
IBM Washington Systems Center

WebSphere Application Server V4.0.1 for zOS and OS/390

Establishing Test and Production Establishing Test and Production Establishing Test and Production Establishing Test and Production
EnvironmentsEnvironmentsEnvironmentsEnvironments

Key Issues and Considerations

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP100266 under the category of "White Papers"

Version Date: August 27, 2002
(See "Change History" on page 39 for description of modifications to this document)

Donald C. Bagwell
IBM Washington Systems Center

1-301-240-3016
dbagwell@us.ibm.com

Robert H. Teichman
IBM Washington Systems Center

1-301-240-8616
teichmn@us.ibm.com

© 2002 IBM, Washington Systems Center Version Date: 8/27/2002

The following people were instrumental in the construction of this white paper:
• Mike Cox, Washington Systems Center
• John Hutchinson, Washington Systems Center

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center i WP100266, Version Date: 8/27/2002

Table of Contents

Background on the Issue.. 1
Before you get started: a key assumption used in the writing of this document 1
How to read this document.. 1
What is meant by "Isolation".. 1
A note about application testing versus system software testing ... 2

Illustration of some important concepts.. 3
Servlets and the WebSphere V3.5 Environment ... 3
The WebSphere for zOS Customization ISPF dialog .. 5
WAS configuration information and where it is stored ... 5

Configuration data and application data stored in the HFS ... 6
WAS "nodes" .. 8

Question: Is it possible to have more than one WAS node in a sysplex?...................................... 8
Question: Is it possible to have more than one WAS node within a system or LPAR?.................. 9

Sharing within a sysplex.. 9
The Systems Management End User Interface (SMS EUI) ... 10

Single WAS node test/production configuration.. 11
Multiple WAS node test/production configuration.. 11

The WAS naming convention.. 12
Adding J2EE application servers after initial configuration .. 12
JNDI names applied to deployed applications... 13

Question: what exactly is that long "default JNDI name" string SMS EUI sets? 14
Application fallback and version control .. 15

Multiple Environment Configurations .. 16
Overview of the four configurations ... 16
Conf #1 - Different WAS J2EE Servers on the same system or LPAR .. 17

Snapshot rating of configuration ... 17
Design Assumptions... 17
Detail on "Ease of Configuration".. 17
Detail on " Ability to minimize resource usage" ... 17
Detail on "Degree of application programming isolation" .. 17

JNDI Names.. 18
J2EE Resource Names... 19
Web application virtual host and context root settings ... 20

Detail on "Degree of system programming isolation" .. 21
Detail on "Degree of human isolation" .. 21

Conf #2 - Different WAS J2EE servers on different systems in the same WAS node 22
Snapshot rating of configuration ... 22
Design Assumptions... 22
Detail on "Ease of Configuration".. 22
Detail on " Ability to minimize resource usage" ... 23
Detail on "Degree of application programming isolation" .. 23
Detail on "Degree of system programming isolation" .. 23
Detail on "Degree of human isolation" .. 24

Conf #3 - Different WAS nodes within the same Sysplex .. 25
Snapshot rating of configuration ... 25
Design Assumptions... 25
Detail on "Ease of Configuration".. 26

Understand the things you'll code differently in the ISPF customization dialogs.. 26
Planning your server names ... 27
SMS Administration ID.. 28
TCP Ports and IP names .. 28

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center ii WP100266, Version Date: 8/27/2002

Datasharing environment variable and the bootstrap... 29
Configuration using the ISPF dialogs ... 30
Authorization to backend data stores ... 30

Detail on "Ability to minimize resource usage" .. 31
Detail on "Degree of application programming isolation" .. 32

JNDI names .. 32
Data resource names defined to WAS in each node.. 33
Web application virtual host and context root values ... 33

Detail on "Degree of system programming isolation" .. 33
What is shared in this configuration.. 34

Detail on "Degree of human isolation" .. 34
Conf #4 - Different WAS nodes in separate sysplexes .. 35

Snapshot rating of configuration ... 35
Design Assumptions... 35
Detail on "Ease of Configuration".. 36
Detail on " Ability to minimize resource usage" ... 36
Detail on "Degree of application programming isolation" .. 36
Detail on "Degree of system programming isolation" .. 36
Detail on "Degree of human isolation" .. 36

Appendix A: Naming Checklist... 37
Common Definitions.. 37
Base Servers .. 37
LDAP Server... 38
Each J2EE Application Server Created... 38

Change History of Document ... 39
Index... 40

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 1 WP100266, Version Date: 8/27/2002

Background on the Issue

Virtually all customers maintain some form of "Test" and "Production" (or perhaps more)
environments for their systems and applications. The basic reason for this is to isolate one from
the other so that testing doesn't hurt or impact production. Only when changes have been
tested and validated are they then moved to the production environment.

Those customers who have adopted WebSphere Application Server Version 4.0.1 for zOS and
OS/390 face the task of configuring the same kind of environment for that product as well. So
the issue is this: "How do I configure a WAS 4.0.1 "test" and "production" environment, and
what are the things I should be aware of as I plan for this?"

Like many things, there is no one "right" answer. This is a trade-off between system isolation
and resource usage. The desire is to maximize the degree of isolation while using the minimum
amount of resource. The reality is that with isolation comes cost. So the quest is to find the
balance that serves your purpose.

The balance between isolation and resource cost

Note: From this point forward the topic will be made simpler by assuming just two environments: "test"
and "production." Some may wish to have three or perhaps four or more environments. The key
is moving from one environment to more than one. Once you're past a single environment, the
concepts are pretty much the same whether you have two, three or twenty.

Before you get started: a key assumption used in the writing of this document

This document was written based on the assumption that the reader has at least some
familiarity with the way in which WAS is installed and configured. This document is not
trying to be a step-by-step "how to" manual on the installation process. It is designed to
provide you with things you should be aware of as you configure a test and production
environment.

How to read this document

The section titled "Illustration of some important concepts" on page 3 should be read by all
readers of this document. That section lays the foundation for much of what's discussed
elsewhere. Then go to "Multiple Environment Configurations" on page 16 to see which
configuration best suits your needs.

What is meant by "Isolation"

The reason why changes aren't made directly to the production environment without first
testing is to avoid having something suddenly stop working. When setting up a "test" and
"production" environment you strive to keep changes made to the "test" environment from
impacting the "production" environment. This is "isolation," and it comes in two forms:

• Programming, or code isolation – this is making certain that a fix, or an updated piece
of code, when installed in the test environment, doesn't somehow get applied to the

Isolation
(Keeping testing changes
from affecting production)

Resource Usage
(How much system resource

are you willing to use?)

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 2 WP100266, Version Date: 8/27/2002

production environment. This topic applies to both system programming and application
programming. WAS has many shared resources, and not understanding how they relate
to one another can cause problems.

• Human, or organizational isolation – this is making certain that a person doesn't have
the ability to accidentally or on purpose go in and make changes to things you don't want
them to have access to.

The different configurations have varying degrees of each type of isolation. This document
will explain the degree of isolation each provides, and explain it in some level of detail.

A note about application testing versus system software testing

This document will focus primarily on the topic of application testing; that is, the validation of
application code in the form of J2EE applications and association web applications, and the
migration of that application code from the test environment to the production environment.

The issue of system software testing is important. But WebSphere for zOS and OS/390 is
not that much different from any other subsystem when it comes to maintaining separate
target libraries, link libraries, etc.

This document will make reference to issues related to system software testing when such a
reference is significant. But system software testing will not be a primary focus of the
document.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 3 WP100266, Version Date: 8/27/2002

Illustration of some important concepts

To understand the issues that are discussed throughout this document, it's handy to have a few
key concepts under your belt.

Servlets and the WebSphere V3.5 Environment

Before we start the discussion on Test and Production environments, it is important to
understand the difference between running servlets and running EJBs. Many people have
servlets running today in a WebSphere Application Server V3.5 environment. In that
environment, multiple environments can be created quite easily simply by setting up multiple
HTTP Servers:

Multiple HTTP Servers permitted multiple WAS V3.5 environments

In the WebSphere V4 environment, there are two places where servlets can be run – in the
V4 "Plugin" or the "Web Container:"

Two places where servlets can be run in WebSphere Application Server V4

So the question often comes up: "Is it possible to have multiple servlet environments like we
had in WebSphere V3.5?" And the answer is "yes," but in two different ways: by setting up
multiple Plugins or setting up multiple J2EE application servers:

HTTP Server

WebSphere V3.5

Servlet

Servlet

HTTP Server

WebSphere V3.5

Servlet

Servlet

HTTP Server

WebSphere V3.5

Servlet

Servlet

HTTP Server

WebSphere V3.5

Servlet

Servlet

HTTP Server

WebSphere V4
Plugin

Servlet

DM

SMS

IR

NM

J2EE Application Server

Web Container EJB Container

Servlet

WebSphere Application Server V4 Runtime

Servlets may run in the WebSphere V4
Plugin and/or the V4 Web Container

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 4 WP100266, Version Date: 8/27/2002

Multiple servlet execution environments in WebSphere V4

The issues surrounding multiple V4 Plugin environments is the same as it was with the
WebSphere V3.5 plugin: you simply set up multiple HTTP Servers. The issues surrounding
multiple J2EE application servers is different and is covered throughout this document.

Note: If you have just servlets and no EJBs, the topic of "hard coded JNDI references" and "unique
JNDI names," mentioned throughout this document, doesn't really apply. However, that topic
does apply if your servlets call EJBs: depending on how the servlet is written, it might
reference the EJB with a hard-coded reference. If so, then the limitations of a shared JNDI
namespace in Configuration #1 and #2 of this document definitely come into play.

The next question that frequently comes up is: "Is it possible to configure and run just the
Plugin, and not make use of the rest of the runtime environment?" And the answer to that is
"yes." This is known by some as the "simple configuration" or "alternative configuration."
(You still need to purchase the whole WebSphere V4 license, however.)

Running just the WebSphere V4 Plugin and not the rest of the runtime is possible

Please refer to "Configuring Web Applications" (WP100238 found in the white paper section
of www.ibm.com/support/techdocs) for information on configuring the V4 Plugin.

HTTP Server

WebSphere V4
Plugin

Servlet

DM

SMS

IR

NM

J2EE Application Server

Web Container EJB Container

Servlet

WebSphere Application Server V4 Runtime

Set up multiple HTTP Servers
with V4 Plugin, and/or ...

J2EE Application Server

Web Container EJB Container

Servlet

J2EE Application Server

Web Container EJB Container

Servlet

HTTP Server

WebSphere V4
Plugin

Servlet

HTTP Server

WebSphere V4
Plugin

Servlet

J2EE Application Server

Web Container EJB Container

Servlet

... set up multiple J2EE
Application Servers and run

servlets there

HTTP Server

WebSphere V4
Plugin

Servlet

DM

SMS

IR

NM

J2EE Application Server

Web Container EJB Container

WebSphere Application Server V4 Runtime

You may choose to configure and run just the
Plugin. This gives you a WebSphere V3.5

servlet execution environment only

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 5 WP100266, Version Date: 8/27/2002

The WebSphere for zOS Customization ISPF dialog

The creation of a WAS runtime – be it your first or a subsequent runtime for test – is done
using what's commonly known as the "WAS ISPF customization dialogs." The
customization dialog is a set of ISPF panels in which you enter information about your
system and information about the WAS runtime you wish to create. The output from the
dialog is a set of JCL jobs, RACF scripts and instructions that have been customized with
the information you provided in the panels.

The runtime is not created by the ISPF customization dialog. The runtime is created when
you submit the various jobs created by the ISPF program:

High-level view of the WAS ISPF customization dialog

The ISPF customization dialog panels are a key part of the installation and customization
process. This document will make reference to the the ISPF dialogs frequently.

Note: After you get your WAS runtime established you'll eventually want to create additional J2EE
servers for your applications. That process falls outside the ISPF customization dialogs and
is covered under "Adding J2EE application servers after initial configuration" on page 12.

WAS configuration information and where it is stored

When you install WAS 4.0.1, create a new application server, install a J2EE application, or
define some other resource to WAS, WAS will turn and store the information in several
different places, depending on what's being stored:

Three places where WAS stores information

Systems
Management

Interface
WebSphere

DB2
Tables

HFS

/WebSphere390/WAS401
/apps
/controlinfo

LDAP DB2
Tables

Configuration
Information
Repository

Naming Repository

Configuration files and application files

WAS
Customization

Panel 1
PDS hlq.CNTL

PDS hlq.DATA

BBOINSTR

Follow Instructions in:

Submit the jobs in
hlq.CNTL in the

order instructed in
BBOINSTR

WAS
Runtime

Phase One:
Provide customization information

through ISPF panels

Phase Two:
Run customized jobs to create WAS

runtime and start servers

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 6 WP100266, Version Date: 8/27/2002

• DB2 – WAS maintains nearly 100 DB2 tables in which it stores all sorts of information
about the configuration of the WAS node, the various servers and the applications that
are installed.

• LDAP – WAS stores object naming information in LDAP, which in turn stores the
information into its own set of DB2 tables.

• HFS – WAS maintains a fairly extensive directory structure in which it stores the
application files (class files, webapp files), and the configuration and environment
variable files for the servers and resources.

The message here is this: WAS stores its information in more than just one place. This
becomes important when the topic of isolation and change migration comes up. These
storage locations are shared within a given WAS "node" (see "WAS "nodes"" on page 12 for
a definition of this term), and that WAS node may span systems in a sysplex. A change
made on one system or LPAR may very well affect other systems as well.

Configuration data and application data stored in the HFS

There are two HFS storage locations of interest when it comes to J2EE applications
deployed into a WAS 4.0.1 J2EE application server:

• Location where the server instance configuration data is maintained

• Location where the deployed applications are kept (EJBs and WebApps)

The following picture illustrates the heirarchy:

Where application and configuration information is stored in the WAS 4.0.1 HFS

The numbered blocks are discussed next:

/ (root)

/WebSphere390/WAS401

/apps
/APSRV2

/PolicyIVP
(application files here and in deeper sub-directories)

/HelloWorld
(application files here and in deeper sub-directories)

/APSRV3
/PolicyIVP
/Appl123

/controlinfo/envfile
/WSCPLEX

/APSRV2S1
current.env
webcontainer.conf
jvm.properties

/APSRV3S1

HFS OMVS.WAS.CONFIG.HFS

1

2

The
application

and
configuration

split in the
tree

3
4

5

6
7

8

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 7 WP100266, Version Date: 8/27/2002

1 The HFS mount point on which the WAS 4.0.1 HFS is mounted is specified in the ISPF
customization dialogs under the first panel of "WebSphere Customization," under the heading
of "WebSphere HFS Information" and in the field labeled "Mount Point." This is also
referenced by the CBCONFIG= symbolic in the JCL start procs for the control region and
server region of the J2EE servers.

Note: if your WAS node spans systems in a sysplex, this HFS is shared between the
systems.

2 The data set that contains the HFS file system is specified in the ISPF customization dialogs
under the first panel of "WebSphere Customization," under the heading of "WebSphere HFS
Information" and in the field labeled "Name."

3 Under the /apps directory you will find directories with the same name as the J2EE servers
you have created. This will be the server name, not the server instance name.

4 Under the directory for the application server you will see directories representing each of the
deployed applications in the server. The directories will have the same name as the EAR file
that was deployed that contained the application.

5 Under each application directory you will find various files and additional sub-directories that
contain the application files: JAR files, class files, XML files and webapp files. This is in
essence the EAR file "exploded" into the HFS (not exactly, but pretty close). The files are
stored in ASCII, not EBCDIC.

Note how this means that applications deployed into different J2EE servers are stored in
different HFS locations. The example above shows the application PolicyIVP deployed into
both APSRV2 and APSRV3. This contributes to application isolation.

6 Under the /controlinfo/envfile directory you will see a directory with the name of your
sysplex.

7 Under the sysplex name directory you will find directories with the same name as the server
instances (not the higher-level server name, but the instance name).

8 Finally, under the instance-name directories you will find the various configuration files for the
server instance: current.env, webcontainer.conf, etc.

Generally speaking, the SMS modifies and updates these files on your behalf. You
won't be climbing into these directories much (and you won't be climbing into the
application directories at all). This information was provided to illustrate the way the
information is separated based on application name, server name and server instance
name.

Note: Copying application files from the WAS HFS to another HFS location is not the way to
move an application. In addition to the HFS files, information about the application is
stored in DB2 and LDAP. Let the SMS do the work under the covers. Don't try to
reverse-engineer this because you'll just get yourself into hot water.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 8 WP100266, Version Date: 8/27/2002

WAS "nodes"

You may think of a WAS "node" as being comprised of all those servers that share a
common Systems Management (SMS) repository (which is made up of an HFS "config path"
and a set of DB2 tables full of configuration data). This concept is important because you
achieve much greater isolation if your test and production are different WAS nodes. If they
share the same WAS node, that means they share the same SMS repository, and that
means not as much isolation.

The concept of a WAS "node": a single-system and a multi-system illustration

Question: Is it possible to have more than one WAS node in a sysplex?

Yes. It is possible to have more than one WAS node within a given sysplex:

Possible: multiple WAS nodes in a sysplex

There are three key considerations in accomplishing this:

• The WAS server names used in one WAS node must be different from the WAS
server names used in the other. Despite the fact that each node would have its own

SMS

System or LPAR

DM

SMS

NM

IR

J2EE Server

J2EE Server

SMS

System (or LPAR) A

DM

SMS

NM

IR

J2EE Server

J2EE Server

System (or LPAR) B

DM

SMS

NM

IR

J2EE Server

J2EE Server

CF

A single-system (monoplex) WAS node ...

A multi-system (sysplex) WAS node, sharing SMS repository ...

"SMS" in these pictures
is meant to mean the
WAS DB2 tables, the

configuration HFS and
the LDAP information

SMS

System (or LPAR) A

DM

SMS

NM

IR

J2EE Server

J2EE Server

System (or LPAR) B

DM

SMS

NM

IR

J2EE Server

J2EE Server

SMS

System (or LPAR) C

DM

SMS

NM

IR

J2EE Server

J2EE Server

CF

Production
WAS Node

Test
WAS Node

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 9 WP100266, Version Date: 8/27/2002

configuration HFS and SMS repository, the server names must be different. This is
why it's important to have a standardized naming convention going into the
configuration of this scenario.

• Only one WAS node in a sysplex may be a multi-system node. Any other WAS
nodes configured in the sysplex must be single-system nodes. You may make that
one multi-system node your production node or a test nodes. For the remainder of
this document, it will be assumed that if a multi-system node exists, it will be the
production node.

Why? It turns out the Daemon code, if part of a multi-system WebSphere node, issues and
listens for ENFs to keep track of the comings and goings of servers in the node.
This is a sysplex-wide thing. Two multi-system nodes in a sysplex implies two
Daemons issuing and listening for these ENFs. The present design of WebSphere
isn't designed to handle this scenario, so the restriction of only one multi-system
node is imposed. The new DATASHARING=0 environment variable tells the
WebSphere daemon this: "You are a single-system node. Don't issue or listen for
ENFs."

• To allow a WAS node to span systems in a sysplex, the DB2 subsystems that
support the shared SMS repository need to be defined as part of a sharing group. In
the picture above DB2 subsystem A would be grouped with DB2 subsystem B. DB2
subsystem C isn't sharing with any other system

Question: Is it possible to have more than one WAS node within a system or LPAR?

No. It is not possible to have more than one WAS node within a system or LPAR. There
is no way to get around this restriction.

Not possible: two WAS nodes on a single system or LPAR

The motivation behind this configuration is to achieve node-level separation without
having to carve off a separate LPAR. If you are limited to a single MVS image, then your
options are limited to a single WAS node. That limits your options for test and
production to maintaining separate WAS J2EE Servers, which is covered under "Conf #1
- Different WAS J2EE Servers on the same system or LPAR" on page 17.

Sharing within a sysplex

What permits a WAS "node" to span more than one system in a sysplex is the ability to
share resources across systems. When a WAS node spans systems in a sysplex, the
following things are shared:

A single system or LPAR (one MVS image)

SMS

DM

SMS

NM

IR

J2EE Server

J2EE Server

SMS

DM

SMS

NM

IR

J2EE Server

J2EE Server

Node 1

Node 2

Can't be done!
Two WAS daemons can not
exist on the same MVS image

No technical workaround

STOP!

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 10 WP100266, Version Date: 8/27/2002

• The DB2 tables that make up the WAS configuration and information repository (a bit
less than 100 tables make up this repository).

• The WAS configuration and environment HFS, which for many people is at mount point
/WebSphere390/WAS401 (or something like that). This is where things like
environment variable files, JVM property files, deployed application class files and such
are kept.

• The DB2 tables that make up the LDAP naming repository (this is where JNDI
information is kept).

• The WLM information (WAS make extensive use of WLM to start up additional server
regions as workload requires)

• The RACF database, containing all the userid and other information used by the various
WAS components

Because sharing is taking place, you need to be careful when configuring your WAS
installation, particularly as that relates to the naming convention you employ. Sharing
implies the potential for conflict. Sharing also implies something less than total isolation
between your test and production environments.

The Systems Management End User Interface (SMS EUI)

The SMS EUI is a graphical workstation tool that provides an interface to the SMS functions
of WAS running on zOS or OS/390. It is an essential part of administering your WAS
runtime; it is virtually impossible to perform all the necessary tasks without it.

The SMS EUI tool is installed on the workstation, and when started it makes a connection to
the SMS server you specify. You log onto the SMS server with a userid (the SMS
administration ID) and password. Once logged on, you have control of the SMS and can
add, modify or delete definitions maintained by the SMS.

Here's why this topic is being brought to your attention:

• The SMS will permit more than one person to log onto the administrative interface
simultaneously with the same userid. The SMS won't tell you how many people are
logged on, and it won't keep person "A" from stepping all over person "B's" work.
Therefore, you must provide a manual way to coordinate who is on the SMS for a given
WAS node. The SMS itself won't manage that.

• The SMS does not provide differing access authority based on the userid. It's an "all or
nothing" implementation. If you have the password to the SMS administration ID and
can log onto the SMS, you have full authority to do good things or do bad things. It is
not possible to create an logon ID with just "view" authority, for example.

Given this reality, the question becomes how to minimize the impact of this in a test and
production environment. This depends on whether you have a single WAS node for test
and production, or multiple WAS nodes.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 11 WP100266, Version Date: 8/27/2002

Single WAS node test/production configuration

A configuration with only one WAS node – and therefore only one SMS – offers little in
the way of isolating test personnel from production personnel and the use of the SMS
EUI:

A single WAS node configuration has one SMS; test and production personnel may conflict

Given your choice of a single WAS node configuration for test and production, the issue
of potential conflict in SMS EUI usage comes down to human coordination. You must
provide this coordination. This goes back to the earlier definition of "Human, or
Organizational Isolation" (see page 2). Little is offered in a single WAS node
configuration.

Multiple WAS node test/production configuration

Configuring multiple WAS nodes (whether in one sysplex or across multiple sysplexes)
affords a great deal more isolation of the SMS function:

Multiple WAS nodes provides separation of the SMS and thus greater isolation

As the picture shows, not only does this provide separate SMS servers, but it also gives
you the opportunity to create separate SMS administration IDs. You can provide the test
people with their ID (TESTSMS in this example) and production with theirs (PRODSMS).
Presumably the testers would not know the PRODSMS password, nor would production

Single WAS Node

DM

SMS

NM

IR

J2EE Server:
Production

SMS

HFS

LDAP

J2EE Server:
Test

Test Personnel Production
Personnel

Production System or LPAR

DM

SMS

NM

IR

J2EE Server:
Production

SMS

HFS

LDAP

DM

Test System or LPAR

SMS

NM

IR
J2EE Server:

Test

SMS

HFS

LDAP

Production
WAS Node

Test
WAS Node

Test Personnel

Production
Personnel

(Isolation)

Userid:
PRODSMS

TCP Port:
900 (default)

Userid:
TESTSMS

TCP Port:
1900 (unique)

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 12 WP100266, Version Date: 8/27/2002

people know the TESTSMS password. Human (or organizational) isolation can be
achieved.

The WAS naming convention

A WAS system is comprised of four "base servers," some number of J2EE servers, an
LDAP server, various RACF userids, passwords and groups, WLM application environments
and JCL procedures. All of these things have names, and you are pretty much free to name
them whatever you'd like.

Note: The only restriction is this: the WLM application environment name must be the same as the
the server name (not server instance, but the higher-level server name).

However, a structure as complex as WAS calls for some kind of naming convention to keep
things straight. This becomes even more important when you have a multi-system WAS
node (configuration #2) or a two WAS nodes in a sysplex (configuration #3).

The things most typically worked into the naming convention are:

• Some indication of the resource being related to WAS
• Some indication of the node (test vs. production) to which this resource is related
• An indication of system on which the resource resides if the configuration is a sysplex

There is no such thing as a perfect universally naming convention: each customer will have
a slightly different take on this. The point is to come up with a naming convention that
makes sense to you. (''Appendix A: Naming Checklist" on page 37 gives you a checklist of
the names you'll be asked to provide when defining the "WebSphere Customization" of the
ISPF dialogs and when creating J2EE servers).

Adding J2EE application servers after initial configuration

The ISPF customization dialogs are designed to create the initial environment, consisting of
the the four base servers (Daemon, SMS, Naming and Information Repository), as well as
the two IVP application servers (one CORBA server and one J2EE server).

ISPF customization dialogs are not used to create additional J2EE servers

If you wish to create additional J2EE application servers, that is done with a little bit of
manual setup on your part. The ISPF panels are not used for additional J2EE application
servers:

WAS Node

DM

SMS

NM

IR

IVP Server:
CORBA SMS

HFS

LDAP

IVP Server:
J2EE

LDAP

Additional
J2EE Server

Addtional
J2EE Server

WAS ISPF
Customization Dialogs

used for initial
configuration of this

Separate process used
for the creation of any
and all additional J2EE
servers

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 13 WP100266, Version Date: 8/27/2002

Steps you take to create additional J2EE servers

This document isn't intended to be a step-by-step "how to" manual for this process, so it
won't be covered here. The key point is this: if you wish to create additional J2EE
application servers, you do not use the ISPF customization dialogs to create them.

Note: You can make use of your initial ISPF dialog work when creating new J2EE servers,
however. The BBOWBRAK exec found in the INSTALL.DATA file created by the initial running
of the ISPF customization panels can be used to generate the RACF commands needed by a
new J2EE Server. For instructions on how to do that, go to:

http://www.ibm.com/support/techdocs/atsmastr.nsf/PubAllNum/TD100586

JNDI names applied to deployed applications

The LDAP repository is used to hold the JNDI paths and names for your deployed EJB
beans and webapps. These names are set at the time the application is deployed into the
J2EE server.

When one component of your application needs to access another – for example, a servlet
client needs to access a session bean, or a session bean needs to access an entity bean –
it performs a JNDI lookup of the target object and if found, is returned an instantiated copy
of that object.

An application may make reference to these JNDI names either through symbolic
references, or by having the JNDI names hard-coded into the application.

Note: Symbolic references ("java:comp" lookups) became available with the EJB 1.1 specification.
The EJB 1.0 specification did not provide this flexibility.

This in turn determines which of the four configurations discussed in the document you may
consider:

Type of JNDI reference Configurations Available to You
Hard-coded JNDI references Configurations 3 and 4 (not 1 and 2)

"java:comp" symbolic references Configurations 1, 2, 3 and 4

Your configuration choices may be limited by the JNDI references in your application code

For an application with hard-coded JNDI references to work, the objects being referenced
must be deployed with the same hard-coded names:

SMS
EUI

Add
Conversation Add Server Add Server

Instance

Add J2EE
Resource if

required

Validate,
Commit and

Activate

ISPF Define WLM
Environment

RACF
Definitions

and DB grant

JCL Start
Procedures

Step 1

Step 2

A B C D E

F G H

Start Server
and Verify

J

Done!

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 14 WP100266, Version Date: 8/27/2002

Hard-coded JNDI references means object must be deployed with the same name

That means the JNDI names for the EJBs will be the same in both your test and production
environments. If you have a single JNDI repository shared between test and production,
you will have a naming conflict when you try to register an object when a duplicate name
already exists. Configurations #1 and #2 have a single JNDI repository (LDAP servers)
shared between test and production, while configurations #3 and #4 have separate LDAP
servers. Hence, with hard-coded JNDI references you can not use configurations #1 or #2.

Note: That last statement might be a bit strong. It is possible to use a .properties file to provide
the JNDI name for an EJB 1.0 application. A .properties file must reside in the server's
CLASSPATH, and because you want your Test server to be isolated from your Production, it
means you would provide unique CLASSPATHs for Test and Production. No problem there,
but what this does imply is that the .properties file for the application must be modified
when moving the application from test to production (to change the JNDI reference from the
"Test" value to the "Production" value). Again, no problem with doing that, but it's one more
thing to do and one more thing that might go wrong.

Application code with symbolic ("java:comp" – EJB 1.1 specification) references does not
have this restriction. A symbolic reference allows the tooling – the SMS EUI tool – to
resolve the symbolic references to JNDI names at the time of deployment. That means the
JNDI names of the referenced objects can be pretty much anything. In an environment
where test and production share a JNDI repository (configurations #1 and #2), you simply
make certain the JNDI names are unique when deploying into one versus the other.

If you use the SMS EUI tool's "default JNDI names" button during deployment, the JNDI
names will not be the same (which is good). The "default JNDI names" mechanism uses the
server name (which will be unique in the sysplex) as part of the JNDI name (actually, the
JNDI path, but close enough) to insure that the generated JNDI name is unique.

Therefore, if your application code has hard-coded JNDI references, you have a choice:

• Choose either configuration #3 or #4 as illustrated in this document

• Modify your application code and change all hard-coded JNDI references to the more
J2EE-compliant "java:comp" symbolic lookups.

Question: what exactly is that long "default JNDI name" string SMS EUI sets?

When you click on the "default JNDI path/name" button in the SMS EUI, it attempts to
create a unique JNDI name by making use of six pieces of information it knows about:

Structure of the "default JNDI path/name" set by SMS EUI

:
"look up JNDI="XYZ_123"
:

Servlet Code

LDAP

J2EE Server

EJB
JNDI Name: XYZ_123 JNDI

"XYZ_123"

Hard-coded JNDI
references in application
code means ...

... objects being referenced
must have the same name ...

... and object will be registered
in LDAP with that name.

/WSLPLEX/WASASR2/PolicyIVP/policybmp_deployed/PolicyBMP/com.ibm...

Sysplex Server EAR File JAR within EAR Bean Name Home
Interface

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 15 WP100266, Version Date: 8/27/2002

So if you deploy an application into separate J2EE servers, you will be guaranteed
uniqueness of the JNDI names because the server name will be different.

Application fallback and version control

Imagine this scenario: you have an application running in production. (Which configuration
you choose doesn't matter for this discussion: this topic is generic to them all.) You make a
modification to the application and test it in your test environment and everything looks
good, so you roll it into production. Over in production you spot a problem you missed in
test. How do you fall back to your most recent verified version?

Bottom line: you redploy the application into the WAS J2EE server. There is no way within
the WAS 4.0.1 runtime to select a previously installed version of an application and simply
fall back to it.

That brings up this key point: your version control mechanism is best maintained in the
development environment, not in the WAS 4.0.1 runtime. If the need arises to fall back to a
"known good" version of an application, you get the application from your development
system and then go through the steps required to redeploy the application into your runtime.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 16 WP100266, Version Date: 8/27/2002

Multiple Environment Configurations

There are four basic configurations you can use to achieve some degree of isolation between
test and production environments. There are, of course, variations on each of these. This
document will not try to cover all combinations, but rather offer the key considerations that you
should keep in mind.

Overview of the four configurations

Configuration Description Page

Conf #1 - Different WAS J2EE Servers on
the same system or LPAR

This configuration can be accomplished on a
single system or LPAR, and is done within a
single WAS "node." It is quickest and
easiest, but offers the least isolation.

17

Conf #2 - Different WAS J2EE servers on
different systems in the same WAS node

This configuration is similar to the first, but
the test and production application servers
are on different systems or LPARs in the
WAS node.

22

Conf #3 - Different WAS nodes within the
same Sysplex

This configuration involves configuring a
separate WAS node within a Sysplex. It
requires care to make sure you don't use
duplicate resource names. Once done, it
offers a fairly good level of isolation.

25

Conf #4 - Different WAS nodes in separate
sysplexes

This is the ideal configuration if complete
isolation is the goal. It requires the most
resource.

35

Each configuration is discussed at starting at the page number provided.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 17 WP100266, Version Date: 8/27/2002

Conf #1 - Different WAS J2EE Servers on the same system or LPAR

Test environment in one WAS application server, Production in another, both on same system

Snapshot rating of configuration

Attribute Rating (more stars = "better")

Ease of configuration !!!!!
Ability to minimize resource usage !!!!!
Degree of application programming isolation !
Degree of system programming isolation (none)

Degree of human isolation !
Design Assumptions

• The WAS runtime is configured as a monoplex and the WAS node is run entirely
within one system

• You have some number of "test" J2EE servers and some number of "production"
J2EE servers.

• You have implemented some form of organizational procedure to control access to
the SMS administrative function.

Detail on "Ease of Configuration"

This is the easiest to configure because there's no WAS base server configuration
beyond the initial configuration. Because you have but one system on which you plan to
run WAS, you have only one node and only one set of base servers. One running of the
ISPF customization dialogs is all that is necessary. The creation of the J2EE servers is
a relatively easy effort common to all the configurations described in this document.

Detail on " Ability to minimize resource usage"

This configuration has the highest rating for this category simply because it uses the
minimum amount of resources. This configuration is recommended only if you do not
have the resources to create a configuration #3 or #4 as illustrated in this document.
The degree of isolation is so low that one should consider this configuration only as a
last resort.

Detail on "Degree of application programming isolation"

There is actually more application isolation than you may initially think. When an
application is deployed into a WAS runtime, the application code – or more precisely, the

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test

J2EE Server:
Production

SMS HFS

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 18 WP100266, Version Date: 8/27/2002

contents of the EAR file you deploy – are placed into the HFS in a directory structure
isolated by J2EE server name and further isolated by the name of the application:

Applications deployed in different servers end up in different locations in the HFS

Since the design of this configuration calls for "test" and "production" to be isolated by
using different J2EE servers – which must have different server names -- you know that
an application deployed into your test server will be placed in the HFS down a different
branch of the tree structure than one deployed into the production server.

This configuration does have some limitations, however. They are covered next.

JNDI Names

With your test and production environments on the same system and in the same
WAS node, your applications then by definition share the same local JNDI
namespace. JNDI (implemented with LDAP on S/390) requires that all registered
components have unique names. That means your test application must have
different JNDI names from the same application deployed into production. That by
itself is a not the primary limitation. The limitation comes in when your application
uses hard-coded, explicit JNDI references rather than "java:comp" symbolic lookups.

The following picture illustrates why this is a limitation:

Hard-coded JNDI references means object must be deployed with the same name

Therefore, in this configuration, an application with hard-coded JNDI references can
be deployed in your test server, or your production server, but not both at the same
time. If you deployed an application into your test server with a JNDI name of
XYZ_123, and then attempted to deploy the same application into your production

/ (root)
/WebSphere390/WAS401

/apps
/TEST

/HelloWorld
(application files here)

/PROD

/HelloWorld
(application files here)

HFS OMVS.WAS.CONFIG.HFS

Server name

Same
application
stored in

different HFS
locations,
based on

server name

Class file names and JAR file
names can be the same. You
don't need to rename any file

components of your application

:

"look up JNDI="XYZ_123"
:

Servlet Code

LDAP

J2EE Server

EJB
JNDI Name: XYZ_123 JNDI

"XYZ_123"

Hard-coded JNDI
references in application
code means ...

... objects being referenced
must have the same name ...

... and object will be
registered in LDAP
with that name.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 19 WP100266, Version Date: 8/27/2002

server with a JNDI name of XYZ_123, the deployment into production would fail:
JNDI would report a duplicate resource name:

Deployment failure because of JNDI name already registered

This is a limitation of any configuration where a shared local JNDI namespace exists
(configurations #1 and #2). Separate WAS nodes (configurations #3 or #4) avoids
this limitation.

Note: You can eliminate this restriction by using "java:comp" lookups in your application
code. The recommendation is to use them whenever possible and to avoid explicit
JNDI references.

J2EE Resource Names

With your test and production environments on the same system and in the same
WAS node, you may wish to define separate data subsystems (DB2, CICS, etc.) for
test and production application data:

Separate data subsystems for test and production (DB2 used as an example)

Note: The preceeding picture is simply an illustration. There is no requirement that says
your Test and Production application data must be housed in different data
subsystems. It is illustrated that way simply to drive home the key point, which is
this: to WebSphere, different data subsystems imply different J2EE data resource
names.

Using a single data subsystem for both Test and Production application data would
imply the use of a single J2EE data resource for both. It would then be up to you to
make certain that applications under test make use of the test data, and not
accidentally go against the production data.

In the J2EE application world, underlying data resources are associated with J2EE
Resources (and resource instances), which are defined in the SMS administrative
tool. At deployment time you tie an application's data reference to one of the defined
J2EE Resources, and when that application calls for data, the request is mapped to
the right DB2 or CICS subsystem, based on the J2EE Resource definition.

For this single-system configuration, this becomes important for this reason: J2EE
resources are defined at the sysplex level and are available to all the J2EE
application servers you have in your WAS node. A test DB2 subsystem, for

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test

J2EE Server:
Production

DB2

DB2

DB2 Subsystem for Test

DB2 Subsystem for Production

(Application data, not WebSphere
configuration data)

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test

J2EE Server:
Production

JNDI
Registered component: XYZ_123

Bean
JNDI: XYZ_123

Bean
JNDI: XYZ_123

Error! XYZ_123
already registered

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 20 WP100266, Version Date: 8/27/2002

example, will be defined with one J2EE resource name (TEST_DB2) and the
production DB2 subsystem would be a different resource name (PROD_DB2).

What that does is introduce a slight difference in the process required to deploy the
application in test vs. production: the deployer must know to resolve the proper data
resource. Therefore, the possibility exists that an application deployed into
production might be accidentally pointed to the test data subsystem, or worse, a test
application pointed to production data:

Different J2EE Resource names means deployment process can't be identical

Contrast this with "Adding J2EE application servers after initial configuration"
illustrated on page 33. Because in configuration #3 (and configuration #4 as well)
two different WAS nodes are in play, you can define the same J2EE resource name
for both the test and production environments. With the J2EE resource names the
same, the process of deploying the application is identical when it comes to resolving
the resource.

Web application virtual host and context root settings

Web applications are uniquely identified by the WAS system using the concatenation
of two values: the virtual host and the context root. The virtual host is the IP host
name used to route the browser request to the proper server, and the context root is
used to resolve the request down to one of what may be many webapps deployed in
the server.

Note: This topic is covered in far greater depth in the white paper WP100238, which can be
downloaded from the web at http://www.ibm.com/support/techdocs. Go to
the "White Papers" link and search on the number WP100238.

WAS will not be able to properly distinguish a test webapp from a production webapp
if they are deployed using the same virtual host and context root values. This holds
true even if the the two webapps are deployed in different J2EE Servers. WAS will
not flag this at the time of deployment.

Therefore, you should plan on having a different "virtual host/context root" value for
your test webapps than used for your production webapps.

The easier of the two to change is the virtual host value used. The context root
setting is made in the application.xml deployment descriptor inside the EAR file,
and is set by the AAT at the time you assemble the application. The virtual host
value is defined in the J2EE server's webcontainer.conf file. Changing the
virtual host rather than the context root allows you to minimize the changes to the
application between test and production.

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test

J2EE Server:
Production

DB2

DB2

DB2 Subsystem for Test

DB2 Subsystem for Production

Appl

Appl

Application deployed into production accidentally pointed back to test
data resource. Deployer relied too much on process used to deploy

into test and used the test datasource name rather than the
production datasource name. J2EE resource names would be

different, and that must be taken into account during deployment.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 21 WP100266, Version Date: 8/27/2002

Therefore, you should plan on using a different virtual host value in your test J2EE
server than is used in your production J2EE server. Requests issued from a browser
intended for your test environment will contain the IP host name and port of your test
environment's virtual host setting, and will drive the webapp in the test environment
only. Your production J2EE server would have a different virtual host, and a URL
intended for the test environment would not be able to invoke a production webapp.

Changing something as simple as the port number effectively changes the virtual
host value. So www.mycompany.com is a different virtual host value from
www.mycompany.com:8080.

Though critical in configurations #1 and #2, you should follow the general rule of
different virtual hosts for all configurations presented in this document. Through
some fancy networking techniques you can probably get around this in
Configurations #3 and #4, using different virtual host values helps maximize the
isolation of test and production, and that's the objective.

Detail on "Degree of system programming isolation"

This configuration has only one zOS system, which means there is only one copy of
WAS and only one copy of DB2 on which WAS relies. There is virtually no opportunity
for system programming isolation because of the reality that only one WAS node can
exist on an MVS image. Hence a rating of "none".

Detail on "Degree of human isolation"

This configuration has a very low rating in this category because of the limited isolation
provided by the SMS administrative function (see "The Systems Management End User
Interface (SMS EUI)" on page 12 for a description of the limitations inherent in the
product). There is considerable exposure to your production environment if different
people are using the SMS EUI to access the system. This exposure is magnified in an
organization where the test and production personnel are physically or organizationally
separated and close coordination doesn't occur. If the environment is relatively small
and one person – or a close team of a few people – has access to the SMS
administrative function, then you may be able to limit the exposure through procedures
you implement between your team.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 22 WP100266, Version Date: 8/27/2002

Conf #2 - Different WAS J2EE servers on different systems in the same WAS node

Test and Production in different application server, each on a separate system within the WAS node

Snapshot rating of configuration

Attribute Rating (more stars = "better")

Ease of configuration !!!!
Ability to minimize resource usage !!!!
Degree of application programming isolation !
Degree of system programming isolation !!
Degree of human isolation !

Design Assumptions

• Two or more systems are configured in a sysplex

• Only one WAS node has been configured, and it spans the systems in sysplex

• Test and Production is maintained as separate J2EE servers

• You have, or plan to have, production J2EE server instances on both systems in the
sysplex. If you have no plans to do that, and you intend on separating test and
production as separate J2EE servers on different systems, then you are better off
going with Configuration #4 and configuring each system as a monoplex.

Note: This configuration is an extension of Configuration #1. The reason this configuration
is included is it provides a degree more system programming isolation because two
or more physical systems (or LPARs) are present. Some flexibility is offered for
applying fixes to one system and not the other and "rolling" the changes as described
in Chapter 6 of the "Installation and Customization" guide (GA22-7834). Therefore,
this configuration provides the opportunity to apply updates to WAS an not disrupt
service to clients. That topic is a big one, and best left covered in the "Installation
and Customization" guide.

The degree of application separation and human separation is largely the same as in
Configuration #1 because of the way WAS spans a sysplex.

Detail on "Ease of Configuration"

This configuration is less than Configuration #1 because configuring a multi-system
WAS node involves creating unique server instances (not the server, but the instances)

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test SMS

HFS

System or LPAR

DM

SMS

NM

IR
J2EE Server:
Production

CF

J2EE Server:
Production

Notice how production
J2EE server instance is
in this system as well.

See notes below.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 23 WP100266, Version Date: 8/27/2002

on each system. The server name itself is a higher-level thing and spans the systems in
the WAS node. If your naming convention is constructed adequately, the server
instance names will have an indicator of the system on which the instance lives, and the
act of configuring the instances should be a relatively small thing. (See "The WAS
naming convention" on page 12.)

Detail on " Ability to minimize resource usage"

This configuration entails at least two systems or LPARs, otherwise it becomes
Configuration #1. The extent to which you expand the use of resources beyond two
systems is up to you.

Detail on "Degree of application programming isolation"

Due to the shared nature of WAS across systems in a multi-system WAS node, this
configuration really doesn't offer any greater isolation of your application than does
Configuration #1. This holds true even when your test J2EE server instance is on one
system and your production J2EE server instance is on another:

Configuration Directory is shared; application isolation the same as in Configuration #1

The same considerations offered under Configuration #1's "Detail on "Degree of
application programming isolation"" on page 17 apply here. That would include the
issues of hard-coded JNDI references, deployment differences involving different J2EE
resource names and the issue of webapp virtual hosts and context roots.

Detail on "Degree of system programming isolation"

Here's where this configuration offers value over Configuration #1. Because at least two
systems are in play, it is possible to configure the HFS so that each system has an
unshared place where the WAS code is installed. This allows you to apply fixes to one
system and restart that system while keeping the other system up and running. This is
known as a "rolling upgrade."

The topic of rolling upgrades and the various methods by which you can start your
systems ("cold," "warm," "hot" and "quick") are detailed in Chapter 6 of the "Installation
and Customization" guide (GA22-7834). The key point here is because you have
separate systems (or LPARs), additional flexibility is available to you for system
programming isolation.

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test SMS

HFS

System or LPAR

DM

SMS

NM

IR
J2EE Server:
Production

CF

/WebSphere390/WAS401

/apps
/TEST

(application files here)
/PROD

(application files here)

Server name "Config Directory" is shared
between all systems in the
WAS node. Isolation is
essentially the same as what
you have in Configuration #1

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 24 WP100266, Version Date: 8/27/2002

Detail on "Degree of human isolation"

No better than that offered under Configuration #1. The SMS administrative interface is
shared across all systems in a WAS node. The same holds true for the system console.
If you have not yet reviewed the section titled "The Systems Management End User
Interface (SMS EUI)" on page 10, it would be beneficial to do so at this time.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 25 WP100266, Version Date: 8/27/2002

Conf #3 - Different WAS nodes within the same Sysplex

Test on separate WAS node in Sysplex and not sharing with Production WAS node

Snapshot rating of configuration

Attribute Rating (more stars = "better")

Ease of configuration !
Ability to minimize resource usage !!!
Degree of application programming isolation !!!!!
Degree of system programming isolation !!!!
Degree of human isolation !!!

Design Assumptions

• The system (or LPAR) on which the test WAS node is configured is dedicated to
application and software test. It has dedicated non-shared HFS.

• The test system is a single-system WAS node.

• The test system DB2 subsystem is not part of any DB2 shared group.

• The RACF database is shared between all the systems in the sysplex.

• The scope of enqueues have not been changed.

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Production SMS

HFS

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Production

CF

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test

SMS HFS

Sysplex

Sharing RACF, but not
HFS or DB2

(Separate WAS nodes)

Only one WAS node in a sysplex may be a
"multi-system WAS node." If your production
node is multi-system, your test node must be
a single-system node (as shown here).

Note!

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 26 WP100266, Version Date: 8/27/2002

Detail on "Ease of Configuration"

This configuration has the lowest "ease of configuration" rating of the four configurations.
This is because configuring two WAS nodes in the same sysplex requires the following:

• The server names in the test node (base servers and J2EE servers) must be
different from the server names in the production node. The RACF IDs underlying
the servers typically have a naming convention tied to the server names, so they too
would be different. Planning and care must be exercised to avoid naming conflicts.

• The DB2 subsystems in the test node must not be part of the sharing group with the
production DB2 subsystems.

Note: There is a key difference in configuring a test WAS node in a sysplex, and it has to do
with an environment variable called DATASHARING. This is discussed under
"Datasharing environment variable and the bootstrap" on page 29.

Understand the things you'll code differently in the ISPF customization dialogs

As you prepare to run through the ISPF customization dialogs to establish the
second WAS node within the sysplex, bear in mind the need to have the following
variables set with different values from other WAS nodes in existence:

When configuring a second (test) WAS node in the same sysplex, new values are needed

The numbered blockes are described next:

What Where specified in dialogs

1 WAS customization data sets – allocate
different from those used for production
node.

Option 1, "Allocate Target Data Sets"

2 WAS DB2 subsystem – provide
information about separate DB2
subsystem that will be used by the test
WAS node

Option 2, "Define Variables"
Option 1, "System Locations"
Panels 1 of 2 and 2 of 2

3 WAS DB2 VCAT value and data and index
volumes – provide different values

Option 2, "Define Variables"
Option 2, "WebSphere Customization"
Panels 1 of 4

4 WAS HFS configuration mountpoint – Option 2, "Define Variables"

New WAS Node

DM

SMS

NM

IR

IVP Server:
CORBA

DB2

HFS
IVP Server:

J2EE

LDAP

WAS ISPF
Customization

Dialog

PDS hlq.CNTL

PDS hlq.DATA

LOG

WebSphere Error Logstream

1

2

4

5

7

8

9 10

11

6

3

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 27 WP100266, Version Date: 8/27/2002

What Where specified in dialogs
make it different from the mount point used
by the production WAS node

Option 2, "WebSphere Customization"
Panel 1 of 4

5 WAS Error Logstream – create a DASD-
only error log with a unique name for the
test node.

Option 2, "Define Variables"
Option 2, "WebSphere Customization"
Panel 2 of 4

6 WAS common group IDs and
unauthenticated userids – while these
could technically be the same as on the
production node (shared RACF,
remember), it is best to have them
uniquely identified with your test node.

Option 2, "Define Variables"
Option 2, "WebSphere Customization"
Panel 3 of 4

7 WAS Daemon base server – provide a
unique name for the server along with the
associated RACF IDs

Option 2, "Define Variables"
Option 3, "Server Customization"
Panel 1 of 4

8 WAS Systems Management base server –
provide a unique name for the server along
with the associated RACF IDs

Option 2, "Define Variables"
Option 3, "Server Customization"
Panel 2 of 4

9 WAS Interface Repository and WAS
Naming base servers – provide unique
names and RACF IDs

Option 2, "Define Variables"
Option 3, "Server Customization"
Panel 3 of 4 (IR) and 4 of 4 (Naming)

10 IVP Servers – if you plan on using them
you need to provide unique names and
RACF IDs

Option 2, "Define Variables"
Option 4, "IVP Customization
Panel 1 of 2 (CORBA) and 2 of 2 (J2EE)

11 LDAP Server – provide a unique server for
the test node

Option 2, "Define Variables"
Option 5, "LDAP Customization"
Panel 1 of 1

This implies that pretty much everything will need to be uniquely named and
coordinated. That leads to the next topic, which involves the planning for all this.

Planning your server names

One of the key restrictions when configuring more than one WAS node within a
sysplex is that all server names must be unique. It doesn't matter that the two WAS
nodes are on separate DB2 subsystems. The names must be unique.

If by accident you name a server the same name as exists in the production node,
the ISPF customization dialogs will not flag that as an error. What you will see at
server startup is the BBOU0758W message indicating a duplicate server name.

"The WAS naming convention" on page 12 provided background on the issue of a
WAS naming convention. The essential points are these:

• Understand the relationship between the different servers and other resources
that require a name

• Have a naming convention in mind before you start the WAS ISPF customization
dialogs.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 28 WP100266, Version Date: 8/27/2002

SMS Administration ID

There is no technical reason why the SMS administration RACF ID for the SMS on
test must be different from that on production, but it is strongly recommended they be
different IDs. The SMS ID is set in the ISPF customization dialogs under "Define
Variables," "Option 2, WebSphere Customization," "Panel 3 of 4":

Specification of the SMS administration ID within the ISPF dialogs

Using different SMS administration IDs for test and production allows you to provide
human (or organizational) isolation. The test group will be given access to the test
node's SMS EUI with the userid/password unique to that node; the production people
will have access to the production node's SMS EUI with the userid/password unique
to that node. This concept is illustrated under "Detail on "Degree of human
isolation"" on page 17.

TCP Ports and IP names

To maximize the isolation between your test and production nodes, you should
insure the TCP/IP ports and IP names used for in your test node are different from
those in the production node. The following picture illustrates the ports and IP
names that should be different:

----------------- WebSphere for z/OS
Customization
Option ===>

WebSphere Customization (3 of 4)

WebSphere Common Groups and User IDs

Control region group for ALL servers..: CBCTL1
Control region GID for ALL servers....: 2211
Server region group for base servers..: CBSR1
Server region GID for base servers....: 2201

Unauthenticated User Definitions for Base Servers

Userid...: CBGUEST UID..: 2102
Group....: CBCLGP GID..: 2202

WebSphere Application Installer Group Information

Group....: CBCFG1 GID..: 2300

WebSphere Administrator Information

Userid...: CBADMIN UID..: 2103
Password.: CBADMIN
Group....: CBADMGP GID..: 2203

These are the default values you'll
find in the ISPF dialog. You

would change these to the new
values, consistent with your

naming convention.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 29 WP100266, Version Date: 8/27/2002

Use different TCP port and IP names; where in ISPF these are set

Using unique ports creates a stronger differentiation between your test and
production environments. The recommendation is to create a unique IP name and
unique ports for your servers in the test and

Note: Using common IP names and port numbers between test and production isn't a hard
technical requirement (no abends will occur if you have common values). But it is a
strong recommendation that you provide unique IP names and port numbers for your
test servers to differentiate them from production.

Datasharing environment variable and the bootstrap

A new environment variable called DATASHARING was introduced with PTF
UQ99328 (Service Level W401014). This variable is used whenever a sysplex has
more than one WAS node configured.

One of the key restrictions to the "multiple WAS nodes in a sysplex" configuration is
that only one WAS node in the sysplex can be a multi-system node (see "WAS
"nodes"" on page 8 for an illustration of this). Multi-system WAS nodes share DB2
resources between the systems in the node.

Note: This also implies that different DB2 subsystems be used for the production node and
the test node. This restriction is further imposed due to the way WebSphere refers to
its system tables using a hard-coded owner qualifier of BBO. If you tried to create
two node's database tables in one DB2 subsystem, the hard-coded qualifier of BBO
would conflict when the second node's tables were created. You can't rename them
… the references to "BBO" is hard-coded in the WebSphere program code.

When multiple WAS nodes are configured in a single sysplex, those WAS nodes that
are made up of single systems don't share DB2 resources with other systems. The
DATASHARING environment variable is used to indicate this:

WAS runtime

DM

SMS

NM

IR

J2EE Server SMS

HFS

LDAP

J2EE Server

LDAP

Daemon port:
Daemon SSL port:
Daemon IP name:

5555
5556

www.prod.com

15555
15556

www.test.com

Default
Different

Value

SMS port:
SMS IP name:

900
www.prod.com

1900
www.test.com

Default
Different

Value

LDAP port:
LDAP IP name:

1389
www.prod.com

11389
www.test.com

Default
Different

Value

Define Variables
Option 3, "Server Customzation"
Panel 1 of 4

Define Variables
Option 3, "Server Customzation"
Panel 2 of 4

Define Variables
Option 5, "LDAP Customzation"
Panel 1 of 1

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 30 WP100266, Version Date: 8/27/2002

Single-system WAS nodes set DATASHARING=0; multi-system nodes to 1

The variable is set in the configuration.env file just prior the executing the
bootstrap phase. The default is DATASHARING=1, so if you are setting up a test
node in a sysplex and your node isn't sharing DB2 resources, you must code this
and provide a value of DATASHARING=0.

Configuration using the ISPF dialogs

With a plan for the different names and ports for the new WAS node firmly in hand,
you're ready to run through the ISPF customization dialog panels. Before you start,
a quick memory checklist:

Separate system or LPAR established? # Yes # No

DB2 subsystem not part of any sharing group? # Yes # No

HFS separate and non-shared? # Yes # No

All other WAS 4.0.1 system preparation tasks performed, as
indicated in Chapter 2 of "Installation and Customization"
(GA22-7834-02)?

Yes # No

Run through the panels, create the customized jobs and the submit the jobs in the
sequence specified in the BBOINSTR member of the hlq.CNTL datase, making sure
to include DATASHARING=0 in configuration.env prior to running bootstrap.

Authorization to backend data stores

The J2EE application server name on the test system must be different from the
corresponding J2EE application server on the production system. That is one of the
restrictions of this configuration, but not a restriction in when you have two
completely separate sysplexes.

Therefore, if the authorization granted to provide access to backend systems (such
as DB2) is based on the server's instance RACF userid, then you must insure that
the authorization has been properly granted on both test and production based on
the appropriate server instance ID:

DB2

System A

WAS

DATASHARING=1

System B

WAS

DATASHARING=1

System C

WAS

DATASHARING=0

DB2

Multi-system
WAS node

Single-system
WAS node

Set DATASHARING=0 for all single
system WAS nodes in a sysplex
with multiple WAS nodes.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 31 WP100266, Version Date: 8/27/2002

Example: DB2 authorization grants on test vs. production when server names different

The picture above illustrates the GRANT used to grant authority to the PolicyIVP
table BBO.POLICYDO.

If your application makes use of stateful session beans, you need to grant
authorization to BBO.STATEFUL_BEANS as well.

Detail on "Ability to minimize resource usage"

Once you make the decision to deploy a second WAS node within your sysplex, it
automatically implies a separate system or LPAR. There is no way to avoid this if a
second WAS node is your objective. Therefore, this configuration uses more resource
than does any configuration with only one WAS node. The benefit you receive is greater
isolation.

DB2

J2EE Server Inst.
Name: TESTS1
Userid: TESTS1

PolicyIVP
Application

GRANT INSERT,SELECT,DELETE,UPDATE
ON BBO.POLICYDO
TO TESTS1

DB2

J2EE Server Inst.
Name: PRODS1
Userid: PRODS1

PolicyIVP
Application

GRANT INSERT,SELECT,DELETE,UPDATE
ON BBO.POLICYDO
TO PRODS1

Test Production

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 32 WP100266, Version Date: 8/27/2002

Detail on "Degree of application programming isolation"

An application deployed in the test WAS node is completely and entirely isolated from
applications deployed in the production WAS node:

Isolation of applications in test environment vs. production environment

The picture illustrates the following regarding the test and production application
environments:

• They operate in different J2EE application servers operating on different systems
within the sysplex. The different application servers can be stopped and started
independent from one antother.

• They operate in different WAS nodes, managed by different WAS base servers,
which run on different systems within the sysplex. The WAS daemons themselves,
which controls the whole node, can be stopped and started independently from one
another.

• The information WAS maintains about a deployed test application is kept in separate
DB2 tables in separate, non-shared DB2 subsystems from those maintained for
deployed production applications.

Note: This is not just a benefit, it is a requirement that the two node's DB2 tables be in
separate subsystems. The WebSphere code refers to the tables with a hard-coded
qualifer value of "BBO." Therefore, the tables must be created with BBO as the
owning qualifier. You can't simply rename them.

• The HFS and the HFS directory structure in which the test application (JAR files,
XML files, WAR files, etc) is stored is separate and non-shared from the HFS used
for the production application. There's absolutely no connection between the two.

JNDI names

Because each WAS node has its own LDAP server, you may deploy an application
into your test and production nodes with the same JNDI names and not have any
naming conflicts.

Sysplex

Production System or LPAR

DM

SMS

NM

IR

J2EE Server:
Production

SMS

HFS

LDAP

CF

Test System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test

SMS

HFS

LDAP

RACF

DB2 DB2 Subsystem "P"

DB2 DB2 Subsystem "T"

UnsharedShared

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 33 WP100266, Version Date: 8/27/2002

If you code uses "java:comp" symbolic lookups, you can use the "default JNDI
names" button of the SMS EUI and it will generate unique names based on the
server name. The names may be different, but the process by which you deployed
the application into test versus production is the same (you clicked on the "default
JNDI names" button).

Data resource names defined to WAS in each node

Within the WAS runtime are definitions known as "J2EE Resources" and "Resource
Instances." These are symbolic names that are tied to an actual data source such
as a DB2 subsystem or a CICS region. When you deploy a J2EE application that
accesses those data sources, you point the application at the resource name, not the
actual subsystem name.

To provide as much deployment process transparency as possible, you should keep
the "J2EE Resources" names the same on both your test and production systems.
The actual data subsystem under the resource on your test system will be different
from the subsystem under your production resource, but the symbolic name used by
the application will be the same. That piece of the deployment process will be
identical:

Keep J2EE Resource names the same; underlying subsystems are different

Web application virtual host and context root values

In this configuration you intentionally configure a different Daemon and SMS host
name to insure separation of your test and production environments. A different host
name for your test environment means by definition your test J2EE servers will
employ a different "virtual host" value from your production environment. This is
good, for it helps to increase the separation of the two environments.

Your application context root value may stay the same between test and production.

Detail on "Degree of system programming isolation"

Since the test WAS node is within a separate system or LPAR, and the assumption was
that system or LPAR was dedicated to test, you can maintain separation of the operating
system and subsystem code. Things like parm libraries, link lists and proc libraries
would be isolated from your production system.

Message: the same methods you employ today for test and production within a sysplex
apply here. In fact, the WAS product itself can be viewed just like any other subsystem
in terms of isolation for testing purposes.

DB2

CICS

Subsystem:
ABC

Subsystem:
DEF

Resource:
"DB2"

Resource:
"CICS"

J2EE Application
Use Resource: DB2

Test Node
Application migrated to
production after being

validated on test

DB2

CICS

Subsystem:
GHI

Subsystem:
JKL

Resource:
"DB2"

Resource:
"CICS"

J2EE Application
Use Resource: DB2

Production Node

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 34 WP100266, Version Date: 8/27/2002

What is shared in this configuration

The two WAS nodes still exist within a sysplex, and do share some resources:

• The same sysplex name

• The RACF database

• The WLM service policy (however, the application environments are distinct
based on the unique server names you've provided)

• The RRS logstream

• ENF signals and GRS enqueues

• The system console

Detail on "Degree of human isolation"

Because the test WAS node is within the same sysplex as the production WAS node,
and because the assumption was the RACF database would be shared across all the
systems in the sysplex, the degree of human isolation is less than the full rating. But if
your test and production environments for other subsystems are in the same sysplex
today, this is nothing new.

The system console is shared across all systems in the sysplex, so you must be aware
of the exposure that may provide to the production environment. Again, if today your
test and production is in the same sysplex, this is nothing new.

Because your test and production environments are in different WAS nodes, you can
maintain separation of your WAS SMS function, which is perhaps the critical piece of
this. As was described under "The Systems Management End User Interface (SMS
EUI)" starting on page 17, the way access to the SMS administration function is
structured, some conflicts may arise unless you configure in the isolation. This
configuration provides that, and the following picture illustrates it:

Test and Production SMS function separated by userid and port

Production System or LPAR

DM

SMS

NM

IR

J2EE Server:
Production

SMS

HFS

LDAP

DM

Test System or LPAR

SMS

NM

IR
J2EE Server:

Test

SMS

HFS

LDAP

Production
WAS Node

Test
WAS Node

Test Personnel

Production
Personnel

(Isolation)

Userid:
PRODSMS

TCP Port:
900 (default)

Userid:
TESTSMS

TCP Port:
1900 (unique)

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 35 WP100266, Version Date: 8/27/2002

Conf #4 - Different WAS nodes in separate sysplexes

Completely separate Sysplex environments; each with its own WAS node

Snapshot rating of configuration

Attribute Rating (more stars = "better")

Ease of configuration !!!
Ability to minimize resource usage !
Degree of application programming isolation !!!!!
Degree of system programming isolation !!!!!
Degree of human isolation !!!!!

Design Assumptions

This design assumes:

• Two entirely separate sysplexes

• One WAS node configured in each; one WAS node for test, one for production

Whether the test sysplex is a multi-system design or a single system monoplex is really
not relevent to this discussion: the key point is the two WAS nodes are completely
separated from one another and do not share anything.

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test SMS

HFS

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Test

CF

Test Sysplex

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Production SMS

HFS

System or LPAR

DM

SMS

NM

IR

J2EE Server:
Production

CF

Production Sysplex
Completely Separate Completely Separate

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 36 WP100266, Version Date: 8/27/2002

Detail on "Ease of Configuration"

This configuration is really no more difficult to configure than is Configuration #1, but the
amount of work (not the complexity) is multiplied by two. Because the two sysplexes are
completely separate, your WAS server names may be identical between the two.

Detail on " Ability to minimize resource usage"

This is rated "one star" simply because it would require the most resource of the four
configurations presented here. However, you get the maximum amount of isolation with
this configuration. All else equal, this is the ideal configuration.

Detail on "Degree of application programming isolation"

The highest rating possible. There is absolutely nothing shared between the two
environments.

Detail on "Degree of system programming isolation"

The highest rating possible. There is absolutely nothing shared between the two
environments.

Detail on "Degree of human isolation"

The highest rating possible. The SMS administrative interface is completely separate,
and you can be assured your testers have no influence through that tool over the
production environment.

Further, the MVS system console is completely separate in this configuration.
Configuration #3 did not enjoy this degree of separation.

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 37 WP100266, Version Date: 8/27/2002

Appendix A: Naming Checklist

The following provides a template for the creation of your naming convention.

Common Definitions

Common Definitions

Base Servers

Base Servers

Byte: 1 2 3 4 5 6 7 8
Control Region Group for ALL Servers
Server Region Group for ALL Servers
Unauthorized Userid
Anauthorized Group
WebSphere Application Installer Group
WebSphere Administrator Userid
WebSphere Administrator Password
WebSphere Administrator Group
CTRACE Userid
CTRACE Group
CTRACE Proc Name
CTRACE Data Set Name: (typically HLQ.xxxxxxxx.CTRACE)

Byte: 1 2 3 4 5 6 7 8
Daemon Server Name
Daemon Server Instance
Daemon Userid
Daemon Proc Name

SMS Server Name
SMS Server Instance
SMS Control Region Userid
SMS Control Region Proc Name
SMS Server Region Userid
SMS Server Region Proc Name

IR Server Name
IR Server Instance
IR Control Region Userid
IR Control Region Proc Name
IR Server Region Userid
IR Control Region Proc Name

Naming Server Name
Naming Server Instance
Naming Control Region Userid
Naming Control Region Proc Name
Naming Server Region Userid
Naming Server Region Proc Name
Keyring (not limited to eight characters)

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 38 WP100266, Version Date: 8/27/2002

LDAP Server

LDAP Server

Each J2EE Application Server Created

Beyond the initial IVP server, additional J2EE servers are created outside the ISPF
customization panels. See "Adding J2EE application servers after initial configuration" on
page 12 for more information.

Each additional J2EE application server

Note: The CBIND and SERVER classes are typically longer than eight bytes, so representing it on
the chart would have been awkward. However, the CLASS profile name would typically
include the server name as part of the CLASS profile name.

Byte: 1 2 3 4 5 6 7 8
LDAP Userid
LDAP Group
LDAP Proc Name
Administrator user DN, cn= (not limited to eight characters)
Authentication ID for DB2 tables

Byte: 1 2 3 4 5 6 7 8
Server Name
Server Instance Name
Control Region Userid
Control Region Proc Name
Server Region Userid
Server Region Proc Name

Default Remote Userid
Default Local Userid
Default ID Group

CBIND CLASS: (see note)
CBIND CLASS: (see note)
SERVER CLASS: (see note)

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 39 WP100266, Version Date: 8/27/2002

Change History of Document

• March 6, 2002

Original Document

• April 4, 2002:

Updated with explanation on why only one multi-system WebSphere node may exist in a
sysplex.

Updated with explanation of multiple environments for servlets, compared that to the
WebSphere V3.5 environment, and explained the "simple configuration" (or "alternative
configuration") where just the WebSphere V4 plugin is used.

• May 16, 2002

Added explanation to picture under Configuration #1 that showed separate DB2
subsystems for Test and Production application data. Clarified point that separate
subsystems for Test and Production application data is not a requirement; rather, picture
was illlustrating effect of doing so when J2EE Data Resources are defined.

Also "tightened up" wording regarding how the "unique JNDI names" issue doesn't really
come into play if all one has are servlets.

• August 27, 2002

Added information in Configuration #3 about restriction that WebSphere system tables
for Test and Production nodes must be kept in separate DB2 subsystems. The table
qualifiers are hard-coded to "BBO" and therefore the tables must have that name.
Therefore, only one set of tables in a subsystem can have that value of "BBO."

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 40 WP100266, Version Date: 8/27/2002

Index

A

access control
over SMS EUI functions, 10

application
falling back, 15
separation within HFS, 18
where code stored in HFS, 6

application JAR files
where stored in HFS, 7

application servers
creating additional, 12

application test
contrasted with system testing, 2

applications
copying files in HFS, 7, 9
separation of code in HFS, 7

B

BBO
hard-coded qualifier, 29

BBOWBRAK
using to generate RACF script, 13

C

CBCONFIG
and the HFS, 7

configuration
where information is stored, 5

convention
naming, 12

D

DATASHARING
required with Config #3, 29

DB2
as part of configuration repository, 5
separate subsystems, 29

DB2 authorization
and server names, 30

DB2 sharing group
and WAS nodes in sysplex, 9

default JNDI
format set by SMS EUI, 14

deployment process
and J2EE resource names in Config #1, 19

E

EAR
placement within HFS, 18

H

HFS

as part of configuration repository, 5
how application data is stored, 6
how server configuration is stored, 6
location of applications within, 18

human isolation
why still an issue in Config #2, 24

human isolation
explanation of, 2

I

Isolation
what is meant by, 1

ISPF customization dialog
overview of, 5

J

J2EE servers
how server configuration is stored, 6

java/comp
related to JNDI naming, 13

JNDI
different with servlets, 4
limitation of hard-coded references, 18

JNDI names
java/comp lookups, 13
overview, 13

L

LDAP
as part of configuration repository, 5

LPAR or system
multiple nodes within, 9

M

multi-system
nodes in sysplex, 9

N

naming
checklist for convention, 37
overview of naming issues, 12

nodes
configuring multiople in sysplex, 26
definition of, 8
more than one in a sysplex, 8
multiple in sysplex and unique server names, 8
multiple in system or LPAR, 9
only one multi-system node in sysplex, 9
separation of SMS function, 11
sharing of SMS repository within, 8

WebSphere V4.0.1 – Test and Production Environments

© 2002 IBM, Washington Systems Center 2 WP100266, Version Date: 8/27/2002

P

panels
overview of ISPF dialogs, 5

Plugin
running just V4 plugin, 4

programming isolation
explanation of, 1

properties files
to provide JNDI names, 14

R

resource names
in configuration #1, 19

rolling upgrades
referenced in Config #2, 23

S

separation
of application data in HFS, 6
of server configurations in HFS, 6

server names
must be different in sysplex, 8
must be unique in Config #3, 26
what happens when duplicates discovered, 27

Servlets
in V3.5 vs. V4, 3
two places where they can run, 3

shared JNDI
limitations, 19

sharing
of config HFS, 7
within a sysplex, 9

Simple Configuration
what it is, 4

SMS
does HFS update work for you, 7

SMS EUI
access control, 10
coordinating access, 11
default JNDI value set, 14
different IDs with Config #3, 28
isolation afforded by separate nodes, 11
multiple people logging on, 10
overview, 10

SMS repository
overview of where things stored, 5

Subsystems
separate in Configuration 3, 29

sysplex
coding multiple nodes within, 26
more than one node in, 8
only one multi-system node in, 9
server names must be different, 8
sharing within, 9

system or LPAR
multiple nodes within, 9

system testing
contrasted with application testing, 2

T

TCP
different values for Config #3, 28

V

V3.5
servlet execution, 3

virtual hosts
need unique in Config #1, 20

W

WAS
definition of node, 8

