
© Copyright IBM Corporation 2009 Trademarks
Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 1 of 13

Managed file transfer for SOA: A complete solution
using WebSphere DataPower, WebSphere MQ, and
WebSphere Service Registry and Repository
Stefano Marinoni
Luca Amato

01 July 2009

WebSphere MQ File Transfer Edition provides an enterprise-class platform for managed file
transfer operations. This article shows you how to use File Transfer Edition to implement
a managed file transfer system that enables you to issue file transfer commands simply by
placing messages onto a queue and invoking a Web service.

Introduction

Different organizations or different departments in the same organization often need a reliable and
secure method of enterprise-scale file transfer, ideally, one that lets applications or administrators
issue file transfer requests automatically simply by invoking a Web Service. For example, consider
a sales portal that needs to automatically generate and transfer files representing customer
purchase invoices. Two IT systems, Source (S) and Destination (D) in different organizations,
need an effective and reliable method of managed file transfer. This article shows you how to use
IBM® WebSphere® MQ File Transfer Edition (hereafter called FTE) to implement an enterprise-
scale file transfer solution. The solution also leverages WebSphere DataPower® SOA Appliances
(hereafter called DataPower), and WebSphere Service Registry and Repository (hereafter called
Service Registry), and it gives you a variety of ways to automate and control file transfers between
IT systems.

FTE integrates with and runs over an existing WebSphere MQ network to add managed file
transfer functionality. System administrators or applications can then issue messages containing
file transfer directives for execution by FTE. Formatting messages correctly requires knowledge
of the WebSphere MQ network, including agent names and file system structures. This article
shows you how applications can issue file transfer commands simply by performing a Web service
call to an ESB component deployed on DataPower, which is deployed as a bridge that listens
for SOAP calls and subsequently populates the FTE command queues. DataPower supports
inbound and outbound transactions over a variety of protocols -- the FTE solution in this article
uses SOAP over HTTP(S) to raw XML over WebSphere MQ. The article also shows you how
integration with Service Registry can provide a real-time view of the WebSphere MQ network as it

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 2 of 13

changes over time, by automatically discovering agent names and file system structures that are
regularly published into Service Registry, where they can be queried and used at runtime by the
applications issuing the file transfer commands. From an architectural perspective, the FTE layer
is constructed like any other WebSphere MQ application: it connects to queue managers to put
messages on or get messages from queues. This article first describes FTE architecture to show
how its components collaborate to implement reliable file transfer.

Acronyms used in this article

FTE
File Transfer Edition

XML
eXtensible Markup Language

SOAP
Single Object Access Protocol

S
Source

D
Destination

Prerequisites

In order to follow the examples in this article, you should have the following software installed in
your test environment:

• WebSphere MQ FTE
• A WebSphere DataPower appliance with an application domain configured by importing the

Dp-Domain.zip configuration file, which you can download at the bottom of the article.

FTE component architecture
FTE comes in different versions, depending on weather it will connect to a queue manager in
bindings (locally), or in client mode. In addition to the functional components, each version also
includes installation media containing remote tools and documentation packages. At configuration
time, the administrator is asked to supply details of three queue managers: the Agent Queue
Manager, Command Queue Manager, and Coordination Queue Manager. FTE is a single long-
running daemon process called an agent, with tooling to let you submit commands to the agent
and inquire on its status.

Figure 1 below shows an installation of an FTE instance without the queue managers included.
Within the green rectangle are the basic components (agents and queues) that are the core of
an FTE system. Also shown is an administration console that represents a remote system that
can populate the agent's queue by issuing any kind of file transfer command, and two different file
systems that represent the source and destination (target) system of a file transfer operation. In
the green rectangle is a sender agent Agent 01 and a receiver agent Agent02, each with its own
command queue. File transfers are managed by users or administrators by placing messages onto
the sending agent's command queue, either directly or with the supplied tooling. A file transfer

ibm.com/developerWorks/ developerWorks®

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 3 of 13

can be initiated via the command line, the Eclipse GUI, or by placing a properly formatted XML
message on a queue. The agent processes respond to command messages, move files through
FTE, and then publish activity logs onto the SYSTEM.FTE topic. Users, administrators, and
applications that want log information can subscribe to the status updates on the SYSTEM.FTE
topic.

Figure 1. Main WebSphere MQ FTE components

Deployment topologies
Where are the FTE components described above -- agents and relative queues -- normally
deployed? Generally, each FTE component requires access to a queue manager. The agent and
its queue manager may be hosted on the same server, or the agent may use a WebSphere MQ
client channel to communicate with a remote queue manager. In the simplest case, the users
and agents can all connect to the same queue manager. At the other extreme, the agents and
users may be distributed across the network, with WebSphere MQ routing commands and data
traffic between them. When discussing topologies, it is necessary to distinguish the different nodes
based on their role.

Solution overview
The previous section gave an overview of FTE components to provide a consistent way to refer
to them, independent of any particular platform or deployment configuration. This logical overview
can now be linked to a specific FTE instance, to which additional components are added to create
a complete managed file transfer solution.

Figure 2 below shows a runtime instance of the proposed FTE solution. A client entity requests
a file transfer to be executed by invoking a web service. Then an ESB component (a DataPower
Appliance) acts to map the incoming SOAP request into an XML file transfer request that is
posted on an agent's queue, analogous to an administrator that issues a request for a file transfer
operation. Instead of using the normal tooling, a Web Service invocation is used. Once the
message is physically put on the Agent Command Queue, the file transfer is executed by an
instance of FTE. In order for the ESB to build consistent file transfer commands, it must have

developerWorks® ibm.com/developerWorks/

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 4 of 13

knowledge of the MQ network, including agent and queue names. Service Registry enables the
ESB to constantly get a real-time view of the MQ agents, and queues that might change over time.

Figure 2. Operational model

The FTE network topology is made up of two physical servers, DOPEY and GRUMPY. Each server
with its own queue manager deploying agent and queues. Here is the environment for each of the
two servers that are used to deploy an FTE instance:

DOPEY server

• Platform: Windows 2003 Server
• Queue Manager Name: QM_AgentHost1
• Agent Name: Agent01
• Hostname Listener: Win2k3Base on Port 1415
• Description: Windows® server used as a source for the file transfer demonstration

GRUMPY server

• Platform: Linux
• Queue Manager Name: QM_AgentHost2
• Agent Name: Agent02
• Hostname Listener: ESBdemo2 on Port 1414
• Description: Linux® server used as a destination for the file transfer demonstration

Even though these two agents use different queue managers running on different platforms, the
messages produced when starting the agents are the same. Regardless or where the queue
manager resides, you can send and receive files from any FTE agent to any other. For simplicity,
the Service Registry instance in this solution contains only static metadata describing the FTE
agent and queue name. A new Service Registry SupportPac enables it for automatic discovery of
metadata relating to any FTE instance.

To summarize the main solution components:

ibm.com/developerWorks/ developerWorks®

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 5 of 13

Client
The entity that issues the file transfer request. The communication protocol between client
and application server is based on HTTP.

DataPower
Front-end listener. The service is exposed with a Web services interface, and DataPower
maps the client request into an FTE executable command. DataPower collaborates with
Service Registry to discover the MQ agent's location and then prepare an XML message for
the Command queue. Once the XML message is built, DataPower bridges the request using a
different transport protocol than the incoming HTTP.

Service Registry
Discovers the MQ agent's location and maintains the information to make it available to
DataPower during runtime.

Security server
A user registry and directory that collaborates with DataPower to identify the requester client.
Access management functions (authentication) can be enforced.

Server agents
The two FTE server agents (DOPEY and GRUMPY) are connected in an isolated network,
and they are "on call: to perform the file transfer.

Technical benefits
Here are the architectural "zones" of the solution, including the logical components located on
each layer of the software stack.

Figure 3. Software layer stack

DMZ (demilitarized zone)
A DataPower-managed layer where the service interface is exposed to the requesters. In
other words, DataPower is the front end.

Services zone
Deploys all infrastructure services such as security, access manager, and FTE command
queue, and manages all information required for service management.

Back-end zone
The actual enterprise server farm, with the FTE agent running. In other words, this zone
includes the file repositories. The back-end zone is the most critical one from a security point
of view and is located in the internal security network zone.

developerWorks® ibm.com/developerWorks/

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 6 of 13

The back-end system -- actually the entire FTE instance, as well as the source and destination file
systems -- remain totally isolated and protected. Therefore the Web service requests issued by
the client are managed directly by an ESB. Using DataPower as an ESB enables you to leverage
capabilities that directly reflect gateway peculiarities such as security enforcement, message
enrichment, and mapping. DataPower becomes the single point of entrance to the enterprise
system, and is able to collaborate with all components in the Services zone. DataPower thus
enables reliable file transfer as a service.

Configuration and implementation
Assume there is a file stored on a source file system named c:\file.txt that needs to be copied to a
destination file system with the same name identifier on the path /tmp/file.txt. This basic scenario
simply involves copying a file from DOPEY to GRUMPY using FTE. This section shows you how
to configure an XML firewall on DataPower to listen for SOAP requests that will be mapped to
basic XML FTE commands. Figure 4 shows the flow that must be implemented on DataPower to
construct XML messages to be posted on the FTE command queue of the source agent:

Figure 4. Data elaboration flow for message mapping with DataPower

There is one XML firewall service (XML-FW) configured as a loopback proxy (Figure 4 only
shows the request flow). The proxy deploys a basic policy that consists of a series of steps. It first
calls Service Registry through an XSLT statement that fetches an XML specification containing
the names of the FTE queue managers and agents stored on Service Registry. Once all the
information needed to build an XML file transfer request is gathered, the message is mapped.
Finally, the XML is posted on the command queue of the source agent (DOPEY). From here on,
FTE executes the directives contained into the XML command issued by DataPower.

Message mapping sample
Here is the actual mapping from the SOAP input to the XML format that the FTE destination queue
manager expects to receive to issue the file transfer commands:

Listing 1. Sample of the original SOAP message to be mapped into XML
<soapenv:Envelope
 xmlns:fte="http://fte.pot.ibm.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsse=
 "http://oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/schemas/management">

ibm.com/developerWorks/ developerWorks®

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 7 of 13

 <soapenv:Header>
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>david</wsse:Username>
 <wsse:Password>foobar</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <fte:copy>
 <sourceFilePath>c:\file.txt</sourceFilePath>
 <destinationFilePath>/tmp/file.txt</destinationFilePath>
 </fte:copy>
 </soapenv:Body>
</soapenv:Envelope>

Listing 2. Sample of the mapped XML file containing FTE commands to be
sent to an MQ agent for execution
<request
 xmlns:fte="http://fte.pot.ibm.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:dp="http://www.datapower.com/schemas/management">
 <managedTransfer>
 <originator>
 <hostName>NASA_labs</hostName>
 <userID>SteLuke</userID>
 </originator>
 <sourceAgent agent="DOPEY" QMgr="QM_AGENTHOST1"/>
 <destinationAgent agent="GRUMPY" QMgr="QM_AGENTHOST2"/>
 <transferSet priority="0">
 <item mode="binary" checksumMethod="MD5">
 <source recursive="false" disposition="leave">
 <file>c:\file.txt</file>
 </source>
 <destination type="file" exist="overwrite">
 <file>/tmp/file.txt</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>>

Flow design
This section illustrates the graphical aspect of the flow through the XML firewall described above,
focusing on the request flow from client to server:

Figure 5. Request flow of the DataPower policy

developerWorks® ibm.com/developerWorks/

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 8 of 13

The flow consists of a single rule named CreateXMLreq_rule0, and its steps are described below:

Figure 6. DataPower rule to perform the mapping

1. Fetch from Service Registry -- Before the rule execution begins, the SOAP message is
matched via an HTTP Front Side Handler listening for SOAP requests on DataPower Port
1011. Subsequently, the initial action is an XSLT transform that calls Service Registry to fetch
an XML artifact file containing the definition of the source and destination queue managers,
and the agents of the FTE instance, using an XSLT extension function of DataPower that
makes a SOAP call to Service Registry:
Listing 3. Stylesheet to call Service Registry to fetch an XML artifact: (see
FetchFromWSRR-agentsDescription.xsl)
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
exclude-result-prefixes="dp" extension-element-prefixes="dp">
<xsl:output method="xml"/>
 <!-- Fetching the WS-Policy file directly from Service Registry.
 Use dp:soap-call() to send a message to Service Registry
 and save the response in a result variable. -->
 <xsl:variable name="request-payload">
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap:Header/>
 <soap:Body>
 <p244:retrieve xmlns:p244="http://fte.pot.ibm.com">
 <bsrURI>b5030db5-da87-47ab.be7b.828d3c827b06</bsrURI>
 </p244:retrieve>
 </soap:Body>
 </soap:Envelope>
 </xsl:variable>
 <xsl:template match="/*">
 <!-- Ccontent type = XML, Action = retrieve -->
 <xsl:variable name="httpHeaders">
 <header name="Content-Type">text/xml</header>
 <header name="SOAPAction">retrieve</header>
 </xsl:variable>
 <xsl:variable name="url">
 <wsrrURL name="urlvalue">
 http://wsrrserver:9080/WSRRCoreSDO/services/WSRRCoreSDOPort
 </wsrrURL>
 </xsl:variable>
 <xsl:variable name="resultSOAPcall"
 select="dp:soap-call($url,$request-payload, '',0,'',$httpHeaders)"/>
 <xsl:copy-of select="$resultSOAPcall"/>
 <!-- Setting up the WS-policy value retrieved -->
 <dp:set-variable name="'var://context/myContext/MyFetchedInformation'"
 value="$resultSOAPcall"/>
 </xsl:template>
</xsl:stylesheet>

2. Extract using X-path -- A basic set variable action. Once Service Registry responds, it
returns an XML file containing an attribute named content whose value is the actual artifact

ibm.com/developerWorks/ developerWorks®

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 9 of 13

queried from Service Registry. This attribute is a base-64 encoded string containing both
source and destination agent names with relative queue managers. Assign the DataPower
variable var://context/myContext/MyFetchedInformation the value of this attribute.

3. Decode base-64 encoded string -- XSLT transform step that decodes the cipher value of the
variable var://context/myContext/MyFetchedInformation. Next, the agent and queue managers
names will be there to be used by DataPower to construct the XML command:

Listing 4. Stylesheet to decode the artifact fetched from Service Registry
(see DecodeFetched.xsl)

<?xml version="1.0"?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 exclude-result-prefixes="dp" extension-element-prefixes="dp">
 <xsl:output method="xml"/>
 <!-- Decoding from base64 to plain text string. Will it ever work? hmmmmmm -->
 <xsl:template match="/*">
 <xsl:variable name="EncodedPolicy"
 select="dp:variable('var://context/myContext/MyFetchedInformation')"/>
 <xsl:variable name="DecodedPolicy"
 select="dp:decode($EncodedPolicy,'base-64')"/>
 <xsl:copy-of select="$DecodedPolicy"/>
 <xsl:variable name="DecodedPolicy" select="dp:parse($DecodedPolicy)"/>
 <xsl:copy-of select="$DecodedPolicy"/>
 <dp:set-variable name="'var://context/myContext/MyFetchedInformation'"
 value="$DecodedPolicy"/>
 <!-- Setting up the WS-policy value retrieved -->
 </xsl:template>
</xsl:stylesheet>

4. Create XML message to issue file transfer -- The current action is an xslt transform step
that builds an XML request to transfer the file from source to destination file system. The
XML message to be posed in the FTE command queue is firstly created and put temporarily
into the output context of the current step; subsequently is stored into a DataPower variable
named var://context/myContext/WholeXMLmsg:

Listing 5. Stylesheet to build a proper XML message to be sent for the FTE
command queue. (see MakeAnXMLCommand.xsl)

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:fte="http://fte.pot.ibm.com"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
exclude-result-prefixes="dp" extension-element-prefixes="dp"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<xsl:output method="xml"/>
<xsl:template match="/">
 <xsl:variable name="SourceAgent"
 select="dp:variable('var://context/myContext/MyFetchedInformation')"/>
 <xsl:variable name="SourceAgent"
 select="string($SourceAgent/agents/sourceAgent/@agent)"/>
 <dp:set-variable
 name="'var://context/myContext/sourceAgent'" value="$SourceAgent"/>
 <xsl:variable name="SourceQmgr"
 select="dp:variable('var://context/myContext/MyFetchedInformation')"/>
 <xsl:variable name="SourceQmgr"
 select="string($SourceQmgr/agents/sourceAgent/@QMgr)"/>
 <dp:set-variable name="'var://context/myContext/SourceQmgr'"
 value="$SourceQmgr"/>

developerWorks® ibm.com/developerWorks/

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 10 of 13

 <xsl:variable name="destinationAgent"
 select="dp:variable('var://context/myContext/MyFetchedInformation')"/>
 <xsl:variable name="destinationAgent"
 select="string($destinationAgent/agents/destinationAgent/@agent)"/>
 <dp:set-variable name="'var://context/myContext/destinationAgent'"
 value="$destinationAgent"/>
 <xsl:variable name="destinationQmgr"
 select="dp:variable('var://context/myContext/MyFetchedInformation')"/>
 <xsl:variable name="destinationQmgr"
 select="string($destinationQmgr/agents/destinationAgent/@QMgr)"/>
 <dp:set-variable name="'var://context/myContext/destinationQmgr'"
 value="$destinationQmgr"/>
 <request>
 <managedTransfer>
 <originator>
 <hostName>NASA_labs</hostName>
 <userID>SteLuke</userID>
 </originator>
 <xsl:element name="sourceAgent">
 <xsl:attribute name="agent">
 <xsl:value-of select="$SourceAgent"/></xsl:attribute>
 <xsl:attribute name="QMgr">
 <xsl:value-of select="$SourceQmgr"/></xsl:attribute>
 </xsl:element>
 <xsl:element name="destinationAgent">
 <xsl:attribute name="agent">
 <xsl:value-of select="$destinationAgent"/>
 </xsl:attribute>
 <xsl:attribute name="QMgr">
 <xsl:value-of select="$destinationQmgr"/>
 </xsl:attribute>
 </xsl:element>
 <transferSet priority="0">
 <item mode="binary" checksumMethod="MD5">
 <source recursive="false"
 disposition="leave">
 <file>
 <xsl:value-of
 select="./soapenv:Envelope/
 soapenv:Body/fte:copy/sourceFilePath"/>
 </file>
 </source>
 <destination type="file"
 exist="overwrite">
 <file>
 <xsl:value-of
 select="./soapenv:Envelope/
 soapenv:Body/fte:copy/destinationFilePath"/>
 </file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
 </request>
</xsl:template>
</xsl:stylesheet>

5. Extract using X-path -- A basic set variable action. Assign the DataPower variable var://
context/myContext/WholeXMLmsg the value of the context output of the previous step. Now
you just have to post that message to the FTE command queue.

ibm.com/developerWorks/ developerWorks®

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 11 of 13

Figure 7. Configuration details for the set Var action

6. Post XML message on FTE command queue -- The final step is to read from var://context/
myContext/WholeXMLmsg to put the XML message on the FTE command queue of the
source agent, namely SYSTEM.FTE.COMMAND.DOPEY:
Listing 6. Making an MQ put from DataPower Flow. (see
MakeRealCallandBuidReply.xsl)
<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
exclude-result-prefixes="dp" extension-element-prefixes="dp">
 <xsl:output method="xml"/>
 <!-- We have our own request stored in
 dp:variable('var://context/myContext/WholeXMLmsg') -->
 <xsl:template match="/*">
 <xsl:variable name="request-payload"
 select="dp:variable('var://context/myContext/WholeXMLmsg')"/>
 <!-- Posting a file transfer command request on proper queue -->
 <xsl:variable name="ResultMQcall">
 <dp:url-open
 target="dpmq://MQ-FTE/?RequestQueue=SYSTEM.FTE.COMMAND.DOPEY"
 response="binaryNode" resolve-mode="xml" data-type="xml">
 <xsl:copy-of
 select="dp:variable('var://context/myContext/WholeXMLmsg')"/>
 </dp:url-open>
 </xsl:variable>
 <!-- Building the basic HttpResponse to
 a symbolic XML message to the caller -->
 <xsl:variable name="XMLresponse">
 an XML message requesting a
 filetransfer has been SUCCESFULLY issued to MQ-fte AGENT
 </xsl:variable>
 <xsl:copy-of select="$XMLresponse"/>
 <!-- Initializing a local variable -->
 <dp:set-variable name="'var://context/myContext/MQcall'"
 value="$ResultMQcall"/>
 </xsl:template>
</xsl:stylesheet>

You have finished the exercise by getting the final XML message that will issue a file transfer
command to the FTE system.

Conclusion
Although FTE provides a wide set of tools for the administrator to issue file transfer commands,
most of these are intended for interacting directly with the user. Therefore they are often GUI-
based or require the use of a specific MQ API. When you need an enterprise application to issue
file transfer commands directly to the FTE system, you need a platform-independent interface

developerWorks® ibm.com/developerWorks/

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 12 of 13

that does not require the use of any particular API, and FTE accepting commands through a Web
service interface meets this requirement. This article showed you how to enable the FTE system to
accept file transfer requests on a Web service listener, showed you how to integrate this solution
with Service Registry to obtain a real-time view of the FTE network as it changes over time.

Acknowledgements

The authors would like to thank Pierangelo Giusta of IBM Italy, who collaborated with the authors
on integrating the WebSphere products described in this article.

ibm.com/developerWorks/ developerWorks®

Managed file transfer for SOA: A complete solution using
WebSphere DataPower, WebSphere MQ, and WebSphere
Service Registry and Repository

Page 13 of 13

Downloadable resources

Description Name Size
A set of stylesheets for the DataPower flow Artifacts_xslt.zip 402 KB

© Copyright IBM Corporation 2009
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=406066&filename=Artifacts_xslt.zip&method=http&locale=
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Acronyms used in this article
	Prerequisites

	FTE component architecture
	Deployment topologies

	Solution overview
	Technical benefits

	Configuration and implementation
	Message mapping sample
	Flow design

	Conclusion
	Acknowledgements

	Downloads
	Resources
	Trademarks

