structure.

� Is there a mismatch between the sending and receiving queue managers?

For example, the message length could be longer than the receiving queue
manager can handle.

� Are the channel definitions of the sending and receiving channels compatible?

For example, a mismatch in sequence number wrap stops the distributed
queuing component. See the MQSeries Intercommunication book for more
information about distributed queuing.

� Is data conversion involved? If the data formats between the sending and
receiving applications differ, data conversion is necessary. Automatic
conversion occurs when the MQGET is issued if the format is recognized as
one of the built-in formats.

If the data format is not recognized for conversion, the data conversion exit is
taken to allow you to perform the translation with your own routines.

Refer to Chapter 11, “Writing data-conversion exits” in the MQSeries
Application Programming Guide for further details of data conversion.

 Error logs
MQSeries uses a number of error logs to capture messages concerning the
operation of MQSeries itself, any queue managers that you start, and error data
coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known and whether the error is associated with a client.

In MQSeries for UNIX systems:

� If the queue manager name is known and the queue manager is available,
error logs are located in:

/var/mqm/qmgrs/qmname/errors

� If the queue manager is not available, error logs are located in:

/var/mqm/qmgrs/@SYSTEM/errors

� If an error has occurred with a client application, error logs are located on the
client’s root drive in

/var/mqm/errors

In MQSeries for OS/2 Warp and Windows NT, and assuming that MQSeries has
been installed on the C drive in the MQM directory:

� If the queue manager name is known and the queue manager is available,
error logs are located in:

c:\mqm\qmgrs\qmname\errors

 Chapter 16. Problem determination 259

 Error logs

� If the queue manager is not available, error logs are located in:

c:\mqm\qmgrs\@SYSTEM\errors

� If an error has occurred with a client application, error logs are located on the
client’s root drive in:

c:\mqm\errors

In MQSeries for Windows NT only, an indication of the error is also added to the
Application Log, which can be examined with the Event Viewer application provided
with Windows NT.

You can also examine the Registry to help resolve any errors. The Registry Editor
supplied with Windows NT allows you to filter errors that are placed in the Event
Log by placing the code in the following Registry entry:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\IgnoredErrorCodes

For example, to ignore error 5000, add AMQ5000 to the list.

 Log files
At installation time an @SYSTEM errors subdirectory is created in the qmgrs file
path. The errors subdirectory can contain up to three error log files named:

 � AMQERR01.LOG
 � AMQERR02.LOG
 � AMQERR03.LOG

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files have the same names as the
@SYSTEM ones, that is AMQERR01, AMQERR02, and AMQERR03, and each
has a capacity of 256 KB. The files are placed in the errors subdirectory of each
queue manager that you create.

As error messages are generated, they are placed in AMQERR01. When
AMQERR01 gets bigger than 256 KB it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files unless the name of their queue manager is unknown or the
queue manager is unavailable. When the queue manager name is unavailable or
its name cannot be determined, channel-related messages are placed in the
@SYSTEM errors subdirectory.

To examine the contents of any error log file, use your usual system editor.

260 MQSeries System Administration

 Error logs

 Early errors
There are a number of special cases where the above error logs have not yet been
established and an error occurs. MQSeries attempts to record any such errors in
an error log. The location of the log depends on how much of a queue manager
has been established.

If, due to a corrupt configuration file for example, no location information can be
determined, errors are logged to an errors directory that is created at installation
time on the root directory (/var/mqm or C:\MQM).

If the MQSeries configuration file is readable, and the DefaultPrefix attribute of the
AllQueueManagers stanza is readable, errors are logged in the errors subdirectory
of the directory identified by the DefaultPrefix attribute. For example, if the
DefaultPrefix is C:\MQM, errors are logged in C:\MQM\ERRORS.

For further information about configuration files, see Chapter 11, “Configuring
MQSeries” on page 127.

| Note: Errors in the Windows NT Registry are notified by messages when a queue
| manager is started.

 Operator messages
Operator messages identify normal errors, typically caused directly by users doing
things like using parameters that are not valid on a command. Operator messages
are national language enabled, with message catalogs installed in standard
locations.

These messages are written to the associated window, if any. In addition, some
operator messages are written to the AMQERR01.LOG file in the queue manager
directory, and others to the @SYSTEM directory copy of the error log.

An example MQSeries error log
Figure 57 on page 262 shows a typical extract from an MQSeries error log.

 Chapter 16. Problem determination 261

 Error logs

 ...
ð8/ð1/97 11:41:56 AMQ8ðð3: MQSeries queue manager started.
EXPLANATION: MQSeries queue manager janet started.
ACTION: None.

ð8/ð1/97 11:56:52 AMQ9ðð2: Channel program started.
EXPLANATION: Channel program 'JANET' started.
ACTION: None.

ð8/ð1/97 11:57:26 AMQ92ð8: Error on receive from host 'camelot
(9.2ð.12.34)'.
EXPLANATION: An error occurred receiving data from 'camelot
(9.2ð.12.34)' over TCP/IP. This may be due to a communications failure.
ACTION: Record the TCP/IP return code 232 (X'E8') and tell the
systems administrator.

ð8/ð1/97 11:57:27 AMQ9999: Channel program ended abnormally.
EXPLANATION: Channel program 'JANET' ended abnormally.
ACTION: Look at previous error messages for channel program
'JANET' in the error files to determine the cause of the failure.

ð8/ð1/97 14:28:57 AMQ8ðð4: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.
ACTION: None.

ð8/ð2/97 15:ð2:49 AMQ9ðð2: Channel program started.
EXPLANATION: Channel program 'JANET' started.
ACTION: None.

ð8/ð2/97 15:ð2:51 AMQ9ðð1: Channel program ended normally.
EXPLANATION: Channel program 'JANET' ended normally.
ACTION: None.
ð8/ð2/97 15:ð9:27 AMQ7ð3ð: Request to quiesce the queue manager
accepted. The queue manager will stop when there is no further
work for it to perform.
EXPLANATION: You have requested that the queue manager end when
there is no more work for it. In the meantime, it will refuse
new applications that attempt to start, although it allows those
already running to complete their work.
ACTION: None.

ð8/ð2/97 15:ð9:32 AMQ8ðð4: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.
ACTION: None.
 ...

Figure 57. Extract from an MQSeries error log

The MQSeries log-dump utility
For a description of the dmpmqlog command, see “dmpmqlog (Dump log)” on
page 291.

262 MQSeries System Administration

 Dead-letter queues � Tracing

 Dead-letter queues
Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing an
MQSC DISPLAY QUEUE command. If the queue contains messages, you can use
the provided browse sample application (amqsbcg) to browse messages on the
queue using the MQGET call. The sample application steps through all the
messages on a named queue for a named queue manager, displaying both the
message descriptor and the message context fields for all the messages on the
named queue. See “Browsing queues” on page 74 for more information about
running this sample and about the kind of output it produces.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems may occur if you do not associate a dead-letter queue with each queue
manager. For more information about dead-letter queues, see Chapter 12, “The
MQSeries dead-letter queue handler” on page 157.

Configuration files and problem determination
Configuration file errors typically prevent queue managers from being found, and
result in “queue manager unavailable” type errors. Ensure that the configuration
files exist, and that the MQSeries configuration file references the correct queue
manager and log directories.

| Note: Errors in the Windows NT Registry are notified by messages when a queue
| manager is started.

 Tracing
This section describes how to produce a trace for each of the MQSeries Version 5
products.

Tracing MQSeries for AIX
MQSeries for AIX uses the standard AIX system trace. Tracing is a two-step
process:

1. Gathering the data
2. Formatting the results

MQSeries uses two trace hook identifiers:

X'30D' This event is recorded by MQSeries on entry to or exit from a
subroutine.

X'30E' This event is recorded by MQSeries to trace data such as that being
sent or received across a communications network.

Trace provides detailed execution tracing to help you to analyze problems. IBM
service support personnel may ask for a problem to be recreated with trace
enabled. The files produced by trace can be very large so it is important to qualify
a trace, where possible. For example, you can optionally qualify a trace by time
and by component.

 Chapter 16. Problem determination 263

 Tracing

There are two ways to run trace:

 1. Interactively

The following sequence of commands runs an interactive trace on the program
myprog and ends the trace.

trace -j3ðD,3ðE -o trace.file
->!myprog
->q

 2. Asynchronously

The following sequence of commands runs an asynchronous trace on the
program myprog and ends the trace.

trace -a -j3ðD,3ðE -o trace.file
myprog
trcstop

You can format the trace file with the command:

trcrpt -t mqmtop/lib/amqtrc.fmt trace.file > report.file

report.file is the name of the file where you want to put the formatted trace
output.

Note: All MQSeries activity on the machine is traced while the trace is active.

Selective component tracing
You should set the environment variable MQS_TRACE_OPTIONS only if you have
been instructed to do so by your service personnel.

The environment variable MQS_TRACE_OPTIONS can be used to activate the
high detail and parameter tracing functions individually. Because it enables tracing
to be active without these functions, you can use it to reduce the overhead on
execution speed when you are trying to reproduce a problem with tracing switched
on. Table 17 on page 265 defines the trace behavior under the various settings of
MQS_TRACE_OPTIONS.

264 MQSeries System Administration

 Tracing

Notes:

1. Typically MQS_TRACE_OPTIONS must be set in the process that starts the
queue manager, and before the queue manager is started, or it is not
recognized.

2. MQS_TRACE_OPTIONS must be set before tracing starts. If it is set after
tracing starts it is not recognized.

Table 17. MQS_TRACE_OPTIONS settings

MQS_TRACE_OPTIONS
Value

What will be traced

Unset (default) Default trace (all except high detail)

0 No MQSeries trace

262148 Entry, exit and parameter trace

786436 Entry, exit, parameter, and high detail trace

3407871 Default trace without parameter trace

3670015 Default trace, including parameter trace

4194303 All tracing, including high detail trace

An example of MQSeries for AIX trace data
The following example is an extract of an AIX trace:

 ...
ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

3ðD 1.1892951ð4 ð.ðððððð MQS FNC Exit.... 17726.1 xllListenSel
3ðD 1.189341184 ð.ð46ð8ð MQS CEI Entry... 17726.1 xllSpinLockR
3ðD 1.189364992 ð.ð238ð8 MQS FNC Exit.... 17726.1 xllSpinLockR
3ðD 1.18938ðð96 ð.ð151ð4 MQS CEI Entry... 17726.1 xllSpinLockR
3ðD 1.189394816 ð.ð1472ð MQS FNC Exit.... 17726.1 xllSpinLockR
3ðD 1.1894ð8512 ð.ð13696 MQS CEI Entry... 17726.1 xllSpinLockR
3ðD 1.189427328 ð.ð18816 MQS FNC Exit.... 17726.1 xllSpinLockR
3ðD 1.18944448ð ð.ð17152 MQS CEI Entry... 17726.1 xcsFreeQuick
3ðD 1.18946112ð ð.ð1664ð MQS CEI Entry.... 17726.1 xllSpinLock
3ðD 1.18948ð32ð ð.ð192ðð MQS FNC Exit..... 17726.1 xllSpinLock
3ðD 1.189592192 ð.111872 MQS FNC Entry.... 17726.1 xstFreeCell
3ðD 1.1896ð8448 ð.ð16256 MQS FNC Exit..... 17726.1 xstFreeCell
3ðD 1.189658496 ð.ð5ðð48 MQS CEI Entry.... 17726.1 xllSpinLock
3ðD 1.189672832 ð.ð14336 MQS FNC Exit..... 17726.1 xllSpinLock
3ðD 1.18969152ð ð.ð18688 MQS CEI Exit.... 17726.1 xcsFreeQuick
3ðD 1.1897ð4ð64 ð.ð12544 MQS CEI Entry... 17726.1 xllSpinLockR
3ðD 1.1897175ð4 ð.ð1344ð MQS FNC Exit.... 17726.1 xllSpinLockR
3ðD 1.189729536 ð.ð12ð32 MQS FNC Exit!.. 17726.1 xllWaitSocket
3ðD 1.189744512 ð.ð14976 MQS FNC Exit!. 17726.1 xcsWaitEventSe
3ðD 1.189765376 ð.ð2ð864 MQS CEI Exit! 17726.1 zcpReceiveOnLin
3ðD 1.189792128 ð.ð26752 MQS FNC Entry 17726.1 zapInquireStatu
3ðD 1.1898144ðð ð.ð22272 MQS FNC Entry. 17726.1 xcsRequestMute
3ðD 1.189832ð64 ð.ð17664 MQS FNC Entry.. 17726.1 xllSemGetVal
3ðD 1.18989824ð ð.ð66176 MQS FNC Exit... 17726.1 xllSemGetVal
3ðE 1.2ð4718976 14.82ð736 xcsRequestMutexSem phmtx:3ððððf3c Tim
 ...

Figure 58. Sample AIX trace

 Chapter 16. Problem determination 265

 Tracing

Notes:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

Tracing MQSeries for HP-UX and MQSeries for Sun Solaris
In MQSeries for HP-UX and Sun Solaris, you enable or modify tracing using the
strmqtrc control command, which is described in “strmqtrc (Start MQSeries trace)”
on page 336. To stop tracing, you use the endmqtrc control command, which is
described in “endmqtrc (End MQSeries trace)” on page 308. You can display
formatted trace output using the dspmqtrc control command, which is described in
“dspmqtrc (Display MQSeries formatted trace output)” on page 300.

 Trace files
All trace files are created in the directory /var/mqm/trace.

Note: It is possible to accommodate production of large trace files by mounting a
temporary file system over this directory.

Trace-file names have the following format:

 AMQppppp.TRC

where ppppp is the process identifier (PID) of the process producing the trace.

Notes:

1. The process identifier can contain fewer, or more, digits than shown in the
example.

2. There is one trace file for each process running as part of the entity being
traced.

Example trace data
Figure 59 on page 267 shows an extract from an MQSeries for HP-UX trace.

266 MQSeries System Administration

 Tracing

 ...
 ID ELAPSED_MICROSEC DELTA_MICROSEC APPL SYSCALL KERNEL INTERRUP

3ðd ð ð MQS FNC Exit........ 18855.1 xcsChec
3ðd 292 292 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 363 71 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 42ð 57 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 482 62 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 539 57 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 6ð2 63 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 659 57 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 721 62 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 779 58 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 841 62 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 899 58 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 961 62 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 1ð18 57 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 1ð8ð 62 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 1138 58 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 12ðð 62 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 1257 57 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 1319 62 MQS CEI Exit........ 18855.1 xcsHSHM
3ðd 1377 58 MQS CEI Entry....... 18855.1 xcsHSHM
3ðd 1439 62 MQS CEI Exit........ 18855.1 xcsHSHME
3ðd 1498 59 MQS FNC Entry....... 18855.1 xcsAlloc
3ðd 1554 56 MQS CEI Entry........ 18855.1 xcsHSHM
3ðd 1616 62 MQS CEI Exit......... 18855.1 xcsHSHM
3ðd 1674 58 MQS FNC Entry........ 18855.1 xllSpin
3ðd 1733 59 MQS FNC Exit......... 18855.1 xllSpin
3ðe 1825 92 MQS Signals Blocked with mask:
3ðe 1967 142 MQS Data from xcsAllocateQuickCell Le

FFFFFBFF FFFFFFFF FFFFFFFF FFFFFFFF AAAAAAAAAAAAAAA
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

 ...

Figure 59. Sample HP-UX trace

Figure 60 on page 268 shows an extract from an MQSeries for Sun Solaris trace.

 Chapter 16. Problem determination 267

 Tracing

 ...
ID ELAPSED_MICROSEC DELTA_MICROSEC APPL SYSCALL KERNEL INTERRUPT

3ðd ð ð MQS FNC Exit.. 5814.1 xcsCheckProcess
3ðd 247 247 MQS CEI Entry. 5814.1 xcsHSHMEMBtoPTR
3ðd 3ð1 54 MQS CEI Exit.. 5814.1 xcsHSHMEMBtoPTR
3ðd 343 42 MQS CEI Entry. 5814.1 xcsHSHMEMBtoPTR
3ðd 387 44 MQS CEI Exit.. 5814.1 xcsHSHMEMBtoPTR
3ðd 428 41 MQS CEI Entry. 5814.1 xcsHSHMEMBtoPTR
3ðd 472 44 MQS CEI Exit.. 5814.1 xcsHSHMEMBtoPTR
3ðd 514 42 MQS FNC Entry. 5814.1 xcsAllocateQuic
3ðd 554 4ð MQS CEI Entry.. 5814.1 xcsHSHMEMBtoPT
3ðd 598 44 MQS CEI Exit... 5814.1 xcsHSHMEMBtoPT
3ðd 639 41 MQS FNC Entry.. 5814.1 xllSpinLockReq
3ðd 684 45 MQS FNC Exit... 5814.1 xllSpinLockReq
3ðe 764 8ð MQS Signals Blocked with mask:
3ðe 882 118 MQS Data from xcsAllocateQuickCell Le

FFFFFFFF ðððððFFF ðððððððð ðððððððð
3ðd 956 74 MQS CEI Entry.. 5814.1 xcsHSHMEMBtoPT
3ðd 1ððð 44 MQS CEI Exit... 5814.1 xcsHSHMEMBtoPT
3ðd 1ð4ð 4ð MQS FNC Entry.. 5814.1 xstAllocateCel
3ðd 1ð82 42 MQS FNC Exit... 5814.1 xstAllocateCel
3ðe 1125 43 MQS Signals Unblocked with mask:
3ðe 1222 97 MQS Data from xcsAllocateQuickCell Le

ððð24ðð7 ðððððððð ðððððððð ðððððððð
3ðd 1373 151 MQS FNC Entry.. 5814.1 xllSpinLockRel
 ...

Figure 60. Sample MQSeries for Sun Solaris trace

Notes:

1. In these examples, the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

Tracing MQSeries for OS/2 Warp and MQSeries for Windows NT
In MQSeries for OS/2 Warp and Windows NT, you enable or modify tracing using
the strmqtrc control command, which is described in “strmqtrc (Start MQSeries
trace)” on page 336. To stop tracing, you use the endmqtrc control command,
which is described in “endmqtrc (End MQSeries trace)” on page 308.

| For MQSeries for Windows NT Version 5.1 and later, you can also start and stop
| trace using the trace icon in the MQSeries Services snap-in.

 Trace files
During the installation process, you can choose the drive on which trace files are to
be located. However, the trace files are always placed in the directory
\<mqmwork>\errors, where <mqmwork> is the directory selected when MQSeries
was installed to hold MQSeries data files.

268 MQSeries System Administration

 Tracing

Trace-file names have the following format:

 AMQppppp.TRC

where ppppp is the process identifier (PID) of the process producing the trace.

Notes:

1. The process identifier can contain fewer, or more, digits than shown in the
example.

2. There is one trace file for each process running as part of the entity being
traced.

An example of MQSeries for Windows NT trace data
Figure 61 shows an extract from an MQSeries for Windows NT trace:

MQSeries Trace - Version ð5ðððð
!! - BuildDate Sep 14 1998

 ...
ððA2FE ----> (ð153) zcpCreatePacket
ððA2FF -----> (ð153) xcsAllocateMemBlock
ððA3ðð ------> (ð153) xstAllocateMemBlock
ððA3ð1 -------> (ð153) xstAllocBlockInSharedMemSet
ððA3ð2 --------> (ð153) xstAllocBlockInAnExtentOnList
ððA3ð3 ---------> (ð153) xstSerialiseExtentList
ððA3ð4 ----------> (ð153) xllSpinLockRequest
ððA3ð5 -----------> (ð153) xllAccessHandle
ððA3ð6 <----------- (ð153) xllAccessHandle (rc=OK)
ððA3ð7 <---------- (ð153) xllSpinLockRequest (rc=OK)
ððA3ð8 <--------- (ð153) xstSerialiseExtentList (rc=OK)
ððA3ð9 ---------> (ð153) xstAllocBlockInExtent
ððA3ðA ----------> (ð153) xstSerialiseExtent
ððA3ðB -----------> (ð153) xllSpinLockRequest
ððA3ðC ------------> (ð153) xllAccessHandle
ððA3ðD <------------ (ð153) xllAccessHandle (rc=OK)
ððA3ðE <----------- (ð153) xllSpinLockRequest (rc=OK)
ððA3ðF <---------- (ð153) xstSerialiseExtent (rc=OK)
ððA31ð ----------> (ð153) xstInitialiseBlock
ððA311 <---------- (ð153) xstInitialiseBlock (rc=OK)
 ...

Figure 61. Sample MQSeries for Windows NT trace

Notes:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

 Chapter 16. Problem determination 269

 FFST

First-failure support technology (FFST)
This section describes the role of first-failure support technology (FFST) in each of
the MQSeries Version 5.1 products.

FFST: MQSeries for UNIX systems
For MQSeries for UNIX systems, FFST information is recorded in a file in the
/var/mqm/errors directory.

These errors are normally severe, unrecoverable errors, and indicate either a
configuration problem with the system or an MQSeries internal error.

The files are named AMQnnnnn.mm.FDC, where:

When a process creates an FFST record, it also sends a record to syslog. The
record contains the name of the FFST file to assist in automatic problem tracking.

The syslog entry is made at the “user.error” level. See the operating-system
documentation about syslog.conf for information about configuring this.

Some typical FFST data is shown in Figure 62.

nnnnn Is the ID of the process reporting the error
mm Is a sequence number, normally 0

| MQSeries First Failure Symptom Report
| =====================================

| Date/Time :- Friday August 14 19:51:59 BST 1998
| Host Name :- eclipse
| PIDS :- 5765B75
| LVLS :- 51ð
| Product Long Name :- MQSeries for Sun Solaris 2 (Sparc)
| Vendor :- IBM
| Probe Id :- KNðð2ðð3
| Application Name :- MQM
| Component :- kpiStartup
| Build Date :- Aug 13 1998 (Collector)
| UserID :- ðððð9126 (m8silk)
| Program Name :- amqzxmað
| Process :- ððððð212
| Thread :- ððððððð1
| QueueManager :- wibble
| Major Errorcode :- arcE_CATALOGUE_NOT_FOUND
| Minor Errorcode :- OK
| Probe Type :- INCORROUT
| Probe Severity :- 2
| Probe Description :- AMQ6125: An internal MQSeries error has occurred.

| MQM Function Stack
| kpiStartup
| xcsFFST

| Figure 62. FFST report for MQSeries for UNIX systems

The Function Stack and Trace History are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do

270 MQSeries System Administration

 FFST

when an FFST report is generated, apart from raising problems through the IBM
Support Centers.

However, there are some problems that the system administrator might be able to
solve. If the FFST shows “out of resource” or “out of space on device” descriptions
when calling one of the IPC functions (for example, semop or shmget), it is likely
that the relevant kernel parameter limit has been exceeded.

If the FFST report shows a problem with setitimer , it is likely that a change to the
kernel timer parameters is needed.

To resolve these problems, increase the IPC limits, rebuild the kernel, and restart
the machine. See one of the following for further information:

� “Chapter 2. Planning to Install the MQSeries for AIX Server” in the MQSeries
for AIX V5.1 Quick Beginnings book

� “Chapter 2. Planning to Install the MQSeries for HP-UX Server” in the
MQSeries for HP-UX V5.1 Quick Beginnings book

� “Chapter 2. Planning to Install the MQSeries for Sun Solaris Server” in the
MQSeries for Sun Solaris V5.1 Quick Beginnings book

FFST: MQSeries for OS/2 Warp and Windows NT
In MQSeries for OS/2 Warp and Windows NT, FFST information is recorded in a
file in the c:\mqm\errors directory.

These errors are normally severe, unrecoverable errors, and indicate either a
configuration problem with the system or an MQSeries internal error.

FFST files are named AMQnnnnn.mm.FDC, where:

nnnnn Is the ID of the process reporting the error
mm Is a sequence number, normally 0

When a process creates an FFST record it also sends a record to the Event Log.
The record contains the name of the FFST file to assist in automatic problem
tracking. The Event log entry is made at the “application” level.

A typical FFST log is shown in Figure 63 on page 272.

 Chapter 16. Problem determination 271

 FFST

| MQSeries First Failure Symptom Report
| =====================================

| Date/Time :- Sun September 27 13:23:43 British Summer Time 1998
| Host Name :- HYRAX
| PIDS :- 5639B43
| LVLS :- 51ðð
| Product Long Name :- MQSeries for Windows NT
| Vendor :- IBM
| Probe Id :- ADð3ððð1
| Application Name :- MQM
| Component :- adiReadFile
| Build Date :- Sep 9 1998
| UserID :- MQAdmin
| Process Name :- H:\MQM\BIN\amqzlaað.exe
| Process :- ððððð255
| Thread :- ððððð273
| QueueManager :- x
| Major Errorcode :- xecF_E_UNEXPECTED_SYSTEM_RC
| Minor Errorcode :- OK
| Probe Type :- MSGAMQ6119
| Probe Severity :- 2
| Probe Description :- AMQ6119: An internal MQSeries error has occurred
| (Rc=998 from ReadFile)
| Comment1 :- Rc=998 from ReadFile

| MQM Function Stack
| zlaMainThread
| zlaProcessMessage
| ...
| adiReadFile
| xcsFFST

| MQM Trace History
| <-- xihGetConnSPDetails rc=OK
| <-- xllAccessMutexHandle rc=OK

| Figure 63. Sample MQSeries for Windows NT First Failure Symptom Report

The Function Stack and Trace History are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do
when an FFST record is generated, apart from raising problems through the IBM
Support Center.

FFST: MQSeries for OS/2 Warp
In addition to the FFST files described in “FFST: MQSeries for OS/2 Warp and
Windows NT” on page 271, MQSeries for OS/2 Warp also produces dumps in
FFST/2 format.

FFST/2 (First Failure Support Technology for OS/2) is an IBM licensed program
that improves availability for IBM software applications by providing:

� Immediate event notification
� First failure data capture for software events
� Automated event tracking and management

FFST/2 is a corequisite to MQSeries for OS/2 Warp installation. At installation
time, MQSeries checks whether FFST/2 exists on your system and, if so, at what
level.

272 MQSeries System Administration

 FFST

Refer to the MQSeries for OS/2 Warp V5.1 Quick Beginnings book for information
about how FFST/2 is installed with MQSeries for OS/2 Warp.

Ensure that duplicate customized dumps are suppressed for FFST/2. This avoids
the situation where you could receive multiple dumps when a software probe
associated with FFST/2 is triggered more than once.

For information about using FFST/2, and how to suppress the duplicate dumps,
refer to the FFST/2 Administration Guide (S96F-8593).

 FFST/2 operation
There are a number of software probes included in the MQSeries code. These
probes are triggered by specific events, usually error conditions. When a probe is
triggered, the FFST/2 program can create the following output:

� A customized dump
� A symptom record
� A generic alert

You can use the diagnostic output to help you identify, track, and analyze an event.
The diagnostic outputs are generated by default. You can override the defaults by
making changes to the probe control table (PCT). For information about how to do
this, refer to the FFST/2 Administration Guide.

MQSeries for OS/2 Warp entries in the PCT include the following fields:

Field Description

program_id 5639B42

application MQM

probe_id A probe identifier that is set by MQSeries

options The action that you want the FFST/2 program to take for the specified
range of software probes

Using a symptom record
When an event triggers a software probe, the FFST/2 program creates a symptom
record. When created, the symptom record can contain:

� The date and time the software probe was triggered

� Hardware and software vital product data

� Any error code information provided by the software probe

� The name of the dump file, if the software probe creates a customized dump
file

� A unique problem identifier for each event

� The message number and the first 32 bytes of the message text, if the software
probe specifies that a message is issued

� The primary symptom string, which uniquely identifies the event

� The secondary symptom string, if the software probe has one

� A brief description of the software probe, if one is available

 Chapter 16. Problem determination 273

 Client problem determination

The FFST/2 program places all symptom records in the OS/2 system error log.
Parts of the symptom record are also included in the customized dump file. The
maximum size of an entry in the OS/2 system error log is 4 KB. If the symptom
record exceeds this limit, it is truncated.

To display the symptom records, display the system error log. This is accessed by
opening the FFST/2 icon that is installed on your desktop and opening (double
clicking on) the system error log. Note that after installation the FFST/2 icon could
have been moved to another folder.

Using a customized dump
When the FFST/2 program creates a system dump for MQSeries following the
triggering of a software probe, the dump file is named OS2SYSxx.DMP, where xx
ranges from 00 to the number set when you configured FFST/2.

Whenever FFST/2 generates a dump, xx is incremented by 01. After xx reaches
the maximum number of dumps, the FFST/2 program resets the number to 00 and
begins overwriting existing dumps with new dumps.

If FFST/2 wraps, it adds a second batch of dump information to an already used
dump file. When this dump file is viewed, the dump shown is of the oldest dump in
the file. In order to view separate dumps within the dump file, you need to use the
"identification" field. This will give a list of the problem identifiers stored in that
dump file. You can then select the one you want to display.

For further information about FFST/2 records and how to use them, refer to the
FFST/2 Administration Guide.

Problem determination with clients
An MQI client application receives MQRC_* reason codes in the same way as
non-client MQI applications. However, there are additional reason codes for error
conditions associated with clients. For example:

� Remote machine not responding
� Communications line error
� Invalid machine address

The most common time for errors to occur is when an application issues an
MQCONN and receives the response MQRC_Q_MQR_NOT_AVAILABLE. An error
message, written to the client log file, explains the cause of the error. Messages
may also be logged at the server depending on the nature of the failure.

 Terminating clients
Even though a client has terminated, it is still possible for the process at the server
to be holding its queues open. Normally, this will only be for a short time until the
communications layer detects that the partner has gone.

274 MQSeries System Administration

 Client problem determination

Error messages with clients
When an error occurs with a client system, error messages are put into the error
files associated with the server, if possible. If an error cannot be placed there, the
client code attempts to place the error message in an error log in the root directory
of the client machine.

OS/2 and UNIX-systems clients
Error messages for OS/2 and UNIX clients are placed in the error logs in the same
way as they are for the respective MQSeries server systems. Typically these files
appear in /var/mqm/errors on UNIX systems.

DOS and Windows clients
The location of the log file AMQERR01.LOG is set by the MQDATA environment
variable. The default location, if not overridden by MQDATA, is the C drive.
Working in the DOS environment involves the environment variable MQDATA.

This is the default library used by the client code to store trace and error
information; it also holds the directory name in which the qm.ini file is stored.
(needed for NetBIOS setup). If not specified, it defaults to the C drive.

| Note: For Windows NT clients, the default library does not contain the directory
| name for the qm.ini file because configuration information is stored in the Windows
| NT Registry.

The names of the default files held in this library are:

AMQERR01.LOG For error messages.

AMQERR01.FDC For First Failure Data Capture messages.

For more information about clients, see the MQSeries Clients book.

 Chapter 16. Problem determination 275

 Client problem determination

276 MQSeries System Administration

 Part 2. Reference

Chapter 17. MQSeries control commands 279
Names of MQSeries objects . 279
How to read syntax diagrams . 280

Example syntax diagram . 281
Syntax help . 281
crtmqcvx (Data conversion) . 282
crtmqm (Create queue manager) . 284
dltmqm (Delete queue manager) . 289
dmpmqlog (Dump log) . 291
dspmqaut (Display authority) . 293
dspmqcsv (Display command server) . 297
dspmqfls (Display MQSeries files) . 298
dspmqtrc (Display MQSeries formatted trace output) 300
dspmqtrn (Display MQSeries transactions) . 301
endmqcsv (End command server) . 303
endmqlsr (End listener) . 305
endmqm (End queue manager) . 306
endmqtrc (End MQSeries trace) . 308
rcdmqimg (Record media image) . 310
rcrmqobj (Recreate object) . 312
rsvmqtrn (Resolve MQSeries transactions) . 314
runmqchi (Run channel initiator) . 316
runmqchl (Run channel) . 317
runmqdlq (Run dead-letter queue handler) . 318
runmqlsr (Run listener) . 320
runmqsc (Run MQSeries commands) . 322
runmqtmc (Start client trigger monitor) . 325
runmqtrm (Start trigger monitor) . 326
setmqaut (Set/reset authority) . 327
strmqcsv (Start command server) . 333
strmqm (Start queue manager) . 334
strmqtrc (Start MQSeries trace) . 336

 Copyright IBM Corp. 1994,1999 277

278 MQSeries System Administration

 Control commands � Names

Chapter 17. MQSeries control commands

This chapter contains reference material for the control commands supported by
MQSeries Version 5.1 products. Please note the following environment-specific
information:

MQSeries for AIX
All commands in this chapter can be issued from an AIX shell. These
commands are case-sensitive.

MQSeries for HP-UX
All commands in this chapter can be issued from an HP-UX shell. These
commands are case sensitive.

MQSeries for OS/2 Warp
All commands in this chapter can be issued from a command line. Command
names and their flags are not case sensitive: you can enter them in uppercase,
lowercase, or a combination of uppercase and lowercase. However,
arguments to control commands (such as queue names) are case sensitive.

In the syntax descriptions, the hyphen (-) is used as a flag indicator. You can
use the forward slash (/) instead of the hyphen.

MQSeries for Sun Solaris
All commands in this chapter can be issued from a Solaris shell. These
commands are case sensitive.

MQSeries for Windows NT
| All commands in this chapter can be issued from a command line. A subset
| can be issued using the MQSeries Explorer snap-in. Command names and

their flags are not case sensitive: you can enter them in uppercase, lowercase,
or a combination of uppercase and lowercase. However, arguments to control
commands (such as queue names) are case sensitive.

In the syntax descriptions, the hyphen (-) is used as a flag indicator. You can
use the forward slash (/) instead of the hyphen.

Names of MQSeries objects
In general, the names of MQSeries objects can have up to 48 characters. This rule
applies to all the following objects:

 � Queue managers
 � Queues
 � Process definitions

| � Namelists
| � Clusters

The maximum length of channel names is 20 characters.

The characters that can be used for all MQSeries names are:

 � Uppercase A–Z
 � Lowercase a–z
 � Numerics 0–9
 � Period (.)
 � Underscore (_)

 Copyright IBM Corp. 1994,1999 279

 Reading syntax diagrams

� Forward slash (/) (see note 1)
� Percent sign (%) (see note 1)

Notes:

1. Forward slash and percent are special characters. If you use either of these
characters in a name, the name must be enclosed in double quotation marks
whenever it is used.

2. Leading or embedded blanks are not allowed.

3. National language characters are not allowed.

4. Names may be enclosed in double quotation marks, but this is essential only if
special characters are included in the name.

How to read syntax diagrams
This chapter contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and left
arrow pair. Lines beginning with a single right arrow are continuation lines. You
read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Table 18. How to read syntax diagrams

Convention Meaning

55──A──B──C──5 You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

55─ ──┬ ┬─── ─5
 └ ┘─A─

You may specify value A. Optional values are shown below the main
line of a syntax diagram.

55─ ──┬ ┬─A─ ─5
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you must specify.

55─ ──┬ ┬─── ─5
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you may specify.

 ┌ ┐─,───
55─ ───6 ┴┬ ┬─── ─5
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

You may specify one or more of the values A, B, and C. Any
required separator for multiple or repeated values (in this example,
the comma (,)) is shown on the arrow.

 ┌ ┐─A─
55─ ──┼ ┼─── ─5
 ├ ┤─B─
 └ ┘─C─

Values A, B, and C are alternatives, one of which you may specify. If
you specify none of the values shown, the default A (the value
shown above the main line) is used.

55──┤ Name ├──5

Name:
├──A─ ──┬ ┬─── ─┤
 └ ┘─B─

The syntax fragment Name is shown separately from the main syntax
diagram.

280 MQSeries System Administration

 syntax help

Example syntax diagram
Here is an example syntax diagram that describes the hello command:

55──hello─ ──┬ ┬───────────── ──┬ ┬──────────────── ──────────────────────────5%
│ │┌ ┐─,───── └ ┘──, how are you?

 └ ┘ ──(1)───6 ┴── name

Note:
1 You can code up to three names.

According to the syntax diagram, these are all valid versions of the hello command:

hello
hello name
hello name, name
hello name, name, name
hello, how are you?
hello name, how are you?
hello name, name, how are you?
hello name, name, name, how are you?

Note that the space before the name value is significant, and that if you do not
code name at all, you must still code the comma before how are you?.

 Syntax help
You can obtain help for the syntax of any of the commands in this chapter by
entering the command followed by a question mark. MQSeries responds by listing
the syntax required for the selected command.

The syntax shows all the parameters and variables associated with the command.
Different forms of parentheses are used to indicate whether a parameter is
required. For example:

CmdName [-x OptParam] (-c | -b) argument

where:

CmdName Is the command name for which help has been requested.

[-x OptParam] Square brackets enclose one or more optional parameters. Where
square brackets enclose multiple parameters, you can select no
more than one of them.

(-c | -b) Brackets enclose multiple values, one of which you must select. In
this example, you must select either flag c or flag b.

argument A mandatory argument.

 Examples
1. Result of entering endmqm ?

| endmqm [-z][-c | -w | -i | -p] QMgrName

2. Result of entering rcdmqimg ?

rcdmqimg [-z] [-m QMgrName] -t ObjType [GenericObjName]

 Chapter 17. MQSeries control commands 281

 crtmqcvx

crtmqcvx (Data conversion)

 Purpose
Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert C structures.

The command reads an input file containing structures to be converted, and writes
an output file containing code fragments to convert those structures.

For information about using this command, see “Writing a data-conversion exit
program” in the MQSeries Application Programming Guide.

 Syntax

55──crtmqcvx──SourceFile──TargetFile───────────────────────────────────────5%

 Required parameters
SourceFile

Specifies the input file containing the C structures to be converted.

TargetFile
Specifies the output file containing the code fragments generated to convert
the structures.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following example shows the results of using the data conversion command
against a source C structure. The command issued is:

crtmqcvx source.tmp target.c

The input file, source.tmp looks like this:

 /\ This is a test C structure which can be converted by the \/
 /\ crtmqcvx utility \/

 struct my_structure
 {
 int code;
 MQLONG value;
 };

282 MQSeries System Administration

 crtmqcvx

The output file, target.c, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, be aware that the fragment uses macros supplied in the MQSeries
header file amqsvmha.h.

 MQLONG Convertmy_structure(
 PMQBYTE \in_cursor,
 PMQBYTE \out_cursor,
 PMQBYTE in_lastbyte,
 PMQBYTE out_lastbyte,
 MQHCONN hConn,
 MQLONG opts,
 MQLONG MsgEncoding,
 MQLONG ReqEncoding,
 MQLONG MsgCCSID,
 MQLONG ReqCCSID,
 MQLONG CompCode,
 MQLONG Reason)
 {

MQLONG ReturnCode = MQRC_NONE;

ConvertLong(1); /\ code \/

 AlignLong();
ConvertLong(1); /\ value \/

 Fail:
 return(ReturnCode);
 }

 Chapter 17. MQSeries control commands 283

 crtmqm

crtmqm (Create queue manager)

 Purpose
Use the crtmqm command to create a local queue manager and define the default
and system objects. The objects created by crtmqm are listed in Appendix A,
“System and default objects” on page 343. When a queue manager has been
created, use the strmqm command to start it.

 Syntax

55──crtmqm─ ──┬ ┬────────── ──┬ ┬────────────────────────────── ─────────────────5
└ ┘── -c Text └ ┘── -d DefaultTransmissionQueue

┌ ┐─ -lc ─
5─ ──┬ ┬──────────────────────── ──┼ ┼─────── ──┬ ┬────────────── ─────────────────5

└ ┘── -h MaximumHandleLimit └ ┘─ -ll ─ └ ┘── -ld LogPath

5─ ──┬ ┬────────────────── ──┬ ┬────────────────────── ──────────────────────────5
└ ┘── -lf LogFileSize └ ┘── -lp LogPrimaryFiles

5─ ──┬ ┬──────────────────────── ──┬ ┬────── ──┬ ┬────────────────────── ──────────5
└ ┘── -ls LogSecondaryFiles └ ┘─ -q ─ └ ┘── -g ApplicationGroup

5─ ──┬ ┬─────────────────── ──┬ ┬───────────────────── ──────────────────────────5
└ ┘── -t IntervalValue └ ┘── -u DeadLetterQueue

5─ ──┬ ┬──────────────────────────────── ──┬ ┬────── ─QMgrName──────────────────5%
└ ┘── -x MaximumUncommittedMessages └ ┘─ -z ─

 Required parameters
QMgrName

Specifies the name of the queue manager to be created. The name can
contain up to 48 characters. This must be the last item in the command.

 Optional parameters
-c Text

Specifies some descriptive text for this queue manager. You can use up to
64 characters; the default is all blanks.

If special characters are required, the description must be enclosed in double
quotes. The maximum number of characters is reduced if the system is using
a double-byte character set (DBCS).

-d DefaultTransmissionQueue
Specifies the name of the local transmission queue that remote messages are
placed on if a transmission queue is not explicitly defined for their destination.
There is no default.

-h MaximumHandleLimit
Specifies the maximum number of handles that any one application can have
open at the same time.

Specify a value in the range 1 through 999 999 999. The default value is
256.

284 MQSeries System Administration

 crtmqm

The next six parameter descriptions relate to logging, which is described in “Using
the log for recovery” on page 222.

-lc Circular logging is to be used. This is the default logging method.

-ll Linear logging is to be used.

-ld LogPath
Specifies the directory to be used to hold log files.

In MQSeries for UNIX systems, the default is /var/mqm/log.

User ID mqm and group mqm must have full authorities to the log files. If you
change the locations of these files, you must give these authorities yourself.
This occurs automatically if the log files are in their default locations.

In MQSeries for OS/2 Warp and Windows NT, the default is C:\MQM\LOG
(assuming that C is your data drive).

-lf LogFileSize
Specifies the size of the log files in units of 4 KB.

In MQSeries for UNIX systems, the minimum value is 64, and the maximum is
16384. The default value is 1024, giving a default log size of 4 MB.

In MQSeries for OS/2 Warp and Windows NT, the minimum value is 32, and
the maximum is 4095. The default value is 256, giving a default log size of
1 MB.

-lp LogPrimaryFiles
Specifies the number of primary log files to be allocated. The default value is
3, the minimum is 2, and the maximum is 62.

-ls LogSecondaryFiles
Specifies the number of secondary log files to be allocated. The default value
is 2, the minimum is 1, and the maximum is 61.

Note: The total number of log files is restricted to 63, regardless of the
number requested.

| The limits given in the previous parameter descriptions are limits set by
| MQSeries. Operating system limits may reduce the maximum possible log
| size.

-q Specifies that this queue manager is to be made the default queue manager.
The new queue manager replaces any existing default queue manager.

If you accidentally use this flag and wish to revert to an existing queue
manager as the default queue manager, you can edit the
DefaultQueueManager stanza in the MQSeries configuration file. See
Chapter 11, “Configuring MQSeries” on page 127 for information about
configuration files.

 Chapter 17. MQSeries control commands 285

 crtmqm

-g ApplicationGroup
Specifies the name of the group whose members are allowed to:

� Run MQI applications
� Update all IPCC resources
� Change the contents of some queue manager directories

This option applies only to MQSeries for AIX, Sun Solaris, and HP-UX.

The default value is -g all, which allows unrestricted access.

The -g ApplicationGroup value is recorded in the queue manager
configuration file, qm.ini.

| The mqm user ID must belong to the specified ApplicationGroup.

-t IntervalValue
Specifies the trigger time interval in milliseconds for all queues controlled by
this queue manager. This value specifies the time after the receipt of a
trigger-generating message when triggering is suspended. That is, if the
arrival of a message on a queue causes a trigger message to be put on the
initiation queue, any message arriving on the same queue within the specified
interval does not generate another trigger message.

You can use the trigger time interval to ensure that your application is allowed
sufficient time to deal with a trigger condition before it is alerted to deal with
another on the same queue. You may wish to see all trigger events that
happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is
999 999 999 milliseconds, a time of more than 11 days. Allowing the default
to be used effectively means that triggering is disabled after the first trigger
message. However, triggering can be enabled again by an application
servicing the queue using an alter queue command to reset the trigger
attribute.

-u DeadLetterQueue
Specifies the name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they cannot
be routed to their correct destination.

The default if the attribute is omitted is no dead-letter queue.

-x MaximumUncommittedMessages
Specifies the maximum number of uncommitted messages under any one
syncpoint. That is, the sum of:

� The number of messages that can be retrieved from queues
� The number of messages that can be put on queues
� Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside a
syncpoint.

| Specify a value in the range 1 through 999 999 999. The default value is
| 10 000 uncommitted messages.

286 MQSeries System Administration

 crtmqm

-z Suppresses error messages.

This flag is normally used within MQSeries to suppress unwanted error
messages. As use of this flag could result in loss of information, it is
recommended that you do not use it when entering commands on a
command line.

 Return codes
0 Queue manager created

8 Queue manager already exists

49 Queue manager stopping

69 Storage not available

70 Queue space not available

71 Unexpected error

72 Queue manager name error

100 Log location invalid

111 Queue manager created. However, there was a problem processing the default
queue manager definition in the product configuration file. The default queue
manager specification may be incorrect.

115 Invalid log size

 Examples
1. This command creates a default queue manager named Paint.queue.manager,

which is given a description of Paint shop, and creates the system and default
objects. It also specifies that linear logging is to be used:

crtmqm -c "Paint shop" -ll -q Paint.queue.manager

2. This command creates a default queue manager named Paint.queue.manager,
creates the system and default objects, and requests two primary and three
secondary log files:

crtmqm -c "Paint shop" -ll -lp 2 -ls 3 -q Paint.queue.manager

3. This command creates a queue manager called travel, creates the system
and default objects, sets the trigger interval to 5000 milliseconds (or 5
seconds), and specifies SYSTEM.DEAD.LETTER.QUEUE as its dead-letter
queue.

crtmqm -t 5ððð -u SYSTEM.DEAD.LETTER.QUEUE travel

 Chapter 17. MQSeries control commands 287

 crtmqm

 Related commands
strmqm Start queue manager
endmqm End queue manager
dltmqm Delete queue manager

288 MQSeries System Administration

 dltmqm

dltmqm (Delete queue manager)

 Purpose
Use the dltmqm command to delete a specified queue manager. All objects
associated with this queue manager are also deleted. Before you can delete a
queue manager you must end it using the endmqm command.

In MQSeries for Windows NT, if you attempt to delete a queue manager when
queue manager files are open, an error may occur. In this case, close the files and
reissue the command.

 Syntax

55──dltmqm─ ──┬ ┬────── ─QMgrName───5%
 └ ┘─ -z ─

 Required parameters
QMgrName

Specifies the name of the queue manager to be deleted.

 Optional parameters
-z Suppresses error messages.

 Return codes
0 Queue manager deleted

3 Queue manager being created

5 Queue manager running

16 Queue manager does not exist

49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error

100 Log location invalid

112 Queue manager deleted. However, there was a problem processing the default
queue manager definition in the product configuration file. The default queue
manager specification may be incorrect.

 Chapter 17. MQSeries control commands 289

 dltmqm

 Examples
1. The following command deletes the queue manager saturn.queue.manager.

dltmqm saturn.queue.manager

2. The following command deletes the queue manager travel and also
suppresses any messages caused by the command.

dltmqm -z travel

 Related commands
crtmqm Create queue manager
strmqm Start queue manager
endmqm End queue manager

290 MQSeries System Administration

 dmpmqlog

dmpmqlog (Dump log)

 Purpose
Use the dmpmqlog command to dump a formatted version of the MQSeries
system log.

The log to be dumped must have been created on the same type of operating
system as that being used to issue the command.

 Syntax

55──dmpmqlog─ ──┬ ┬────────────────── ──┬ ┬──────────── ──┬ ┬───────────────── ────5
├ ┤─ -b ───────────── └ ┘── -e EndLSN └ ┘── -f LogFilePath
├ ┤── -s StartLSN ────
└ ┘── -n ExtentNumber

5─ ──┬ ┬────────────── ───5%
└ ┘── -m QMgrName

 Optional parameters
Dump start point

Use one of the following parameters to specify the log sequence number
(LSN) at which the dump should start. If no start point is specified, dumping
starts by default from the LSN of the first record in the active portion of the
log.

-b Specifies that dumping should start from the base LSN. The base LSN
identifies the start of the log extent that contains the start of the active
portion of the log.

-s StartLSN
Specifies that dumping should start from the specified LSN. The LSN is
specified in the format nnnn:nnnn:nnnn:nnnn.

If you are using a circular log, the LSN value must be equal to or
greater than the base LSN value of the log.

-n ExtentNumber
Specifies that dumping should start from the specified extent number.
The extent number must be in the range 0–9 999 999.

This parameter is valid only for queue managers whose LogType (as
recorded in the configuration file, qm.ini) is LINEAR.

-e EndLSN
Specifies that dumping should end at the specified LSN. The LSN is
specified in the format nnnn:nnnn:nnnn:nnnn.

 Chapter 17. MQSeries control commands 291

 dmpmqlog

-f LogFilePath
Is the absolute, rather than the relative, directory path name to the log files.
The specified directory must contain the log header file (amqhlctl.lfh) and a
subdirectory called active. The active subdirectory must contain the log files.
By default, log files are assumed to be in the directories specified in the
mqs.ini and qm.ini files. If this option is used then queue names, associated
with queue identifiers, will only be shown in the dump if a queue manager
name is specified explicitly for the -m option and that queue manager has the
object catalog file in its directory path.

On a system that supports long file names this file is named qmqmobjcat and,
in order to map the queue identifiers to queue names, it must be the file used
when the log files were created. As an example, for a queue manager named
qm1, the object catalog file is located in the directory
..\qmgrs\qm1\qmanager\. To achieve this mapping, it may be necessary to
create a temporary queue manager, for example named tmpq, replace its
object catalog with the one associated with the specific log files, and then
start dmpmqlog, specifying -m tmpq and -f with the absolute directory path
name to the log files.

-m QMgrName
Is the name of the queue manager. If this parameter is omitted, the name of
the default queue manager is used.

The queue manager you specify, or default to, must not be running when the
dmpmqlog command is issued. Similarly, the queue manager must not be
started while dmpmqlog is running.

292 MQSeries System Administration

 dspmqaut

dspmqaut (Display authority)

 Purpose
Use the dspmqaut command to display the current authorizations to a specified
object.

| If a user ID is a member of more than one group, this command displays the
| combined authorizations of all of the groups.

Only one group or principal may be specified.

You can use this command meaningfully in MQSeries for OS/2 Warp only if an
authorization service component has been installed for the current queue manager.
For MQSeries for OS/2 Warp, this does not occur by default, and no such
component is supplied with the product. Furthermore, when you issue this
command, the results always indicate that any group or principal has all
authorizations.

For more information about authorization service components, see “The Service
stanza” on page 136 and “The ServiceComponent stanza” on page 137 in this
book, and the MQSeries Programmable System Management book.

 Syntax

55──dspmqaut─ ──┬ ┬────────────── ── -n ObjectName ── -t ObjectType ─────────────5
 └ ┘── -m QMgrName

5─ ──┬ ┬── -g GroupName ──── ──┬ ┬────────────────────── ────────────────────────5%
└ ┘── -p PrincipalName └ ┘── -s ServiceComponent

 Required parameters
-n ObjectName

Specifies the name of a queue manager, queue, or process definition on
which the inquiry is to be made.

This is a required parameter, unless the inquiry relates to the queue manager
itself, in which case it must not be included.

-t ObjectType
Specifies the type of object on which the inquiry is to be made. Possible
values are:

queue or q A queue or queues matching the object type parameter

qmgr A queue manager object

process or prcs A process

| namelist or nl A namelist

 Chapter 17. MQSeries control commands 293

 dspmqaut

 Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the inquiry is to be made.

-g GroupName
Specifies the name of the user group on which the inquiry is to be made.
You can specify only one name, which must be the name of an existing user
group.

-p PrincipalName
Specifies the name of a user whose authorizations to the specified object are
to be displayed.

| For MQSeries for Windows NT only, the name of the principal can optionally
| include a domain name which should be specified in the following format:

| userid@domain

| For more information about including domain names on the name of a
| principal, see “Using the @ symbol in user ID names” on page 106.

-s ServiceComponent
This parameter applies only if you are using installable authorization services,
otherwise it is ignored.

If installable authorization services are supported, this parameter specifies the
name of the authorization service to which the authorizations apply. This

| parameter is optional; if it is not specified, the authorization inquiry is made to
the first installable component for the service.

 Returned parameters
This command returns an authorization list, which can contain none, one, or more
authorization values. Each authorization value returned means that any user ID in
the specified group has the authority to perform the operation defined by that value.

| Table 19 on page 295 shows the authorities that can be given to the different
| object types.

294 MQSeries System Administration

 dspmqaut

The following list defines the authorizations associated with each value:

| Table 19. Security authorities from the dspmqaut command

| Authority| Queue| Process| Qmgr| Namelist

| all| Yes| Yes| Yes| Yes

| alladm| Yes| Yes| Yes| Yes

| allmqi| Yes| Yes| Yes| Yes

| altusr| No| No| Yes| No

| browse| Yes| No| No| No

| chg| Yes| Yes| Yes| Yes

| clr| Yes| No| No| No

| connect| No| No| Yes| No

| crt| Yes| Yes| Yes| Yes

| dlt| Yes| Yes| Yes| Yes

| dsp| Yes| Yes| Yes| Yes

| get| Yes| No| No| No

| inq| Yes| Yes| Yes| Yes

| passall| Yes| No| No| No

| passid| Yes| No| No| No

| put| Yes| No| No| No

| set| Yes| Yes| Yes| No

| setall| Yes| No| Yes| No

| setid| Yes| No| Yes| No

all Use all operations relevant to the object.
alladm Perform all administration operations relevant to the object.
allmqi Use all MQI calls relevant to the object.
altusr Specify an alternate user ID on an MQI call.
browse Retrieve a message from a queue by issuing an MQGET call with the

BROWSE option.
chg Change the attributes of the specified object, using the appropriate

command set.
clr Clear a queue (PCF command Clear queue only).
connect Connect the application to the specified queue manager by issuing an

MQCONN call.
crt Create objects of the specified type, using the appropriate command

set.
dlt Delete the specified object, using the appropriate command set.
dsp Display the attributes of the specified object, using the appropriate

command set.
get Retrieve a message from a queue by issuing an MQGET call.
inq Make an inquiry on a specific queue by issuing an MQINQ call.
passall Pass all context.
passid Pass the identity context.
put Put a message on a specific queue by issuing an MQPUT call.
set Set attributes on a queue from the MQI by issuing an MQSET call.
setall Set all context on a queue.
setid Set the identity context on a queue.

 Chapter 17. MQSeries control commands 295

 dspmqaut

The authorizations for administration operations, where supported, apply to these
command sets:

 � Control commands
 � MQSC commands
 � PCF commands

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing

 Examples
The following example shows a command to display the authorizations on queue
manager saturn.queue.manager associated with user group staff:

dspmqaut -m saturn.queue.manager -t qmgr -g staff

The results from this command are:

Entity staff has the following authorizations for object :
 get
 browse
 put
 inq
 set
 connect
 altusr
 passid
 passall
 setid

 Related commands
setmqaut Set or reset authority

296 MQSeries System Administration

 dspmqcsv

dspmqcsv (Display command server)

 Purpose
Use the dspmqcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:

 � Starting
 � Running
� Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets

 � Ending
 � Stopped

 Syntax
|

| 55──dspmqcsv─ ──┬ ┬────────── ──5%
| └ ┘──QMgrName

 Required parameters
None

| Optional parameters
| QMgrName
| Specifies the name of the local queue manager for which the command
| server status is being requested.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command displays the status of the command server associated with
venus.q.mgr:

dspmqcsv venus.q.mgr

 Related commands
strmqcsv Start a command server
endmqcsv End a command server

 Chapter 17. MQSeries control commands 297

 dspmqfls

dspmqfls (Display MQSeries files)

 Purpose
Use the dspmqfls command to display the real file system name for all MQSeries
objects that match a specified criterion. You can use this command to identify the
files associated with a particular MQSeries object. This is useful for backing up
specific objects. See “Understanding MQSeries file names” on page 27 for further
information about name transformation.

 Syntax

55──dspmqfls─ ──┬ ┬────────────── ──┬ ┬───────────── ─GenericObjName────────────5%
 └ ┘── -m QMgrName └ ┘── -t ObjType

 Required parameters
GenericObjName

Specifies the name of the MQSeries object. The name is a string with no flag
and is a required parameter. If the name is omitted an error is returned.

This parameter supports a wild card character * at the end of the string.

 Optional parameters
-m QMgrName

Specifies the name of the queue manager for which files are to be examined.
If omitted, the command operates on the default queue manager.

-t ObjType
Specifies the MQSeries object type. The following list shows the valid object
types. The abbreviated name is shown first followed by the full name.

* or all All object types; this is the default

q or queue A queue or queues matching the object name parameter

ql or qlocal A local queue

qa or qalias An alias queue

qr or qremote A remote queue

qm or qmodel A model queue

qmgr A queue manager object

prcs or process A process

| ctlg or catalog An object catalog

| nl or namelist A namelist

298 MQSeries System Administration

 dspmqfls

Notes:

1. The dspmqfls command displays the directory containing the queue, not the
name of the queue itself.

2. In MQSeries for UNIX systems, you need to prevent the shell from interpreting
the meaning of special characters, for example, ‘*’. To accomplish this, use
‘quoting’.

There are a number of ways of ‘quoting’, depending on your shell. For
example, single quotation marks, double quotation marks, or a backslash are
used by some shells.

 Return codes
0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

 Examples
1. The following command displays the details of all objects with names beginning

SYSTEM.ADMIN that are defined on the default queue manager.

dspmqfls SYSTEM.ADMIN\

2. The following command displays file details for all processes with names
beginning PROC defined on queue manager RADIUS.

dspmqfls -m RADIUS -t prcs PROC\

 Chapter 17. MQSeries control commands 299

 dspmqtrc

dspmqtrc (Display MQSeries formatted trace output)

 Special note
The dspmqtrc command is not supported by these MQSeries products:

� MQSeries for AIX
� MQSeries for OS/2 Warp
� MQSeries for Windows NT

 Purpose
Use the dspmqtrc command to display MQSeries formatted trace output.

 Syntax

55──dspmqtrc─ ──┬ ┬──────────────────── ──┬ ┬───── ──┬ ┬─────────────────── ───────5
└ ┘── -t FormatTemplate └ ┘── -h └ ┘── -oOutputFilename

5──InputFileName───5%

 Required parameters
InputFileName

Specifies the name of the file containing the unformatted trace. For example
/var/mqm/trace/AMQ12345.TRC.

 Optional parameters
-t FormatTemplate

Specifies the name of the template file containing details of how to display the
trace. The default value is mqmtop/lib/amqtrc.fmt.

-h Omit header information from the report.

-o output_filename
The name of the file into which to write formatted data.

 Related commands
endmqtrc End MQSeries trace
strmqtrc Start MQSeries trace

300 MQSeries System Administration

 dspmqtrn

dspmqtrn (Display MQSeries transactions)

 Purpose
Use the dspmqtrn command to display details of in-doubt transactions. Such
transactions can be either internally or externally coordinated.

For each in-doubt transaction, a transaction number (a human-readable transaction
identifier), the transaction state, and the transaction ID are displayed. (Transaction
IDs can be up to 128 characters long, hence the need for a transaction number.)

 Syntax

55──dspmqtrn─ ──┬ ┬───── ──┬ ┬───── ──┬ ┬────────────── ──────────────────────────5%
 └ ┘ ─ -e─ └ ┘ ─ -i─ └ ┘─ -m QMgrName─

 Optional parameters
-e Requests details of externally coordinated, in-doubt transactions. Such

transactions are those for which MQSeries has been asked to prepare to
commit, but has not yet been informed of the transaction outcome.

-i Requests details of internally coordinated, in-doubt transactions. Such
transactions are those for which each resource manager has been asked to
prepare to commit, but MQSeries has yet to inform the resource managers of
the transaction outcome.

Information about the (deduced) state of the transaction in each of its
participating resource managers is displayed. This information can help you
assess the effects of failure in a particular resource manager.

-m QMgrName
Specifies the name of the queue manager whose transactions are to be
displayed. If no name is specified, the default queue manager’s transactions
are displayed.

Note: If you specify neither -e nor -i, details of both internally and externally
coordinated in-doubt transactions are displayed.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
102 No transactions found

 Chapter 17. MQSeries control commands 301

 dspmqtrn

 Related commands
rsvmqtrn Resolve MQSeries transaction

302 MQSeries System Administration

 endmqcsv

endmqcsv (End command server)

 Purpose
Use the endmqcsv command to stop the command server on the specified queue
manager.

 Syntax

 ┌ ┐─ -c ─
55──endmqcsv─ ──┼ ┼────── ─QMgrName───5%

└ ┘─ -i ─

 Required parameters
QMgrName

Specifies the name of the queue manager for which the command server is to
be ended.

 Optional parameters
-c Specifies that the command server is to be stopped in a controlled manner.

The command server is allowed to complete the processing of any command
message that it has already started. No new message is read from the
command queue.

This is the default.

-i Specifies that the command server is to be stopped immediately. Actions
associated with a command message currently being processed may not be
completed.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Chapter 17. MQSeries control commands 303

 endmqcsv

 Examples
1. The following command stops the command server on queue manager

saturn.queue.manager:

endmqcsv -c saturn.queue.manager

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in
the command queue until the command server is restarted.

2. The following command stops the command server on queue manager pluto
immediately:

endmqcsv -i pluto

 Related commands
strmqcsv Start a command server
dspmqcsv Display the status of a command server

304 MQSeries System Administration

 endmqlsr

endmqlsr (End listener)

 Purpose
The endmqlsr command ends all listener process for the specified queue manager.

The queue manager must be stopped before the endmqlsr command is issued.

 Syntax

55──endmqlsr─ ──┬ ┬────────────── ──5%
 └ ┘── -m QMgrName

 Optional parameters
-m QMgrName

Specifies the name of the queue manager. If no name is specified, the
processing will be done for the default queue manager.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Chapter 17. MQSeries control commands 305

 endmqm

endmqm (End queue manager)

 Purpose
Use the endmqm command to end (stop) a specified local queue manager. This
command stops a queue manager in one of three modes:

� Controlled or quiesced shutdown
 � Immediate shutdown
 � Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmqm (Start queue
manager) command.

To delete a queue manager, you must stop it and then use the dltmqm (Delete
queue manager) command.

 Syntax

 ┌ ┐─ -c ─
55──endmqm─ ──┼ ┼────── ──┬ ┬────── ─QMgrName───────────────────────────────────5%

| ├ ┤─ -w ─ └ ┘| ─ -z ─
├ ┤─ -i ─
└ ┘─ -p ─

 Required parameters
QMgrName

Specifies the name of the message queue manager to be stopped.

 Optional parameters
-c Controlled (or quiesced) shutdown. This is the default.

The queue manager stops but only after all applications have disconnected.
Any MQI calls currently being processed are completed.

| Control is returned to you immediately and you are not notified of when the
| queue manager has stopped.

| -w Wait shutdown.

| This type of shutdown is equivalent to a controlled shutdown except that
| control is returned to you only after the queue manager has stopped. You
| receive the message “Waiting for queue manager qmName to end” while
| shutdown progresses.

-i Immediate shutdown. The queue manager stops after it has completed all the
MQI calls currently being processed. Any MQI requests issued after the
command has been issued fail. Any incomplete units of work are rolled back
when the queue manager is next started.

| Control is returned after the queue manager has ended.

306 MQSeries System Administration

 endmqm

-p Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For
example, when a queue manager does not stop as a result of a normal
endmqm command.

The queue manager stops without waiting for applications to disconnect or for
MQI calls to complete. This can give unpredictable results for MQSeries
applications. All processes in the queue manager that fail to stop are
terminated 30 seconds after the command is issued.

-z Suppresses error messages on the command.

 Return codes
0 Queue manager ended
3 Queue manager being created
16 Queue manager does not exist
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error

 Examples
The following examples show commands that end (stop) the specified queue
managers.

1. This command ends the queue manager named mercury.queue.manager in a
controlled way. All applications currently connected are allowed to disconnect.

endmqm mercury.queue.manager

2. This command ends the queue manager named saturn.queue.manager
immediately. All current MQI calls complete, but no new ones are allowed.

endmqm -i saturn.queue.manager

 Related commands
crtmqm Create a queue manager
strmqm Start a queue manager
dltmqm Delete a queue manager

 Chapter 17. MQSeries control commands 307

 endmqtrc

endmqtrc (End MQSeries trace)

 Special note
The endmqtrc command is not supported by MQSeries for AIX.

 Purpose
Use the endmqtrc command to end tracing for the specified entity or all entities.

 Syntax
The syntax of this command in MQSeries for HP-UX and Sun Solaris is as follows:

55──endmqtrc─ ──┬ ┬────────────── ──┬ ┬────── ──┬ ┬────── ────────────────────────5%
 └ ┘── -m QMgrName └ ┘─ -e ─ └ ┘─ -a ─

The syntax of this command in MQSeries for OS/2 Warp and Windows NT is as
follows:

55──endmqtrc───5%

 Optional parameters
The following parameters can be specified in MQSeries for HP-UX and Sun Solaris
only:

-m QMgrName
Is the name of the queue manager for which tracing is to be ended.

A maximum of one -m flag and associated queue manager name can be
supplied on the command.

A queue manager name and -m flag can be specified on the same command
as the -e flag.

-e If this flag is specified, early tracing is ended.

-a If this flag is specified all tracing is ended.

This flag must be specified alone.

 Return codes
AMQ5611 This message is issued if arguments that are not valid are supplied to the

command.

 Examples
This command ends tracing of data for a queue manager called QM1.

endmqtrc -m QM1

308 MQSeries System Administration

 endmqtrc

 Related commands
dspmqtrc Display formatted trace output
strmqtrc Start MQSeries trace

 Chapter 17. MQSeries control commands 309

 rcdmqimg

rcdmqimg (Record media image)

 Purpose
Use the rcdmqimg command to write an image of an MQSeries object, or group of
objects, to the log for use in media recovery. Use the associated command
rcrmqobj to recreate the object from the image.

This command is used with an active queue manager. Further activity on the
queue manager is logged so that, although the image becomes out of date, the log
records reflect any changes to the object.

 Syntax

55──rcdmqimg─ ──┬ ┬──────────────── ──┬ ┬────── ─-t ObjectType─ ─GenericObjName──5%
 └ ┘─ -m ──QMgrName─ └ ┘─ -z ─

 Required parameters
GenericObjName

Specifies the name of the object that is to be recorded. This parameter can
have a trailing asterisk to indicate that any objects with names matching the
portion of the name prior to the asterisk are to be recorded.

This parameter is required unless you are recording a queue manager object
or the channel synchronization file. If you specify an object name for the
channel synchronization file, it is ignored.

-t ObjectType
Specifies the types of object whose images are to be recorded. Valid object
types are:

| nl or namelist Namelists

prcs or process Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

qmgr Queue manager object

syncfile Channel synchronization file

| ctlg or catalog An object catalog

* or all All of the above

Note: When using MQSeries for UNIX systems, you need to prevent the shell
from interpreting the meaning of special characters, for example, ‘*’. To accomplish
this, use ‘quoting’. There are a number of ways of ‘quoting’ depending on your
shell. For example, single quotation marks, double quotation marks, or a backslash
are used by some shells.

310 MQSeries System Administration

 rcdmqimg

 Optional parameters
-m QMgrName

Specifies the name of the queue manager for which images are to be
recorded. If omitted, the command operates on the default queue
manager.

-z Suppresses error messages.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
131 Resource problem
132 Object damaged
135 Temporary object cannot be recorded

 Examples
The following command records an image of the queue manager object
saturn.queue.manager in the log.

rcdmqimg -t qmgr -m saturn.queue.manager

 Related commands
rcrmqobj Recreate a queue manager object

 Chapter 17. MQSeries control commands 311

 rcrmqobj

rcrmqobj (Recreate object)

 Purpose
Use the rcrmqobj command to recreate an object, or group of objects, from their
images contained in the log. Use the associated command, rcdmqimg , to record
the object images to the log.

This command must be used on a running queue manager. All activity on the
queue manager after the image was recorded is logged. To recreate an object you
must replay the log to recreate events that occurred after the object image was
captured.

 Syntax

55──rcrmqobj─ ──┬ ┬──────────────── ──┬ ┬────── ─-t ObjectType─ ─GenericObjName──5%
 └ ┘─ -m ──QMgrName─ └ ┘─ -z ─

 Required parameters
GenericObjName

Specifies the name of the object that is to be recreated. This parameter
can have a trailing asterisk to indicate that any objects with names
matching the portion of the name prior to the asterisk are to be recreated.

This parameter is required unless the object type is the channel
synchronization file; if an object name is supplied for this object type, it is
ignored.

-t ObjectType
Specifies the types of object to be recreated. Valid object types are:

| nl or namelist Namelist

prcs or process Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

syncfile The channel synchronization file

* or all All the above

Note: When using MQSeries for UNIX systems, you need to prevent the shell
from interpreting the meaning of special characters, for example, ‘*’. To accomplish
this, use ‘quoting’. There are a number of ways of ‘quoting’ depending on your
shell. For example, single quotation marks, double quotation marks, or a backslash
are used by some shells.

312 MQSeries System Administration

 rcrmqobj

 Optional parameters
-m QMgrName

Specifies the name of the queue manager for which objects are to be
recreated. If omitted, the command operates on the default queue manager.

-z Suppresses error messages.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
66 Media image not available
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
135 Temporary object cannot be recovered
136 Object in use

 Examples
1. The following command recreates all local queues for the default queue

manager:

rcrmqobj -t ql \

2. The following command recreates all remote queues associated with queue
manager store:

rcrmqobj -m store -t qr \

 Related commands
rcdmqimg Record an MQSeries object in the log

 Chapter 17. MQSeries control commands 313

 rsvmqtrn

rsvmqtrn (Resolve MQSeries transactions)

 Purpose
Use the rsvmqtrn command to commit or back out internally or externally
coordinated in-doubt transactions.

Use this command only when you are certain that transactions cannot be resolved
by the normal protocols. Issuing this command may result in the loss of
transactional integrity between resource managers for a distributed transaction.

 Syntax

55──rsvmqtrn─ ──┬ ┬─ -a ─────────────────────── ─ -m ──QMgrName───────────────5%
 └ ┘──┬ ┬─ -b ────── ─Transaction─

├ ┤─ -c ──────
└ ┘── -r RMId

 Required parameters
-m QMgrName

Specifies the name of the queue manager. This parameter is mandatory.

 Optional parameters
-a Specifies that the queue manager should attempt to resolve all internally

coordinated, in-doubt transactions (that is, all global units of work).

-b Specifies that the named transaction is to be backed out. This flag is valid for
externally coordinated transactions (that is, for external units of work) only.

-c Specifies that the named transaction is to be committed. This flag is valid for
externally coordinated transactions (that is, for external units of work) only.

-r RMId
Identifies the resource manager to which the commit or back out decision
applies. This flag is valid for internally coordinated transactions only, and for
resource managers that are no longer configured in the queue manager’s

| qm.ini file5 The outcome delivered will be consistent with the decision reached
by MQSeries for the transaction.

Transaction
Is the transaction number of the transaction being committed or backed out.
To discover the relevant transaction number, use the dspmqtrn command.
This parameter is required with the -b, -c, and -r RMId parameters.

| 5 The Windows NT Registry for MQSeries for Windows NT Version 5.1 and later.

314 MQSeries System Administration

 rsvmqtrn

 Return codes
0 Successful operation
32 Transactions could not be resolved
34 Resource manager not recognized
35 Resource manager not permanently unavailable
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
85 Transactions not known

 Related commands
dspmqtrn Display list of prepared transactions

 Chapter 17. MQSeries control commands 315

 runmqchi

runmqchi (Run channel initiator)

 Purpose
Use the runmqchi command to run a channel initiator process. For more
information about the use of this command, refer to Chapter 9, “Preparing
MQSeries for distributed platforms” in the MQSeries Intercommunication book.

 Syntax

55──runmqchi─ ──┬ ┬───────────────────── ──┬ ┬────────────── ───────────────────5%
└ ┘── -q InitiationQName └ ┘── -m QMgrName

 Optional parameters
-q InitiationQName

Specifies the name of the initiation queue to be processed by this channel
initiator. If not specified, SYSTEM.CHANNEL.INITQ is used.

-m QMgrName
Specifies the name of the queue manager on which the initiation queue
exists. If the name is omitted, the default queue manager is used.

 Return codes

If errors occur that result in return codes of either 10 or 20, you should review the
queue manager error log that the channel is associated with for the error
messages. You should also review the @SYSTEM error log, as problems that
occur before the channel is associated with the queue manager are recorded there.
For more information about error logs, see “Error logs” on page 259.

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

316 MQSeries System Administration

 runmqchl

runmqchl (Run channel)

 Purpose
Use the runmqchl command to run either a Sender (SDR) or a Requester
(RQSTR) channel.

The channel runs synchronously. To stop the channel, issue the MQSC command
STOP CHANNEL.

 Syntax

55──runmqchl─ ── -c ChannelName ──┬ ┬────────────── ───────────────────────────5%
└ ┘── -m QMgrName

 Required parameters
-c ChannelName

Specifies the name of the channel to run.

 Optional parameters
-m QMgrName

Specifies the name of the queue manager with which this channel is
associated. If no name is specified, the default queue manager is used.

 Return codes

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages. You should also review the @SYSTEM error log
because problems that occur before the channel is associated with the queue
manager are recorded there.

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Chapter 17. MQSeries control commands 317

 runmqdlq

runmqdlq (Run dead-letter queue handler)

 Purpose
Use the runmqdlq command to start the dead-letter queue (DLQ) handler, a utility
that you can run to monitor and handle messages on a dead-letter queue.

 Syntax

55──runmqdlq─ ──┬ ┬───────────────────────── ─────────────────────────────────5%
 └ ┘─ QName ─ ──┬ ┬────────────
 └ ┘─ QMgrName ─

 Description
The dead-letter queue handler can be used to perform various actions on selected
messages by specifying a set of rules that can both select a message and define
the action to be performed on that message.

The runmqdlq command takes its input from stdin. When the command is
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter runmqdlq rules interactively.

By redirecting the input from a file, you can apply a rules table to the specified
queue. The rules table must contain at least one rule.

If the DLQ handler is used without redirecting stdin from a file (the rules table), the
DLQ handler:

� Reads its input from the keyboard. In MQSeries for AIX, HP-UX, and Sun
Solaris, it does not start to process the named queue until it receives an
end_of_file (Ctrl+D) character. In MQSeries for OS/2 Warp and Windows NT, it
does not start to process the named queue until exactly the following key
sequence is pressed: Ctrl+Z, Enter, Ctrl+Z, Enter.

For more information about rules tables and how to construct them, see “The DLQ
handler rules table” on page 158.

Note: For MQSeries for OS/2 Warp, the final rule must be terminated by an
end-of-line character.

318 MQSeries System Administration

 runmqdlq

 Optional parameters
The MQSC rules for comment lines and for joining lines also apply to the DLQ
handler input parameters.

QName Specifies the name of the queue to be processed.

If no name is specified, the dead-letter queue defined for the local queue
manager is used. If one or more blanks (' ') are used, the dead-letter
queue of the local queue manager is explicitly assigned.

A DLQ handler can be used to select particular messages on a dead-letter
queue for special processing. For example, you could redirect the
messages to different dead-letter queues. Subsequent processing with
another instance of the DLQ handler might then process the messages,
according to a different rules table.

QMgrName
The name of the queue manager that owns the queue to be processed.

If no name is specified, the default queue manager for the installation is
used. If one or more blanks (' ') are used, the default queue manager
for this installation is explicitly assigned.

 Chapter 17. MQSeries control commands 319

 runmqlsr

runmqlsr (Run listener)

 Purpose
The runmqlsr (Run listener) command runs a listener process.

 Syntax

55──runmqlsr── -t ─ ──┬ ┬─ tcp ─ ──┬ ┬────────── ──┬ ┬───────────── ───────────────5
| │ │└ ┘── -p Port └ ┘── -b Backlog

 ├ ┤─ lu62 ─ ── -n TpName ──────────────────
 │ │┌ ┐───────────────────
 ├ ┤─ netbios ─ ───6 ┴┬ ┬─────────────── ──────

│ │├ ┤── -a Adapter ──
│ │├ ┤── -l LocalName
│ │├ ┤── -e Names ────
│ │├ ┤── -s Sessions ─
│ │└ ┘── -o Commands ─

 │ │┌ ┐─────────────────
 ├ ┤─ spx ─ ───6 ┴┬ ┬───────────── ────────────

│ │├ ┤── -x Socket ─
| │ │├ ┤── -b Backlog

│ │└ ┘── -y Board ──
| └ ┘| ─ udp ─ ──┬ ┬────────── ─────────────────
| └ ┘── -p Port

5─ ──┬ ┬────────────── ───5%
└ ┘── -m QMgrName

 Required parameters
-t Specifies the transmission protocol to be used:

tcp Transmission Control Protocol / Internet Protocol (TCP/IP)

lu62 SNA LU 6.2

netbios NetBIOS

spx SPX

| udp User datagram protocol (UDP) for AIX platforms only

 Optional parameters
-p Port Port number for TCP/IP. This flag is valid for TCP and UDP. If a value is

not specified, the value is taken from the queue manager configuration file,
or from defaults in the program. The default value is 1414.

-n TpName
LU 6.2 transaction program name. This flag is valid only for the LU 6.2
transmission protocol. If a value is not specified, the value is taken from
the queue manager configuration file. If a value is not given, the
command fails.

-a Adapter
Specifies the adapter number on which NetBIOS listens. The default
value is 0, that is, the listener uses adapter 0.

320 MQSeries System Administration

 runmqlsr

-l LocalName
Specifies the NetBIOS local name that the listener uses. The default is
specified in the queue manager configuration file.

-e Names
Specifies the number of names that the listener can use. The default
value is specified in the queue manager configuration file, qm.ini.

-s Sessions
Specifies the number of sessions that the listener can use. The default
value is specified in the queue manager configuration file, qm.ini.

-o Commands
Specifies the number of commands that the listener can use. The default
value is specified in the queue manager configuration file, qm.ini.

-x Socket
| Specifies the SPX socket on which SPX listens. The default value is
| hexadecimal 5E86.

-y Board
Specifies the adapter number for SPX.

This parameter applies to MQSeries for OS/2 Warp only.

-m QMgrName
Specifies the name of the queue manager. If no name is specified, the
command operates on the default queue manager.

| -b Backlog
| Specifies the number of concurrent connection requests that the listener
| supports. See “The LU62, NETBIOS, TCP, and SPX stanzas” on
| page 144 for a list of default values and further information.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command runs a listener on the default queue manager using the
NetBIOS protocol. Five names, five commands, and five sessions are specified for
this listener, indicating the maximum number of each that this listener can use.
These resources must be within the limits set in the queue manager configuration
file, qm.ini.

runmqlsr -t netbios -e 5 -s 5 -o 5

 Chapter 17. MQSeries control commands 321

 runmqsc

runmqsc (Run MQSeries commands)

 Purpose
Use the runmqsc command to issue MQSC commands to a queue manager.
MQSC commands enable you to perform administration tasks, for example defining,
altering, or deleting a local queue object. MQSC commands and their syntax are
described in Chapter 2, “The MQSeries commands” in the MQSeries Command
Reference manual.

 Syntax

 ┌ ┐────────────────────────────
55──runmqsc─ ───6 ┴┬ ┬──────────────────────── ──┬ ┬────────── ───────────────────5%

├ ┤─ -e ─────────────────── └ ┘ ─QMgrName─
├ ┤─ -v ───────────────────

 └ ┘── -w WaitTime ──┬ ┬──────
 └ ┘─ -x ─

 Description
You can invoke the runmqsc command in three modes:

Verify mode MQSC commands are verified but not actually run. An output
report is generated indicating the success or failure of each
command. This mode is available only on a local queue
manager.

Direct mode MQSC commands are sent directly to a local queue manager.

Indirect mode MQSC commands are run on a remote queue manager. These
commands are put on the command queue on a remote queue
manager and are run in the order in which they were queued.
Reports from the commands are returned to the local queue
manager.

Indirect mode operation is performed through the default queue
manager.

The runmqsc command takes its input from stdin. When the commands are
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter MQSC commands interactively.

By redirecting the input from a file you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

Note: To run this command in MQSeries for UNIX systems, your user ID must
belong to user group mqm.

322 MQSeries System Administration

 runmqsc

 Optional parameters
-e Prevents source text for the MQSC commands from being copied into a

report. This is useful when you enter commands interactively.

-v Specifies verification mode; this verifies the specified commands without
performing the actions. This mode is only available locally. The -w and -x
flags are ignored if they are specified at the same time.

-w WaitTime
Specifies indirect mode, that is, the MQSC commands are to be run on
another queue manager. You must have the required channel and
transmission queues set up for this. See “Preparing channels and
transmission queues for remote administration” on page 90 for more
information.

WaitTime Specifies the time, in seconds, that runmqsc waits for replies.
Any replies received after this are discarded, however, the
MQSC commands are still run. Specify a time between 1 and
999 999 seconds.

Each command is sent as an Escape PCF to the command
queue (SYSTEM.ADMIN.COMMAND.QUEUE) of the target
queue manager.

The replies are received on queue
SYSTEM.MQSC.REPLY.QUEUE and the outcome is added to
the report. This can be defined as either a local queue or a
model queue.

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the -v flag is specified.

| -x Specifies that the target queue manager is running under OS/390. This flag
applies only in indirect mode. The -w flag must also be specified. In indirect
mode, the MQSC commands are written in a form suitable for the MQSeries

| for OS/390 command queue.

QMgrName
Specifies the name of the target queue manager on which the MQSC
commands are to be run. If omitted, the MQSC commands run on the default
queue manager.

 Return codes
00 MQSC command file processed successfully
10 MQSC command file processed with errors—report contains reasons for failing

commands
20 Error—MQSC command file not run

 Chapter 17. MQSeries control commands 323

 runmqsc

 Examples
1. Enter this command at the command prompt:

runmqsc

Now you can enter MQSC commands directly at the command prompt. No
queue manager name is specified, therefore the MQSC commands are
processed on the default queue manager.

2. Use one of these commands, as appropriate in your environment, to specify
that MQSC commands are to be verified only:

runmqsc -v BANK < /u/users/commfile.in

runmqsc -v BANK < c:\users\commfile.in

This command verifies the MQSC commands in file commfile.in. The queue
manager name is BANK. The output is displayed in the current window.

3. These commands run the MQSC command file mqscfile.in against the default
queue manager.

runmqsc < /var/mqm/mqsc/mqscfile.in > /var/mqm/mqsc/mqscfile.out

runmqsc < c:\mqm\mqsc\mqscfile.in > c:\mqm\mqsc\mqscfile.out

In this example, the output is directed to file mqscfile.out.

324 MQSeries System Administration

 runmqtmc

runmqtmc (Start client trigger monitor)

 Special note
The runmqtmc command is available on OS/2 and AIX clients only.

 Purpose
Use the runmqtmc command to invoke a trigger monitor for a client. For further
information about using trigger monitors, refer to “Trigger monitors” in the MQSeries
Application Programming Guide.

 Syntax

55──runmqtmc─ ──┬ ┬────────────── ──┬ ┬───────────────────── ───────────────────5%
 └ ┘── -m QMgrName └ ┘── -q InitiationQName

 Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the client trigger monitor
operates. If the name is omitted, the client trigger monitor operates on the
default queue manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If the name is
omitted, SYSTEM.DEFAULT.INITIATION.QUEUE is used.

 Return codes
0 Not used. The client trigger monitor is designed to run continuously and therefore

not to end. The value is reserved.
10 Client trigger monitor interrupted by an error.
20 Error—client trigger monitor not run.

 Examples
For examples of the use of this command, refer to the MQSeries Application
Programming Guide.

 Chapter 17. MQSeries control commands 325

 runmqtrm

runmqtrm (Start trigger monitor)

 Purpose
Use the runmqtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to “Trigger monitors” in the MQSeries Application
Programming Guide.

 Syntax

55──runmqtrm─ ──┬ ┬────────────── ──┬ ┬───────────────────── ───────────────────5%
 └ ┘── -m QMgrName └ ┘── -q InitiationQName

 Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the trigger monitor
operates. If the name is omitted, the trigger monitor operates on the default
queue manager.

-q InitiationQName
Specifies the name of the initiation queue to be processed. If the name is
omitted, SYSTEM.DEFAULT.INITIATION.QUEUE is used.

 Return codes
0 Not used. The trigger monitor is designed to run continuously and therefore not

to end. Hence a value of 0 would not be seen. The value is reserved.

10 Trigger monitor interrupted by an error.

20 Error—trigger monitor not run.

326 MQSeries System Administration

 setmqaut

setmqaut (Set/reset authority)

 Purpose
Use the setmqaut command to change the authorizations to an object or to a class
of objects. Authorizations can be granted to, or revoked from, any number of
principals or groups.

In MQSeries for OS/2 Warp only, you can use this command to specify
authorizations only if an authorization service component has been installed for the
current queue manager. By default, no such component is supplied with MQSeries
for OS/2 Warp.

For more information about authorization service components, see Chapter 12,
“Authorization service” in the MQSeries Programmable System Management book.

 Syntax

55──setmqaut─ ── -m QMgrName ── -n ObjectName ── -t ObjectType ─────────────────5

 ┌ ┐───────────────────────────
5─ ──┬ ┬────────────────────── ───6 ┴──┬ ┬─ -p ──PrincipalName─ ───────────────────5

└ ┘── -s ServiceComponent └ ┘─ -g ──GroupName─────

 ┌ ┐───
5─ ───6 ┴──┬ ┬─┤ MQI authorizations ├──────────── ──────────────────────────────5%
 ├ ┤─┤ Context authorizations ├────────
 ├ ┤─┤ Administration authorizations ├─
 └ ┘─┤ Generic authorizations ├────────

MQI authorizations:
 ┌ ┐──────────────────────
├─ ───6 ┴─── ───┬ ┬─ +altusr ── ──┤

├ ┤─ –altusr ──
├ ┤─ +browse ──
├ ┤─ –browse ──
├ ┤─ +connect ─
├ ┤─ –connect ─
├ ┤─ +get ─────
├ ┤─ –get ─────
├ ┤─ +inq ─────
├ ┤─ –inq ─────
├ ┤─ +put ─────
├ ┤─ –put ─────
├ ┤─ +set ─────
└ ┘─ –set ─────

Context authorizations:
 ┌ ┐──────────────────────
├─ ───6 ┴─── ───┬ ┬─ +passall ─ ──┤

├ ┤─ –passall ─
├ ┤─ +passid ──
├ ┤─ –passid ──
├ ┤─ +setall ──
├ ┤─ –setall ──
├ ┤─ +setid ───
└ ┘─ –setid ───

 Chapter 17. MQSeries control commands 327

 setmqaut

Administration authorizations:
 ┌ ┐──────────────────
├─ ───6 ┴─── ───┬ ┬─ +chg ─ ──┤

├ ┤─ –chg ─
├ ┤─ +clr ─
├ ┤─ –clr ─
├ ┤─ +crt ─
├ ┤─ –crt ─
├ ┤─ +dlt ─
├ ┤─ –dlt ─
├ ┤─ +dsp ─
└ ┘─ –dsp ─

Generic authorizations:
 ┌ ┐─────────────────────
├─ ───6 ┴─── ───┬ ┬─ +all ──── ───┤

├ ┤─ –all ────
├ ┤─ +alladm ─
├ ┤─ –alladm ─
├ ┤─ +allmqi ─
└ ┘─ –allmqi ─

 Description
You can use this command both to set an authorization, that is, give a user group
or principal permission to perform an operation, and to reset an authorization, that
is, remove the permission to perform an operation. You must specify the user
groups and principals to which the authorizations apply and also the queue
manager, object type, and object name of the object. You can specify any number
of groups and principals in a single command.

Note: In MQSeries for UNIX systems, if you specify a set of authorizations for a
principal, the same authorizations are given to all principals in the same primary
group.

The authorizations that can be given are categorized as follows:

� Authorizations for issuing MQI calls
� Authorizations for MQI context
� Authorizations for issuing commands for administration tasks

 � Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by ‘+’ or ‘−’. For example, if
you include +put in the authorization list, you are giving authority to issue MQPUT
calls against a queue. Alternatively, if you include −put in the authorization list, you
are removing the authorization to issue MQPUT calls.

Authorizations can be specified in any order provided that they do not clash. For
example, specifying allmqi with set causes a clash.

You can specify as many groups or authorizations as you require in a single
command.

If a user ID is a member of more than one group, the authorizations that apply are
the union of the authorizations of each group to which that user ID belongs.

328 MQSeries System Administration

 setmqaut

 Required parameters
-n ObjectName

Specifies the name of the object for which the authorizations are to be
changed. You must not use a generic name.

This parameter is optional if you are changing the authorizations of your
default queue manager.

-t ObjectType
Specifies the type of object for which the authorizations are to be changed.

Possible values are:

� q or queue
� prcs or process

 � qmgr
| � nl or namelist

-m QMgrName
Specifies the name of the queue manager of the object for which the
authorizations are to be changed. The name can contain up to 48 characters.

This parameter is optional if you are changing the authorizations of your
default queue manager.

 Optional parameters
-p PrincipalName

Specifies the name of the principal for which the authorizations are to be
changed.

| For MQSeries for Windows NT only, the name of the principal can
| optionally include a domain name which should be specified in the
| following format:

| userid@domain

| For more information about including domain names on the name of a
| principal, see “Using the @ symbol in user ID names” on page 106.

You must have at least one principal or one group.

-g GroupName
Specifies the name of the user group whose authorizations are to be
changed. You can specify more than one group name, but each name
must be prefixed by the -g flag.

-s ServiceComponent
This parameter applies only if you are using installable authorization
services, otherwise it is ignored.

If installable authorization services are supported, this parameter specifies
the name of the authorization service to which the authorizations apply.
This parameter is optional; if it is not specified, the authorization update is
made to the first installable component for the service.

Authorizations
Specifies the authorizations to be given or removed. Each item in the list
is prefixed by a ‘+’ indicating that authority is to be given, or a ‘−’,
indicating that authorization is to be removed.

 Chapter 17. MQSeries control commands 329

 setmqaut

For example, to give authority to issue an MQPUT call from the MQI,
specify +put in the list. To remove authority to issue an MQPUT call,
specify −put.

Table 20 shows the authorities that can be given to the different object
types.

| Table 20. Specifying authorizations for different object types

| Authority| Queue| Process| Qmgr| Namelist

| all| Yes| Yes| Yes| Yes

| alladm| Yes| Yes| Yes| Yes

| allmqi| Yes| Yes| Yes| Yes

| altusr| No| No| Yes| No

| browse| Yes| No| No| No

| chg| Yes| Yes| Yes| Yes

| clr| Yes| No| No| No

| connect| No| No| Yes| No

| crt| Yes| Yes| Yes| Yes

| dlt| Yes| Yes| Yes| Yes

| dsp| Yes| Yes| Yes| Yes

| put| Yes| No| No| No

| inq| Yes| Yes| Yes| Yes

| get| Yes| No| No| No

| passall| Yes| No| No| No

| passid| Yes| No| No| No

| set| Yes| Yes| Yes| No

| setall| Yes| No| Yes| No

| setid| Yes| No| Yes| No

Authorizations for MQI calls

Note: If you open a queue for multiple options, you have to be authorized for each
of them.

altusr Allows another user’s authority to be used for MQOPEN and MQPUT1
calls.

browse Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

connect Connect the application to the specified queue manager by issuing an
MQCONN call.

get Retrieve a message from a queue by issuing an MQGET call.
inq Make an inquiry on a specific queue by issuing an MQINQ call.
put Put a message on a specific queue by issuing an MQPUT call.
set Set attributes on a queue from the MQI by issuing an MQSET call.

330 MQSeries System Administration

 setmqaut

Authorizations for context
passall Pass all context on the specified queue. All the context fields are

copied from the original request.
passid Pass identity context on the specified queue. The identity context is the

same as that of the request.
setall Set all context on the specified queue. This is used by special system

utilities.
setid Set identity context on the specified queue. This is used by special

system utilities.

Authorizations for commands
chg Change the attributes of the specified object.
clr Clear the specified queue (PCF Clear queue command only).
crt Create objects of the specified type.
dlt Delete the specified object.
dsp Display the attributes of the specified object.

Authorizations for generic operations
all Use all operations applicable to the object.
alladm Perform all administration operations applicable to the object.
allmqi Use all MQI calls applicable to the object.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing
150 Authorization specification missing
151 Invalid authorization specification

 Chapter 17. MQSeries control commands 331

 setmqaut

 Examples
1. This example shows a command that specifies that the object on which

authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager.

setmqaut -m saturn.queue.manager -n orange.queue -t queue -g tango +inq +alladm

The authorizations are being given to user group tango and the associated
authorization list specifies that user group tango:

� Can issue MQINQ calls
� Has authority to perform all administration operations on that object

2. In this example, the authorization list specifies that user group foxy:

� Cannot issue any calls from the MQI to the specified queue
� Has authority to perform all administration operations on the specified

queue

setmqaut -m saturn.queue.manager -n orange.queue -t queue -g foxy -allmqi +alladm

3. In this example, the authorization list specifies that user group waltz has
authority to create and delete queue manager saturn.queue.manager.

setmqaut -m saturn.queue.manager -t qmgr -g waltz +crt +dlt

 Related commands
dspmqaut Display authority

332 MQSeries System Administration

 strmqcsv

strmqcsv (Start command server)

 Purpose
Use the strmqcsv command to start the command server for the specified queue
manager. This enables MQSeries to process commands sent to the command
queue.

 Syntax
|

| 55──strmqcsv─ ──┬ ┬────────── ──5%
| └ ┘──QMgrName

| Required parameters
| None

| Optional parameters
| QMgrName
| Specifies the name of the queue manager for which the command server is to
| be started.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command starts a command server for queue manager earth:

strmqcsv earth

 Related commands
endmqcsv End a command server
dspmqcsv Display the status of a command server

 Chapter 17. MQSeries control commands 333

 strmqm

strmqm (Start queue manager)

 Purpose
Use the strmqm command to start a local queue manager.

 Syntax

55──strmqm─ ──┬ ┬────── ──┬ ┬────── ──┬ ┬────────── ──────────────────────────────5%
 └ ┘─ -c ─ └ ┘─ -z ─ └ ┘ ─QMgrName─

 Optional parameters
-c Starts the queue manager, redefines the default and system objects, then

stops the queue manager. (The default and system objects for a queue
manager are created initially by the crtmqm command.) Any existing system
and default objects belonging to the queue manager are replaced if you
specify this flag.

-z Suppresses error messages.

This flag is used within MQSeries to suppress unwanted error messages.
Because using this flag could result in loss of information, you should not use
it when entering commands on a command line.

QMgrName
Specifies the name of a local queue manager to be started. If omitted, the
default queue manager is started.

 Return codes
0 Queue manager started
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
23 Log not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid

 Examples
The following command starts the queue manager account:

strmqm account

334 MQSeries System Administration

 strmqm

 Related commands
crtmqm Create a queue manager
dltmqm Delete a queue manager
endmqm End a queue manager

 Chapter 17. MQSeries control commands 335

 strmqtrc

strmqtrc (Start MQSeries trace)

 Special note
The strmqtrc command is not supported by MQSeries for AIX.

 Purpose
Use the strmqtrc command to enable tracing. This command can be run
regardless of whether tracing is enabled. If tracing is already enabled, the trace
options in effect are modified to those specified on the latest invocation of the
command.

 Syntax
The syntax of this command in MQSeries for HP-UX and Sun Solaris is as follows:

 ┌ ┐───────────────────
55──strmqtrc─ ──┬ ┬────────────── ──┬ ┬────── ───6 ┴┬ ┬─────────────── ──────────────5
 └ ┘── -m QMgrName └ ┘─ -e ─ └ ┘── -t TraceType

5─ ──┬ ┬───────────── ──5%
| └ ┘── -l MaxSize

The syntax of this command in MQSeries for OS/2 Warp and Windows NT is as
follows:

 ┌ ┐───────────────────
55──strmqtrc─ ───6 ┴┬ ┬─────────────── ──┬ ┬───────────── ────────────────────────5%

| └ ┘── -t TraceType └ ┘── -l MaxSize

 Description
Different levels of trace detail can be requested. For each flow tracetype value you
specify, including -t all, specify either -t parms or -t detail to obtain the appropriate
level of trace detail. If you do not specify either -t parms or -t detail for any
particular trace type, only a default-detail trace is generated for that trace type.

In MQSeries for HP-UX and Sun Solaris, the output file is always created in the
directory /var/mqm/trace.

In MQSeries for OS/2 Warp and Windows NT, the output file is created in the
\<mqmwork\errors directory, where <mqmwork> is the directory selected when
MQSeries was installed to hold MQSeries data files.

For examples of trace data generated by this command see “Tracing” on page 263.

336 MQSeries System Administration

 strmqtrc

 Optional parameters
-m QMgrName

Is the name of the queue manager to be traced.

A queue manager name and the -m flag can be specified on the same
command as the -e flag. If more than one trace specification applies to a
given entity being traced, the actual trace includes all of the specified options.

It is an error to omit the -m flag and queue manager name, unless the -e flag
is specified.

This parameter is not valid in MQSeries for OS/2 Warp and Windows NT

-e If this flag is specified, early tracing is requested. Consequently, it is possible
to trace the creation or startup of a queue manager. Any process, belonging
to any component of any queue manager, traces its early processing if this
flag is specified. The default, if this flag is not specified, is not to perform
early tracing.

This parameter is not valid in MQSeries for OS/2 Warp and Windows NT

-t TraceType
Identifies the points to be traced, and specifies the amount of trace detail to
be recorded. If this flag is omitted, all trace points are enabled, and a
default-detail trace is generated.

Alternatively, one or more of the options in the following list can be supplied.

If multiple trace types are supplied, each must have its own -t flag. Any
number of -t flags can be specified, provided that each has a valid trace type
associated with it.

It is not an error to specify the same trace type on multiple -t flags.

all Output data for every trace point in the system. This is also the default if
the -t flag is not specified. The all parameter activates tracing at default
detail level.

api Output data for trace points associated with the MQI and major queue
manager components.

commentary
Output data for trace points associated with comments in the MQSeries
components.

comms
Output data for trace points associated with data flowing over
communications networks.

csdata
Output data for trace points associated with internal data buffers in
common services.

csflows
Output data for trace points associated with processing flow in common
services.

detail
Activates tracing at high-detail level for flow processing trace points.

 Chapter 17. MQSeries control commands 337

 strmqtrc

lqmdata
Output data for trace points associated with internal data buffers in the
local queue manager.

lqmflows
Output data for trace points associated with processing flow in the local
queue manager.

otherdata
Output data for trace points associated with internal data buffers in other
components.

otherflows
Output data for trace points associated with processing flow in other
components.

parms
Activates tracing at default-detail level for flow processing trace points.

remotedata
Output data for trace points associated with internal data buffers in the
communications component.

remoteflows
Output data for trace points associated with processing flow in the
communications component.

servicedata
Output data for trace points associated with internal data buffers in the
service component.

serviceflows
Output data for trace points associated with processing flow in the
service component.

versiondata
Output data for trace points associated with the version of MQSeries
running.

| -l MaxSize
| The value of MaxSize denotes the maximum size of a trace file
| (AMQnnnn.TRC) in millions of bytes. For example, if you specify a MaxSize
| of 1, the size of the trace is limited to 1 million bytes.

| When a trace file reaches the specified maximum, it is renamed from
| AMQnnnn.TRC to AMQnnnn.TRS and a new AMQnnnn.TRC file is started. All
| trace files are restarted when the maximum limit is reached. If a previous
| copy of an AMQnnnn.TRS file exists, it will be deleted.

 Return codes
AMQ7024 This message is issued if arguments that are not valid are supplied to the

command.
AMQ8304 The maximum number of nine concurrent traces is already running.

338 MQSeries System Administration

 strmqtrc

 Examples
This command enables tracing of processing flow from common services and the
local queue manager for a queue manager called QM1 in MQSeries for UNIX
systems. Trace data is generated at the default level of detail.

strmqtrc -m QM1 -t csflows -t lqmflows -t parms

This command enables high-detail tracing of the processing flow for all components
in MQSeries for OS/2 Warp or Windows NT:

strmqtrc -t all -t detail

 Related commands
dspmqtrc Display formatted trace output
endmqtrc End MQSeries trace

 Chapter 17. MQSeries control commands 339

 strmqtrc

340 MQSeries System Administration

 Part 3. Appendixes

Appendix A. System and default objects 343
Windows NT default configuration objects . 345

Appendix B. Directory structure (UNIX systems) 347
Queue manager log directory structure . 350

Appendix C. Directory structure (OS/2) . 351
Queue manager log directory structure . 353

Appendix D. Directory structure (Windows NT) 355
Queue manager log directory structure . 357

Appendix E. Stopping and removing queue managers manually 359
Stopping a queue manager manually . 359

Stopping queue managers in MQSeries for UNIX systems 359
Stopping queue managers in MQSeries for Windows NT 360
Stopping queue managers in MQSeries for OS/2 Warp 360

Removing queue managers manually . 360
Removing queue managers in MQSeries for UNIX systems 360

| Removing queue managers in MQSeries for Windows NT 361
Removing queue managers in MQSeries for OS/2 Warp 363

Appendix F. User identifier service . 365

Appendix G. Comparing command sets . 367
Commands for queue manager administration 367
Commands for command server administration 368
Commands for queue administration . 368
Commands for process administration . 369
Commands for channel administration . 370
Other control commands . 371

Appendix H. Using the User Datagram Protocol 373
| Configuring MQSeries for UDP . 373
| Examples of MQSC command files . 373
| The retry exit . 376
| Hints and tips . 378

Appendix I. Notices . 379
Trademarks . 381

 Copyright IBM Corp. 1994,1999 341

342 MQSeries System Administration

 Default objects

Appendix A. System and default objects

When you create a queue manager using the crtmqm control command, the
system objects and the default objects are created automatically.

� The system objects are those MQSeries objects required for the operation of a
queue manager or channel.

� The default objects define all of the attributes of an object. When you create
an object, such as a local queue, any attributes that you do not specify
explicitly are inherited from the default object.

The following tables list the system and default objects created by crtmqm :

| � Table 21 lists the system and default queue objects.
| � Table 22 lists the system and default channel objects.
| � Table 23 lists the system and default namelist objects.
| � Table 24 lists the system and default process objects.

Table 21. System and default objects - queues

Object name Description

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used
for remote MQSC commands and PCF
commands.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

| SYSTEM.CHANNEL.SYNCQ| The queue which holds the
| synchronization data for channels.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

| SYSTEM.CLUSTER.COMMAND.QUEUE| The queue used to carry messages to
| the repository queue manager.

| SYSTEM.CLUSTER.REPOSITORY.QUEUE| The queue used to store all repository
| information.

| SYSTEM.CLUSTER.TRANSMIT.QUEUE| The transmission queue for all messages
| to all clusters.

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered message
queue).

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.MQSC.REPLY.QUEUE MQSC reply-to queue. This is a model
queue that creates a temporary dynamic
queue for replies to remote MQSC
commands.

 Copyright IBM Corp. 1994,1999 343

 Default objects

Table 22. System and default objects - channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel

| SYSTEM.DEF.CLUSRCVR| Default receiver channel for the cluster
| used to supply default values for any
| attributes not specified when a
| CLUSRCVR channel is created on a
| queue manager in the cluster.

| SYSTEM.DEF.CLUSSDR| Default sender channel for the cluster
| used to supply default values for any
| attributes not specified when a
| CLUSSDR channel is created on a
| queue manager in the cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.SVRCONN Default server-connection channel.

SYSTEM.DEF.CLNTCONN Default client-connection channel.

| Table 23. System and default objects - namelists

Object name Description

| SYSTEM.DEFAULT.NAMELIST| Default namelist.

Table 24. System and default objects - processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

344 MQSeries System Administration

 Windows NT default configuration

Windows NT default configuration objects
| You set up a default configuration using either the MQSeries First Steps application
| or the MQSeries Postcard application.

| Note: You cannot set up a default configuration if other queue managers exist on
| your computer.

| Furthermore, you cannot set up a default configuration if the TCP/IP address used
| by the machine is obtained from a Dynamic Host Configuration Protocol (DHCP)
| server.

| Many of the names used for the Windows NT Default Configuration objects involve
| the use of a fully-qualified TCP/IP name. In all cases where this name has to be
| truncated, if the last character is a period (.), it is removed.

| Any characters within the fully-qualified machine name that are not valid for
| MQSeries object names (for example, hyphens) are replaced by an underscore
| character.

| Valid characters for MQSeries object names are: a to z, A to Z, 0 to 9 and the four
| special characters,
| /, %, ., and _.

| The cluster name for the Windows NT default configuration is the TCP/IP
| domain-name prefixed with the characters “CL_”. The maximum length of this
| name is 48 characters. Names exceeding this limit are truncated to 48 characters.

| If the queue manager is not a repository queue manager, the objects listed in
| Table 25 are created.

 Appendix A. System and default objects 345

 Windows NT default configuration

| If the queue manager is a repository queue manager, the default configuration is
| similar to that described in Table 25, but with the following differences:

| � The Queue Manager is defined as a repository queue manager for the default
| configuration cluster.

| � There is no cluster sender channel defined.

| � A local cluster queue that is the short name of the machine prefixed with the
| characters “clq_default_”. The maximum length of this name is 48 characters.
| Names exceeding this length are truncated at 48 characters.

| If you request remote administration facilities, the server connection channel,
| SYSTEM.ADMIN.SVRCONN is also created.

| Table 25. Objects created by the Windows NT Default Configuration application

| Object| Name

| Queue manager| The fully-qualified machine name prefixed with the
| characters “QM_”. The maximum length of the
| fully-qualified machine name is 48 characters. Names
| exceeding this limit are truncated at 48 characters.

| The queue manager is created as the default queue
| manager and is a cluster queue manager in the Default
| Configuration cluster.

| The queue manager has a command server, a channel
| listener, and channel initiator associated with it. The
| channel listener listens on the standard MQSeries port,
| that is port number 1414. Any other queue managers
| created on this machine should not use port 1414 while
| the default configuration queue manager still exists.

| Generic cluster receiver
| channel
| The fully-qualified machine name prefixed with the
| character “TO_”. The maximum length of this name is 20
| characters. Names exceeding this length are truncated
| at 20 characters.

| Cluster sender channel| The fully-qualified machine name of the repository this
| machine is using, prefixed with the characters “TO_”.
| The maximum length of this name is 20 characters.
| Names exceeding this length are truncated at 20
| characters.

| Local message queue| The local message queue is called “default”.

| Local message queue for
| use by the MQSeries
| Postcard application

| The local message queue for use by the MQSeries
| Postcard application is called “postcard”.

| Server connection channel| The server connection channel allows clients to connect
| to the queue manager. It is the fully-qualified machine
| name prefixed with the characters “S_”. The maximum
| length of this name is 20 characters. Names exceeding
| this length are truncated at 20 characters.

346 MQSeries System Administration

 Directory structure (UNIX systems)

Appendix B. Directory structure (UNIX systems)

Figure 64 on page 348 shows the general layout of the data and log directories
associated with a specific queue manager. The directories shown apply to the
default installation. If you change this, the locations of the files and directories will

| be modified accordingly. For information about the location of the product files, see
| one of the following:

| � “Chapter 3. Installing the MQSeries for AIX Server” in the MQSeries for AIX
| V5.1 Quick Beginnings book

| � “Chapter 3. Installing the MQSeries for HP-UX Server” in the MQSeries for
| HP-UX V5.1 Quick Beginnings book

| � “Chapter 3. Installing the MQSeries for Sun Solaris Server” in the MQSeries for
| Sun Solaris V5.1 Quick Beginnings book

 Copyright IBM Corp. 1994,1999 347

 Directory structure (UNIX systems)

log/

exits/

qmname/

@ SYSTEM/

mqs.ini

qmgrs/ errors/

amqalchk.fil

auth/

qmname/ amqhlctl.lfh

active/

dce/

errors/

@ ipcc/

plugcomp/

procdef/

qmanager/

qm.ini

queues/

startprm/

esem/

isem/

msem/

shmem/

ssem/

esem/

isem/

msem/

shmem/

ssem/

/var/mqm/

@MANGLED/

self

@MANGLED/

QMANAGER

QMQMOBJCAT

AMQCLCHL.TAB

AMQRFCDA.DAT

PerQUEUE/

S0000000.LOG

S0000001.LOG

S0000002.LOG

AMQERR01.LOG

AMQERR02.LOG

AMQERR03.LOG

PerQUEUE/

procdef/

qmanager/

queues/

QAADMIN

namelist/

@MANGLED/

@MANGLED/

| Figure 64. Default directory structure (UNIX systems) after a queue manager has been started

In Figure 64, the layout is representative of MQSeries after a queue manager has
been in use for some time. The actual structure that you have depends on which
operations have occurred on the queue manager.

By default, the following directories and files located in the directory
/var/mqm/qmgrs/qmname/.

amqalchk.fil Checkpoint file containing information about last checkpoint.

auth/ This directory contains subdirectories and files associated with
authority.

| @MANGLED
This file contains the authority stanzas for all
classes.

348 MQSeries System Administration

 Directory structure (UNIX systems)

procdef/ This directory contains a file for each process
definition. Each file contains the authority stanzas
for the associated process definition.

| @MANGLED
This file contains the authority stanzas
for the process definition class.

qmanager/

| @MANGLED
This file contains the authority stanzas
for the queue manager class.

self This file contains the authority stanzas
for the queue manager object.

queues/ This directory contains a file for each queue. Each
file contains the authority stanzas for the associated
queue.

| @MANGLED
This file contains the authority stanzas
for the queue class.

| namelist/ This directory contains a file for each namelist.
| Each file contains the authority stanzas for the
| associated namelist.

| @MANGLED
| This file contains the authority stanzas
| for the namelist.

QAADMIN File used internally for controlling authorizations.

dce/ Empty directory reserved for use by DCE support.

errors/ The operator message files, from newest to oldest:

 AMQERR01.LOG
 AMQERR02.LOG
 AMQERR03.LOG

plugcomp/ Empty directory reserved for use by installable services.

procdef/ Each MQSeries process definition is associated with a file in this
directory. The file name matches the process definition
name—subject to certain restrictions; see “Understanding
MQSeries file names” on page 27.

qmanager/

QMANAGER The queue manager object.

QMQMOBJCAT The object catalogue containing the list of all
MQSeries objects—used internally.

qm.ini Queue manager configuration file.

queues/ Each queue has a directory in here containing a single file
called ‘q’.

The file name matches the queue name—subject to certain
restrictions; see “Understanding MQSeries file names” on
page 27.

 Appendix B. Directory structure (UNIX systems) 349

 Directory structure (UNIX systems)

startprm/ Directory containing temporary files used internally.

esem/ Directories containing files used internally.
isem/
msem/
shmem/

PerQUEUE/ Directory containing files used internally.

ssem/ Directory containing files used internally.
@ipcc/

AMQCLCHL.TAB Client channel table file.
AMQRFCDA.DAT Channel table file.
esem/ Directories containing files used

internally.
isem/
msem/
shmem/

PerQUEUE/ Directory containing files
used internally.

ssem/

Queue manager log directory structure
By default, the following directories and files are found in /var/mqm/log/qmname/.

The following subdirectories and files exist after you have installed MQSeries,
created and started a queue manager, and have been using that queue manager
for some time.

amqhlctl.lfh Log control file.

active/ This directory contains the log files numbered S0000000.LOG,
S0000001.LOG, S0000002.LOG, and so on.

350 MQSeries System Administration

 Directory structure (OS/2)

Appendix C. Directory structure (OS/2)

| The following directories and files are found under the root C:\MQM\QMGRS\QMNAME\.
| If you have installed MQSeries for OS/2 Warp under different directories, the root is
| modified appropriately.

LOG\ QMNAME\ AMQHLCTL.LFH

ACTIVE\ S0000000.LOG

S0000001.LOG

S0000002.LOG

QMNAME\

@ SYSTEM\QMGRS\ ERRORS\

AMQALCHK.FIL

AUTH\ PROCDEF\

QMANAGER\

QUEUES\

NAMELIST\

@ACLASS

EXITS\

C:\MQM\ CONV\ TABLE\ ccsid.tbl

CONVERSION TABLES

ERRORS\

PLUGCOMP\

PROCDEF\

QMANAGER\

AMQERR01.LOG

AMQERR02.LOG

AMQERR03.LOG

QMANAGER

QMQMOBJCAT

QAADMIN

@ IPCC\

QUEUES\

STARTPRM\

NAMELIST\

DCE\

ERRORS\

AMQCLCHL.TAB

AMQRFCDA.DAT

MQS.INI

QM.INI

| Figure 65. Default file tree (OS/2) after a queue manager has been started. If you are using a FAT system, the
| name QMQMOBJCAT will be transformed.

 Copyright IBM Corp. 1994,1999 351

 Directory structure (OS/2)

Figure 65 shows the general layout of the data and log directories. The layout is
representative of MQSeries after a queue manager has been in use for some time.
However, the actual structure that you have depends on the operations that have
occurred on the queue manager. A brief description of the files follows.

Notes:

1. The directory and file names are all shown in uppercase. The case depends
on the file system you are using (FAT or HPFS).

2. The queue manager names may have been transformed. See “Understanding
MQSeries file names” on page 27 for more information about name
transformation.

AMQALCHK.FIL
Checkpoint file containing information about last checkpoint.

AUTH\

PROCDEF\ Empty directory reserved for authority parameters.

QMANAGER\
Empty directory reserved for authority parameters.

QUEUES\ Empty directory reserved for authority parameters.

DCE\ Empty directory reserved for use by DCE support.

ERRORS\ The operator message files from newest to oldest.

 � AMQERR01.LOG
 � AMQERR02.LOG
 � AMQERR03.LOG

PLUGCOMP\ Empty directory reserved for use by installable services.

PROCDEF\ Each MQSeries process definition has a file in here.

Where possible, the file name matches the associated process
definition name but some characters have to be altered.

There may be a directory called @MANGLED here containing
process definitions with transformed or mangled names.

QMANAGER\

QMANAGER The queue manager object.

QMQMOBJCAT
The object catalogue containing the list of all
MQSeries objects, used internally.

Note: If you are using a FAT system, this name
will be transformed and a subdirectory created
containing the file with its name transformed.

QAADMIN File used internally for controlling authorizations.

QM.INI Queue manager configuration file

QUEUES\ Each queue has a directory here containing a single file called Q.

Where possible, the directory name matches the associated queue
name but some characters have to be altered.

352 MQSeries System Administration

 Directory structure (OS/2)

There may be a directory called @MANGLED here containing
queues with transformed or mangled names.

STARTPRM\ Directory containing temporary files used internally.

@IPCC\

AMQCLCHL.TAB
File containing the client channel table

AMQRFCDA.DAT
File containing the channel table

AMQRSYNA.DAT
Channel synchronization file

Queue manager log directory structure
The following directories and files are found under C:\MQM\LOG\QMNAME\. If you
have installed the product under different directories or specified different log paths
in the configuration file, the root will be modified appropriately.

The following subdirectories and files will exist after you have installed MQSeries,
created and started a queue manager, and have been using that queue manager
for some time.

AMQHLCTL.LFH
Log control file.

ACTIVE\ This directory contains the log files numbered S0000000.LOG,
S0000001.LOG, S00000002.LOG, and so on.

 Appendix C. Directory structure (OS/2) 353

 Directory structure (OS/2)

354 MQSeries System Administration

 Directory structure (Windows NT)

Appendix D. Directory structure (Windows NT)

| Figure 66 shows some of the directories and files found under the root c:\mqm\. If
| you have installed MQSeries for Windows NT under different directories, the root is
| modified appropriately.

LOG\ QMNAME\ AMQHLCTL.LFH

ACTIVE\ S0000000.LOG

S0000001.LOG

S0000002.LOG

QMNAME\

@ SYSTEM\QMGRS\ ERRORS\

AMQALCHK.FIL

AUTH\ PROCDEF\

QMANAGER\

QUEUES\

NAMELIST\

@ACLASS

EXITS\

C:\MQM\ CONV\ TABLE\ ccsid.tbl

CONVERSION TABLES

ERRORS\

PLUGCOMP\

PROCDEF\

QMANAGER\

AMQERR01.LOG

AMQERR02.LOG

AMQERR03.LOG

QMANAGER

QMQMOBJCAT

QAADMIN

@ IPCC\

QUEUES\

STARTPRM\

NAMELIST\

DCE\

ERRORS\

AMQCLCHL.TAB

AMQRFCDA.DAT

| Figure 66. Default file tree (Windows NT) after a queue manager has been started. If you are using a FAT system,
| the name QMQMOBJCAT is transformed.

 Copyright IBM Corp. 1994,1999 355

 Directory structure (Windows NT)

Figure 66 shows the general layout of the data and log directories. The layout is
representative of MQSeries after a queue manager has been in use for some time.
However, the actual structure that you have depends on the operations that have
occurred on the queue manager. A brief description of the files follows.

Notes:

1. The directory and file names are all shown in upper case. The case depends
on the file system you are using (NTFS, HPFS, or FAT).

2. The queue manager names may have been transformed. See “Understanding
MQSeries file names” on page 27 for more information about name
transformation.

AMQALCHK.FIL
Checkpoint file containing information about last checkpoint.

AUTH\

| NAMELIST Directory reserved for authority parameters.

PROCDEF\ Directory reserved for authority parameters.

QMANAGER\
Directory reserved for authority parameters.

QUEUES\ Directory reserved for authority parameters.

DCE\ Empty directory reserved for use by DCE support.

ERRORS\ The operator message files, from newest to oldest:

 AMQERR01.LOG
 AMQERR02.LOG
 AMQERR03.LOG

| NAMELIST\ Each MQSeries namelist has a file in here.

PLUGCOMP\
Empty directory reserved for use by installable services.

PROCDEF\ Each MQSeries process definition has a file in here.

Where possible, the file name matches the associated process
definition name but some characters have to be altered.

There may be a directory called @MANGLED here containing process
definitions with transformed or mangled names.

QMANAGER\

QMANAGER
The queue manager object.

QMQMOBJCAT
The object catalogue containing the list of all MQSeries
objects, used internally.

Note: If you are using a FAT system, this name will be
transformed and a subdirectory created containing the
file with its name transformed.

QAADMIN File used internally for controlling authorizations.

356 MQSeries System Administration

 Directory structure (Windows NT)

QUEUES\ Each queue has a directory here containing a single file called Q.

Where possible, the directory name matches the associated queue
name but some characters have to be altered.

There may be a directory called @MANGLED here containing queues
with transformed or mangled names.

STARTPRM\
Directory containing temporary files used internally.

@IPCC\

AMQCLCHL.TAB
File containing the client channel table.

AMQRFCDA.DAT
File containing the channel table.

Queue manager log directory structure
The following directories and files are found under C:\MQM\LOG\QMNAME\. If you
have installed the product under different directories or specified different log paths
in the configuration file, the root will be modified appropriately.

The following subdirectories and files will exist after you have installed MQSeries,
created and started a queue manager, and have been using that queue manager
for some time.

AMQHLCTL.LFH
Log control file.

ACTIVE\ This directory contains the log files numbered S0000000.LOG,
S0000001.LOG, S00000002.LOG, and so on.

 Appendix D. Directory structure (Windows NT) 357

 Directory structure (Windows NT)

358 MQSeries System Administration

 Stopping queue managers

Appendix E. Stopping and removing queue managers
manually

If the standard methods for stopping and removing queue managers fail, you can
resort to the more drastic methods described here.

Stopping a queue manager manually
The standard way of stopping queue managers, using the endmqm command,
should work even in the event of failures within the queue manager. In exceptional
circumstances, if this method of stopping a queue manager fails, you can use one
of the procedures described here to stop it manually.

Stopping queue managers in MQSeries for UNIX systems
To stop a queue manager running under MQSeries for UNIX systems:

1. Find the process IDs of the queue manager programs that are still running
using the ps command. For example, if the queue manager is called QMNAME,
the following command can be used:

ps -ef | grep QMNAME

2. End any queue manager processes that are still running. Use the kill
command, specifying the process IDs discovered using the ps command.

Note: Processes that fail to stop can be ended using kill -9 .

End the processes in the following order:

Note: Manual stopping of the queue manager may result in FFSTs being taken,
and the production of FDC files in /var/mqm/errors. This should not be regarded as
a defect in the queue manager.

The queue manager should restart normally, even after having been stopped using
this method.

| Attention!

| If you do not shut down a queue manager properly, you run the risk of
| MQSeries not tidying up operating system resources such as semaphores and
| shared memory sets. This can result in a gradual degradation of system
| performance and in you having to reboot your system.

| amqpcsea| command server
amqhasmx logger
amqharmx log formatter (LINEAR logs only)
amqzllp0 checkpoint processor
amqzlaa0 queue manager agents
amqzxma0 processing controller

| amqrrmfa| Repository process (for clusters)

 Copyright IBM Corp. 1994,1999 359

 Stopping queue managers

Stopping queue managers in MQSeries for Windows NT
To stop a queue manager running under MQSeries for Windows NT:

1. List the names (IDs) of the processes currently running using the Windows NT
Process Viewer (PView)

2. Stop the processes using PView in the following order (if they are running):

3. Stop the queue manager service using the Windows NT Control Panel.

4. If you have tried all methods and the queue manager has not stopped, reboot
your system.

| AMQPCSEA.EXE| The command server
AMQHASMN.EXE The logger
AMQHARMN.EXE Log formatter (LINEAR logs only)
AMQZLLP0.EXE Checkpoint process
AMQZLAA0.EXE LQM agents
AMQZTRCN.EXE Trace
AMQZXMA0.EXE Execution controller
AMQXSSVN.EXE Shared memory servers

| AMQRRMFA.EXE| The repository process (for clusters)

Stopping queue managers in MQSeries for OS/2 Warp
To stop a queue manager running under MQSeries for OS/2 Warp:

1. If you have access to an appropriate utility (equivalent to the UNIX ps
command), list the names (IDs) of the processes currently running.

2. If you have access to a utility that stops processes (equivalent to the UNIX kill
command), stop them in the following order:

Note: If you do not have access to a suitable utility, and you have tried all other
methods, you must reboot your system.

| AMQPCSEA.EXE| The command server
AMQHASM2.EXE The logger
AMQHARM2.EXE Log formatter (LINEAR logs only)
AMQZLLP0.EXE Checkpoint process
AMQZLAA0.EXE LQM agents
AMQZXMA0.EXE Execution controller
AMQXSSV2.EXE Shared memory servers

| AMQRRMFA.EXE| The repository process (for clusters)

Removing queue managers manually
If you want to delete the queue manager after stopping it manually, use the
dltmqm command as normal. If, for some reason, this command fails to delete the
queue manager, the manual processes described here can be used.

Removing queue managers in MQSeries for UNIX systems
You should note that manual removal of a queue manager is potentially very
disruptive, particularly if multiple queue managers are being used on a single
system. This is because complete removal of a queue manager requires deletion
of files, shared memory and semaphores. As it is impossible to identify which
shared memory and semaphores belong to a particular queue manager, it is
necessary to stop all running queue managers.

360 MQSeries System Administration

 Stopping queue managers

If you need to delete a queue manager manually, use the following procedure:

1. Stop all queue managers running on the machine from which you need to
remove the queue manager.

2. Locate the queue manager directory from the configuration file
/var/mqm/mqs.ini and look for the QueueManager stanza naming the queue
manager to be deleted.

Its Prefix and Directory attributes identify the queue manager directory. For a
Prefix attribute of <Prefix> and a Directory attribute of <Directory>, the full path
to the queue manager directory is

 <Prefix>/qmgrs/<Directory>

3. Locate the queue manager log directory from the qm.ini configuration file in the
queue manager directory. The LogPath attribute of the Log stanza identifies
this directory.

4. Delete the queue manager directory, all subdirectories and files.

5. Delete the queue manager log directory, all subdirectories and files.

6. Remove the queue manager’s QueueManager stanza from the /var/mqm/mqs.ini
configuration file.

7. If the queue manager being deleted is also the default queue manager, remove
the DefaultQueueManager stanza from the /var/mqm/mqs.ini configuration file.

8. Either remove all shared memory and semaphores owned by the mqm user ID
and mqm group, or restart the machine. Shared resources can be identified
using the ipcs command, and can be removed with the ipcrm command.

| Removing queue managers in MQSeries for Windows NT
| If you encounter problems with the dltmqm command in MQSeries for Windows NT,
| use the following procedure to delete a queue manager:

| 1. Type REGEDT32 from the command prompt to start the Registry Editor.

| 2. Select the HKEY_LOCAL_MACHINE window.

| 3. Navigate the tree structure in the left-hand pane of the Registry Editor to the
| following key:

| HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion

| Make a note of the values within this key called WorkPath and LogPath. Within
| each of the directories named by these values, you are going to delete a
| subdirectory containing the data for the queue manager which you are trying to
| delete. You now need to find out the name of the subdirectory which
| corresponds to your queue manager.

| 4. Navigate the tree structure to the following key:

| HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
| Configuration\QueueManager

| Within this key there is a key for each of the queue managers on this computer
| containing the configuration information for the queue manager. The name of
| this queue manager key is the name of the subdirectory in which the queue
| manager’s data is stored in the file system. This is not necessarily identical to
| the name of the queue manager. By default, this name is the same as the

 Appendix E. Stopping and removing queue managers manually 361

 Stopping queue managers

| queue manager name, but the name may be a transformation of the queue
| manager name.

| 5. Examine the keys within the current key. Look for the key which contains a
| value called Name. Name contains the name of the queue manager you are
| trying to delete. Make a note of the name of the key containing the name of
| the queue manager you are trying to delete. This is the subdirectory name.

| 6. Locate the queue manager data directory. The name of this directory is the
| WorkPath followed by the subdirectory name. Delete this directory, and all
| subdirectories and files.

| 7. Locate the queue manager’s log directory. The name of this directory is the
| LogPath followed by the subdirectory name. Delete this directory, and all
| subdirectories and files.

| 8. Remove the registry entries which refer to the deleted queue manager. First,
| navigate the tree structure in the Registry Editor to the following key:

| HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
| Configuration\DefaultQueueManager

| 9. If the value called Name within this key matches the name of the queue
| manager you are deleting, delete the DefaultQueueManager key.

| 10. Navigate the tree to the following key:

| HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\Services

| 11. Within this key, delete the key whose name matches the subdirectory name of
| the queue manager which you are deleting.

| 12. Navigate the tree to the following key:

| HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\
| Configuration\QueueManager

| 13. Within this key, delete the key whose name matches the subdirectory name of
| the queue manager which you are deleting.

| Removing queue managers from the automatic start-up list
| If for any reason the MQSeries Services snap-in cannot be used to change the
| startup state of a particular queue manager, use the following routine to carry out
| the same procedure manually:

| 1. Stop the MQSeries Services snap-in either from the task bar icon or from the
| control panel.

| 2. Type REGEDT32 on the command line.

| 3. Select the HKEY_LOCAL_MACHINE window.

| 4. Navigate the tree structure to find the following key:

| LOCAL_MACHINE\Software\IBM\MQSeries\CurrentVersion\Services\<QMgrName>\QueueManager

| 5. Change the startup value to zero. (1 means automatic and 0 means manual.)

| 6. Close the registry editor.

362 MQSeries System Administration

 Stopping queue managers

Removing queue managers in MQSeries for OS/2 Warp
If you encounter problems with the dltmqm command in MQSeries for OS/2 Warp,
use the following procedure to delete a queue manager:

1. Locate the queue manager directory from the mqs.ini configuration file. By
default, this location is:

 C:\MQM\QMGRS\<QMgrName>

where <QMgrName> (or its transformed equivalent) is the name of the queue
manager to be deleted.

2. Delete this directory, all subdirectories and files.

3. Locate the associated log directory from the mqs.ini file.

4. Delete the directory, all subdirectories and files.

5. Remove its QueueManager stanza from mqs.ini.

6. Remove the DefaultQueueManager stanza, if the queue manager being deleted
is the default queue manager.

 Appendix E. Stopping and removing queue managers manually 363

 Stopping queue managers

364 MQSeries System Administration

 User identifier service

Appendix F. User identifier service

This information applies to MQSeries for OS/2 Warp only.

By default, the user ID associated with applications running under OS/2 is os2. The
queue manager inserts this user ID into the context fields of any messages that are
sent by the application.

The user identifier service enables a user-defined user ID to be substituted for the
default. When the user identifier service is active, this user ID is accessed by the
local queue manager when an application issues an MQCONN request.
Thereafter, the queue manager inserts the new user ID in the context field of any
message sent by the application.

The mechanism for defining the new user ID must be user-written. For example, in
the sample AMQSZFC0, which is supplied with MQSeries for OS/2 Warp, the user
ID is defined in an OS/2 environment variable. Once you have added the
appropriate stanza to the queue manager configuration file, you simply type this in
at the keyboard. To get the queue manager to recognize the new user ID, you
must restart the queue manager. The user identifier service is described in detail in
Chapter 14, “User identifier service” in the MQSeries Programmable System
Management book.

 Copyright IBM Corp. 1994,1999 365

 User identifier service

366 MQSeries System Administration

 Comparing command sets

Appendix G. Comparing command sets

The tables in this appendix compare the facilities available from the different
| administration command sets, and state, for MQSeries for Windows NT only,
| whether you can perform each function from within the MQSeries Explorer snap-in
| and the MQSeries Services snap-in.

Only those MQSC commands that are supported by MQSeries Version 5.1 are
shown.

| MQSC commands can be issued in the form of MQSC scripts from MQSeries Web
| Administration. See Chapter 5, “Using MQSeries Web Administration” on page 43
| for more information.

Commands for queue manager administration

| Table 26. Commands for queue manager administration

| PCF commands| MQSC
| commands
| Control
| commands
| MQSeries
| Explorer
| equivalent?

| MQSeries
| Services
| snap-in
| equivalent?

| Change Queue Manager| ALTER QMGR| No equivalent| Yes| No

| (Create queue manager) 1| No equivalent| crtmqm| Yes| Yes

| (Delete queue manager) 1| No equivalent| dltmqm| Yes| Yes

| Inquire Queue Manager| DISPLAY
| QMGR
| No equivalent| Yes| No

| (Stop queue manager) 1| No equivalent| endmqm| Yes| Yes

| Ping Queue Manager| PING QMGR| No equivalent| No| No

| (Start queue manager) 1| No equivalent| strmqm| Yes| Yes

| Notes:

| 1. Not available as PCF commands
| 2. Part of the MQSeries Services snap-in

 Copyright IBM Corp. 1994,1999 367

 Comparing command sets

Commands for command server administration

| Table 27. Commands for command server administration

| Description| PCF
| command
| MQSC
| command
| Control
| command
| MQSeries
| Explorer
| equivalent?

| MQSeries
| Services
| snap-in
| equivalent?

| Display
| command
| server

| No equivalent| No equivalent| dspmqcsv| No| Yes

| Start command
| server
| No equivalent| No equivalent| strmqcsv| No| Yes

| Stop command
| server
| No equivalent| No equivalent| endmqcsv| No| Yes

Commands for queue administration

| Table 28. Commands for queue administration

| PCF
| command
| MQSC command| Control
| command
| MQSeries
| Explorer
| equivalent?

| MQSeries
| Services
| snap-in
| equivalent?

| Change Queue| ALTER QLOCAL
| ALTER QALIAS
| ALTER QMODEL
| ALTER QREMOTE

| No equivalent| Yes| No

| Clear Queue| CLEAR QUEUE| No equivalent| Yes| No

| Copy Queue| DEFINE QLOCAL(x) LIKE(y)
| DEFINE QALIAS(x) LIKE(y)
| DEFINE QMODEL(x) LIKE(y)
| DEFINE QREMOTE(x) LIKE(y)

| No equivalent| No| No

| Create Queue| DEFINE QLOCAL
| DEFINE QALIAS
| DEFINE QMODEL
| DEFINE QREMOTE

| No equivalent| Yes| No

| Delete Queue| DELETE QLOCAL
| DELETE QALIAS
| DELETE QMODEL
| DELETE QREMOTE

| No equivalent| Yes| No

| Inquire Queue| DISPLAY QUEUE| No equivalent| Yes| No

| Inquire Queue
| Names
| DISPLAY QUEUE| No equivalent| Yes| No

368 MQSeries System Administration

 Comparing command sets

Commands for process administration

| Table 29. Commands for process administration

| PCF command| MQSC command| Control command| MQSeries
| Explorer
| equivalent?

| MQSeries
| Services snap-in
| equivalent?

| Change Process| ALTER PROCESS| No equivalent| Yes| No

| Copy Process| DEFINE
| PROCESS(x)
| LIKE(y)

| No equivalent| No| No

| Create Process| DEFINE
| PROCESS
| No equivalent| Yes| No

| Delete Process| DELETE
| PROCESS
| No equivalent| Yes| No

| Inquire Process| DISPLAY
| PROCESS
| No equivalent| Yes| No

| Inquire Process
| Names
| DISPLAY
| PROCESS
| No equivalent| Yes| No

 Appendix G. Comparing command sets 369

 Comparing command sets

Commands for channel administration

| Table 30. Commands for channel administration

| PCF command| MQSC command| Control command| MQSeries
| Explorer
| equivalent?

| MQSeries
| Services snap-in
| equivalent?

| Change Channel| ALTER CHANNEL| No equivalent| Yes| No

| Copy Channel| DEFINE
| CHANNEL(x)
| LIKE(y)

| No equivalent| No| No

| Create Channel| DEFINE CHANNEL| No equivalent| Yes| No

| Delete Channel| DELETE
| CHANNEL
| No equivalent| Yes| No

| End Listener| No equivalent| ENDMQLSR| No| Yes

| Inquire Channel| DISPLAY
| CHANNEL
| No equivalent| Yes| No

| Inquire Channel
| Names
| DISPLAY
| CHANNEL
| No equivalent| Yes| No

| Ping Channel| PING CHANNEL| No equivalent| Yes| No

| Reset Channel| RESET CHANNEL| No equivalent| Yes| No

| Resolve Channel| RESOLVE
| CHANNEL
| No equivalent| Yes| No

| Start Channel| START CHANNEL| runmqchl| Yes| Yes

| Start Channel
| Initiator
| START CHINIT| runmqchi| No| Yes

| Start Channel
| Listener
| START LISTENER| runmqlsr| No| Yes

| Stop Channel| STOP CHANNEL| No equivalent| Yes| Yes

370 MQSeries System Administration

 Comparing command sets

Other control commands

Table 31. Other control commands

Description PCF
command

MQSC
command

Control
command

MQSeries
Explorer
equivalent?

MQSeries
Services
snap-in
equivalent?

Create
MQSeries
conversion exit

No equivalent No equivalent crtmqcvx No No

Dump
MQSeries log

No equivalent No equivalent dmpmqlog No No

Display
authority

No equivalent No equivalent dspmqaut No No

Display files
used by
objects

No equivalent No equivalent dspmqfls No No

Display
MQSeries
formatted trace

No equivalent No equivalent dspmqtrc 2 No No

Display
MQSeries
transactions

No equivalent No equivalent dspmqtrn No No

| End MQSeries
| trace
| No equivalent| No equivalent| endmqtrc 1| No| Yes

Record media
image

No equivalent No equivalent rcdmqimg No No

Recreate
media object

No equivalent No equivalent rcrmqobj No No

Resolve
MQSeries
transactions

No equivalent No equivalent rsvmqtrn No No

Run dead-letter
queue handler

No equivalent No equivalent runmqdlq No No

Run MQSC
commands

No equivalent No equivalent runmqsc No No

| Run trigger
| monitor
| No equivalent| No equivalent| runmqtrm| No| Yes

Run client
trigger monitor

No equivalent No equivalent runmqtmc No No

Set or reset
authority

No equivalent No equivalent setmqaut No No

| Start MQSeries
| trace
| No equivalent| No equivalent| strmqtrc 1| No| Yes

Notes:

1. Not supported by MQSeries for AIX.

2. Supported by MQSeries for HP-UX and MQSeries for Sun Solaris only.

 Appendix G. Comparing command sets 371

 Comparing command sets

372 MQSeries System Administration

 Using UDP � Configuring MQSeries for UDP

Appendix H. Using the User Datagram Protocol

| MQSeries for AIX V5.1 supports the User Datagram Protocol (UDP), a part of the
| Internet suite of protocols, as an alternative to TCP. You might decide to use UDP
| instead of TCP for your mobile radio network, where you need to reduce the traffic,
| and therefore the cost, on a packet radio data network.

| UDP uses the Internet Protocol (IP) to deliver datagrams, the basic unit of
| information for UDP.

| You can use UDP to send message data between MQSeries for Windows Version
| 2.02 systems (that is, with CSD 2 installed) and MQSeries for AIX Version 5.1
| server systems.

| Note: UDP is supplied as part of the operating system or TCP/IP suite you are
| using; you do not need to buy and install a separate UDP product.

| This appendix describes how to:

| � Configure MQSeries to use UDP, by using MQSC commands
| � Optionally, write an exit program to monitor when data can be sent

| It also provides some hints and tips on what to do to tailor the UDP support in
| MQSeries to suit your needs.

| Configuring MQSeries for UDP
| You configure MQSeries to use UDP by using MQSC commands.

| You must make sure there is a listener started for UDP by issuing the following
| command:

| runmqlsr -m QMgrName -t UDP

| Notes:

| 1. You cannot start a listener on AIX by using the START LISTENER MQSC
| command.

| 2. Using the runmqlsr command means that you must not add entries in the
| /etc/services and /etc/inetd.conf files for UDP on MQSeries for AIX.

| Examples of MQSC command files
| The following figures show simple MQSC command files, supplied with MQSeries,
| with the channel transport type (the TRPTYPE parameter) set to UDP:

| � Figure 67 on page 374 shows the file EARTH.TST
| � Figure 68 on page 375 shows the file MOON.TST

| Both of these files are supplied in directory \mqw\samples. They define the queues
| and channels you use if you follow the procedure for setting up and verifying two
| queue managers.

 Copyright IBM Corp. 1994,1999 373

 Configuring MQSeries for UDP

| \ Define a local transmission queue - messages will be put here
| \ before being sent to the remote queue manager.
| DEFINE QLOCAL('SAMPLE.EARTH.XMIT') REPLACE +
| DESCR('Local transmission queue') +
| USAGE(XMITQ)

| \ Define the remote queue.
| \ The sample application should put messages on this queue.
| DEFINE QREMOTE('SAMPLE.EARTH.REMOTE') REPLACE +
| DESCR('Remote queue defined on EARTH') +
| DEFPSIST(YES) +
| \ This is the name of the local queue on the remote machine
| RNAME('SAMPLE.MOON.LOCAL') +
| \ This is the name of the queue manager on the remote machine
| RQMNAME('MOON') +
| \ This is the name local transmission queue to be used
| XMITQ('SAMPLE.EARTH.XMIT')

| \ Define the channel that will remove messages from the transmission
| \ queue SAMPLE.EARTH.XMIT and send them to the machine specified
| \ by CONNAME.
| \
| \ Change CONNAME to the IP name of the machine where
| \ the remote queue manager is running.
| \
| DEFINE CHANNEL ('EARTH.TO.MOON') CHLTYPE(SDR) TRPTYPE(UDP) +
| XMITQ('SAMPLE.EARTH.XMIT') +
| CONNAME('MOON IP machine name') +
| DESCR('Sender channel for messages to queue manager MOON') +
| REPLACE

| \ Define the channel that will accept messages from the remote
| \ queue manager on the machine specified by CONNAME.
| \
| \ Change CONNAME to the IP name of the machine where
| \ the remote queue manager is running.
| \
| DEFINE CHANNEL ('MOON.TO.EARTH') CHLTYPE(RQSTR) TRPTYPE(UDP) +
| CONNAME('MOON IP machine name') +
| DESCR('Requester channel for messages from queue manager MOON') +
| REPLACE

| \ Define the local queue where the remote machine will place
| \ its messages.
| \ The sample application should get messages from this queue.
| DEFINE QLOCAL('SAMPLE.EARTH.LOCAL') REPLACE +
| DESCR('Local queue') +
| DEFPSIST(YES) +
| SHARE

| Figure 67. The supplied file EARTH.TST, UDP support

374 MQSeries System Administration

 Configuring MQSeries for UDP

| \ Define a local transmission queue - messages will be put here
| \ before being sent to the remote queue manager
| DEFINE QLOCAL('SAMPLE.MOON.XMIT') REPLACE +
| DESCR('Local transmission queue') +
| USAGE(XMITQ)

| \ Define the remote queue.
| \ The sample application should put messages on this queue
| DEFINE QREMOTE('SAMPLE.MOON.REMOTE') REPLACE +
| DESCR('Remote queue defined on MOON') +
| DEFPSIST(YES) +
| \ This is the name of the local queue on the remote machine
| RNAME('SAMPLE.EARTH.LOCAL') +
| \ This is the name of the queue manager on the remote machine
| RQMNAME('EARTH') +
| \ This is the name local transmission queue to be used
| XMITQ('SAMPLE.MOON.XMIT')

| \ Define the channel that will remove messages from the transmission
| \ queue SAMPLE.MOON.XMIT and send them to the remote queue
| \ manager.
| DEFINE CHANNEL ('MOON.TO.EARTH') CHLTYPE(SVR) TRPTYPE(UDP) +
| XMITQ('SAMPLE.MOON.XMIT') +
| DESCR('Server channel for messages to queue manager EARTH') +
| REPLACE

| \ Define the channel that will accept messages from the remote
| \ queue manager.
| DEFINE CHANNEL ('EARTH.TO.MOON') CHLTYPE(RCVR) TRPTYPE(UDP) +
| DESCR('Receiver channel for messages from queue manager EARTH') +
| REPLACE

| \ Define the local queue where the remote machine will place
| \ its messages.
| \ The sample application should get messages from this queue
| DEFINE QLOCAL('SAMPLE.MOON.LOCAL') REPLACE +
| DESCR('Local queue') +
| DEFPSIST(YES) +
| SHARE

| Figure 68. The supplied file MOON.TST, UDP support

 Appendix H. Using the User Datagram Protocol 375

 Retry exit

| The retry exit
| MQSeries allows you to write a C language retry exit. The exit allows your
| application to suspend data being sent on a channel when communication is not
| possible (for example, when the mobile user is traveling through a tunnel or is
| temporarily out of range of a transmitter).

| The retry exit can be associated with a monitor program that can assess whether
| the IP connection is available for sending data. The exit has to be built into an AIX
| library (in the same way as any other MQSeries library).

| The exit is normally called before a datagram is about to be sent but is also called
| to provide other useful signals.

| The retry exit is called under five different conditions:

| � When the MQ channel is first initialized; the ExitReason variable is set to a
| value of MQXR_INIT.

| � When the MQ channel is shut down; the ExitReason variable is set to a value
| of MQXR_TERM.

| � Before each datagram is sent; the ExitReason variable is set to a value of
| MQXR_RETRY.

| � When the end of a batch of messages occurs; the ExitReason variable is set to
| a value of MQXR_END_BATCH.

| Strictly speaking, the UDP transport layer knows nothing about end of batches
| because this is a concept known only at the queue manager level; however, it
| happens that at this point the transport layer moves from a series of ccxSend()
| verbs to a single ccxReceive() verb and back again. This change of mode,
| from ccxSend() to ccxReceive() is detected and the transport exit is called
| accordingly.

| � When an “information” datagram is received from the remote end of the link;
| the ExitReason variable is set to a value of MQXR_ACK_RECEIVED.

376 MQSeries System Administration

 Retry exit

| The following table provides an explanation of the variables.

| If you want to postpone sending a datagram in response to an ExitReason of
| MQXR_RETRY, you need to block returning from the exit until it is safe to send the
| datagram. In all other cases, the return from the exit should be immediate.

| There are three possible return codes that can be set when returning from the exit:

| � MQXCC_OK — this is the normal response.

| � MQXCC_CLOSE_CHANNEL — in response to a ExitReason of
| MQXR_RETRY, this will cause the channel to be closed.

| � MQXCC_REQUEST_ACK — in response to a ExitReason of MQXR_RETRY,
| this will cause the datagram about to be sent to be modified so that it requests
| the remote end of the link to send an “information” datagram back to indicate
| that the node can be reached. If this datagram arrives the exit will be invoked
| again with an ExitReason of MQXR_ACK_RECEIVED.

| Note: If the datagram fails to arrive at the remote node, for any reason, the
| user will have to repeat the request on the next datagram that is sent.

| Other information is available to the user when the exit is called (see the file
| CMQXC.H for full details). An example called REXIT is supplied (see various files
| called REXIT.*).

| The retry exit name can be defined by the user, who can also change the name of
| the library that contains the exit. The library should reside in the same a directory
| as other MQSeries exits. See Chapter 35, “Channel-exit programs” in the
| MQSeries Intercommunication book for general information about MQSeries exits.

| You configure the retry exit by editing the qm.ini file.

| Variable| Explanation

| ExitReason| Reason for invoking the exit (for example, MQXR_RETRY).

| ExitUserArea| Exit user area. When the exit is first invoked, the user can return
| a value here. This value will be presented in this field for all
| subsequent invocations of the exit for that channel.

| TransportType| Transport type. This always has a value of MQXPT_UDP.

| RetryCount| The number of times the data has been retried (zero on first
| entry to exit).

| DataLength| Length of data to be sent (in bytes).

| SessionId| Session identifier. This is unique for each channel.

| GroupId| Group identifier. Identifies the batch of datagrams currently being
| sent.

| DataId| Data identifier. This is an identifier for each datagram.

| ExitResponse| Response from exit. The user fills this in on return with a value
| (for example, MQXCC_OK).

| Feedback| Reserved.

 Appendix H. Using the User Datagram Protocol 377

 UDP hints and tips

| Hints and tips
| Depending on your circumstances, you might need to do one or both of the
| following to tailor the UDP support in MQSeries to suit your own needs:

| � Edit the qm.ini configuration file.

| A sample qm.ini configuration file is shipped in the mqw\qmgrs\ directory. To
| use it, copy it to the sub-directory for the queue manager and edit it as
| required.

| The parameters and values in the sample configuration file are:

| UDP:
| ACKREQ_TIMEOUT = 5
| ACKREQ_RETRY = 6ð
| CONNECT_TIMEOUT = 5
| CONNECT_RETRY = 6ð
| ACCEPT_TIMEOUT = 5
| ACCEPT_RETRY = 6ð
| DROP_PACKETS = ð
| BUNCH_SIZE = 8
| PACKET_SIZE = 2ð48
| PSEUDO_ACK = YES
| TRANSPORT:
| RETRY_EXIT = exitname

| See “The UDP stanza” on page 147 and See “The Transport stanza” on
| page 149 for descriptions of each of these attributes and how to code them.

| � Keep messages to less than 4 MB.

378 MQSeries System Administration

 Notices

 Appendix I. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

| IBM Director of Licensing
| IBM Corporation
| North Castle Drive
| Armonk, NY 10504-1785
| U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web sites
are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

 Copyright IBM Corp. 1994,1999 379

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

380 MQSeries System Administration

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service
marks of others.

AIX AS/400 BookManager
CICS DB2 DB2 Universal Database
FFST FFST/2 First Failure Support

Technology
IBM IBMLink IMS
MQ MQSeries OS/2
OS/400 OS/390 TXSeries
VisualAge VSE/ESA

 Appendix I. Notices 381

 Notices

382 MQSeries System Administration

Part 4. Glossary and index

 Copyright IBM Corp. 1994,1999 383

384 MQSeries System Administration

 administration bag � CCF

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
| administration bag . In the MQAI, a type of data bag
| that is created for administering MQSeries by implying
| that it can change the order of data items, create lists,
| and check selectors within a message.

administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

| Advanced Program-to-Program Communication
| (APPC). The general facility characterizing the LU 6.2
| architecture and its various implementations in products.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR . Authorized program analysis report.

| APPC. Advanced Program-to-Program
| Communication.

application log . In Windows NT, a log that records
significant application events.

application queue . A queue used by an application.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

| authorization checks . Security checks that are
| performed when a user tries to issue administration
| commands against an object, for example to open a
| queue or connect to a queue manager.

authorization file . In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B
backout . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

| bag . See data bag.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

 Copyright IBM Corp. 1994,1999 385

 CCSID � controlled shutdown

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CICS transaction . In CICS, a unit of application
processing, usually comprising one or more units of
work.

circular logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

| cluster . A network of queue managers that are
| logically associated in some way.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an administration instruction
that can be carried out by the queue manager.

| command bag . In the MQAI, a type of bag that is
| created for administering MQSeries objects, but cannot
| change the order of data items nor create lists within a
| message.

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . An operation that applies all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information related
to, for example, logs, communications, or installable
services. Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

controlled shutdown . See quiesced shutdown.

386 MQSeries System Administration

 data bag � Framework

D
| data bag . In the MQAI, a bag that allows you to
| handle properties (or parameters) of objects.

| data item . In the MQAI, an item contained within a
| data bag. This can be an integer item or a
| character-string item, and a user item or a system item.

data conversion interface (DCI) . The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM) . In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dynamic queue . A local queue created when a
program opens a model queue object. See also

permanent dynamic queue and temporary dynamic
queue.

E
event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log . See application log.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer . A tool provided by Windows NT to
examine and manage log files.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)
� MQSeries trigger monitor interface (TMI)

 Glossary of terms and abbreviations 387

 get � logical unit of work (LUW)

G
get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

H
handle . See connection handle and object handle.

I
immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

.ini file . See configuration file.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

installable services . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

| Internet Protocol (IP) . A protocol used to route data
| from its source to its destination in an Internet
| environment. This is the base layer, on which other
| protocol layers, such as TCP and UDP are built.

| IP. Internet Protocol.

L
linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence
of files. New files are added to the sequence as
necessary. The space in which the data is written is
not reused until the queue manager is restarted.
Contrast with circular logging.

listener . In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition . An MQSeries object belonging to a
local queue manager.

local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale . On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and

| deliver messages, to enable them to recover in the
| event of failure.

log control file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file . In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW) . See unit of work.

388 MQSeries System Administration

 LU 6.2 � name service interface (NSI)

LU 6.2. A type of logical unit (LU) that supports
general communication between programs in a
distributed processing environment.

M
MCA. Message channel agent.

MCI. Message channel interface.

media image . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises

| two message channel agents (a sender at one end and
| a receiver at the other end) and a communication link.

Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a

| communication link to a destination queue. See also
| message queue interface.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved, and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

| MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

| MQSeries Administration Interface (MQAI) . A
| programming interface to MQSeries.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
| namelist . An MQSeries object that contains a list of
| names, for example, queue names.

name service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

 Glossary of terms and abbreviations 389

 name transformation � programmable command format (PCF)

name transformation . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system being
used. Externally, the queue manager name remains
unchanged.

| NetBIOS . Network Basic Input/Output System. An
| operating system interface for application programs
| used on IBM personal computers that are attached to
| the IBM Token-Ring Network.

New Technology File System (NTFS) . A Windows
NT recoverable file system that provides security for
files.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character . The character that is represented by
X'00'.

O
OAM. Object authority manager.

| object . In MQSeries, an object is a queue manager, a
| queue, a process definition, a channel, a namelist, or a
| storage class (OS/390 only).

object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event indicating
that a limit condition has occurred.

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal . In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

390 MQSeries System Administration

 program temporary fix (PTF) � requester channel

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

program temporary fix (PTF) . A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,
programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the Registry.

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply
message and request message.

| repository . A collection of information about the queue
| managers that are members of a cluster. This
| information includes queue manager names, their
| locations, their channels, what queues they host, and so
| on.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The

 Glossary of terms and abbreviations 391

 request message � store and forward

requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used to request
a reply from another program. Contrast with reply
message and report message.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource manager . An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at

the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event . An event related to the service
interval.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

single-phase backout . A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SNA. Systems Network Architecture.

| SPX. Sequenced Packet Exchange transmission
| protocol.

stanza . A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries
on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

392 MQSeries System Administration

 symptom string � undo/redo record

symptom string . Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

| system bag . A type of data bag that is created by the
| MQAI.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
| TCP. Transmission Control Protocol.

| TCP/IP. Transmission Control Protocol/Internet
| Protocol.

temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

tranid . See transaction identifier.

transaction . See unit of work and CICS transaction.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

| Transmission Control Protocol (TCP) . Part of the
| TCP/IP protocol suite. A host-to-host protocol between
| hosts in packet-switched communications networks.
| TCP provides connection-oriented data stream delivery.
| Delivery is reliable and orderly.

| Transmission Control Protocol/Internet Protocol
| (TCP/IP). A suite of communication protocols that
| support peer-to-peer connectivity functions for both local
| and wide area networks.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
| UDP. User Datagram Protocol.

UIS. User identifier service.

undelivered-message queue . See dead-letter queue.

undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be

 Glossary of terms and abbreviations 393

 unit of recovery � X/Open XA

made to an MQSeries object. The undo part describes
how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

| user bag . In the MQAI, a type of data bag that is
| created by the user.

| User Datagram Protocol (UDP) . Part of the TCP/IP
| protocol suite. A packet-level protocol built directly on
| the Internet Protocol layer. UDP is a connectionless
| and less reliable alternative to TCP. It is used for

| application-to-application programs between TCP/IP
| host systems.

user identifier service (UIS) . In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
X/Open XA . The X/Open Distributed Transaction
Processing XA interface. A proposed standard for
distributed transaction communication. The standard
specifies a bidirectional interface between resource
managers that provide access to shared resources
within transactions, and between a transaction service
that monitors and resolves transactions.

394 MQSeries System Administration

 Index

 Index

Special Characters
.ini files

See configuration files

A
access authorizations 112
access permissions to MQSeries resources 108
accidental deletion of default queue manager 285
ACTION keyword, rules table 162
Active Directory Service Interfaces (ADSI)

See ADSI (Active Directory Service Interfaces)
administration

authorizations 120
control commands 49
description of 25
for database managers 201
introduction to 23
local, definition of 18, 23
MQAI, using 84
MQSeries (MQSC) commands 23, 60
object name transformation 28
PCF commands 83
queue manager name transformation 27
remote administration, definition of 18, 23
remote objects 87
understanding MQSeries file names 27
using control commands 23
using MQSeries Web Administration 43
using PCF commands 24
using the MQSeries Explorer 29
using the MQSeries Services snap-in 25, 37

ADSI (Active Directory Service Interfaces)
description of 85
IBMMQSeries namespace 85

AIX operating system
DB2 switch load file, creating 183
levels supported by the MQSeries Explorer 31
MQAI support 84
mqmtop directory, changes to xv
oraswit, creating Oracle switch load file 188
start client trigger monitor (runmqtmc)

command 325
sybswit, creating the Sybase switch load file 193
trace data, example 265
tracing 263
Transport stanza, User Datagram Protocol

support 149
UDP stanza, User Datagram Protocol support 147
User Datagram Protocol (UDP) support 373

alert monitor application, MQSeries Services
snap-in 38

alias queues
authorizations to 113
DEFINE QALIAS command 77
defining alias queues 77
remote queues as queue manager aliases 99
reply-to queues 99
working with alias queues 77

aliases
queue manager aliases 99
working with alias queues 77

AllQueueManagers stanza, mqs.ini 130
alternate-user authority 113
amqsdlq, the sample DLQ handler 158
application programs

design considerations 255
message length, effects on performance 255
MQI local administration, support for 59
persistent messages, effect on performance 255
programming errors, examples of 250
receiving messages 11
retrieving messages from queues 11
searching for messages, effect on performance 255
sending messages 11
threads, application design 256
time-independent applications 9

application queues
creating and copying, restrict access to 113
defining application queues for triggering 80
description of 15

APPLIDAT keyword, rules table 160
APPLNAME keyword, rules table 161
APPLTYPE keyword, rules table 161
attributes

changing local queue attributes 72
LIKE attribute, DEFINE command 72
MQSeries and PCF commands, a comparison 84
queue manager 63, 65
queues 14

authority
authority commands 112
authorization files

all class 126
class 125
contents of 124
description of 122
directories 123
example stanza 124
managing 126
paths 123
types of authorization 122

 Copyright IBM Corp. 1994,1999 395

 Index

authorization lists 111
authorization service 20
authorizations

access authorizations 112
administration 120
authorization to 126
group sets 108
lists 111
MQI 117
specification tables 116
user groups 109
using dspmqaut to view authorizations 112

automatic definition of channels 93
automatic population facility, MQSeries Explorer 35

B
backing up queue manager data 225
bibliography xvi
BookManager xx
browsing queues 74
built-in formats, data conversion 100

C
calculating the size of logs 219
case-sensitive control commands 50
ccsid.tbl, data conversion 100
changing

local queue attributes 72
queue manager attributes 65
the default queue manager 55, 65

channels
administering a remote queue manager from a local

one 89
auto-definition of 93
channel command security 115
Channels stanza, qm.ini 142
command security requirements 115
commands for channel administration 370
defining channels for remote administration 91
description of 17, 87
escape command authorizations 120
events 171
exits 20
preparing channels for remote administration 90
remote queuing 87
security requirements for PCF commands 115
security, MQSC channel commands 116
starting a channel 92
using the run channel (runmqchl) command 317
using the run initiator (runmqchi) command 316

Channels stanza, qm.ini 142
character code sets, updating 100
CICS

CICS user exits, single-phase commit 211

CICS (continued)
enabling the two-phase commit process 209
requirements, two-phase commit process 208
single-phase commit process 210
task termination exit, UE014015 210
two-phase commit process 208
user exits, enabling 209
user IDs 113
using the CICS sample exits 211
XA-compliance 208

circular logging 215
clearing a local queue 73
ClientExitPath stanza, mqs.ini 131
clients and servers

definitions 19
error messages on DOS and Windows 275
problem determination 274
start client trigger monitor (runmqtmc)

command 325
clusters

cluster membership, the MQSeries Explorer 32
cluster transmission queues 16
description of 18, 88
ExitProperties stanza attributes 132
remote queuing 87
showing and hiding, MQSeries Explorer 31

CMQXC.H, UDP 377
coded character sets, specifying 100
command files 66
command queues

command server status 86
description of 16
mandatory for remote administration 90
SYSTEM.ADMIN.COMMAND.QUEUE 16
using commands, Windows NT 25

command scripts, MQSeries Web Administration 47
command server

commands for command server administration 368
display command server (dspmqcsv) command 297
displaying status 86
end command server (endmqcsv) command 303
remote administration 85
starting a command server 86
starting the command server (strmqcsv)

command 333
stopping a command server 86

command sets
comparison of sets 367
control commands 49
MQSeries (MQSC) commands 60
PCF commands 83

commands
commands for queue manager administration 367
comparison of command sets 367
control commands 49
create queue manager (crtmqm) command 284

396 MQSeries System Administration

 Index

commands (continued)
data conversion (crtmqcvx) command 282
delete queue manager (dltmqm) command 289
display authority (dspmqaut) command 293
display command server (dspmqcsv) command 297
display MQSeries files (dspmqfls) command 298
display MQSeries formatted trace (dspmqtrc)

command 300
display MQSeries transactions (dspmqtrn)

command 301
dump log (dmpmqlog) command 291
end command server (endmqcsv) command 303
end listener (endmqlsr) command 305
end MQSeries trace (endmqtrc) command 308
end queue manager (endmqm) command 306
for channel administration 370
for command server administration 368
for process administration 369
for queue administration 368
help with syntax 281
issuing MQS commands using an ASCII file 60
other commands 371
PCF commands 83
record media image (rcdmqimg) command 310
recreate object (rcrmqobj) command 312
resolve MQSeries transactions (rsvmqtrn)

command 314
run channel (runmqchl) command 317
run channel initiator (runmqchi) 316
run dead-letter queue handler 318
run DLQ handler (runmqdlq) command 157
run listener (runmqlsr) command 320
run MQSeries commands (runmqsc) 322
runmqsc command, to issue MQS commands 60
security (OAM) commands 110
set/reset authority (setmqaut) 327
shell, MQSeries for UNIX systems 50
start client trigger monitor (runmqtmc)

command 325
start command server (strmqcsv) 333
start MQSeries trace (strmqtrc) 336
start queue manager (strmqm) 334
start trigger monitor (runmqtrm) 326

configuration files
AllQueueManagers stanza, mqs.ini 130
backing up of 53
Channels stanza, qm.ini 142
ClientExitPath stanza, mqs.ini 131
databases, qm.ini 140
DefaultQueueManager stanza, mqs.ini 131
disabling the OAM, qm.ini 110
editing 127, 128
example mqs.ini file, MQSeries for OS/2 Warp 149
example mqs.ini file, MQSeries for UNIX

systems 154
example qm.ini file, MQSeries for UNIX

systems 154

configuration files (continued)
Exitpath stanza, qm.ini 147
ExitProperties stanza, mqs.ini 132
Log stanza, qm.ini 138
LogDefaults stanza, mqs.ini 132
LU62 stanza, qm.ini 144
mqs.ini, description of 128
NETBIOS stanza, qm.ini 144
priorities 128
queue manager configuration file, qm.ini 129
QueueManager stanza, mqs.ini 134
RestrictedMode stanza, qm.ini 140
Service stanza, qm.ini 136
ServiceComponent stanza, qm.ini 137
SPX stanza, qm.ini 144
TCP stanza, qm.ini 144
Transport stanza, qm.ini 149
UDP stanza, qm.ini 147
XAResourceManager stanza, qm.ini 140

configuring
database managers 178
DB2 180
logs 138
multiple databases 200
Oracle 186
Sybase 192

context authority 114
control commands

case sensitivity of 50
categories of 49
changing the default queue manager 55
controlled shutdown 55
creating a default queue manager 54
creating a queue manager 51
crtmqm, creating a default queue manager 54
deleting a queue manager, dltmqm 57
dltmqm, deleting a queue manager 57
endmqm, stopping a queue manager 55
for MQSeries for OS/2 Warp systems 50
for MQSeries for UNIX systems 50
for MQSeries for Windows NT systems 50
immediate shutdown 56
preemptive shutdown 56
quiesced shutdown 56
restarting a queue manager, strmqm 57
runmqsc, using interactively 61
starting a queue manager 54
stopping a queue manager, endmqm 55
strmqm, restarting a queue manager 57
strmqm, starting a queue manager, 54
using 49

controlled shutdown of a queue manager 55, 56
CorrelId, performance considerations 255
create queue manager command (crtmqm)

See crtmqm (create queue manager) command

 Index 397

 Index

creating
a default queue manager 54
a dynamic (temporary) queue 11
a model queue 11
a predefined (permanent) queue 11
a process definition 81
a queue manager 51, 284
a transmission queue 98

crtmqcvx (data conversion) command
examples 282
format 282
parameters 282
purpose 282
return codes 282

crtmqm (create queue manager) command
examples 287
format 284
parameters 284
purpose 284
related commands 288
return codes 287

CURDEPTH, current queue depth 72
current queue depth, CURDEPTH 72
customized dump, FFST 274

D
daemon, inetd 113
data conversion

built-in formats 100
ccsid.tbl, uses for 100
ConvEBCDICNewline attribute, AllQueueManagers

stanza 130
converting user-defined message formats 101
data conversion (crtmqcvx) command 282
default data conversion 101
EBCDIC NL character conversion to ASCII 130
introduction 100
updating coded character sets 100

data conversion command (crtmqcvx)
See crtmqcvx (data conversion) command

database managers
changing the configuration information 205
configuring 178
connections to 177
coordination 176
database manager instances, removing 205
defining database managers in qm.ini 178
defining database managers in Windows NT

Registry 178
dspmqtrn command, checking outstanding

UOWs 202
in-doubt units of work 201
multiple databases, configuring 200
restrictions, database coordination support 177
rsvmqtrn command, explicit resynchronization of

UOWs 203

database managers (continued)
security considerations 200
switch load files, creating 178
syncpoint coordination 206

DB2
adding XAResourceManager stanza 184
configuring 180
DB2 configuration parameters, changing 185
DB2 switch load file, creating 180
environment variable settings 180
explicit resynchronization of UOWs 203
security considerations 200
switch load file, creating on OS/2 181
switch load file, creating on UNIX 183
switch load file, creating on Windows NT 182

DCE Generic Security Service (GSS)
name service, installable service 20
overview 22

DCOMCNFG.EXE, MQSeries Services snap-in 40
dead-letter header, MQDLH 157
dead-letter queue handler

ACTION keyword, rules table 162
action keywords, rules table 162
APPLIDAT keyword, rules table 160
APPLNAME keyword, rules table 161
APPLTYPE keyword, rules table 161
control data 159
DESTQ keyword, rules table 161
DESTQM keyword, rules table 161
example of a rules table 167
FEEDBCK keyword, rules table 161
FORMAT keyword, rules table 161
FWDQ keyword, rules table 162
FWDQM keyword, rules table 162
HEADER keyword, rules table 163
INPUTQ, rules table 159
INPUTQM keyword, rules table 159
invoking the DLQ handler 157
MSGTYPE keyword, rules table 161
pattern-matching keywords, rules table 160
patterns and actions (rules) 160
PERSIST keyword, rules table 161
processing all DLQ messages 166
processing rules, rules table 165
PUTAUT keyword, rules table 163
REASON keyword, rules table 161
REPLYQ keyword, rules table 161
REPLYQM keyword, rules table 161
RETRY keyword, rules table 163
RETRYINT, rules table 159
rule table conventions 163
rules table, description of 158
sample, amqsdlq 158
syntax rules, rules table 164
USERID keyword, rules table 162
WAIT keyword, rules table 159

398 MQSeries System Administration

 Index

dead-letter queues
defining a dead-letter queue 71
description of 16
DLQ handler 318
MQDLH, dead-letter header 157
specifying 52

debugging
command syntax errors 250
common command errors 250
common programming errors 250
further checks 251
preliminary checks 247

default configuration, Windows NT 26
default data conversion 101
default transmission queues 98
DefaultQueueManager stanza, mqs.ini 131
defaults

changing the default queue manager 55
creating a default queue manager 54
objects 343
queue manager 52
reverting to the original default queue manager 55
transmission queue 53

defining
a model queue 79
an alias queue 77
an initiation queue 81
MQSeries queues 14

delete queue manager command (dltmqmq)
See dltmqmq (delete queue manager) command

deleting
a local queue 73
a queue manager 57
a queue manager using the dltmqm command 289
NT queue managers, automatic start-up list 362
queue managers, MQSeries for OS/2 Warp 363
queue managers, MQSeries for UNIX systems 360
Windows NT queue managers 361

DESTQ keyword, rules table 161
DESTQM keyword, rules table 161
determining current queue depth 72
directories

authorization files 123
queue manager 113
queue manager log directory structure 353, 357

disabling the object authority manager 110
display

current authorizations (dspmquat) command 293
default object attributes 71
file system name (dspmqfls) command 298
MQSeries formatted trace (dspmqtrc)

command 300
MQSeries transactions (dspmqtrn) command 301
process definitions 82
queue manager attributes 63
status of command server 86

display (continued)
status of command server (dspmqcsv)

command 297
display authority command (dspmquat)

See dspmqaut (display authority) command
display command server command (dspmqcsv)

See dspmqcsv (display command server) command
display MQSeries files command (dspmqfls)

See dspmqfls (display MQSeries files) command
display MQSeries formatted trace output command

(dspmqtrc)
See dspmqtrc (display MQSeries formatted trace)

command
display MQSeries transactions command (dspmqtrn)

See dspmqtrn (display MQSeries transactions)
command

distributed queuing, incorrect output 258
distribution queues
dltmqm control command 57
dltmqmq (delete queue manager) command

examples 290
format 289
parameters 289
purpose 289
related commands 290
return codes 289

dmpmqlog (dump log) command
format 291
parameters 291
purpose 291

DOS clients error messages 275
dspmqaut (display authority) command

access authorizations 112
dspmqaut command 296
examples 296
format 293
parameters 293
purpose 293
related commands 296
results 294
return codes 296
using 112

dspmqcsv (display command server) command
examples 297
format 297
parameters 297
purpose 297
related commands 297
return codes 297

dspmqfls (display MQSeries files) command
examples 299
format 298
parameters 298
purpose 298
return codes 299

 Index 399

 Index

dspmqtrc (display MQSeries formatted trace) command
format 300
parameters 300
purpose 300
related commands 300

dspmqtrn (display MQSeries transactions) command
format 301
parameters 301
purpose 301
related commands 302
return codes 301

dump
customized dump, FFST 274
dumping log records (dmpmqlog command) 228
dumping the contents of a recovery log 228
formatted system log (dmpmqlog) command 291
MQSeries log-dump utility 262
system dump, FFST 274

dump log command (dmpmqlog)
See dmpmqlog (dump log) command

dynamic definition of channels 93
dynamic queues

authorizations 113
description of 11

E
EARTH.TST, file supplied for UDP 374
EBCDIC NL character conversion to ASCII 130
end command server command (endmqcsv)

See endmqcsv (end command server) command
end listener command (endmqlsr)

See endmqlsr (end listener) command
end MQSeries trace command (endmqtr)

See endmqtr (end MQSeries trace) command
end queue manager command (endmqm)

See endmqm (end queue manager) command
ending

a queue manager 55
interactive MQSC commands 63

endmqcsv (end command server) command
examples 304
format 303
parameters 303
purpose 303
related commands 304
return codes 303

endmqlsr (end listener) command
format 305
parameters 305
purpose 305
return codes 305

endmqm (end queue manager) command
examples 307
format 306
parameters 306

endmqm (end queue manager) command (continued)
purpose 306
related commands 307
return codes 307

endmqtr (end MQSeries trace) command
format of 308
parameters 308
purpose of 308
syntax of 308

environment variables
DB2INSTANCE 180
disabling the OAM 110
MQDATA 275
MQS_TRACE_OPTIONS 264
MQSNOAUT 110
MQSPREFIX 130
ORACLE_HOME, Oracle 186
ORACLE_SID, Oracle 186

error logs
description of 259
errors occurring before log established 261
example, MQSeries 261
log files 260

error messages, MQSC commands 62
escape PCFs 84
event queues

description of 17
event notification through event queue 172
triggered event queues 172

events
channel 171
enabling and disabling 172
event messages 173
instrumentation 169
performance events 171
queue manager events 171
trigger 172
types of 171

examples
creating a transmission queue 98
crtmqcvx command 282
crtmqm command 287
dltmqm command 290
dspmqaut command 296
dspmqcsv command 297
dspmqfls command 299
EARTH.TST, supplied file for UDP 374
endmqcsv command 304
endmqm command 307
endmqtrc command 308
error log, MQSeries 261
MOON TST, supplied file for UDP support 375
mqs.ini file, MQSeries for OS/2 Warp 149
mqs.ini file, MQSeries for UNIX systems 154
MQSC command files for UDP support 373
programming errors 250

400 MQSeries System Administration

 Index

examples (continued)
qm.ini file, MQSeries for UNIX systems 154
rcdmqimg command 311
rcrmqobj command 313
runmqlsr command 321
runmqsc command 324
runmqtmc command 325
setmqaut command 332
strmqcsv command 333
strmqm command 334
strmqtrc command 339
trace data (AIX) 265

Exitpath stanza, qm.ini 147
ExitProperties stanza,mqs.ini 132
extending queue manager facilities 20

F
FEEDBACK keyword, rules table 161
feedback, MQSC commands 62
FFST (first-failure support technology)

customized dump 274
FFST/2, further information 273
in problem determination 272
OS/2 Warp 271, 272
symptom records 273
UNIX systems 270
using FFST/2 273
Windows NT 271

file names 27
file sizes, for logs 219
files

authorization 122
log control file 214
log files, in problem determination 260
logs 214
MQSeries configuration 128
queue manager configuration 129
understanding names 27
XA switch load files 207

first-failure support technology (FFST)
See FFST (first-failure support technology)

FORMAT keyword, rules table 161
FWDQ keyword, rules table 162
FWDQM keyword, rules table 162

G
global units of work

adding XAResourcemanager stanza to qm.ini,
Oracle 189

adding XAResourceManager stanza, DB2 184
definition of 22, 175

glossary 385
group set authorizations 108

group sets, for authority 108
GSS (DCE Generic Security Service)

See DCE Generic Security Service (GSS)
guidelines for creating queue managers 51

H
HEADER keyword, rules table 163
help with command syntax 281
HP-UX

MQAI support for 84
oraswit, creating Oracle switch load file 188
sybswit, creating the Sybase switch load file 193
trace 266
trace data, sample 266

HTML (Hypertext Markup Language) xxi
Hypertext Markup Language (HTML) xxi

I
IBMMQSeries namespace, ADSI support 85
incorrect output 256
indirect mode, runmqsc command 94
indoubt transactions

database managers 201
display MQSeries transactions (dspmqtrn)

command 301
using the resolve MQSeries (rsvmqtrn)

command 314
inetd daemon 113
initiation queues

defining 81
description of 15

input, standard 61
installable components

object authority manager (OAM) 107
installable services

authorization service 20
installable services, list of 20
name service 20
object authority manager (OAM) 107
specifying installable services, setmqaut

command 112
user identifier service, OS/2 only 365

installation directory, mqmtop xv
instrumentation events

description 169
event messages 173
types of 171
why use them 170

issuing
MQS commands using an ASCII file 60
MQS commands using runmqsc command 60
MQSC commands remotely 93

 Index 401

 Index

L
LIKE attribute, DEFINE command 72
linear logging 215
listener

end listener (endmqlsr) command 305
starting the listener, OS/2 Warp & Windows NT 92
using the run listener (runmqlsr) command 320

lists, authorization 111
loading console files, MQSeries Explorer 34
local administration

creating a queue manager 51
definition of 18, 23
issuing MQS commands using an ASCII file 60
runmqsc command, to issue MQS commands 60
support for application programs 59
using MQSeries Web Administration 43
using the MQSeries Explorer 29
using the MQSeries Services snap-in 37

local queues
changing queue attributes, commands to use 72
clearing 73
copying a local queue definition 72
defining 70
defining application queues for triggering 80
deleting 73
description of 13
monitoring performance of MQSeries for Windows

NT queues 76
specific queues used by MQSeries 15
working with local queues 70

local unit of work
definition of 22, 175

Log stanza, qm.ini 138
LogDefaults stanza, mqs.ini 132
logging

calculating the size of logs 219
checkpoint records 216
checkpoints 215, 216
circular logging 215
contents of logs 213
linear logging 215
locations for log files 222
log file reuse 216
media recovery 224
parameters 53
types of 214
what happens when a disk fills up? 221

logs
calculating the size of logs 219
checkpoints 215, 216
configuring 138
directory structure 353
dumping log records (dmpmqlog command) 228
dumping the contents of 228
error logs 259

logs (continued)
errors occurring before error log established 261
format of a log 214
log control file 214
log files, in problem determination 260
Log stanza, qm.ini 138
logging parameters 53
managing 220, 221
media recovery, linear logs 223
output from the dmpmqlog command 229
overheads 219
parameters 53
persistent messages, effect upon log sizes 219
protecting 225
queue manager log directory structure 357
recreating objects (rcrmqobj) command 312
reuse of 216
types of logging 214
types of logs 213
using logs for recovery 222
what happens when a disk fills up? 221

LU62 stanza, qm.ini 144

M
managing objects for triggering 80
manual removal of a queue manager 360
manually stopping a queue manager 359
maximum line length, MQSC commands 66
MCA (message channel agent) 157
media images

automatic media recovery failure, scenario 228
description of 223
record media image (rcdmqimg) command 310
recording media images 223
recovering damaged objects during start up 224
recovering media images 224

message channel agent (MCA) 157
message length, decreasing 73
message queuing 9
message-driven processing 9
message-queuing interface (MQI)

See MQI (message-queuing interface)
messages

application data 10
containing unexpected information 258
converting user-defined message formats 101
definition of 10
errors on DOS and Windows clients 275
event messages 173
message descriptor 10
message length, effects on performance 255
message lengths 10
message-driven processing 9
not appearing on queues 256
operator messages 261

402 MQSeries System Administration

 Index

messages (continued)
persistent messages, effect on performance 255
queuing 9
retrieval algorithms 11
retrieving messages from queues 11
sending and receiving 11
undelivered 263
variable length 255

Microsoft Management Console (MMC)
See MMC (Microsoft Management Console)

MMC (Microsoft Management Console)
description of 25
introduction 24

model queues
creating a model queue 11
DEFINE QMODEL command 79
defining 79
working with 79

monitoring
performance of MQSeries for Windows NT

queues 76
queue managers 170
start client trigger monitor (runmqtmc)

command 325
starting a trigger monitor (runmqtrm command) 326

MOON.TST, supplied file for UDP 375
MQAdmin user account, changing 41
MQAI (MQSeries administrative interface)

description of 84
MQDATA, environment variable 275
MQDLH, dead-letter header 157
MQI (message-queuing interface)

authorization specification tables 116
authorizations 117
definition of 9
local administration support 59
queue manager calls 14
receiving messages 11
sending messages 11

MQI authorizations 117
mqm, super user 104
mqm, user group 104
mqmtop, the installation directory xv
MQOPEN authorizations 117
MQPUT and MQPUT1, performance

considerations 256
MQPUT authorizations 117
MQS_TRACE_OPTIONS, environment variable 264
mqs.ini configuration file

AllQueueManagers stanza 130
ClientExitPath stanza 131
DefaultQueueManager stanza 131
definition of 127
editing 128
ExitProperties stanza 132
LogDefaults stanza 132

mqs.ini configuration file (continued)
path to 68
priorities 128
QueueManager stanza 134

MQSC command files
input 66
output reports 67
running 67

MQSC commands
attributes of 84
authorization 120
command files, input 66
command files, output reports 67
command files, running 67
command scripts, MQSeries Web Administration 47
ending interactive input 63
escape PCFs 84
issuing interactively 61
issuing MQSC commands remotely 93
maximum line length 66
object attribute names 13
overview 23, 60
problems using MQSC remotely 95
problems, checklist 68
problems, resolving 68
redirecting input and output 65
runmqsc control command, modes 24, 60
security requirements, channel commands 116
syntax errors 62
timed out command responses 94
using 65
verifying 68

MQSeries
attributes of MQSeries commands 84
commands 60
issuing MQS command using an ASCII file 60
runmqsc command, to issue MQS commands 60

MQSeries administrative interface (MQAI)
See MQAI (MQSeries administrative interface)

MQSeries commands
See MQSC commands

MQSeries Explorer
authorizations to run 33
automatic population facility, switching off 35
cluster membership 32
connecting to remote queue managers, security 33
data conversion 34
description of 25
initial state of the console 35
introduction 24
performance considerations 30
prerequisite software 30
required resource definitions 31
saving and loading console files 34
security exits, enabling 34
security exits, the MQSeries Explorer 33

 Index 403

 Index

MQSeries Explorer (continued)
security exits, using 33
security implications 33
showing and hiding queue managers and

clusters 31
MQSeries publications xvi
MQSeries queues, defining 14
MQSeries Services snap-in

alert monitor application 38
controlling access 40
controlling remote access 41
DCOMCNFG.EXE, using 40
introduction 24
MQAdmin user account, changing 41
prerequisite software 38
recovery capabilities 39
security implications 39
using 38

MQSNOAUT, environment variable 110
MQSPREFIX, environment variable 130
MQZAO, constants and authority 118
MsgId, performance considerations when using 255
MSGTYPE keyword, rules table 161

N
name service 20
name transformations 27
namelists

description of 18
naming conventions

national language support 279
object names 12
queue manager name transformation 27

national language support
data conversion 100
EBCDIC NL character conversion to ASCII 130
naming conventions for 279
operator messages 261

NETBIOS stanza, qm.ini 144
NL character, EBCDIC conversion to ASCII 130
nobody, default user group 109
notification of events 172

O
OAM (Object Authority Manager)

authorization lists 111
authorization service, installable service 20
default user group 109
description of 107
disabling 110
display authority (dspmquat) command 112
getting access to OAM commands 110
group sets 108
guidelines for using 113

OAM (Object Authority Manager) (continued)
how it works 108
managing access through user groups 108
overview 21
primary group, &qmunix. 108
primary group, MQSeries for Windows NT 108
principals 108
resources protected by 109
searching for a specified user, MQS for Windows

NT 108
sensitive operations 113
set/reset authority (setmqaut) command 110, 111
using the set and reset authority (setmqaut)

command 327
Object Authority Manager (OAM)

See OAM (Object Authority Manager)
object name transformation 28
objects

access to 103
administration of 23
attributes of 13
automation of administration tasks 24
default configuration, Windows NT 26
default object attributes, displaying 71
description of 17, 18, 88
display file system name (dspmqfls) command 298
local queues 13
managing objects for triggering 80
media images 223
multiple queues 14
naming conventions 12, 279
object name transformation 28
process definitions 17
queue manager objects used by MQI calls 14
queue managers 13
queue objects, using 14
recovering damaged objects during start up 224
recovering from media images 224
recreate (rcrmqobj) command 312
remote administration 87
remote queue objects 99
remote queues 14
system default objects 18
types of 12
using MQSC commands to administer 23
using the MMC window 24

operating system variable, disabling security 110
operating systems (platforms)

UNIX systems, restrictions xiv
operator

commands, no response from 252
messages 261

Oracle
configuration parameters, changing 191
configuring 186
environment variable settings, checking 186

404 MQSeries System Administration

 Index

Oracle (continued)
minimum supported levels 186
Oracle XA support, enabling 186
ORACLE_HOME, environment variable 186
ORACLE_SID, environment variable 186
oraswit, creating on UNIX systems 188
patches, applying 186
security considerations 200
switch load file, creating 187
XAResourcemanager stanza, adding to qm.ini 189

OS/2 operating system
control commands for 50
db2swit.dll, creating 181
directory structure, OS/2 351
example mqs.ini file, MQSeries for OS/2 Warp 149
FFST, examining 271
levels supported by the MQSeries Explorer 31
MQAI support for 84
queue managers, deleting 363
start client trigger monitor (runmqtmc)

command 325
switch load structures, library names 207
tracing, performance considerations 268
user identifier service 365
user identifier service, OS/2 only 21
using the dspmqaut command 293

OS/390 queue manager 94
OS/400, levels supported by the MQSeries

Explorer 31
output, standard 61
overheads, for logs 219

P
PCF (programmable command format)

Active Directory Service Interfaces (ADSI) 85
administration tasks 24
attributes in MQSC and PCF 84
authorization specification tables 116
automating administrative tasks using PCF 83
channel security, requirements 115
escape PCFs 84
MQAI, using to simplify use of 84
object attribute names 13

PDF (Portable Document Format) xxi
performance

advantages of using MQPUT1 256
application design, impact on 255
CorrelId, effect on 255
message length, effects on 255
message persistence, effect on 255
MsgId, effect on 255
performance events 171
Performance Monitor 76
syncpoints, effects on 256
threads, effect on 256

performance (continued)
trace 263, 266
tracing OS/2, performance considerations 268
tracing Windows NT, performance

considerations 268
Performance Monitor 76
permanent (predefined) queues 11
PERSIST keyword, rules table 161
persistent messages, effect on performance 255
Portable Document Format (PDF) xxi
PostScript format xxi
predefined (permanent) queues 11
preemptive shutdown of a queue manager 56
primary group authorizations 108
principals

belonging to more than one group 108
managing access to 108

problem determination
application design considerations 255
applications or systems running slowly 254
authorization files 122
clients 274
command errors 250
common programming errors 250
configuration files 263
Event Viewer application, Windows NT 260
FFST/2 operation 273
first-failure support technology (FFST) 272
has the application run successfully before? 249
incorrect output 256
incorrect output, definition of 252
incorrect output, distributed queuing 258
intermittent problems 251
introduction 247
log files 260
MQSeries error messages 248
no response from operator commands 252
preliminary checks 247
problems affecting parts of a network 250
problems caused by service updates 251
problems that occur at specific times in the day 251
problems with shutdown 57
questions to ask 248
queue failures, problems caused by 253
remote queues, problems affecting 254
reproducing the problem 248
return codes 248, 249
searching for messages, performance effects 255
things to check first 247
trace 263, 266
undelivered messages 263
what is different since the last successful run? 249

process definitions
commands for process administration 369
creating 81
description of 17

 Index 405

 Index

process definitions (continued)
displaying 82

processing, message-driven 9
programmable command format (PCF)

See PCF (programmable command format)
programming errors, examples of 250

further checks 251—255
secondary checks 251—255

protected resources 109
protecting MQSeries resources 103
Public Key Encryption Algorithm, MQSeries Web

Administration 45
publications

MQSeries xvi
related xxii

PUTAUT keyword, rules table 163

Q
qm.ini configuration file

Channels stanza 142
definition of 129
editing 128
Exitpath stanza 147
Log stanza 138
LU62 stanza 144
NETBIOS stanza 144
priorities 128
RestrictedMode stanza 140
Service stanza 136
ServiceComponent stanza 137
SPX stanza 144
TCP stanza 144
Transport stanza 149
UDP stanza 147
XAResourceManager stanza 140

queue browser, sample 74
queue depth, current 72
queue managers

accidental deletion of default 285
attributes, changing 65
attributes, displaying 63
authorization directories 123
authorizations 113
backing up queue manager data 225
changing the default queue manager 55, 65
command server 85
commands for queue manager administration 367
configuration files, backing up 53
controlled shutdown 55
creating a default queue manager 54
creating a queue manager 51, 284
default configuration, Windows NT 26
default for each node 52
deleting a queue manager 57
deleting a queue manager (dltmqm) command 289

queue managers (continued)
directories 113
disabling the object authority manager 110
dumping formatted system log (dmpmqlog)

command 291
dumping the contents of a recovery log 228
end queue manager (endmqm) command 306
guidelines for creating a queue manager 51
immediate shutdown 56
limiting the numbers of 51
linear logging 215
log directory structure 353
log maintenance, recovery 213
monitoring 170
name transformation 27
object authority manager, description 107
OS/390 queue manager 94
preemptive shutdown 56
preparing for remote administration 89
queue manager aliases 99
queue manager events 171
queue manager log directory structure 357
quiesced shutdown 56
recording media images 223
remote administration 87
removing a queue manager manually 360
restoring queue manager data 225
reverting to the original default 55
specifying on runmqsc 65
specifying unique names for 51
starting a queue manager 54
starting a queue manager automatically 55
starting a queue manager, strmqm command 334
stopping a queue manager 55
stopping a queue manager manually 359

QueueManager stanza, mqs.ini 134
queues

alias 77
application queues 80
attributes 14
authorizations to 113
browsing 74
clearing local queues 73
defaults, transmission queues 53
defining MQSeries queues 14
definition of 10
deleting a local queue 73
dynamic (temporary) queues 11
extending queue manager facilities 20
for MQSeries applications 59
initiation queues 81
local definition of a remote queue 95
local queues 13
model queues 11, 79
multiple queues 14
predefined (permanent) queues 11

406 MQSeries System Administration

 Index

queues (continued)
preparing transmission queues for remote

administration 90
queue manager aliases 99
queue managers, description of 13
queue objects, using 14
remote queue objects 99
reply-to queues 99
retrieving messages from 11
specific local queues used by MQSeries 15
specifying dead-letter queues 52
specifying undelivered-message 52

quiesced shutdown of a queue manager 56
preemptive shutdown 56

R
railroad diagrams, how to read 280
RC4 encryption algorithm, MQSeries Web

Administration 45
rcdmqimg (record media image) command

examples 311
format 310
parameters 310
purpose 310
related commands 311
return codes 311

rcrmqobj (recreate object) command
examples 313
format 312
parameters 312
purpose 312
related commands 313
return codes 313

REASON keyword, rules table 161
receiver channel, automatic definition of 93
record media image command (rcdmqimg)

See rcdmqimg (record media image) command
recovery

automatic media recovery failure, scenario 228
backing up MQSeries 225
backing up queue manager data 225
checkpoints, recovery logs 216
disk drive failure, scenario 226
making sure messages are not lost using logs 213
media images, recovering 223, 224
recovering a damaged queue manager object,

scenario 227
recovering a damaged single object, scenario 228
recovering damaged objects at other times 225
recovering damaged objects during start up 224
recovering from problems 222
restoring a backup of a queue manager 226
scenarios 226
using the log for recovery 222

recreate object command (rcrmqobj)
See rcrmqobj (recreate object) command

redirecting input and output, MQSC commands 65
registry, Windows NT, migrating to 26
related publications xxii
remote administration

administering a remote queue manager from a local
one 89

command server 85
defining channels and transmission queues 91
definition of 18
definition of remote administration 23
initial problems 95
of objects 87
preparing channels for 90
preparing queue managers for 89
preparing transmission queues for 90
security, connecting remote queue managers,

MQSeries Web Administration 46
security, connecting remote queue managers, the

MQSeries Explorer 33
using MQSeries Web Administration 43
using the MQSeries Explorer 29
using the MQSeries Services snap-in 37

remote issuing of MQSC commands 93
remote queue objects 99
remote queues

as reply-to queue aliases 99
authorizations to 113
defining remote queues 95
recommendations for remote queuing 95
security considerations 115

remote queuing 87
removing a queue manager manually 360
reply-to queue aliases 99
reply-to queues

description of 17
reply-to queue aliases 99

REPLYQ keyword, rules table 161
REPLYQM keyword, rules table 161
resolve MQSeries transactions command (rsvmqtrn)

See rsvmqtrn (resolve MQSeries transactions)
command

resources
access permissions to MQSeries resources 108
updating under syncpoint control 22

restarting a queue manager 57
restoring queue manager data 225
RestrictedMode stanza, qm.ini 140
restrictions

access to MQM objects 103
database coordination support 177
on object names 279
restricted access NT objects 106
UNIX systems xiv

 Index 407

 Index

retrieval algorithms for messages 11
retry exit (for UDP) 376
RETRY keyword, rules table 163
RETRYINT keyword, rules tables 159
return codes

crtmqcvx command 282
crtmqm command 287
dltmqm command 289
dspmqcsv command 297
dspmqfls command 299
endmqcsv command 303
endmqlsr command 305
endmqm command 307
endmqtrc command 308
problem determination 249
rcdmqimg command 311
rcrmqobj command 313
rsvmqtrn command 315
runmqchi command 316
runmqchl command 317
runmqlsr command 321
runmqsc command 323
runmqtmc command 325
runmqtrm command 326
setmqaut command 331
strmqcsv command 333
strmqm command 334
strmqtrc command 338

rsvmqtrn (resolve MQSeries transactions) command
format 314
parameters 314
purpose 314
related commands 315
return codes 315

rules table (DLQ handler)
ACTION keyword 162
action keywords 162
APPLIDAT keyword 160
APPLNAME keyword 161
APPLTYPE keyword 161
control-data entry 159
conventions 163
description of 158
DESTQ keyword 161
DESTQM keyword 161
example of a rules table 167
FEEDBCK keyword 161
FORMAT keyword 161
FWDQ keyword 162
FWDQM keyword 162
HEADER keyword 163
INPUTQ keyword 159
INPUTQM keyword 159
MSGTYPE keyword 161
pattern-matching keywords 160
patterns and actions 160

rules table (DLQ handler) (continued)
PERSIST keyword 161
processing rules 165
PUTAUT keyword 163
REASON keyword 161
REPLYQ keyword 161
REPLYQM keyword 161
RETRY keyword 163
RETRYINT keyword 159
syntax rules 164
USERID keyword 162
WAIT keyword 159

run channel command (runmqchl)
See runmqchl (run channel) command

run channel initiator command (runmqchi)
See runmqchi (run channel initiator) command

run dead-letter queue handler command (runmqdlq)
See runmqdlq (run DLQ handler) command

run listener command (runmqlsr)
See runmqlsr (run listener) command

run MQSeries command (runmqsc)
See runmqsc (run MQSeries commands) command

runmqchi (run channel initiator) command
return codes 316

runmqchl (run channel) command
format 317
parameters 317
purpose 317
return codes 317

runmqdlq (run DLQ handler) command
format 318
parameters 319
purpose 318
run DLQ handler (runmqdlq) command 157
usage 318

runmqlsr (run listener) command
example 321
format 320
parameters 320
purpose 320
return codes 321

runmqsc (run MQSeries commands) command
ending 63
examples 324
feedback 62
format 322
indirect mode 94
parameters 323
problems, resolving 68
purpose 322
redirecting input and output 65
return codes 323
specifying a queue manager 65
usage 322
using 65
using interactively 61

408 MQSeries System Administration

 Index

runmqsc (run MQSeries commands) command
(continued)

verifying 68
runmqtmc (start client trigger monitor) command

applicable platforms 325
examples 325
format 325
parameters 325
purpose 325
return codes 325

runmqtrm (start trigger monitor) command
format 326
parameters 326
purpose 326
return codes 326

S
samples

trace data (HP-UX) 266
trace data (Sun Solaris) 267
Windows NT trace data, sample 269

saving console files, MQSeries Explorer 34
security

@ symbol, in user IDs 106
administration authorizations 120
authorization files 122
authorization lists, OAM 111
authorizations to run MQSeries Web

Administration 46
authorizations to run the MQSeries Explorer 33
authorizing user IDs on different domains, MQSeries

for Windows NT 106
command security requirements 115
connecting to remote queue managers, MQSeries

Web Administration 46
connecting to remote queue managers, the

MQSeries Explorer 33
considerations for transactional support 200
context authority 114
DCE security, overview 22
default user group, OAM 109
disabling the OAM 110
length of names for user IDs and groups, MQSeries

for Windows NT 105
MQI authorizations 117
MQSC channel commands 116
MQSNOAUT, environment variable 110
naming conventions for user IDs and groups,

MQSeries for Windows NT 106
object authority manager (OAM) 21, 107
object authority manager (OAM), Windows NT 105
object authorization file paths 124
object security, UNIX systems 104
object security, Windows NT 104
protecting log files 225

security (continued)
remote queues 115
resources protected by the OAM 109
restoring queue manager data 225
restricted access, NT objects 106
security for the MQSeries Explorer 33
security for the MQSeries Services snap-in 39
security policy, Windows NT 106
security requirements for PCF commands 115
SecurityPolicy attribute, Service stanza, new 137
sensitive operations, OAM 113
types of authorization 122
user group authorizations 109
user IDs in user group mqm, UNIX 104
user IDs, Windows NT systems 105
using dspmqaut to view authorizations 112
using OAM commands 110
using the set and reset authority (setmqaut)

command 327
why protect MQSeries resources? 103

sensitive operations, OAM 113
server-connection channel, automatic definition of 93
servers 19

See also clients and servers
service component 20
Service stanza, qm.ini 136
ServiceComponent stanza, qm.ini 137
set/reset authority command (setmquat)

See setmquat (set/reset authority) command
setmquat (set/reset authority) command

access authorizations 112
examples 332
format 327
option to specify installable services 112
parameters 329
purpose 327
related commands 332
return codes 331
usage 328
using 110, 111

shell commands, MQSeries for UNIX systems 50
shutting down a queue manager 55

a queue manager, quiesced 56
controlled 55
immediate 56
preemptive 56

single-phase commit process, CICS 210
softcopy books xx
specifying coded character sets 100
SPX stanza, qm.ini 144
stanzas

AllQueueManagers, mqs.ini 130
Channels, qm.ini 142
CICS XAD resource definition stanza 209
ClientExitPath, mqs.ini 131
DefaultQueueManager, mqs.ini 131

 Index 409

 Index

stanzas (continued)
ExitPath, qm.ini 147
ExitProperties, mqs.ini 132
Log, qm.ini 138
LogDefaults, mqs.ini 132
LU62, qm.ini 144
NETBIOS, qm.ini 144
QueueManager, mqs.ini 134
RestrictedMode stanza, qm.ini 140
Service, qm.ini 136
ServiceComponent, qm.ini 137
SPX, qm.ini 144
TCP, qm.ini 144
Transport, qm.ini 149
UDP, qm.ini 147
XAResourceManager, qm.ini 140

start client trigger monitor command (runmqtmc)
See runmqtmc (start client trigger monitor) command

start command server command (strmqcsv)
See strmqcsv (start command server) command

start MQSeries trace command (strmqtrc)
See strmqtrc (start MQSeries trace) command

start queue manager command (strmqm)
See strmqm (start queue manager) command

start trigger monitor command (runmqtrm)
See runmqtrm (start trigger monitor) command

starting
a channel 92
a command server 86
a queue manager 54
a queue manager automatically 55

stdin, on runmqsc 65
stdout, on runmqsc 65
stoppping

a command server 86
a queue manager manually 359

strmqcsv (start command server) command
examples 333
format 333
parameters 333
purpose 333
related commands 333
return codes 333

strmqm (start queue manager) command
examples 334
format 334
parameters 334
purpose 334
related commands 335
return codes 334

strmqtrc (start MQSeries trace) command
applicable platforms 336
examples 339
format 336
parameters 337
purpose 336

strmqtrc (start MQSeries trace) command (continued)
related commands 339
return codes 338
usage 336

Sun Solaris
building Sybase switch file 194
MQAI support for 84
oraswit, creating Oracle switch load file 188
sybswit, creating the Sybase switch load file 193
trace 266
trace data, sample 267

super user (MQSeries) 104
super user, mqm 104
switch load files, creating 178
Sybase

building Sybase switch file, Sun Solaris 194
building Sybase switch file, UNIX 193
configuring 192
linking XA switch load file with Sybase libraries 193
security considerations 200
switch load file, creating 193
Sybase XA support, enabling 192
sybswit, creating the switch load file on UNIX 193
sybswit, creating the switch load file on Windows

NT 194
XAResourceManager stanza, adding 199

symptom records, FFST 273
symptom strings
syncpoint coordination 206

MQSeries 207
syncpoint, performance considerations 256
syntax diagrams, how to read 280
syntax, help with 281
system default objects 18
system dump, FFST 274
system objects 343
system restrictions xiv

T
Tandem, levels supported by the MQSeries

Explorer 31
task termination exit, CICS 210
TCP stanza, qm.ini 144
temporary (dynamic) queues 11
terminology used in this book 385
time-independent applications 9
timed out responses from MQSC commands 94
trace

data sample (AIX) 265
data sample (HP-UX) 266
data sample (Sun Solaris) 267
data sample (Windows NT) 269
display MQSeries formatted trace (dspmqtrc)

command 300
HP-UX 266

410 MQSeries System Administration

 Index

trace (continued)
OS/2, performance considerations 268
performance considerations 263, 266
starting MQSeries trace (strmqtrc command) 336
Sun Solaris 266
Windows NT, performance considerations 268

transactional support
MQSeriesXA switch structure 207
syncpoint coordination 206
transactional support 175
updating under syncpoint control 22

transactions
display MQSeries transactions (dspmqtrn)

command 301
security considerations 200
using the resolve MQSeries (rsvmqtrn

command) 314
transmission queues

default 53
default transmission queues 98

Transport stanza, qm.ini 149
triggering

defining an application queue for triggering 80
event queues 172
managing objects for triggering 80
message-driven processing 9
start client trigger monitor (runmqtmc)

command 325
start trigger monitor (runmqtrm) command 326

two-phase commit process, CICS 208
types of event 171
types of logging 214

U
UDP (user datagram protocol)

CMQXC.H file 377
configuring MQSeries to use UDP 373
configuring the UDP retry exit 377
EARTH.TST, supplied file 374
hints and tips 378
MOON TST, supplied file 375
MQSC command files, examples of 373
Transport stanza 149
UDP stanza 147

UDP stanza, qm.ini 147
unauthorized access, reasons for protecting from 103
undelivered message queue

See dead-letter queues
undelivered-message queue (dead-letter) 157
units of work

definition of 175
explicit resynchronization of (rsvmqtrn

command) 203
mixed outcomes 204

UNIX operating system
authorization directories 123
building Sybase switch file 193
contents of authorization files 124
DB2 switch load file, creating 183
directory structure 347
example mqs.ini file 154
example qm.ini file 154
issuing control commands 50
levels supported by the MQSeries Explorer 31
lowercase definition of user IDs 104
mqmtop directory, changes to xv
object authority manager (OAM) 21
object security for 104
oraswit, creating Oracle switch load file 188
primary groups 108
queue managers, deleting 360
restrictions when using xiv
security of user IDs in user group mqm 104
switch load structures, library names 207
sybswit, creating the Sybase switch load file 193
user IDs 113

updating coded character sets 100
user datagram protocol (UDP)

See UDP (user datagram protocol)
user exits

channel exits 20
CICS task termination exit, UE014015 210
data conversion exits 20
using the CICS sample exits 211

user groups
authorization 109
default for authority 109
default, nobody 109
group sets 108
mqm 104
principals 108

user identifier service 21
user identifier service, OS/2 only 365
user IDs

authority 104
authorization 113
belonging to group nobody 109
for authorization 113
logged-in user 113
mqm 104
principals 108

user-defined message formats 101
USERID keyword, rules table 162

V
verifying MQSC commands 68
VMS, levels supported by the MQSeries Explorer 31

 Index 411

 Index

W
WAIT keyword, rules table 159
Web Administration server, Windows NT only

administering queue managers 46
authorizations to run 46
configuration options 48
connecting to remote queue managers, security 46
description of 26
encryption policies 45
points to consider 43
prerequisite software 44
Public Key Encryption Algorithm 45
RC4 encryption algorithm 45
starting up 45
using MQSC script commands 47

Windows for NT Registry
deleting queue managers in Windows NT 361
deletions from automatic start-up list 362
description of 26
migrating to 26
using in problem detemination 260

Windows Help xxi
Windows NT operating system

@ symbol, using in user IDs 106
adding a queue manager to 55
adding XAResourceManager information for

DB2 184
authorizing user IDs on different domains 106
contents of authorization files 124
control commands for 50
db2swit.dll, creating 182
default configuration 26
default configuration objects, list of 345
deleting queue managers 361
deletions from automatic start-up list 362
directory structure 355
editing configuration information 26
Event Viewer application, problem

detemination 260
FFST, examining 271
how the OAM searches for a specified user 108
length of names for user IDs and groups 105
levels supported by the MQSeries Explorer 31
migrating to the registry 26
MQAI support for 84
MQSeries Web Administration 26
naming conventions for user IDs and groups 106
object authority manager (OAM) 21, 105
object security for 104
Performance Monitor 76
primary groups 108
registry 26
restricted access NT objects 106
security policy 106
SecurityPolicy attribute, Service stanza, new 137

Windows NT operating system (continued)
switch load structures, library names 207
sybswit, creating the Sybase switch load file 194
tracing, considerations 268
user IDs 105
using commands for administration 25
using MQSeries Web Administration 43
using the MQSeries Explorer 29
using the MQSeries Services snap-in 37
viewing configuration information 26
Windows clients error messages 275
Windows NT trace data, sample 269

Windows NT Service Control Manager

X
XA switch load files

creating 178
DB2 switch load file, creating 180
description of 207
Oracle switch load file, creating 187
sample source modules 178
Sybase switch load file, creating 193

XAD resource definition stanza, CICS 209
enabling CICS user exits 209

XAResourceManager stanza, qm.ini 140

412 MQSeries System Administration

Sending your comments to IBM
MQSeries 

System Administration

SC33-1873-01

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries 

System Administration

SC33-1873-01
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries 

MQSeries System Administration SC33-1873-01

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1873-ð1

	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	Using MQSeries for UNIX systems
	Using MQSeries for OS/2 Warp and Windows NT
	The calls MQCONN and MQCONNX

	MQSeries publications
	MQSeries cross-platform publications
	MQSeries platform-specific publications
	MQSeries Level 1 product publications
	Softcopy books

	MQSeries information available on the Internet
	Related publications

	Summary of Changes
	MQSeries V5.1

	Part 1. Guidance
	Chapter 1. Introduction to MQSeries
	MQSeries and message queuing
	Messages and queues
	Objects
	System default objects
	Local and remote administration
	Clients and servers
	Extending queue manager facilities
	Security
	Transactional support

	Chapter 2. An introduction to MQSeries administration
	Local and remote administration
	Performing administration tasks using control commands
	Performing administrative tasks using MQSC commands
	Performing administrative tasks using PCF commands
	Administration on MQSeries for Windows NT
	Understanding MQSeries file names

	Chapter 3. Administration using the MQSeries Explorer
	What you can do with the MQSeries Explorer
	Prerequisite software
	Required definitions for administration
	Showing and hiding queue managers and clusters
	Cluster membership
	Security
	Data conversion
	Saving and loading console files
	Switching off the automatic population facility

	Chapter 4. Administration using the MQSeries Services snap-in
	What you can do with the MQSeries Services snap-in
	Prerequisite software
	Using the MQSeries Services snap-in
	Security

	Chapter 5. Using MQSeries Web Administration
	Points to consider when using MQSeries Web Administration
	Prerequisite software
	Encryption policies
	Starting up MQSeries Web Administration server
	Logging on as an MQSeries administrator (client side)
	Administering queue managers
	Using MQSeries command scripts
	Configuring the MQSeries Web Administration server

	Chapter 6. Managing queue managers using control commands
	Using control commands
	Creating a queue manager
	Creating a default queue manager
	Starting a queue manager
	Making an existing queue manager the default
	Stopping a queue manager
	Restarting a queue manager
	Deleting a queue manager

	Chapter 7. Administering local MQSeries objects
	Supporting application programs that use the MQI
	Performing local administration tasks using MQSC commands
	Working with local queues
	Monitoring local queues with the Windows NT Performance Monitor
	Working with alias queues
	Working with model queues
	Managing objects for triggering

	Chapter 8. Automating administration tasks
	PCF commands
	Managing the command server for remote administration

	Chapter 9. Administering remote MQSeries objects
	Channels, clusters, and remote queuing
	Remote administration from a local queue manager using MQSC commands
	Creating a local definition of a remote queue
	Using remote queue definitions as aliases
	Data conversion

	Chapter 10. Protecting MQSeries objects
	Why you need to protect MQSeries resources
	Before you begin (UNIX systems)
	Before you begin (Windows NT)
	Understanding the Object Authority Manager
	Using Object Authority Manager commands
	Object Authority Manager guidelines
	Understanding the authorization specification tables
	Authorization files

	Chapter 11. Configuring MQSeries
	MQSeries configuration files
	Attributes for changing MQSeries configuration information
	Changing queue manager configuration information
	Example mqs.ini and qm.ini files for MQSeries for OS/2 Warp
	Example mqs.ini and qm.ini files for MQSeries for UNIX systems

	Chapter 12. The MQSeries dead-letter queue handler
	Invoking the DLQ handler
	The DLQ handler rules table
	How the rules table is processed
	An example DLQ handler rules table

	Chapter 13. Instrumentation events
	What are instrumentation events?
	Why use events?

	Chapter 14. Transactional support
	Database coordination
	DB2 configuration
	Oracle configuration
	Sybase configuration
	Multiple database configurations
	Administration tasks
	External syncpoint coordination
	Using CICS

	Chapter 15. Recovery and restart
	Making sure that messages are not lost (logging)
	Checkpointing – ensuring complete recovery
	Calculating the size of the log
	Managing logs
	Using the log for recovery
	Protecting MQSeries log files
	Backing up and restoring MQSeries
	Recovery scenarios
	Dumping the contents of the log using the dmpmqlog command

	Chapter 16. Problem determination
	Preliminary checks
	What to do next
	Application design considerations
	Incorrect output
	Error logs
	Dead-letter queues
	Configuration files and problem determination
	Tracing
	First-failure support technology (FFST)
	Problem determination with clients

	Part 2. Reference
	Chapter 17. MQSeries control commands
	Names of MQSeries objects
	How to read syntax diagrams
	Syntax help
	crtmqcvx (Data conversion)
	crtmqm (Create queue manager)
	dltmqm (Delete queue manager)
	dmpmqlog (Dump log)
	dspmqaut (Display authority)
	dspmqcsv (Display command server)
	dspmqfls (Display MQSeries files)
	dspmqtrc (Display MQSeries formatted trace output)
	dspmqtrn (Display MQSeries transactions)
	endmqcsv (End command server)
	endmqlsr (End listener)
	endmqm (End queue manager)
	endmqtrc (End MQSeries trace)
	rcdmqimg (Record media image)
	rcrmqobj (Recreate object)
	rsvmqtrn (Resolve MQSeries transactions)
	runmqchi (Run channel initiator)
	runmqchl (Run channel)
	runmqdlq (Run dead-letter queue handler)
	runmqlsr (Run listener)
	runmqsc (Run MQSeries commands)
	runmqtmc (Start client trigger monitor)
	runmqtrm (Start trigger monitor)
	setmqaut (Set/reset authority)
	strmqcsv (Start command server)
	strmqm (Start queue manager)
	strmqtrc (Start MQSeries trace)

	Part 3. Appendixes
	Appendix A. System and default objects
	Windows NT default configuration objects

	Appendix B. Directory structure (UNIX systems)
	Queue manager log directory structure

	Appendix C. Directory structure (OS/2)
	Queue manager log directory structure

	Appendix D. Directory structure (Windows NT)
	Queue manager log directory structure

	Appendix E. Stopping and removing queue managers manually
	Stopping a queue manager manually
	Removing queue managers manually

	Appendix F. User identifier service
	Appendix G. Comparing command sets
	Commands for queue manager administration
	Commands for command server administration
	Commands for queue administration
	Commands for process administration
	Commands for channel administration
	Other control commands

	Appendix H. Using the User Datagram Protocol
	Configuring MQSeries for UDP
	The retry exit
	Hints and tips

	Appendix I. Notices
	Trademarks

	Part 4. Glossary and index
	Glossary of terms and abbreviations
	Index

