
9.4

Planning for IBM MQ

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
205.

This edition applies to version 9 release 4 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Planning..5
IBM MQ release types: planning considerations.. 6
IBM MQ and IBM MQ Appliance on premises considerations for GDPR readiness................................... 8
Architectures based on a single queue manager..17
Architectures based on multiple queue managers...18

Planning your distributed queues and clusters...19
Planning your distributed publish/subscribe network.. 70

Planning your storage and performance requirements on Multiplatforms..108
Disk space requirements on Multiplatforms... 109
Planning file system support on Multiplatforms... 111
Planning file system support for MFT on Multiplatforms..138
Choosing circular or linear logging on Multiplatforms.. 138
Shared memory on AIX..139
IBM MQ and UNIX System V IPC resources..140
IBM MQ and UNIX Process Priority... 140

Planning your IBM MQ environment on z/OS..140
Planning for your queue manager..141
Planning your channel initiator.. 169
Planning your queue sharing group (QSG).. 174
Planning for backup and recovery... 187
Planning your z/OS UNIX environment..196
Planning for Advanced Message Security on z/OS..196
Planning for Managed File Transfer on z/OS... 197
Planning to use the IBM MQ Console and REST API on z/OS .. 203

Notices..205
Programming interface information..206
Trademarks.. 206

 iii

iv

Planning an IBM MQ architecture

When planning your IBM MQ environment, consider the support that IBM MQ provides for single and
multiple queue manager architectures, and for point-to-point and publish/subscribe messaging styles.
Also plan your resource requirements, and your use of logging and backup facilities.

About this task
Before you plan your IBM MQ architecture, familiarize yourself with the basic IBM MQ concepts. See IBM
MQ Technical overview.

IBM MQ architectures range from simple architectures using a single queue manager, to more complex
networks of interconnected queue managers. Multiple queue managers are connected together using
distributed queuing techniques. For more information about planning single queue manager and multiple
queue manager architectures, see the following topics:

• “Architectures based on a single queue manager” on page 17
• “Architectures based on multiple queue managers” on page 18

– “Planning your distributed queues and clusters” on page 19
– “Planning your distributed publish/subscribe network” on page 70

On IBM MQ for z/OS® you can use shared queues and queue sharing groups to enable you
to implement workload balancing, and your IBM MQ applications to be scalable and highly available.
For information about shared queues and queue sharing groups, see Shared queues and queue sharing
groups.

IBM MQ provides two different release models:

• The Long Term Support (LTS) release is most suitable for systems requiring a long term deployment and
maximum stability.

• The Continuous Delivery (CD) release is intended for systems which need to rapidly exploit the latest
functional enhancements for IBM MQ.

Both release types are installed in the same way, but there are considerations relating to support and
migration which you need to understand. For more information, see IBM MQ release types and versioning.

For information about planning for multiple installations, storage and performance requirements, and use
of clients, see the other subtopics.

Related concepts
IBM MQ release types and versioning
“Planning your IBM MQ environment on z/OS” on page 140
When planning your IBM MQ environment, you must consider the resource requirements for data sets,
page sets, Db2, Coupling Facilities, and the need for logging, and backup facilities. Use this topic to plan
the environment where IBM MQ runs.
Availability, recovery and restart
Related tasks
Checking requirements
Making sure that messages are not lost (logging)

© Copyright IBM Corp. 2007, 2024 5

IBM MQ release types: planning considerations
The two main release types for IBM MQ are Long Term Support (LTS) and a Continuous Delivery (CD).
For each supported platform, the release type you choose affects ordering, installation, maintenance and
migration.

For detailed information about the release types, see IBM MQ release types and versioning.

Considerations for IBM MQ for Multiplatforms

Ordering

Within Passport Advantage® there are two separate eAssemblies for IBM MQ 9.4. One contains
installation images for IBM MQ 9.4.0 Long Term Support release, and the other contains installation
images for IBM MQ 9.4.x Continuous Delivery release. Download installation images from the eAssembly
according to your choice of release.

All IBM MQ versions, and for IBM MQ 9.4 both the LTS releases and CD releases, belong to the same
Product Id.

Entitlement to use IBM MQ extends across the entire product (PID), subject to the constraints of licensed
components and pricing metrics. This means that you can choose freely between LTS release and CD
release installation images for IBM MQ 9.4.

Installation

After you download an installation image from Passport Advantage, you should select for installation only
the components for which you have purchased entitlement. See IBM MQ license information for further
information about which installable components are included for each chargeable component.

You can install IBM MQ 9.4.0 LTS release and IBM MQ 9.4.x CD release on the same operating system
image. If you do this, the components appear as separate installations, as supported by IBM MQ multi-
version support. Each version has distinct sets of queue managers associated with that version.

Each new CD release is provided as an installation image. The new CD release can be installed alongside
an existing release, or, an earlier CD release can be updated in place by the installer to the new release.

CD releases contain functional enhancements as well as the latest set of defect fixes and security
updates. Each CD release is cumulative, and wholly replaces all prior ones for that version of IBM MQ. So
you can skip a specific CD release if it does not contain any function that is relevant for your enterprise.

Maintenance

The LTS release is serviced by the application of fix packs, which provide defect fixes, and cumulative
security updates (CSUs), which provide security patches. The fix packs and CSUs are made available
periodically and are cumulative.

For CD, CSUs are produced for the latest CD release only, which might be on a subsequent version.

You might occasionally be directed by the IBM Support team to apply an interim fix. Interim fixes are also
known as emergency or test fixes, and are used to apply urgent updates that cannot wait for the next
maintenance delivery.

Migration between LTS release and CD release

There are constraints and limitations but, generally, a single queue manager can be migrated from using
LTS release code to CD release code, or from using CD release code to LTS release code, provided that the
target release is higher than that in use prior to the migration.

Two approaches are possible:

• Install the new release of code in place so that an existing installation of IBM MQ is updated. Any queue
managers associated with the installation use the new release of code when started.

• Install the new release of code as a new installation, then move individual queue manager instances to
the new installation using the setmqm command.

6 Planning for IBM MQ

When a queue manager starts running a CD release of code, the queue manager command level is
updated to indicate the new release level. This means any new functions provided in the release are
enabled, and you can no longer restart the queue manager using a code release with a lower VRM number.

Considerations for IBM MQ for z/OS

Ordering

When ordering IBM MQ for z/OS 9.4, two separate features are offered on ShopZ. The features
correspond to the LTS release and the CD release. Both features are applicable to the same product
ID (PID). It is the product ID that is licensed, so where one feature is licensed, there is entitlement to use
the alternative feature if required. When ordering, you select the feature corresponding with either the
LTS release or CD release.

If you are selecting products for inclusion in a ServerPac, you cannot choose both the LTS release and
CD release in the same ServerPac order, because the products cannot be installed by SMP/E in the same
target zone.

Installation

The LTS and CD releases are provided in separate sets of FMIDs. Note that these FMIDs cannot be
installed in the same SMP/E target zone. If you need both the LTS and CD releases:

• Install the LTS release and CD release in separate target zones.
• Maintain separate target and distribution libraries for the two releases.

If your queue manger is in a queue sharing group, when you upgrade to the latest CD version you must
upgrade all queue managers in the group.

The command level of a queue manager is the three-digit VRM level. An IBM MQ program can call
MQINQ, passing the MQIA_COMMAND_LEVEL selector, to get the command level of the queue manager it is
connected to.

Because the releases use different FMIDs, you cannot update a CD release with maintenance for an LTS
release or the other way round. Similarly, there is no way to switch a version of the product code from an
LTS release to a CD release or the other way round. However, you can switch a queue manager between
the release models. See Migration between LTS release and CD release.

Note:

The IBM MQ 9.0.x and IBM MQ 9.1.x CD releases had separate version and release dependent FMIDs. So
moving from 9.0.x CD to 9.1.x CD required at least one complete SMP/E install.

From IBM MQ for z/OS 9.2.0, the CD release uses a set of FMIDs that remain the same for all IBM MQ for
z/OS releases with a version number of 9. Because each new version of IBM MQ is available as both a CD
and an LTS release, you can upgrade CD releases by applying PTFs to a single SMP/E install even when
crossing a major version boundary. For example, you can go from IBM MQ for z/OS 9.2.0 CD, to IBM MQ
for z/OS 9.2.2 CD, to IBM MQ for z/OS 9.2.4 CD, to IBM MQ for z/OS 9.3.0 CD, just by applying PTFs.

You can distinguish between an LTS and CD release with the same VRM level by looking at the CSQY000I
message in the queue manager job log.

Maintenance

IBM MQ for z/OS uses PTFs for Maintenance.

PTFs are specific to a particular set of libraries corresponding to specific release level. For
UNIX System Services features (that is, JMS and WEB UI, Connector Pack, and Managed File Transfer) the
z/OS PTFs are aligned directly with the Multiplatforms fix packs and cumulative security updates (CSUs).
These fixes are cumulative, and are made available at the same time as the equivalent Multiplatforms fix
pack or CSU.

Planning an IBM MQ architecture 7

CD CSUs are not usually made available between CD releases, but are included in the next
IBM MQ for z/OS CD release. You can also contact support to request a ++USERMOD.

Other fixes on IBM MQ for z/OS are distinct fixes on particular parts. These fixes resolve specific issues,
are not cumulative, and are made available as and when they are produced.

Migration between LTS release and CD release

There are constraints and limitations, but generally a single queue manager can be migrated from using
LTS release code to CD release code or from using CD release code to LTS release code provided that the
target release is higher than that in use prior to the migration.

From IBM MQ for z/OS 9.2.0, you can migrate back and forth between CD and LTS releases with the same
VRM as many times as needed, and without impact on the ability to backwards migrate. For example, a
queue manager can be started up at IBM MQ for z/OS 9.3.0 LTS, then shut down and started up at IBM
MQ for z/OS 9.3.0 CD, then shut down and started up at IBM MQ for z/OS 9.3.0 LTS.

IBM MQ for z/OS has traditionally provided a fallback capability (backward migration) so that after a
period of running following a migration you can fall back to the prior release. This capability is retained
for LTS releases, and those CD releases with a modifier of 0 such as 9.3.0 CD, but is not possible when
the source or target of a migration is a CD release with a non-zero modifier number, for example, 9.2.5 or
9.3.1.

The following are valid migration scenarios, and illustrate how this principle works:

Source release Destination release Notes

9.1.0 LTS 9.4.0 LTS or 9.4.0 CD Backwards migration not
supported as 9.1.0 LTS is out of
standard support.

9.2.0 LTS 9.4.0 LTS or 9.4.0 CD Backwards migration supported.

9.3.0 LTS 9.4.0 LTS or 9.4.0 CD Backwards migration supported.

9.3.5 CD 9.4.0 LTS or 9.4.0 CD Backwards migration not
supported as source release is
CD with a non-zero modifier.

9.4.0 LTS or 9.4.0 CD 9.4.1 CD Backwards migration not
supported as destination release
is CD with a non-zero modifier.

Write to operator with
reply CSQY041D is issued to
confirm migration.

Related tasks

Applying and removing maintenance on z/OS
Related information
Downloading IBM MQ 9.4

IBM MQ and IBM MQ Appliance on premises considerations for
GDPR readiness

For PID(s):
Distributed

• IBM MQ/IBM MQ Advanced - 5724-H72
• IBM MQ for HPE NonStop - 5724-A39

8 Planning for IBM MQ

https://www.ibm.com/support/pages/downloading-ibm-mq-94

z/OS

• IBM MQ for z/OS - 5655-MQ9
• IBM MQ for z/OS Value Unit Edition - 5655-VU9
• IBM MQ Advanced for z/OS - 5655-AV9
• IBM MQ Advanced for z/OS Value Unit Edition - 5655-AV1

IBM MQ Appliance

• IBM MQ Appliance M2003 - 5900-ALJ
• IBM MQ Appliance M2002 - 5737-H47

Notice:
This document is intended to help you in your preparations for GDPR readiness. It provides information
about features of IBM MQ that you can configure, and aspects of the product's use, that you should
consider to help your organization with GDPR readiness. This information is not an exhaustive list, due
to the many ways that clients can choose and configure features, and the large variety of ways that the
product can be used in itself and with third-party applications and systems.

Clients are responsible for ensuring their own compliance with various laws and regulations,
including the European Union General Data Protection Regulation. Clients are solely responsible
for obtaining advice of competent legal counsel as to the identification and interpretation of any
relevant laws and regulations that may affect the clients' business and any actions the clients may
need to take to comply with such laws and regulations.

The products, services, and other capabilities described herein are not suitable for all client
situations and may have restricted availability. IBM does not provide legal, accounting, or auditing
advice or represent or warrant that its services or products will ensure that clients are in compliance
with any law or regulation.

Table of Contents
1. GDPR
2. Product Configuration for GDPR
3. Data Life Cycle
4. Data Collection
5. Data Storage
6. Data Access
7. Data Processing
8. Data Deletion
9. Data Monitoring

10. Capability for Restricting Use of Personal Data
11. File handling

GDPR
General Data Protection Regulation (GDPR) has been adopted by the European Union ("EU") and applies
from May 25, 2018.

Why is GDPR important?

GDPR establishes a stronger data protection regulatory framework for processing of personal data of
individuals. GDPR brings:

• New and enhanced rights for individuals
• Widened definition of personal data

Planning an IBM MQ architecture 9

• New obligations for processors
• Potential for significant financial penalties for non-compliance
• Compulsory data breach notification

Read more about GDPR:

• EU GDPR Information Portal
• ibm.com/GDPR website

Product Configuration - considerations for GDPR Readiness
The following sections provide considerations for configuring IBM MQ to help your organization with GDPR
readiness.

Data Life Cycle
IBM MQ is a transactional message oriented middleware product that enables applications to
asynchronously exchange application provided data. IBM MQ supports a range of messaging APIs,
protocols and bridges for the purpose of connecting applications. As such, IBM MQ may be used to
exchange many forms of data, some of which could potentially be subject to GDPR. There are several
third-party products with which IBM MQ might exchange data. Some of these are IBM-owned, but
many others are provided by other technology suppliers. The Software Product Compatibility Reports
website provides lists of the associated software. For considerations regarding the GDPR readiness of
a third-party product, you should consult that product's documentation. IBM MQ administrators control
the way in which IBM MQ interacts with data passing through it, by the definition of queues, topics and
subscriptions.

What types of data flow through IBM MQ?

As IBM MQ provides asynchronous messaging service for application data, there is no one definitive
answer to this question because use cases vary through application deployment. Application message
data is persisted in queue files (page sets or the Coupling Facility on z/OS), logs and archives and the
message may itself contain data that is governed by GDPR. Application provided message data may also
be included in files collected for problem determination purposes such as error logs, trace files and FFSTs.
On z/OS application provided message data may also be included in address space or Coupling Facility
dumps.

The following are some typical examples of personal data that may be exchanged using IBM MQ:

• Employees of the customer (for example; IBM MQ might be used to connect the customer's payroll or
HR systems)

• The customer's own clients' personal data (for example; IBM MQ might be used by a customer to
exchange data between applications that relates to their clients, such as taking sales leads and storing
data inside their CRM system).

• The customer's own clients' sensitive personal data (for example; IBM MQ might be used within
industry contexts that require personal data to be exchanged, such as HL7-based healthcare records
when integrating clinical applications).

In addition to application provided message data, IBM MQ processes the following types of data:

• Authentication Credentials (such as username and passwords, API keys, etc.)
• Technically Identifiable Personal Information (such as device IDs, usage based identifiers, IP address,

etc. - when linked to an individual)

Personal data used for online contact with IBM

IBM MQ clients can submit online comments/feedback/requests to contact IBM about IBM MQ subjects
in a variety of ways, primarily:

• Public comments area on pages in the IBM MQ area on IBM Developer
• Public comments area on pages of IBM MQ product information in IBM Documentation

10 Planning for IBM MQ

https://www.eugdpr.org/
https://www.ibm.com/data-responsibility/gdpr/
https://www.ibm.com/software/reports/compatibility/clarity/softwareReqsForProduct.html
https://www.ibm.com/software/reports/compatibility/clarity/softwareReqsForProduct.html
https://developer.ibm.com/components/ibm-mq/
https://www.ibm.com/docs/en/ibm-mq/9.4

• Public comments in the IBM Support Forums
• Public comments in IBM Integration Ideas

Typically, only the client name and email address are used, to enable personal replies for the subject of
the contact, and the use of personal data conforms to the IBM Online Privacy Statement.

Data Collection
IBM MQ can be used to collect personal data. When assessing your use of IBM MQ and your needs
to meet with the demands of GDPR, you should consider the types of personal data which in your
circumstances are passing through IBM MQ. You may wish to consider aspects such as:

• How does data arrive into your queue managers? (Across which protocols? Is the data encrypted? Is the
data signed?)

• How is data sent out from your queue managers? (Across which protocols? Is the data encrypted? Is the
data signed?)

• How is data stored as it passes through a queue manager? (Any messaging application has the potential
to write message data to stateful media, even if a message is non-persistent. Are you aware of how
messaging features could potentially expose aspects of the application message data passing through
the product?)

• How are credentials collected and stored where needed by IBM MQ to access third-party applications?

IBM MQ may need to communicate with other systems and services which require authentication, for
example LDAP. Where needed, authentication data (userids, passwords) is configured and stored by IBM
MQ for its use in such communications. Wherever possible, you should avoid using personal credentials
for IBM MQ authentication. Consider the protection of the storage used for authentication data. (See Data
Storage below.)

Data Storage
When message data travels through queue managers, IBM MQ will persist (perhaps multiple copies of)
that data directly to stateful media. IBM MQ users may want to consider securing message data whilst it is
at rest.

The following items highlight areas where IBM MQ persists application provided data, which users may
wish to consider when ensuring compliance with GDPR.

• Application Message Queues:

IBM MQ provides message queues to allow asynchronous data exchange between applications. Non-
persistent and persistent messages stored on a queue are written to stateful media.

• File Transfer Agent Queues:

IBM MQ Managed File Transfer utilizes message queues to co-ordinate the reliable transfer of file data,
files that contain personal data and records of transfers are stored on these queues.

• Transmission Queues:

To transfer messages reliably between queue managers, messages are stored temporarily on
transmission queues.

• Dead-Letter Queues:

There are some circumstances in which messages cannot be put to a destination queue and are stored
on a dead-letter queue, if such a queue is configured on the queue manager.

• Backout Queues:

JMS and XMS messaging interfaces provide a capability that allows poison messages to be moved
to a backout queue after a number of backouts have occurred to allow other valid messages to be
processed.

• AMS Error Queue:

Planning an IBM MQ architecture 11

https://www.ibm.com/mysupport/s/forumshome
https://integration-development.ideas.ibm.com/
https://www.ibm.com/trust/privacy

IBM MQ Advanced Message Security will move messages that don't comply with a security policy to the
SYSTEM.PROTECTION.ERROR.QUEUE error queue in a similar way to dead-letter queuing.

• Retained Publications:

IBM MQ provides a retained publication feature to allow subscribing applications to recall a previous
publication.

• Deferred Delivery:

IBM MQ supports the JMS 2.0 and Jakarta Messaging 3.0 delivery delay feature that enables messages
to be delivered to their destination at a future time. Messages that have not yet been delivered are
stored on the SYSTEM.DDELAY.LOCAL.QUEUE queue.

Read more:

• Logging: Making sure that messages are not lost
• MFT Agent queue settings
• Using the dead-letter queue
• Handling poison messages in IBM MQ classes for JMS
• AMS error handling
• Retained publications
• JMS 2.0 delivery delay

The following items highlight areas where IBM MQ may indirectly persist application provided data which
users may also wish to consider when ensuring compliance with GDPR.

• Trace route messaging:

IBM MQ provides trace route capabilities, which record the route a message takes between
applications. The event messages generated may include technically identifiable personal information
such as IP addresses.

• Application activity trace:

IBM MQ provides application activity trace, which record the messaging API activities of applications
and channels, application activity trace can record the contents of application provided message data to
event messages.

• Service trace:

IBM MQ provides service trace features, which records the internal code paths through which message
data flows. As part of these features, IBM MQ can record the contents of application provided message
data to trace files stored on disk.

• Queue manager events:

IBM MQ can generate event messages that could include personal data, such as authority, command
and configuration events.

Read more:

• Trace-route messaging
• Using trace
• Event monitoring
• Queue manager events

To protect access to copies of the application provided message data consider the following actions:

• Restrict privileged user access to IBM MQ data in the filesystem, for example restricting user
membership of the 'mqm' group on UNIX and Linux® platforms.

• Restrict application access to IBM MQ data via dedicated queues and access control. Where appropriate
avoid unnecessary sharing of resources such as queues between applications and provide granular
access control to queue and topic resources.

12 Planning for IBM MQ

https://www.ibm.com/docs/SSFKSJ_9.4.0/configure/q018410_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/refconfig/agent_queue_config.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/develop/q029180_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/develop/q032280_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/secure/q014595_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/techoview/q004940_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/develop/q119200_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/monitor/q036690_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/troubleshoot/q039590_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/monitor/q036150_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/monitor/q036180_.html

• Restrict access to replicated copies of IBM MQ data in high availability (HA) or disaster recovery (DR)
configurations, and secure the connections used for replication.

• Use IBM MQ Advanced Message Security to provide end-to-end signing and/or encryption of message
data.

• Use file- or volume-level encryption to protect directories or filesystems that might contain IBM MQ
data, trace or logs.

• After uploading service trace to IBM, you can delete your service trace files and FFST data if you are
concerned about the contents potentially containing personal data.

Read more:

• Privileged users
• Planning file system support on Multiplatforms
• File system encryption on the IBM MQ Appliance

An IBM MQ administrator may configure a queue manager with credentials (username and password, API
keys, etc.) for third-party services such as LDAP. This data is generally stored in the queue manager data
directory protected through file system permissions.

When an IBM MQ queue manager is created, the data directory is set up with group-based access control
such that IBM MQ can read the configuration files and use the credentials to connect to these systems.
IBM MQ administrators are considered privileged users and are members of this group so have read
access to the files. Some files are obfuscated but they are not encrypted. For this reason, to fully protect
access to credentials, you should consider the following actions:

• Restrict privileged user access to IBM MQ data, for example restricting membership of the 'mqm' group
on UNIX and Linux platforms.

• Use file- or volume-level encryption to protect the contents of the queue manager data directory.
• Encrypt backups of the production configuration directory and store them with appropriate access

controls.
• Consider providing audit trails for authentication failure, access control and configuration changes with

security, command and configuration events.

Read more:

• Securing IBM MQ

Data Access
IBM MQ queue manager data can be accessed through the following product interfaces, some of which
are designed for access through a remote connection, and others for access through a local connection.

• IBM MQ Console [Only Remote]
• IBM MQ Administrative REST API [Only Remote]
• IBM MQ Messaging REST API [Only Remote]
• MQI [Local and Remote]
• JMS [Local and Remote]
• XMS [Local and Remote]
• IBM MQ Telemetry (MQTT) [Only Remote]
• IBM MQ Light (AMQP) [Only Remote]
• IBM MQ IMS bridge [Only Local]
• IBM MQ CICS bridge [Only Local]
• IBM MQ MFT Protocol bridges [Only Remote]
• IBM MQ Connect:Direct bridges [Only Remote]
• IBM MQ MQAI [Local and Remote]

Planning an IBM MQ architecture 13

https://www.ibm.com/docs/SSFKSJ_9.4.0/secure/q013300_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/plan/q005800_.html
https://www.ibm.com/docs/SS5K6E_9.4.0/mqa/security/encryption.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/secure/q009710_.html

• IBM MQ PCF commands [Local and Remote]
• IBM MQ MQSC commands [Local and Remote]
• IBM MQ Explorer [Local and Remote]
• IBM MQ User Exits [Only Local]
• IBM MQ Internet Pass-Thru [Only Remote]
• Red Hat® OpenShift® Monitoring (Prometheus) metrics (the metrics are numerical data about queue

manager statistics)
• IBM MQ Appliance Serial Console [Only Local]
• IBM MQ Appliance SSH [Only Remote]
• IBM MQ Appliance REST API [Only Remote]
• IBM MQ Appliance Web UI [Only Remote]

• IBM MQ Kafka Connectors (Kafka Connect) [Local and Remote]

The interfaces are designed to allow users to make changes to an IBM MQ queue manager and messages
stored on it. Administration and messaging operations are secured such that there are three stages
involved when a request is made;

• Authentication
• Role mapping
• Authorization

Authentication:

If the message or administrative operation was requested from a local connection, the source of this
connection is a running process on the same system. The user running the process must have passed any
authentication steps provided by the operating system. The user name of the owner of the process from
which the connection was made is asserted as the identity. For example, this could be the name of the
user running the shell from which an application has been started. The possible forms of authentication
for local connections are:

1. Asserted user name (local OS)
2. Optional username and password (OS, LDAP or custom 3rd party repositories)
3. Security Token (JWT) IBM MQ only

If the administrative action was requested from a remote connection, then communications with IBM
MQ are made through a network interface. The following forms of identity may be presented for
authentication via network connections;

1. Asserted user name (from remote OS)
2. Username and password (OS, LDAP or custom 3rd party repositories)
3. Source network address (such as IP address)
4. X.509 Digital Certificate (mutual SSL/TLS authentication)
5. Security tokens (such as LTPA2 token or JWT token)
6. Other custom security (capability provided by 3rd party exits)
7. SSH keys

IBM MQ's integration with IBM Cloud Pak® for Integration adds a new authentication type for the IBM MQ
Console: Single Sign-On with the Cloud Pak. (CP4I only)

Role mapping:

In the role mapping stage, the credentials that were provided in the authentication stage may be mapped
to an alternate user identifier. Provided the mapped user identifier is permitted to proceed (for example
administrative users may be blocked by channel authentication rules), then the mapped user id is carried
forward into the final stage when authorizing activities against IBM MQ resources.

14 Planning for IBM MQ

Authorization:

IBM MQ provides the ability for different users to have different authorities against different messaging
resources such as queues, topics and other queue manager objects.

Logging activity:

Some users of IBM MQ may need to create an audit record of access to MQ resources. Examples of
desirable audit logs might include configuration changes that contain information about the change in
addition to who requested it.

The following sources of information are available to implement this requirement:

1. An IBM MQ queue manager can be configured to produce command events when an admin command
has been run successfully.

2. An IBM MQ queue manager can be configured to produce configuration events when a queue manager
resource is created, altered or deleted.

3. An IBM MQ queue manager can be configured to produce an authority event when an authorization
check fails for a resource.

4. Error messages indicating failed authorization checks are written to the queue manager error logs.
5. The IBM MQ Console will write audit messages to its logs when authentication, authorization checks

fail or when queue managers are created, started, stopped or deleted.
6. The IBM MQ Appliance will write audit messages to its logs to record user log ins and system changes.

When considering these kind of solutions, IBM MQ users might want to give consideration to the following
points:

• Event messages are non-persistent so when a queue manager restarts the information is lost. Any event
monitors should be configured to constantly consume any available messages and transfer the content
to persistent media.

• IBM MQ privileged users have sufficient privileges to disabled events, clear logs or delete queue
managers.

For more information about securing access to IBM MQ data and providing an audit trail refer to the
following topics:

• IBM MQ security mechanisms
• Configuration events
• Command events
• Using error logs

Data Processing
Encryption using a Public Key Infrastructure:

You can secure network connections to IBM MQ by specifying that the connections use TLS, which can
also provide mutual authentication of the initiating side of the connection.

Using the PKI security facilities that are provided by transport mechanisms is the first step towards
securing data processing with IBM MQ. However, without enabling further security features, the behavior
of a consuming application is to process all messages delivered to it without validating the origin of the
message or whether it was altered whilst in transit.

Users of IBM MQ that are licensed to use Advanced Message Security (AMS) capabilities can control
the way in which applications process personal data held in messages, through the definition and
configuration of security policies. Security policies allow digital signing and/or encryption to be applied to
message data between applications.

It is possible to use security policies to require and validate a digital signature when consuming messages
to ensure messages are authentic. AMS encryption provides a method by which message data is

Planning an IBM MQ architecture 15

https://www.ibm.com/docs/SSFKSJ_9.4.0/secure/q010000_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/monitor/q036480_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/monitor/q036220_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/troubleshoot/q039550_.html

converted from a readable form to an encoded version that can only be decoded by another application if
it is the intended recipient or the message and has access to the correct decryption key.

For more information about using SSL and certificates to secure your network connections, refer to the
following topics in the IBM MQ product documentation:

• Configuring TLS security for IBM MQ
• AMS Overview

Data Deletion
IBM MQ provides commands and user interface actions to delete data that has been supplied to the
product. This means that users of IBM MQ can delete data that relates to particular individuals, should
this be required.

• Areas of IBM MQ behavior to consider for complying with GDPR Client Data deletion

– Delete message data stored on an application queue by:

- Removing individual messages using messaging API or tooling or by using message expiry.
- Specifying that messages are non-persistent, held on a queue where non-persistent message class

is normal and restarting the queue manager.
- Administratively clearing the queue.
- Deleting the queue.

– Delete retained publication data stored on a topic by:

- Specifying that messages are non-persistent and restarting the queue manager.
- Replacing the retained data with new data or by using message expiry.
- Administratively clearing the topic string.

– Delete data stored on a queue manager by deleting the whole queue manager and any replicated
copies for high availability or disaster recovery.

– Delete data stored by the Service trace commands by deleting the files in the trace directory.
– Delete FFST data stored by deleting the files in the errors directory.
– Delete address space and Coupling Facility dumps (on z/OS).
– Delete archive, backup or other copies of such data.

• Areas of IBM MQ behavior to consider for complying with GDPR Account Data deletion

– You can delete account data and preferences stored by IBM MQ for connecting to queue managers
and 3rd party services by deleting (including archive, backup or otherwise replicated copies thereof):

- Queue manager authentication information objects that store credentials.
- Queue manager authority records that reference user identifiers.
- Queue manager channel authentication rules that map or block specific IP addresses, certificate

DN's or user identifiers.
- Credentials files used by IBM MQ Managed File Transfer Agent, Logger and MQ Explorer MFT Plugin

for authentication with queue manager and file servers.
- X.509 digital certificates that represent or contain information about an individual from keystores

which may be used by SSL/TLS connections or IBM MQ Advanced Message Security (AMS).
- Individual user accounts from IBM MQ Appliance, including reference to those accounts in system

log files.
- IBM MQ Explorer workspace metadata and Eclipse settings.
- IBM MQ Explorer password store as specified in the Password Preferences.
- IBM MQ Console and mqweb server configuration files.
- IBM MQ Internet Pass-Thru configuration files and keystores.

16 Planning for IBM MQ

https://www.ibm.com/docs/SSFKSJ_9.4.0/explorer/e_ssl_security.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/secure/q014590_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/explorer/e_password_pref.html

Read more:

• MFT and IBM MQ connection authentication
• Mapping credentials for a file server by using the ProtocolBridgeCredentials.xml file
• Configuring IBM MQ Console users and roles

Data Monitoring
IBM MQ provides a range of monitoring features that users can exploit to gain a better understanding of
how applications and queue managers are performing.

IBM MQ also provides a number a features that help manage queue manager error logs.

Read more:

• Monitoring your IBM MQ network
• Diagnostic message services
• QMErrorLog service
• IBM MQ Appliance monitoring and reporting

Capability for Restricting Use of Personal Data
Using the facilities summarized in this document, IBM MQ enables an end-user to restrict usage of their
personal data.

IBM MQ message queues should not be used as a permanent data store in the same way as a database,
which is particularly true when handling application data that is subject to GDPR.

Unlike a database where data may be found through a search query, it can be difficult to find message
data unless you know the queue, message and correlation identifiers of a message.

Provided messages containing an individual's data can be readily identified and located, it is possible
using standard IBM MQ messaging features to access or modify message data.

File handling
1. IBM MQ Managed File Transfer does not perform malware scanning on files transferred. Files are

transferred as-is and an integrity check is performed to ensure the file data is not modified during
transfer. The source and destination checksums are published as part of transfer status publication.
It is recommended that end users implement malware scanning as appropriate for their environment
before MFT transfers the file and after MFT delivers a file to a remote end point.

2. IBM MQ Managed File Transfer does not take actions based on MIME type or file extension. MFT reads
the files and transfers the bytes exactly as read from the input file.

Architectures based on a single queue manager
The simplest IBM MQ architectures involve the configuration and use of a single queue manager.

Before you plan your IBM MQ architecture, familiarize yourself with the basic IBM MQ concepts. See IBM
MQ Technical overview.

A number of possible architectures using a single queue manager are described in the following sections:

• “Single queue manager with local applications accessing a service” on page 18
• “Single queue manager with remote applications accessing a service as clients” on page 18
• “Single queue manager with a publish/subscribe configuration” on page 18

Planning an IBM MQ architecture 17

https://www.ibm.com/docs/SSFKSJ_9.4.0/secure/wmqfte_security.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/administer/protocol_bridge_credentials_file.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/secure/q127970_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/monitor/q036140_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/configure/q018795_.html
https://www.ibm.com/docs/SSFKSJ_9.4.0/configure/q130440_.html
https://www.ibm.com/docs/SS5K6E_9.4.0/mqa/monitoring/mo00000_.html

Single queue manager with local applications accessing a service
The first architecture based on a single queue manager is where the applications accessing a service
are running on the same system as the applications providing the service. An IBM MQ queue manager
provides asynchronous intercommunication between the applications requesting the service and the
applications providing the service. This means that communication between the applications can continue
even if one of the applications is offline for an extended period of time.

Single queue manager with remote applications accessing a service as clients
The second architecture based on a single queue manager has the applications running remotely from
the applications providing the service. The remote applications are running on different systems to the
services. The applications connect as clients to the single queue manager. This means that access to a
service can be provided to multiple systems through a single queue manager.

A limitation of this architecture is that a network connection must be available for an application to
operate. The interaction between the application and the queue manager over the network connection is
synchronous.

Single queue manager with a publish/subscribe configuration
An alternative architecture using a single queue manager is to use a publish/subscribe configuration.
In publish/subscribe messaging, you can decouple the provider of information from the consumers
of that information. This differs from the point to point messaging styles in the previously described
architectures, where the applications must know information about the target application, for example
the queue name to put messages on. Using IBM MQ publish/subscribe the sending application publishes
a message with a specified topic based on the subject of the information. IBM MQ handles the distribution
of the message to applications that have registered an interest in that subject through a subscription. The
receiving applications also do not need to know anything about the source of the messages to receive
them. For more information, see Publish/subscribe messaging and Example of a single queue manager
publish/subscribe configuration.

Related concepts
Introduction to IBM MQ
Related tasks
“Planning an IBM MQ architecture” on page 5
When planning your IBM MQ environment, consider the support that IBM MQ provides for single and
multiple queue manager architectures, and for point-to-point and publish/subscribe messaging styles.
Also plan your resource requirements, and your use of logging and backup facilities.
Creating and managing queue managers on Multiplatforms

Architectures based on multiple queue managers
You can use distributed message queuing techniques to create an IBM MQ architecture involving the
configuration and use of multiple queue managers.

Before you plan your IBM MQ architecture, familiarize yourself with the basic IBM MQ concepts. See IBM
MQ Technical overview.

An IBM MQ architecture can be changed, without alteration to applications that provide services, by
adding additional queue managers.

Applications can be hosted on the same machine as a queue manager, and then gain asynchronous
communication with a service hosted on another queue manager on another system. Alternatively,
applications accessing a service can connect as clients to a queue manager that then provides
asynchronous access to the service on another queue manager.

Routes that connect different queue managers and their queues are defined using distributed queuing
techniques. The queue managers within the architecture are connected using channels. Channels are

18 Planning for IBM MQ

used to move messages automatically from one queue manager to another in one direction depending on
the configuration of the queue managers.

For a high level overview of planning an IBM MQ network, see “Designing distributed queue manager
networks” on page 20.

For information about how to plan channels for your IBM MQ architecture, see IBM MQ distributed
queuing techniques.

Distributed queue management enables you to create and monitor the communication between queue
managers. For more information about distributed queue management, see Introduction to distributed
queue management.

Related tasks
“Planning an IBM MQ architecture” on page 5
When planning your IBM MQ environment, consider the support that IBM MQ provides for single and
multiple queue manager architectures, and for point-to-point and publish/subscribe messaging styles.
Also plan your resource requirements, and your use of logging and backup facilities.
Creating and managing queue managers on Multiplatforms

Planning your distributed queues and clusters
You can manually connect queues hosted on distributed queue managers, or you can create a queue
manager cluster and let the product connect the queue managers for you. To choose a suitable topology
for your distributed messaging network, you need to consider your requirements for manual control,
network size, frequency of change, availability and scalability.

Before you begin
This task assumes that you understand what distributed messaging networks are, and how they work. For
a technical overview, see Distributed queuing and clusters.

About this task
To create a distributed messaging network, you can manually configure channels to connect queues
hosted on different queue managers, or you can create a queue manager cluster. Clustering enables
queue managers to communicate with each other without the need to set up extra channel definitions or
remote queue definitions, simplifying their configuration and management.

To choose a suitable topology for your distributed publish/subscribe network, you need to consider the
following broad questions:

• How much manual control do you need over the connections in your network?
• How big will your network be?
• How dynamic will it be?
• What are your availability and scalability requirements?

Procedure
• Consider how much manual control you need over the connections in your network.

If you only need a few connections, or if individual connections need to be very precisely defined, you
should probably create the network manually.

If you need multiple queue managers that are logically related, and that need to share data and
applications, you should consider grouping them together in a queue manager cluster.

• Estimate how big your network needs to be.
a) Estimate how many queue managers you need. Bear in mind that queues can be hosted on more

than one queue manager.
b) If you are considering using a cluster, add two extra queue managers to act as full repositories.

Planning an IBM MQ architecture 19

For larger networks, manual configuration and maintenance of connections can be very time
consuming, and you should consider using a cluster.

• Consider how dynamic the network activity will be.

Plan for busy queues to be hosted on performant queue managers.

If you expect queues to be frequently created and deleted, consider using a cluster.
• Consider your availability and scalability requirements.

a) Decide whether you need to guarantee high availability of queue managers. If so, estimate how
many queue managers this requirement applies to.

b) Consider whether some of your queue managers are less capable than others.
c) Consider whether the communication links to some of your queue managers are more fragile than

to others.
d) Consider hosting queues on multiple queue managers.

Manually configured networks and clusters can both be configured to be highly available and scalable.
If you use a cluster, you need to define two extra queue managers as full repositories. Having two
full repositories ensures that the cluster continues to operate if one of the full repositories becomes
unavailable. Make sure that the full repository queue managers are robust, performant, and have good
network connectivity. Do not plan to use the full repository queue managers for any other work.

• Based on these calculations, use the links provided to help you decide whether to manually configure
connections between queue managers, or to use a cluster.

What to do next
You are now ready to configure your distributed messaging network.
Related tasks
Configuring distributed queuing
Configuring a queue manager cluster

Designing distributed queue manager networks
IBM MQ sends and receives data between applications, and over networks using Queue Managers and
Channels. Network planning involves defining requirements to create a framework for connecting these
systems over a network.

Channels can be created between your system and any other system with which you need to have
communications. Multi-hop channels can be created to connect to systems where you have no direct
connections. The message channel connections described in the scenarios are shown as a network
diagram in Figure 1 on page 21.

If you need to create channels between systems on different physical networks, or channels that
communicate through a firewall, using IBM MQ Internet Pass-Thru might simplify the configuration. For
more information, see IBM MQ Internet Pass-Thru.

Channel and transmission queue names
Transmission queues can be given any name. But to avoid confusion, you can give them the same names
as the destination queue manager names, or queue manager alias names, as appropriate. This associates
the transmission queue with the route they use, giving a clear overview of parallel routes created through
intermediate (multi-hopped) queue managers.

It is not so clear-cut for channel names. The channel names in Figure 1 on page 21 for QM2, for
example, must be different for incoming and outgoing channels. All channel names can still contain their
transmission queue names, but they must be qualified to make them unique.

For example, at QM2, there is a QM3 channel coming from QM1, and a QM3 channel going to QM3. To
make the names unique, the first one might be named QM3_from_QM1, and the second might be named

20 Planning for IBM MQ

QM3_from_QM2. In this way, the channel names show the transmission queue name in the first part of
the name. The direction and adjacent queue manager name are shown in the second part of the name.

A table of suggested channel names for Figure 1 on page 21 is given in Table 1 on page 21.

Figure 1. Network diagram showing all channels

Table 1. Example of channel names

Route name Queue managers
hosting channel

Transmission queue name Suggested channel name

QM1 QM1 & QM2 QM1 (at QM2) QM1.from.QM2

QM1 QM2 & QM3 QM1 (at QM3) QM1.from.QM3

QM1_fast QM1 & QM2 QM1_fast (at QM2) QM1_fast.from.QM2

QM1_relief QM1 & QM2 QM1_relief (at QM2) QM1_relief.from.QM2

QM1_relief QM2 & QM3 QM1_relief (at QM3) QM1_relief.from.QM3

QM2 QM1 & QM2 QM2 (at QM1) QM2.from.QM1

QM2_fast QM1 & QM2 QM2_fast (at QM1) QM2_fast.from.QM1

QM3 QM1 & QM2 QM3 (at QM1) QM3.from.QM1

QM3 QM2 & QM3 QM3 (at QM2) QM3.from.QM2

QM3_relief QM1 & QM2 QM3_relief (at QM1) QM3_relief.from.QM1

QM3_relief QM2 & QM3 QM3_relief (at QM2) QM3_relief.from.QM2

Note:

1. On IBM MQ for z/OS, queue manager names are limited to four characters.
2. Name all the channels in your network uniquely. As shown in Table 1 on page 21, including the source

and target queue manager names in the channel name is a good way to do so.

Planning an IBM MQ architecture 21

Network planner
Creating a network assumes that there is another, higher level function of network planner whose plans
are implemented by the other members of the team.

For widely used applications, it is more economical to think in terms of local access sites for the
concentration of message traffic, using wide-band links between the local access sites, as shown in
Figure 2 on page 22.

In this example there are two main systems and a number of satellite systems. The actual configuration
would depend on business considerations. There are two concentrator queue managers located at
convenient centers. Each QM-concentrator has message channels to the local queue managers:

• QM-concentrator 1 has message channels to each of the three local queue managers, QM1, QM2, and
QM3. The applications using these queue managers can communicate with each other through the
QM-concentrators.

• QM-concentrator 2 has message channels to each of the three local queue managers, QM4, QM5, and
QM6. The applications using these queue managers can communicate with each other through the
QM-concentrators.

• The QM-concentrators have message channels between themselves thus allowing any application at a
queue manager to exchange messages with any other application at another queue manager.

Figure 2. Network diagram showing QM-concentrators

22 Planning for IBM MQ

Designing clusters
Clusters provide a mechanism for interconnecting queue managers in a way that simplifies both the initial
configuration and the ongoing management. Clusters must be carefully designed, to ensure that they
function correctly, and that they achieve the required levels of availability and responsiveness.

Before you begin
For an introduction to clustering concepts, see the following topics:

• Distributed queuing and clusters
• “Comparison of clustering and distributed queuing” on page 28
• Components of a cluster

When you are designing your queue manager cluster you have to make some decisions. You must first
decide which queue managers in the cluster are to hold the full repositories of cluster information. Any
queue manager you create can work in a cluster. You can choose any number of queue managers for this
purpose but the ideal number is two. For information about selecting queue managers to hold the full
repositories, see “How to choose cluster queue managers to hold full repositories” on page 31.

See the following topics for more information about designing your cluster:

• “Example clusters” on page 37
• “Organizing a cluster” on page 32
• “Cluster naming conventions” on page 32

• “Queue sharing groups and clusters” on page 34
• “Overlapping clusters” on page 34

What to do next
See the following topics for more information about configuring and working with clusters:

• Establishing communication in a cluster
• Configuring a queue manager cluster
• Routing messages to and from clusters
• Using clusters for workload management

For more information to help you configure your cluster, see“Clustering tips” on page 35.

Planning how you use multiple cluster transmission queues
You can explicitly define transmission queues, or have the system generate the transmission queues for
you. If you define the transmission queues yourself, you have more control over the queue definitions.

On z/OS, you also have more control over the page set where the messages are held.

Defining the transmission queues
There are two methods of defining transmission queues:

• Automatically, using the queue manager attribute DEFCLXQ, as follows:

ALTER QMGR DEFCLXQ(SCTQ | CHANNEL)

DEFCLXQ(SCTQ) indicates that the default transmission queue for all cluster-sender channels is
SYSTEM.CLUSTER.TRANSMIT.QUEUE. This is the default value.

DEFCLXQ(CHANNEL) indicates that by default each cluster-sender channel uses a separate
transmission queue named SYSTEM.CLUSTER.TRANSMIT.channel name. Each transmission queue is

Planning an IBM MQ architecture 23

automatically defined by the queue manager. See “Automatically-defined cluster transmission queues”
on page 25 for more information.

• Manually, by defining a transmission queue with a value specified for the CLCHNAME attribute. The
CLCHNAME attribute indicates which cluster-sender channels should use the transmission queue.

 If you are manually defining a transmission queue on z/OS, see “Planning for manually-
defined cluster transmission queues” on page 26 for more information.

What security do I need?
To initiate a switch, either automatically or manually, you need authority to start a channel.

To define the queue used as a transmission queue, you need standard IBM MQ authority to define the
queue.

When is a suitable time to implement the change?
When changing the transmission queue used by cluster-sender channels, you need to allocate a time in
which to make the update, considering the following points:

• The time required for a channel to switch transmission queue depends on the total number of messages
on the old transmission queue, how many messages need to be moved, and the size of the messages.

• Applications can continue to put messages to the transmission queue while the change is happening.
This might lead to an increase in the transition time.

• You can change the CLCHNAME parameter of any transmission queue or DEFCLXQ at any time,
preferably when the workload is low.

Note that nothing happens immediately.
• Changes occur only when a channel starts or restarts. When a channel starts it checks the current
configuration and switches to a new transmission queue if required.

• There are several changes that might alter the association of a cluster-sender channel with a
transmission queue:

– Altering the value of a transmission queue's CLCHNAME attribute, making CLCHNAME less specific or
blank.

– Altering the value of a transmission queue's CLCHNAME attribute, making CLCHNAME more specific.
– Deleting a queue with CLCHNAME specified.
– Altering the queue manager attribute DEFCLXQ.

How long will the switch take?
During the transition period, any messages for the channel are moved from one transmission queue to
another. The time required for a channel to switch transmission queue depends on the total number of
messages on the old transmission queue, and how many messages need to be moved.

For queues containing a few thousand messages, it should take under a second to move the messages.
The actual time depends on the number and size of the messages. Your queue manager should be able to
move messages at many megabytes each second.

Applications can continue to put messages to the transmission queue while the change is happening. This
might lead to an increase in the transition time.

Each affected cluster-sender channel must be restarted for the change to take effect. Therefore, it is best
to change the transmission queue configuration when the queue manager is not busy, and few messages
are stored on the cluster transmission queues.

The runswchl command or the SWITCH CHANNEL(*) STATUS command in CSQUTIL on
z/OS can be used to query the status of cluster-sender channels and what pending changes are
outstanding to their transmission queue configuration.

24 Planning for IBM MQ

How to implement the change
See Implementing the system using multiple cluster transmission queues for details on how you make the
change to multiple cluster transmission queues, either automatically or manually.

Undoing the change

See Undoing a change to a transmission queue on z/OS for details on how you back out changes if you
encounter problems.

Automatically-defined cluster transmission queues
You can have the system generate the transmission queues for you.

Before you begin

To set up the cluster transmission queues manually on z/OS, see “Planning for manually-
defined cluster transmission queues” on page 26.

About this task
If a channel does not have a manually defined cluster transmission queue that is associated
with it, and you specify DEFCLXQ(CHANNEL), when the channel starts the queue manager
automatically defines a permanent-dynamic queue for the cluster sender channel. Model queue
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE is used to automatically define the permanent dynamic
cluster transmit queue with the name SYSTEM.CLUSTER.TRANSMIT.ChannelName.

Important: In IBM MQ 8.0, the queue manager does not have the
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE. You cannot migrate directly from IBM MQ 8.0 to this
version. For information about adding the SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE into a queue
manager that is migrated from IBM MQ 8.0, see this topic in the documentation for the interim version
that you used to migrate the queue manager.

Procedure
1. Use the DEFCLXQ queue manager attribute.

For more information on this attribute, see ALTER QMGR.

There are two options:
SCTQ

This option is the default, and means that you use the single SYSTEM.CLUSTER.TRANSMIT.QUEUE.
CHANNEL

Means that you use multiple cluster transmission queues.
2. To switch to the new association:

• Stop and restart the channel.
• The channel uses the new transmission queue definition.
• Messages are transferred by a transitional switch process from the old queue to the new

transmission queue.

Note that any application messages are put to the old definition.

When the number of messages on the old queue reaches zero, new messages are placed directly on
the new transmission queue.

3. To monitor when the switching process finishes:
a) A switch of transmission queue that is initiated by a channel runs in the background and your

administrator can monitor the queue manager job log to determine when it has completed.

Planning an IBM MQ architecture 25

b) Monitor messages on the job log to show the progress of the switch.
c) To make sure that only the channels that you wanted are using this transmission queue, issue the

command DIS CLUSQMGR(*) where, for example, the transmission queue property that defines the
transmission queue is APPQMGR.CLUSTER1.XMITQ.

d)
Use the SWITCH CHANNEL (*) STATUS command under CSQUTIL.
This option tells you what pending changes are outstanding, and how many messages need to be
moved between transmission queues.

Results
You have set up your cluster transmission queue, or queues.

Related tasks
“Planning for manually-defined cluster transmission queues” on page 26
On IBM MQ for z/OS, if you define the transmission queues yourself you have more control over the
definitions, and the page set on which the messages are held.
Related reference
ALTER QMGR
DISPLAY CLUSQMGR

Planning for manually-defined cluster transmission queues
On IBM MQ for z/OS, if you define the transmission queues yourself you have more control over the
definitions, and the page set on which the messages are held.

Before you begin
To set up cluster transmission queues automatically, see “Automatically-defined cluster transmission
queues” on page 25.

About this task
Your administrator manually defines a transmission queue and uses queue attribute CLCHNAME to define
which cluster sender channel, or channels, will use this queue as their transmission queue.

Note that CLCHNAME can include a wildcard character at the beginning, or end, to allow a single queue to
be used for multiple channels.

Procedure
1. For example, enter the following:

DEFINE QLOCAL(APPQMGR.CLUSTER1.XMITQ)
CLCHNAME(CLUSTER1.TO.APPQMGR)
USAGE(XMITQ) STGCLASS(STG1)
INDXTYPE(CORRELID) SHARE

DEFINE STGCLASS(STG1) PSID(3)
DEFINE PSID(3) BUFFERPOOL(4)

Tip: You need to plan which page set (and buffer pool) you use for your transmission queues. You can
have different page sets for different queues, and provide isolation between them, so one page set
filling up does not impact transmission queues in other page sets.

See Working with cluster transmission queues and cluster-sender channels for information on how
each channel selects the appropriate queue.

26 Planning for IBM MQ

When the channel starts it switches its association to the new transmission queue. To make sure
no message is lost, the queue manager automatically transfers messages from the old cluster
transmission queue to the new transmission queue in order.

2. Use the CSQUTIL SWITCH function to change to the new association.
See Switch the transmission queue associated with cluster-sender channels (SWITCH) for further
information.
a) STOP the channel, or channels, whose transmission queue is to be changed, so that they are in

STOPPED status.
For example:

STOP CHANNEL(CLUSTER1.TO.APPQMGR)

b) Change the CLCHNAME(XXXX) attribute on the transmission queue.
c) Use the SWITCH function to switch the messages or monitor what is happening.

Use the command

SWITCH CHANNEL(*) MOVEMSGS(YES)

to move the messages without starting the channel.
d) Start the channel, or channels, and check whether the channel is using the correct queues.

For example:

DIS CHS(CLUSTER1.TO.APPQMGR)
DIS CHS(*) where(XMITQ eq APPQMGR.CLUSTER1.XMITQ)

Tip: The following process uses the CSQUTIL SWITCH function. For more information, see Switch the
transmission queue associated with cluster-sender channels (SWITCH).

You do not have to use this function but using this function gives more options:

• Using SWITCH CHANNEL (*) STATUS provides an easy way to identify the switching status of cluster-
sender channels. It allows your administrator to see what channels are currently switching, and
those channels having a switch pending that take effect when those channels next start.

Without this capability your administrator needs to use multiple DISPLAY commands, and then
process the resulting output to ascertain this information. Your administrator can also confirm that a
configuration change has the required result.

• If CSQUTIL is used to initiate the switch, CSQUTIL continues to monitor the progress of this
operation, and only ends when the switch has completed.

This can make it much easier to perform these operations in batch. Also, if CSQUTIL is run to switch
multiple channels, CSQUTIL performs these actions sequentially; this can have less impact for your
enterprise than multiple switches running in parallel.

Results
You have set up your cluster transmission queue, or queues, on z/OS.

Access control and multiple cluster transmission queues
Choose between three modes of checking when an application puts messages to remote cluster
queues. The modes are checking remotely against the cluster queue, checking locally against
SYSTEM.CLUSTER.TRANSMIT.QUEUE, or checking against local profiles for the cluster queue, or cluster
queue manager.

IBM MQ gives you the choice of checking locally, or locally and remotely, that a user has permission to put
a message to a remote queue. A typical IBM MQ application uses local checking only, and relies on the
remote queue manager trusting the access checks made on the local queue manager. If remote checking

Planning an IBM MQ architecture 27

is not used, the message is put to the target queue with the authority of the remote message channel
process. To use remote checking you must set the put authority of the receiving channel to context
security.

The local checks are made against the queue that the application opens. In distributed queuing, the
application usually opens a remote queue definition, and access checks are made against the remote
queue definition. If the message is put with a full routing header, the checks are made against the
transmission queue. If an application opens a cluster queue that is not on the local queue manager, there
is no local object to check. The access control checks are made against the cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE. Even with multiple cluster transmission queues, local access
control checks for remote cluster queues are made against SYSTEM.CLUSTER.TRANSMIT.QUEUE.

The choice of local or remote checking is a choice between two extremes. Checking remotely is fine-
grained. Every user must have an access control profile on every queue manager in the cluster to put to
any cluster queue. Checking locally is coarse-grained. Every user needs only one access control profile for
the cluster transmission queue on the queue manager they are connected to. With that profile, they can
put a message to any cluster queue on any queue manager in any cluster.

Administrators have another way to set up access control for cluster queues. You can create a security
profile for a cluster queue on any queue manager in the cluster using the setmqaut command. The
profile takes affect if you open a remote cluster queue locally, specifying only the queue name. You can
also set up a profile for a remote queue manager. If you do so, the queue manager can check the profile of
a user that opens a cluster queue by providing a fully qualified name.

The new profiles work only if you change the queue manager stanza, ClusterQueueAccessControl to
RQMName. The default is Xmitq. You must create profiles for all the cluster queues existing applications
use cluster queues. If you change the stanza to RQMName without creating profiles the applications are
likely to fail.

Tip: Cluster queue accessing checking does not apply to remote queuing. Access checks are still made
against local definitions. The changes mean that you can follow the same approach to configure access

checking on cluster queues and cluster topics. The changes also align the access checking
approach for cluster queues more closely with z/OS. The commands to set up access checking on z/OS
are different, but both check access against a profile rather than against the object itself.

Related concepts
“Clustering: Application isolation using multiple cluster transmission queues” on page 45
You can isolate the message flows between queue managers in a cluster. You can place messages being
transported by different cluster-sender channels onto different cluster transmission queues. You can use
the approach in a single cluster or with overlapping clusters. The topic provides examples and some best
practices to guide you in choosing an approach to use.
Related tasks
Setting ClusterQueueAccessControl

Comparison of clustering and distributed queuing
Compare the components that need to be defined to connect queue managers using distributed queuing
and clustering.

If you do not use clusters, your queue managers are independent and communicate using distributed
queuing. If one queue manager needs to send messages to another, you must define:

• A transmission queue
• A channel to the remote queue manager

Figure 3 on page 29 shows the components required for distributed queuing.

28 Planning for IBM MQ

Figure 3. Distributed queuing

If you group queue managers in a cluster, queues on any queue manager are available to any other queue
manager in the cluster. Any queue manager can send a message to any other queue manager in the same
cluster without explicit definitions. You do not provide channel definitions, remote-queue definitions, or
transmission queues for each destination. Every queue manager in a cluster has a single transmission
queue from which it can transmit messages to any other queue manager in the cluster. Each queue
manager in a cluster needs to define only:

• One cluster-receiver channel on which to receive messages
• One cluster-sender channel with which it introduces itself and learns about the cluster

Definitions to set up a cluster versus distributed queuing
Look at Figure 4 on page 29, which shows four queue managers each with two queues. Consider how
many definitions are needed to connect these queue managers using distributed queuing. Compare how
many definitions are needed to set up the same network as a cluster.

Figure 4. A network of four queue managers

Definitions to set up a network using distributed queuing
To set up the network shown in Figure 3 on page 29 using distributed queuing, you might have the
following definitions:

Planning an IBM MQ architecture 29

Table 2. Definitions for distributed queuing

Description Number per
queue

manager

Total number

A sender-channel definition for a channel on which to send
messages to every other queue manager

3 12

A receiver-channel definition for a channel on which to receive
messages from every other queue manager

3 12

A transmission-queue definition for a transmission queue to every
other queue manager

3 12

A local-queue definition for each local queue 2 8

A remote-queue definition for each remote queue to which this
queue manager wants to put messages

6 24

You might reduce this number of definitions by using generic receiver-channel definitions. The maximum
number of definitions could be as many as 17 on each queue manager, which is a total of 68 for this
network.

Definitions to set up a network using clusters
To set up the network shown in Figure 3 on page 29 using clusters you need the following definitions:

Table 3. Definitions for clustering

Description Number per
queue

manager

Total number

A cluster-sender channel definition for a channel on which to send
messages to a repository queue manager

1 4

A cluster-receiver channel definition for a channel on which to
receive messages from other queue managers in the cluster

1 4

A local-queue definition for each local queue 2 8

To set up this cluster of queue managers (with two full repositories), you need four definitions on each
queue manager, a total of sixteen definitions altogether. You also need to alter the queue manager
definitions for two of the queue managers, to make them full repository queue managers for the cluster.

Only one CLUSSDR and one CLUSRCVR channel definition is required. When the cluster is defined, you can
add or remove queue managers (other than the repository queue managers) without any disruption to the
other queue managers.

Using a cluster reduces the number of definitions required to set up a network containing many queue
managers.

With fewer definitions to make there is less risk of error:

• Object names always match, for example the channel name in a sender-receiver pair.
• The transmission queue name specified in a channel definition always matches the correct transmission

queue definition or the transmission queue name specified in a remote queue definition.
• A QREMOTE definition always points to the correct queue at the remote queue manager.

Once a cluster is set up, you can move cluster queues from one queue manager to another within the
cluster without having to do any system management work on any other queue manager. There is no

30 Planning for IBM MQ

chance of forgetting to delete or modify channel, remote-queue, or transmission-queue definitions. You
can add new queue managers to a cluster without any disruption to the existing network.

How to choose cluster queue managers to hold full repositories
In each cluster you must choose at least one, and preferably two queue managers to hold full
repositories. Two full repositories are sufficient for all but the most exceptional circumstances. If
possible, choose queue managers that are hosted on robust and permanently-connected platforms, that
do not have coinciding outages, and that are in a central position geographically. Also consider dedicating
systems as full repository hosts, and not using these systems for any other tasks.

Full repositories are queue managers that maintain a complete picture of the state of the cluster. To
share this information, each full repository is connected by CLUSSDR channels (and their corresponding
CLUSRCVR definitions) to every other full repository in the cluster. You must manually define these
channels.

Figure 5. Two connected full repositories.

Every other queue manager in the cluster maintains a picture of what it currently knows about the state
of the cluster in a partial repository. These queue managers publish information about themselves, and
request information about other queue managers, using any two available full repositories. If a chosen full
repository is not available, another is used. When the chosen full repository becomes available again, it
collects the latest new and changed information from the others so that they keep in step. If all the full
repositories go out of service, the other queue managers use the information they have in their partial
repositories. However, they are limited to using the information that they have; new information and
requests for updates cannot be processed. When the full repositories reconnect to the network, messages
are exchanged to bring all repositories (both full and partial) up to date.

When planning the allocation of full repositories, include the following considerations:

• The queue managers chosen to hold full repositories need to be reliable and managed. Choose queue
managers that are hosted on a robust and permanently-connected platform.

• Consider the planned outages for the systems hosting your full repositories, and ensure that they do not
have coinciding outages.

• Consider network performance: Choose queue managers that are in a central position geographically, or
that share the same system as other queue managers in the cluster.

• Consider whether a queue manager is a member of more than one cluster. It can be administratively
convenient to use the same queue manager to host the full repositories for several clusters, provided
this benefit is balanced against how busy you expect the queue manager to be.

• Consider dedicating some systems to contain only full repositories, and not using these systems
for any other tasks. This ensures that these systems only require maintenance for queue manager
configuration, and are not removed from service for the maintenance of other business applications. It
also ensures that the task of maintaining the repository does not compete with applications for system
resources. This can be particularly beneficial in large clusters (say, clusters of more than a thousand
queue managers), where full repositories have a much higher workload in maintaining the cluster state.

Having more than two full repositories is possible, but rarely recommended. Although object definitions
(that is, queues, topics and channels) flow to all available full repositories, requests only flow from a
partial repository to a maximum of two full repositories. This means that, when more than two full
repositories are defined, and any two full repositories become unavailable, some partial repositories
might not receive updates they would expect. See MQ Clusters: Why only two Full Repositories?

One situation in which you might find it useful to define more than two full repositories is when migrating
existing full repositories to new hardware or new queue managers. In this case, you should introduce the

Planning an IBM MQ architecture 31

https://community.ibm.com/community/user/imwuc/viewdocument/mq-clusters-why-only-two-full-repo

replacement full repositories, and confirm that they have become fully populated, before you remove the
previous full repositories. Whenever you add a full repository, remember that you must directly connect it
to every other full repository with CLUSSDR channels.

Figure 6. More than two connected full repositories

Related information
MQ Clusters: Why only two Full Repositories?
How big can an MQ Cluster be?

Organizing a cluster
Select which queue managers to link to which full repository. Consider the performance effect, the queue
manager version, and whether multiple CLUSSDR channels are desirable.

Having selected the queue managers to hold full repositories, you need to decide which queue managers
to link to which full repository. The CLUSSDR channel definition links a queue manager to a full repository
from which it finds out about the other full repositories in the cluster. From then on, the queue manager
sends messages to any two full repositories. It always tries to use the one to which it has a CLUSSDR
channel definition first. You can choose to link a queue manager to either full repository. In choosing,
consider the topology of your configuration, and the physical or geographical location of the queue
managers.

Because all cluster information is sent to two full repositories, there might be situations in which you want
to make a second CLUSSDR channel definition. You might define a second CLUSSDR channel in a cluster
that has many full repositories spread over a wide area. You can then control which two full repositories
your information is sent to.

Cluster naming conventions
Consider naming queue managers in the same cluster using a naming convention that identifies the
cluster to which the queue manager belongs. Use a similar naming convention for channel names and
extend it to describe the channel characteristics.

Best practices when naming MQ Clusters
Although cluster names can be up to 48 characters, relatively short cluster names are helpful when
applying naming conventions to other objects. See “Best practices when choosing cluster channel names”
on page 33.

When choosing a cluster name, it is usually helpful to represent the 'purpose' of the cluster (which
is likely to be long-lived) rather than the 'content'. For example 'B2BPROD' or 'ACTTEST' rather than
'QM1_QM2_QM3_CLUS'.

32 Planning for IBM MQ

https://community.ibm.com/community/user/imwuc/viewdocument/mq-clusters-why-only-two-full-repo
https://community.ibm.com/community/user/imwuc/viewdocument/how-big-can-an-mq-cluster-be

Best practices when choosing cluster Queue Manager names
If you are creating a new cluster and its members from scratch, consider a naming convention for the
queue managers that reflects their cluster usage. Every queue manager must have a different name.
However, you can give queue managers in a cluster a set of similar names, to help in identifying and
remembering logical groupings (for example 'ACTTQM1, ACTTQM2).

Relatively short queue manager names (for example less than 8 characters) help if you choose to use the
convention described in the next section, or something similar, for channel names.

Best practices when choosing cluster channel names
Because queue managers and clusters can have names of up to 48 characters, and a channel name
is limited to 20 characters, take care when first naming objects to avoid having to change the naming
convention midway through a project (see previous section).

When defining channels, remember that automatically-created cluster-sender channels on any queue
manager in the cluster take their name from the corresponding cluster-receiver channel configured on the
receiving queue manager in the cluster, and these must therefore be unique and make sense on remote
queue managers in the cluster.

One common approach is to use the queue manager name preceded by the cluster name. For example, if
the cluster name is CLUSTER1 and the queue managers are QM1, QM2, then cluster-receiver channels are
CLUSTER1.QM1, CLUSTER1.QM2.

You might extend this convention if channels have different priorities or use different protocols. For
example:

• CLUSTER1.QM1.S1
• CLUSTER1.QM1.N3
• CLUSTER1.QM1.T4

In this example, S1 might be the first SNA channel, N3 might be the NetBIOS channel with a network
priority of three, and T4 might be TCP IP using an IPV4 network.

Naming shared channel definitions

A single channel definition can be shared across multiple clusters, in which case the naming
conventions suggested here would need modification. However, as described in Managing channel
definitions it is usually preferable to define discrete channels for each cluster in any case.

Older channel naming conventions

Outside of cluster environments it has historically been common to use a 'FROMQM.TO.TARGETQM'
naming convention, so you might find existing clusters have used something similar (such as
CLUSTER.TO.TARGET). This is not recommended as part of a new cluster naming scheme because it
further reduces the available characters to convey 'useful' information within your channel name.

Channel names on IBM MQ for z/OS

You can define VTAM generic resources or Dynamic Domain Name Server (DDNS) generic names.
You can define connection names using generic names. However, when you create a cluster-receiver
definition, do not use a generic connection name.

The problem with using generic connection names for cluster-receiver definitions is as follows: If you
define a CLUSRCVR with a generic CONNAME there is no guarantee that your CLUSSDR channels point
to the queue managers you intend. Your initial CLUSSDR might end up pointing to any queue manager
in the queue sharing group, not necessarily one that hosts a full repository. If a channel starts trying
a connection again, it might reconnect to a different queue manager with the same generic name,
disrupting the flow of messages.

Planning an IBM MQ architecture 33

Queue sharing groups and clusters
Shared queues can be cluster queues and queue managers in a queue sharing group can also be cluster
queue managers.

On IBM MQ for z/OS you can group queue managers into queue sharing groups. A queue manager in a
queue sharing group can define a local queue that is to be shared by up to 32 queue managers.

Shared queues can also be cluster queues. Furthermore, the queue managers in a queue sharing group
can also be in one or more clusters.

You can define VTAM generic resources or Dynamic Domain Name Server (DDNS) generic names. You can
define connection names using generic names. However, when you create a cluster-receiver definition, do
not use a generic connection name.

The problem with using generic connection names for cluster-receiver definitions is as follows: If you
define a CLUSRCVR with a generic CONNAME there is no guarantee that your CLUSSDR channels point
to the queue managers you intend. Your initial CLUSSDR might end up pointing to any queue manager
in the queue sharing group, not necessarily one that hosts a full repository. If a channel starts trying a
connection again, it might reconnect to a different queue manager with the same generic name, disrupting
the flow of messages.

A CLUSRCVR channel that uses the group listener port can not be started because, if this were the
case, it would not be possible to tell which queue manager the CLUSRCVR would connect to each time.
The cluster system queues on which information is kept about the cluster are not shared. Each queue
manager has its own.

Cluster channels are used not only to transfer application messages but internal system messages about
the setup of the cluster. Each queue manager in the cluster must receive these internal system messages
to participate properly in clustering, so needs its own unique CLUSRCVR channel on which to receive
them.

A shared CLUSRCVR could start on any queue manager in the queue sharing group (QSG) and so lead to
an inconsistent supply of the internal system messages to the QSG queue managers, meaning none can
properly participate in the cluster. To ensure no shared CLUSRCVR channels can be used, any attempt fails
with the CSQX502E message.

Overlapping clusters
Overlapping clusters provide additional administrative capabilities. Use namelists to reduce the number
of commands needed to administer overlapping clusters.

You can create clusters that overlap. There are a number of reasons you might define overlapping
clusters; for example:

• To allow different organizations to have their own administration.
• To allow independent applications to be administered separately.
• To create classes of service.

In Figure 7 on page 35, the queue manager STF2 is a member of both the clusters. When a queue
manager is a member of more than one cluster, you can take advantage of namelists to reduce the
number of definitions you need. Namelists contain a list of names, for example, cluster names. You can
create a namelist naming the clusters. Specify the namelist on the ALTER QMGR command for STF2 to
make it a full repository queue manager for both clusters.

If you have more than one cluster in your network, you must give them different names. If two clusters
with the same name are ever merged, it is not possible to separate them again. It is also a good idea to
give the clusters and channels different names. They are more easily distinguished when you look at the
output from the DISPLAY commands. Queue manager names must be unique within a cluster for it to
work correctly.

34 Planning for IBM MQ

Defining classes of service

Imagine a university that has a queue manager for each member of staff and each student. Messages
between members of staff are to travel on channels with a high priority and high bandwidth. Messages
between students are to travel on cheaper, slower channels. You can set up this network using traditional
distributed queuing techniques. IBM MQ selects which channels to use by looking at the destination
queue name and queue manager name.

To clearly differentiate between the staff and students, you could group their queue managers into two
clusters as shown in Figure 7 on page 35. IBM MQ moves messages to the meetings queue in the staff
cluster only over channels that are defined in that cluster. Messages for the gossip queue in the students
cluster go over channels defined in that cluster and receive the appropriate class of service.

Figure 7. Classes of service

Clustering tips
You might need to make some changes to your systems or applications before using clustering. There are
both similarities and differences from the behavior of distributed queuing.

• You must add manual configuration definitions to queue managers outside a cluster for them to access
cluster queues.

• If you merge two clusters with the same name, you cannot separate them again. Therefore it is
advisable to give all clusters a unique name.

• If a message arrives at a queue manager but there is no queue there to receive it, the message is put on
the dead-letter queue. If there is no dead-letter queue, the channel fails and tries again. The use of the
dead-letter queue is the same as with distributed queuing.

• The integrity of persistent messages is maintained. Messages are not duplicated or lost as a result of
using clusters.

• Using clusters reduces system administration. Clusters make it easy to connect larger networks with
many more queue managers than you would be able to contemplate using distributed queuing. There
is a risk that you might consume excessive network resources if you attempt to enable communication
between every queue manager in a cluster.

• If you use the IBM MQ Explorer, which presents the queue managers in a tree structure, the view for
large clusters might be cumbersome.

• The purpose of distribution lists is to use a single MQPUT command to send the same
message to multiple destinations. Distribution lists are supported on IBM MQ for Multiplatforms. You
can use distribution lists with queue manager clusters. In a cluster, all the messages are expanded
at MQPUT time. The advantage, in terms of network traffic, is not so great as in a non-clustering

Planning an IBM MQ architecture 35

environment. The advantage of distribution lists is that the numerous channels and transmission
queues do not need to be defined manually.

• If you are going to use clusters to balance your workload examine your applications. See whether they
require messages to be processed by a particular queue manager or in a particular sequence. Such
applications are said to have message affinities. You might need to modify your applications before you
can use them in complex clusters.

• You might choose to use the MQOO_BIND_ON_OPEN option on an MQOPEN to force messages to be
sent to a specific destination. If the destination queue manager is not available the messages are not
delivered until the queue manager becomes available again. Messages are not routed to another queue
manager because of the risk of duplication.

• If a queue manager is to host a cluster repository, you need to know its host name or IP address. You
have to specify this information in the CONNAME parameter when you make the CLUSSDR definition on
other queue managers joining the cluster. If you use DHCP, the IP address is subject to change because
DHCP can allocate a new IP address each time you restart a system. Therefore, you must not specify the
IP address in the CLUSSDR definitions. Even if all the CLUSSDR definitions specify the host name rather
than the IP address, the definitions would still not be reliable. DHCP does not necessarily update the
DNS directory entry for the host with the new address. If you must nominate queue managers as full
repositories on systems that use DHCP, install software that guarantees to keep your DNS directory up
to date.

• Do not use generic names, for example VTAM generic resources or Dynamic Domain Name Server
(DDNS) generic names as the connection names for your channels. If you do, your channels might
connect to a different queue manager than expected.

• You can only get a message from a local cluster queue, but you can put a message to any queue in a
cluster. If you open a queue to use the MQGET command, the queue manager opens the local queue.

• You do not need to alter any of your applications if you set up a simple IBM MQ cluster. The application
can name the target queue on the MQOPEN call and does not need to know about the location of the
queue manager. If you set up a cluster for workload management you must review your applications and
modify them as necessary.

• You can view current monitoring and status data for a channel or queue using the DISPLAY CHSTATUS
and the DISPLAY QSTATUS runmqsc commands. The monitoring information can be used to help
gauge the performance and health of the system. Monitoring is controlled by queue manager, queue,
and channel attributes. Monitoring of auto-defined cluster-sender channels is possible with the
MONACLS queue manager attribute.

Related concepts
Clusters
“Comparison of clustering and distributed queuing” on page 28
Compare the components that need to be defined to connect queue managers using distributed queuing
and clustering.
Components of a cluster
Related tasks
Configuring a queue manager cluster
Setting up a new cluster

How long do the queue manager repositories retain information?
Queue manager repositories retain information for 30 days. An automatic process efficiently refreshes
information that is being used.

When a queue manager sends out some information about itself, the full and partial repository queue
managers store the information for 30 days. Information is sent out, for example, when a queue manager
advertises the creation of a new queue. To prevent this information from expiring, queue managers
automatically resend all information about themselves after 27 days. If a partial repository sends a new
request for information part way through the 30 day lifetime, the expiry time remains the original 30 days.

36 Planning for IBM MQ

When information expires, it is not immediately removed from the repository. Instead it is held for a grace
period of 60 days. If no update is received within the grace period, the information is removed. The grace
period allows for the fact that a queue manager might have been temporarily out of service at the expiry
date. If a queue manager becomes disconnected from a cluster for more than 90 days, it stops being
part of the cluster. However, if it reconnects to the network it becomes part of the cluster again. Full
repositories do not use information that has expired to satisfy new requests from other queue managers.

Similarly, when a queue manager sends a request for up-to-date information from a full repository, the
request lasts for 30 days. After 27 days IBM MQ checks the request. If it has been referenced during the
27 days, it is refreshed automatically. If not, it is left to expire and is refreshed by the queue manager if
it is needed again. Expiring requests prevents a buildup of requests for information from dormant queue
managers.

Note: You should download and install the PTF for APAR PH43191, which fixes system errors in
calculating the expiry time of a subscription. These errors can cause the subscription to expire early
(resulting in message CSQX456I being issued), or expire after the object has expired (resulting in
erroneous MQRC 2085 (MQRC_UNKNOWN_OBJECT) errors).

For large clusters, it can be disruptive if many queue managers automatically resend all information about
themselves at the same time. See Refreshing in a large cluster can affect performance and availability of
the cluster.

Related concepts
“Clustering: Using REFRESH CLUSTER best practices” on page 67
You use the REFRESH CLUSTER command to discard all locally held information about a cluster and
rebuild that information from the full repositories in the cluster. You should not need to use this
command, except in exceptional circumstances. If you do need to use it, there are special considerations
about how you use it. This information is a guide based on testing and feedback from customers.

Example clusters
The first example shows the smallest possible cluster of two queue managers. The second and third
examples show two versions of a three queue manager cluster.

The smallest possible cluster contains only two queue managers. In this case both queue managers
contain full repositories. You need only a few definitions to set up the cluster, and yet there is a high
degree of autonomy at each queue manager.

Figure 8. A small cluster of two queue managers

Planning an IBM MQ architecture 37

https://www.ibm.com/support/pages/apar/PH43191

• The queue managers can have long names such as LONDON and NEWYORK. On IBM MQ for
z/OS, queue manager names are limited to four characters.

• Each queue manager is typically configured on a separate machine. However, you can have multiple
queue managers on the same machine.

For instructions on setting up a similar example cluster, see Setting up a new cluster.

Figure 9 on page 38 shows the components of a cluster called CLSTR1.

• In this cluster, there are three queue managers, QM1, QM2, and QM3.
• QM1 and QM2 host repositories of information about all the queue managers and cluster-related objects

in the cluster. They are referred to as full repository queue managers. The repositories are represented
in the diagram by the shaded cylinders.

• QM2 and QM3 host some queues that are accessible to any other queue manager in the cluster. Queues
that are accessible to any other queue manager in the cluster are called cluster queues. The cluster
queues are represented in the diagram by the shaded queues. Cluster queues are accessible from
anywhere in the cluster. IBM MQ clustering code ensures that remote queue definitions for cluster
queues are created on any queue manager that refers to them.

As with distributed queuing, an application uses the MQPUT call to put a message on a cluster queue
at any queue manager in the cluster. An application uses the MQGET call to retrieve messages from a
cluster queue only on the queue manager where the queue resides.

• Each queue manager has a manually created definition for the receiving end of a channel called
cluster_name. queue_manager_name on which it can receive messages. On the receiving queue
manager, cluster_name. queue_manager_name is a cluster-receiver channel. A cluster-receiver
channel is like a receiver channel used in distributed queuing; it receives messages for the queue
manager. In addition, it also receives information about the cluster.

•

Figure 9. A cluster of queue managers
• In Figure 10 on page 39 each queue manager also has a definition for the sending end of a channel. It

connects to the cluster-receiver channel of one of the full repository queue managers. On the sending
queue manager, cluster_name. queue_manager_name is a cluster-sender channel. QM1 and QM3
have cluster-sender channels connecting to CLSTR1.QM2, see dotted line "2".

38 Planning for IBM MQ

QM2 has a cluster-sender channel connecting to CLSTR1.QM1, see dotted line "3". A cluster-sender
channel is like a sender-channel used in distributed queuing; it sends messages to the receiving queue
manager. In addition, it also sends information about the cluster.

Once both the cluster-receiver end and the cluster-sender end of a channel are defined, the channel
starts automatically.

Figure 10. A cluster of queue managers with sender channels

Defining a cluster-sender channel on the local queue manager introduces that queue manager to one of
the full repository queue managers. The full repository queue manager updates the information in its full
repository accordingly. Then it automatically creates a cluster-sender channel back to the original queue
manager, and sends that queue manager information about the cluster. Thus a queue manager learns
about a cluster and a cluster learns about a queue manager.

Look again at Figure 9 on page 38. Suppose that an application connected to queue manager QM3 wants
to send some messages to the queues at QM2. The first time that QM3 must access those queues, it
discovers them by consulting a full repository. The full repository in this case is QM2, which is accessed
using the sender channel CLSTR1.QM2. With the information from the repository, it can automatically
create remote definitions for those queues. If the queues are on QM1, this mechanism still works, because
QM2 is a full repository. A full repository has a complete record of all the objects in the cluster. In
this latter case, QM3 would also automatically create a cluster-sender channel corresponding to the
cluster-receiver channel on QM1, allowing direct communication between the two.

Figure 11 on page 40 shows the same cluster, with the two cluster-sender channels that were
created automatically. The cluster-sender channels are represented by the two dashed lines that
join with the cluster-receiver channel CLSTR1.QM3. It also shows the cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE, which QM1 uses to send its messages. All queue managers in
the cluster have a cluster transmission queue, from which they can send messages to any other queue
manager in the same cluster.

Planning an IBM MQ architecture 39

Figure 11. A cluster of queue managers, showing auto-defined channels

Note: Other diagrams show only the receiving ends of channels for which you make manual definitions.
The sending ends are omitted because they are mostly defined automatically when needed. The auto-
definition of most cluster-sender channels is crucial to the function and efficiency of clusters.

Related concepts
“Comparison of clustering and distributed queuing” on page 28
Compare the components that need to be defined to connect queue managers using distributed queuing
and clustering.
Components of a cluster
Related tasks
Configuring a queue manager cluster
Setting up a new cluster

Clustering: Best practices
Clusters provide a mechanism for interconnecting queue managers. The best practices described in this
section are based on testing and feedback from customers.

A successful cluster setup is dependent on good planning and a thorough understanding of IBM MQ
fundamentals, such as good application management and network design. Ensure that you are familiar
with the information in the related topics before continuing.

Related concepts
Distributed queuing and clusters
Clusters
Related tasks
“Designing clusters” on page 23
Clusters provide a mechanism for interconnecting queue managers in a way that simplifies both the initial
configuration and the ongoing management. Clusters must be carefully designed, to ensure that they
function correctly, and that they achieve the required levels of availability and responsiveness.
Monitoring clusters

40 Planning for IBM MQ

Clustering: Special considerations for overlapping clusters
This topic provides guidance for planning and administering IBM MQ clusters. This information is a guide
based on testing and feedback from customers.

Cluster ownership
Familiarize yourself with overlapping clusters before reading the following information. See “Overlapping
clusters” on page 34 and Configuring message paths between clusters for the necessary information.

When configuring and managing a system that consists of overlapping clusters, it is best to adhere to the
following:

• Although IBM MQ clusters are 'loosely coupled' as previously described, it is useful to consider a cluster
as a single unit of administration. This concept is used because the interaction between definitions on
individual queue managers is critical to the smooth functioning of the cluster. For example: When using
workload balanced cluster queues it is important that a single administrator or team understand the full
set of possible destinations for messages, which depends on definitions spread throughout the cluster.
More trivially, cluster sender/receiver channel pairs must be compatible throughout.

• Considering this previous concept; where multiple clusters meet (which are to be administered by
separate teams / individuals), it is important to have clear policies in place controlling administration of
the gateway queue managers.

• It is useful to treat overlapping clusters as a single namespace: Channel names and queue manager
names must be unique throughout a single cluster. Administration is much easier when unique
throughout the entire topology. It is best to follow a suitable naming convention, possible conventions
are described in “Cluster naming conventions” on page 32.

• Sometimes administrative and system management cooperation is essential. For example, cooperation
between organizations that own different clusters that need to overlap. A clear understanding of who
owns what, and enforceable rules and conventions helps clustering run smoothly when overlapping
clusters.

Overlapping clusters: Gateways
In general, a single cluster is easier to administer than multiple clusters. Therefore creating large
numbers of small clusters (one for every application for example) is something to be avoided generally.

However, to provide classes of service, you can implement overlapping clusters. For example:

• If you have concentric clusters where the smaller one is for Publish/Subscribe. See How to size systems
for more information.

• If some queue managers are to be administered by different teams. See the previous section “Cluster
ownership” on page 41for more information.

• If it makes sense from an organizational or geographical point of view.
• If equivalent clusters work with name resolution, for example when implementing TLS in an existing

cluster.

There is no security benefit from overlapping clusters; allowing clusters administered by two different
teams to overlap, effectively joins the teams as well as the topology:

• Any name advertised in such a cluster is accessible to the other cluster.
• Any name advertised in one cluster can be advertised in the other to draw off eligible messages.
• Any non-advertised object on a queue manager adjacent to the gateway can be resolved from any

clusters of which the gateway is a member.

The namespace is the union of both clusters and must be treated as a single namespace. Therefore,
ownership of an overlapping cluster is shared amongst all the administrators of both clusters.

When a system contains multiple clusters, there might be a requirement to route messages from queue
managers in one cluster to queues on queue managers in another cluster. In this situation, the multiple
clusters must be interconnected in some way: A good pattern to follow is the use of gateway queue

Planning an IBM MQ architecture 41

managers between clusters. This arrangement avoids building up a difficult-to-manage mesh of point-to-
point channels, and provides a good place to manage such issues as security policies. There are two
distinct ways of achieving this arrangement:

1. Place one (or more) queue managers in both clusters using a second cluster receiver definition. This
arrangement involves fewer administrative definitions but, as previously stated, means that ownership
of an overlapping cluster is shared amongst all the administrators of both clusters.

2. Pair a queue manager in cluster one with a queue manager in cluster two using traditional point-to-
point channels.

In either of these cases, various tools can be used to route traffic appropriately. In particular, queue or
queue manager aliases can be used to route into the other cluster, and a queue manager alias with blank
RQMNAME property re-drives workload balancing where it is wanted.

Related concepts
“Cluster naming conventions” on page 32
Consider naming queue managers in the same cluster using a naming convention that identifies the
cluster to which the queue manager belongs. Use a similar naming convention for channel names and
extend it to describe the channel characteristics.

Clustering: Topology design considerations
This topic provides guidance for planning and administering IBM MQ clusters. This information is a guide
based on testing and feedback from customers.

By thinking about where user applications and internal administrative processes are going to be located
in advance, many problems can either be avoided, or minimized at a later date. This topic contains
information about design decisions that can improve performance, and simplify maintenance tasks as the
cluster scales.

• “Performance of the clustering infrastructure” on page 42
• “Full repositories” on page 43
• “Should applications use queues on full repositories?” on page 44
• “Managing channel definitions” on page 44
• “Workload balancing over multiple channels” on page 45

Performance of the clustering infrastructure
When an application tries to open a queue on a queue manager in a cluster, the queue manager registers
its interest with the full repositories for that queue so that it can learn where the queue exists in the
cluster. Any updates to the queue location or configuration are automatically sent by the full repositories
to the interested queue manager. This registering of interest is internally known as a subscription (these
subscriptions are not the same as IBM MQ subscriptions used for publish/subscribe messaging in IBM
MQ)

All information about a cluster goes through every full repository. Full repositories are therefore always
being used in a cluster for administrative message traffic. The high usage of system resources when
managing these subscriptions, and the transmission of them and the resulting configuration messages,
can cause a considerable load on the clustering infrastructure. There are a number of things to consider
when ensuring that this load is understood and minimized wherever possible:

• The more individual queue managers using a cluster queue, the more subscriptions are in the system,
and thus the bigger the administrative overhead when changes occur and interested subscribers need
to be notified, especially on the full repository queue managers. One way to minimize unnecessary
traffic and full repository load is by connecting similar applications (that is, those applications that work
with the same queues) to a smaller number of queue managers.

• In addition to the number of subscriptions in the system affecting the performance the rate of change
in the configuration of clustered objects can affect performance, for example the frequent changing of a
clustered queue configuration.

42 Planning for IBM MQ

• When a queue manager is a member of multiple clusters (that is, it is part of an overlapping cluster
system) any interest made in a queue results in a subscription for each cluster it is a member of, even if
the same queue managers are the full repositories for more than one of the clusters. This arrangement
increases the load on the system, and is one reason to consider whether multiple overlapping clusters
are necessary, rather than a single cluster.

• Application message traffic (that is, the messages being sent by IBM MQ applications to the cluster
queues) does not go via the full repositories to reach the destination queue managers. This message
traffic is sent directly between the queue manager where the message enters the cluster, and the queue
manager where the cluster queue exists. It is not therefore necessary to accommodate high rates of
application message traffic with respect to the full repository queue managers, unless the full repository
queue managers happen to be either of those two queue managers mentioned. For that reason, it
is recommended that full repository queue managers are not used for application message traffic in
clusters where the clustering infrastructure load is significant.

Full repositories
A repository is a collection of information about the queue managers that are members of a cluster.
A queue manager that hosts a complete set of information about every queue manager in the cluster
has a full repository. For more information about full repositories and partial repositories, see Cluster
repository.

Full repositories must be held on servers that are reliable and as highly available as possible and single
points of failure must be avoided. The cluster design must always have two full repositories. If there is a
failure of a full repository, the cluster can still operate.

Details of any updates to cluster resources made by a queue manager in a cluster; for example, clustered
queues, are sent from that queue manager to two full repositories at most in that cluster (or to one if there
is only one full repository queue manager in the cluster). Those full repositories hold the information and
propagate it to any queue managers in the cluster that show an interest in it (that is, they subscribe to it).
To ensure that each member of the cluster has an up-to-date view of the cluster resources there, each
queue manager must be able to communicate with at least one full repository queue manager at any one
time.

If, for any reason a queue manager cannot communicate with any full repositories, it can continue to
function in the cluster based on its already cached level of information for a period time, but no new
updates or access to previously unused cluster resources are available.

For this reason, you must aim to keep the two full repositories available at all times. However, this
arrangement does not mean that extreme measures must be taken because the cluster functions
adequately for a short while without a full repository.

There is another reason that a cluster must have two full repository queue managers, other than the
availability of cluster information: This reason is to ensure that the cluster information held in the full
repository cache exists in two places for recovery purposes. If there is only one full repository, and it loses
its information about the cluster, then manual intervention on all queue managers within the cluster is
required in order to get the cluster working again. If there are two full repositories however, then because
information is always published to and subscribed for from two full repositories, the failed full repository
can be recovered with the minimum of effort.

• It is possible to perform maintenance on full repository queue managers in a two full repository
cluster design without impacting users of that cluster: The cluster continues to function with only
one repository, so where possible bring the repositories down, apply the maintenance, and back up
again one at a time. Even if there is an outage on the second full repository, running applications are
unaffected for a minimum of three days.

• Unless there is a good reason for using a third repository, such as using a geographically local full
repository for geographical reasons, use the two repository design. Having three full repositories means
that you never know which are the two that are currently in use, and there might be administrative
problems caused by interactions between multiple workload management parameters. It is not
recommend to have more than two full repositories.

Planning an IBM MQ architecture 43

• If you still need better availability, consider hosting the full repository queue managers as multi-
instance queue managers or using platform specific high availability support to improve their
availability.

• You must fully interconnect all the full repository queue managers with manually defined cluster sender
channels. Particular care must be taken when the cluster does have, for some justifiable reason, more
than two full repositories. In this situation it is often possible to miss one or more channels and for it
not to be immediately apparent. When full interconnection does not occur, hard to diagnose problems
often arise. They are hard to diagnose because some full repositories not holding all repository data and
therefore resulting in queue managers in the cluster having different views of the cluster depending on
the full repositories that they connect to.

Should applications use queues on full repositories?
A full repository is in most ways exactly like any other queue manager, and it is therefore possible to
host application queues on the full repository and connect applications directly to these queue managers.
Should applications use queues on full repositories?

The commonly accepted answer is "No?". Although this configuration is possible, many customers prefer
to keep these queue managers dedicated to maintaining the full repository cluster cache. Points to
consider when deciding on either option are described here, but ultimately the cluster architecture must
be appropriate to the particular demands of the environment.

• Upgrades: Usually, in order to use new cluster features in new releases of IBM MQ the full repository
queue managers of that cluster must be upgraded first. When an application in the cluster wants to use
new features, it might be useful to be able to update the full repositories (and some subset of partial
repositories) without testing a number of co-located applications.

• Maintenance: In a similar way if you must apply urgent maintenance to the full repositories, they can be
restarted or refreshed with the REFRESH command without touching applications.

• Performance: As clusters grow and demands on the full repository cluster cache maintenance become
greater, keeping applications separate reduces risk of this affecting application performance through
contention for system resources.

• Hardware requirements: Typically, full repositories do not need to be powerful; for example, a simple
UNIX server with a good expectation of availability is sufficient. Alternatively, for very large or constantly
changing clusters, the performance of the full repository computer must be considered.

• Software requirements: Requirements are usually the main reason for choosing to host application
queues on a full repository. In a small cluster, collocation might mean a requirement for fewer queue
managers/servers over all.

Managing channel definitions
Even within a single cluster, multiple channel definitions can exist giving multiple routes between two
queue managers.

There is sometimes an advantage to having parallel channels within a single cluster, but this design
decision must be considered thoroughly; apart from adding complexity, this design might result in
channels being under-used which reduces performance. This situation occurs because testing usually
involves sending lots of messages at a constant rate, so the parallel channels are fully used. But with
real-world conditions of a non-constant stream of messages, the workload balancing algorithm causes
performance to drop as the message flow is switched from channel to channel.

When a queue manager is a member of multiple clusters, the option exists to use a single channel
definition with a cluster namelist, rather than defining a separate CLUSRCVR channel for each cluster.
However, this setup can cause administration difficulties later; consider for example the case where TLS is
to be applied to one cluster but not a second. It is therefore preferable to create separate definitions, and
the naming convention suggested in “Cluster naming conventions” on page 32 supports this.

44 Planning for IBM MQ

Workload balancing over multiple channels
This information is intended as an advanced understanding of the subject. For the basic explanation
of this subject (which must be understood before using the information here), see Using clusters for
workload management, Workload balancing in clusters, and The cluster workload management algorithm.

The cluster workload management algorithm provides a large set of tools, but they must not all be used
with each other without fully understanding how they work and interact. It might not be immediately
obvious how important channels are to the workload balancing process: The workload management
round-robin algorithm behaves as though multiple cluster channels to a queue manager that owns a
clustered queue, are treated as multiple instances of that queue. This process is explained in more detail
in the following example:

1. There are two queue managers hosting a queue in a cluster: QM1 and QM2.
2. There are five cluster receiver channels to QM1.
3. There is only one cluster receiver channel to QM2.
4. When MQPUT or MQOPEN on QM3 chooses an instance, the algorithm is five times more likely to send

the message to QM1 than to QM2.
5. The situation in step 4 occurs because the algorithm sees six options to choose from (5+1) and

round-robins across all five channels to QM1 and the single channel to QM2.

Another subtle behavior is that even when putting messages to a clustered queue that happens to have
one instance configured on the local queue manager, IBM MQ uses the state of the local cluster receiver
channel to decide whether messages are to be put to the local instance of the queue or remote instances
of the queue. In this scenario:

1. When putting messages the workload management algorithm does not look at individual cluster
queues, it looks at the cluster channels which can reach those destinations.

2. To reach local destinations, the local receiver channels are included in this list (although they are not
used to send the message).

3. When a local receiver channel is stopped, the workload management algorithm, prefers an alternative
instance by default if its CLUSRCVR is not stopped. If there are multiple local CLUSRCVR instances for
the destination and at least one is not stopped, the local instance remains eligible.

Clustering: Application isolation using multiple cluster transmission queues
You can isolate the message flows between queue managers in a cluster. You can place messages being
transported by different cluster-sender channels onto different cluster transmission queues. You can use
the approach in a single cluster or with overlapping clusters. The topic provides examples and some best
practices to guide you in choosing an approach to use.

When you deploy an application, you have a choice over which IBM MQ resources it shares with other
applications and which resources it does not share. There are a number of types of resources that can
be shared, the main ones being the server itself, the queue manager, channels, and queues. You can
choose to configure applications with fewer shared resources; allocating separate queues, channels,
queue managers, or even servers to individual applications. If you do so, the overall system configuration
becomes bigger and more complex. Using IBM MQ clusters reduces the complexity of managing more
servers, queue managers, queues, and channels, but it introduces another shared resource, the cluster
transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Figure 12 on page 47 is a slice out of a large IBM MQ deployment that illustrates the significance
of sharing SYSTEM.CLUSTER.TRANSMIT.QUEUE. In the diagram, the application, Client App, is
connected to the queue manager QM2 in cluster CL1. A message from Client App is processed by
the application, Server App. The message is retrieved by Server App from the cluster queue Q1 on the
queue manager QM3 in CLUSTER2. Because the client and server applications are not in the same cluster,
the message is transferred by the gateway queue manager QM1.

The normal way to configure a cluster gateway is to make the gateway queue manager a member
of all the clusters. On the gateway queue manager are defined clustered alias queues for cluster
queues in all the clusters. The clustered queue aliases are available in all the clusters. Messages put

Planning an IBM MQ architecture 45

to the cluster queue aliases are routed via the gateway queue manager to their correct destination.
The gateway queue manager puts messages sent to the clustered alias queues onto the common
SYSTEM.CLUSTER.TRANSMIT.QUEUE on QM1.

The hub and spoke architecture requires all messages between clusters to pass through the gateway
queue manager. The result is that all messages flow through the single cluster transmission queue on
QM1, SYSTEM.CLUSTER.TRANSMIT.QUEUE.

From a performance perspective, a single queue is not a problem. A common transmission queue
generally does not represent a performance bottleneck. Message throughput on the gateway is largely
determined by the performance of the channels that connect to it. Throughput is not generally affected by
the number of queues, or the number of messages on the queues that use the channels.

From some other perspectives, using a single transmission queue for multiple applications has
drawbacks:

• You cannot isolate the flow of messages to one destination from the flow of messages to another
destination. You cannot separate the storage of messages before they are forwarded, even if the
destinations are in different clusters on different queue managers.

If one cluster destination becomes unavailable, messages for that destination build-up in the single
transmission queue, and eventually the messages fill it up. Once the transmission queue is full, it stops
messages from being placed onto the transmission queue for any cluster destination.

• It is not easy to monitor the transfer of messages to different cluster destinations. All the messages
are on the single transmission queue. Displaying the depth of the transmission queue gives you little
indication whether messages are being transferred to all destinations.

46 Planning for IBM MQ

Note: The arrows in Figure 12 on page 47 and following figures are of different types. Solid arrows
represent message flows. The labels on solid arrows are message channel names. The gray solid
arrows are potential message flows from the SYSTEM.CLUSTER.TRANSMIT.QUEUE onto cluster-sender
channels. Black dashed lines connect labels to their targets. Gray dashed arrows are references; for
example from an MQOPEN call by Client App to the cluster alias queue definition Q1A.

Figure 12. Client-server application deployed to hub and spoke architecture using IBM MQ clusters

In Figure 12 on page 47, clients of Server App open the queue Q1A. Messages are put to
SYSTEM.CLUSTER.TRANSMIT.QUEUE on QM2, transferred to SYSTEM.CLUSTER.TRANSMIT.QUEUE on
QM1, and then transferred to Q1 on QM3, where they are received by the Server App application.

The message from Client App passes through system cluster transmission queues on QM2 and QM1. In
Figure 12 on page 47, the objective is to isolate the message flow on the gateway queue manager from
the client application, so that its messages are not stored on SYSTEM.CLUSTER.TRANSMIT.QUEUE. You
can isolate flows on any of the other clustered queue managers. You can also isolate flows in the other
direction, back to the client. To keep the descriptions of the solutions brief, the descriptions consider only
a single flow from the client application.

Solutions to isolating cluster message traffic on a cluster gateway queue manager
One way to solve the problem is to use queue manager aliases, or remote queue definitions, to bridge
between clusters. Create a clustered remote queue definition, a transmission queue, and a channel, to
separate each message flow on the gateway queue manager; see Adding a remote queue definition to
isolate messages sent from a gateway queue manager.

From IBM WebSphere® MQ 7.5 onwards, cluster queue managers are not limited to a single cluster
transmission queue. You have two choices:

1. Define additional cluster transmission queues manually, and define which cluster-sender channels
transfer messages from each transmission queue; see Adding a cluster transmit queue to isolate
cluster message traffic sent from a gateway queue manager.

Planning an IBM MQ architecture 47

2. Allow the queue manager to create and manage additional cluster transmission queues automatically.
It defines a different cluster transmission queue for each cluster-sender channel; see Changing the
default to separate cluster transmission queues to isolate message traffic.

You can combine manually defined cluster transmission queues for some cluster-sender channels, with
the queue manager managing the rest. The combination of transmission queues is the approach taken in
Adding a cluster transmit queue to isolate cluster message traffic sent from a gateway queue manager. In
that solution, most messages between clusters use the common SYSTEM.CLUSTER.TRANSMIT.QUEUE.
One application is critical, and all its message flows are isolated from other flows by using one manually
defined cluster transmission queue.

The configuration in Adding a cluster transmit queue to isolate cluster message traffic sent from a
gateway queue manager is limited. It does not separate the message traffic going to a cluster queue
on the same queue manager in the same cluster as another cluster queue. You can separate the
message traffic to individual queues by using the remote queue definitions that are part of distributed
queuing. With clusters, using multiple cluster transmission queues, you can separate message traffic
that goes to different cluster-sender channels. Multiple cluster queues in the same cluster, on the same
queue manager, share a cluster-sender channel. Messages for those queues are stored on the same
transmission queue, before being forwarded from the gateway queue manager. In the configuration in
Adding a cluster and a cluster transmit queue to isolate cluster message traffic sent from a gateway
queue manager, the limitation is side-stepped by adding another cluster and making the queue manager
and cluster queue a member of the new cluster. The new queue manager might be the only queue
manager in the cluster. You could add more queue managers to the cluster, and use the same cluster to
isolate cluster queues on those queue managers as well.

Related concepts
“Access control and multiple cluster transmission queues” on page 27
Choose between three modes of checking when an application puts messages to remote cluster
queues. The modes are checking remotely against the cluster queue, checking locally against
SYSTEM.CLUSTER.TRANSMIT.QUEUE, or checking against local profiles for the cluster queue, or cluster
queue manager.
Working with cluster transmission queues and cluster-sender channels
“Overlapping clusters” on page 34
Overlapping clusters provide additional administrative capabilities. Use namelists to reduce the number
of commands needed to administer overlapping clusters.
Related tasks
Authorizing putting messages on remote cluster queues
Adding a remote queue definition to isolate messages sent from a gateway queue manager
Adding a cluster transmit queue to isolate cluster message traffic sent from a gateway queue manager
Adding a cluster and a cluster transmit queue to isolate cluster message traffic sent from a gateway
queue manager
Changing the default to separate cluster transmission queues to isolate message traffic
Creating two-overlapping clusters with a gateway queue manager
Configuring message paths between clusters
Securing
Related reference
setmqaut

Clustering: Planning how to configure cluster transmission queues
You are guided through the choices of cluster transmission queues. You can configure one common
default queue, separate default queues, or manually defined queues.

Before you begin
Review “How to choose what type of cluster transmission queue to use” on page 51.

48 Planning for IBM MQ

About this task
You have some choices to make when you are planning how to configure a queue manager to select a
cluster transmission queue.

1. What is the default cluster transmission queue for cluster message transfers?

a. A common cluster transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE.
b. Separate cluster transmission queues. The queue manager manages the separate cluster

transmission queues. It creates them as permanent-dynamic queues from the model queue,
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE. It creates one cluster transmission queue for each
cluster-sender channel it uses.

2. For the cluster transmission queues that you do decide to create manually, you have a further two
choices:

a. Define a separate transmission queue for each cluster-sender channel that you decide to configure
manually. In this case, set the CLCHNAME queue attribute of the transmission queue to the name of
a cluster-sender channel. Select the cluster-sender channel that is to transfer messages from this
transmission queue.

b. Combine message traffic for a group of cluster-sender channels onto the same cluster transmission
queue; see Figure 13 on page 50. In this case, set the CLCHNAME queue attribute of each
common transmission queue to a generic cluster-sender channel name. A generic cluster-sender
channel name is a filter to group cluster-sender channel names. For example, SALES.* groups all
cluster-sender channels that have names beginning with SALES.. You can place multiple wildcard
characters anywhere in the filter-string. The wildcard character is an asterisk, "*". It represents
from zero to any number of characters.

Planning an IBM MQ architecture 49

Figure 13. Example of specific transmission queues for different departmental IBM MQ clusters

Procedure
1. Select the type of default cluster transmission queue to use.

• Choose a single cluster transmission queue, or separate queues for each cluster connection.

Leave the default setting or run the MQSC command:

ALTER QMGR DEFCLXQ(CHANNEL)

2. Isolate any message flows that must not share a cluster transmission queue with other flows.

• See “Clustering: Example configuration of multiple cluster transmission queues” on page 53. In the
example the SALES queue, which must be isolated, is a member of the SALES cluster, on SALESRV.
To isolate the SALES queue, create a new cluster Q.SALES, make the SALESRV queue manager a
member, and modify the SALES queue to belong to Q.SALES.

• Queue managers that send messages to SALES must also be members of the new cluster. If you use
a clustered queue alias and a gateway queue manager, as in the example, in many cases you can
limit the changes to making the gateway queue manager a member of the new cluster.

50 Planning for IBM MQ

• However, separating flows from the gateway to the destination does not separate flows to the
gateway from the source queue manager. But it sometimes turns out to be sufficient to separate
flows from the gateway and not flows to the gateway. If it is not sufficient, then add the source queue
manager into the new cluster. If you want messages to travel through the gateway, move the cluster
alias to the new cluster and continue to send messages to the cluster alias on the gateway, and not
directly to the target queue manager.

Follow these steps to isolate message flows:
a) Configure the destinations of the flows so that each target queue is the only queue in a specific

cluster, on that queue manager.
b) Create the cluster-sender and cluster-receiver channels for any new clusters you have created

following a systematic naming convention.

• See “Clustering: Special considerations for overlapping clusters” on page 41.
c) Define a cluster transmission queue for each isolated destination on every queue manager that

sends messages to the target queue.

• A naming convention for cluster transmission queues is to use the value of the cluster channel
name attribute, CLCHNAME, prefixed with XMITQ.

3. Create cluster transmission queues to meet governance or monitoring requirements.

• Typical governance and monitoring requirements result in a transmission queue per cluster or a
transmission queue per queue manager. If you follow the naming convention for cluster channels,
ClusterName. QueueManagerName, it is easy to create generic channel names that select a
cluster of queue managers, or all the clusters a queue manager is a member of; see “Clustering:
Example configuration of multiple cluster transmission queues” on page 53.

• Extend the naming convention for cluster transmission queues to cater for generic channel names,
by replacing the asterisk symbol by a percent sign. For example,

DEFINE QLOCAL(XMITQ.SALES.%) USAGE(XMITQ) CLCHNAME(SALES.*)

Related concepts
Working with cluster transmission queues and cluster-sender channels
“Access control and multiple cluster transmission queues” on page 27
Choose between three modes of checking when an application puts messages to remote cluster
queues. The modes are checking remotely against the cluster queue, checking locally against
SYSTEM.CLUSTER.TRANSMIT.QUEUE, or checking against local profiles for the cluster queue, or cluster
queue manager.
“Overlapping clusters” on page 34
Overlapping clusters provide additional administrative capabilities. Use namelists to reduce the number
of commands needed to administer overlapping clusters.
Related tasks
Adding a remote queue definition to isolate messages sent from a gateway queue manager
Adding a cluster transmit queue to isolate cluster message traffic sent from a gateway queue manager
Adding a cluster and a cluster transmit queue to isolate cluster message traffic sent from a gateway
queue manager
Changing the default to separate cluster transmission queues to isolate message traffic
Creating two-overlapping clusters with a gateway queue manager
Configuring message paths between clusters

How to choose what type of cluster transmission queue to use
How to choose between different cluster transmission queue configuration options.

You can choose which cluster transmission queue is associated with a cluster-sender channel.

1. You can have all cluster-sender channels associated with the single default cluster transmit queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE; this option is the default.

Planning an IBM MQ architecture 51

2. You can set all cluster-sender channels to be automatically associated with a separate
cluster transmission queue. The queues are created by the queue manager from the model
queue SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE and named SYSTEM.CLUSTER.TRANSMIT.
ChannelName. Channels will use their uniquely named cluster transmit queue if the queue manager
attribute DEFCLXQ is set to CHANNEL.

3. You can set specific cluster-sender channels to be served by a single cluster transmission queue.
Select this option by creating a transmission queue and setting its CLCHNAME attribute to the name of
the cluster-sender channel.

4. You can select groups of cluster-sender channels to be served by a single cluster transmission queue.
Select this option by creating a transmission queue and setting its CLCHNAME attribute to a generic
channel name, such as ClusterName.*. If you name cluster channels by following the naming
conventions in “Clustering: Special considerations for overlapping clusters” on page 41, this name
selects all cluster channels connected to queue managers in the cluster ClusterName.

You can combine either of the default cluster transmission queue options for some cluster-sender
channels, with any number of specific and generic cluster transmission queue configurations.

Best practices
In most cases, for existing IBM MQ installations, the default configuration is the best choice.
A cluster queue manager stores cluster messages on a single cluster transmission queue,
SYSTEM.CLUSTER.TRANSMIT.QUEUE. You have the choice of changing the default to storing messages
for different queue managers and different clusters on separate transmission queues, or of defining your
own transmission queues.

In most cases, for new IBM MQ installations, the default configuration is also the best choice. The process
of switching from the default configuration to the alternative default of having one transmission queue
for each cluster-sender channel is automatic. Switching back is also automatic. The choice of one or the
other is not critical, you can reverse it.

The reason for choosing a different configuration is more to do with governance, and management, than
with functionality or performance. With a couple of exceptions, configuring multiple cluster transmission
queues does not benefit the behavior of the queue manager. It results in more queues, and requires
you to modify monitoring and management procedures you have already set up that refer to the single
transmission queue. That is why, on balance, remaining with the default configuration is the best choice,
unless you have strong governance or management reasons for a different choice.

The exceptions are both concerned with what happens if the number of messages stored on
SYSTEM.CLUSTER.TRANSMIT.QUEUE increases. If you take every step to separate the messages for
one destination from the messages for another destination, then channel and delivery problems with one
destination ought not to affect the delivery to another destination. However, the number of messages
stored on SYSTEM.CLUSTER.TRANSMIT.QUEUE can increase due to not delivering messages fast
enough to one destination. The number of messages on SYSTEM.CLUSTER.TRANSMIT.QUEUE for one
destination can affect the delivery of messages to other destinations.

To avoid problems that result from filling up a single transmission queue, aim to build sufficient capacity
into your configuration. Then, if a destination fails and a message backlog starts to build up, you have time
to fix the problem.

If messages are routed through a hub queue manager, such as a cluster gateway, they share a
common transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE. If the number of messages stored
on SYSTEM.CLUSTER.TRANSMIT.QUEUE on the gateway queue manager reaches its maximum depth,
the queue manager starts to reject new messages for the transmission queue until its depth reduces.
The congestion affects messages for all destinations that are routed through the gateway. Messages back
up the transmission queues of other queue managers that are sending messages to the gateway. The
problem manifests itself in messages written to queue manager error logs, falling message throughput,
and longer elapsed times between sending a message and the time that a message arrives at its
destination.

52 Planning for IBM MQ

The effect of congestion on a single transmission queue can become apparent, even before it is full. If
you have a mixed message traffic, with some large non-persistent messages and some small messages,
the time to deliver small messages increases as the transmission queue fills. The delay is due to writing
large non-persistent messages to disk that would not normally get written to disk. If you have time critical
message flows, sharing a cluster transmission queue with other mixed messages flows, it could be worth
configuring a special message path to isolate it from other message flows; see Adding a cluster and a
cluster transmit queue to isolate cluster message traffic sent from a gateway queue manager.

The other reasons for configuring separate cluster transmission queues are to meet governance
requirements, or to simplify monitoring messages that are sent to different cluster destinations. For
example, you might have to demonstrate that messages for one destination never share a transmission
queue with messages for another destination.

Change the queue manager attribute DEFCLXQ that controls the default cluster transmission queue, to
create different cluster transmission queues for every cluster-sender channel. Multiple destinations can
share a cluster-sender channel, so you must plan your clusters to meet this objective fully. Apply the
method Adding a cluster and a cluster transmit queue to isolate cluster message traffic sent from a
gateway queue manager systematically to all your cluster queues. The result you are aiming for is for no
cluster destination to share a cluster-sender channel with another cluster destination. As a consequence,
no message for a cluster destination shares its cluster transmission queue with a message for another
destination.

Creating a separate cluster transmission queue for some specific message flow, makes it easy to monitor
the flow of messages to that destination. To use a new cluster transmission queue, define the queue,
associate it with a cluster-sender channel, and stop and start the channel. The change does not have to
be permanent. You could isolate a message flow for a while, to monitor the transmission queue, and then
revert to using the default transmission queue again.

Related tasks
Clustering: Example configuration of multiple cluster transmission queues
In this task you apply the steps to plan multiple cluster transmission queues to three overlapping
clusters. The requirements are to separate messages flows to one cluster queue, from all other message
flows, and to store messages for different clusters on different cluster transmission queues.
Clustering: Switching cluster transmission queues
Plan how the changes to the cluster transmission queues of an existing production queue manager are
going to be brought into effect.

Clustering: Example configuration of multiple cluster transmission queues
In this task you apply the steps to plan multiple cluster transmission queues to three overlapping
clusters. The requirements are to separate messages flows to one cluster queue, from all other message
flows, and to store messages for different clusters on different cluster transmission queues.

About this task
The steps in this task show how to apply the procedure in “Clustering: Planning how to configure cluster
transmission queues” on page 48 and arrive at the configuration shown in Figure 14 on page 54. It is an
example of three overlapping clusters, with a gateway queue manager, that is configured with separate
cluster transmission queues. The MQSC commands to define the clusters are described in “Creating the
example clusters” on page 56.

For the example, there are two requirements. One is to separate the message flow from the
gateway queue manager to the sales application that logs sales. The second is to query how many
messages are waiting to be sent to different departmental areas at any point in time. The SALES,
FINANCE, and DEVELOP clusters are already defined. Cluster messages are currently forwarded from
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Planning an IBM MQ architecture 53

Figure 14. Example of specific transmission queues for different departmental IBM MQ clusters

The steps to modify the clusters are as follows. For the definitions, see Changes to isolate the sales queue
in a new cluster and separate the gateway cluster transmission queues.

Procedure
1. The first configuration step is to " Select the type of default cluster transmission queue to use ".

The decision is to create separate default cluster transmission queues by running the following MQSC
command on the GATE queue manager.

ALTER QMGR DEFCLXQ(CHANNEL)

There is no strong reason for choosing this default, as the intention is to manually define cluster
transmission queues. The choice does have a weak diagnostic value. If a manual definition is done
wrongly, and a message flows down a default cluster transmission queue, it shows up in the creation of
a permanent-dynamic cluster transmission queue.

2. The second configuration step is to " Isolate any message flows that must not share a cluster
transmission queue with other flows ".

54 Planning for IBM MQ

In this case the sales application that receives messages from the queue SALES on SALESRV requires
isolation. Only isolation of messages from the gateway queue manager is required. The three sub-
steps are:
a) " Configure the destinations of the flows so that each target queue is the only queue in a specific

cluster, on that queue manager ".

The example requires adding the queue manager SALESRV to a new cluster within the sales
department. If you have few queues that require isolation, you might decide on creating a specific
cluster for the SALES queue. A possible naming convention for the cluster name is to name such
clusters, Q. QueueName, for example Q.SALES. An alternative approach, which might be more
practical if you have a large number of queues to be isolated, is to create clusters of isolated
queues where and when needed. The clusters names might be QUEUES. n.

In the example, the new cluster is called Q.SALES. To add the new cluster, see the definitions in
Changes to isolate the sales queue in a new cluster and separate the gateway cluster transmission
queues. The summary of definition changes is as follows:

i) Add Q.SALES to the namelist of clusters on the repository queue managers. The namelist is
referred to in the queue manager REPOSNL parameter.

ii) Add Q.SALES to the namelist of clusters on the gateway queue manager. The namelist is
referred to in all the cluster queue alias and cluster queue manager alias definitions on the
gateway queue manager.

iii) Create a namelist on the queue manager SALESRV, for both the clusters it is a member of, and
change the cluster membership of the SALES queue:

DEFINE NAMELIST(CLUSTERS) NAMES(SALES, Q.SALES) REPLACE
ALTER QLOCAL(SALES) CLUSTER(' ') CLUSNL(SALESRV.CLUSTERS)

The SALES queue is a member of both clusters, just for the transition. Once the new
configuration is running, you remove the SALES queue from the SALES cluster; see Figure 15 on
page 59.

b) " Create the cluster-sender and cluster-receiver channels for any new clusters you have created
following a systematic naming convention ".

i) Add the cluster-receiver channel Q.SALES. RepositoryQMgr to each of the repository queue
managers

ii) Add the cluster-sender channel Q.SALES. OtherRepositoryQMgr to each of the repository
queue managers, to connect to the other repository manager. Start these channels.

iii) Add the cluster receiver channels Q.SALES.SALESRV, and Q.SALES.GATE to either of the
repository queue managers that is running.

iv) Add the cluster-sender channels Q.SALES.SALESRV, and Q.SALES.GATE to the SALESRV and
GATE queue managers. Connect the cluster-sender channel to the repository queue manager
that you created the cluster-receiver channels on.

c) " Define a cluster transmission queue for each isolated destination on every queue manager that
sends messages to the target queue ".

On the gateway queue manager define the cluster transmission queue XMITQ.Q.SALES.SALESRV
for the Q.SALES.SALESRV cluster-sender channel:

DEFINE QLOCAL(XMITQ.Q.SALES.SALESRV) USAGE(XMITQ) CLCHNAME(Q.SALES.SALESRV) REPLACE

3. The third configuration step is to " Create cluster transmission queues to meet governance or
monitoring requirements ".

On the gateway queue manager define the cluster transmission queues:

DEFINE QLOCAL(XMITQ.SALES) USAGE(XMITQ) CLCHNAME(SALES.*) REPLACE

Planning an IBM MQ architecture 55

DEFINE QLOCAL(XMITQ.DEVELOP) USAGE(XMITQ) CLCHNAME(DEVELOP.*) REPLACE
DEFINE QLOCAL(XMITQ.FINANCE) USAGE(XMITQ) CLCHNAME(SALES.*) REPLACE

What to do next
Switch to the new configuration on the gateway queue manager.

The switch is triggered by starting the new channels, and restarting the channels that are now associated
with different transmission queues. Alternatively, you can stop and start the gateway queue manager.

1. Stop the following channels on the gateway queue manager:

SALES. Qmgr
DEVELOP. Qmgr
FINANCE. Qmgr

2. Start the following channels on the gateway queue manager:

SALES. Qmgr
DEVELOP. Qmgr
FINANCE. Qmgr
Q.SALES.SAVESRV

When the switch is complete, remove the SALES queue from the SALES cluster; see Figure 15 on page
59.

Related concepts
How to choose what type of cluster transmission queue to use
How to choose between different cluster transmission queue configuration options.
Related tasks
Clustering: Switching cluster transmission queues
Plan how the changes to the cluster transmission queues of an existing production queue manager are
going to be brought into effect.

Creating the example clusters
The definitions and instructions to create the example cluster, and modify it to isolate the SALES queue
and separate messages on the gateway queue manager.

About this task
The full MQSC commands to create the FINANCE, SALES, and Q.SALES clusters are provided in
Definitions for the basic clusters, Changes to isolate the sales queue in a new cluster and separate the
gateway cluster transmission queues, and Remove the sales queue on queue manager SALESRV from the
sales cluster. The DEVELOP cluster is omitted from the definitions, to keep the definitions shorter.

Procedure
1. Create the SALES and FINANCE clusters, and the gateway queue manager.

a) Create the queue managers.

Run the command: crtmqm -sax -u SYSTEM.DEAD.LETTER.QUEUE QmgrName for each of the
queue manager names in Table 4 on page 56.

Table 4. Queue manager names and port numbers

Description Queue manager name Port number

Finance repository FINR1 1414

Finance repository FINR2 1415

56 Planning for IBM MQ

Table 4. Queue manager names and port numbers (continued)

Description Queue manager name Port number

Finance client FINCLT 1418

Sales repository SALER1 1416

Sales repository SALER2 1417

Sales server SALESRV 1419

Gateway GATE 1420

b) Start all the queue managers

Run the command: strmqm QmgrName for each of the queue manager names in Table 4 on page
56.

c) Create the definitions for each of the queue managers

Run the command: runmqsc QmgrName < filename where the files are listed in Definitions for
the basic clusters, and the file name matches the queue manager name.

Definitions for the basic clusters
finr1.txt

DEFINE LISTENER(1414) TRPTYPE(TCP) IPADDR(localhost) CONTROL(QMGR) PORT(1414) REPLACE
START LISTENER(1414)
ALTER QMGR REPOS(FINANCE)
DEFINE CHANNEL(FINANCE.FINR2) CHLTYPE(CLUSSDR) CONNAME('localhost(1415)')
CLUSTER(FINANCE) REPLACE
DEFINE CHANNEL(FINANCE.FINR1) CHLTYPE(CLUSRCVR) CONNAME('localhost(1414)')
CLUSTER(FINANCE) REPLACE

finr2.txt

DEFINE LISTENER(1415) TRPTYPE(TCP) IPADDR(localhost) CONTROL(QMGR) PORT(1415) REPLACE
START LISTENER(1415)
ALTER QMGR REPOS(FINANCE)
DEFINE CHANNEL(FINANCE.FINR1) CHLTYPE(CLUSSDR) CONNAME('localhost(1414)')
CLUSTER(FINANCE) REPLACE
DEFINE CHANNEL(FINANCE.FINR2) CHLTYPE(CLUSRCVR) CONNAME('localhost(1415)')
CLUSTER(FINANCE) REPLACE

finclt.txt

DEFINE LISTENER(1418) TRPTYPE(TCP) IPADDR(localhost) CONTROL(QMGR) PORT(1418) REPLACE
START LISTENER(1418)
DEFINE CHANNEL(FINANCE.FINR1) CHLTYPE(CLUSSDR) CONNAME('localhost(1414)')
CLUSTER(FINANCE) REPLACE
DEFINE CHANNEL(FINANCE.FINCLT) CHLTYPE(CLUSRCVR) CONNAME('localhost(1418)')
CLUSTER(FINANCE) REPLACE
DEFINE QMODEL(SYSTEM.SAMPLE.REPLY) REPLACE

saler1.txt

DEFINE LISTENER(1416) TRPTYPE(TCP) IPADDR(localhost) CONTROL(QMGR) PORT(1416) REPLACE
START LISTENER(1416)
ALTER QMGR REPOS(SALES)
DEFINE CHANNEL(SALES.SALER2) CHLTYPE(CLUSSDR) CONNAME('localhost(1417)')
CLUSTER(SALES) REPLACE
DEFINE CHANNEL(SALES.SALER1) CHLTYPE(CLUSRCVR) CONNAME('localhost(1416)')
CLUSTER(SALES) REPLACE

saler2.txt

DEFINE LISTENER(1417) TRPTYPE(TCP) IPADDR(localhost) CONTROL(QMGR) PORT(1417) REPLACE

Planning an IBM MQ architecture 57

START LISTENER(1417)
ALTER QMGR REPOS(SALES)
DEFINE CHANNEL(SALES.SALER1) CHLTYPE(CLUSSDR) CONNAME('localhost(1416)')
CLUSTER(SALES) REPLACE
DEFINE CHANNEL(SALES.SALER2) CHLTYPE(CLUSRCVR) CONNAME('localhost(1417)')
CLUSTER(SALES) REPLACE

salesrv.txt

DEFINE LISTENER(1419) TRPTYPE(TCP) IPADDR(localhost) CONTROL(QMGR) PORT(1419) REPLACE
START LISTENER(1419)
DEFINE CHANNEL(SALES.SALER1) CHLTYPE(CLUSSDR) CONNAME('localhost(1416)')
CLUSTER(SALES) REPLACE
DEFINE CHANNEL(SALES.SALESRV) CHLTYPE(CLUSRCVR) CONNAME('localhost(1419)')
CLUSTER(SALES) REPLACE
DEFINE QLOCAL(SALES) CLUSTER(SALES) TRIGGER INITQ(SYSTEM.DEFAULT.INITIATION.QUEUE)
PROCESS(ECHO) REPLACE
DEFINE PROCESS(ECHO) APPLICID(AMQSECH) REPLACE

gate.txt

DEFINE LISTENER(1420) TRPTYPE(TCP) IPADDR(LOCALHOST) CONTROL(QMGR) PORT(1420) REPLACE
START LISTENER(1420)
DEFINE NAMELIST(ALL) NAMES(SALES, FINANCE)
DEFINE CHANNEL(FINANCE.FINR1) CHLTYPE(CLUSSDR) CONNAME('LOCALHOST(1414)')
CLUSTER(FINANCE) REPLACE
DEFINE CHANNEL(FINANCE.GATE) CHLTYPE(CLUSRCVR) CONNAME('LOCALHOST(1420)')
CLUSTER(FINANCE) REPLACE
DEFINE CHANNEL(SALES.SALER1) CHLTYPE(CLUSSDR) CONNAME('LOCALHOST(1416)')
CLUSTER(SALES) REPLACE
DEFINE CHANNEL(SALES.GATE) CHLTYPE(CLUSRCVR) CONNAME('LOCALHOST(1420)')
CLUSTER(SALES) REPLACE
DEFINE QALIAS(A.SALES) CLUSNL(ALL) TARGET(SALES) TARGTYPE(QUEUE) DEFBIND(NOTFIXED)
REPLACE
DEFINE QREMOTE(FINCLT) RNAME(' ') RQMNAME(FINCLT) CLUSNL(ALL) REPLACE
DEFINE QREMOTE(SALESRV) RNAME(' ') RQMNAME(SALESRV) CLUSNL(ALL) REPLACE

2. Test the configuration by running the sample request program.
a) Start the trigger monitor program on the SALESRV queue manager

On Windows, open a command window and run the command runmqtrm -m SALESRV
b) Run the sample request program, and send a request.

On Windows, open a command window and run the command amqsreq A.SALES FINCLT

The request message is echoed back, and after 15 seconds the sample program finishes.
3. Create the definitions to isolate the SALES queue in the Q.SALES cluster and separate cluster

messages for the SALES and FINANCE cluster on the gateway queue manager.

Run the command: runmqsc QmgrName < filename where the files are listed in the following list,
and the file name almost matches the queue manager name.

Changes to isolate the sales queue in a new cluster and separate the gateway cluster
transmission queues
chgsaler1.txt

DEFINE NAMELIST(CLUSTERS) NAMES(SALES, Q.SALES)
ALTER QMGR REPOS(' ') REPOSNL(CLUSTERS)
DEFINE CHANNEL(Q.SALES.SALER2) CHLTYPE(CLUSSDR) CONNAME('localhost(1417)')
CLUSTER(Q.SALES) REPLACE
DEFINE CHANNEL(Q.SALES.SALER1) CHLTYPE(CLUSRCVR) CONNAME('localhost(1416)')
CLUSTER(Q.SALES) REPLACE

chgsaler2.txt

DEFINE NAMELIST(CLUSTERS) NAMES(SALES, Q.SALES)
ALTER QMGR REPOS(' ') REPOSNL(CLUSTERS)
DEFINE CHANNEL(Q.SALES.SALER1) CHLTYPE(CLUSSDR) CONNAME('localhost(1416)')
CLUSTER(Q.SALES) REPLACE

58 Planning for IBM MQ

DEFINE CHANNEL(Q.SALES.SALER2) CHLTYPE(CLUSRCVR) CONNAME('localhost(1417)')
CLUSTER(Q.SALES) REPLACE

chgsalesrv.txt

DEFINE NAMELIST (CLUSTERS) NAMES(SALES, Q.SALES)
DEFINE CHANNEL(Q.SALES.SALER1) CHLTYPE(CLUSSDR) CONNAME('localhost(1416)')
CLUSTER(Q.SALES) REPLACE
DEFINE CHANNEL(Q.SALES.SAVESRV) CHLTYPE(CLUSRCVR) CONNAME('localhost(1419)')
CLUSTER(Q.SALES) REPLACE
ALTER QLOCAL (SALES) CLUSTER(' ') CLUSNL(CLUSTERS)

chggate.txt

ALTER NAMELIST(ALL) NAMES(SALES, FINANCE, Q.SALES)
ALTER QMGR DEFCLXQ(CHANNEL)
DEFINE CHANNEL(Q.SALES.SALER1) CHLTYPE(CLUSSDR) CONNAME('localhost(1416)')
CLUSTER(Q.SALES) REPLACE
DEFINE CHANNEL(Q.SALES.GATE) CHLTYPE(CLUSRCVR) CONNAME('localhost(1420)')
CLUSTER(Q.SALES) REPLACE
DEFINE QLOCAL (XMITQ.Q.SALES.SALESRV) USAGE(XMITQ) CLCHNAME(Q.SALES.SALESRV) REPLACE
DEFINE QLOCAL (XMITQ.SALES) USAGE(XMITQ) CLCHNAME(SALES.*) REPLACE
DEFINE QLOCAL (XMITQ.FINANCE) USAGE(XMITQ) CLCHNAME(FINANCE.*) REPLACE

4. Remove the SALES queue from the SALES cluster.

Run the MQSC command in Figure 15 on page 59:

ALTER QLOCAL(SALES) CLUSTER('Q.SALES') CLUSNL(' ')

Figure 15. Remove the sales queue on queue manager SALESRV from the sales cluster
5. Switch the channels to the new transmission queues.

The requirement is to stop and start all the channels that the GATE queue manager is using. To do this
with the least number of commands, stop and start the queue manager

endmqm -i GATE
strmqm GATE

What to do next
1. Rerun the sample request program to verify the new configuration works; see step “2” on page 58
2. Monitor the messages flowing through all the cluster transmission queues on the GATE queue

manager:

a. Alter the definition of each of the cluster transmission queues to turn queue monitoring on.

ALTER QLOCAL(SYSTEM.CLUSTER.TRANSMIT.
name) STATQ(ON)

b. Check queue manager statistics monitoring is OFF, to minimize output, and set the monitoring
interval to a lower value to perform multiple tests conveniently.

ALTER QMGR STATINT(60) STATCHL(OFF) STATQ(OFF) STATMQI(OFF) STATACLS(OFF)

c. Restart the GATE queue manager.
d. Run the sample request program a few times to verify

that an equal number of messages are flowing through
SYSTEM.CLUSTER.TRANSMIT.Q.SALES.SALESRV and SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Planning an IBM MQ architecture 59

Requests flow through SYSTEM.CLUSTER.TRANSMIT.Q.SALES.SALESRV and replies through
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

amqsmon -m GATE -t statistics

e. The results over a couple of intervals are as follows:

C:\Documents and Settings\Admin>amqsmon -m GATE -t statistics
MonitoringType: QueueStatistics
QueueManager: 'GATE'
IntervalStartDate: '2012-02-27'
IntervalStartTime: '14.59.20'
IntervalEndDate: '2012-02-27'
IntervalEndTime: '15.00.20'
CommandLevel: 700
ObjectCount: 2
QueueStatistics: 0
QueueName: 'SYSTEM.CLUSTER.TRANSMIT.QUEUE'
CreateDate: '2012-02-24'
CreateTime: '15.58.15'
...
Put1Count: [0, 0]
Put1FailCount: 0
PutBytes: [435, 0]
GetCount: [1, 0]
GetBytes: [435, 0]
...
QueueStatistics: 1
QueueName: 'SYSTEM.CLUSTER.TRANSMIT.Q.SALES.SAVESRV'
CreateDate: '2012-02-24'
CreateTime: '16.37.43'
...
PutCount: [1, 0]
PutFailCount: 0
Put1Count: [0, 0]
Put1FailCount: 0
PutBytes: [435, 0]
GetCount: [1, 0]
GetBytes: [435, 0]
...
MonitoringType: QueueStatistics
QueueManager: 'GATE'
IntervalStartDate: '2012-02-27'
IntervalStartTime: '15.00.20'
IntervalEndDate: '2012-02-27'
IntervalEndTime: '15.01.20'
CommandLevel: 700
ObjectCount: 2
QueueStatistics: 0
QueueName: 'SYSTEM.CLUSTER.TRANSMIT.QUEUE'
CreateDate: '2012-02-24'
CreateTime: '15.58.15'
...
PutCount: [2, 0]
PutFailCount: 0
Put1Count: [0, 0]

60 Planning for IBM MQ

Put1FailCount: 0
PutBytes: [863, 0]
GetCount: [2, 0]
GetBytes: [863, 0]
...
QueueStatistics: 1
QueueName: 'SYSTEM.CLUSTER.TRANSMIT.Q.SALES.SAVESRV'
CreateDate: '2012-02-24'
CreateTime: '16.37.43'
...
PutCount: [2, 0]
PutFailCount: 0
Put1Count: [0, 0]
Put1FailCount: 0
PutBytes: [863, 0]
GetCount: [2, 0]
GetBytes: [863, 0]
...
2 Records Processed.

One request and reply message were sent in the first interval and two in the second. You can infer
that the request messages were placed on SYSTEM.CLUSTER.TRANSMIT.Q.SALES.SAVESRV,
and the reply messages on SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Clustering: Switching cluster transmission queues
Plan how the changes to the cluster transmission queues of an existing production queue manager are
going to be brought into effect.

Before you begin
If you reduce the number of messages the switching process has to transfer to the new transmission
queue, switching completes more quickly. Read How the process to switch cluster-sender channel to a
different transmission queue works for the reasons for trying to empty the transmission queue before
proceeding any further.

About this task
You have a choice of two ways of making the changes to cluster transmission queues take effect.

1. Let the queue manager make the changes automatically. This is the default. The queue manager
switches cluster-sender channels with pending transmission queue changes when a cluster-sender
channel next starts.

2. Make the changes manually. You can make the changes to a cluster-sender channel when it is stopped.
You can switch it from one cluster transmission queue to another before the cluster-sender channel
starts.

What factors do you take into account when deciding which of the two options to choose, and how do you
manage the switch?

Procedure
• Option 1: Let the queue manager make the changes automatically; see “Switching active cluster-

sender channels to another set of cluster-transmission queues” on page 63.

Choose this option if you want the queue manager to make the switch for you.

An alternative way to describe this option is to say the queue manager switches a cluster-sender
channel without you forcing the channel to stop. You do have the option of forcing the channel to stop,
and then starting the channel, to make the switch happen sooner. The switch starts when the channel

Planning an IBM MQ architecture 61

starts, and runs while the channel is running, which is different to option 2. In option 2, the switch
takes place when the channel is stopped.

If you choose this option by letting the switch happen automatically, the switching process starts
when a cluster-sender channel starts. If the channel is not stopped, it starts after it becomes
inactive, if there is a message to process. If the channel is stopped, start it with the START
CHANNEL command.
The switch process completes as soon as there are no messages left for the cluster-sender channel
on the transmission queue the channel was serving. As soon as that is the case, newly arrived
messages for the cluster-sender channel are stored directly on the new transmission queue. Until
then, messages are stored on the old transmission queue, and the switching process transfers
messages from the old transmission queue to the new transmission queue. The cluster-sender
channel forwards messages from the new cluster transmission queue during the whole switching
process.
When the switch process completes depends on the state of the system. If you are making the
changes in a maintenance window, assess beforehand whether the switching process will complete
in time. Whether it will complete in time depends on whether the number of messages that are
awaiting transfer from the old transmission queue reaches zero.

The advantage of the first method is it is automatic. A disadvantage is that if the time to make the
configuration changes is limited to a maintenance window, you must be confident that you can control
the system to complete the switch process inside the maintenance window. If you cannot be sure,
option 2 might be a better choice.

• Option 2: Make the changes manually; see “Switching a stopped cluster-sender channel to another
cluster transmission queue” on page 64.

Choose this option if you want to control the entire switching process manually, or if you want to switch
a stopped or inactive channel. It is a good choice, if you are switching a few cluster-sender channels,
and you want to do the switch during a maintenance window.

An alternative description of this option is to say that you switch the cluster-sender channel, while the
cluster-sender channel is stopped.

If you choose this option you have complete control over when the switch takes place.
You can be certain about completing the switching process in a fixed amount of time, within a
maintenance window. The time the switch takes depends on how many messages have to be
transferred from one transmission queue to the other. If messages keep arriving, it might take a
time for the process to transfer all the messages.
You have the option of switching the channel without transferring messages from the old
transmission queue. The switch is "instant".
When you restart the cluster-sender channel, it starts processing messages on the transmission
queue you newly assigned to it.

The advantage of the second method is you have control over the switching process. The disadvantage
is that you must identify the cluster-sender channels to be switched, run the necessary commands,
and resolve any in-doubt channels that might be preventing the cluster-sender channel stopping.

Related concepts
How to choose what type of cluster transmission queue to use
How to choose between different cluster transmission queue configuration options.
How the process to switch cluster-sender channel to a different transmission queue works
Related tasks
Clustering: Example configuration of multiple cluster transmission queues

62 Planning for IBM MQ

In this task you apply the steps to plan multiple cluster transmission queues to three overlapping
clusters. The requirements are to separate messages flows to one cluster queue, from all other message
flows, and to store messages for different clusters on different cluster transmission queues.

Switching active cluster-sender channels to another set of cluster-transmission queues
This task gives you three options for switching active cluster-sender channels. One option is to let the
queue manager make the switch automatically, which does not affect running applications. The other
options are to stop and start channels manually, or to restart the queue manager.

Before you begin
Change the cluster transmission queue configuration. You can change the DEFCLXQ queue manager
attribute, or add or modify the CLCHNAME attribute of transmission queues.

If you reduce the number of messages the switching process has to transfer to the new transmission
queue, switching completes more quickly. Read How the process to switch cluster-sender channel to a
different transmission queue works for the reasons for trying to empty the transmission queue before
proceeding any further.

About this task
Use the steps in the task as a basis for working out your own plan for making cluster-transmission queue
configuration changes.

Procedure
1. Optional: Record the current channel status

Make a record of the status of current and saved channels that are serving cluster transmission
queues. The following commands display the status associated with system cluster transmission
queues. Add your own commands to display the status associated with cluster-transmission
queues that you have defined. Use a convention, such as XMITQ. ChannelName, to name cluster
transmission queues that you define to make it easy to display the channel status for those
transmission queues.

DISPLAY CHSTATUS(*) WHERE(XMITQ LK 'SYSTEM.CLUSTER.TRANSMIT.*')
DISPLAY CHSTATUS(*) SAVED WHERE(XMITQ LK 'SYSTEM.CLUSTER.TRANSMIT.*')

2. Switch transmission queues.

• Do nothing. The queue manager switches cluster-sender channels when they restart after being
stopped or inactive.

Choose this option if you have no rules or concerns about altering a queue manager configuration.
Running applications are not affected by the changes.

• Restart the queue manager. All cluster-sender channels are stopped and restarted automatically on
demand.

Choose this option to initiate all the changes immediately. Running applications are interrupted by
the queue manager as it shuts down and restarts.

• Stop individual cluster-sender channels and restart them.

Choose this option to change a few channels immediately. Running applications experience a short
delay in message transfer between your stopping and starting the message channel again. The
cluster-sender channel remains running, except during the time you stopped it. During the switch
process messages are delivered to the old transmission queue, transferred to the new transmission
queue by the switching process, and forwarded from the new transmission queue by the cluster-
sender channel.

3. Optional: Monitor the channels as they switch

Planning an IBM MQ architecture 63

Display the channel status and the transmission queue depth during the switch. The following example
display the status for system cluster transmission queues.

DISPLAY CHSTATUS(*) WHERE(XMITQ LK 'SYSTEM.CLUSTER.TRANSMIT.*')
DISPLAY CHSTATUS(*) SAVED WHERE(XMITQ LK 'SYSTEM.CLUSTER.TRANSMIT.*')
DISPLAY QUEUE('SYSTEM.CLUSTER.TRANSMIT.*') CURDEPTH

4. Optional: Monitor the messages AMQ7341 The transmission queue for channel
ChannelName switched from queue QueueName to QueueName that are written to the queue
manager error log.

Switching a stopped cluster-sender channel to another cluster transmission queue
If you choose to make changes manually, you make the changes to a cluster-sender channel when it is
stopped and switch it from one cluster transmission queue to another before the cluster-sender channel
starts.

Before you begin
You might make some configuration changes, and now want to make them effective without starting the
cluster-sender channels that are affected. Alternatively, you make the configuration changes you require
as one of the steps in the task.

If you reduce the number of messages the switching process has to transfer to the new transmission
queue, switching completes more quickly. Read How the process to switch cluster-sender channel to a
different transmission queue works for the reasons for trying to empty the transmission queue before
proceeding any further.

About this task
This task switches the transmission queues served by stopped or inactive cluster-sender channels. You
might do this task because a cluster-sender channel is stopped, and you want to switch its transmission
queue immediately. For example, for some reason a cluster-sender channel is not starting, or has some
other configuration problem. To resolve the problem, you decide to create a cluster-sender channel, and
associate the transmission queue for the old cluster-sender channel with the new cluster-sender channel
you defined.

A more likely scenario is you want to control when reconfiguration of cluster transmission queues is
performed. To fully control the reconfiguration, you stop the channels, change the configuration, and then
switch the transmission queues.

Procedure
1. Stop the channels that you intend to switch

a) Stop any running or inactive channels that you intend to switch. Stopping an inactive cluster-sender
channel prevents it starting while you are making configuration changes.

STOP CHANNEL(ChannelName) MODE(QUIESCSE) STATUS(STOPPED)

2. Optional: Make the configuration changes.

For example, see “Clustering: Example configuration of multiple cluster transmission queues” on page
53.

3. Switch the cluster-sender channels to the new cluster transmission queues.

On Multiplatforms, issue the following command:

runswchl -m QmgrName -c ChannelName

64 Planning for IBM MQ

On z/OS, use the SWITCH function of the CSQUTIL command to switch the messages or
monitor what is happening. Use the following command.

SWITCH CHANNEL(channel_name) MOVEMSGS(YES)

For more information, see SWITCH function.

The runswchl, or CSQUTIL SWITCH, command transfers any messages on the old transmission
queue to the new transmission queue. When the number of messages on the old transmission queue
for this channel reaches zero, the switch is completed. The command is synchronous. The command
writes progress messages to the window during the switching process.

During the transfer phase existing and new messages destined for the cluster-sender channel are
transferred in order to the new transmission queue.

Because the cluster-sender channel is stopped, the messages build up on the new transmission
queue. Contrast the stopped cluster-sender channel, to step “2” on page 63 in “Switching active
cluster-sender channels to another set of cluster-transmission queues” on page 63. In that step, the
cluster-sender channel is running, so messages do not necessarily build up on the new transmission
queue.

4. Optional: Monitor the channels as they switch

In a different command window, display the transmission queue depth during the switch. The
following example display the status for system cluster transmission queues.

DISPLAY QUEUE('SYSTEM.CLUSTER.TRANSMIT.*') CURDEPTH

5. Optional: Monitor the messages AMQ7341 The transmission queue for channel
ChannelName switched from queue QueueName to QueueName that are written to the queue
manager error log.

6. Restart the cluster-sender channels that you stopped.

The channels do not start automatically, as you stopped them, placing them into STOPPED status.

START CHANNEL(ChannelName)

Related reference
runswchl
RESOLVE CHANNEL
STOP CHANNEL

Clustering: Migration and modification best practices
This topic provides guidance for planning and administering IBM MQ clusters. This information is a guide
based on testing and feedback from customers.

1. “Moving objects in a cluster” on page 65 (Best practices for moving objects around inside a cluster,
without installing any fix packs or new versions of IBM MQ).

2. “Upgrades and maintenance installations” on page 67 (Best practices for keeping a working
cluster architecture up and running, while applying maintenance or upgrades and testing the new
architecture).

Moving objects in a cluster
Applications and their queues

When you must move a queue instance hosted on one queue manager to be hosted on another, you
can work with the workload balancing parameters to ensure a smooth transition.

Planning an IBM MQ architecture 65

Create an instance of the queue where it is to be newly hosted, but use cluster workload balancing
settings to continue sending messages to the original instance until your application is ready to
switch. This is achieved with the following steps:

1. Set the CLWLRANK property of the existing queue to a high value, for example five.
2. Create the new instance of the queue and set its CLWLRANK property to zero.
3. Complete any further configuration of the new system, for example deploy and start consuming

applications against the new instance of the queue.
4. Set the CLWLRANK property of the new queue instance to be higher than the original instance, for

example nine.
5. Allow the original queue instance to process any queued messages in the system and then delete

the queue.

Moving entire queue managers

If the queue manager is staying on the same host, but the IP address is changing, then the process is
as follows:

• DNS, when used correctly, can help simplify the process. For information about using DNS by setting
the Connection name (CONNAME) channel attribute, see ALTER CHANNEL.

• If moving a full repository, ensure that you have at least one other full repository which is running
smoothly (no problems with channel status for example) before making changes.

• Suspend the queue manager using the SUSPEND QMGR command to avoid traffic buildup.
• Modify the IP address of the computer. If your CLUSRCVR channel definition uses an IP address in

the CONNAME field, modify this IP address entry. The DNS cache might need to be flushed through
to ensure that updates are available everywhere.

• When the queue manager reconnects to the full repositories, channel auto-definitions automatically
resolve themselves.

• If the queue manager hosted a full repository and the IP address changes, it is important to ensure
that partials are switched over as soon as possible to point any manually defined CLUSSDR channels
to the new location. Until this switch is carried out, these queue managers might be able to only
contact the remaining (unchanged) full repository, and warning messages might be seen regarding
the incorrect channel definition.

• Resume the queue manager using the RESUME QMGR command.

If the queue manager must be moved to a new host, it is possible to copy the queue manager data
and restore from a backup. This process is not recommended however, unless there are no other
options; it might be better to create a queue manager on a new machine and replicate queues and
applications as described in the previous section. This situation gives a smooth rollover/rollback
mechanism.

If you are determined to move a complete queue manager using backup, follow these best practices:

• Treat the whole process as a queue manager restore from backup, applying any processes you
would usually use for system recovery as appropriate for your operating system environment.

• Use the REFRESH CLUSTER command after migration to discard all locally held cluster information
(including any auto-defined channels that are in doubt), and force it to be rebuilt.

Note: For large clusters, using the REFRESH CLUSTER command can be disruptive to the
cluster while it is in progress, and again at 27 day intervals thereafter when the cluster objects
automatically send status updates to all interested queue managers. See Refreshing in a large
cluster can affect performance and availability of the cluster.

When creating a queue manager and replicating the setup from an existing queue manager in the
cluster (as described previously in this topic), never treat the two different queue managers as
actually being the same. In particular, do not give a new queue manager the same queue manager
name and IP address. Attempting to 'drop in' a replacement queue manager is a frequent cause of

66 Planning for IBM MQ

problems in IBM MQ clusters. The cache expects to receive updates including the QMID attribute, and
state can be corrupted.

If two different queue managers are accidentally created with the same name, it is recommended to
use the RESET CLUSTER QMID command to eject the incorrect entry from the cluster.

Upgrades and maintenance installations
Avoid the so-called big bang scenario (for example, stopping all cluster and queue manager activity,
applying all upgrades and maintenance to all queue managers, then starting everything at the same time).
Clusters are designed to still work with multiple versions of queue manager coexisting, so a well-planned,
phased maintenance approach is recommended.

Have a backup plan:

• Have you taken backups?
• Avoid using new cluster functionality immediately: Wait until you are sure that all the queue managers

are upgraded to the new level, and are certain that you are not going to roll any of them back. Using
new cluster function in a cluster where some queue managers are still at an earlier level can lead to
undefined behavior.

A repository stores a record it receives in its own version. If the record it receives is at a later version,
the later version attributes are discarded when the record is stored. An IBM MQ 9.3 queue manager
receiving information about an IBM MQ 9.4 queue manager stores only IBM MQ 9.3 information. An
IBM MQ 9.4 repository receiving an IBM MQ 9.3 record stores default values for attributes introduced in
the later version. The defaults define the values for the attributes that are not included in the record it
receives.

Migrate full repositories first. Although they can forward information that they do not understand,
they cannot persist it, so it is not the recommended approach unless absolutely necessary. For more
information, see Queue manager cluster migration.

Clustering: Using REFRESH CLUSTER best practices
You use the REFRESH CLUSTER command to discard all locally held information about a cluster and
rebuild that information from the full repositories in the cluster. You should not need to use this
command, except in exceptional circumstances. If you do need to use it, there are special considerations
about how you use it. This information is a guide based on testing and feedback from customers.

Only run REFRESH CLUSTER if you really need to do so
The IBM MQ cluster technology ensures that any change to the cluster configuration, such as a change to
a clustered queue, automatically becomes known to any member of the cluster that needs to know the
information. There is no need for further administrative steps to be taken to achieve this propagation of
information.

If such information does not reach the queue managers in the cluster where it is required, for example a
clustered queue is not known by another queue manager in the cluster when an application attempts to
open it for the first time, it implies a problem in the cluster infrastructure. For example, it is possible that
a channel cannot be started between a queue manager and a full repository queue manager. Therefore,
any situation where inconsistencies are observed must be investigated. If possible, resolve the situation
without using the REFRESH CLUSTER command.

In rare circumstances that are documented elsewhere in this product documentation, or when requested
by IBM support, you can use the REFRESH CLUSTER command to discard all locally held information
about a cluster and rebuild that information from the full repositories in the cluster.

Refreshing in a large cluster can affect performance and availability of the cluster
Use of the REFRESH CLUSTER command can be disruptive to the cluster while it is in progress, for
example by creating a sudden increase in work for the full repositories as they process the repropagation
of queue manager cluster resources. If you are refreshing in a large cluster (that is, many hundreds

Planning an IBM MQ architecture 67

of queue managers) you should avoid use of the command in day-to-day work if possible and use
alternative methods to correct specific inconsistencies. For example, if a cluster queue is not being
correctly propagated across the cluster, an initial investigation technique of updating the clustered queue
definition, such as altering its description, repropagates the queue configuration across the cluster. This
process can help to identify the problem and potentially resolve a temporary inconsistency.

If alternative methods cannot be used, and you have to run REFRESH CLUSTER in a large cluster, you
should do so at off-peak times or during a maintenance window to avoid impact on user workloads. You
should also avoid refreshing a large cluster in a single batch, and instead stagger the activity as explained
in “Avoid performance and availability issues when cluster objects send automatic updates” on page 68.

Avoid performance and availability issues when cluster objects send automatic
updates
After a new cluster object is defined on a queue manager, an update for this object is generated every 27
days from the time of definition, and sent to every full repository in the cluster and onwards to any other
interested queue managers. When you issue the REFRESH CLUSTER command to a queue manager, you
reset the clock for this automatic update on all objects defined locally in the specified cluster.

If you refresh a large cluster (that is, many hundreds of queue managers) in a single batch, or in other
circumstances such as recreating a system from configuration backup, after 27 days all of those queue
managers will re-advertise all of their object definitions to the full repositories at the same time. This
could again cause the system to run significantly slower, or even become unavailable, until all the updates
have completed. Therefore, when you have to refresh or re-create multiple queue managers in a large
cluster, you should stagger the activity over several hours, or several days, so that subsequent automatic
updates do not regularly impact system performance.

The system cluster history queue
When a REFRESH CLUSTER is performed, the queue manager takes a snapshot of the cluster state before
the refresh and stores it on the SYSTEM.CLUSTER.HISTORY.QUEUE (SCHQ) if it is defined on the queue
manager. This snapshot is for IBM service purposes only, in case of later problems with the system.

The SCHQ is defined by default on distributed queue managers on startup. For z/OS migration, the SCHQ
must be manually defined.

Messages on the SCHQ expire after three months.

Related concepts
“REFRESH CLUSTER considerations for publish/subscribe clusters” on page 103
Issuing the REFRESH CLUSTER command results in the queue manager temporarily discarding locally
held information about a cluster, including any cluster topics and their associated proxy subscriptions.
Related reference
Application issues seen when running REFRESH CLUSTER
MQSC Commands reference: REFRESH CLUSTER

Clustering: Availability, multi-instance, and disaster recovery
This topic provides guidance for planning and administering IBM MQ clusters. This information is a guide
based on testing and feedback from customers.

IBM MQ Clustering itself is not a High Availability solution, but in some circumstances it can be used to
improve the availability of services using IBM MQ, for example by having multiple instances of a queue on
different queue managers. This section gives guidance on ensuring that the IBM MQ infrastructure is as
highly available as possible so that it can be used in such an architecture.

Note: Other high availability and disaster recovery solutions are available for IBM MQ, see Configuring
high availability, recovery and restart.

Availability of cluster resources
The reason for the usual recommendation to maintain two full repositories is that the loss of one is not
critical to the smooth running of the cluster. Even if both become unavailable, there is a 60 day grace

68 Planning for IBM MQ

period for existing knowledge held by partial repositories, although new or not previously accessed
resources (queues for example) are not available in this event.

Using clusters to improve application availability
A cluster can help in designing highly available applications (for example a request/response type
server application), by using multiple instances of the queue and application. If needed, priority
attributes can give preference to the 'live' application unless a queue manager or channel for example
become unavailable. This is powerful for switching over quickly to continue processing new messages
when a problem occurs.
However, messages which were delivered to a particular queue manager in a cluster are held only
on that queue instance, and are not available for processing until that queue manager is recovered.
For this reason, for true data high availability you might want to consider other technologies such as
multi-instance queue managers.

Multi-instance queue managers
Software High Availability (multi-instance) is a built-in offering for keeping your existing messages
available. See Using IBM MQ with high availability configurations, Create a multi-instance queue
manager, and the following section for more information. Any queue manager in a cluster may be
made highly available using this technique, as long as all queue managers in the cluster are running
at least IBM WebSphere MQ 7.0.1. If any queue managers in the cluster are at previous levels, they
might lose connectivity with the multi-instance queue managers if they fail over to a secondary IP.
As discussed previously in this topic, as long as two full repositories are configured, they are almost
by their nature highly available. If you need to, IBM MQ software High Availability / multi-instance
queue managers can be used for full repositories. There is no strong reason to use these methods,
and in fact for temporary outages these methods might cause additional performance cost during
the failover. Using software HA instead of running two full repositories is discouraged because in the
event of a single channel outage, for example, it would not necessarily fail over, but might leave partial
repositories unable to query for cluster resources.

Disaster recovery
Disaster recovery, for example recovering from when the disks storing a queue manager's data
becomes corrupt, is difficult to do well; IBM MQ can help, but it cannot do it automatically. The
only 'true' disaster recovery option in IBM MQ (excluding any operating system or other underlying
replication technologies) is restoration from a backup. There are some cluster specific points to
consider in these situations:

• Take care when testing disaster recovery scenarios. For example, if testing the operation of backup
queue managers, be careful when bringing them online in the same network as it is possible to
accidentally join the live cluster and start 'stealing' messages by hosting the same named queues as
in the live cluster queue managers.

• Disaster recovery testing must not interfere with a running live cluster. Techniques to avoid
interference include:

– Complete network separation or separation at the firewall level.

– Not starting channel initiation or the z/OS chinit address space.
– Not issuing live TLS certificate to the disaster recovery system until, or unless, an actual disaster

recovery scenario occurs.
• When restoring a backup of a queue manager in the cluster it is possible that the backup is out

of sync with the rest of the cluster. The REFRESH CLUSTER command can resolve updates and
synchronize with the cluster but the REFRESH CLUSTER command must be used as a last resort.
See “Clustering: Using REFRESH CLUSTER best practices” on page 67. Review any in-house process
documentation and IBM MQ documentation to see whether a simple step was missed before
resorting to using the command.

• As for any recovery, applications must deal with replay and loss of data. It must be decided whether
to clear the queues down to a known state, or if there is enough information elsewhere to manage
replays.

Planning an IBM MQ architecture 69

Planning your distributed publish/subscribe network
You can create a network of queue managers where subscriptions created on one queue manager will
receive matching messages published by an application connected to another queue manager in the
network. To choose a suitable topology, you need to consider your requirements for manual control,
network size, frequency of change, availability and scalability.

Before you begin
This task assumes that you understand what distributed publish/subscribe networks are, and how they
work. For a technical overview, see Distributed publish/subscribe networks.

About this task
There are three basic topologies for a publish/subscribe network:

• Direct routed cluster
• Topic host routed cluster
• Hierarchy

For the first two topologies, the starting point is an IBM MQ cluster configuration. The third topology can
be created with or without a cluster. See“Planning your distributed queues and clusters” on page 19for
information about planning the underlying queue manager network.

A Direct routed cluster is the simplest topology to configure when a cluster is already present. Any
topic that you define on any queue manager is automatically made available on every queue manager
in the cluster, and publications are routed directly from any queue manager where a publishing
application connects, to each of the queue managers where matching subscriptions exist. This simplicity
of configuration relies on IBM MQ maintaining a high level of sharing of information and connectivity
between every queue manager in the cluster. For small and simple networks (that is, a small number of
queue managers, and a fairly static set of publishers and subscribers) this is acceptable. However, when
used in larger or more dynamic environments the overhead might be prohibitive. See“Direct routing in
publish/subscribe clusters” on page 75.

A Topic host routed cluster gives the same benefit as a direct routed cluster, by making any topic that
you define on any queue manager in the cluster automatically available on every queue manager in the
cluster. However, topic host routed clusters require you to carefully choose the queue managers that
host each topic, because all information and publications for that topic pass through those topic host
queue managers. This means that the system does not have to maintain channels and information flows
between all queue managers. However it also means that publications might no longer be sent directly to
subscribers, but might be routed through a topic host queue manager. For these reasons additional load
might be put on the system, especially on the queue managers hosting the topics, so careful planning
of the topology is required. This topology is particularly effective for networks that contain many queue
managers, or that host a dynamic set of publishers and subscribers (that is, publishers or subscribers that
are frequently added or removed). Additional topic hosts can be defined to improve availability of routes
and to horizontally scale publication workload. See“Topic host routing in publish/subscribe clusters” on
page 80.

A Hierarchy requires the most manual configuration to set up, and is the hardest topology to modify.
You must manually configure the relationships between each queue manager in the hierarchy and its
direct relations. After relationships are configured, publications will (as for the previous two topologies)
be routed to subscriptions on other queue managers in the hierarchy. Publications are routed using
the hierarchy relationships. This allows very specific topologies to be configured to suit different
requirements, but it can also result in publications requiring many "hops" through intermediate queue
managers to reach the subscriptions. There is always only one route through a hierarchy for a publication,
so availability of every queue manager is critical. Hierarchies are typically only preferable where a single
cluster cannot be configured; for example when spanning multiple organizations. See“Routing in publish/
subscribe hierarchies” on page 104.

Where necessary, the above three topologies can be combined to solve specific topographical
requirements. For an example, see Combining the topic spaces of multiple clusters.

70 Planning for IBM MQ

To choose a suitable topology for your distributed publish/subscribe network, you need to consider the
following broad questions:

• How big will your network be?
• How much manual control do you need over its configuration?
• How dynamic will the system be, both in terms of topics and subscriptions, and in terms of queue

managers?
• What are your availability and scalability requirements?
• Can all queue managers connect directly to each other?

Procedure
• Estimate how big your network needs to be.

a) Estimate how many topics you need.
b) Estimate how many publishers and subscribers you expect to have.
c) Estimate how many queue managers will be involved in publish/subscribe activities.

See also“Publish/subscribe clustering: Best practices” on page 89, especially the following
sections:

– How to size your system
– Reasons to limit the number of cluster queue managers involved in publish/subscribe activity
– How to decide which topics to cluster

If your network will have many queue managers, and handle many publishers and subscribers, you
probably need to use a topic host routed cluster or a hierarchy. Direct routed clusters require almost
no manual configuration, and can be a good solution for small or static networks.

• Consider how much manual control you need over which queue manager hosts each topic, publisher or
subscriber.
a) Consider whether some of your queue managers are less capable than others.
b) Consider whether the communication links to some of your queue managers are more fragile than

to others.
c) Identify cases where you expect a topic to have many publications and few subscribers.
d) Identify cases where you expect a topic to have many subscribers and few publications.

In all topologies, publications are delivered to subscriptions on other queue managers. In a direct
routed cluster those publications take the shortest path to the subscriptions. In a topic host routed
cluster or a hierarchy, you control the route that publications take. If your queue managers differ in
their capability, or have differing levels of availability and connectivity, you will probably want to assign
specific workloads to specific queue managers. You can do this using either a topic host routed cluster
or a hierarchy.

In all topologies, co-locating the publishing applications on the same queue manager as the
subscriptions whenever possible minimizes overheads and maximizes performance. For topic host
routed clusters, consider putting publishers or subscribers on the queue managers that host the topic.
This removes any extra "hops" between queue managers to pass a publication to a subscriber. This
approach is particularly effective in cases where a topic has many publishers and few subscribers, or
many subscribers and few publishers. See, for example, Topic host routing using centralized publishers
or subscribers.

See also“Publish/subscribe clustering: Best practices” on page 89, especially the following sections:

– How to decide which topics to cluster
– Publisher and subscription location

• Consider how dynamic the network activity will be.
a) Estimate how frequently subscribers will be added and removed on different topics.

Planning an IBM MQ architecture 71

Whenever a subscription is added or removed from a queue manager, and it is the first or
last subscription for that specific topic string, that information is communicated to other queue
managers in the topology. In a direct routed cluster and a hierarchy, this subscription information
is propagated to every queue manager in the topology whether or not they have publishers on the
topic. If the topology consists of many queue managers, this might be a significant performance
overhead. In a topic host routed cluster, this information is only propagated to those queue
managers that host a clustered topic that maps to the subscription's topic string.

See also the Subscription change and dynamic topic strings section of“Publish/subscribe
clustering: Best practices” on page 89.

Note: In very dynamic systems, where the set of many unique topic strings is rapidly and constantly
being changed, it might be best to switch the model to a "publish everywhere" mode. See
Subscription performance in publish/subscribe networks.

b) Consider how dynamic the queue managers are in the topology.

A hierarchy requires each change in queue manager in the topology to be manually inserted or
removed from the hierarchy, with care taken when changing queue managers at higher levels
in the hierarchy. Queue managers in a hierarchy typically also use manually configured channel
connections. You must maintain these connections, adding and removing channels as queue
managers are added and removed from the hierarchy.

In a publish/subscribe cluster, queue managers are automatically connected to any other queue
manager that is required when they first join the cluster, and automatically become aware of topics
and subscriptions.

• Consider your route availability and publication traffic scalability requirements.
a) Decide whether you need to always have an available route from a publishing queue manager to a

subscribing queue manager, even when a queue manager is unavailable.
b) Consider how scalable you need the network to be. Decide whether the level of publication traffic

is too high to be routed through a single queue manager or channel, and whether that level of
publication traffic must be handled by a single topic branch or can be spread across multiple topic
branches.

c) Consider whether you need to maintain message ordering.

Because a direct routed cluster sends messages directly from publishing queue managers to
subscribing queue managers, you do not need to consider the availability of intermediate queue
managers along the route. Similarly, scaling to the intermediate queue managers is not a
consideration. However, as previously mentioned, the overhead of automatically maintaining channels
and information flows between all queue managers in the cluster can significantly affect performance,
especially in a large or dynamic environment.

A topic host routed cluster can be tuned for individual topics. You can ensure that each branch of the
topic tree that has a considerable publication workload is defined on a different queue manager, and
that each queue manager is sufficiently performant and available for the expected workload for that
branch of the topic tree. You can also improve availability and horizontal scaling further by defining
each topic on multiple queue managers. This allows the system to route around unavailable topic host
queue managers, and to workload balance publication traffic across them. However, when you define a
given topic on multiple queue managers, you also introduce the following constraints:

– You lose message ordering across publications.
– You cannot use retained publications. See“Design considerations for retained publications in

publish/subscribe clusters” on page 102.

You cannot configure high availability or scalability of routing in a hierarchy through multiple routes.

See also the Publication traffic section of“Publish/subscribe clustering: Best practices” on page 89.
• Based on these calculations, use the links provided to help you decide whether to use a topic host

routed cluster, a direct routed cluster, a hierarchy, or a mixture of these topologies.

72 Planning for IBM MQ

What to do next
You are now ready to configure your distributed publish/subscribe network.
Related tasks
Configuring a queue manager cluster
Configuring distributed queuing
Configuring a publish/subscribe cluster
Connecting a queue manager to a publish/subscribe hierarchy

Designing publish/subscribe clusters
There are two basic publish/subscribe cluster topologies: direct routing and topic host routing. Each has
different benefits. When you design your publish/subscribe cluster, choose the topology that best fits your
expected network requirements.

For an overview of the two publish/subscribe cluster topologies, see Publish/subscribe clusters. To help
you evaluate your network requirements, see “Planning your distributed publish/subscribe network” on
page 70 and “Publish/subscribe clustering: Best practices” on page 89.

In general, both cluster topologies provide the following benefits:

• Simple configuration on top of a point-to-point cluster topology.
• Automatic handling of queue managers joining and leaving the cluster.
• Ease of scaling for additional subscriptions and publishers, by adding extra queue managers and

distributing the additional subscriptions and publishers across them.

However, the two topologies have different benefits as the requirements become more specific.

Direct routed publish/subscribe clusters
With direct routing, any queue manager in the cluster sends publications from connected applications
direct to any other queue manager in the cluster with a matching subscription.

A direct routed publish/subscribe cluster provides the following benefits:

• Messages destined for a subscription on a specific queue manager in the same cluster are transported
directly to that queue manager and do not need to pass through an intermediate queue manager. This
can improve performance in comparison with a topic host routed topology, or a hierarchical topology.

• Because all queue managers are directly connected to each other, there is no single point of failure in
the routing infrastructure of this topology. If one queue manager is not available, subscriptions on other
queue managers in the cluster are still able to receive messages from publishers on available queue
managers.

• It is very simple to configure, especially on an existing cluster.

Things to consider when using a direct routed publish/subscribe cluster:

• All queue managers in the cluster become aware of all other queue managers in the cluster.
• Queue managers in a cluster that host one or more subscriptions to a clustered topic, automatically

create cluster sender channels to all other queue managers in the cluster, even when those queue
managers are not publishing messages on any clustered topics.

• The first subscription on a queue manager to a topic string under a clustered topic results in a message
being sent to every other queue manager in the cluster. Similarly, the last subscription on a topic string
to be deleted also results in a message. The more individual topic strings being used under a clustered
topic, and the higher the rate of change of subscriptions, the more inter-queue manager communication
occurs.

• Every queue manager in the cluster maintains the knowledge of subscribed topic strings that it is
informed of, even when the queue manager is neither publishing nor subscribing to those topics.

For the above reasons, all queue managers in a cluster with a direct routed topic defined will incur
an additional overhead. The more queue managers there are in the cluster, the greater the overhead.

Planning an IBM MQ architecture 73

Likewise the more topic strings subscribed to, and the greater their rate of change, the greater the
overhead. This can result in too much load on queue managers running on small systems in a large or
dynamic direct routed publish/subscribe cluster. See Direct routed publish/subscribe performance for
further information.

When you know that a cluster cannot accommodate the overheads of direct routed clustered publish/
subscribe, you can instead use topic host routed publish/subscribe. Alternatively, in extreme situations,
you can completely disable clustered publish/subscribe functionality by setting the queue manager
attribute PSCLUS to DISABLED on every queue manager in the cluster. See “Inhibiting clustered publish/
subscribe” on page 99. This prevents any clustered topic from being created, and therefore ensures that
your network does not incur any overheads associated with clustered publish/subscribe.

Topic host routed publish/subscribe clusters
With topic host routing, the queue managers where clustered topics are administratively defined become
routers for publications. Publications from non-hosting queue managers in the cluster are routed through
the hosting queue manager to any queue manager in the cluster with a matching subscription.

A topic host routed publish/subscribe cluster provides the following extra benefits over a direct routed
publish/subscribe cluster:

• Only queue managers on which topic host routed topics are defined are made aware of all other queue
managers in the cluster.

• Only the topic host queue managers need to be able to connect to all other queue managers in
the cluster, and will typically only connect to those where subscriptions exist. Therefore there are
significantly fewer channels running between queue managers.

• Cluster queue managers that host one or more subscriptions to a clustered topic automatically create
cluster sender channels only to queue managers that host a cluster topic that maps to the topic string of
the subscription.

• The first subscription on a queue manager to a topic string under a clustered topic results in a
message being sent to a queue manager in the cluster that hosts the clustered topic. Similarly, the
last subscription on a topic string to be deleted also results in a message. The more individual topic
strings being used under a clustered topic, and the higher the rate of change of subscriptions, the more
inter-queue manager communication occurs, but only between subscription hosts and topic hosts.

• More control over the physical configuration. With direct routing, all queue managers have to participate
in the publish/subscribe cluster, increasing their overheads. With topic host routing, only the topic host
queue managers are aware of other queue managers and their subscriptions. You explicitly choose
the topic host queue managers, therefore you can ensure that those queue managers are running on
adequate equipment, and you can use less powerful systems for the other queue managers.

Things to consider when using a topic host routed publish/subscribe cluster:

• An extra "hop" between a publishing queue manager and a subscribing queue manager is introduced
when the publisher or the subscriber is not located on a topic hosting queue manager. The latency
caused by the extra "hop" can mean that topic host routing is less efficient that direct routing.

• On large clusters, topic host routing eases the significant performance and scaling issues that you can
get with direct routing.

• You might choose to define all your topics on a single queue manager, or on a very small number of
queue managers. If you do this, make sure the topic host queue managers are hosted on powerful
systems with good connectivity.

• You can define the same topic on more than one queue manager. This improves the availability of the
topic, and also improves scalability because IBM MQ workload balances publications for a topic across
all hosts for that topic. Note, however, that defining the same topic on more than one queue manager
loses message order for that topic.

• By hosting different topics on different queue managers, you can improve scalability without losing
message order.

74 Planning for IBM MQ

Related tasks
Scenario: Creating a publish/subscribe cluster
Configuring a publish/subscribe cluster
Tuning distributed publish/subscribe networks
Troubleshooting distributed publish/subscribe problems

Direct routing in publish/subscribe clusters
Publications from any publishing queue manager are routed direct to any other queue manager in the
cluster with a matching subscription.

For an introduction to how messages are routed between queue managers in publish/subscribe
hierarchies and clusters, see Distributed publish/subscribe networks.

A direct routed publish/subscribe cluster behaves as follows:

• All queue managers automatically know of all other queue managers.
• All queue managers with subscriptions to clustered topics create channels to all other queue managers

in the cluster and inform them of their subscriptions.
• Messages published by an application are routed from the queue manager that it is connected to, direct

to each queue manager where a matching subscription exists.

The following diagram shows a queue manager cluster that is not currently used for publish/subscribe or
point-to-point activities. Note that every queue manager in the cluster connects only to and from the full
repository queue managers.

Planning an IBM MQ architecture 75

Figure 16. A queue manager cluster

For publications to flow between queue managers in a direct routed cluster, you cluster a branch of the
topic tree as described in Configuring a publish/subscribe cluster, and specify direct routing (the default).

In a direct routed publish/subscribe cluster, you define the topic object on any queue manager in the
cluster. When you do this, knowledge of the object, and knowledge of all other queue managers in
the cluster, is automatically pushed to all queue managers in the cluster by the full repository queue
managers. This happens before any queue manager references the topic:

76 Planning for IBM MQ

Figure 17. A direct routed publish/subscribe cluster

When a subscription is created, the queue manager that hosts the subscription establishes a channel to
every queue manager in the cluster, and sends details of the subscription. This distributed subscription
knowledge is represented by a proxy subscription on each queue manager. When a publication is
produced on any queue manager in the cluster that matches that proxy subscription's topic string, a
cluster channel is established from the publisher queue manager to each queue manager hosting a
subscription, and the message is sent to each of them.

Planning an IBM MQ architecture 77

Figure 18. A direct routed publish/subscribe cluster with a publisher and a subscriber to a clustered topic

The direct routing of publications to subscription hosting queue managers simplifies configuration and
minimizes the latency in delivering publications to subscriptions.

However, depending on the location of subscriptions and publishers, your cluster can quickly become
fully interconnected, with every queue manager having a direct connection to every other queue manager.
This might or might not be acceptable in your environment. Similarly, if the set of topic strings being
subscribed to is changing frequently, the overhead of propagating that information between all queue
managers can also become significant. All queue managers in a direct routed publish/subscribe cluster
must be able to cope with these overheads.

78 Planning for IBM MQ

Figure 19. A direct routed publish/subscribe cluster that is fully interconnected

Summary and additional considerations
A direct routed publish/subscribe cluster needs little manual intervention to create or administer, and
provides direct routing between publishers and subscribers. For certain configurations it is usually the
most appropriate topology, notably clusters with few queue managers, or where high queue manager
connectivity is acceptable and subscriptions are changing infrequently. However it also imposes certain
constraints upon your system:

• The load on each queue manager is proportional to the total number of queue managers in the cluster.
Therefore, in larger clusters, individual queue managers and the system as a whole can experience
performance issues.

• By default, all clustered topic strings subscribed to are propagated throughout the cluster, and
publications are propagated only to remote queue managers that have a subscription to the associated
topic. Therefore rapid changes to the set of subscriptions can become a limiting factor. You can change
this default behavior, and instead have all publications propagated to all queue managers, which
removes the need for proxy subscriptions. This reduces the subscription knowledge traffic, but is likely
to increase the publication traffic and the number of channels each queue manager establishes. See
Subscription performance in publish/subscribe networks.

Note: A similar restriction also applies to hierarchies.

Planning an IBM MQ architecture 79

• Because of the interconnected nature of publish/subscribe queue managers, it takes time for proxy
subscriptions to propagate around all nodes in the network. Remote publications do not necessarily
start being subscribed to immediately, so early publications might not be sent following a subscription
to a new topic string. You can remove the problems caused by the subscription delay by having all
publications propagated to all queue managers, which removes the need for proxy subscriptions. See
Subscription performance in publish/subscribe networks.

Note: This restriction also applies to hierarchies.

Before you use direct routing, explore the alternative approaches detailed in “Topic host routing in
publish/subscribe clusters” on page 80, and “Routing in publish/subscribe hierarchies” on page 104.

Topic host routing in publish/subscribe clusters
Publications from non-hosting queue managers in the cluster are routed through the hosting queue
manager to any queue manager in the cluster with a matching subscription.

For an introduction to how messages are routed between queue managers in publish/subscribe
hierarchies and clusters, see Distributed publish/subscribe networks.

To understand the behavior and benefits of topic host routing it is best to first understand “Direct routing
in publish/subscribe clusters” on page 75.

A topic host routed publish/subscribe cluster behaves as follows:

• Clustered administered topic objects are manually defined on individual queue managers in the cluster.
These are referred to as topic host queue managers.

• When a subscription is made on a cluster queue manager, channels are created from the subscription
host queue manager to the topic host queue managers, and proxy subscriptions are created only on the
queue managers that host the topic.

• When an application publishes information to a topic, the connected queue manager always forwards
the publication to one queue manager that hosts the topic, which passes it on to all queue managers in
the cluster that have matching subscriptions to the topic.

This process is explained in more detail in the following examples.

Topic host routing using a single topic host
For publications to flow between queue managers in a topic host routed cluster, you cluster a branch of
the topic tree as described in Configuring a publish/subscribe cluster, and specify topic host routing.

There are a number of reasons to define a topic host routed topic object on multiple queue managers in a
cluster. However, for simplicity we start with a single topic host.

The following diagram shows a queue manager cluster that is not currently used for publish/subscribe or
point-to-point activities. Note that every queue manager in the cluster connects only to and from the full
repository queue managers.

80 Planning for IBM MQ

Figure 20. A queue manager cluster

In a topic host routed publish/subscribe cluster, you define the topic object on a specific queue manager
in the cluster. Publish/subscribe traffic then flows through that queue manager, making it a critical queue
manager in the cluster and increasing its workload. For these reasons it is not recommended to use a full
repository queue manager, but to use another queue manager in the cluster. When you define the topic
object on the host queue manager, knowledge of the object and its host is automatically pushed, by the
full repository queue managers, to all the other queue managers in the cluster. Note that, unlike direct
routing, each queue manager is not told about every other queue manager in the cluster.

Planning an IBM MQ architecture 81

Figure 21. A topic host routed publish/subscribe cluster with one topic defined on one topic host

When a subscription is created on a queue manager, a channel is created between the subscribing queue
manager and the topic host queue manager. The subscribing queue manager connects only to the topic
host queue manager, and sends details of the subscription (in the form of a proxy subscription). The topic
host queue manager does not forward this subscription information on to any further queue managers in
the cluster.

82 Planning for IBM MQ

Figure 22. A topic host routed publish/subscribe cluster with one topic defined on one topic host, and one
subscriber

When a publishing application connects to another queue manager and a message is published, a channel
is created between the publishing queue manager and the topic host queue manager, and the message is
forwarded to that queue manager. The publishing queue manager has no knowledge of any subscriptions
on other queue managers in the cluster, so the message is forwarded to the topic host queue manager
even if there are no subscribers to that topic in the cluster. The publishing queue manager connects only
to the topic host queue manager. Publications are routed through the topic host to the subscribing queue
managers, if any exist.

Subscriptions on the same queue manager as the publisher are satisfied directly, without first sending the
messages to a topic host queue manager.

Note that, because of the critical role played by each topic host queue manager, you must choose queue
managers that can handle the load, availability and connectivity requirements of topic hosting.

Planning an IBM MQ architecture 83

Figure 23. A topic host routed publish/subscribe cluster with one topic, one subscriber and one publisher

Dividing the topic tree across multiple queue managers
A routed topic hosting queue manager is only responsible for the subscription knowledge and publication
messages that relate to the branch of the topic tree that its administered topic object is configured for.
If different topics are used by different publish/subscribe applications in the cluster, you can configure
different queue managers to host different clustered branches of the topic tree. This allows scaling by
reducing the publication traffic, subscription knowledge and channels on each topic host queue manager
in the cluster. You should use this method for distinct high volume branches of the topic tree:

84 Planning for IBM MQ

Figure 24. A topic host routed publish/subscribe cluster with two topics, each defined on one topic host

For example, using the topics described in Topic trees, if topic T1 was configured with a topic string
of /USA/Alabama, and topic T2 was configured with a topic string of /USA/Alaska, then a message
published to /USA/Alabama/Mobile would be routed through the queue manager hosting T1, and a
message published to /USA/Alaska/Juneau would be routed through the queue manager hosting T2.

Note: You cannot make a single subscription span multiple clustered branches of the topic tree by using a
wildcard higher in the topic tree than the points that are clustered. See Wildcard subscriptions.

Topic host routing using multiple topic hosts for a single topic
If a single queue manager has the responsibility for the routing of a topic, and that queue manager
becomes unavailable or incapable of handling the workload, publications will not flow promptly to the
subscriptions.

If you need greater resiliency, scalability and workload balancing than you get when you define a topic
on just one queue manager, you can define a topic on more than one queue manager. Each individual
message published is routed through a single topic host. When multiple matching topic host definitions
exist, one of the topic hosts is chosen. The choice is made in the same way as for clustered queues.
This allows messages to be routed to available topic hosts, avoiding any that are unavailable, and

Planning an IBM MQ architecture 85

allows message load to be workload balanced across multiple topic host queue managers and channels.
However, ordering across multiple messages is not maintained when you use multiple topic hosts for the
same topic in the cluster.

The following diagram shows a topic host routed cluster in which the same topic has been defined
on two queue managers. In this example, the subscribing queue managers send information about the
subscribed topic to both topic host queue managers in the form of a proxy subscription:

Figure 25. Creating proxy subscriptions in a multiple topic host publish/subscribe cluster

When a publication is made from a non-hosting queue manager, the queue manager sends a copy of
the publication to one of the topic host queue managers for that topic. The system chooses the host
based on the default behavior of the cluster workload management algorithm. In a typical system, this
approximates to a round-robin distribution across each topic host queue manager. There is no affinity
between messages from the same publishing application; this equates to using a cluster bind type of
NOTFIXED.

86 Planning for IBM MQ

Figure 26. Receiving publications in a multiple topic host publish/subscribe cluster

Inbound publications to the chosen topic host queue manager are then forwarded to all queue managers
that have registered a matching proxy subscription:

Planning an IBM MQ architecture 87

Figure 27. Routing publications to subscribers in a multiple topic host publish/subscribe cluster

Making subscriptions and publishers local to a topic host queue manager
The above examples show the routing between publishers and subscribers on queue managers that do
not host administered routed topic objects. In these topologies, messages require multiple hops to reach
the subscriptions.

Where the additional hop is not desirable, it might be appropriate to connect key publishers to topic
hosting queue managers. However, if there are multiple topic hosts for a topic and only one publisher, all
publication traffic will be routed through the topic host queue manager that the publisher is connected to.

Similarly, if there are key subscriptions, these could be located on a topic host queue manager. However, if
there are multiple hosts of the routed topic, only a proportion of the publications will avoid the additional
hop, with the remainder being routed through the other topic host queue managers first.

Topologies such as these are described further here: Topic host routing using centralized publishers or
subscribers.

Note: Special planning is needed if changing the routed topic configuration when co-locating publishers
or subscriptions with routed topic hosts. For example, see Adding extra topic hosts to a topic host routed
cluster.

88 Planning for IBM MQ

Summary and additional considerations
A topic host routed publish/subscribe cluster gives you precise control over which queue managers host
each topic, and those queue managers become the routing queue managers for that branch of the topic
tree. Moreover, queue managers without subscriptions or publishers have no need to connect with the
topic host queue managers, and queue managers with subscriptions have no need to connect to queue
managers that do not host a topic. This configuration can significantly reduce the number of connections
between queue managers in the cluster, and the amount of information being passed between queue
managers. This is especially true in large clusters where only a subset of queue managers are performing
publish/subscribe work. This configuration also gives you some control over the load on individual queue
managers in the cluster, so (for example) you can choose to host highly active topics on more powerful
and more resilient systems. For certain configurations - notably larger clusters - it is usually a more
appropriate topology than direct routing.

However, topic host routing also imposes certain constraints upon your system:

• System configuration and maintenance require more planning than for direct routing. You need to
decide which points to cluster in the topic tree, and the location of the topic definitions in the cluster.

• Just as for direct routed topics, when a new topic host routed topic is defined, the information is pushed
to the full repository queue managers, and from there direct to all members of the cluster. This event
causes channels to be started to each member of the cluster from the full repositories if not already
started.

• Publications are always sent to a host queue manager from a non-host queue manager, even if there are
no subscriptions in the cluster. Therefore, you should use routed topics when subscriptions are typically
expected to exist, or when the overhead of global connectivity and knowledge is greater than the risk of
extra publication traffic.

Note: As previously described, making publishers local to a topic host can mitigate this risk.
• Messages that are published on non-host queue managers do not go direct to the queue manager that

hosts the subscription, they are always routed through a topic host queue manager. This approach can
increase the total overhead to the cluster, and increase message latency and reduce performance.

Note: As previously described, making subscriptions or publishers local to a topic host can mitigate this
risk.

• Using a single topic host queue manager introduces a single point of failure for all messages that
are published to a topic. You can remove this single point of failure by defining multiple topic hosts.
However, having multiple hosts affects the order of published messages as received by subscriptions.

• Extra message load is incurred by topic host queue managers, because publication traffic from multiple
queue managers needs to be processed by them. This load can be lessened: Either use multiple topic
hosts for a single topic (in which case message ordering is not maintained), or use different queue
managers to host routed topics for different branches of the topic tree.

Before you use topic host routing, explore the alternative approaches detailed in “Direct routing in
publish/subscribe clusters” on page 75, and “Routing in publish/subscribe hierarchies” on page 104.

Publish/subscribe clustering: Best practices
Using clustered topics makes extending the publish/subscribe domain between queue managers simple,
but can lead to problems if the mechanics and implications are not fully understood. There are two
models for information sharing and publication routing. Implement the model that best meets your
individual business needs, and performs best on your chosen cluster.

The best practice information in the following sections does not provide a one size fits all solution,
but rather shares common approaches to solving common problems. It assumes that you have a basic
understanding of IBM MQ clusters, and of publish/subscribe messaging, and that you are familiar with
the information in Distributed publish/subscribe networks and “Designing publish/subscribe clusters” on
page 73.

When you use a cluster for point-to-point messaging, each queue manager in the cluster works on a need-
to-know basis. That is, it only finds out about other cluster resources, such as other queue managers
in the cluster and clustered queues, when applications connecting to them request to use them. When

Planning an IBM MQ architecture 89

you add publish/subscribe messaging to a cluster, an increased level of sharing of information and
connectivity between cluster queue managers is introduced. To be able to follow best practices for
publish/subscribe clusters, you need to fully understand the implications of this change in behavior.

To allow you to build the best architecture, based on your precise needs, there are two models for
information sharing and publication routing in publish/subscribe clusters: direct routing and topic host
routing. To make the right choice, you need to understand both models, and the different requirements
that each model satisfies. These requirements are discussed in the following sections, in conjunction with
“Planning your distributed publish/subscribe network” on page 70:

• “Reasons to limit the number of cluster queue managers involved in publish/subscribe activity” on page
90

• “How to decide which topics to cluster” on page 90
• “How to size your system” on page 91
• “Publisher and subscription location” on page 92
• “Publication traffic” on page 92
• “Subscription change and dynamic topic strings” on page 93

Reasons to limit the number of cluster queue managers involved in publish/
subscribe activity
There are capacity and performance considerations when you use publish/subscribe messaging in a
cluster. Therefore, it is best practice to consider carefully the need for publish/subscribe activity across
queue managers, and to limit it to only the number of queue managers that require it. After the minimum
set of queue managers that need to publish and subscribe to topics are identified, they can be made
members of a cluster that contains only them and no other queue managers.

This approach is especially useful if you have an established cluster already functioning well for point-to-
point messaging. When you are turning an existing large cluster into a publish/subscribe cluster, it is a
better practice to initially create a separate cluster for the publish/subscribe work where the applications
can be tried, rather than using the current cluster. You can use a subset of existing queue managers
that are already in one or more point-to-point clusters, and make this subset members of the new
publish/subscribe cluster. However, the full repository queue managers for your new cluster must not be
members of any other cluster; this isolates the additional load from the existing cluster full repositories.

If you cannot create a new cluster, and have to turn an existing large cluster into a publish/subscribe
cluster, do not use a direct routed model. The topic host routed model usually performs better in larger
clusters, because it generally restricts the publish/subscribe information sharing and connectivity to the
set of queue managers that are actively performing publish/subscribe work, concentrating on the queue
managers hosting the topics. The exception to that is if a manual refresh of the subscription information is
invoked on a queue manager hosting a topic definition, at which point the topic host queue manager will
connect to every queue manager in the cluster. See Resynchronization of proxy subscriptions.

If you establish that a cluster cannot be used for publish/subscribe due to its size or current load, it is
good practice to prevent this cluster unexpectedly being made into a publish/subscribe cluster. Use the
PSCLUS queue manager property to stop anyone adding a clustered topic on any queue manager in the
cluster. See “Inhibiting clustered publish/subscribe” on page 99.

How to decide which topics to cluster
It is important to choose carefully which topics are added to the cluster: The higher up the topic
tree these topics are, the more widespread their use becomes. This can result in more subscription
information and publications being propagated than necessary. If there are multiple, distinct branches
of the topic tree, where some need to be clustered and some do not, create administered topic
objects at the root of each branch that needs clustering and add those to the cluster. For example, if
branches /A, /B and /C need clustering, define a separate clustered topic objects for each branch.

Note: The system prevents you from nesting clustered topic definitions in the topic tree. You are only
permitted to cluster topics at one point in the topic tree for each sub branch. For example, you cannot

90 Planning for IBM MQ

define clustered topic objects for /A and for /A/B. Nesting clustered topics can lead to confusion over
which clustered object applies to which subscription, especially when subscriptions are using wildcards.
This is even more important when using topic host routing, where routing decisions are precisely defined
by your allocation of topic hosts.

If clustered topics must be added high up the topic tree, but some branches of the tree below the
clustered point do not require the clustered behavior, you can use the subscription and publication scope
attributes to reduce the level of subscription and publication sharing for further topics.

You should not put the topic root node into the cluster without considering the behavior that is seen.
Make global topics obvious where possible, for example by using a high-level qualifier in the topic string: /
global or /cluster.

There is a further reason for not wanting to make the root topic node clustered. This is because every
queue manager has a local definition for the root node, the SYSTEM.BASE.TOPIC topic object. When this
object is clustered on one queue manager in the cluster, all other queue managers are made aware of it.
However, when a local definition of the same object exists, its properties override the cluster object. This
results in those queue managers acting as if the topic was not clustered. To resolve this, you would need
to cluster every definition of SYSTEM.BASE.TOPIC. You could do this for direct routed definitions, but not
for topic host routed definitions, because it causes every queue manager to become a topic host.

How to size your system
Publish/subscribe clusters typically result in a different pattern of cluster channels to point-to-point
messaging in a cluster. The point-to-point model is an 'opt in' one, but publish/subscribe clusters have
a more indiscriminate nature with subscription fan-out, especially when using direct routed topics.
Therefore, it is important to identify which queue managers in a publish/subscribe cluster will use cluster
channels to connect to other queue managers, and under what circumstances.

The following table lists the typical set of cluster sender and receiver channels expected for each queue
manager in a publish/subscribe cluster under normal running, dependent on the queue manager role in
the publish/subscribe cluster.

Table 5. Cluster sender and receiver channels for each routing method.

Queue manager
role

Direct cluster
receivers

Direct cluster
senders

Topic cluster
receivers

Topic cluster
senders

Full repository AllQmgrs AllQmgrs AllQmgrs AllQMgrs

Host of topic
definition

n/a n/a AllSubs+AllPubs (1) AllSubs (1)

Subscriptions
created

AllPubs (1) AllQMgrs AllHosts AllHosts

Publishers
connected

AllSubs (1) AllSubs (1) AllHosts AllHosts

No publishers or
subscribers

AllSubs (1) None (1) None (2) None (2)

Key:
AllQmgrs

A channel to and from every queue manager in the cluster.
AllSubs

A channel to and from every queue manager where a subscription has been created.
AllPubs

A channel to and from every queue manager where a publishing application has been connected.

Planning an IBM MQ architecture 91

AllHosts
A channel to and from every queue manager where a definition of the clustered topic object has been
configured.

None
No channels to or from other queue managers in the cluster for the sole purpose of publish/subscribe
messaging.

Notes:

1. If a queue manager refresh of proxy subscriptions is made from this queue manager, a channel to and
from all other queue managers in the cluster might be automatically created.

2. If a queue manager refresh of proxy subscriptions is made from this queue manager, a channel to
and from any other queue managers in the cluster that host a definition of a clustered topic might be
automatically created.

The previous table shows that topic host routing typically uses significantly less cluster sender and
receiver channels than direct routing. If channel connectivity is a concern for certain queue managers in
a cluster, for reasons of capacity or ability to establish certain channels (for example, through firewalls),
topic host routing is therefore a preferred solution.

Publisher and subscription location
Clustered publish/subscribe enables messages published on one queue manager to be delivered to
subscriptions on any other queue manager in the cluster. As for point-to-point messaging, the cost
of transmitting messages between queue managers can be detrimental to performance. Therefore you
should consider creating subscriptions to topics on the same queue managers as where messages are
being published.

When using topic host routing within a cluster, it is important to also consider the location of the
subscriptions and publishers with respect to the topic hosting queue managers. When the publisher is
not connected to a queue manager that is a host of the clustered topic, messages published are always
sent to a topic hosting queue manager. Similarly, when a subscription is created on a queue manager that
is not a topic host for a clustered topic, messages published from other queue managers in the cluster are
always sent to a topic hosting queue manager first. More specifically, if the subscription is located on a
queue manager that hosts the topic, but there is one or more other queue managers that also host that
same topic, a proportion of publications from other queue managers are routed through those other topic
hosting queue managers. See Topic host routing using centralized publishers or subscribers for more
information on designing a topic host routed publish/subscribe cluster to minimize the distance between
publishers and subscriptions.

Publication traffic
Messages published by an application connected to one queue manager in a cluster are transmitted to
subscriptions on other queue managers using cluster sender channels.

When you use direct routing, the messages published take the shortest path between queue managers.
That is, they go direct from the publishing queue manager to each of the queue managers with
subscriptions. Messages are not transmitted to queue managers that do not have subscriptions for the
topic. See Proxy subscriptions in a publish/subscribe network.

Where the rate of publication messages between any one queue manager and another in the cluster is
high, the cluster channel infrastructure between those two points must be able to maintain the rate. This
might involve tuning the channels and transmission queue being used.

When you use topic host routing, each message published on a queue manager that is not a topic host
is transmitted to a topic host queue manager. This is independent of whether one or more subscriptions
exist anywhere else in the cluster. This introduces further factors to consider in planning:

• Is the additional latency of first sending each publication to a topic host queue manager acceptable?
• Can each topic host queue manager sustain the inbound and outbound publication rate? Consider a

system with publishers on many different queue managers. If they all send their messages to a very

92 Planning for IBM MQ

small set of topic hosting queue managers, those topic hosts might become a bottleneck in processing
those messages and routing them on to subscribing queue managers.

• Is it expected that a significant proportion of the published messages will not have a matching
subscriber? If so, and the rate of publishing such messages is high, it might be best to make
the publisher's queue manager a topic host. In that situation, any published message where no
subscriptions exist in the cluster will not be transmitted to any other queue managers.

These problems might also be eased by introducing multiple topic hosts, to spread the publication load
across them:

• Where there are multiple distinct topics, each with a proportion of the publication traffic, consider
hosting them on different queue managers.

• If the topics cannot be separated onto different topic hosts, consider defining the same topic object on
multiple queue managers. This results in publications being workload balanced across each of them for
routing. However, this is only appropriate when publication message ordering is not required.

Subscription change and dynamic topic strings
Another consideration is the effect on performance of the system for propagating proxy subscriptions.
Typically, a queue manager sends a proxy subscription message to certain other queue managers in the
cluster when the first subscription for a specific clustered topic string (not just a configured topic object)
is created on that queue manager. Similarly, a proxy subscription deletion message is sent when the last
subscription for a specific clustered topic string is deleted.

For direct routing, each queue manager with subscriptions sends those proxy subscriptions to every
other queue manager in the cluster. For topic host routing, each queue manager with subscriptions only
sends the proxy subscriptions to each queue manager that hosts a definition for that clustered topic.
Therefore, with direct routing, the more queue managers there are in the cluster, the higher the overhead
of maintaining proxy subscriptions across them. Whereas, with topic host routing, the number of queue
managers in the cluster is not a factor.

In both routing models, if a publish/subscribe solution consists of many unique topic strings being
subscribed to, or the topics on a queue manager in the cluster are frequently being subscribed
and unsubscribed, a significant overhead will be seen on that queue manager, caused by constantly
generating messages distributing and deleting the proxy subscriptions. With direct routing, this is
compounded by the need to send these messages to every queue manager in the cluster.

If the rate of change of subscriptions is too high to accommodate, even within a topic host routed system,
see Subscription performance in publish/subscribe networks for information about ways to reduce proxy
subscription overhead.

Defining cluster topics
Cluster topics are administrative topics with the cluster attribute defined. Information about cluster
topics is pushed to all members of a cluster, and combined with local topics to create portions of a topic
space that spans multiple queue managers. This enables messages published on a topic on one queue
manager to be delivered to subscriptions of other queue managers in the cluster.

When you define a cluster topic on a queue manager, the cluster topic definition is sent to the full
repository queue managers. The full repositories then propagate the cluster topic definition to all queue
managers within the cluster, making the same cluster topic available to publishers and subscribers at
any queue manager in the cluster. The queue manager on which you create a cluster topic is known
as a cluster topic host. The cluster topic can be used by any queue manager in the cluster, but any
modifications to a cluster topic must be made on the queue manager where that topic is defined
(the host) at which point the modification is propagated to all members of the cluster through the full
repositories.

When you use direct routing, the location of the clustered topic definition does not directly affect the
behavior of the system, because all queue managers in the cluster use the topic definition in the same
way. You should therefore define the topic on any queue manager that will be a member of the cluster for

Planning an IBM MQ architecture 93

as long as the topic is needed, and that is on a system reliable enough to regularly be in contact with the
full repository queue managers.

When you use topic host routing, the location of the clustered topic definition is very important, because
other queue managers in the cluster create channels to this queue manager and send subscription
information and publications to it. To choose the best queue manager to host the topic definition, you
need to understand topic host routing. See “Topic host routing in publish/subscribe clusters” on page 80.

If you have a clustered topic, and a local topic object, then the local topic takes precedence. See “Multiple
cluster topic definitions of the same name” on page 96.

For information about the commands to use to display cluster topics, see the related information.

Clustered topic inheritance
Typically, publishing and subscribing applications in a clustered publish/subscribe topology expect to
work the same, no matter which queue manager in the cluster they are connected to. This is why
clustered administered topic objects are propagated to every queue manager in the cluster.

An administered topic object inherits its behavior from other administered topic objects higher in the topic
tree. This inheritance occurs when an explicit value has not been set for a topic parameter.

In the case of clustered publish/subscribe, it is important to consider such inheritance because it
introduces the possibility that publishers and subscribers will behave differently depending on which
queue manager they connect to. If a clustered topic object leaves any parameters to inherit from higher
topic objects, the topic might behave differently on different queue managers in the cluster. Similarly,
locally defined topic objects defined below a clustered topic object in the topic tree will mean those lower
topics are still clustered, but the local object might change its behavior in some way that differs from
other queue managers in the cluster.

Wildcard subscriptions
Proxy subscriptions are created when local subscriptions are made to a topic string that resolves at,
or below, a clustered topic object. If a wildcard subscription is made higher in the topic hierarchy than
any cluster topic, it does not have proxy subscriptions sent around the cluster for the matching cluster
topic, and therefore receives no publications from other members of the cluster. It does however receive
publications from the local queue manager.

However, if another application subscribes to a topic string that resolves to or below the cluster topic,
proxy subscriptions are generated and publications are propagated to this queue manager. On arrival
the original, higher wildcard subscription is considered a legitimate recipient of those publications and
receives a copy. If this behavior is not required, set WILDCARD(BLOCK) on the clustered topic. This
makes the original wildcard not be considered a legitimate subscription, and stops it receiving any
publications (local, or from elsewhere in the cluster) on the cluster topic, or its subtopics.

Related concepts
Working with administrative topics
Working with subscriptions
Related reference
DISPLAYTOPIC
DISPLAYTPSTATUS
DISPLAYSUB

Cluster topic attributes
When a topic object has the cluster name attribute set, the topic definition is propagated across all queue
managers in the cluster. Each queue manager uses the propagated topic attributes to control the behavior
of publish/subscribe applications.

A topic object has a number of attributes that apply to publish/subscribe clusters. Some control the
general behavior of the publishing and subscribing applications and some control how the topic is used
across the cluster.

94 Planning for IBM MQ

A clustered topic object definition must be configured in a way that all queue managers in the cluster can
correctly use it.

For example if the model queues to be used for managed subscriptions (MDURMDL and MNDURMDL) are
set to a non-default queue name, that named model queue must be defined on all queue managers where
managed subscriptions will be created.

Similarly, if any attribute is set to ASPARENT, the behavior of the topic will be dependent on the higher
nodes in the topic tree (see Administrative topic objects) on each individual queue manager in the cluster.
This might result in different behavior when publishing or subscribing from different queue managers.

The main attributes that directly relate to publish/subscribe behavior across the cluster are as follows:

CLROUTE
This parameter controls the routing of messages between queue managers where publishers are
connected, and queue managers where matching subscriptions exist.

• You configure the route to be either direct between these queue managers, or through a queue
manager that hosts a definition of the clustered topic. See Publish/subscribe clusters for more
details.

• You cannot change the CLROUTE while the CLUSTER parameter is set. To change the CLROUTE, first
set the CLUSTER property to be blank. This stops applications that use the topic from behaving in a
clustered manner. This in turn results in a break in publications being delivered to subscriptions, so
you should also quiesce publish/subscribe messaging while making the change.

PROXYSUB
This parameter controls when proxy subscriptions are made.

• FIRSTUSE is the default value, and causes proxy subscriptions to be sent in response to local
subscriptions on a queue manager in a distributed publish/subscribe topology, and canceled when
no longer required. For details about why you might want to change this attribute from the default
value of FIRSTUSE, see Individual proxy subscription forwarding and publish everywhere .

• To enable publish everywhere, you set the PROXYSUB parameter to FORCE for a high-level topic
object. This results in a single wildcard proxy subscription that matches all topics below this topic
object in the topic tree.

Note: Setting the PROXYSUB(FORCE) attribute in a large or busy publish/subscribe cluster can result
in excessive load on system resources. The PROXYSUB(FORCE) attribute is propagated to every
queue manager, not just the queue manager that the topic was defined on. This causes every queue
manager in the cluster to create a wildcarded proxy subscription.

A copy of a message to this topic, published on any queue manager in the cluster, is sent to every
queue manager in the cluster - either directly, or through a topic host queue manager, depending on
the CLROUTE setting.

When the topic is direct routed, every queue manager creates cluster sender channels to every other
queue manager. When the topic is topic host routed, channels to each topic host queue manager are
created from every queue manager in the cluster.

For more information about the PROXYSUB parameter when used in clusters, see Direct routed
publish/subscribe performance.

PUBSCOBE and SUBSCOPE
These parameters determine whether this queue manager propagates publications to queue
managers in the topology (publish/subscribe cluster or hierarchy) or restricts the scope to just its
local queue manager. You can do the equivalent job programmatically using MQPMO_SCOPE_QMGR and
MQSO_SCOPE_QMGR.
PUBSCOPE

If a cluster topic object is defined with PUBSCOPE(QMGR), the definition is shared with the cluster,
but the scope of publications that are based on that topic is local only and they are not sent to
other queue managers in the cluster.

Planning an IBM MQ architecture 95

SUBSCOPE
If a cluster topic object is defined with SUBSCOPE(QMGR), the definition is shared with the cluster,
but the scope of subscriptions that are based on that topic is local only, therefore no proxy
subscriptions are sent to other queue managers in the cluster.

These two attributes are commonly used together to isolate a queue manager from interacting with
other members of the cluster on particular topics. The queue manager neither publishes or receives
publications on those topics to and from other members of the cluster. This situation does not prevent
publication or subscription if topic objects are defined on subtopics.
Setting SUBSCOPE to QMGR on a local definition of a topic does not prevent other queue managers
in the cluster from propagating their proxy subscriptions to the queue manager if they are using
a clustered version of the topic, with SUBSCOPE(ALL). However, if the local definition also sets
PUBSCOPE to QMGR those proxy subscriptions are not sent publications from this queue manager.

Related concepts
Publication scope
Subscription scope

Multiple cluster topic definitions of the same name
You can define the same named cluster topic object on more than one queue manager in the cluster,
and in certain scenarios this enables specific behavior. When multiple cluster topic definitions exist of
the same name, the majority of properties should match. If they do not, errors or warnings are reported
depending on the significance of the mismatch.

In general, if there is a mismatch in the properties of multiple cluster topic definitions, warnings are
issued and one of the topic object definitions is used by each queue manager in the cluster. Which
definition is used by each queue manager is not deterministic, or consistent across the queue managers in
the cluster. Such mismatches should be resolved as quickly as possible.

During cluster setup or maintenance you sometimes need to create multiple cluster topic definitions that
are not identical. However this is only ever useful as a temporary measure, and it is therefore treated as a
potential error condition.

When mismatches are detected, the following warning messages are written to each queue manager's
error log:

• On Multiplatforms, AMQ9465 and AMQ9466.

• On z/OS, CSQX465I and CSQX466I.

The chosen properties for any topic string on each queue manager can be determined by viewing topic
status rather than the topic object definitions, for example by using DISPLAY TPSTATUS.

In some situations, a conflict in configuration properties is severe enough to stop the topic object being
created, or to cause the mismatched objects to be marked as invalid and not propagated across the
cluster (See CLSTATE in DISPLAY TOPIC). These situations occur when there is a conflict in the cluster
routing property (CLROUTE) of the topic definitions. Additionally, due to the importance of consistency
across topic host routed definitions, further inconsistencies are rejected as detailed in subsequent
sections of this article.

If the conflict is detected at the time that the object is defined, the configuration change is rejected. If
detected later by the full repository queue managers, the following warning messages are written to the
queue managers error logs:

• On Multiplatforms: AMQ9879

• On z/OS: CSQX879E.

When multiple definitions of the same topic object are defined in the cluster, a locally defined definition
takes precedence over any remotely defined one. Therefore, if any differences exist in the definitions, the
queue managers hosting the multiple definitions behave differently from each other.

96 Planning for IBM MQ

The effect of defining a non-cluster topic with the same name as a cluster topic from
another queue manager
It is possible to define an administered topic object that is not clustered on a queue manager that is in
a cluster, and simultaneously define the same named topic object as a clustered topic definition on a
different queue manager. In this case, the locally defined topic object takes precedence over all remote
definitions of the same name.

This has the effect of preventing the clustering behavior of the topic when used from this queue
manager. That is, subscriptions might not receive publications from remote publishers, and messages
from publishers might not be propagated to remote subscriptions in the cluster.

Careful consideration should be given before configuring such a system, because this can lead to
confusing behavior.

Note: If an individual queue manager needs to prevent publications and subscriptions from propagating
around the cluster, even when the topic has been clustered elsewhere, an alternative approach is to set
the publication and subscription scopes to only the local queue manager. See “Cluster topic attributes” on
page 94.

Multiple cluster topic definitions in a direct routed cluster
For direct routing, you do not usually define the same cluster topic on more than one cluster queue
manager. This is because direct routing makes the topic available at all queue managers in the cluster,
no matter which queue manager it was defined on. Moreover, adding multiple cluster topic definitions
significantly increases system activity and administrative complexity, and with increased complexity
comes a greater chance of human error:

• Each definition results in an additional cluster topic object being pushed out to the other queue
managers in the cluster, including the other cluster topic host queue managers.

• All definitions for a specific topic in a cluster must be identical, otherwise it is difficult to work out which
topic definition is being used by a queue manager.

It is also not essential that the sole host queue manager is continually available for the topic to function
correctly across the cluster, because the cluster topic definition is cached by the full repository queue
managers and by all other queue managers in their partial cluster repositories. For more information, see
Availability of topic host queue managers that use direct routing.

For a situation in which you might need to temporarily define a cluster topic on a second queue manager,
for example when the existing host of the topic is to be removed from the cluster, see Moving a cluster
topic definition to a different queue manager.

If you need to alter a cluster topic definition, take care to modify it at the same queue manager it was
defined on. Attempting to modify it from another queue manager might accidentally create a second
definition of the topic with conflicting topic attributes.

Multiple cluster topic definitions in a topic host routed cluster
When a cluster topic is defined with a cluster route of topic host, the topic is propagated across all queue
managers in the cluster just as for direct routed topics. Additionally, all publish/subscribe messaging for
that topic is routed through the queue managers where that topic is defined. Therefore the location and
number of definitions of the topic in the cluster becomes important (see “Topic host routing in publish/
subscribe clusters” on page 80).

To ensure adequate availability and scalability it is useful, if possible, to have multiple topic definitions.
See Availability of topic host queue managers that use topic host routing.

When adding or removing additional definitions of a topic host routed topic in a cluster, you should
consider the flow of messages at the time of the configuration change. If messages are being published
in the cluster to the topic at the time of the change, a staged process is required to add or remove a topic
definition. See Moving a cluster topic definition to a different queue manager and Adding extra topic hosts
to a topic host routed cluster.

Planning an IBM MQ architecture 97

As previously explained, the properties of the multiple definitions should match, with the possible
exception of the PUB parameter, as described in the next section. When publications are routed through
topic host queue managers it is even more important for multiple definitions to be consistent. Therefore,
an inconsistency detected in either the topic string or cluster name is rejected if one or more of the topic
definitions has been configured for topic host cluster routing.

Note: Cluster topic definitions are also rejected if an attempt is made to configure them above or below
another topic in the topic tree, where the existing clustered topic definition is configured for topic host
routing. This prevents ambiguity in the routing of publications with respect to wildcarded subscriptions.

Special handling for the PUB parameter
The PUB parameter is used to control when applications can publish to a topic. In the case of topic host
routing in a cluster, it can also control which topic host queue managers are used to route publications.
For this reason it is permitted to have multiple definitions of the same topic object in the cluster, with
different settings for the PUB parameter.

If multiple remote clustered definitions of a topic have different settings for this parameter, the topic
allows publications to be sent and delivered to subscriptions if the following conditions are met:

• There is not a matching topic object defined on the queue manager that the publisher is connected to
that is set to PUB(DISABLED).

• One or more of the multiple topic definitions in the cluster is set to PUB(ENABLED), or one or more
of the multiple topic definitions is set to PUB(ASPARENT) and the local queue managers where the
publisher is connected and the subscription defined are set to PUB(ENABLED) at a higher point in the
topic tree.

For topic host routing, when messages are published by applications connected to queue managers
that are not topic hosts, messages are only routed to the topic hosting queue managers where the PUB
parameter has not explicitly been set to DISABLED. You can therefore use the PUB(DISABLED) setting to
quiesce message traffic through certain topic hosts. You might want to do this to prepare for maintenance
or removal of a queue manager, or for the reasons described in Adding extra topic hosts to a topic host
routed cluster.

Availability of cluster topic host queue managers
Design your publish/subscribe cluster to minimize the risk that, should a topic host queue manager
become unavailable, the cluster will no longer be able to process traffic for the topic. The effect of a topic
host queue manager becoming unavailable depends on whether the cluster is using topic host routing or
direct routing.

Availability of topic host queue managers that use direct routing
For direct routing, you do not usually define the same cluster topic on more than one cluster queue
manager. This is because direct routing makes the topic available at all queue managers in the cluster,
no matter which queue manager it was defined on.See Multiple cluster topic definitions in a direct routed
cluster.

In a cluster, whenever the host of a clustered object (for example a clustered queue or clustered topic)
becomes unavailable for a prolonged period of time, the other members of the cluster will eventually
expire the knowledge of those objects. In the case of a clustered topic, if the cluster topic host
queue manager becomes unavailable, the other queue managers continue to process publish/subscribe
requests for the topic in a direct clustered way (that is, sending publications to subscriptions on
remote queue managers) for at least 60 days from when the topic hosting queue manager was last in
communication with the full repository queue managers. If the queue manager on which you defined the
cluster topic object is never made available again, then eventually the cached topic objects on the other
queue managers are deleted and the topic reverts to a local topic, in which case subscriptions cease to
receive publications from applications connected to remote queue managers.

With the 60 day period to recover the queue manager on which you define a cluster topic object, there
is little need to take special measures to guarantee that a cluster topic host remains available (note,

98 Planning for IBM MQ

however, that any subscriptions defined on the unavailable cluster topic host do not remain available).
The 60 day period is sufficient to cater for technical problems, and is likely to be exceeded only because
of administrative errors. To mitigate that possibility, if the cluster topic host is unavailable, all members
of the cluster write error log messages hourly, stating that their cached cluster topic object was not
refreshed. Respond to these messages by making sure that the queue manager on which the cluster topic
object is defined, is running. If it is not possible to make the cluster topic host queue manager available
again, define the same clustered topic definition, with exactly the same attributes, on another queue
manager in the cluster.

Availability of topic host queue managers that use topic host routing
For topic host routing, all publish/subscribe messaging for a topic is routed through the queue managers
where that topic is defined. For this reason, it is very important to consider the continual availability of
these queue managers in the cluster. If a topic host becomes unavailable, and no other host exists for the
topic, traffic from publishers to subscribers on different queue managers in the cluster immediately halts
for the topic. If additional topic hosts are available, the cluster queue managers route new publication
traffic through these topic hosts, providing continuous availability of message routes.

As for direct topics, after 60 days, if the first topic host is still unavailable, knowledge of that topic host's
topic is removed from the cluster. If this is the last remaining definition for this topic in the cluster, all
other queue managers cease to forward publications to any topic host for routing.

To ensure adequate availability and scalability it is therefore useful, if possible, to define each topic on
at least two cluster queue managers. This gives protection against any given topic host queue manager
becoming unavailable. See also Multiple cluster topic definitions in a topic host routed cluster.

If you cannot configure multiple topic hosts (for example because you need to preserve message
ordering), and you cannot configure just one topic host (because the availability of a single queue
manager must not affect the flow of publications to subscriptions across all queue managers in the
cluster), consider configuring the topic as a direct routed topic. This avoids reliance on a single queue
manager for the whole cluster, but does still require each individual queue manager to be available in
order for it to process locally hosted subscriptions and publishers.

Inhibiting clustered publish/subscribe
Introducing the first direct routed clustered topic into a cluster forces every queue manager in the cluster
to become aware of every other queue manager, and potentially causes them to create channels to each
other. If this is not desirable, you should instead configure topic host routed publish/subscribe. If the
existence of a direct routed clustered topic might jeopardize the stability of the cluster, due to scaling
concerns of each queue manager, you can completely disable clustered publish/subscribe functionality by
setting PSCLUS to DISABLED on every queue manager in the cluster.

As described in“Direct routing in publish/subscribe clusters” on page 75, when you introduce a direct
routed clustered topic into a cluster, all partial repositories are automatically notified of all other members
of the cluster. The clustered topic might also create subscriptions at all other nodes (for example, where
PROXYSUB(FORCE) is specified) and cause large numbers of channels to be started from a queue
manager, even when there are no local subscriptions. This puts an immediate additional load on each
queue manager in the cluster. For a cluster that contains many queue managers, this can cause a
significant reduction in performance. Therefore the introduction of direct routed publish/subscribe to a
cluster must be carefully planned.

When you know that a cluster cannot accommodate the overheads of direct routed publish/subscribe, you
can instead use topic host routed publish/subscribe. For an overview of the differences, see “Designing
publish/subscribe clusters” on page 73.

If you prefer to completely disable publish/subscribe functionality for the cluster, you can do so by setting
the queue manager attribute PSCLUS to DISABLED on every queue manager in the cluster. This setting
disables both direct routed and topic host routed publish/subscribe in the cluster, by modifying three
aspects of queue manager functionality:

• An administrator of this queue manager is no longer able to define a Topic object as clustered.

Planning an IBM MQ architecture 99

• Incoming topic definitions or proxy subscriptions from other queue managers are rejected, and a
warning message is logged to inform the administrator of incorrect configuration.

• Full repositories no longer automatically share information about every queue manager with all other
partial repositories when they receive a topic definition.

Although PSCLUS is a parameter of each individual queue manager in a cluster, it is not intended to
selectively disable publish/subscribe in a subset of queue managers in the cluster. If you selectively
disable in this way, you will see frequent error messages. This is because proxy subscriptions and topic
definitions are constantly seen and rejected if a topic is clustered on a queue manager where PSCLUS is
enabled.

You should therefore aim to set PSCLUS to DISABLED on every queue manager in the cluster. However,
in practice this state can be difficult to achieve and maintain, for example queue managers can join and
leave the cluster at any time. At the very least, you must ensure that PSCLUS is set to DISABLED on all full
repository queue managers. If you do this, and a clustered topic is subsequently defined on an ENABLED
queue manager in the cluster, this does not cause the full repositories to inform every queue manager
of every other queue manager, and so your cluster is protected from potential scaling issues across all
queue managers. In this scenario, the origin of the clustered topic is reported in the error logs of the full
repository queue managers.

If a queue manager participates in one or more publish/subscribe clusters, and also one or more point-
to-point clusters, you must set PSCLUS to ENABLED on that queue manager. For this reason, when
overlapping a point-to-point cluster with a publish subscribe cluster, you should use a separate set of
full repositories in each cluster. This approach allows topic definitions and information about every queue
manager to flow only in the publish/subscribe cluster.

To avoid inconsistent configurations when you change PSCLUS from ENABLED to DISABLED, no clustered
topic objects can exist in any cluster of which this queue manager is a member. Any such topics, even
remotely defined ones, must be deleted before changing PSCLUS to DISABLED.

For more information about PSCLUS, see ALTER QMGR (PSCLUS).

Related concepts
Direct routed publish/subscribe cluster performance

Publish/subscribe and multiple clusters
A single queue manager can be a member of more than one cluster. This arrangement is sometimes
known as overlapping clusters. Through such an overlap, clustered queues can be made accessible from
multiple clusters, and point-to-point message traffic can be routed from queue managers in one cluster
to queue managers in another cluster. Clustered topics in publish/subscribe clusters do not provide the
same capability. Therefore, their behavior must be clearly understood when using multiple clusters.

Unlike for a queue, you cannot associate a topic definition with more than one cluster. The scope of a
clustered topic is confined to those queue managers in the same cluster as the topic is defined for. This
allows publications to be propagated to subscriptions only on those queue managers in the same cluster.

100 Planning for IBM MQ

A queue manager's topic tree

Figure 28. Overlapping clusters: Two clusters each subscribing to different topics

When a queue manager is a member of multiple clusters it is made aware of all clustered topics defined
in each of those clusters. For example, in the previous figure QM3 is aware of both the T B and T
C administered clustered topic objects, whereas QM1 is only aware of T B. QM3 applies both topic
definitions to its local topic, and therefore has a different behavor to QM1 for certain topics. For this
reason it is important that clustered topics from different clusters do not interfere with each other.
Interference can occur when one clustered topic is defined above or below another clustered topic in a
different cluster (for example, they have topic strings of /Sport and /Sport/Football) or even for the
same topic string in both. Another form of interference is when administered clustered topic objects are
defined with the same object name in different clusters, but for different topic strings.

If such a configuration is made, the delivery of publications to matching subscriptions becomes very
dependent on the relative locations of publishers and subscribers with respect to the cluster. For this
reason, you cannot rely on such a configuration, and you should change it to remove the interfering topics.

When planning an overlapping cluster topology with publish/subscribe messaging, you can avoid any
interference by treating the topic tree and clustered topic object names as if they span all overlapping
clusters in the topology.

Integrating multiple publish/subscribe clusters
If there is a requirement for publish/subscribe messaging to span queue managers in different clusters,
there are two options available:

• Connect the clusters together through the use of a publish/subscribe hierarchy configuration. See
Combining the topic spaces of multiple clusters.

• Create an additional cluster that overlays the existing clusters and includes all queue managers that
need to publish or subscribe to a particular topic.

With the latter option, you should consider carefully the size of the cluster and the most effective cluster
routing mechanism. See“Designing publish/subscribe clusters” on page 73.

Planning an IBM MQ architecture 101

Design considerations for retained publications in publish/subscribe clusters
There are a few restrictions to consider when designing a publish/subscribe cluster to work with retained
publications.

Considerations
Consideration 1: The following cluster queue managers always store the latest version of a retained
publication:

• The publisher's queue manager
• In a topic host routed cluster, the topic host (provided there is only one topic host for the topic, as

explained in the next section of this article)
• All queue managers with subscriptions matching the topic string of the retained publication

Consideration 2: Queue managers do not receive updated retained publications while they have no
subscriptions. Therefore any retained publication stored on a queue manager that no longer subscribes to
the topic will become stale.

Consideration 3: On creating any subscription, if there is a local copy of a retained publication for the topic
string, the local copy is delivered to the subscription. If you are the first subscriber for any given topic
string, a matching retained publication is also delivered from one of the following cluster members:

• In a direct routed cluster, the publisher's queue manager
• In a topic host routed cluster, the topic hosts for the given topic

Delivery of a retained publication from a topic host or publishing queue manager to the subscribing queue
manager is asynchronous to the MQSUB calls. Therefore, if you use the MQSUBRQ call, the latest retained
publication might be missed until a subsequent call to MQSUBRQ.

Implications
For any publish/subscribe cluster, when a first subscription is made, the local queue manager might be
storing a stale copy of a retained publication and this is the copy that is delivered to the new subscription.
The existence of a subscription on the local queue manager means that this will resolve the next time the
retained publication is updated.

For a topic host routed publish/subscribe cluster, if you configure more than one topic host for a given
topic, new subscribers might receive the latest retained publication from a topic host, or they might
receive a stale retained publication from another topic host (with the latest having been lost). For
topic host routing, it is usual to configure multiple topic hosts for a given topic. However, if you expect
applications to make use of retained publications, you should configure only one topic host for each topic.

For any given topic string, you should use only a single publisher, and ensure the publisher always
uses the same queue manager. If you do not do this, different retained publications might be active at
different queue managers for the same topic, leading to unexpected behavior. Because multiple proxy
subscriptions are distributed, multiple retained publications might be received.

If you are still concerned about subscribers using stale publications, consider setting a message expiry
when you create each retained publication.

You can use the CLEAR TOPICSTR command to remove a retained publication from a publish/subscribe
cluster. In certain circumstances you might need to issue the command on multiple members of the
publish/subscribe cluster, as described in CLEAR TOPICSTR .

Wildcard subscriptions and retained publications
If you are using wildcard subscriptions, the corresponding proxy subscriptions delivered to other
members of the publish/subscribe cluster are wildcarded from the topic separator immediately prior
to the first wildcard character. See Wildcards and cluster topics.

102 Planning for IBM MQ

Therefore the wildcard used might match more topic strings, and more retained publications, than will
match the subscribing application.

This increases the amount of storage needed for the retained publications, and you therefore need to
ensure that the hosting queue managers have enough storage capacity.

Related concepts
Retained publications
Individual proxy subscription forwarding and publish everywhere

REFRESH CLUSTER considerations for publish/subscribe clusters
Issuing the REFRESH CLUSTER command results in the queue manager temporarily discarding locally
held information about a cluster, including any cluster topics and their associated proxy subscriptions.

The time taken from issuing the REFRESH CLUSTER command to the point that the queue manager
regains a full knowledge of the necessary information for clustered publish/subscribe depends on the size
of the cluster, the availability, and the responsiveness of the full repository queue managers.

During the refresh processing, disruption to publish/subscribe traffic in a publish/subscribe cluster
occurs. For large clusters, use of the REFRESH CLUSTER command can disrupt the cluster while it is
in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status
updates to all interested queue managers. See Refreshing in a large cluster can affect performance
and availability of the cluster. For these reasons, the REFRESH CLUSTER command must be used in a
publish/subscribe cluster only when under the guidance of your IBM Support Center.

The disruption to the cluster can appear externally as the following symptoms:

• Subscriptions to cluster topics on this queue manager are not receiving publications from publishers
that are connected to other queue managers in the cluster.

• Messages that are published to cluster topics on this queue manager are not being propagated to
subscriptions on other queue managers.

• Subscriptions to cluster topics on this queue manager created during this period are not consistently
sending proxy subscriptions to other members of the cluster.

• Subscriptions to cluster topics on this queue manager deleted during this period are not consistently
removing proxy subscriptions from other members of the cluster.

• 10-second pauses, or longer, in message delivery.
• MQPUT failures, for example, MQRC_PUBLICATION_FAILURE.
• Publications placed on the dead-letter queue with a reason of MQRC_UNKNOWN_REMOTE_Q_MGR

For these reasons publish/subscribe applications need to be quiesced before issuing the REFRESH
CLUSTER command.

After a REFRESH CLUSTER command is issued on a queue manager in a publish/subscribe cluster,
wait until all cluster queue managers and cluster topics have been successfully refreshed, then
resynchronize proxy subscriptions as described in Resynchronization of proxy subscriptions. When all
proxy subscriptions have been correctly resynchronized, restart your publish/subscribe applications.

If a REFRESH CLUSTER command is taking a long time to complete, monitor it by looking at the
CURDEPTH of SYSTEM.CLUSTER.COMMAND.QUEUE.

Related concepts
“Clustering: Using REFRESH CLUSTER best practices” on page 67
You use the REFRESH CLUSTER command to discard all locally held information about a cluster and
rebuild that information from the full repositories in the cluster. You should not need to use this
command, except in exceptional circumstances. If you do need to use it, there are special considerations
about how you use it. This information is a guide based on testing and feedback from customers.
Related reference
Application issues seen when running REFRESH CLUSTER
MQSC Commands reference: REFRESH CLUSTER

Planning an IBM MQ architecture 103

Routing in publish/subscribe hierarchies
If your distributed queue manager topology is a publish/subscribe hierarchy, and a subscription is made
on a queue manager, by default a proxy subscription is created on every queue manager in the hierarchy.
Publications received on any queue manager are then routed through the hierarchy to each queue
manager that hosts a matching subscription.

For an introduction to how messages are routed between queue managers in publish/subscribe
hierarchies and clusters, see Distributed publish/subscribe networks.

When a subscription to a topic is made on a queue manager in a distributed publish/subscribe hierarchy,
the queue manager manages the process by which the subscription is propagated to connected queue
managers. Proxy subscriptions flow to all queue managers in the network. A proxy subscription gives a
queue manager the information it needs to forward a publication to those queue managers that host
subscriptions for that topic. Each queue manager in a publish/subscribe hierarchy is only aware of its
direct relations. Publications put to one queue manager are sent, through its direct relations, to those
queue managers with subscriptions. This is illustrated in the following figure, in which Subscriber 1
registers a subscription for a particular topic on the Asia queue manager (1). Proxy subscriptions for
this subscription on the Asia queue manager are forwarded to all other queue managers in the network
(2,3,4).

Figure 29. Propagation of subscriptions through a queue manager network

A queue manager consolidates all the subscriptions that are created on it, whether from local applications
or from remote queue managers. It creates proxy subscriptions for the topics of the subscriptions with its
neighbors, unless a proxy subscription already exists. This is illustrated in the following figure, in which
Subscriber 2 registers a subscription, to the same topic as in Figure 29 on page 104, on the HQ queue
manager (5). The subscription for this topic is forwarded to the Asia queue manager, so that it is aware
that subscriptions exist elsewhere on the network (6). The subscription is not forwarded to the Europe
queue manager, because a subscription for this topic has already been registered; see step 3 in Figure 29
on page 104.

104 Planning for IBM MQ

Figure 30. Multiple subscriptions

When an application publishes information to a topic, by default the receiving queue manager forwards
it to all queue managers that have valid subscriptions to the topic. It might forward it through one or
more intermediate queue managers. This is illustrated in the following figure, in which a publisher sends
a publication, on the same topic as in Figure 30 on page 105, to the Europe queue manager (7). A
subscription for this topic exists from HQ to Europe, so the publication is forwarded to the HQ queue
manager (8). However, no subscription exists from London to Europe (only from Europe to London), so the
publication is not forwarded to the London queue manager. The HQ queue manager sends the publication
directly to Subscriber 2 and to the Asia queue manager (9). The publication is forwarded to Subscriber 1
from Asia (10).

Figure 31. Propagation of publications through a queue manager network

When a queue manager sends any publications or subscriptions to another queue manager, it sets its own
user ID in the message. If you are using a publish/subscribe hierarchy, and if the incoming channel is set
up to put messages with the authority of the user ID in the message, then you must authorize the user ID
of the sending queue manager. See Using default user IDs with a queue manager hierarchy.

Note: If you instead use publish/subscribe clusters, authorization is handled by the cluster.

Summary and additional considerations
A publish/subscribe hierarchy gives you precise control over the relationship between queue managers.
After it has been created, it needs little manual intervention to administer. However it also imposes
certain constraints upon your system:

Planning an IBM MQ architecture 105

• The higher nodes in the hierarchy, especially the root node, must be hosted on robust, highly available,
and performant equipment. This is because more publication traffic is expected to flow through these
nodes.

• The availability of every non-leaf queue manager in the hierarchy affects the ability of the network to
flow messages from publishers to subscribers on other queue managers.

• By default, all topic strings subscribed to are propagated throughout the hierarchy, and publications are
propagated only to remote queue managers that have a subscription to the associated topic. Therefore
rapid changes to the set of subscriptions can become a limiting factor. You can change this default
behavior, and instead have all publications propagated to all queue managers, which removes the need
for proxy subscriptions. See Subscription performance in publish/subscribe networks.

Note: A similar restriction also applies to direct routed clusters.
• Because of the interconnected nature of publish/subscribe queue managers, it takes time for proxy

subscriptions to propagate around all nodes in the network. Remote publications do not necessarily
start being subscribed to immediately, so early publications might not be sent following a subscription
to a new topic string. You can remove the problems caused by the subscription delay by having all
publications propagated to all queue managers, which removes the need for proxy subscriptions. See
Subscription performance in publish/subscribe networks.

Note: This restriction also applies to direct routed clusters.
• For a publish/subscribe hierarchy, adding or removing queue managers requires manual configuration to

the hierarchy, with careful consideration to the location of those queue managers and their reliance on
other queue managers. Unless you are adding or removing queue managers that are at the bottom of
the hierarchy, and therefore have no further branches below them, you will also have to configure other
queue managers in the hierarchy.

Before you use a publish/subscribe hierarchy as your routing mechanism, explore the alternative
approaches detailed in “Direct routing in publish/subscribe clusters” on page 75 and “Topic host routing
in publish/subscribe clusters” on page 80.

Distributed publish/subscribe system queues
Four system queues are used by queue managers for publish/subscribe messaging. You need to be aware
of their existence only for problem determination and capacity planning purposes.

See Balancing producers and consumers in publish/subscribe networks for guidance on how to monitor
these queues.

Table 6. Publish/subscribe system queues on Multiplatforms

System queue Purpose

SYSTEM.INTER.QMGR.CONTROL IBM MQ distributed publish/subscribe control queue

SYSTEM.INTER.QMGR.FANREQ IBM MQ distributed publish/subscribe internal proxy
subscription fan-out process input queue

SYSTEM.INTER.QMGR.PUBS IBM MQ distributed publish/subscribe publications

SYSTEM.HIERARCHY.STATE IBM MQ distributed publish/subscribe hierarchy relationship
state

On z/OS, you set up the necessary system objects when you create the queue manager, by
including the CSQ4INSX, CSQ4INSR and CSQ4INSG samples in the CSQINP2 initialization input data set.
For more information, see Task 13: Customize the initialization input data sets.

The attributes of the publish/subscribe system queues are shown in Table 7 on page 107.

106 Planning for IBM MQ

Table 7. Attributes of publish/subscribe system queues

Attribute Default value

DEFPSIST Yes

DEFSOPT SHARED

MAXMSGL
On Multiplatforms: The value of the MAXMSGL parameter of the ALTER

QMGR command

On z/OS: 4194304 (that is, 4 MB)

MAXDEPTH 999999999

SHARE N/A

STGCLASS

This attribute is used only on z/OS platforms

Note: The only queue that contains messages put by applications is SYSTEM.INTER.QMGR.PUBS.
MAXDEPTH is set to its maximum value for this queue to allow temporary build up of published messages
during outages or times of excessive load. If the queue manager is running on a system where that depth
of queue could not be contained, this should be adjusted.

Related tasks
Troubleshooting distributed publish/subscribe problems

Distributed publish/subscribe system queue errors
Errors can occur when distributed publish/subscribe queue manager queues are unavailable. This affects
the propagation of subscription knowledge across the publish/subscribe network, and publication to
subscriptions on remote queue managers.

If the fan-out request queue SYSTEM.INTER.QMGR.FANREQ is unavailable, the creation of a subscription
might generate an error, and error messages will be written to the queue manager error log when proxy
subscriptions need to be delivered to directly connected queue managers.

If the hierarchy relationship state queue SYSTEM.HIERARCHY.STATE is unavailable, an error message
is written to the queue manager error log and the publish/subscribe engine is put into COMPAT mode. To
view the publish/subscribe mode, use the command DISPLAY QMGR PSMODE.

If any other of the SYSTEM.INTER.QMGR queues are unavailable, an error message is written to the
queue manager error log and, although function is not disabled, it is likely that publish/subscribe
messages will build up on queues on this or remote queue managers.

If the publish/subscribe system queue or required transmission queue to a parent, child or publish/
subscribe cluster queue manager is unavailable, the following outcomes occur:

• The publications are not delivered, and a publishing application might receive an error. For details of
when the publishing application receives an error, see the following parameters of the DEFINE TOPIC
command: PMSGDLV , NPMSGDLV , and USEDLQ .

• Received inter-queue manager publications are backed out to the input queue, and subsequently
re-attempted. If the backout threshold is reached, the undelivered publications are placed on the dead
letter queue. The queue manager error log will contain details of the problem.

• An undelivered proxy subscription is backed out to the fanout request queue, and subsequently
attempted again. If the backout threshold is reached, the undelivered proxy subscription is not
delivered to any connected queue manager, and is placed on the dead letter queue. The queue manager
error log will contain details of the problem, including details of any necessary corrective administrative
action required.

Planning an IBM MQ architecture 107

• Hierarchy relationship protocol messages fail, and the connection status is flagged as ERROR. To view
the connection status, use the command DISPLAY PUBSUB.

Related tasks
Troubleshooting distributed publish/subscribe problems

Planning your storage and performance requirements on
Multiplatforms

You must set realistic and achievable storage, and performance goals for your IBM MQ system. Use the
links to find out about factors that affect storage and performance on your platform.

The requirements vary depending on the systems that you are using IBM MQ on, and what components
you want to use.

For the latest information about supported hardware and software environments, see System
Requirements for IBM MQ.

IBM MQ stores queue manager data in the file system. Use the following links to find out about planning
and configuring directory structures for use with IBM MQ:

• “Planning file system support on Multiplatforms” on page 111
• “Requirements for shared file systems on Multiplatforms” on page 112
• “Sharing IBM MQ files on Multiplatforms” on page 121

• “Directory structure on AIX and Linux systems” on page 123

• “Directory structure on Windows systems” on page 132

• “Directory structure on IBM i” on page 135

Use the following links for information about system resources, shared memory, and process priority on
AIX and Linux:

• “IBM MQ and UNIX System V IPC resources” on page 140

• “Shared memory on AIX” on page 139

• “IBM MQ and UNIX Process Priority” on page 140

Use the following links for information about log files:

• “Choosing circular or linear logging on Multiplatforms” on page 138
• Calculating the size of the log

Related concepts
“Planning your IBM MQ environment on z/OS” on page 140
When planning your IBM MQ environment, you must consider the resource requirements for data sets,
page sets, Db2, Coupling Facilities, and the need for logging, and backup facilities. Use this topic to plan
the environment where IBM MQ runs.
Related tasks
“Planning an IBM MQ architecture” on page 5
When planning your IBM MQ environment, consider the support that IBM MQ provides for single and
multiple queue manager architectures, and for point-to-point and publish/subscribe messaging styles.
Also plan your resource requirements, and your use of logging and backup facilities.
Related reference
Hardware and software requirements on AIX and Linux
Hardware and software requirements on Windows

108 Planning for IBM MQ

https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq

Disk space requirements on Multiplatforms
The storage requirements for IBM MQ depend on which components you install, and how much working
space you need.

Disk storage is required for the optional components you choose to install, including any prerequisite
components they require. The total storage requirement also depends on the number of queues that you
use, the number and size of the messages on the queues, and whether the messages are persistent. You
also require archiving capacity on disk, tape, or other media, as well as space for your own application
programs.

The following tables show the approximate disk space required when you install various combinations of
the product on different platforms. (Values are rounded up to the nearest 5 MB, where a MB is 1,048,576
bytes.)

• “Disk space requirements for Long Term Support” on page 109

• “Disk space requirements for Continuous Delivery” on page 110

Disk space requirements for Long Term Support

Table 8. IBM MQ disk space requirements for Multiplatforms for Long Term Support

Platform Client installation “1” on
page 109

Server installation “2” on
page 109

Full installation “3” on page
109

AIX 335 MB 375 MB 1810 MB

IBM i (see
Additional notes for IBM i)

485 MB 845 MB 1965 MB

Linux for
x86-64

270 MB 295 MB 2010 MB

Linux on
Power® Systems - Little
Endian

170 MB 190 MB 1400 MB

Linux for
IBM Z®

255 MB 290 MB 1485 MB

Windows
(64 bit installation) “4” on
page 110

295 MB 425 MB 2310 MB

Notes:

1. A client installation includes the following components:

• Runtime
• Client

2. A server installation includes the following components:

• Runtime
• Server

3. A full installation includes all available components.

Planning an IBM MQ architecture 109

4. Not all the components listed here are installable features on Windows systems; their
functionality is sometimes included in other features. See IBM MQ features for Windows systems.

Additional notes for IBM i:

1. On IBM i you cannot separate the native client from the server. The server figure in the table is for
5724H72*BASE without Java, together with the English Language Load (2924). There are 22 possible
unique language loads.

2. The figure in the table is for the native client 5725A49 *BASE without Java.
3. Java and JMS classes can be added to both server and client bindings. If you want to include these

features add 110 MB.
4. Adding samples source to either the client or server adds an extra 10 MB.
5. Adding samples to Java and JMS classes adds an extra 5 MB.

Disk space requirements for Continuous Delivery

Table 9. IBM MQ disk space requirements for Multiplatforms for Continuous Delivery

Platform/CD release Client installation “1” on
page 110

Server installation “2” on
page 110

Full installation “3” on page
111

AIX

IBM MQ
9.4.0

355 MB 390 MB 1440 MB

Linux for x86-64 (64 bit)

IBM MQ
9.4.0

280 MB 295 MB 1195 MB

Linux on Power Systems - Little Endian

IBM MQ
9.4.0

170 MB 195 MB 1075 MB

Linux for IBM Z

IBM MQ
9.4.0

260 MB 290 MB 1160 MB

Windows (64 bit installation) “4” on page 111

IBM MQ
9.4.0

300 MB 425 MB 1785 MB

Notes:

1. A client installation includes the following components:

• Runtime
• Client

2. A server installation includes the following components:

• Runtime

110 Planning for IBM MQ

• Server
3. A full installation includes all available components.

4. Not all the components listed here are installable features on Windows systems; their
functionality is sometimes included in other features. See IBM MQ features for Windows systems.

Related concepts
IBM MQ components and features

Planning file system support on Multiplatforms
Queue manager data is stored in the file system. A queue manager makes use of file system locking to
prevent multiple instances of a multi-instance queue manager being active at the same time.

Shared file systems
Shared file systems enable multiple systems to access the same physical storage device concurrently.
Corruption would occur if multiple systems accessed the same physical storage device directly without
some means of enforcing locking and concurrency control. Operating systems provide local file systems
with locking and concurrency control for local processes; network file systems provide locking and
concurrency control for distributed systems.

Historically, networked file systems have not performed fast enough, or provided sufficient locking and
concurrency control, to meet the requirements for logging messages. Today, networked file systems can
provide good performance, and implementations of reliable network file system protocols such as RFC
3530, Network File System (NFS) version 4 protocol, meet the requirements for logging messages reliably.

Shared file systems and IBM MQ
Queue manager data for a multi-instance queue manager is stored in a shared network file system. On
AIX, Linux, and Windows systems, the queue manager's data files and log files must be placed in shared

network file system. On IBM i, journals are used instead of log files, and journals cannot be
shared. Multi-instance queue managers on IBM i use journal replication, or switchable journals, to make
journals available between different queue manager instances.

IBM MQ uses locking to prevent multiple instances of the same multi-instance queue manager being
active at the same time. The same locking also ensures that two separate queue managers cannot
inadvertently use the same set of queue manager data files. Only one instance of a queue manager can
have its lock at a time. Consequently, IBM MQ does support queue manager data stored on networked
storage accessed as a shared file system.

Because not all the locking protocols of network file systems are robust, and because a file system
might be configured for performance rather than data integrity, you must run the amqmfsck command
to test whether a network file system will control access to queue manager data and logs correctly. This
command applies only to UNIX, Linux and IBM i systems. On Windows, there is only one supported
network file system and the amqmfsck command is not required.

Related tasks
“Verifying shared file system behavior on Multiplatforms” on page 113

Planning an IBM MQ architecture 111

Run amqmfsck to check whether a shared file system on AIX, Linux , or IBM i meets the requirements for
storing the queue manager data of a multi-instance queue manager. (The only requirement for a Windows
configuration is that it uses SMB 3 for shared storage provision.)

Requirements for shared file systems on Multiplatforms
Shared files systems must provide data write integrity, guaranteed exclusive access to files and release
locks on failure to work reliably with IBM MQ.

Requirements that a shared file system must meet
There are three fundamental requirements that a shared file system must meet to work reliably with IBM
MQ:

1. Data write integrity

Data write integrity is sometimes called Write through to disk on flush. The queue manager must be
able to synchronize with data being successfully committed to the physical device. In a transactional
system, you need to be sure that some writes have been safely committed before continuing with
other processing.

More specifically, IBM MQ for AIX or Linux platforms use the O_SYNC open option and the fsync()
system call to explicitly force writes to recoverable media, and the write operation is dependent upon
these options operating correctly.

Attention: You should mount the file system with the async option, which still
supports the option of synchronous writes and gives better performance than the sync option.

Note, however, that if the file system has been exported from Linux, you must still export the
file system using the sync option.

2. Guaranteed exclusive access to files

In order to synchronize multiple queue managers, there needs to be a mechanism for a queue
manager to obtain an exclusive lock on a file.

3. Release locks on failure

If a queue manager fails, or if there is a communication failure with the file system, files locked by the
queue manager need to be unlocked and made available to other processes without waiting for the
queue manager to be reconnected to the file system.

A shared file system must meet these requirements for IBM MQ to operate reliably. If it does not, the
queue manager data and logs get corrupted when using the shared file system in a multi-instance queue
manager configuration.

For multi-instance queue managers on Microsoft Windows, the networked storage must be accessed by
the Server Message Block (SMB) protocol used by Microsoft Windows networks. The Server Message
Block (SMB) client does not meet the IBM MQ requirements for locking semantics on platforms other
than Microsoft Windows, so multi-instance queue managers running on platforms other than Microsoft
Windows must not use Server Message Block (SMB) as their shared file system.

For multi-instance queue managers on other supported platforms, the storage must be accessed by a
network file system protocol which is Posix-compliant and supports lease-based locking. Network File
System 4 satisfies this requirement. Older file systems, such as Network File System Version 3, which do
not have a reliable mechanism to release locks after a failure, must not be used with multi-instance queue
managers.

Checks on whether the shared file system meets the requirements
You must check whether the shared file system you plan to use meets these requirements. You must
also check whether the file system is correctly configured for reliability. Shared file systems sometimes
provide configuration options to improve performance at the expense of reliability.

112 Planning for IBM MQ

For further information, see Testing statement for IBM MQ multi-instance queue manager file systems.

Under normal circumstances IBM MQ operates correctly with attribute caching and it is not necessary
to disable caching, for example by setting NOAC on an NFS mount. Attribute caching can cause issues
when multiple file system clients are contending for write access to the same file on the file system
server, as the cached attributes used by each client might not be the same as those attributes on the
server. An example of files accessed in this way are queue manager error logs for a multi-instance queue
manager. The queue manager error logs might be written to by both an active and a standby queue
manager instance and cached file attributes might cause the error logs to grow larger than expected,
before rollover of the files occurs.

To help to check the file system, run the task Verifying shared file system behavior. This task checks if
your shared file system meets requirements 2 and 3. You need to verify requirement 1 in your shared file
system documentation, or by experimenting with logging data to the disk.

Disk faults can cause errors when writing to disk, which IBM MQ reports as First Failure Data Capture
errors. You can run the file system checker for your operating system to check the shared file system for
any disk faults. For example:

• On AIX and Linux the file system checker is called fsck.

• On Windows platforms the file system checker is called CHKDSK, or SCANDISK.

NFS server security
Notes:

• You cannot use the nosuid or noexec options for a mount point that is used to hold the IBM MQ
installation directory. This is because IBM MQ includes setuid/setgid executable programs, and these
must not be prevented from running properly.

• When you put queue manager data only on a Network File System (NFS) server, you can use the
following three options with the mount command to make the system secure, with no harmful impact to
the running of the queue manager:
noexec

By using this option, you stop binary files from being run on the NFS, which prevents a remote user
from running unwanted code on the system.

nosuid
By using this option, you prevent the use of the set-user-identifier and set-group-identifier bits,
which prevents a remote user from gaining higher privileges.

nodev
By using this option, you stop character and block special devices from being used or defined, which
prevents a remote user from getting out of a chroot jail.

Verifying shared file system behavior on
Multiplatforms
Run amqmfsck to check whether a shared file system on AIX, Linux , or IBM i meets the requirements for
storing the queue manager data of a multi-instance queue manager. (The only requirement for a Windows
configuration is that it uses SMB 3 for shared storage provision.)

Before you begin
You need a server with networked storage, and two other servers connected to it that have IBM MQ
installed. You must have administrator (root) authority to configure the file system, and be an IBM MQ
Administrator to run amqmfsck.

Planning an IBM MQ architecture 113

https://www.ibm.com/support/pages/node/136799

About this task
“Requirements for shared file systems on Multiplatforms” on page 112 describes the file system
requirements for using a shared file system with multi-instance queue managers. The IBM MQ technote
Testing statement for IBM MQ multi-instance queue manager file systems lists the shared file systems
that IBM has already tested with. The procedure in this task describes how to test a file system to help
you assess whether an unlisted file system maintains data integrity.

Failover of a multi-instance queue manager can be triggered by hardware or software failures, including
networking problems which prevent the queue manager writing to its data or log files. Mainly, you are
interested in causing failures on the file server. But you must also cause the IBM MQ servers to fail, to
test any locks are successfully released. To be confident in a shared file system, test all of the following
failures, and any other failures that are specific to your environment:

1. Shutting down the operating system on the file server including syncing the disks.
2. Halting the operating system on the file server without syncing the disks.
3. Pressing the reset button on each of the servers.
4. Pulling the network cable out of each of the servers.
5. Pulling the power cable out of each of the servers.
6. Switching off each of the servers.

Create the directory on the networked storage that you are going to use to share queue manager data
and logs. The directory owner must be an IBM MQ Administrator, or in other words, a member of the mqm
group on AIX and Linux. The user who runs the tests must have IBM MQ Administrator authority.

Use the example of exporting and mounting a file system in Creating a multi-instance queue manager on
Linux or Creating a multi-instance queue manager using journal mirroring and NetServer on IBM i to help
you through configuring the file system. Different file systems require different configuration steps. Read
the file system documentation.

Note: Run the IBM MQ MQI client sample program amqsfhac in parallel with amqmfsck to demonstrate
that a queue manager maintains message integrity during a failure.

Procedure
In each of the checks, cause all the failures in the previous list while the file system checker is running.
If you intend to run amqsfhac at the same time as amqmfsck, do the task, “Running amqsfhac to test
message integrity” on page 119 in parallel with this task.
1. Mount the exported directory on the two IBM MQ servers.

On the file system server create a shared directory shared, and a subdirectory to save the data
for multi-instance queue managers, qmdata. For an example of setting up a shared directory for
multi-instance queue managers on Linux, see Creating a multi-instance queue manager on Linux

2. Check basic file system behavior.
On one IBM MQ server, run the file system checker with no parameters.

On IBM MQ server 1:

amqmfsck /shared/qmdata

3. Check concurrently writing to the same directory from both IBM MQ servers.
On both IBM MQ servers, run the file system checker at the same time with the -c option.

On IBM MQ server 1:

amqmfsck -c /shared/qmdata

114 Planning for IBM MQ

https://www.ibm.com/support/pages/node/136799

On IBM MQ server 2:

amqmfsck -c /shared/qmdata

4. Check waiting for and releasing locks on both IBM MQ servers.
On both IBM MQ servers run the file system checker at the same time with the -w option.

On IBM MQ server 1:

amqmfsck -w /shared/qmdata

On IBM MQ server 2:

amqmfsck -w /shared/qmdata

5. Check for data integrity.

a) Format the test file.
Create a large file in the directory being tested. The file is formatted so that the subsequent phases
can complete successfully. The file must be large enough that there is sufficient time to interrupt
the second phase to simulate the failover. Try the default value of 262144 pages (1 GB). The
program automatically reduces this default on slow file systems so that formatting completes in
about 60 seconds

On IBM MQ server 1:

amqmfsck -f /shared/qmdata

The server responds with the following messages:

Formatting test file for data integrity test.

Test file formatted with 262144 pages of data.

b) Write data into the test file using the file system checker while causing a failure.

Run the test program on two servers at the same time. Start the test program on the server which is
going to experience the failure, then start the test program on the server that is going to survive the
failure. Cause the failure you are investigating.

The first test program stops with an error message. The second test program obtains the lock on
the test file and writes data into the test file starting where the first test program left off. Let the
second test program run to completion.

Table 10. Running the data integrity check on two servers at the same time

IBM MQ server 1 IBM MQ server 2

amqmfsck -a /shared/qmdata

Planning an IBM MQ architecture 115

Table 10. Running the data integrity check on two servers at the same time (continued)

IBM MQ server 1 IBM MQ server 2

Please start this program on a second
machine
with the same parameters.

File lock acquired.

Start a second copy of this program
with the same parameters on another
server.

Writing data into test file.

To increase the effectiveness of the test,
interrupt the writing by ending the
process,
temporarily breaking the network
connection
to the networked storage,
rebooting the server or turning off the
power.

amqmfsck -a /shared/qmdata

Waiting for lock...

Waiting for lock...

Waiting for lock...

Waiting for lock...

Waiting for lock...

Waiting for lock...

Turn the power off here.

File lock acquired.

Reading test file

Checking the integrity of the data read.

Appending data into the test file
after data already found.

The test file is full of data.
It is ready to be inspected for data
integrity.

The timing of the test depends on the behavior of the file system. For example, it typically takes
30 - 90 seconds for a file system to release the file locks obtained by the first program following a
power outage. If you have too little time to introduce the failure before the first test program has
filled the file, use the -x option of amqmfsck to delete the test file. Try the test from the start with a
larger test file.

c) Verify the integrity of the data in the test file.

On IBM MQ server 2:

amqmfsck -i /shared/qmdata

The server responds with the following messages:

File lock acquired

Reading test file checking the integrity of the data read.

116 Planning for IBM MQ

The data read was consistent.

The tests on the directory completed successfully.

6. Delete the test files.

On IBM MQ server 2:

amqmfsck -x /shared/qmdata

Test files deleted.

The server responds with the message:

Test files deleted.

Results
The program returns an exit code of zero if the tests complete successfully, and non-zero otherwise.

Examples

The first set of three examples shows the command producing minimal output.

Successful test of basic file locking on one server

> amqmfsck /shared/qmdata
The tests on the directory completed successfully.

Failed test of basic file locking on one server

> amqmfsck /shared/qmdata
AMQ6245: Error Calling 'write()[2]' on file '/shared/qmdata/amqmfsck.lck' error '2'.

Successful test of locking on two servers

Table 11. Successful locking on two servers

IBM MQ server 1 IBM MQ server 2

> amqmfsck -w /shared/qmdata
Please start this program on a second
machine with the same parameters.
Lock acquired.
Press Return
or terminate the program to release the lock.

> amqmfsck -w /shared/qmdata
Waiting for lock...

[Return pressed]
Lock released.

Lock acquired.
The tests on the directory completed
successfully

The second set of three examples shows the same commands using verbose mode.

Planning an IBM MQ architecture 117

Successful test of basic file locking on one server

> amqmfsck -v /shared/qmdata
System call: stat("/shared/qmdata")'
System call: fd = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fchmod(fd, 0666)
System call: fstat(fd)
System call: fcntl(fd, F_SETLK, F_WRLCK)
System call: write(fd)
System call: close(fd)
System call: fd = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fcntl(fd, F_SETLK, F_WRLCK)
System call: close(fd)
System call: fd1 = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fcntl(fd1, F_SETLK, F_RDLCK)
System call: fd2 = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fcntl(fd2, F_SETLK, F_RDLCK)
System call: close(fd2)
System call: write(fd1)
System call: close(fd1)
The tests on the directory completed successfully.

Failed test of basic file locking on one server

> amqmfsck -v /shared/qmdata
System call: stat("/shared/qmdata")
System call: fd = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fchmod(fd, 0666)
System call: fstat(fd)
System call: fcntl(fd, F_SETLK, F_WRLCK)
System call: write(fd)
System call: close(fd)
System call: fd = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fcntl(fd, F_SETLK, F_WRLCK)
System call: close(fd)
System call: fd = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fcntl(fd, F_SETLK, F_RDLCK)
System call: fdSameFile = open("/shared/qmdata/amqmfsck.lck", O_RDWR, 0666)
System call: fcntl(fdSameFile, F_SETLK, F_RDLCK)
System call: close(fdSameFile)
System call: write(fd)
AMQxxxx: Error calling 'write()[2]' on file '/shared/qmdata/amqmfsck.lck', errno 2
(Permission denied).

Successful test of locking on two servers

Table 12. Successful locking on two servers - verbose mode

IBM MQ server 1 IBM MQ server 2

> amqmfsck -wv /shared/qmdata
Calling 'stat("/shared/qmdata")'
Calling 'fd = open("/shared/qmdata/
amqmfsck.lkw",
O_EXCL | O_CREAT | O_RDWR, 0666)'
Calling 'fchmod(fd, 0666)'
Calling 'fstat(fd)'
Please start this program on a second
machine with the same parameters.
Calling 'fcntl(fd, F_SETLK, F_WRLCK)'
Lock acquired.
Press Return
or terminate the program to release the lock.

> amqmfsck -wv /shared/qmdata
Calling 'stat("/shared/qmdata")'
Calling 'fd = open("/shared/qmdata/
amqmfsck.lkw",
O_EXCL | O_CREAT | O_RDWR,0666)'
Calling 'fd = open("/shared/qmdata/amqmfsck.lkw,
O_RDWR, 0666)'
Calling 'fcntl(fd, F_SETLK, F_WRLCK)
'Waiting for lock...

118 Planning for IBM MQ

Table 12. Successful locking on two servers - verbose mode (continued)

IBM MQ server 1 IBM MQ server 2

[Return pressed]
Calling 'close(fd)'
Lock released.

Calling 'fcntl(fd, F_SETLK, F_WRLCK)'
Lock acquired.
The tests on the directory completed
successfully

Related reference
High availability sample programs

Running amqsfhac to test message integrity
Run the IBM MQ MQI client sample program amqsfhac in parallel with amqmfsck to demonstrate that a
queue manager maintains message integrity during a failure.

Before you begin
You require four servers for this test. Two servers for the multi-instance queue manager, one for the file
system, and one for running amqsfhac as an IBM MQ MQI client application.

Follow step “1” on page 114 in “Verifying shared file system behavior on Multiplatforms” on page 113 to
set up the file system for a multi-instance queue manager.

About this task
The IBM MQ MQI client sample program amqsfhac checks that a queue manager using networked
storage maintains data integrity following a failure. Run amqsfhac in parallel with amqmfsck to
demonstrate that a queue manager maintains message integrity during a failure.

Procedure
1. Create a multi-instance queue manager on another server, QM1, using the file system you created in

step “1” on page 114 in Procedure.
See Create a multi-instance queue manager.

2. Start the queue manager on both servers making it highly available.

On server 1:

strmqm -x QM1

On server 2:

strmqm -x QM1

3. Set up the client connection to run amqsfhac.
a) Use the procedure in Verifying an IBM MQ installation for the platform, or platforms, that your

enterprise use to set up a client connection, or the example scripts in Reconnectable client
samples.

b) Modify the client channel to have two IP addresses, corresponding to the two servers running QM1.
In the example script, modify:

Planning an IBM MQ architecture 119

DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME('LOCALHOST(2345)') QMNAME(QM1) REPLACE

To:

DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME('server1(2345),server2(2345)') QMNAME(QM1) REPLACE

where server1 and server2 are the host names of the two servers, and 2345 is the port that the
channel listener is listening on. Usually this defaults to 1414. You can use 1414 with the default
listener configuration.

4. Create two local queues on QM1 for the test.
Run the following MQSC script:

DEFINE QLOCAL(TARGETQ) REPLACE
DEFINE QLOCAL(SIDEQ) REPLACE

5. Test the configuration with amqsfhac

amqsfhac QM1 TARGETQ SIDEQ 2 2 2

6. Test message integrity while you are testing file system integrity.

Run amqsfhac during step “5” on page 115 of “Verifying shared file system behavior on
Multiplatforms” on page 113.

amqsfhac QM1 TARGETQ SIDEQ 10 20 0

If you stop the active queue manager instance, amqsfhac reconnects to the other queue manager
instance once it has become active. Restart the stopped queue manager instance again, so that you
can reverse the failure in your next test. You will probably need to increase the number of iterations
based on experimentation with your environment so that the test program runs for sufficient time for
the failover to occur.

Results
An example of running amqsfhac in step “6” on page 120 is shown in the following example. In this
example, the test is a success.

Sample AMQSFHAC start
qmname = QM1
qname = TARGETQ
sidename = SIDEQ
transize = 10
iterations = 20
verbose = 0
Iteration 0
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Resolving MQRC_CALL_INTERRUPTED
MQGET browse side tranid=14 pSideinfo->tranid=14
Resolving to committed
Iteration 7
Iteration 8
Iteration 9
Iteration 10
Iteration 11
Iteration 12
Iteration 13
Iteration 14

120 Planning for IBM MQ

Iteration 15
Iteration 16
Iteration 17
Iteration 18
Iteration 19
Sample AMQSFHAC end

If the test detected a problem, the output would report the failure. In some test runs
MQRC_CALL_INTERRUPTED might report "Resolving to backed out". It makes no difference to the
result. The outcome depends on whether the write to disk was committed by the networked file storage
before or after the failure took place.

Related reference
amqmfsck (file system check)
High availability sample programs

Sharing IBM MQ files on Multiplatforms
Some IBM MQ files are accessed exclusively by an active queue manager, other files are shared.

IBM MQ files are split into program files and data files. Program files are typically installed locally on each
server running IBM MQ. Queue managers share access to data files and directories in the default data
directory. They require exclusive access to their own queue manager directory trees contained in each of
the qmgrs and log directories shown in Figure 32 on page 121.

Figure 32 on page 121 is a high-level view of the IBM MQ directory structure. It shows the directories
which can be shared between queue managers and made remote. The details vary by platform. The
dotted lines indicate configurable paths.

Figure 32. Overall view of IBM MQ directory structure

Program files

The program files directory is typically left in the default location, is local, and shared by all the queue
managers on the server.

Data files

The data files directory is typically local in the default location, /var/mqm on AIX and Linux systems
and configurable on installation on Windows. It is shared between queue managers. You can make
the default location remote, but do not share it between different installations of IBM MQ. The
DefaultPrefix attribute in the IBM MQ configuration points to this path.

qmgrs
There are two alternative ways to specify the location of queue manager data.

Planning an IBM MQ architecture 121

Using the Prefix attribute

The Prefix attribute specifies the location of the qmgrs directory. IBM MQ constructs the queue
manager directory name from the queue manager name and creates it as a subdirectory of the
qmgrs directory.

The Prefix attribute is located in the QueueManager stanza of the mqs.ini file, and is inherited
from the value in the DefaultPrefix attribute of the All Queue Managers stanza. By default, for
administrative simplicity, queue managers typically share the same qmgrs directory.

If you change the location of the qmgrs directory for any queue manager, you must change the
value of its Prefix attribute.

The Prefix attribute for the QM1 directory in Figure 32 on page 121 for a AIX and Linux platform
is this:

Prefix=/var/mqm

Using the DataPath attribute

The DataPath attribute specifies the location of the queue manager data directory.

The DataPath attribute specifies the complete path, including the name of the queue manager
data directory. The DataPath attribute is unlike the Prefix attribute, which specifies an
incomplete path to the queue manager data directory.

The DataPath attribute, if it is specified, is located in the QueueManager stanza stanza of the
mqs.ini file. If it has been specified, it takes precedence over any value in the Prefix attribute.

If you change the location of the queue manager data directory for any queue manager you must
change the value of the DataPath attribute.

The DataPath attribute for the QM1 directory in Figure 32 on page 121, for a Linux or AIX
platform, is as follows:

DataPath=/var/mqm/qmgrs/QM1

log

The log directory is specified separately for each queue manager in the Log stanza in the queue
manager configuration. The queue manager configuration is in qm.ini.

DataPath/QmgrName/@IPCC subdirectories

The DataPath/QmgrName/@IPCC subdirectories are in the shared directory path. They are used to
construct the directory path for IPC file system objects. They need to distinguish the namespace of a
queue manager when a queue manager is shared between systems.

The IPC file system objects have to be distinguished by system. A subdirectory, for each system the
queue manager runs on, is added to the directory path, see Figure 33 on page 122.

DataPath/QmgrName/@IPCC/esem/myHostName/

Figure 33. Example IPC subdirectory

myHostName is up to the first 20 characters of the host name returned by the operating system. On
some systems, the host name might be up to 64 characters in length before truncation. The generated
value of myHostName might cause a problem for two reasons:

1. The first 20 characters are not unique.
2. The host name is generated by a DHCP algorithm that does not always allocate the same host

name to a system.

122 Planning for IBM MQ

In these cases, set myHostName using the environment variable MQS_IPC_HOST; see Figure 34 on
page 123.

export MQS_IPC_HOST= myHostName

Figure 34. Example: setting MQS_IPC_HOST

Other files and directories

Other files and directories, such as the directory containing trace files, and the common error log, are
normally shared and kept on the local file system.

With support of shared file systems, IBM MQ manages exclusive access to these files using file system
locks. A file system lock allows only one instance of a particular queue manager to be active at a time.

When you start the first instance of a particular queue manager it takes ownership of its queue manager
directory. If you start a second instance, it can only take ownership if the first instance has stopped. If the
first queue manager is still running, the second instance fails to start, and reports the queue manager is
running elsewhere. If the first queue manager has stopped, then the second queue manager takes over
ownership of the queue manager files and becomes the running queue manager.

You can automate the procedure of the second queue manager taking over from the first. Start the first
queue manager with the strmqm -x option that permits another queue manager to take over from it. The
second queue manager then waits until the queue manager files are unlocked before attempting to take
over ownership of the queue manager files, and start.

Directory structure on AIX and Linux systems
The IBM MQ directory structure on AIX and Linux systems can be mapped to different file systems for
easier management, better performance, and better reliability.

Use the flexible directory structure of IBM MQ to take advantage of shared file systems for running
multi-instance queue managers.

Use the command crtmqm QM1 to create the directory structure shown in Figure 35 on page 124 where
R is the release of the product. It is a typical directory structure for a queue manager created on an IBM
MQ system. Some directories, files and .ini attribute settings are omitted for clarity, and another queue
manager name might be altered by mangling. The names of the file systems vary on different systems.

In a typical installation, every queue manager that you create points to common log and qmgrs
directories on the local file system. In a multi-instance configuration, the log and qmgrs directories
are on a network file system shared with another installation of IBM MQ.

Figure 35 on page 124 shows the default configuration for IBM MQ v7.R on AIX where R is the
release of the product. For examples of alternative multi-instance configurations, see“Example directory
configurations on AIX and Linux systems” on page 128.

Planning an IBM MQ architecture 123

Figure 35. Example default IBM MQ directory structure for AIX and Linux systems

The product is installed into /usr/mqm on AIX and /opt/mqm on the other systems, by default. The
working directories are installed into the /var/mqm directory.

Note: If you created the /var/mqm file system prior to installing IBM MQ , ensure that the mqm user has
full directory permissions, for example, file mode 755.

Note: The /var/mqm/errors directory should be a separate filesystem to prevent FFDCs produced by
the queue manager from filling the filesystem that contains /var/mqm.

See Creating file systems on AIX and Linux systems for more information.

The log and qmgrs directories are shown in their default locations as defined by the default values of
the LogDefaultPath and DefaultPrefix attributes in the mqs.ini file. When a queue manager is
created, by default the queue manager data directory is created in DefaultPrefix/qmgrs, and the
log file directory in LogDefaultPath/log. LogDefaultPath and DefaultPrefix only effects where
queue managers and log files are created by default. The actual location of a queue manager directory is
saved in the mqs.ini file, and the location of the log file directory is saved in the qm.ini file.

The log file directory for a queue manager is defined in the qm.ini file in the LogPath attribute. Use
the -ld option on the crtmqm command to set the LogPath attribute for a queue manager; for example,
crtmqm -ld LogPath QM1 . If you omit the ld parameter the value of LogDefaultPath is used
instead.

The queue manager data directory is defined in the DataPath attribute in the QueueManager stanza
in the mqs.ini file. Use the -md option on the crtmqm command to set the DataPath for a queue
manager; for example, crtmqm - md DataPath QM1 . If you omit the md parameter the value of the
DefaultPrefix or Prefix attribute is used instead. Prefix takes precedence over DefaultPrefix.

Typically, create QM1 specifying both the log and data directories in a single command.

 crtmqm
-md DataPath -ld
LogPath QM1

You can modify the location of a queue manager log and data directories of an existing queue manager by
editing the DataPath and LogPath attributes in the qm.ini file when the queue manager is stopped.

124 Planning for IBM MQ

The path to the errors directory, like the paths to all the other directories in /var/mqm, is not
modifiable. However the directories can be mounted on different file systems, or symbolically linked
to different directories.

Directory content on AIX and Linux systems
Content of the directories associated with a queue manager.

For information about the location of the product files, see Choosing an installation location

For information about alternative directory configurations, see “Planning file system support on
Multiplatforms” on page 111.

The following directory structure is representative of IBM MQ after a queue manager has been in use for
some time. The actual structure that you have depends on which operations have occurred on the queue
manager.

Planning an IBM MQ architecture 125

126 Planning for IBM MQ

/var/mqm/
The /var/mqm directory contains configuration files and output directories that apply to an IBM MQ
installation as a whole, and not to an individual queue manager.

Table 13. Documented content of the /var/mqm directory on AIX and Linux

Directory or file
name Contents

mqs.ini

IBM MQ installation wide configuration file, read when a queue manager starts.
File path modifiable using the AMQ_MQS_INI_LOCATION environment variable.
Ensure this is set and exported in the shell in which the strmqm command is
run.

mqclient.ini Default client configuration file read by IBM MQ MQI client programs.
File path modifiable using the MQCLNTCF environment variable.

service.env Contains machine scope environment variables for a service process.
File path fixed.

errors/
Machine scope error logs, and FFST files.
Directory path fixed.
See also, FFST: IBM MQ for UNIX and Linux systems.

sockets/ Contains information for each queue manager for system use only.

trace/ Trace files.
Directory path fixed.

web/ mqweb server directory.

exits/ Default directory containing user channel exit programs.
Location modifiable in ApiExit stanzas in the mqs.ini file.exits64/

/var/mqm/qmgrs/qmname/
/var/mqm/qmgrs/qmname/ contains directories and files for a queue manager. The directory is locked
for exclusive access by the active queue manager instance. The directory path is directly modifiable in the
mqs.ini file, or by using the md option of the crtmqm command.

Table 14. Documented contents of the /var/mqm/qmgrs/qmname directory on AIX and Linux

Directory or file
name Contents

qm.ini Queue manager configuration file, read when a queue manager starts.

errors/
Queue manager scope error logs.
qmname = @system contains channel-related messages for an unknown or
unavailable queue manager.

@ipcc/
AMQCLCHL.TAB

Default client channel control table, created by the IBM MQ server, and read by
IBM MQ MQI client programs.
File path modifiable using the MQCHLLIB and MQCHLTAB environment variables.

Planning an IBM MQ architecture 127

Table 14. Documented contents of the /var/mqm/qmgrs/qmname directory on AIX and Linux
(continued)

Directory or file
name Contents

qmanager Queue manager object file: QMANAGER
Queue manager object catalog: QMQMOBJCAT

authinfo/

Each object defined within the queue manager is associated with a file in these
directories.
The file name approximately matches the definition name; see, Understanding
IBM MQ file names.

channel/

clntconn/

listener/

namelist/

procdef/

queues/

services/

topics/

... Other directories used by IBM MQ, such as @ipcc, to be modified only by IBM MQ.

userdata/ Can be used to store the persistent state of applications (can be used by
RDQM when moving queue managers to different nodes - see Storing persistent
application status.)

DataPath\autoc
fg Used for automatic configuration

/var/mqm/log/qmname/
/var/mqm/log/qmname/ contains the queue manager log files. The directory is locked for exclusive
access by the active queue manager instance. The directory path is modifiable in the qm.ini file, or by
using the ld option of the crtmqm command.

Table 15. Documented contents of the /var/mqm/log/qmname directory on AIX and Linux

Directory or file
name Contents

amqhlctl.lfh Log control file.

active/ This directory contains the log files numbered S0000000.LOG, S0000001.LOG,
S0000002.LOG, and so on.

/opt/mqm
/opt/mqm is, by default, the installation directory on most platforms. See “Disk space requirements
on Multiplatforms” on page 109 for more information on the amount of space that you need for the
installation directory on the platform, or platforms, that your enterprise uses.

Example directory configurations on AIX and Linux systems
Examples of alternative file system configurations on AIX and Linux systems.

You can customize the IBM MQ directory structure in various ways to achieve a number of different
objectives.

128 Planning for IBM MQ

• Place the qmgrs and log directories on remote shared file systems to configure a multi-instance queue
manager.

• Use separate file systems for the data and log directories, and allocate the directories to different disks,
to improve performance by reducing I/O contention.

• Use faster storage devices for directories that have a greater effect on performance. Physical device
latency is frequently a more important factor in the performance of persistent messaging than whether
a device is mounted locally or remotely. The following list shows which directories are most and least
performance sensitive.

1. log
2. qmgrs
3. Other directories, including /usr/mqm

• Create the qmgrs and log directories on file systems that are allocated to storage with good resilience,
such as a redundant disk array, for example.

• It is better to store the common error logs in var/mqm/errors, locally, rather than on a network file
system, so that error relating to the network file system can be logged.

Figure 36 on page 129 is a template from which alternative IBM MQ directory structures are derived.
In the template, dotted lines represent paths that are configurable. In the examples, the dotted
lines are replaced by solid lines that correspond to the configuration information stored in the
AMQ_MQS_INI_LOCATION environment variable, and in the mqs.ini and qm.ini files.

Note: The path information is shown as it appears in the mqs.ini or qm.ini files. If you supply path
parameters in the crtmqm command, omit the name of the queue manager directory: the queue manager
name is added to the path by IBM MQ.

Figure 36. Directory structure pattern template

Typical directory structure for IBM MQ

Figure 37 on page 130 is the default directory structure created in IBM MQ by issuing the command
crtmqm QM1.

The mqs.ini file has a stanza for the QM1 queue manager, created by referring to the value of
DefaultPrefix. The Log stanza in the qm.ini file has a value for LogPath, set by reference to
LogDefaultPath in mqs.ini.

Planning an IBM MQ architecture 129

Use the optional crtmqm parameters to override the default values of DataPath and LogPath.

Figure 37. Example default IBM MQ directory structure for AIX and Linux systems

Share default qmgrs and log directories
An alternative to “Share everything ” on page 131, is to share the qmgrs and log directories separately
(Figure 38 on page 130). In this configuration, there is no need to set AMQ_MQS_INI_LOCATION
as the default mqs.ini is stored in the local /var/mqm file system. The files and directories, such as
mqclient.ini and mqserver.ini are also not shared.

Figure 38. Share qmgrs and log directories

130 Planning for IBM MQ

Share named qmgrs and log directories
The configuration in Figure 39 on page 131 places the log and qmgrs in a common named remote shared
file system called /ha. The same physical configuration can be created in two different ways.

1. Set LogDefaultPath=/ha and then run the command, crtmqm - md /ha/qmgrs QM1. The result is
exactly as illustrated in Figure 39 on page 131.

2. Leave the default paths unchanged and then run the command, crtmqm - ld /ha/log - md /ha/qmgrs
QM1.

Figure 39. Share named qmgrs and log directories

Share everything

Figure 40 on page 132 is a simple configuration for system with fast networked file storage.

Mount /var/mqm as a remote shared file system. By default, when you start QM1, it looks for /var/
mqm, finds it on the shared file system, and reads the mqs.ini file in /var/mqm. Rather than
use the single /var/mqm/mqs.ini file for queue managers on all your servers, you can set the
AMQ_MQS_INI_LOCATION environment variable on each server to point to different mqs.ini files.

Note: The contents of the generic error file in /var/mqm/errors/ are shared between queue managers
on different servers.

Planning an IBM MQ architecture 131

Figure 40. Share everything

Note that you cannot use this for multi-instance queue managers. The reason is that it is necessary for
each host in a multi-instance queue manager to have its own local copy of /var/mqm to keep track of
local data, such as semaphores and shared memory. These entities cannot be shared across hosts.

Directory structure on Windows systems
How to find queue manager configuration information and directories on Windows.

The default directories for IBM MQ for Windows installation are:

Program directory
C:\Program Files\IBM\MQ

Data directory
C:\ProgramData\IBM\MQ

Important: For Windows installations, the directories are as stated, unless there is a
previous installation of the product that still contains registry entries or queue managers, or both. In
this situation, the new installation uses the old data directory location. For more information, see Program
and data directory locations.

If you want to know which installation directory and which data directory is being used, run the dspmqver
command.

The installation directory is listed in the InstPath field and the data directory is listed in the DataPath
field.

Running the dspmqver command displays, for example, the following information:

>dspmqver
Name: IBM MQ
Version: 9.0.0.0
Level: p900-L160512.4
BuildType: IKAP - (Production)
Platform: IBM MQ for Windows (x64 platform)
Mode: 64-bit
O/S: Windows 7 Professional x64 Edition, Build 7601: SP1
InstName: Installation1
InstDesc:
Primary: Yes

132 Planning for IBM MQ

InstPath: C:\Program Files\IBM\MQ
DataPath: C:\ProgramData\IBM\MQ
MaxCmdLevel: 900
LicenseType: Production

Multi-instance queue managers
To configure a multi-instance queue manager, the log and data directories must be placed on networked
storage, preferably on a different server to any of the servers that are running instances of the queue
manager.

Two parameters are provided on the crtmqm command, -md and -ld, to make it easier specify the
location of the queue manager data and log directories. The effect of specifying the -md parameter is
fourfold:

1. The mqs.ini stanza QueueManager\QmgrName contains a new variable, DataPath, which points to
the queue manager data directory. Unlike the Prefix variable, the path includes the name of the queue
manager directory.

2. The queue manager configuration information stored in the mqs.ini file is reduced to Name, Prefix,
Directory and DataPath.

Directory content
Lists the location and content of IBM MQ directories.

An IBM MQ configuration has three main sets of files and directories:

1. Executable, and other read-only files that are only updated when maintenance is applied. For example:

• The readme file
• The IBM MQ Explorer plug-in and help files
• License files

These files are described in Table 16 on page 133.
2. Potentially modifiable files and directories that are not specific to a particular queue manager. These

files and directories are described in Table 17 on page 134.
3. Files and directories that are specific to each queue manager on a server. These files and directories

are described in Table 18 on page 135.

Resource directories and files
The resource directories and files contain all the executable code and resources to run a queue manager.
The variable, FilePath, in the installation specific IBM MQ configuration registry key, contains the path to
the resource directories.

Table 16. Directories and files in the FilePath directory

File path Contents

FilePath\bin Commands and DLLs

FilePath\bin64 Commands and DLLs (64 bit)

FilePath\conv Data conversion tables

FilePath\doc Wizard help files

FilePath\MQExplorer Explorer and Explorer help Eclipse plug-ins

FilePath\gskit8 Global security kit

FilePath\java Java resources, including JRE

FilePath\licenses License information

Planning an IBM MQ architecture 133

Table 16. Directories and files in the FilePath directory (continued)

File path Contents

FilePath\Non_IBM_License License information

FilePath\properties
Used internally

FilePath\Tivoli

FilePath\tools Development resources and samples

FilePath\web Described in IBM MQ Console and REST API installation
component file structure for non-editable files.

FilePath\Uninst Used internally

FilePath\README.TXT Readme file

Directories not specific to a queue manager
Some directories contain files, such as trace files and error logs, that are not specific to a specific queue
manager. The DefaultPrefix variable contains the path to these directories. DefaultPrefix is part of the
AllQueueManagers stanza.

Table 17. Directories and files in DefaultPrefix directory

File path Contents

DefaultPrefix\config Used internally

DefaultPrefix\conv ccsid_part2.tbl and ccsid.tbl data conversion
control file, described in Data conversion

DefaultPrefix\errors Non queue manager error logs, AMQERR nn.LOG

DefaultPrefix\exits Channel exit programs

DefaultPrefix\exits64 Channel exit programs (64 bit)

DefaultPrefix\ipc Not used

DefaultPrefix\qmgrs Described in Table 18 on page 135

DefaultPrefix\trace Trace files

DefaultPrefix\web Described in IBM MQ Console and REST API installation
component file structure for user editable files

DefaultPrefix\amqmjpse.txt Used internally

Queue manager directories
When you create a queue manager, a new set of directories, specific to the queue manager, is created.

If you create a queue manager with the -md filepath parameter, the path is stored in the DataPath
variable in the queue manager stanza of the mqs.ini file. If you create a queue manager without
setting the -md filepath parameter, the queue manager directories are created in the path stored
in DefaultPrefix, and the path is copied into the Prefix variable in the queue manager stanza of the mqs.ini
file.

134 Planning for IBM MQ

Table 18. Directories and files in DataPath and Prefix\qmgrs\QmgrName directories

File path Contents

DataPath\@ipcc Default location for AMQCLCHL.TAB, the client connection
table.

DataPath\authinfo

Used internally.DataPath\channel

DataPath\clntconn

DataPath\errors Error logs, AMQERR nn.LOG

DataPath\listener

Used internally.

DataPath\namelist

DataPath\plugcomp

DataPath\procdef

DataPath\qmanager

DataPath\queues

DataPath\services

DataPath\ssl

DataPath\startprm

DataPath\topic

DataPath\active

DataPath\active.dat

DataPath\amqalchk.fil

DataPath\master

DataPath\master.dat

DataPath\qm.ini Queue manager configuration

DataPath\qmstatus.ini Queue manager status

DataPath\userdata Can be used to store the persistent state of applications.

Prefix\qmgrs\QmgrName Used internally

Prefix\qmgrs\@SYSTEM
Not used

Prefix\qmgrs\@SYSTEM\errors

DataPath\autocfg Used for automatic configuration

Directory structure on IBM i
A description of the IFS is given, and the IBM MQ IFS directory structure is described for server, client,
and Java.

The integrated file system (IFS) is a part of IBM i that supports stream input/output and storage
management similar to personal computer, AIX and Linux operating systems, while providing an
integrating structure over all information stored in the server.

On IBM i directory names begin with the character & (ampersand) instead of the character @ (at). For
example, @system on IBM i is &system.

Planning an IBM MQ architecture 135

IFS root file system for IBM MQ server
When you install IBM MQ Server for IBM i, the following directories are created in the IFS root file system.

ProdData:

Overview
QIBM

'-- ProdData

'-- mqm
'-- doc
'-- inc
'-- lib
'-- samp
'-- licenses
'-- LicenseDoc
'-- 5724H72_V8R0M0

/QIBM/ProdData/mqm
Subdirectories below this contain all the product data, for example, C++ classes, trace format files,
and license files. Data in this directory is deleted and replaced each time the product is installed.

/QIBM/ProdData/mqm/doc
A Command Reference for the CL commands is provided in HTML format and installed here.

/QIBM/ProdData/mqm/inc
The header files for compiling your C or C++ programs.

/QIBM/ProdData/mqm/lib
Auxiliary files used by MQ.

/QIBM/ProdData/mqm/samp
Further samples.

/QIBM/ProdData/mqm/licenses
License files. The two files for each language are named like LA_ xx and LI_ xx where xx is the 2
character language identifier for each language supplied.

Also the following directory stores license agreements files:
/QIBM/ProdData/LicenseDoc/5724H72_V8R0M0

License files. The files are named like 5724H72_V8R0M0_ xx where xx is the 2 or 5 character
language identifier for each language supplied.

UserData:

Overview
QIBM

'-- UserData

'-- mqm
'-- errors
'-- trace
'-- qmgrs
'-- &system
'-- qmgrname1
'-- qmgrname2
'-- and so on

/QIBM/UserData/mqm
Subdirectories below this contain all user data relating to queue managers.

136 Planning for IBM MQ

When you install the product, an mqs.ini file is created in directory /QIBM/UserData/mqm/ (unless it is
already there from a previous installation).

When you create a queue manager, a qm.ini file is created in the directory /QIBM/UserData/mqm/
qmgrs/ QMGRNAME / (where QMGRNAME is the name of the queue manager).

Data in the directories is retained when the product is deleted.

IFS root file system for IBM MQ MQI client
When you install IBM MQ MQI client for IBM i, the following directories created in the IFS root file system:

ProdData:

Overview
QIBM

'-- ProdData

'-- mqm
'-- lib

/QIBM/ProdData/mqm
Subdirectories below this directory contain all the product data. Data in this directory is deleted and
replaced each time the product is replaced.

UserData:

Overview
QIBM

'-- UserData

'-- mqm
'-- errors
'-- trace

/QIBM/UserData/mqm
Subdirectories below this directory contain all user data.

IFS root file system for IBM MQ Java
When you install IBM MQ Java on IBM i, the following directories are created in the IFS root file system:

ProdData:

Overview
QIBM

'-- ProdData

'-- mqm
'-- java
'--samples
'-- bin
'-- lib

/QIBM/ProdData/mqm/java
Subdirectories below this contain all the product data, including Java classes. Data in this directory is
deleted and replaced each time the product is replaced.

/QIBM/ProdData/mqm/java/samples
Subdirectories below this contain all the sample Java classes and data.

Planning an IBM MQ architecture 137

Libraries created by server and client installations
Installation of the IBM MQ server or client creates the following libraries:

• QMQM

The product library.
• QMQMSAMP

The samples library (if you choose to install the samples).
• QMxxxx

Server only.

Each time that you create a queue manager, IBM MQ automatically creates an associated library, with a
name like QMxxxx where xxxx is derived from the queue manager name. This library contains objects
specific to the queue manager, including journals and associated receivers. By default the name of this
library is derived from the name of the queue manager prefixed with the characters QM. For example,
for a queue manager called TEST, the library would be called QMTEST.

Note: When you create a queue manager, you can specify the name of its library if you want to. For
example:

CRTMQM MQMNAME(TEST) MQMLIB(TESTLIB)

You can use the WRKLIB command to list all the libraries that IBM MQ for IBM i has created. Against the
queue manager libraries, you will see the text QMGR: QMGRNAME. The format of the command is:

WRKLIB LIB(QM*)

These queue manager-associated libraries are retained when the product is deleted.

Planning file system support for MFT on Multiplatforms
IBM MQ Managed File Transfer MFT agents can be used to transfer data to, and from, files on a file
system. In addition to this, resource monitors running within an agent can be configured to monitor for
files on a file system.

MFT has a requirement that these files are stored on a file system that supports locking. There are two
reasons for this:

• An agent locks a file to ensure that it does not change once it has started reading data from it, or writing
data to it.

• Resource monitors lock files to check that no other processes are currently using them.

Agents and resource monitors use the Java method FileChannel.tryLock() to perform locking, and
the file system must be able to lock files when asked to do so using this call.

Important: The following file systems are not supported, as they do not meet MFT's technical
requirements:

• GlusterFS
• NFS version 3

Choosing circular or linear logging on Multiplatforms
In IBM MQ, you can choose circular or linear logging. The following information gives you an overview of
both types.

Advantages of circular logging
The main advantages of circular logging are that circular logging is:

138 Planning for IBM MQ

• Easier to administer.

Once you have configured circular logging correctly for your workload, no further administration is
needed. Whereas, for linear logging, media images need to be recorded and log extents that are not
required any more need to be archived or deleted.

• Better performing

Circular logging performs better than linear logging, because circular logging is able to reuse log extents
that have already been formatted. Whereas linear logging has to allocate new log extents and format
them.

See Managing logs for further information.

Advantages of linear logging
The principal advantage of linear logging is that linear logging provides protection against more failures.

Neither circular nor linear logging protect against a corrupted or deleted log, or messages or queues that
have been deleted by applications or the administrator.

Linear logging (but not circular) enables damaged objects to be recovered. So, linear logging provides
protection against queue files being corrupted or deleted, as these damaged queues can be recovered
from a linear log.

Both circular and linear protect against power loss and communications failure as described in Recovering
from power loss or communication failures.

Other considerations
Whether you choose linear or circular depends on how much redundancy you require.

There is a cost to choosing more redundancy, that is linear logging, caused by the performance cost and
the administration cost.

See Types of logging for more information.

Shared memory on AIX
If certain application types fail to connect because of an AIX memory limitation, in most cases this can be
resolved by setting the environment variable EXTSHM=ON.

Some 32-bit processes on AIX might encounter an operating system limitation that affects their ability
to connect to IBM MQ queue managers. Every standard connection to IBM MQ uses shared memory, but
unlike other UNIX platforms, AIX allows 32-bit processes to attach only 11 shared memory sets.

Most 32-bit processes will not encounter this limit, but applications with high memory requirements
might fail to connect to IBM MQ with reason code 2102: MQRC_RESOURCE_PROBLEM. The following
application types might see this error:

• Programs running in 32-bit Java virtual machines
• Programs using the large or very large memory models
• Programs connecting to many queue managers or databases
• Programs that attach to shared memory sets on their own

AIX offers an extended shared memory feature for 32-bit processes that allows them to attach more
shared memory. To run an application with this feature, export the environment variable EXTSHM=ON
before starting your queue managers and your program. The EXTSHM=ON feature prevents this error in
most cases, but it is incompatible with programs that use the SHM_SIZE option of the shmctl function.

IBM MQ MQI client applications and all 64-bit processes are unaffected by this limitation. They can
connect to IBM MQ queue managers regardless of whether EXTSHM has been set.

Planning an IBM MQ architecture 139

IBM MQ and UNIX System V IPC resources
A queue manager uses some IPC resources. Use ipcs -a to find out what resources are being used.

This information applies to IBM MQ running on AIX and Linux systems only.

IBM MQ uses System V interprocess communication (IPC) resources (semaphores and shared memory
segments) to store and pass data between system components. These resources are used by queue
manager processes and applications that connect to the queue manager. IBM MQ MQI clients do not use
IPC resources, except for IBM MQ trace control. Use the UNIX command ipcs -a to get full information
on the number and size of the IPC resources currently in use on the machine.

IBM MQ and UNIX Process Priority
Good practices when setting process priority nice values.

This information applies to IBM MQ running on AIX and Linux systems only.

If you run a process in the background, that process can be given a higher nice value (and hence
lower priority) by the invoking shell. This might have general IBM MQ performance implications. In
highly-stressed situations, if there are many ready-to-run threads at a higher priority and some at a lower
priority, operating system scheduling characteristics can deprive the lower priority threads of processor
time.

It is good practice that independently started processes associated with queue managers, such as
runmqlsr, have the same nice values as the queue manager they are associated with. Ensure the shell
does not assign a higher nice value to these background processes. For example, in ksh, use the setting
"set +o bgnice" to stop ksh from raising the nice value of background processes. You can verify the
nice values of running processes by examining the NI column of a "ps -efl" listing.

Also, start IBM MQ application processes with the same nice value as the queue manager. If they run with
different nice values, an application thread might block a queue manager thread, or vice versa, causing
performance to degrade.

Planning your IBM MQ environment on z/OS
When planning your IBM MQ environment, you must consider the resource requirements for data sets,
page sets, Db2, Coupling Facilities, and the need for logging, and backup facilities. Use this topic to plan
the environment where IBM MQ runs.

Before you plan your IBM MQ architecture, familiarize yourself with the basic IBM MQ for z/OS concepts,
see the topics in IBM MQ for z/OS concepts.

When planning your queue manager, you might need to work with different people in your organization. It
is usually a good idea to involve those people early, as change control procedures can take a long time.
They might also be able to tell you what parameters you need to configure IBM MQ for z/OS.

For example you might need to work with the:

• Storage administrator, to determine the high level qualifier of queue manager data sets, and to allocate
enough space for queue manager data sets.

• z/OS system programmer to define the IBM MQ subsystem to z/OS and APF authorize the IBM MQ for
z/OS libraries.

• Network administrator to determine which TCP/IP stack and ports should be used for IBM MQ for z/OS.
• Security administrator to set up access to queue manager data sets, security profiles for IBM MQ for

z/OS resources, and TLS certificates.
• Db2 administrator to set up Db2 tables when configuring a queue sharing group.

Related concepts
IBM MQ Technical overview

140 Planning for IBM MQ

Related tasks
“Planning an IBM MQ architecture” on page 5
When planning your IBM MQ environment, consider the support that IBM MQ provides for single and
multiple queue manager architectures, and for point-to-point and publish/subscribe messaging styles.
Also plan your resource requirements, and your use of logging and backup facilities.
Configuring z/OS
Administering IBM MQ for z/OS

Planning for your queue manager
When you are setting up a queue manager, your planning should allow for the queue manager to grow, so
that the queue manager meets the needs of your enterprise.

The best way to configure a queue manager is in steps:

1. Configure the base queue manager
2. Configure the channel initiator which does queue manager to queue manager communications, and

remote client application communication
3. If you want to encrypt and protect messages, configure Advanced Message Security
4. If you want to use File Transfer over IBM MQ, configure Managed File Transfer for z/OS.
5. If you want to use the administrative or messaging REST API, or the IBM MQ Console to manage IBM

MQ from a web browser, configure the mqweb server.

Some enterprises have hundreds of thousands of queue managers in their environment. You need to
consider your IBM MQ network now, and in five years time.

On z/OS, some queue managers process thousands of messages a second, and log over 100 MB a second.
If you expect very high volumes you may need to consider having more than one queue manager.

On z/OS, IBM MQ can run as part of a queue sharing group (QSG) where messages are stored in the
Coupling Facility, and any queue manager in the queue sharing group can access the messages. If you
want to run in a queue sharing group you need to consider how many queue managers you need.
Typically, there is one queue manager for each LPAR. You might also have one queue manager to backup
CF structures regularly.

Some changes to configuration are easy to do, such as defining a new queue. Some are harder, such as
making logs and page sets bigger; and some configuration cannot be changed, such as the name of a
queue manager or the queue sharing group name.

There is performance and tuning information available in the MP16 performance SupportPac .

Naming conventions
You need to have a naming convention for the queue manager data sets.

Many enterprises use the release number in the name of the load libraries, and so on. You might
want to consider having an alias of MQM.SCSQAUTH pointing to the version currently in use, such as
MQM.V930.SCSQAUTH, so you do not have to change CICS®, Batch, and IMS JCL when you migrate to a
new version of IBM MQ.

You can use a symbolic link in z/OS UNIX System Services to reference the installation directory for the
version of IBM MQ currently in use.

The data sets used by the queue manager (logs, page sets, JCL libraries) need a naming convention to
simplify the creation of security profiles, and the mapping of data sets to SMS storage classes that control
where the data sets are placed on disk, and the attributes they have.

Note, that putting the version of IBM MQ into the name of the page sets or logs, is not a good idea. One
day you might migrate to a new version, and the data set will have the "wrong" names.

Planning an IBM MQ architecture 141

https://ibm-messaging.github.io/mqperf/mp16.pdf

Applications
You need to understand the business applications and the best way to configure IBM MQ. For example if
applications have logic to provide recovery and repeat capability, then non persistent messages might be
good enough. If you want IBM MQ to handle the recovery, then you need to use persistent messages and
put and get messages in syncpoint.

You need to isolate queues from different business transactions. If a queue for one business application
fills up, you do not want this impacting other business applications. Isolate the queues in different page
sets and buffer pools, or structures, if possible.

You need to understand the profile of messages. For many applications the queues have only a few
messages. Other applications can have queues build up during the day, and be processed overnight. A
queue which normally has only a few messages on it, might need to hold many hours worth of messages
if there is a problem and messages are not processed. You need to size the CF structures and page sets to
allow for your expected peak capacity.

Post configuration
Once you have configured your queue manager (and components) you need to plan for:

• Backing up page sets.
• Backing up definitions of objects.
• Automating the backup of any CF structures.
• Monitoring IBM MQ messages, and taking action when a problem is detected.
• Collecting the IBM MQ statistics data.
• Monitoring resource usage, such as virtual storage, and amount of data logged per hour. With this you

can see if your resource usage is increasing and if you need to take actions, such as setting up a new
queue manager

Planning your storage and performance requirements on z/OS
You must set realistic and achievable storage, and performance goals for your IBM MQ system. Use this
topic help you understand the factors which affect storage, and performance.

This topic contains information about the storage and performance requirements for IBM MQ for z/OS. It
contains the following sections:

• z/OS performance options for IBM MQ
• Determining z/OS workload management importance and velocity goals
• “Library storage” on page 143
• “System LX usage” on page 143
• “Storage configuration” on page 144
• “Disk storage” on page 148

See, “Where to find more information about storage and performance requirements” on page 149 for
more information.

z/OS performance options for IBM MQ
With workload management, you define performance goals and assign a business importance to each
goal. You define the goals for work in business terms, and the system decides how much resource,
such as processor and storage, should be given to the work to meet its goal. Workload management
controls the dispatching priority based on the goals you supply. Workload management raises or lowers
the priority as needed to meet the specified goal. Thus, you need not fine-tune the exact priorities of
every piece of work in the system and can focus instead on business objectives.

The three kinds of goals are:

142 Planning for IBM MQ

Response time
How quickly you want the work to be processed

Execution velocity
How fast the work should be run when ready, without being delayed for processor, storage, I/O
access, and queue delay

Discretionary
A category for low priority work for which there are no performance goals

Response time goals are appropriate for end-user applications. For example, CICS users might set
workload goals as response time goals. For IBM MQ address spaces, velocity goals are more appropriate.
A small amount of the work done in the queue manager is counted toward this velocity goal but this work
is critical for performance. Most of the work done by the queue manager counts toward the performance
goal of the end-user application. Most of the work done by the channel initiator address space counts
toward its own velocity goal. The receiving and sending of IBM MQ messages, which the channel initiator
accomplishes, is typically important for the performance of business applications using them.

Determining z/OS workload management importance and velocity goals
See “Determining z/OS workload management importance” on page 143 for more information.

Library storage

You must allocate disk storage for the product libraries. The exact figures depend on your configuration,
and should include both the target and distribution libraries, as well as the SMP/E libraries.

The target libraries used by IBM MQ for z/OS use PDSE formats. Ensure that any PDSE target libraries are
not shared outside a sysplex. For more information about the required libraries and their sizes and the
required format, see the Program Directory. For download links for the Program Directories, see IBM MQ
for z/OS Program Directory PDF files.

System LX usage
Each defined IBM MQ subsystem reserves one system linkage index (LX) at IPL time, and a number of
non-system linkage indexes when the queue manager is started. The system linkage index is reused when
the queue manager is stopped and restarted. Similarly, distributed queuing reserves one non-system
linkage index. In the unlikely event of your z/OS system having inadequate system LXs defined, you might
need to take these reserved system LXs into account.

If required, the number of system LXs can be increased by setting the NSYSLX parameter in
SYS1.PARMLIB member IEASYSxx.

Determining z/OS workload management importance
For full information about workload management and defining goals through the service definition, see
the .z/OS product documentation.

This topic suggests how to set the z/OS workload management importance and velocity goals relative
to other important work in your system. See z/OS MVS Planning: Workload Management for more
information.

The queue manager address space needs to be defined with high priority as it provides subsystem
services. The channel initiator is an application address space, but is usually given a high priority to
ensure that messages being sent to a remote queue manager are not delayed. Advanced Message
Security (AMS) also provides subsystem services and needs to be defined with high priority.

Use the following service classes:
The default SYSSTC service class

• VTAM and TCP/IP address spaces

Planning an IBM MQ architecture 143

https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-planning-workload-management

• IRLM address space (IRLMPROC)

Note: The VTAM, TCP/IP, and IRLM address spaces must have a higher dispatching priority than all the
DBMS address spaces, their attached address spaces, and their subordinate address spaces. Do not
allow workload management to reduce the priority of VTAM, TCP/IP, or IRLM to (or below) that of the
other DBMS address spaces

A high velocity goal and importance of 1 for a service class with a name that you define, such as
PRODREGN, for the following:

• IBM MQ queue manager, channel initiator and AMS address spaces
• Db2 (all address spaces, except for the Db2-established stored procedures address space)
• CICS (all region types)
• IMS (all region types except BMPs)

A high velocity goal is good for ensuring that startups and restarts are performed as quickly as
possible for all these address spaces.

The velocity goals for CICS and IMS regions are only important during startup or restart. After
transactions begin running, workload management ignores the CICS or IMS velocity goals and assigns
priorities based on the response time goals of the transactions that are running in the regions. These
transaction goals should reflect the relative priority of the business applications they implement. They
might typically have an importance value of 2. Any batch applications using IBM MQ should similarly have
velocity goals and importance reflecting the relative priority of the business applications they implement.
Typically the importance and velocity goals will be less than those for PRODREGN.

Storage configuration
In a 64 bit address space, there is a virtual line called "the bar" that marks the 2GB address.

The bar separates storage below the 2GB address, called "below the bar", from storage above the 2GB
address, called "above the bar". Storage below the bar uses 31 bit addressability, storage above the bar
uses 64 bit addressability.

You can specify the limit of 31-bit storage by using the JCL REGION parameter, and the limit of 64-bit
storage by using the MEMLIMIT parameter. These specified values can be overridden by z/OS exits.

Suggested storage configuration
The following table shows suggested REGION and MEMLIMIT values for the queue manager, channel
initiator, and AMS address spaces. These suggestions should be used as a starting point and adjusted
using the information in:

• “Queue manager storage configuration” on page 145
• “Channel initiator storage configuration from IBM MQ 9.4.0” on page 147

Table 19. Suggested definitions for REGION and MEMLIMIT

Address space Storage configuration

Queue manager REGION=0M, MEMLIMIT=3G

Channel initiator from IBM MQ 9.4.0 REGION=0M, MEMLIMIT=2G

AMS address space REGION=0M

Managing the MEMLIMIT and REGION size

144 Planning for IBM MQ

Other mechanisms, for example the MEMLIMIT parameter in the SMFPRMxx member of SYS1.PARMLIB
or the IEFUSI exit might be used at your installation to provide a default amount of virtual storage above
the bar for z/OS address spaces. See Memory management above the bar for full details about limiting
storage above the bar.

Queue manager storage configuration
The queue manager address space is likely to be the major user of 64-bit storage in an IBM MQ
installation. Each connection to the queue manager requires common storage to be allocated as
described in the following text. In addition to 64-bit storage, you should allow the queue manager to
use all available 31-bit storage by specifying REGION=0M on the queue manager JCL.

Common storage
Each IBM MQ for z/OS subsystem has the following approximate storage requirements:

• CSA 4KB
• ECSA 800KB, plus the size of the trace table that is specified in the TRACTBL parameter of the

CSQ6SYSP system parameter macro. For more information, see Using CSQ6SYSP.

In addition, each concurrent logical connection to the queue manager requires about 5 KB of ECSA. When
a task ends, other IBM MQ tasks can reuse this storage.

IBM MQ does not release the storage until the queue manager is shut down, so you can calculate the
maximum amount of ECSA required by multiplying the maximum number of concurrent connections by
5KB. The number of concurrent logical connections is the sum of the number of:

• Tasks (TCBs) in Batch, TSO, z/OS UNIX System Services, IMS, and Db2 stored procedure address space
(SPAS) regions that are connected to IBM MQ, but not disconnected.

• CICS transactions that have issued an IBM MQ request, but have not terminated
• JMS Connections, Sessions, TopicSessions or QueueSessions that have been created (for bindings

connection), but not yet destroyed or garbage collected.
• Active IBM MQ channels

You can set a limit to the common storage, used by logical connections to the queue manager, with the
ACELIM configuration parameter. The ACELIM control is primarily of interest to sites where Db2 stored
procedures cause operations on IBM MQ queues.

When driven from a stored procedure, each IBM MQ operation can result in a new logical connection to
the queue manager. Large Db2 units of work, for example due to table load, can result in an excessive
demand for common storage.

ACELIM is intended to limit common storage use and to protect the z/OS system, by limiting the number
of connections in the system. You should only set ACELIM on queue managers that have been identified
as using excessive quantities of ECSA storage. See the ACELIM section in Using CSQ6SYSP for more
information.

To set a value for ACELIM, firstly determine the amount of storage currently in the subpool controlled by
the ACELIM value. This information is in the SMF 115 subtype 5 records produced by statistics CLASS(3)
trace.

IBM MQ SMF data can be formatted using SupportPac MP1B. The number of bytes in use in the subpool
controlled by ACELIM is displayed in the STGPOOL DD, on the line titled ACE/PEB.

For more information about SMF 115 statistics records, see Interpreting IBM MQ for z/OS performance
statistics.

Increase the normal value by a sufficient margin to provide space for growth and workload spikes. Divide
the new value by 1024 to yield a maximum storage size in KB for use in the ACELIM configuration.

Planning an IBM MQ architecture 145

https://www.ibm.com/docs/en/zos/3.1.0?topic=space-memory-management-above-bar
https://www.ibm.com/support/pages/node/572457

Private storage
The queue manager address space uses 64-bit storage for many internal control blocks. The MEMLIMIT
parameter of the queue manager JCL defines the maximum amount of 64-bit storage available. 3GB
of storage, MEMLIMIT=3G, is the minimum you should use, however, depending on your configuration
significantly more might be required.

You should specify a specific MEMLIMIT value rather than MEMLIMIT=NOLIMIT to prevent potential
problems. If you specify NOLIMIT or a very large value, then there is the potential to use up all of
the available z/OS virtual storage, which leads to paging in your system. When increasing the value of
MEMLIMIT you should discuss the new setting with your z/OS system programmer in case there is a
system-wide limit on the amount of on storage that can be used.

If you have a large value for MEMLIMIT you might need to increase the size of your dump data sets as
more data is captured in a dump.

You can monitor the address space storage usage from the CSQY220I message that indicates the amount
of 31 and 64-bit private storage in use, and the remaining free amount.

Buffer pools

Buffer pools are a significant user of private storage in the queue manager address space. Each buffer
pool size is determined at queue manager initialization time, and storage is allocated for the buffer pool
when a page set that is using that buffer pool is connected. The parameter LOCATION (ABOVE|BELOW)
is used to specify where the buffers are allocated. You can use the ALTER BUFFPOOL command to
dynamically change the size of buffer pools.

When calculating a value for MEMLIMIT it is critical that you take into account the buffer pool sizes if they
are configured with LOCATION(ABOVE). You should perform the calculation as follows.

Calculate the value of MEMLIMIT as 2GB plus the size of the buffer pools configured with
LOCATION(ABOVE), rounded up to the nearest GB. Set MEMLIMIT to a minimum of 3GB and increase this
as necessary when you need to increase the size of your buffer pools.

For example, for three buffer pools configured with LOCATION(ABOVE), buffer pool one has 10,000
buffers, and buffer pools two and three have 50,000 buffers each. Memory usage above the bar equals
110,000 (total number of buffers) * 4096 = 450,560,000 bytes = 430MB.

All buffer pools regardless of LOCATION make use of 64-bit storage for control structures. As the number
of buffer pools and number of buffers in those pools increase this can become significant. Each buffer
requires around an additional 200 bytes of 64-bit storage. For the preceding configuration that would
require: 200 * 110,000 = 22,000,000 bytes = 21MB.

Therefore, in this scenario 3GB can be used for the MEMLIMIT, which allows scope for growth: 21MB +
430MB + 2GB which rounds up to 3GB.

For some configurations there can be significant performance benefits to using buffer pools that have
their buffers permanently backed by real storage. You can achieve this by specifying the FIXED4KB value
for the PAGECLAS attribute of the buffer pool. However, you should only do this if there is sufficient real
storage available on the LPAR, otherwise other address spaces might be affected. For information about
when you should use the FIXED4KB value for PAGECLAS, see IBM MQ Support Pac MP16: IBM MQ for
z/OS - Capacity planning & tuning.

Making the buffer pools so large that there is MVS™ paging might adversely affect performance. You might
consider using a smaller buffer pool that does not page, with IBM MQ moving the message to and from
the page set.

Indexed queues

On z/OS, local queues are indexed if the queue has an INDXTYPE attribute that has not been set to NONE.
The indexes for shared queues are held in a coupling facility, but for private queues the index is held in 64
bit storage. For each message on an indexed queue 136 bytes of data are used to index the message. For

146 Planning for IBM MQ

https://www.ibm.com/support/pages/node/572583
https://www.ibm.com/support/pages/node/572583

very deep queues this can result in a significant amount of 64 bit storage being allocated. For example, 10
million messages on an indexed queue will use 1.27 GB of 64 bit storage in order to maintain the index.

If you expect to have a large number of messages on indexed queues you should allow for this when
setting MEMLIMIT. To calculate an upper limit for the amount of storage required for indexes, multiply the
MAXDEPTH attribute for each indexed queue by 136 and sum the value. This value should be added to
your existing MEMLIMIT.

RECOVER CFSTRUCT

From IBM MQ 9.4.0 the RECOVER CFSTRUCT command makes greater use of 64-bit storage. In many
cases there should be spare 64-bit storage available and so use of the command does not require an
increase in the value of MEMLIMIT. However, if you are likely to have large structure backups, containing
more than a few million messages, you should increase the MEMLIMIT for all queue managers which
might process the RECOVER CFSTRUCT command by 500MB.

For example if you had MEMLIMIT=3G already, you should consider using MEMLIMIT=4G as the
MEMLIMIT parameter does not allow for decimal points.

Shared Message Data Set (SMDS) buffers and MEMLIMIT
When running messaging workloads using shared message data sets, there are two levels of
optimizations that can be achieved by adjusting the DSBUFS and DSBLOCK attributes.

The amount of above bar queue manager storage used by the SMDS buffer is DSBUFS x DSBLOCK. This
means that by default, 100 x 256KB (25MB) is used for each CFLEVEL(5) structure in the queue manager.

Although this value is not too high, if your enterprise, or enterprises have many CFSTRUCTs, some of them
might allocate a high value of MEMLIMIT for buffer pools, and sometimes they have deep indexed queues,
so in total, they might run out of storage above the bar.

Channel initiator storage configuration from IBM MQ 9.4.0
The channel initiator typically uses much less 64-bit storage than the queue manager. However, from IBM
MQ 9.4.0 the usage has increased. In addition to 64-bit storage, you should allow the channel initiator to
use all available 31-bit storage by specifying REGION=0M on the queue manager JCL.

Common storage
The channel initiator typically requires ECSA usage of up to 160KB.

31-bit private storage
The 31-bit storage available to the channel initiator limits the number of concurrent connections the
CHINIT can have.

Every channel uses approximately 170KB of extended private region in the channel initiator address
space. For message channels, for example, sender or receiver channels, storage is increased by message
size if messages larger than 32KB are transmitted. This increased storage is freed when:

• A sending or client channel requires less than half the current buffer size for 10 consecutive messages.
• A heartbeat is sent or received.

The storage is freed for reuse within the Language Environment, however, the storage is not seen as
free by the z/OS virtual storage manager. This means that the upper limit for the number of channels
is dependent on message size and arrival patterns, and on limitations of individual user systems on
extended private region size.

The upper limit on the number of channels is likely to be approximately 9000 on many systems because
the extended region size is unlikely to exceed 1.6GB.

Planning an IBM MQ architecture 147

The channel initiator trace is written to a data space. The size of the data space storage, is controlled by
the TRAXTBL parameter. See ALTER QMGR.

64-bit private storage
The MEMLIMIT parameter of the channel initiator JCL defines the maximum amount of 64-bit storage
available. 2 GB of storage, MEMLIMIT=2 GB, is the minimum value you should use. Depending on your
configuration significantly more might be required.

You should specify a sensible MEMLIMIT value rather than MEMLIMIT=NOLIMIT to prevent potential
problems. If you specify NOLIMIT or a very large value, then there is the potential to use up all of the
available z/OS virtual storage, leading to paging in your system. When increasing the value of MEMLIMIT
you should discuss the new setting with your z/OS system programmer in case there is a system-wide
limit on the amount of on storage that can be used.

If you have a large value for MEMLIMIT you might need to increase the size of your dump data sets as
more data is captured in a dump.

There are two users of 64-bit storage in the channel initiator: SMF and server-connection channels.

SMF

If enabled, SMF class 4 accounting, or statistics, require 64-bit storage. A minimum of 256MB storage
is required. If sufficient storage is not available, the channel initiator issues the CSQX124E message and
class 4 accounting and statistics are not available.

Server-connection channels

From IBM MQ 9.4.0 server-connection channels allocate message buffers in 64-bit storage, if they are
transferring messages larger than 32 KB in size.

These buffers are freed if the channels require less than half the current buffer size for 10 consecutive
messages, or a heartbeat is sent or received.

The value of MEMLIMIT sets an upper limit on how many concurrent server-connection channels can run.
You should use a minimum value of MEMLIMIT=2G to ensure that the same number of channels can run
as in earlier versions of IBM MQ, as well as providing some capacity for growth.

You can calculate an approximate value for MEMLIMIT by working out the peak maximum number of
concurrently active server-connection channels, and for those channels the maximum message size you
expect them to transfer. You should use MEMLIMIT=2GB as a starting point and round up.

For example, if you set the maximum number of concurrent server-connection channels to be 2,000 and
each channel to have a maximum message size of 1MB, then server-connection channels are using a
maximum of just under 2GB of 64-bit storage. As this is very close to 2GB then you should round up to
MEMLIMIT=3G.

Disk storage
Use this topic when planning your disk storage requirements for log data sets, Db2 storage, coupling
facility storage, and page data sets.

Work with your storage administrator to determine where to put the queue manager data sets. For
example, your storage administrator may give you specific DASD volumes, or SMS storage classes, data
classes, and management classes for the different data set types.

• Log data sets must be on DASD. These logs can have high I/O activity with a small response time and do
not need to be backed up.

• Archive logs can be on DASD or tape. After they have been created, they might never be read again
except in an abnormal situation, such as recovering a page set from a backup. They should have a long
retention date.

148 Planning for IBM MQ

• Page sets might have low to medium activity and should be backed up regularly. On a high use system,
they should be backed up twice a day.

• BSDS data sets should be backed up daily; they do not have high I/O activity.

All data sets are similar to those used by Db2, and similar maintenance procedures can be used for IBM
MQ.

See the following sections for details of how to plan your data storage:

• Logs and archive storage

“How long do I need to keep archive logs” on page 168 describes how to determine how much storage
your active log and archive data sets require, depending on the volume of messages that your IBM MQ
system handles and how often the active logs are offloaded to your archive data sets.

• Db2 storage

“Db2 storage” on page 185 describes how to determine how much storage Db2 requires for the IBM MQ
data.

• coupling facility storage

“Defining coupling facility resources” on page 175 describes how to determine how large to make your
coupling facility structures.

• Page set and message storage

“Planning your page sets and buffer pools” on page 149 describes how to determine how much storage
your page data sets require, depending on the sizes of the messages that your applications exchange,
on the numbers of these messages, and on the rate at which they are created or exchanged.

Where to find more information about storage and performance
requirements
Use this topic as a reference to find more information about storage and performance requirements.

You can find more information from the following sources:

Table 20. Where to find more information about storage requirements

Topic Where to look

System parameters Using CSQ6SYSP and Customizing your queue managers

Storage required to install IBM MQ Program Directory. For download links for the Program Directories,
see IBM MQ for z/OS Program Directory PDF files.

IEALIMIT and IEFUSI exits See IEALIMIT and IEFUSI in the z/OS:MVS Installation Exits
documentation.

Latest information IBM MQ SupportPac website SupportPacs for IBM MQ and other
project areas.

Workload management and
defining goals through the service
definition

z/OS MVS Planning: Workload Management

Planning your page sets and buffer pools
Information to help you with planning the initial number, and sizes of your page data sets, and buffer
pools.

This topic contains the following sections:

• “Plan your page sets” on page 150

Planning an IBM MQ architecture 149

https://www.ibm.com/docs/en/zos/3.1.0?topic=exits-iealimit-user-region-size-limit-exit
https://www.ibm.com/docs/en/zos/3.1.0?topic=exits-iefusi-step-initiation-exit
https://www.ibm.com/support/pages/node/318481
https://www.ibm.com/support/pages/node/318481
https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-planning-workload-management

– Page set usage
– Number of page sets
– Size of page sets
– Planning for z/OS data set encryption

• “Calculate the size of your page sets” on page 151

– Page set zero
– Page set 01 - 99
– Calculating the storage requirement for messages

• “Enabling dynamic page set expansion” on page 153
• “Defining your buffer pools” on page 154

Plan your page sets
Page set usage

For short-lived messages, few pages are normally used on the page set and there is little or no I/O to
the data sets except at startup, during a checkpoint, or at shutdown.

For long-lived messages, those pages containing messages are normally written out to disk. This
operation is performed by the queue manager in order to reduce restart time.

Separate short-lived messages from long-lived messages by placing them on different page sets and
in different buffer pools.

Number of page sets

Using several large page sets can make the role of the IBM MQ administrator easier because it means
that you need fewer page sets, making the mapping of queues to page sets simpler.

Using multiple, smaller page sets has a number of advantages. For example, they take less time to
back up, and I/O can be carried out in parallel during backup and restart. However, consider that this
adds a significant performance cost to the role of the IBM MQ administrator, who is required to map
each queue to one of a much greater number of page sets.

Define at least five page sets, as follows:

• A page set reserved for object definitions (page set zero)
• A page set for system-related messages
• A page set for performance-critical long-lived messages
• A page set for performance-critical short-lived messages
• A page set for all other messages

“Defining your buffer pools” on page 154 explains the performance advantages of distributing your
messages on page sets in this way.

Size of page sets

Define sufficient space in your page sets for the expected peak message capacity. Consider for
any unexpected peak capacity, such as when a build-up of messages develops because a queue
server program is not running. You can do this by allocating the page set with secondary extents or,
alternatively, by enabling dynamic page set expansion. For more information, see “Enabling dynamic
page set expansion” on page 153. It is difficult to make a page set smaller, so it is often better to
allocate a smaller page set, and allow it to expand when needed.

When planning page set sizes, consider all messages that might be generated, including non-
application message data. For example, trigger messages, event messages and any report messages
that your application has requested.

The size of the page set determines the time taken to recover a page set when restoring from a
backup, because a large page set takes longer to restore.

150 Planning for IBM MQ

Note: Recovery of a page set also depends on the time the queue manager takes to process the log
records written since the backup was taken; this time period is determined by the backup frequency.
For more information, see “Planning for backup and recovery” on page 187.

Note: Page sets larger than 4 GB require the use of SMS extended addressability.

Planning for z/OS data set encryption
You can apply the z/OS data set encryption feature to page sets for queue managers running at IBM
MQ for z/OS 9.1.4 or later.
You must allocate these page sets with EXTENDED attributes, and a data set key label that ensures
the data is AES encrypted.
See the section, confidentiality for data at rest on IBM MQ for z/OS with data set encryption. for more
information.

Calculate the size of your page sets

For queue manager object definitions (for example, queues and processes), it is simple to calculate the
storage requirement because these objects are of fixed size and are permanent. For messages however,
the calculation is more complex for the following reasons:

• Messages vary in size.
• Messages are transitory.
• Space occupied by messages that have been retrieved is reclaimed periodically by an asynchronous

process.

Large page sets of greater than 4 GB that provide extra capacity for messages if the network stops, can
be created if required. It is not possible to modify the existing page sets. Instead, new page sets with
extended addressability and extended format attributes, must be created. The new page sets must be
the same physical size as the old ones, and the old page sets must then be copied to the new ones.
If backward migration is required, page set zero must not be changed. If page sets less than 4 GB are
adequate, no action is needed.

Page set zero

Page set zero is reserved for object definitions.

For page set zero, the storage required is:

 (maximum number of local queue definitions x 1010)
 (excluding shared queues)
 + (maximum number of model queue definitions x 746)
 + (maximum number of alias queue definitions x 338)
 + (maximum number of remote queue definitions x 434)
 + (maximum number of permanent dynamic queue definitions x 1010)
 + (maximum number of process definitions x 674)
 + (maximum number of namelist definitions x 12320)
 + (maximum number of message channel definitions x 2026)
 + (maximum number of client-connection channel definitions x 5170)
 + (maximum number of server-connection channel definitions x 2026)
 + (maximum number of storage class definitions x 266)
 + (maximum number of authentication information definitions x 1010)
 + (maximum number of administrative topic definitions x 15000)
 + (total length of topic strings defined in administrative topic definitions)

Divide this value by 4096 to determine the number of records to specify in the cluster for the page set
data set.

You do not need to allow for objects that are stored in the shared repository, but you must allow for
objects that are stored or copied to page set zero (objects with a disposition of GROUP or QMGR).

The total number of objects that you can create is limited by the capacity of page set zero. The
number of local queues that you can define is limited to 524 287.

Planning an IBM MQ architecture 151

Page sets 01 - 99

For page sets 01 - 99, the storage required for each page set is determined by the number and size of
the messages stored on that page set. (Messages on shared queues are not stored on page sets.)

Divide this value by 4096 to determine the number of records to specify in the cluster for the page set
data set.

Calculating the storage requirement for messages

This section describes how messages are stored on pages. Understanding this can help you calculate
how much page set storage you must define for your messages. To calculate the approximate space
required for all messages on a page set you must consider maximum queue depth of all the queues
that map to the page set and the average size of messages on those queues.

Note: The sizes of the structures and control information given in this section are liable to change
between major releases. For details specific to your release of IBM MQ, refer to SupportPac MP16 -
IBM MQ for z/OS Capacity planning & tuning and IBM MQ Family - Performance Reports

You must allow for the possibility that message "gets" might be delayed for reasons outside the
control of IBM MQ (for example, because of a problem with your communications protocol). In this
case, the "put" rate of messages might far exceed the "get" rate. This can lead to a large increase
in the number of messages stored in the page sets and a consequent increase in the storage size
demanded.

Each page in the page set is 4096 bytes long. Allowing for fixed header information, each page has
4057 bytes of space available for storing messages.

When calculating the space required for each message, the first thing you must consider is whether
the message fits on one page (a short message) or whether it needs to be split over two or more
pages (a long message). When messages are split in this way, you must allow for additional control
information in your space calculations.

For the purposes of space calculation, a message can be represented as the following:

The message header section contains the message descriptor and other control information, the size
of which varies depending on the size of the message. The message data section contains all the
actual message data, and any other headers (for example, the transmission header or the IMS bridge
header).

A minimum of two pages are required for page set control information which, is typically less than 1%
of the total space required for messages.

Short messages

A short message is defined as a message that fits on one page.

Small messages are stored one on each page.

Long messages

If the size of the message data is greater than 3596 bytes, but not greater than 4 MB, the message
is classed as a long message. When presented with a long message, IBM MQ stores the message
on a series of pages, and stores control information that points to these pages in the same way
that it would store a short message. This is shown in Figure 41 on page 153:

152 Planning for IBM MQ

https://www.ibm.com/support/pages/node/572583
https://www.ibm.com/support/pages/node/572583
https://www.ibm.com/support/pages/node/318459

Figure 41. How IBM MQ stores long messages on page sets

Very long messages

Very long messages are messages with a size greater than 4 MB. These are stored so that each 4
MB uses 1037 pages. Any remainder is stored in the same way as a long message, as described
above.

Enabling dynamic page set expansion
Page sets can be extended dynamically while the queue manager is running. A page set can have 123
extents, and can be spread over multiple disk volumes.

Each time a page set expands, a new data set extent is used. The queue manager continues to expand a
page set when required, until the maximum number of extents has been reached, or until no more storage
is available for allocation on eligible volumes.

Once page set expansion fails for one of the reasons above, the queue manager marks the page set for no
further expansion attempts. This marking can be reset by altering the page set to EXPAND(SYSTEM).

Page set expansion takes place asynchronously to all other page set activity, when 90% of the existing
space in the page set is allocated.

The page set expansion process formats the newly allocated extent and makes it available for use
by the queue manager. However, none of the space is available for use, until the entire extent has
been formatted. This means that expansion by a large extent is likely to take some time, and putting
applications might 'block' if they fill the remaining 10% of the page set before the expansion has
completed.

Sample thlqual.SCSQPROC(CSQ4PAGE) shows how to define the secondary extents.

To control the size of new extents, you use one of the following options of the EXPAND keyword of the
DEFINE PSID and ALTER PSID commands:

• USER
• SYSTEM
• NONE

USER

Uses the secondary extent size specified when the page set was allocated. If a value was not
specified, or if a value of zero was specified, dynamic page set expansion cannot occur.

Page set expansion occurs when the space in the page is 90% used, and is performed asynchronously
with other page set activity.

This may lead to expansion by more than a single extent at a time.

Consider the following example: you allocate a page set with a primary extent of 100,000 pages and a
secondary extent of 5000 pages. A message is put that requires 9999 pages. If the page set is already

Planning an IBM MQ architecture 153

using 85,000 pages, writing the message crosses the 90% full boundary (90,000 pages). At this point,
a further secondary extent is allocated to the primary extent of 100,000 pages, taking the page set
size to 105,000 pages. The remaining 4999 pages of the message continue to be written. When the
used page space reaches 94,500 pages, which is 90% of the updated page set size of 105,000 pages,
another 5000 page extent is allocated, taking the page set size to 110,000 pages. At the end of the
MQPUT, the page set has expanded twice, and 94,500 pages are used. None of the pages in the
second page set expansion have been used, although they were allocated.

At restart, if a previously used page set has been replaced with a data set that is smaller, it is
expanded until it reaches the size of the previously used data set. Only one extent is required to reach
this size.

SYSTEM

Ignores the secondary extent size that was specified when the page set was defined. Instead, the
queue manager sets a value that is approximately 10% of the current page set size. The value is
rounded up to the nearest cylinder of DASD.

If a value was not specified, or if a value of zero was specified, dynamic page set expansion can still
occur. The queue manager sets a value that is approximately 10% of the current page set size. The
new value is rounded up depending on the characteristics of the DASD.

Page set expansion occurs when the space in the page set is approximately 90% used, and is
performed asynchronously with other page set activity.

At restart, if a previously used page set has been replaced with a data set that is smaller, it is
expanded until it reaches the size of the previously used data set.

NONE

No further page set expansion is to take place.

Related reference
ALTER PSID
DEFINE PSID
DISPLAYUSAGE

Defining your buffer pools
Use this topic to help plan the number of buffer pools you should define, and their settings.

This topic is divided into the following sections:

1. “Decide on the number of buffer pools to define” on page 154
2. “Decide on the settings for each buffer pool” on page 155
3. “Monitor the performance of buffer pools under expected load” on page 156
4. “Adjust buffer pool characteristics” on page 156

Decide on the number of buffer pools to define
You should define four buffer pools initially:
Buffer pool 0

Use for object definitions (in page set zero) and performance critical, system related message
queues, such as the SYSTEM.CHANNEL.SYNCQ queue and the SYSTEM.CLUSTER.COMMAND.QUEUE
and SYSTEM.CLUSTER.REPOSITORY.QUEUE queues.

However it is important to consider point “7” on page 156 in Adjust buffer pool characteristics if a
large number of channels, or clustering, is to be used.

Use the remaining three buffer pools for user messages.

Buffer pool 1
Use for important long-lived messages.

154 Planning for IBM MQ

Long-lived messages are those that remain in the system for longer than two checkpoints, at which
time they are written out to the page set. If you have many long-lived messages, this buffer pool
should be relatively small, so that page set I/O is evenly distributed (older messages are written out to
DASD each time the buffer pool becomes 85% full).

If the buffer pool is too large, and the buffer pool never gets to 85% full, page set I/O is delayed until
checkpoint processing. This might affect response times throughout the system.

If you expect few long-lived messages only, define this buffer pool so that it is sufficiently large to hold
all these messages.

Buffer pool 2
Use for performance-critical, short-lived messages.

There is normally a high degree of buffer reuse, using few buffers. However, you should make
this buffer pool large to allow for unexpected message accumulation, for example, when a server
application fails.

Buffer pool 3
Use for all other (typically, performance noncritical) messages.

Queues such as the dead-letter queue, SYSTEM.COMMAND.* queues and SYSTEM.ADMIN.* queues
can also be mapped to buffer pool 3.

Where virtual storage constraints exist, and buffer pools need to be smaller, buffer pool 3 is the first
candidate for size reduction.

You might need to define additional buffer pools in the following circumstances:

• If a particular queue is known to require isolation, perhaps because it exhibits different behavior at
various times.

– Such a queue might either require the best performance possible under the varying circumstances, or
need to be isolated so that it does not adversely affect the other queues in a buffer pool.

– Each such queue can be isolated into its own buffer pool and page set.
• You want to isolate different sets of queues from each other for class-of-service reasons.

– Each set of queues might then require one, or both, of the two types of buffer pools 1 or 2, as
described in Suggested definitions for buffer pool settings, necessitating creation of several buffer
pools of a specific type.

Decide on the settings for each buffer pool
If you are using the four buffer pools described in “Decide on the number of buffer pools to define” on
page 154, then Suggested definitions for buffer pool settings gives two sets of values for the size of the
buffer pools.

The first set is suitable for a test system, the other for a production system or a system that will become a
production system eventually. In all cases define your buffer pools with the LOCATION(ABOVE) attribute

Table 21. Suggested definitions for buffer pool settings

Definition setting Test system Production system

BUFFPOOL 0 1 050 buffers 50 000 buffers

BUFFPOOL 1 1 050 buffers 20 000 buffers

BUFFPOOL 2 1 050 buffers 50 000 buffers

BUFFPOOL 3 1 050 buffers 20 000 buffers

If you need more than the four suggested buffer pools, select the buffer pool (1 or 2) that most accurately
describes the expected behavior of the queues in the buffer pool, and size it using the information in
Suggested definitions for buffer pool settings.

Planning an IBM MQ architecture 155

Ensure that your MEMLIMIT is set high enough, so that all the buffer pools can be located above the bar.

Monitor the performance of buffer pools under expected load
You can monitor the usage of buffer pools by analyzing buffer pool performance statistics. In particular,
you should ensure that the buffer pools are large enough so that the values of QPSTSOS, QPSTSTLA, and
QPSTDMC remain at zero.

For further information, see Buffer manager data records.

Adjust buffer pool characteristics
Use the following points to adjust the buffer pool settings from “Decide on the settings for each buffer
pool” on page 155, if required.

Use the performance statistics from “Monitor the performance of buffer pools under expected load” on
page 156 as guidance.

1. If you are migrating from an earlier version of IBM MQ, only change your existing settings if you have
more real storage available.

2. In general, bigger buffer pools are better for performance, and buffer pools can be much bigger if they
are above the bar.

However, at all times you should have sufficient real storage available so that the buffer pools are
resident in real storage. It is better to have smaller buffer pools that do not result in paging, than big
ones that do.

Additionally, there is no point having a buffer pool that is bigger than the total size of the page sets that
use it, although you should take into account page set expansion if it is likely to occur.

3. Aim for one page set per buffer pool, as this provides better application isolation.
4. If you have sufficient real storage, such that your buffer pools will never be paged out by the operating

system, consider using page-fixed buffers in your buffer pool.

This is particularly important if the buffer pool is likely to undergo much I/O, as it saves the CPU cost
associated with page-fixing the buffers before the I/O, and page-unfixing them afterwards.

5. There are several benefits to locating buffer pools above the bar even if they are small enough to fit
below the bar. These are:

• 31 bit virtual storage constraint relief - for example more space for common storage.
• If the size of a buffer pool needs to be increased unexpectedly while it is being heavily used, there is

less impact and risk to the queue manager, and its workload, by adding more buffers to a buffer pool
that is already above the bar, than moving the buffer pool to above the bar and then adding more
buffers.

6. Tune buffer pool zero and the buffer pool for short-lived messages (buffer pool 2) so that the 15% free
threshold is never exceeded (that is, QPSTCBSL divided by QPSTNBUF is always greater than 15%).
If more than 15% of buffers remain free, I/O to the page sets using these buffer pools can be largely
avoided during normal operation, although messages older than two checkpoints are written to page
sets.

Attention: The optimum value for these parameters is dependent on the characteristics of
the individual system. The values given are intended only as a guideline and might not be
appropriate for your system.

7. SYSTEM.* queues which get very deep, for example SYSTEM.CHANNEL.SYNCQ, might benefit from
being placed in their own buffer pool, if sufficient storage is available.

IBM MQ SupportPac MP16 - IBM MQ for z/OS Capacity planning & tuning provides further information
about tuning buffer pools.

156 Planning for IBM MQ

https://www.ibm.com/support/pages/node/572583

Planning your logging environment
Use this topic to plan the number, size and placement of the logs, and log archives used by IBM MQ.

Logs are used to:

• Write recovery information about persistent messages
• Record information about units of work using persistent messages
• Record information about changes to objects, such as define queue
• Backup CF structures

and for other internal information.

The IBM MQ logging environment is established using the system parameter macros to specify options,
such as: whether to have single or dual active logs, what media to use for the archive log volumes, and
how many log buffers to have.

These macros are described in Create the bootstrap and log data sets and Tailor your system parameter
module.

Note: If you are using queue sharing groups, ensure that you define the bootstrap and log data sets with
SHAREOPTIONS(2 3).

This section contains information about the following topics:

Log data set definitions
Use this topic to decide on the most appropriate configuration for your log data sets.

This topic contains information to help you answer the following questions:

• Should your installation use single or dual logging?
• How many active log data sets do you need?
• “How large should the active logs be?” on page 158
• Active log placement
• “Active log encryption with z/OS data set encryption” on page 160

Should your installation use single or dual logging?

In general you should use dual logging for production, to minimize the risk of losing data. If you want
your test system to reflect production, both should use dual logging, otherwise your test systems can use
single logging.

With single logging data is written to one set of log data sets. With dual logging data is written to two sets
of log data sets, so in the event of a problem with one log data set, such as the data set being accidentally
deleted, the equivalent data set in the other set of logs can be used to recover the data.

With dual logging you require twice as much DASD as with single logging.

If you are using dual logging, then also use dual BSDSs and dual archiving to ensure adequate provision
for data recovery.

Dual active logging adds a small performance cost.

Attention: Use of disk mirroring technologies, such as Metro Mirror, are not necessarily a
replacement for dual logging and dual BSDS. If a mirrored data set is accidentally deleted, both
copies are lost.

If you use persistent messages, single logging can increase maximum capacity by 10-30% and can also
improve response times.

Planning an IBM MQ architecture 157

Single logging uses 2 - 310 active log data sets, whereas dual logging uses 4 - 620 active log data sets
to provide the same number of active logs. Thus single logging reduces the amount of data logged, which
might be important if your installation is I/O constrained.

How many active log data sets do you need?

The number of logs depends on the activities of your queue manager. For a test system with low
throughput, three active log data sets might be suitable. For a high throughput production system you
might want the maximum number of logs available, so, if there is a problem with offloading logs you have
more time to resolve the problems.

You must have at least three active log data sets, but it is preferable to define more. For example, if the
time taken to fill a log is likely to approach the time taken to archive a log during peak load, define more
logs.

Note: Page sets and active log data sets are eligible to reside in the extended addressing space (EAS) part
of an extended address volumes (EAV) and an archive log dataset can also reside in the EAS.

You should also define more logs to offset possible delays in log archiving. If you use archive logs on tape,
allow for the time required to mount the tape.

Consider having enough active log space to keep a day's worth of data, in case the system is unable to
archive because of lack of DASD or because it cannot write to tape. If all the active logs fill up, then IBM
MQ is unable to process persistent messages or transactions. It is very important to have enough active
log space.

It is possible to dynamically define new active log data sets as a way of minimizing the effect of archive
delays or problems. New data sets can be brought online rapidly, using the DEFINE LOG command to
avoid queue manager 'stall' due to lack of space in the active log.

If you want to define more than 31 active log data sets, you must configure your logging environment to
use a version 2 format BSDS. Once a version 2 format BSDS is in use, up to 310 active log data sets can
be defined for each log copy ring. See “Planning to increase the maximum addressable log range” on page
169 for information on how you convert to a version 2 format BSDS.

You can tell whether your queue manager is using a version 2 or higher BSDS, either by running the print
log map utility (CSQJU004), or from the CSQJ034I message issued during queue manager initialization.
An end of log RBA range of FFFFFFFFFFFFFFFF, in the CSQJ034I message, indicates that a version
2, or higher, format BSDS is in use. An end of log RBA range of 0000FFFFFFFFFFFF, in the CSQJ034I
message, indicates that a version 1 format BSDS is in use.

When a queue manager is using a version 2, or higher, format BSDS, it is possible to use the DEFINE LOG
command to dynamically add more than 31 active log data sets to a log copy ring.

How large should the active logs be?
The maximum supported active log size, when archiving to disk or to tape, is 4 GB.

You should create active logs of at least 1 GB in size for production and test systems.

Important: You need to be careful when allocating data sets, because IDCAMS rounds up the size you
allocate.

To allocate a 3 GB log specify one of the following options:

• Cylinders(4369)
• Megabytes(3071)
• TRACKS(65535)
• RECORD(786420)

Any one of these allocates 2.99995 GB.

To allocate a 4GB log specify one of the following options:

158 Planning for IBM MQ

• Cylinders(5825)
• Megabytes(4095)
• TRACKS(87375)
• RECORD(1048500)

Any one of these allocates 3.9997 GB.

When using striped data sets, where the data set is spread across multiple volumes, the specified size
value is allocated on each DASD volume used for striping. So, if you want to use 4 GB logs and four
volumes for striping, you should specify:

• CYLinders(1456)
• Megabytes(1023)

Setting these attributes allocates 4*1456 = 5824 Cylinders or 4 * 1023 = 4092 Megabytes.

Note: Striping is supported when using extended format data sets. This is usually set by the storage
manager.

See Increasing the size of the active log for information on carrying out the procedure.

Active log placement

You should work with your storage management team to set up storage pools for the queue managers.
You need to consider:

• A naming convention, so the queue managers use the correct SMS definitions.
• Space required for active and archive logs. Your storage pool should have enough space for the active

logs from a whole day.
• Performance and resilience to failures.

For performance reasons you should consider striping your active log data sets. The I/O is spread across
multiple volumes and reduces the I/O response times, leading to higher throughput. See the preceding
text for information about allocating the size of the active logs when using striping.

You should review the I/O statistics using reports from RMF or a similar product. Perform the review of
these statistics monthly (or more frequently) for the IBM MQ data sets, to ensure there are no delays due
to the location of the data sets.

In some situations, there can be much IBM MQ page set I/O, and this can impact the IBM MQ log
performance if they are located on the same DASD.

If you use dual logging, ensure that each set of active and archive logs is kept apart. For example, allocate
them on separate DASD subsystems, or on different devices.

This reduces the risk of them both being lost if one of the volumes is corrupted or destroyed. If both
copies of the log are lost, the probability of data loss is high.

When you create a new active log data, set you should preformat it using CSQJUFMT. If the log is not
preformatted, the queue manager formats the log the first time it is used, which impacts the performance.

With older DASD with large spinning disks, you had to be careful which volumes were used to get the best
performance.

With modern DASD, where data is spread over many PC sized disks, you do not need to worry so much
about which volumes are used.

Your storage manager should be checking the enterprise DASD to review and resolve any performance
problems. For availability, you might want to use one set of logs on one DASD subsystem, and the dual
logs on a different DASD subsystem.

Planning an IBM MQ architecture 159

Active log encryption with z/OS data set encryption
You can apply the z/OS data set encryption feature to active log data sets for queue managers running at
IBM MQ for z/OS 9.1.4 or later.

You must allocate these active log data sets with EXTENDED attributes, and a data set key label that
ensures the data is AES encrypted.

See the section, confidentiality for data at rest on IBM MQ for z/OS with data set encryption. for more
information.

Using MetroMirror with IBM MQ
IBM Metro Mirror, previously known as Synchronous Peer to Peer Remote Copy (PPRC), is a synchronous
replication solution between two storage subsystems, where write operations are completed on both the
primary and secondary volumes before the write operation is considered to be complete. Metro Mirror can
be used in environments that require no data loss in the event of a storage subsystem failure.

Supported data set types
All of the following IBM MQ data set types can be replicated using Metro Mirror. However, exactly which
ones are replicated depends on the availability requirements of your enterprise:

• Active logs
• Archive logs
• Bootstrap data set (BSDS)
• Page sets
• Shared message data set (SMDS)
• Data sets used for configuration, for example, in the CSQINP* DD cards on the MSTR JCL

Using zHyperWrite with IBM MQ active logs
When a write is made to a data set that is replicated using Metro Mirror, the write is first made to the
primary volume, and then replicated to the secondary volume. This replication is done by the storage
subsystem and is transparent to the application that issued the write, for example IBM MQ.

This process is illustrated in the following diagram.

160 Planning for IBM MQ

Because both writes to the primary and secondary storage subsystems need to complete before the
write returns to IBM MQ, use of Metro Mirror can have a performance impact. You need to balance this
performance impact against the availability benefits of using Metro Mirror.

The IBM MQ active logs are most sensitive to the performance impact of using Metro Mirror. IBM MQ
allows use of zHyperWrite with the active logs to help reduce this performance impact.

zHyperWrite is a storage subsystem technology that works with z/OS to reduce the performance impact
of writes made to data sets that are replicated using Metro Mirror. When zHyperWrite is used, the write
to the primary and secondary volumes are issued in parallel at the Data Facility Storage Management
Subsystem (DFSMS) level, instead of sequentially at the storage subsystem level, thereby reducing the
performance impact.

The following diagram illustrates zHyperWrite being used for the active logs, and Metro Mirror being used
for the other IBM MQ data set types. Note that if a zHyperWrite write fails, DFSMS will transparently
reissue the write using Metro Mirror.

Planning an IBM MQ architecture 161

zHyperWrite on IBM MQ, is supported only on the active log data sets.

In order to use zHyperWrite with the active logs, you need to:

• Configure IBM MQ to use zHyperWrite, and
• The active logs need to be on zHyperWrite capable volumes

You can configure IBM MQ to use zHyperWrite by using one of the following methods:

• Specify ZHYWRITE(YES) in the system parameter module.
• Issue the command SET LOG ZHYWRITE(YES).

Set the following conditions for active log data sets to be on zHyperWrite capable volumes:

• Enable the volumes for Metro Mirror, and the volumes support zHyperWrite
• Ensure that the volumes are HyperSwap enabled
• Specify HYPERWRITE=YES in the IECIOSxx parameter

Prior to IBM MQ 9.4.0, if all the preceding conditions are met, then writes to the active logs
are enabled for zHyperWrite. If one, or more, of these conditions are not met, IBM MQ writes to the active
logs as normal, and Metro Mirror replicates the writes if it is configured.

From IBM MQ 9.4.0, if ZHYWRITE(YES) is specified, then IBM MQ always attempts to use
zHyperWrite when writing to the active logs, regardless of whether the logs are on zHyperWrite capable
volumes. If the logs are not on zHyperWrite capable volumes then Metro Mirror replicates the writes if
it is configured. There are no negative effects of attempting to use zHyperWrite if the logs are not on
zHyperWrite capable volumes

Notes:

162 Planning for IBM MQ

• IBM MQ does not require that all active log data sets are on zHyperWrite capable volumes.

If IBM MQ detects that some active log data sets are on zHyperWrite capable volumes, and others are
not, it issues message CSQJ166E and carries on processing.

• IBM MQ checks whether active log data sets are zHyperWrite capable when the data sets are first
opened.

Log data sets are opened either at queue manager start up, or when dynamically adding using the
DEFINE LOG command. If the log data sets are made zHyperWrite capable while a queue manager has
them open, the queue manager will not detect this until it has been restarted.

You can use the output of the DISPLAY LOG command to indicate whether the current active log data
sets are zHyperWrite capable. The following example shows that both of the data sets are zHyperWrite
capable. If the queue manager has been configured with ZHYWRITE(YES), writes to these logs would be
enabled for zHyperWrite:

Copy %Full zHyperWrite DSName
 1 4 CAPABLE MQTST.SUBSYS.MQDL.LOGCOPY1.DS001
 2 4 CAPABLE MQTST.SUBSYS.MQDL.LOGCOPY2.DS001

Faster log throughput with zHyperLink
zHyperLink technology is designed to reduce input/output (I/O) latency by providing a fast, reliable, and
direct communication path between the CPU and the I/O device.

Overview of zHyperLink
zHyperLink can improve active log throughput and reduce IBM MQ transaction time by up to 3.5 times.
This goal is accomplished by installing zHyperLink adapters on the z/OS host, select IBM storage
hardware, and connecting them using zHyperLink cables. This creates a point-to-point connection
between the CPU and I/O device, which reduces the I/O response time by up to 10 times, compared
to IBM z High-Performance FICON® (zHPF). Such low response time is achieved by using synchronous I/O
requests.

The advantages of Synchronous I/O over Asynchronous I/O
The IBM MQ logger task consists of a loop waiting for the next piece of data that needs to be written to the
log. When that data is available the logger schedules the write, waits for it to complete, and then moves
onto the next piece of data.

Traditional I/O is slower than the CPU, so it is most efficient to perform the I/O asynchronously to free the
CPU up for other tasks. Therefore, traditional asynchronous I/O requires the logger task to be suspended,
until the write completes. When the write completes, the logger task must wait for a CPU to become
available, adding a short re-dispatch delay, as well as delays caused by repopulating the CPU cache.

zHyperLink provides much faster I/O times, which are closer to CPU speed, therefore, with zHyperLink,
I/O can be performed synchronously, which means the logger task does not get suspended during the
write operation, removing re-dispatch and cache related delays.

While the write is happening, the logger task is still actively using the CPU, which increases CPU usage
compared to traditional I/O.

If the queue manager attempts to use zHyperLink, and the zHyperLink write fails, for example because of
configuration issues, then the queue manager transparently falls back to traditional I/O.

Minimum Hardware Requirements
• IBM z14 or later
• DS8880 or later

Planning an IBM MQ architecture 163

Software Requirements
• zHyperLink Express is supported on z/OS 2.3 or later.
• The z/OS image must run in an LPAR, not as a guest under IBM z/VM®.
• zHyperLink requires IBM z High-Performance FICON (zHPF) to be enabled.

Using zHyperLink with IBM MQ active logs
In order to use zHyperLink with the active logs of a queue manager, you need to:

• Configure IBM MQ to use zHyperLink, and
• Ensure the active logs are on zHyperLink capable volumes.

See Getting Started with IBM zHyperLink for z/OS for more information.

You can configure IBM MQ to use zHyperLink by using one of the following methods:

• Specify ZHYLINK(YES) in the log parameters.
• Issue the command SET LOG ZHYLINK(YES).

Notes:

• zHyperLink requires that zHyperWrite is switched on. This means in order to use ZHYLINK, ZHYWRITE
must also be switched on in the log parameters. When only specifying ZHYLINK(YES) when
ZHYWRITE(NO) is set on the queue manager, the ZHYWRITE parameter automatically overrides to YES.

• Explicitly trying to set ZHYLINK(YES) with ZHYWRITE(NO) results in an abnormal completion of the SET
LOG command.

• Setting ZHYLINK=YES in the ZPRMs overrides ZHYWRITE to YES.

If you are experiencing any problems, see Troubleshooting zHyperLink for more information.

IBM MQ does not require that all active log data sets are on zHyperLink capable volumes, but you are
advised to do so. If IBM MQ detects that some active log data sets are on zHyperLink capable volumes,
and others are not, it issues message CSQJ601E and carries on processing.

IBM MQ checks whether active log data sets are zHyperLink capable when the data sets are first opened.
Log data sets are opened either at queue manager start up, or when dynamically adding using the DEFINE
LOG command. If the log data sets are made zHyperLink capable while a queue manager has them open,
the queue manager does not detect this until it has been restarted.

If ZHYLINK(YES) is specified, then IBM MQ always attempts to use zHyperLink when writing to the active
logs, regardless of whether the logs are on zHyperLink capable volumes. There are no negative effects of
attempting to use zHyperLink if the logs are not on zHyperLink capable volumes.

You can use the output of the DISPLAY LOG command to indicate the status of zHyperLink for the current
active log data sets:

Copy %Full zHyperWrite Encrypted DSName
 1 81 YES NO MQTST.SUBSYS.MQDL.LOGCOPY1.DS001
 2 81 YES NO MQTST.SUBSYS.MQDL.LOGCOPY2.DS001
Copy zHyperLink
 1 YES
 2 YES

The zHyperLink status is one of the following:
YES

zHyperLink is enabled on the queue manager and will be attempted on all writes.
NO

zHyperLink is not enabled on the queue manager and the dataset is not on zHyperLink capable
volumes.

164 Planning for IBM MQ

https://www.redbooks.ibm.com/redpapers/pdfs/redp5493.pdf

CAPABLE
zHyperLink is not enabled on the queue manager and the dataset is on a zHyperLink capable volume.

There are multiple additional SMF statistics for monitoring and understanding zHyperLink performance;
see zHyperLink statistics for details.

Write sessions
When using zHyperLink, one or more zHyperLink write sessions are established with the DASD. Current
DASD support a maximum of 64 concurrent write sessions so you should carefully consider which
queue managers you enable zHyperLink on, and whether other subsystems, such as Db2 are also using
zHyperLink for writing to the same DASD. If you run out of available write sessions then the queue
manager automatically switches back to using traditional asynchronous I/O.

You can calculate the number of zHyperLink write sessions as follows:

Number of log copies (either 1 or 2) * number of stripes per log copy * 2
if Metro Mirror (PPRC) is used.

Therefore, a queue manager in single logging mode with one stripe and no Metro Mirror uses a single write
session. A queue manager in dual logging mode, with two stripes and PPRC uses 8 write sessions.

Note: While Metro Mirror results in twice as many write sessions being used, those write sessions are split
evenly between the two mirrored DASDs.

Planning your log archive storage
Use this topic to understand the different ways of maintaining your archive log data sets.

You can place archive log data sets on standard-label tapes, or DASD, and you can manage them by data
facility hierarchical storage manager (DFHSM). Each z/OS logical record in an archive log data set is a
VSAM control interval from the active log data set. The block size is a multiple of 4 KB.

Archive log data sets are dynamically allocated, with names chosen by IBM MQ. The data set name prefix,
block size, unit name, and DASD sizes needed for such allocations are specified in the system parameter
module. You can also choose, at installation time, to have IBM MQ add a date and time to the archive log
data set name.

It is not possible to specify with IBM MQ, specific volumes for new archive logs, but you can use Storage
Management routines to manage this. If allocation errors occur, offloading is postponed until the next
time offloading is triggered.

If you specify dual archive logs at installation time, each log control interval retrieved from the active log
is written to two archive log data sets. The log records that are contained in the pair of archive log data
sets are identical, but the end-of-volume points are not synchronized for multivolume data sets.

Should your archive logs reside on tape or DASD?

When deciding whether to use tape or DASD for your archive logs, there are a number of factors that you
should consider:

• Review your operating procedures before deciding about tape or disk. For example, if you choose
to archive to tape, there must be enough tape drive when they are required. After a disaster, all
subsystems might want tape drives and you might not have as many free tape drives as you expect.

• During recovery, archive logs on tape are available as soon as the tape is mounted. If DASD archives
have been used, and the data sets migrated to tape using hierarchical storage manager (HSM), there is a
delay while HSM recalls each data set to disk. You can recall the data sets before the archive log is used.
However, it is not always possible to predict the correct order in which they are required.

• When using archive logs on DASD, if many logs are required (which might be the case when recovering
a page set after restoring from a backup) you might require a significant quantity of DASD to hold all the
archive logs.

Planning an IBM MQ architecture 165

• In a low-usage system or test system, it might be more convenient to have archive logs on DASD to
eliminate the need for tape mounts.

• Both issuing a RECOVER CFSTRUCT command, and backing out a persistent unit of work, result in the
log being read backwards. Tape drives with hardware compression perform badly on operations that
read backwards. Plan sufficient log data on DASD to avoid reading backwards from tape.

Archiving to DASD offers faster recoverability but is more expensive than archiving to tape. If you use dual
logging, you can specify that the primary copy of the archive log go to DASD and the secondary copy go to
tape. This increases recovery speed without using as much DASD, and you can use the tape as a backup.

See “Changing the storage medium for archive logs” on page 167 for details of how you archive your logs
from tape to DASD, and how you carry out the reverse process.

Archiving to tape

If you choose to archive to a tape device, IBM MQ can extend to a maximum of 20 volumes.

If you are considering changing the size of the active log data set so that the set fits on one tape
volume, note that a copy of the BSDS is placed on the same tape volume as the copy of the active log
data set. Adjust the size of the active log data set downward to offset the space required for the BSDS
on the tape volume.

If you use dual archive logs on tape, it is typical for one copy to be held locally, and the other copy to
be held off-site for use in disaster recovery.

Archiving to DASD volumes

IBM MQ requires that you catalog all archive log data sets allocated on non-tape devices (DASD). If
you choose to archive to DASD, the CATALOG parameter of the CSQ6ARVP macro must be YES. If
this parameter is NO, and you decide to place archive log data sets on DASD, you receive message
CSQJ072E each time an archive log data set is allocated, although IBM MQ still catalogs the data set.

If the archive log data set is held on DASD, the archive log data sets can extend to another volume;
multivolume is supported.

If you choose to use DASD, make sure that the primary space allocation (both quantity and block
size) is large enough to contain either the data coming from the active log data set, or that from the
corresponding BSDS, whichever is the larger of the two.

This minimizes the possibility of unwanted z/OS X'B37' or X'E37' abend codes during the offload
process. The primary space allocation is set with the PRIQTY (primary quantity) parameter of the
CSQ6ARVP macro.

Archive log data sets can exist on large or extended-format sequential data sets. SMS ACS routines
now use DSNTYPE(LARGE) or DSNTYPE(EXT).

IBM MQ supports allocation of archive logs as extended format data sets. When extended format is
used, the maximum archive log size is increased from 65535 tracks to the maximum active log size
of 4GB. Archive logs are eligible for allocation in the extended addressing space (EAS) of extended
address volumes (EAV).

Where the required hardware and software levels are available, allocating archive logs to a data class
defined with COMPACTION using zEDC might reduce the disk storage required to hold archive logs.
For more information, see IBM MQ for z/OS: Reducing storage occupancy with IBM zEnterprise Data
Compression (zEDC) and zEnterprise Data Compression (zEDC) for more information.

The z/OS data set encryption feature can be applied to archive logs for queue managers running on
IBM MQ. These archive logs must be allocated through Automatic Class Selection (ACS) routines to a
data class defined with EXTENDED attributes, and a data set key label that ensures the data is AES
encrypted.

Using SMS with archive log data sets

166 Planning for IBM MQ

https://community.ibm.com/community/user/imwuc/viewdocument/reducing-storage-occupancy-with-ibm
https://community.ibm.com/community/user/imwuc/viewdocument/reducing-storage-occupancy-with-ibm
https://www.ibm.com/docs/en/zos/3.1.0?topic=languages-zenterprise-data-compression-zedc

If you have MVS/DFP storage management subsystem (DFSMS) installed, you can write an Automatic
Class Selection (ACS) user-exit filter for your archive log data sets, which helps you convert them for
the SMS environment.

Such a filter, for example, can route your output to a DASD data set, which DFSMS can manage. You
must exercise caution if you use an ACS filter in this manner. Because SMS requires DASD data sets to
be cataloged, you must make sure the CATALOG DATA field of the CSQ6ARVP macro contains YES. If it
does not, message CSQJ072E is returned; however, the data set is still cataloged by IBM MQ.

For more information about ACS filters, see Data sets that DFSMShsm dynamically allocates during
aggregate backup processing.

Changing the storage medium for archive logs
The procedure for changing the storage medium used by archive logs.

About this task
This task describes how to change the storage medium used for archive logs, for example moving from
archiving to tape to archiving to DASD.

You have a choice of how to make the changes:

1. Make the changes only using the CSQ6ARVP macro so that they are applied from the next time the
queue manager restarts.

2. Make the changes using the CSQ6ARVP macro, and dynamically using the SET ARCHIVE command.
This means that the changes apply from the next time the queue manager archives a log file, and
persist after the queue manager restarts.

Procedure
1. Changing so archive logs are stored on DASD instead of tape:

a) Read the section “Archiving to DASD volumes” on page 166 and review the CSQ6ARVP parameters.
b) Make changes to the following parameters in CSQ6ARVP

• Update the UNIT and, if necessary, the UNIT2 parameters.
• Update the BLKSIZE parameter, as the optimal setting for DASD differs from tape.
• Set the PRIQTY and SECQTY parameters to be large enough to hold the largest of the active log or

BSDS.
• Set the CATALOG parameter to be YES.
• Confirm the ALCUNIT setting is what you want. You should use BLK, because it is independent of

the device type.
• Set the ARCWTOR parameter to NO if it is not already.

2. Changing so archive logs are stored on tape instead of DASD:
a) Read the section “Archiving to tape” on page 166, and review the CSQ6ARVP parameters.
b) Make changes to the following parameters in CSQ6ARVP:

• Update the UNIT and, if necessary, the UNIT2 parameters.
• Update the BLKSIZE parameter, as the optimal setting for tape differs from DASD.
• Confirm the ALCUNIT setting is what you want. You should use BLK, because it is independent of

the device type.
• Review the setting of the ARCWTOR parameter.

Planning an IBM MQ architecture 167

https://www.ibm.com/docs/en/zos/3.1.0?topic=pab-data-sets-that-dfsmshsm-dynamically-allocates-during-aggregate-backup-processing
https://www.ibm.com/docs/en/zos/3.1.0?topic=pab-data-sets-that-dfsmshsm-dynamically-allocates-during-aggregate-backup-processing

How long do I need to keep archive logs
Use the information in this section to help you plan your backup strategy.

You specify how long archive logs are kept in days , using the ARCRETN parameter in USING CSQ6ARVP or
the SET SYSTEM command. After this period the data sets can be deleted by z/OS.

You can manually delete archive log data sets when they are no longer needed.

• The queue manager might need the archive logs for recovery.

The queue manager can only keep the most recent 1000 archives in the BSDS, When the archive logs
are not in the BSDS they cannot be used for recovery, and are only of use for audit, analysis, or replay
type purposes.

• You might want to keep the archive logs so that you can extract information from the logs. For example,
extracting messages from the log, and reviewing which user ID put or got the message.

The BSDS contains information on logs and other recovery information. This data set is a fixed size. When
the number of archive logs reaches the value of MAXARCH in CSQ6LOGP, or when the BSDS fills up, the
oldest archive log information is overwritten.

There are utilities to remove archive log entries from the BSDS, but in general, the BSDS wraps and
overlays the oldest archive log record.

When is an archive log needed
You need to back up your page sets regularly. The frequency of backups determines which archive logs
are needed in the event of losing a page set.

You need to back up your CF structures regularly. The frequency of backups determines which archive
logs are needed in the event of losing data in the CF structure.

The archive log might be needed for recovery. The following information explains when the archive log
might be needed, where there are problems with different IBM MQ resources.
Loss of a page set

You must recover your system from your backup and restart the queue manager.

You need the logs from when the backup was taken, as well as up to three log data sets prior to the
backup being taken.

All LPARs lose connectivity to a CF structure, or the structure is unavailable
Use the RECOVER CFSTRUCT command to recover the structure.

Structure recovery requires the logs from all queue managers that have accessed the structure since
the last backup (back to the time when the backup was taken) plus the structure backup itself in the
log of the queue manager that took the backup.

If you have been doing frequent backups of the CF structures, the data should be in active logs, and
you should not need archive logs.

If there is no recent backup of the CF structure, you might need archive logs.

Note: All non persistent messages will be lost; all persistent messages will be re-created by
performing the following tasks:

1. Reading the last CF structure backup from the log
2. Reading the logs from all queue managers that have used the structure
3. Merging updates since the backup

Administration structure rebuild
If you need to rebuild the administration structure, the information is read from the last checkpoint of
the log for each queue manager in the QSG.

If a queue manager is not active, another queue manager in the QSG reads the log.

You should not need archive logs.

168 Planning for IBM MQ

Loss of an SMDS data set
If you lose an SMDS data set, or the data set gets corrupted, the data set becomes unusable and the
status for it is set to FAILED. The CF structure is unchanged.

In order to restore the SMDS data set, you need to:

1. Redefine the SMDS data set, and
2. Recover the CF structure by issuing the RECOVER CFSTRUCT command.

Note: All non persistent messages on the CF structure will be lost; all persistent messages will be
restored.

The requirement for queue manager logs is the same as for recovering from a structure that is
unavailable.

Planning to increase the maximum addressable log range
You can increase the maximum addressable log range by configuring your queue manager to use a larger
log relative byte address (RBA).

The log RBA size was increased from IBM MQ for z/OS 8.0. For an overview of this change, see Larger log
Relative Byte Address.

Queue managers created at IBM MQ 9.3.0 or later, have 8 byte log RBA enabled by default and, therefore,
do not require conversion.

You can convert your queue managers to use 8 byte log RBA values at any time. A queue sharing group
can contain some queue managers with 8 byte log RBA enabled, and some queue managers with 6 byte
log RBA enabled.

Undoing the change
The change cannot be backed out.

How long does it take?
The change requires a queue manager restart. Stop the queue manager, run the CSQJUCNV utility against
the bootstrap data set (BSDS), or data sets, to create new data sets, rename these bootstrap data sets,
and restart the queue manager. The CSQJUCNV utility usually takes a few seconds to run.

What impact does this have?
• With 8 byte log RBA in use, every write of data to the log data sets has additional bytes. Therefore, for

a workload consisting of persistent messages there is a small increase in the amount of data written to
the logs.

• Data written to a page set, or coupling facility (CF) structure, is not affected.

Related tasks
Implementing the larger log Relative Byte Address

Planning your channel initiator
The channel initiator provides communications between queue managers, and runs in its own address
space.

There are two types of connections:

1. Application connections to a queue manager over a network. These are known as client channels.
2. Queue manager to queue manager connections. These are known as MCA channels.

Planning an IBM MQ architecture 169

Listeners
A channel listener program listens for incoming network requests and starts the appropriate channel
when that channel is needed. To process inbound connections the channel initiator needs at least one
IBM MQ listener task configured. A listener can either be a TCP listener, or a LU 6.2 listener.

Each listener requires a TCP port or LU name.

Note that you can have more than one listener for each channel initiator.

TCP/IP
A channel initiator can operate with more than one TCP stack on the same z/OS image. For example, one
TCP stack could be for internal connections, and another TCP stack for external connections.

When you define an output channel:

1. You set the destination host and port of the connection. This can be either:

• an IP address, for example 10.20.4.6
• a host name, for example mvs-prod.myorg.com

If you use a host name to specify the destination, IBM MQ uses the Domain Name System (DNS) to
resolve the IP address of the destination.

2. If you are using multiple TCP stacks you can specify the LOCLADDR parameter on the channel
definition, which specifies the IP Stack address to be used.

You should plan to have a highly available DNS server, or DNS servers. If the DNS is not available,
outbound channels might not be able to start, and channel authentication rules that map an incoming
connection using a host name cannot be processed.

APPC and LU 6.2
If you are using APPC, the channel initiator needs an LU name, and configuration in APPC.

Queue sharing groups
To provide a single system image, and allow an incoming IBM MQ connection request to go to any queue
manager in the queue sharing group, you need to do some configuration. For example:

1. A hardware network router. This router has one IP address seen by the enterprise, and can route the
initial request to any queue manager connected to this hardware.

2. A Virtual IP address (VIPA). An enterprise wide IP address is specified, and that address can be routed
to any one of the TCP stacks in a sysplex. The TCP stack can then route it to any listening queue
manager in the sysplex.

Protecting IBM MQ traffic
You can configure IBM MQ to use TLS connections to protect data on the wire. To use TLS you need to use
digital certificates and key rings.

You also need to work with the personnel at the remote end of the channel, to ensure that you have
compatible IBM MQ definitions and compatible certificates.

You can control which connections can connect to IBM MQ and the user ID, based on

• IP address
• Client user ID
• Remote queue manager, or
• Digital certificate (see Channel Authentication Records)

170 Planning for IBM MQ

It is also possible to restrict client applications by ensuring that they supply a valid user ID and password
(see Connection Authentication).

You can get the channel initiator working, and then configure each channel to use TLS, one at a time.

Monitoring the channel initiator
There are MQSC commands that give information about the channel initiator and channels:

• The DISPLAY CHINIT command gives information about the channel initiator, and active listeners.
• The DISPLAY CHSTATUS command displays the activity and status of a channel.

The channel initiator can also produce SMF records with information about the channel initiator tasks and
channel activity. See “Planning for channel initiator SMF data” on page 172 for more information.

The channel initiator emits messages to the job log when channels start and stop. Automation in your
enterprise can use these messages to capture status. As some channels are active for only a few seconds,
many messages can be produced. You can suppress these messages either by using the z/OS message
processing facility, or by setting EXCLMSG with the SET SYSTEM command.

Configuring your IBM MQ channel definitions
When you have many queue managers connected together it can be hard to manage all the object
definitions. Using IBM MQ clustering can simplify this.

You specify two queue managers as full repositories. Other queue managers need one connection to, and
one connection from, one of the repositories. When connections to other queue managers are needed, the
queue manager creates and starts channels automatically.

If you are planning to have a large number of queue managers in a cluster, you should plan to have queue
managers that act as dedicated repositories and have no application traffic.

See “Planning your distributed queues and clusters” on page 19 for more information.

Actions before you configure the channel initiator
1. Decide if you are using TCP/IP or APPC.
2. If you are using TCP, allocate at least one port for IBM MQ.
3. If you need a a DNS server, configure the server to be highly available if required.
4. If you are using APPC, allocate an LU name, and configure APPC.

Actions after you have configured the channel initiator, before you go into
production
1. Plan what connections you will have:

a. Client connections from remote applications.
b. MCA channels to and from other queue managers. Typically you have a channel to and from each

remote queue manager.
2. Set up clustering, or join an existing clustering environment.
3. Consider whether you need to use multiple TCP stacks, VIPA, or an external router for availability in

front of the channel initiator.
4. If you are planning on using TLS:

a. Set up the key ring
b. Set up certificates

5. If you are planning on using channel authentication:

a. Decide the criteria for mapping inbound sessions to MCA user IDs

Planning an IBM MQ architecture 171

b. Enable reverse DNS lookup by setting the queue manager parameter REVDNS
c. Review security. For example, delete the default channels, and specify user IDs with only the

necessary authority in the MCAUSER attribute for a channel.
6. Capture the accounting and statistics SMF records produced by the channel initiator and post process

them.
7. Automate the monitoring of job log messages.
8. If necessary, tune your network environment to improve throughput. With TCP, large send and receive

buffers improve throughput. You can force MQ to use specific TCP buffer sizes using the commands:

RECOVER QMGR(TUNE CHINTCPRBDYNSZ nnnnn)
RECOVER QMGR(TUNE CHINTCPSBDYNSZ nnnnn)

which sets the SO_RCVBUF, and SO_SNDBUF, for the channels to the size in bytes specified in nnnnn.

Related concepts
“Planning for your queue manager” on page 141
When you are setting up a queue manager, your planning should allow for the queue manager to grow, so
that the queue manager meets the needs of your enterprise.

Planning for channel initiator SMF data
You need to plan the implementation of collecting SMF data for the channel initiator.

The channel initiator produces two types of record:

• Statistics data with information about the channel initiator and the tasks within it.
• Channel accounting data with information similar to the DISPLAY CHSTATUS command.

You start collecting statistics data using the command:

START TRACE(STAT) CLASS(4)

and stop it using the command:

STOP TRACE(STAT) CLASS(4)

You start collecting accounting data using the command:

START TRACE(ACCTG) CLASS(4)

and stop it using the command:

STOP TRACE(ACCTG) CLASS(4)

You can control which channels have accounting data collected for using the STATCHL attribute on the
channel definition or the queue manager.

• For client channels, you must set STATCHL at the queue manager level.
• For automatically defined cluster sender channels, you can control the collection of accounting data

with the STATACLS queue manager attribute.

The default value of STATCHL for the queue manager is OFF. In order to collect channel accounting
data you must change the value of STATCHL from the default on either the queue manager or channel
definition, in addition to starting class 4 accounting trace.

The SMF records are produced when:

172 Planning for IBM MQ

• From IBM MQ for z/OS 9.3.0 onwards, the time interval indicated by the CSQ6SYSP STATIME or
ACCTIME parameters has elapsed; or, if STATIME or ACCTIME is zero on the SMF data collection
broadcast. The requests to collect SMF data for the channel initiator and the queue manager are
synchronized.

• A STOP TRACE(ACCTG) CLASS(4) or STOP TRACE(STAT) CLASS(4) command is issued, or
• The channel initiator is shut down. At this point any SMF data is written out.

If a channel stops during the SMF interval, accounting data is written to SMF the next time the SMF
processing runs. If a client connects, does some work and disconnects, then reconnects and disconnects,
there are two sets of channel accounting data produced.

The statistics data normally fits into one SMF record, however, multiple SMF records might be created if a
large number of tasks are in use.

Accounting data is gathered for each channel for which it is enabled, and normally fits into one SMF
record. However, multiple SMF records might be created if a large number of channels are active.

The cost of collecting the channel initiator SMF data is small. Typically the increase in CPU usage is under
a few percent, and often within measurement error.

Before you use this function you need to work with your z/OS systems programmer to ensure that SMF
has the capacity for the additional records, and that they change their processes for extracting SMF
records to include the new SMF data.

For channel initiator statistics data, the SMF record type is 115 and sub-type 231.

For channel initiator accounting data, the SMF record type is 116 and sub-type 10.

You can write your own programs to process this data, or use the SupportPac MP1B that contains a
program, MQSMF, for printing the data, and creating data in Comma Separated Values (CSV) format
suitable for importing into a spread sheet.

If you are experiencing issues with capturing channel initiator SMF data, see Dealing with issues when
capturing SMF data for the channel initiator (CHINIT) for further information.

Related tasks
Interpreting IBM MQ performance statistics
Troubleshooting channel accounting data

Planning your z/OS TCP/IP environment
To get the best throughput through your network, you must use TCP/IP send and receive buffers with a
size of 64 KB, or greater. With this size, the system optimizes its buffer sizes.

See What is Dynamic Right Sizing for High Latency Networks? for more information.

You can check your system buffer size by using the following Netstat command, for example:

TSO NETSTAT ALL (CLIENT csq1CHIN

The results display much information, including the following two values:

ReceiveBufferSize: 0000065536
SendBufferSize: 0000065536

65536 is 64 KB. If your buffer sizes are less than 65536, you must work with your network team to
increase the TCPSENDBFRSIZE and TCPRCVBUFRSIZE values in the PROFILE DDName in the TCPIP
procedure. For example, you might use the following command:

TCPCONFIG TCPSENDBFRSZE 65536 TCPRCVBUFRSIZE 65536

Planning an IBM MQ architecture 173

https://www.ibm.com/support/pages/node/572457
https://www.ibm.com/support/pages/node/437217

If you are unable to change your system-wide TCPSENDBFRSIZE or TCPRCVBUFRSIZE settings, contact
your IBM Software Support center.

Planning your queue sharing group (QSG)
The easiest way to implement a shared queuing environment, is to configure a queue manager, add that
queue manager to a QSG, then add other queue managers to the QSG.

A queue sharing group uses Db2 tables to store configuration information. There is one set of tables used
by all QSGs that share the same Db2 data sharing group.

Shared queue messages are stored in a structure in a coupling facility (CF). Each QSG has its own set of
CF structures. You need to configure the structures to meet your needs.

Messages over 63KB in size cannot be stored in the CF. You need to use either Shared Message Data Sets
(SMDS) or Db2 for these messages.

Message profiles and capacity planning
You should understand the message profile of your shared queue messages. The following are examples
of factors that you need to consider:

• Average, and maximum message size
• The typical queue depth, and exception queue depth. For example, you might need to have enough

capacity to hold messages for a whole day, and the typical queue depth is under 100 messages.

If the message profile changes, you can increase the size of the structures, or implement SMDS, at a later
date.

If you want to be able to handle a large peak volume of messages, you can configure IBM MQ to offload
messages to SMDS when the usage of the structure reaches user specified thresholds.

You need to decide if you want to duplex the CF structures. This is controlled by the CF structure
definition in the CFRM policy:

1. A duplexed structure uses two coupling facilities. If there is a problem with one CF, there is no
interruption to the service, and the structure can be rebuilt on a third CF, if one is available. Duplexed
structures can significantly impact the performance of operations on shared queues.

2. If the structure is not duplexed, then a problem with the CF means that shared queues on structures in
that CF will become unavailable until the structure can be rebuilt in another CF.

IBM MQ can be configured to automatically rebuild structures in another CF in this case. Persistent
messages will be recovered from the logs of the queue managers.

Note that it is easy to change the CF definitions.

You can define a structure so that it can hold nonpersistent messages only, or so that it can hold
persistent and nonpersistent messages.

Structures that can hold persistent messages need to be backed up periodically. Back up your CF
structures at least every hour to minimize the time needed to recover the structure in the event of a
failure. The backup is stored in the log data set of the queue manager performing the backup.

If you are expecting to have a high throughput of messages on your shared queues, it is best practice
to have a dedicated queue manager for backing up the CF structures. This reduces the time needed to
recover the structures, as a less data needs to be read from queue manager logs.

Channels
To provide a single system image for applications connecting into an IBM MQ QSG, you can define shared
input channels. If these are set up, then a connection coming into the queue sharing group environment,
can go to any queue manager in the QSG.

You might need to set up a network router, or Virtual IP address (VIPA) for these channels.

174 Planning for IBM MQ

You can define shared output channels. A shared output channel instance can be started from any queue
manager in the QSG.

See Shared channels for more information.

Security
You protect IBM MQ resources using an external security manager. If you are using RACF®, the RACF
profiles are prefixed with the queue manager name. For example, a queue named APPLICATION.INPUT
would be protected using a profile in the MQQUEUE class named qmgrName.APPLICATION.INPUT.

When using a queue sharing group you can continue to protect resources with profiles prefixed with
the queue manager name, or you can prefix profiles with the queue sharing group name. For example
qsgName.APPLICATION.INPUT.

You should aim to use profiles prefix with the queue sharing group name because this means there is
a single definition for all queue managers, saving you work, and preventing a mismatch in definitions
between queue managers.

Related concepts
“Planning for your queue manager” on page 141
When you are setting up a queue manager, your planning should allow for the queue manager to grow, so
that the queue manager meets the needs of your enterprise.

Planning your coupling facility and offload storage environment
Use this topic when planning the initial sizes, and formats of your coupling facility (CF) structures, and
shared message data set (SMDS) environment or Db2 environment.

This section contains information about the following topics:

• “Defining coupling facility resources” on page 175

– Deciding your offload storage mechanism
– Planning your structures
– Planning the size of your structures
– Mapping shared queues to structures

• “Planning your shared message data set (SMDS) environment” on page 181
• “Planning your Db2 environment” on page 184

Defining coupling facility resources

If you intend to use shared queues, you must define the coupling facility structures that IBM MQ will
use in your CFRM policy. To do this you must first update your CFRM policy with information about the
structures, and then activate the policy.

Your installation probably has an existing CFRM policy that describes the coupling facilities available. The
Administrative data utility is used to modify the contents of the policy based on textual statements you
provide. You must add statements to the policy that defines the names of the new structures, the coupling
facilities that they are defined in, and what size the structures are.

The CFRM policy also determines whether IBM MQ structures are duplexed and how they are reallocated
in failure scenarios. Shared queue recovery contains recommendations for configuring CFRM for resilience
to failures that affect the coupling facility.

Planning an IBM MQ architecture 175

https://www.ibm.com/docs/en/zos/3.1.0?topic=sysplex-administrative-data-utility

Deciding your offload storage environment
The message data for shared queues can be offloaded from the coupling facility and stored in either a Db2
table or in an IBM MQ managed data set called a shared message data set (SMDS). Messages which are
too large to store in the coupling facility (that is, larger than 63 KB) must always be offloaded, and smaller
messages can optionally be offloaded to reduce coupling facility space usage.

For more information, see Specifying offload options for shared messages.

Planning your structures

A queue sharing group (QSG) requires a minimum of two structures to be defined. The first structure,
known as the administrative structure, is used to coordinate IBM MQ internal activity across the queue
sharing group. No user data is held in this structure. It has a fixed name of qsg-nameCSQ_ADMIN (where
qsg-name is the name of your queue sharing group). Subsequent structures are known as application
structures, and are used to hold the messages on IBM MQ shared queues. Each structure can hold up to
512 shared queues.

An application structure named qsg-nameCSQSYSAPPL is used for system queues. Defining this
structure is optional, but it is required in order to use certain features. By default, the
SYSTEM.QSG.CHANNEL.SYNCQ and SYSTEM.QSG.UR.RESOLUTION.QUEUE queues are defined on the
qsg-nameCSQSYAPPL structure.

Using multiple structures

A queue sharing group can connect to up to 64 coupling facility structures. One of these structures
must be the administration structure. If it is defined, another of these structures might be the qsg-
nameCSQSYSAPPL structure. You can use up to 63 (62 if qsg-nameCSQSYSAPPL is defined) structures
for message data. You might choose to use multiple application structures for any of the following
reasons:

• You have some queues that are likely to hold a large number of messages and so require all the
resources of an entire coupling facility.

• You have a requirement for a large number of shared queues, so they must be split across multiple
structures because each structure can contain only 512 queues.

• RMF reports on the usage characteristic of a structure suggest that you should distribute the queues
it contains across a number of coupling facilities.

• You want some queue data to held in a physically different coupling facility from other queue data
for data isolation reasons.

• Recovery of persistent shared messages is performed using structure level attributes and
commands, for example BACKUP CFSTRUCT. To simplify backup and recovery, you could assign
queues that hold nonpersistent messages to different structures from those structures that hold
persistent messages.

When choosing which coupling facilities to allocate the structures in, consider the following points:

• Your data isolation requirements.
• The volatility of the coupling facility (that is, its ability to preserve data through a power outage).
• Failure independence between the accessing systems and the coupling facility, or between coupling

facilities.
• The level of coupling facility control code (CFCC) installed on the coupling facility (IBM MQ requires

Level 9 or higher).

Planning the size of your structures

176 Planning for IBM MQ

The administrative structure

The administrative structure (qsg-nameCSQ_ADMIN) must be large enough to contain 1000 list
entries for each queue manager in the queue sharing group. When a queue manager starts, the
structure is checked to see if it is large enough for the number of queue managers currently defined
to the queue sharing group. Queue managers are considered as being defined to the queue sharing
group if they have been added by the CSQ5PQSG utility. You can check which queue managers are
defined to the group with the MQSC DISPLAY GROUP command.

Note: When calculating the size of the structure, you should allow for the size of large units of work, in
addition to the number of queue managers in the queue sharing group.

Table 22 on page 177 shows the minimum required size for the administrative structure for various
numbers of queue managers defined in the queue sharing group. These sizes were established for a
CFCC level 14 coupling facility structure; for higher levels of CFCC, they probably need to be larger.

Table 22. Minimum administrative structure sizes

Number of queue managers defined in queue
sharing group

Required storage

1 6144 KB

2 6912 KB

3 7976 KB

4 8704 KB

5 9728 KB

6 10496 KB

7 11520 KB

8 12288 KB

9 13056 KB

10 14080 KB

11 14848 KB

12 15616 KB

13 16640 KB

14 17408 KB

15 18176 KB

16 19200 KB

17 19968 KB

18 20736 KB

19 21760 KB

20 22528 KB

21 23296 KB

22 24320 KB

23 25088 KB

24 25856 KB

25 27136 KB

Planning an IBM MQ architecture 177

Table 22. Minimum administrative structure sizes (continued)

Number of queue managers defined in queue
sharing group

Required storage

26 27904 KB

27 28672 KB

28 29696 KB

29 30464 KB

30 31232 KB

31 32256 KB

When you add a queue manager to an existing queue sharing group, the storage requirement might
have increased beyond the size recommended in Table 22 on page 177. If so, use the following
procedure to estimate the required storage for the qsg-nameCSQ_ADMIN structure:

1. Issue MQSC command DISPLAY CFSTATUS(CSQ_ADMIN) on an existing member of the queue
sharing group.

2. Extract the ENTSMAX information for the CSQ_ADMIN structure.
3. If this number is less than 1000 times the total number of queue managers you want to define in

the queue sharing group, increase the structure size.

Application structures

The size of the application structures required to hold IBM MQ messages depends on the likely
number and size of the messages to be held on a structure concurrently.

The graph in Figure 42 on page 179 shows how large you should make your CF structures to hold the
messages on your shared queues. To calculate the allocation size you need the following information:

• The average size of messages on your queues.
• The total number of messages likely to be stored in the structure.

Find the number of messages along the horizontal axis. Select the curve that corresponds to your
message size and determine the required value from the vertical axis. For example, for 200 000
messages of length 1 KB gives a value in the range 256 through 512 MB.

Table 23 on page 179 provides the same information in tabular form.

178 Planning for IBM MQ

Figure 42. Calculating the size of a coupling facility structure

Use this table to help calculate how large to make your coupling facility structures:

Table 23. Calculating the size of a coupling facility structure

Number of
messages

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 63 KB

100 6 MB 6 MB 7 MB 7 MB 8 MB 10 MB 14 MB

1000 8 MB 9 MB 12 MB 17 MB 27 MB 48 MB 88 MB

10000 25 MB 38 MB 64 MB 115 MB 218 MB 423 MB 821 MB

100000 199 MB 327 MB 584 MB 1097 MB 2124 MB 4177 MB 8156 MB

Your CFRM policy should include the following statements:

• INITSIZE is the size in KB that the structure is allocated with when the first queue manager
connects to it.

• SIZE is the maximum size that the structure can attain.
• FULLTHRESHOLD sets the percentage value of the threshold at which z/OS issues message IXC585E

to indicate that the structure is getting full.

Planning an IBM MQ architecture 179

A best practice is to ensure that INITSIZE and SIZE are within a factor of 2. For example, with the
figures determined previously, you might include the following statements:

STRUCTURE NAME(structure-name)
INITSIZE(value from graph in KB, that is, multiplied by 1024)
SIZE(something larger)
FULLTHRESHOLD(85)

STRUCTURE NAME(QSG1APPLICATION1)
INITSIZE(262144) /* 256 MB */
SIZE(524288) /* 512 MB */
FULLTHRESHOLD(85)

If the structure use reaches the threshold where warning messages are issued, intervention is
required. You might use IBM MQ to inhibit MQPUT operations to some of the queues in the structure to
prevent applications from writing more messages, start more applications to get messages from the
queues, or quiesce some of the applications that are putting messages to the queue.

Alternatively, you can use z/OS facilities to alter the structure size in place. The following z/OS
command:

SETXCF START,ALTER,STRNAME=structure-name,SIZE=newsize

alters the size of the structure to newsize, where newsize is a value that is less than the value of
SIZE specified on the CFRM policy for the structure, but greater than the current coupling facility size.

You can monitor the use of a coupling facility structure with the MQSC DISPLAY CFSTATUS command.

If no action is taken and a queue structure fills up, an MQRC_STORAGE_MEDIUM_FULL return code is
returned to the application. If the administration structure becomes full, the exact symptoms depend
on which processes experience the error, but they might include the following problems:

• No responses to commands.
• Queue manager failure as a result of problems during commit processing.

The CSQSYSAPPL structure
The qsg-nameCSQSYSAPPL structure is an application structure for system queues. Table 3
demonstrates an example of how to estimate the message data sizes for the default queues defined
on the qsg-nameCSQSYSAPPL structure.

Table 24. Table showing CSQSYSAPPL usage against sizing.

qsg-nameCSQSYSAPPL usage Sizing

SYSTEM.QSG.CHANNEL.SYNCQ 2 messages of 500 bytes per active instance of a
shared channel

SYSTEM.QSG.UR.RESOLUTION.QUEUE 1000 messages of 2 KB

The suggested initial structure definition values are as follows:

STRUCTURE NAME(qsg-nameCSQSYSAPPL)
INITSIZE(20480) /* 20 MB */
SIZE(30720) /* 30 MB */
FULLTHRESHOLD(85)

These values can be adjusted depending on your use of shared channels and group units of recovery.

Mapping shared queues to structures

180 Planning for IBM MQ

To define an application structure to IBM MQ, use the DEFINE CFSTRUCT command. When you define a
structure to IBM MQ, do not include the QSG name prefix in the structure name. For example, to define an
application structure to IBM MQ that has the name qsg-nameAPPLICATION1 in the CFRM policy, issue the
following command:

DEFINE CFSTRUCT(APPLICATION1)

The CFSTRUCT attribute of the queue definition is used to map the queue to a structure. Specify the name
of the CF structure without the QSG name prefix in this attribute. For example, the following command
defines a shared queue on the APPLICATION1 structure:

DEFINE QLOCAL(myqueue) QSGDISP(SHARED) CFSTRUCT(APPLICATION1)

Planning your shared message data set (SMDS) environment
If you are using queue sharing groups with SMDS offloading, IBM MQ needs to connect to a group of
shared message data sets. Use this topic to help understand the data set requirements, and configuration
required to store IBM MQ message data.

A shared message data set (described by the keyword SMDS) is a data set used by a queue manager to
store offloaded message data for shared messages stored in a coupling facility structure.

Note: When defining SMDS data sets for a structure, you must have one for each queue manager.

When this form of data offloading is enabled, the CFSTRUCT requires an associated group of shared
message data sets, one data set for each queue manager in the queue sharing group. The group of shared
message data sets is defined to IBM MQ using the DSGROUP parameter on the CFSTRUCT definition.
Additional parameters can be used to supply further optional information, such as the number of buffers
to use and expansion attributes for the data sets.

Each queue manager can write to the data set which it owns, to store shared message data for messages
written through that queue manager, and can read all of the data sets in the group.

A list describing the status and attributes for each data set associated with the structure is maintained
internally as part of the CFSTRUCT definition, so each queue manager can check the definition to find out
which data sets are currently available.

This data set information can be displayed using the DISPLAY CFSTATUS TYPE(SMDS) command
to display current status and availability, and the DISPLAY SMDS command to display the parameter
settings for the data sets associated with a specified CFSTRUCT.

Individual shared message data sets are effectively identified by the combination of the owning queue
manager name (usually specified using the SMDS keyword) and the CFSTRUCT structure name.

This section describes the following topics:

• The DSGROUP parameter
• The DSBLOCK parameter
• Shared message data set characteristics
• Shared message data set space management
• Access to shared message data sets
• Creating a shared message data set
• Shared message data set performance and capacity considerations
• Activating a shared message data set

See DEFINE CFSTRUCT for details of these parameters.

For information on managing your shared message data sets, see Managing shared message data sets for
further details.

Planning an IBM MQ architecture 181

The DSGROUP parameter
The DSGROUP parameter on the CFSTRUCT definition identifies the group of data sets in which large
messages for that structure are to be stored. Additional parameters may be used to specify the logical
block size to be used for space allocation purposes and values for the buffer pool size and automatic data
set expansion options.

The DSGROUP parameter must be set up before offloading to data sets can be enabled.

• If a new CFSTRUCT is being defined at CFLEVEL(5) and the option OFFLOAD(SMDS) is specified or
assumed, then the DSGROUP parameter must be specified on the same command.

• If an existing CFSTRUCT is being altered to increase the CFLEVEL to CFLEVEL(5) and the option
OFFLOAD(SMDS) is specified or assumed, then the DSGROUP parameter must be specified on the same
command if it is not already set.

The DSBLOCK parameter
Space within each data set is allocated to queues as logical blocks of a fixed size (usually 256
KB) specified using the DSBLOCK parameter on the CFSTRUCT definition, then allocated to individual
messages as ranges of pages of 4 KB (corresponding to the physical block size and control interval size)
within each logical block. The logical block size also determines the maximum amount of message data
that can be read or written in a single I/O operation, which is the same as the buffer size for the SMDS
buffer pool.

A larger value of the DSBLOCK parameter can improve performance for very large messages by reducing
the number of separate I/O operations. However, a smaller value decreases the amount of buffer storage
required for each active request. The default value for the DSBLOCK parameter is 256 KB, which provides
a reasonable balance between these requirements, so specifying this parameter might not normally be
necessary.

Shared message data set characteristics
A shared message data set is defined as a VSAM linear data set (LDS). Each offloaded message is stored
in one or more blocks in the data set. The stored data is addressed directly by information in the coupling
facility entries, like an extended form of virtual storage. There is no separate index or similar control
information stored in the data set itself.

The direct addressing scheme means that for messages which fit into one block, only a single I/O
operation is needed to read or write the block. When a message spans more than one block, the I/O
operations for each block can be fully overlapped to minimize elapsed time, provided that sufficient
buffers are available.

The shared message data set also contains a small amount of general control information, consisting
of a header in the first page, which includes recovery and restart status information, and a space map
checkpoint area which is used to save the free block space map at queue manager normal termination.

Shared message data set space management
As background information for capacity, performance and operational considerations, it might be useful to
understand the concepts of how space in shared message data sets is managed by the queue managers.

Free space in each shared message data set is tracked by its owning queue manager using a space
map which indicates the number of pages in use within each logical block. The space map is maintained
in main storage while the data set is open and saved in the data set when it is closed normally. (In
recovery situations the space map is automatically rebuilt by scanning the messages in the coupling
facility structure to find out which data set pages are currently in use).

When a shared message with offloaded message data is being written, the queue manager allocates a
range of pages for each message block. If there is a partly used current logical block for the specified
queue, the queue manager allocates space starting at the next free page in that block, otherwise it
allocates a new logical block. If the whole message does not fit within the current logical block, the queue

182 Planning for IBM MQ

manager splits the message data at the end of the logical block and allocates a new logical block for the
next message block. This is repeated until space has been allocated for the whole message. Any unused
space in the last logical block is saved as the new current logical block for the queue. When the data set
is closed normally, any unused pages in current logical blocks are returned to the space map before it is
saved.

When a shared message with offloaded message data has been read and is ready to be deleted, the
queue manager processes the delete request by transferring the coupling facility entry for the message
to a clean-up list monitored by the owning queue manager (which may be the same queue manager).
When entries arrive on this list, the owning queue manager reads and deletes the entries and returns the
freed ranges of pages to the space map. When all used pages in a logical block have been freed the block
becomes available for reuse.

Access to shared message data sets
Each shared message data set must be on shared direct access storage which is accessible to all queue
managers in the queue sharing group.

During normal running, each queue manager opens its own shared message data set for read/write
access, and opens any active shared message data sets for other queue managers for read-only access,
so it can read messages stored by those queue managers. This means that each queue manager userid
requires at least UPDATE access to its own shared message data set and READ access to all other shared
message data sets for the structure.

If it is necessary to recover shared message data sets using RECOVER CFSTRUCT, the recovery process
can be executed from any queue manager in the queue sharing group. A queue manager which may be
used to perform recovery processing requires UPDATE access to all data sets that it may need to recover

Creating a shared message data set
Each shared message data set should normally be created before the corresponding CFSTRUCT definition
is created or altered to enable the use of this form of message offloading, as the CFSTRUCT definition
changes will normally take effect immediately, and the data set will be required as soon as a queue
manager attempts to access a shared queue which has been assigned to that structure. A sample job
to allocate and pre-format a shared message data set is provided in SCSQPROC(CSQ4SMDS). The job
must be customized and run to allocate a shared message data set for each queue manager which uses a
CFSTRUCT with OFFLOAD(SMDS).

If the queue manager finds that offload support has been enabled and tries to open its shared message
data set but it has not yet been created, the shared message data set will be flagged as unavailable. The
queue manager will then be unable to store any large messages until the data set has been created and
the queue manager has been notified to try again, for example using the START SMDSCONN command.

A shared message data set is created as a VSAM linear data set using an Access Method Services DEFINE
CLUSTER command. The definition must specify SHAREOPTIONS(2 3) to allow one queue manager to
open it for write access and any number of queue managers to read it at the same time. The default
control interval size of 4 KB must be used. If the data set may need to expand beyond 4 GB, it must
be defined using an SMS data class which has the VSAM extended addressability attribute. A shared
message data set is eligible to reside in the extended addressing space (EAS) part of an extended address
volumes (EAV).

Each shared message data set can either be empty or pre-formatted to binary zeros (using CSQJUFMT
or a similar utility such as the sample job SCSQPROC(CSQ4SMDS)), before its initial use. If it is empty or
only partly formatted when it is opened, the queue manager automatically formats the remaining space to
binary zeros.

Shared message data set performance and capacity considerations
Each shared message data set is used to store offloaded data for shared messages written to the
associated CFSTRUCT by the owning queue manager, from regions within the same system. Each
message that is offloaded takes up to 768 bytes of CF storage, made up of 256 bytes for the entry

Planning an IBM MQ architecture 183

and 512 bytes for the two elements of header and descriptor. Each offloaded message is stored in one or
more pages (physical blocks of size 4 KB) in the data set.

The data set space required for a given number of offloaded messages can therefore be estimated by
rounding up the overall message size (including the descriptor) to the next multiple of 4 KB and then
multiplying by the number of messages.

As for a page set, when a shared message data set is almost full, it can optionally be expanded
automatically. The default behavior for this automatic expansion can be set using the DSEXPAND
parameter on the CFSTRUCT definition. This setting can be overridden for each queue manager using
the DSEXPAND parameter on the ALTER SMDS command. Automatic expansion is triggered when the data
set reaches 90% full and more space is required. If expansion is allowed but an expansion attempt is
rejected by VSAM because no secondary space allocation was specified when the data set was defined,
expansion is retried using a secondary allocation of 20% of the current size of the data set.

Provided that the shared message data set is defined with the extended addressability attribute, the
maximum size is only limited by VSAM considerations to a maximum of 16 TB or 59 volumes. This is
significantly larger than the 64 GB maximum size of a local page set.

Activating a shared message data set
When a queue manager has successfully connected to an application coupling facility structure, it checks
whether that structure definition specifies offloading using an associated DSGROUP parameter. If so, the
queue manager allocates and opens its own shared message data set for write access, then it opens for
read access any existing shared message data sets owned by other queue managers.

When a shared message data set is opened for the first time (before it has been recorded as active
within the queue sharing group), the first page will not yet contain a valid header. The queue manager
fills in header information to identify the queue sharing group, the structure name and the owning queue
manager.

After the header has been completed, the queue manager registers the new shared message data set as
active and broadcasts an event to notify any other active queue managers about the new data set.

Every time a queue manager opens a shared message data set it validates the header information to
ensure that the correct data set is still being used and that it has not been damaged.

Planning your Db2 environment
If you are using queue sharing groups, IBM MQ needs to attach to a Db2 subsystem that is a member of a
data sharing group. Use this topic to help understand the Db2 requirements used to hold IBM MQ data.

IBM MQ needs to know the name of the data sharing group that it is to connect to, and the name of a Db2
subsystem (or Db2 group) to connect to, to reach this data sharing group. These names are specified in
the QSGDATA parameter of the CSQ6SYSP system parameter macro (described in Using CSQ6SYSP).

Within the data sharing group, shared Db2 tables are used to hold:

• Configuration information for the queue sharing group.
• Properties of IBM MQ shared and group objects.
• Optionally, data relating to offloaded IBM MQ messages.

IBM MQ provides a single set of sample jobs for defining the necessary Db2 table spaces, tables, and
indexes. These jobs make use of Universal Table Spaces (UTS). Earlier versions of the product had two
sets of jobs, one for UTS, and one for older types of table space, which have been deprecated by the most
recent versions of Db2.

IBM MQ can still be used with older types of table space, and this might be appropriate if you already have
an existing queue sharing group. However, if you are creating a new queue sharing group, it should use
UTS.

Db2 V12 Function level 508 provides a non disruptive migration process for migrating multi-table table
spaces to universal table spaces. You can use this approach to migrate the multi-table table spaces, used

184 Planning for IBM MQ

https://www.ibm.com/docs/en/db2-for-zos/12?topic=d1fl-function-level-508-activation-enabled-by-apar-ph29392-october-2020

by existing queue sharing groups, to universal table spaces without taking an outage of the whole queue
sharing group.

In Db2 V13, use the MOVE TABLE option of the ALTER TABLESPACE statement. See Moving tables from
multi-table table spaces to partition-by-growth table spaces for more information.

By default Db2 uses the user ID of the person running the jobs as the owner of the Db2 resources. If
this user ID is deleted then the resources associated with it are deleted, and so the table is deleted.
Consider using a group ID to own the tables, rather than an individual user ID. You can do this by adding
GROUP=groupname onto the JOB card, and specifying SET CURRENT SQLID='groupname' before any
SQL statements.

IBM MQ uses the RRS Attach facility of Db2. This means that you can specify the name of a Db2 group
that you want to connect to. The advantage of connecting to a Db2 group attach name (rather than a
specific Db2 subsystem), is that IBM MQ can connect (or reconnect) to any available Db2 subsystem on
the z/OS image that is a member of that group. There must be a Db2 subsystem that is a member of
the data sharing group active on each z/OS image where you are going to run a queue-sharing IBM MQ
subsystem, and RRS must be active.

Db2 storage

For most installations, the amount of Db2 storage required is about 20 or 30 cylinders on a 3390 device.
However, if you want to calculate your storage requirement, the following table gives some information
to help you determine how much storage Db2 requires for the IBM MQ data. The table describes the
length of each Db2 row, and when each row is added to or deleted from the relevant Db2 table. Use this
information together with the information about calculating the space requirements for the Db2 tables
and their indexes in the Db2 for z/OS Installation Guide.

Table 25. Planning your Db2 storage requirements

Db2 table name Length
of row

A row is added when: A row is deleted when:

CSQ.ADMIN_B_QSG 252
bytes

A queue sharing group is added
to the table with the ADD QSG
function of the CSQ5PQSG utility.

A queue sharing group is removed
from the table with the REMOVE
QSG function of the CSQ5PQSG
utility. (All rows relating to this
queue sharing group are deleted
automatically from all the other
Db2 tables when the queue sharing
group record is deleted.)

CSQ.ADMIN_B_QMGR Up to
3828
bytes

A queue manager is added to
the table with the ADD QMGR
function of the CSQ5PQSG utility.

A queue manager is removed from
the table with the REMOVE QMGR
function of the CSQ5PQSG utility.

CSQ.ADMIN_B_STRUCTURE 1454
bytes

The first local queue
definition, specifying the
QSGDISP(SHARED) attribute,
that names a previously
unknown structure within the
queue sharing group is defined.

The last local queue definition,
specifying the QSGDISP(SHARED)
attribute, that names a structure
within the queue sharing group is
deleted.

CSQ.ADMIN_B_SCST 342
bytes

A shared channel is started. A shared channel becomes
inactive.

CSQ.ADMIN_B_SSKT 254
bytes

A shared channel that has the
NPMSPEED(NORMAL) attribute is
started.

A shared channel that has
the NPMSPEED(NORMAL) attribute
becomes inactive.

Planning an IBM MQ architecture 185

https://www.ibm.com/docs/en/db2-for-zos/13?topic=ats-moving-tables-from-multi-table-table-spaces-partition-by-growth-table-spaces
https://www.ibm.com/docs/en/db2-for-zos/13?topic=ats-moving-tables-from-multi-table-table-spaces-partition-by-growth-table-spaces

Table 25. Planning your Db2 storage requirements (continued)

Db2 table name Length
of row

A row is added when: A row is deleted when:

CSQ.ADMIN_B_STRBACKUP 514
bytes

A new row is added to
the CSQ.ADMIN_B_STRUCTURE
table. Each entry is a
dummy entry until the BACKUP
CFSTRUCT command is run,
which overwrites the dummy
entries.

A row is deleted from the
CSQ.ADMIN_B_STRUCTURE table.

CSQ.OBJ_B_AUTHINFO 3400
bytes

An authentication information
object with QSGDISP(GROUP) is
defined.

An authentication information
object with QSGDISP(GROUP) is
deleted.

CSQ.OBJ_B_QUEUE Up to
3707
bytes

• A queue with the
QSGDISP(GROUP) attribute is
defined.

• A queue with the
QSGDISP(SHARED) attribute is
defined.

• A model queue with the
DEFTYPE(SHAREDYN) attribute
is opened.

• A queue with the
QSGDISP(GROUP) attribute is
deleted.

• A queue with the
QSGDISP(SHARED) attribute is
deleted.

• A dynamic queue with the
DEFTYPE(SHAREDYN) attribute is
closed with the DELETE option.

CSQ.OBJ_B_NAMELIST Up to
15127
bytes

A namelist with the
QSGDISP(GROUP) attribute is
defined.

A namelist with the
QSGDISP(GROUP) attribute is
deleted.

CSQ.OBJ_B_CHANNEL Up to
14127
bytes

A channel with the
QSGDISP(GROUP) attribute is
defined.

A channel with the
QSGDISP(GROUP) attribute is
deleted.

CSQ.OBJ_B_STGCLASS Up to
2865
bytes

A storage class with the
QSGDISP(GROUP) attribute is
defined.

A storage class with the
QSGDISP(GROUP) attribute class is
deleted.

CSQ.OBJ_B_PROCESS Up to
3347
bytes

A process with the
QSGDISP(GROUP) attribute is
defined.

A process with the
QSGDISP(GROUP) attribute is
deleted.

CSQ.OBJ_B_TOPIC Up to
14520
bytes

A topic object with
QSGDISP(GROUP) attribute is
defined.

A topic object with
QSGDISP(GROUP) attribute is
deleted.

CSQ.EXTEND_B_QMGR Less
than
430
bytes

A queue manager is added to
the table with the ADD QMGR
function of the CSQ5PQSG utility.

A queue manager is removed from
the table with the REMOVE QMGR
function of the CSQ5PQSG utility.

CSQ.ADMIN_B_MESSAGES 87
bytes

For large message PUT (1 per
BLOB).

For large message GET (1 per
BLOB).

186 Planning for IBM MQ

Table 25. Planning your Db2 storage requirements (continued)

Db2 table name Length
of row

A row is added when: A row is deleted when:

CSQ.ADMIN_MSGS_BAUX1
CSQ.ADMIN_MSGS_BAUX2
CSQ.ADMIN_MSGS_BAUX3
CSQ.ADMIN_MSGS_BAUX4

These 4 tables contain message
payload for large messages
added into one of these 4 tables
for each BLOB of the message.
BLOBS are up to 511 KB in
length, so if the message size is
> 711 KB, there will be multiple
BLOBs for this message.

The use of large numbers of shared queue messages of size greater than 63 KB can have significant
performance implications on your IBM MQ system. For more information, see SupportPac MP16, Capacity
Planning and Tuning for IBM MQ for z/OS, at: SupportPacs for IBM MQ and other project areas.

Planning for backup and recovery
Developing backup and recovery procedures at your site is vital to avoid costly and time-consuming
losses of data. IBM MQ provides means for recovering both queues and messages to their current state
after a system failure.

This topic contains the following sections:

• “Recovery procedures” on page 187
• “Tips for backup and recovery” on page 188
• “Recovering page sets” on page 190
• “Recovering CF structures” on page 191
• “Achieving specific recovery targets” on page 192
• “Backup considerations for other products” on page 193
• “Recovery and CICS” on page 193
• “Recovery and IMS” on page 194
• “Preparing for recovery on an alternative site” on page 194
• “Example of queue manager backup activity” on page 194

Recovery procedures
Develop the following procedures for IBM MQ:

• Creating a point of recovery.
• Backing up page sets.
• Backing up CF structures.
• Recovering page sets.
• Recovering from out-of-space conditions (IBM MQ logs and page sets).
• Recovering CF structures.

See Administering IBM MQ for z/OS for information about these.

Become familiar with the procedures used at your site for the following:

• Recovering from a hardware or power failure.
• Recovering from a z/OS component failure.

Planning an IBM MQ architecture 187

https://www.ibm.com/support/pages/node/318481

• Recovering from a site interruption, using off-site recovery.

Tips for backup and recovery
Use this topic to understand some backup and recovery tasks.

The queue manager restart process recovers your data to a consistent state by applying log information
to the page sets. If your page sets are damaged or unavailable, you can resolve the problem using your
backup copies of your page sets (if all the logs are available). If your log data sets are damaged or
unavailable, it might not be possible to recover completely.

Consider the following points:

• Periodically take backup copies
• Do not discard archive logs you might need
• Do not change the DDname to page set association

Periodically take backup copies

A point of recovery is the term used to describe a set of backup copies of IBM MQ page sets and the
corresponding log data sets required to recover these page sets. These backup copies provide a potential
restart point in the event of page set loss (for example, page set I/O error). If you restart the queue
manager using these backup copies, the data in IBM MQ is consistent up to the point that these copies
were taken. Provided that all logs are available from this point, IBM MQ can be recovered to the point of
failure.

The more recent your backup copies, the quicker IBM MQ can recover the data in the page sets. The
recovery of the page sets is dependent on all the necessary log data sets being available.

In planning for recovery, you need to determine how often to take backup copies and how many complete
backup cycles to keep. These values tell you how long you must keep your log data sets and backup
copies of page sets for IBM MQ recovery.

When deciding how often to take backup copies, consider the time needed to recover a page set. The time
needed is determined by the following:

• The amount of log to traverse.
• The time it takes an operator to mount and remove archive tape volumes.
• The time it takes to read the part of the log needed for recovery.
• The time needed to reprocess changed pages.
• The storage medium used for the backup copies.
• The method used to make and restore backup copies.

In general, the more frequently you make backup copies, the less time recovery takes, but the more time
is spent making copies.

For each queue manager, you should take backup copies of the following:

• The archive log data sets
• The BSDS copies created at the time of the archive
• The page sets
• Your object definitions
• Your CF structures

To reduce the risk of your backup copies being lost or damaged, consider:

• Storing the backup copies on different storage volumes to the original copies.
• Storing the backup copies at a different site to the original copies.

188 Planning for IBM MQ

• Making at least two copies of each backup of your page sets and, if you are using single logging or a
single BSDS, two copies of your archive logs and BSDS. If you are using dual logging or BSDS, make a
single copy of both archive logs or BSDS.

Before moving IBM MQ to a production environment, fully test and document your backup procedures.

Backing up your page sets

You need to back up page sets regularly. Some enterprises back up the page sets twice a day.

You need the active and archive logs since a backup to be able to recover using the backup. You need
enough log data to go back four checkpoints if the backup was taken when the queue manager was
running.

You can use ADRDSSU FastReplication to back up page sets, and you can do this while the queue
manager is active. Note that you need to ensure there is enough space in the storage pool.

Backing up your object definitions

Create backup copies of your object definitions. To do this, use the MAKEDEF feature of the
COMMAND function of the utility program (described in Using the COMMAND function of CSQUTIL).

You should do this whenever you take backup copies of your queue manager data sets, and keep the
most current version.

Backing up your coupling facility structures

If you have set up any queue sharing groups, even if you are not using them, you must take periodic
backups of your CF structures. To do this, use the IBM MQ BACKUP CFSTRUCT command. You can
use this command only on CF structures that are defined with the RECOVER(YES) attribute. If any CF
entries for persistent shared messages refer to offloaded message data stored in a shared message
data set (SMDS) or Db2, the offloaded data is retrieved and backed up together with the CF entries.
Shared message data sets should not be backed up separately.

It is recommended that you take a backup of all your CF structures about every hour, to minimize the
time it takes to restore a CF structure.

You could perform all your CF structure backups on a single queue manager, which has the advantage
of limiting the increase in log use to a single queue manager. Alternatively, you could perform backups
on all the queue managers in the queue sharing group, which has the advantage of spreading the
workload across the queue sharing group. Whichever strategy you use, IBM MQ can locate the backup
and perform a RECOVER CFSTRUCT from any queue manager in the queue sharing group. The logs of
all the queue managers in the queue sharing group need to be accessed to recover the CF structure.

Backing up your message security policies
If you are using Advanced Message Security to create a backup of your message security policies,
create a backup using the message security policy utility (CSQ0UTIL) to run dspmqspl with the
-export parameter, then save the policy definitions that are output to the EXPORT DD.
You should create a backup of your message security policies whenever you take backup copies of
your queue manager data sets, and keep the most current version.

Do not discard archive logs you might need
IBM MQ might need to use archive logs during restart. You must keep sufficient archive logs so that the
system can be fully restored. IBM MQ might use an archive log to recover a page set from a restored
backup copy. If you have discarded that archive log, IBM MQ cannot restore the page set to its current
state. When and how you discard archive logs is described in Discarding archive log data sets.

You can use the /cpf DIS USAGE TYPE(ALL) command to display the log RBA, and log range
sequence number (LRSN) that you need to recover your queue manager's page sets and the queue
sharing group's structures. You should then use the print log map utility (CSQJU004) to print bootstrap
data set (BSDS) information for the queue manager to locate the logs containing the log RBA.

Planning an IBM MQ architecture 189

For CF structures, you need to run the CSQJU004 utility on each queue manager in the queue sharing
group to locate the logs containing the LRSN. You need these logs and any later logs to be able to recover
the page sets and structures.

Do not change the DDname to page set association
IBM MQ associates page set number 00 with DDname CSQP0000, page set number 01 with DDname
CSQP0001, and so on, up to CSQP0099. IBM MQ writes recovery log records for a page set based on the
DDname that the page set is associated with. For this reason, you must not move page sets that have
already been associated with a PSID DDname.

Recovering page sets
Use this topic to understand the factors involved when recovering pages sets, and how to minimize restart
times.

A key factor in recovery strategy concerns the time for which you can tolerate a queue manager outage.
The total outage time might include the time taken to recover a page set from a backup, or to restart the
queue manager after an abnormal termination. Factors affecting restart time include how frequently you
back up your page sets, and how much data is written to the log between checkpoints.

To minimize the restart time after an abnormal termination, keep units of work short so that, at most, two
active logs are used when the system restarts. For example, if you are designing an IBM MQ application,
avoid placing an MQGET call that has a long wait interval between the first in-syncpoint MQI call and the
commit point because this might result in a unit of work that has a long duration. Another common cause
of long units of work is batch intervals of more than 5 minutes for the channel initiator.

You can use the DISPLAY THREAD command to display the RBA of units of work and to help resolve the
old ones.

How often must you back up a page set?

Frequent page set backup is essential if a reasonably short recovery time is required. This applies even
when a page set is very small or there is a small amount of activity on queues in that page set.

If you use persistent messages in a page set, the backup frequency should be in hours rather than days.
This is also the case for page set zero.

To calculate an approximate backup frequency, start by determining the target total recovery time. This
consists of the following:

1. The time taken to react to the problem.
2. The time taken to restore the page set backup copy.

If you use SnapShot backup/restore, the time taken to perform this task is a few seconds. For
information about SnapShot, see the DFSMSdss Storage Administration Guide.

3. The time the queue manager requires to restart, including the additional time needed to recover the
page set.

This depends most significantly on the amount of log data that must be read from active and archive
logs since that page set was last backed up. All such log data must be read, in addition to that directly
associated with the damaged page set.

Note: When using fuzzy backup (where a snapshot is taken of the logs and page sets while a unit of
work is active), it might be necessary to read up to three additional checkpoints, and this might result
in the need to read one or more additional logs.

When deciding on how long to allow for the recovery of the page set, the factors that you need to consider
are:

190 Planning for IBM MQ

• The rate at which data is written to the active logs during normal processing depends on how messages
arrive in your system, in addition to the message rate.

Messages received or sent over a channel result in more data logging than messages generated and
retrieved locally.

• The rate at which data can be read from the archive and active logs.

When reading the logs, the achievable data rate depends on the devices used and the total load on your
particular DASD subsystem.

With most tape units, it is possible to achieve higher data rates for archived logs with a large block size.
However, if an archive log is required for recovery, all the data on the active logs must be read also.

Recovering CF structures
Use this topic to understand the recovery process for CF structures.

At least one queue manager in the queue sharing group must be active to process a RECOVER CFSTRUCT
command. CF structure recovery does not affect queue manager restart time, because recovery is
performed by an already active queue manager.

The recovery process consists of two logical steps that are managed by the RECOVER CFSTRUCT
command:

1. Locating and restoring the backup.
2. Merging all the logged updates to persistent messages that are held on the CF structure from the logs

of all the queue managers in the queue sharing group that have used the CF structure, and applying
the changes to the backup.

The second step is likely to take much longer because a lot of log data might need to be read. You can
reduce the time taken if you take frequent backups, or if you recover multiple CF structures at the same
time, or both.

The queue manager performing the recovery locates the relevant backups on all the other queue
managers' logs using the data in Db2 and the bootstrap data sets. The queue manager replays these
backups in the correct time sequence across the queue sharing group, from just before the last backup
through to the point of failure.

The time it takes to recover a CF structure depends on the amount of recovery log data that must be
replayed, which in turn depends on the frequency of the backups. In the worst case, it takes as long
to read a queue manager's log as it did to write it. So if, for example, you have a queue sharing group
containing six queue managers, an hour's worth of log activity could take six hours to replay. In general
it takes less time than this, because reading can be done in bulk, and because the different queue
manager's logs can be read in parallel. As a starting point, we recommend that you back up your CF
structures every hour.

All queue managers can continue working with non-shared queues and queues in other CF structures
while there is a failed CF structure. If the administration structure has also failed, at least one of
the queue managers in the queue sharing group must be started before you can issue the RECOVER
CFSTRUCT command.

Backing up CF structures can require considerable log writing capacity, and can therefore impose a large
load on the queue manager doing the backup. Choose a lightly loaded queue manager for doing backups;
for busy systems, add an additional queue manager to the queue sharing group and dedicate it exclusively
for doing backups.

Planning an IBM MQ architecture 191

Achieving specific recovery targets
Use this topic for guidance on how you can achieve specific recovery target times by adjusting backup
frequency.

If you have specific recovery targets to achieve, for example, completion of the queue manager recovery
and restart processing in addition to the normal startup time within xx seconds, you can use the following
calculation to estimate your backup frequency (in hours):

Formula (A)
 Required restart time * System recovery log read rate
 (in secs) (in MB/sec)
Backup frequency = ---
 (in hours) Application log write rate (in MB/hour)

Note: The examples given next are intended to highlight the need to back up your page sets frequently.
The calculations assume that most log activity is derived from a large number of persistent messages.
However, there are situations where the amount of log activity is not easily calculated. For example, in a
queue sharing group environment, a unit of work in which shared queues are updated in addition to other
resources might result in UOW records being written to the IBM MQ log. For this reason, the Application
log write rate in Formula (A) can be derived accurately only from the observed rate at which the IBM MQ
logs fill.

For example, consider a system in which IBM MQ MQI clients generate a total load of 100 persistent
messages a second. In this case, all messages are generated locally.

If each message is of user length 1 KB, the amount of data logged each hour is approximately:

100 * (1 + 1.3) KB * 3600 = approximately 800 MB

where
 100 = the message rate a second
 (1 + 1.3) KB = the amount of data logged for
 each 1 KB of persistent messages

Consider an overall target recovery time of 75 minutes. If you have allowed 15 minutes to react to
the problem and restore the page set backup copy, queue manager recovery and restart must then
complete within 60 minutes (3600 seconds) applying formula (A). Assuming that all required log data is
on RVA2-T82 DASD, which has a recovery rate of approximately 2.7 MB a second, this necessitates a page
set backup frequency of at least every:

3600 seconds * 2.7 MB a second / 800 MB an hour = 12.15 hours

If your IBM MQ application day lasts approximately 12 hours, one backup each day is appropriate.
However, if the application day lasts 24 hours, two backups each day is more appropriate.

Another example might be a production system in which all the messages are for request-reply
applications (that is, a persistent message is received on a receiver channel and a persistent reply
message is generated and sent down a sender channel).

In this example, the achieved batch size is one, and so there is one batch for every message. If there are
50 request replies a second, the total load is 100 persistent messages a second. If each message is 1 KB
in length, the amount of data logged each hour is approximately:

192 Planning for IBM MQ

50((2 * (1+1.3) KB) + 1.4 KB + 2.5 KB) * 3600 = approximately 1500 MB

where:
 50 = the message pair rate a second
 (2 * (1 + 1.3) KB) = the amount of data logged for each message pair
 1.4 KB = the overhead for each batch of messages
 received by each channel
 2.5 KB = the overhead for each batch of messages sent
 by each channel

To achieve the queue manager recovery and restart within 30 minutes (1800 seconds), again assuming
that all required log data is on RVA2-T82 DASD, this requires that page set backup is carried out at least
every:

1800 seconds * 2.7 MB a second / 1500 MB an hour = 3.24 hours

Periodic review of backup frequency
Monitor your IBM MQ log usage in terms of MB an hour. Periodically perform this check and amend your
page set backup frequency if necessary.

Backup considerations for other products
If you are using IBM MQ with CICS or IMS then you must also consider the implications for your backup
strategy with those products. The data facility hierarchical storage manager (DFHSM) manages data
storage, and can interact with the storage used by IBM MQ.

Backup and recovery with DFHSM
The data facility hierarchical storage manager (DFHSM) does automatic space-availability and data-
availability management among storage devices in your system. If you use it, you need to know that
it moves data to and from the IBM MQ storage automatically.

DFHSM manages your DASD space efficiently by moving data sets that have not been used recently
to alternative storage. It also makes your data available for recovery by automatically copying new or
changed data sets to tape or DASD backup volumes. It can delete data sets, or move them to another
device. Its operations occur daily, at a specified time, and allow for keeping a data set for a predetermined
period before deleting or moving it.

You can also perform all DFHSM operations manually. For more information on DFHSM, see the z/OS
DFSMS product documentation. If you use DFHSM with IBM MQ, note that DFHSM does the following:

• Uses cataloged data sets.
• Operates on page sets and logs.
• Supports VSAM data sets.

Recovery and CICS

The recovery of CICS resources is not affected by the presence of IBM MQ. CICS recognizes IBM MQ as a
non-CICS resource (or external resource manager), and includes IBM MQ as a participant in any syncpoint
coordination requests using the CICS resource manager interface (RMI). For more information about CICS
recovery and the CICS resource manager interface, see the CICS product documentation.

Planning an IBM MQ architecture 193

https://www.ibm.com/docs/en/zos/3.1.0?topic=zos-dfsms
https://www.ibm.com/docs/en/zos/3.1.0?topic=zos-dfsms
https://www.ibm.com/docs/en/cics-ts/6.1

Recovery and IMS

IMS recognizes IBM MQ as an external subsystem and as a participant in syncpoint coordination. IMS
recovery for external subsystem resources is described in the IMS product documentation.

Preparing for recovery on an alternative site
If a total loss of an IBM MQ computing center, you can recover on another IBM MQ system at a recovery
site.

To recover an IBM MQ system at a recovery site, you must regularly back up the page sets and the logs.
As with all data recovery operations, the objectives of disaster recovery are to lose as little data, workload
processing (updates), and time as possible.

At the recovery site:

• The recovery IBM MQ queue manager must have the same name as the lost queue manager.
• Ensure the system parameter module used on the recovery queue manager contains the same

parameters as the lost queue manager.

See Administering IBM MQ for z/OS and Troubleshooting IBM MQ for z/OS problems for more information.

Example of queue manager backup activity
This topic shows as an example of queue manager backup activity.

When you plan your queue manager backup strategy, a key consideration is retention of the correct
amount of log data. Managing the logs describes how to determine which log data sets are required, by
reference to the system recovery RBA of the queue manager. IBM MQ determines the system recovery
RBA using information about the following:

• Currently active units of work.
• Page set updates that have not yet been flushed from the buffer pools to disk.
• CF structure backups, and whether this queue manager's log contains information required in any

recovery operation using them.

You must retain sufficient log data to be able to perform media recovery. While the system recovery
RBA increases over time, the amount of log data that must be retained only decreases when subsequent
backups are taken. CF structure backups are managed by IBM MQ, and so are taken into account when
reporting the system recovery RBA. This means that in practice, the amount of log data that must be
retained only reduces when page set backups are taken.

Figure 43 on page 195 shows an example of the backup activity on a queue manager that is a member of
a queue sharing group, how the recovery RBA varies with each backup, and how that affects the amount
of log data that must be retained. In the example the queue manager uses local and shared resources:
page sets, and two CF structures, STRUCTURE1 and STRUCTURE2.

194 Planning for IBM MQ

https://www.ibm.com/docs/en/ims/15.4.0

Figure 43. Example of queue manager backup activity

This is what happens at each point in time:
Point in time T1

A fuzzy backup is created of your page sets, as described in How to back up and recover page sets.

The system recovery RBA of the queue manager is the lowest of the following:

• The recovery RBAs of the page sets being backed up at this point.
• The lowest recovery RBA required to recover the CF application structures. This relates to the

recovery of backups of STRUCTURE1 and STRUCTURE2 created earlier.
• The recovery RBA for the oldest currently active unit of work within the queue manager (UOWB1).

The system recovery RBA for this point in time is given by messages issued by the DISPLAY USAGE
command, which is part of the fuzzy backup process.

Point in time T2
Backups of the CF structures are created. CF structure STRUCTURE1 is backed up first, followed by
STRUCTURE2.

The amount of log data that must be retained is unchanged, because the same data as determined
from the system recovery RBA at T1 is still required to recover using the page set backups taken at T1.

Point in time T3
Another fuzzy backup is created.

The system recovery RBA of the queue manager is the lowest of the following:

• The recovery RBAs of the page sets being backed up at this point.
• The lowest recovery RBA required to recover CF structure STRUCTURE1, because STRUCTURE1 was

backed up before STRUCTURE2.
• The recovery RBA for the oldest currently active unit of work within the queue manager (UOWA1).

The system recovery RBA for this point in time is given by messages issued by the DISPLAY USAGE
command, which is part of the fuzzy backup process.

You can now reduce the log data retained, as determined by this new system recovery RBA.

Point in time T4
A backup is taken of CF structure STRUCTURE2. The recovery RBA for the recovery of the oldest
required CF structure backup relates to the backup of CF structure STRUCTURE1, which was backed
up at time T2.

The creation of this CF structure backup has no effect on the amount of log data that must be
retained.

Planning an IBM MQ architecture 195

Point in time T5
A backup is taken of CF structure STRUCTURE1. The recovery RBA for recovery of the oldest required
CF structure backup now relates to recovery of CF structure STRUCTURE2, which was backed up at
time T4.

The creation of this CF structure backup has no effect on amount of log data that must be retained.

Point in time T6
A full backup is taken of your page sets as described in How to back up and recover page sets.

The system recovery RBA of the queue manager is the lowest of the following:

• The recovery RBAs of the page sets being backed up at this point.
• The lowest recovery RBA required to recover the CF structures. This relates to recovery of CF

structure STRUCTURE2.
• The recovery RBA for the oldest currently active unit of work within the queue manager. In this case,

there are no current units of work.

The system recovery RBA for this point in time is given by messages issued by the DISPLAY USAGE
command, which is part of the full backup process.

Again, the log data retained can be reduced, because the system recovery RBA associated with the
full backup is more recent.

Planning your z/OS UNIX environment
Certain processes within the IBM MQ queue manager, channel initiator, and mqweb server use z/OS UNIX
System Services (z/OS UNIX) for their normal processing.

The queue manager and channel initiator started task user IDs need an OMVS segment with a UID defined
in order to be able to access z/OS UNIX. The user IDs require no special permissions in z/OS UNIX.

Note: Although the queue manager and channel initiator make use of z/OS UNIX facilities (for example, to
interface with TCP/IP services), they do not need to access any of the content of the IBM MQ installation
directory in the z/OS UNIX file system. As a result, the queue manager and channel initiator do not require
any configuration to specify the path for the z/OS UNIX file system.

The mqweb server, which hosts the IBM MQ Console and REST API, makes use of files in the IBM MQ
installation directory in the z/OS UNIX file system. It also needs access to another file system which
is used to store data such as configuration and log files. The mqweb started task JCL needs to be
customized to reference these z/OS UNIX file systems.

The content of the IBM MQ directory in the z/OS UNIX file system is also used by applications connecting
to IBM MQ. For example, applications using the IBM MQ classes for Java or IBM MQ classes for JMS
interfaces.

See the following topics for the relevant configuration instructions:

• Environment variables relevant to IBM MQ classes for Java
• IBM MQ classes for Java libraries
• Setting environment variables
• Configuring the Java Native Interface (JNI) libraries

Planning for Advanced Message Security on z/OS
TLS (or SSL) can be used to encrypt and protect messages flowing on a network, but this does not protect
messages when they are on a queue ("at rest"). Advanced Message Security (AMS) protects the messages
from the time that they are first put to a queue, until they are got, so that only the intended recipients of
the message can read that message. The messages are encrypted and signed during put processing, and
unprotected during get processing.

AMS can be configured to protect messages in different ways:

196 Planning for IBM MQ

1. A message can be signed. The message is in clear text, but there is a checksum, which is signed. This
allows any changes in the message content to be detected. From the signed content, you can identify
who signed the data.

2. A message can be encrypted. The contents are not visible to anyone without the decryption key. The
decryption key is encrypted for each recipient.

3. A message can be encrypted and signed. They decryption key is encrypted for each recipient, and from
the signing you can identify who sent the message.

The encryption and signing use digital certificates and key rings.

You can set up a client to use AMS, so the data is protected before the data is put on the client channel.
Protected messages can be sent to a remote queue manager, and you need to configure the remote queue
manager to process these messages.

Setting up AMS
An AMS address space is used for doing the AMS work. This has additional security set up, to give access
to and protect the use of key rings and certificates.

You configure which queues are to be protected by using a utility program (CSQ0UTIL) to define the
security policies for queues.

Once AMS is set up
You need to set up a digital certificate and a key ring for people who put messages, and the people who
get messages.

If a user, Alice, on z/OS needs to send a message to Bob, AMS needs a copy of the public certificate for
Bob.

If Bob wants to process a message from Alice, AMS needs the public certificate for Alice, or the same
certificate authority certificate used by Alice.

Attention: You need to:

• Carefully plan who can put to, or get from, queues
• Identify the people and their certificate names.

It is easy to make mistakes, and problems can be hard to resolve.

Related concepts
“Planning for your queue manager” on page 141
When you are setting up a queue manager, your planning should allow for the queue manager to grow, so
that the queue manager meets the needs of your enterprise.

Planning for Managed File Transfer on z/OS
Use this section as guidance on how you need to set up your system to run Managed File Transfer (MFT)
on z/OS.

Planning for Managed File Transfer - hardware and software
requirements on z/OS
Use this topic as guidance on how you need to set up hardware and software requirements on your
system to run Managed File Transfer (MFT) on z/OS.

Software requirements
Managed File Transfer is written in Java, with some shell scripts and JCL to configure and operate the
program.

Planning an IBM MQ architecture 197

Important: You must be familiar with z/OS UNIX System Services (z/OS UNIX) in order to configure
Managed File Transfer. For example:

• The file directory structure, with names such as /u/userID/myfile.txt
• z/OS UNIX commands, for example:

– cd (change directory)
– ls (list)
– chmod (change the file permissions)
– chown (change file ownership or groups which can access the file or directory)

You require the following products in z/OS UNIX to be able to configure and run MFT:

1. Java, for example, in directory /java/java80_bit64_GA/J8.0_64/
2. IBM MQ 9.4.0, for example, in directory /mqm/V9R3M0
3. If you want to use Db2 for status and history, you need to install Db2 JDBC libraries, for example, in

directory /db2/db2v10/jdbc/libs.

Product registration
At startup Managed File Transfer checks the registration in sys1.parmlib(IFAPRDxx) concatenation.
The following code is an example of how you register MFT:

PRODUCT OWNER('IBM CORP')
NAME('WS MQ FILE TRANS')
ID(5655-MFT)
VERSION(*) RELEASE(*) MOD(*)
FEATURENAME('WS MQ FILE TRANS')
STATE(ENABLED)

Disk space
The IBM MQ for z/OS Program Directory states the DASD and zFS storage requirements for Managed File
Transfer. For download links for the Program Directory for IBM MQ for z/OS, see IBM MQ 9.4 PDF files for
product documentation and Program Directories.

Planning for Managed File Transfer - topologies on z/OS
Use this topic as guidance on what topology you need on your system to run Managed File Transfer (MFT)
on z/OS.

Managed File Transfer queue managers
IBM MQ Managed File Transfer topologies consist of:
Agents, and their associated queue managers

The agent uses system queues hosted on their agent queue manager to maintain state information
and receive requests for work.

A command queue manager
This acts as a gateway into an MFT topology. It is connected to the agent queue managers through
either sender and receiver channels, or clustering. When certain commands are run, they connect
directly to the command queue manager, and send a message to the specified agent. This message is
routed through the IBM MQ network to the agent queue manager, where it is picked up by the agent
and processed.

A coordination queue manager
This is a central hub that has knowledge of the entire topology. The coordination queue manager
is connected to all of the agent queue managers in a topology through either sender and receiver

198 Planning for IBM MQ

channels, or using clustering. Agents regularly publish status information to the coordination queue
manager, and store their transfer templates there.

It is possible for a single queue manager to perform multiple roles within a topology. For example, the
same queue manager can be configured as both the coordination queue manager and the command
queue manager for a topology.

If you are using multiple queue managers you need to set up channels between the queue managers. You
can either do this by using clustering or by using point-to-point connections.

When using IBM MQ Managed File Transfer for z/OS, there are a number of things to consider when
determining which queue managers to use for the different roles within a topology.

Agent queue managers

The agent queue manager for an IBM MQ Managed File Transfer for z/OS agent must be running on z/OS.

If:

• The agent is running Managed File Transfer for z/OS on IBM MQ 9.1 or later
• And, the agent queue manager is licensed for IBM MQ Advanced for z/OS Value Unit Edition (Advanced

VUE)

the agent can connect to the queue manager using the CLIENT transport.

Figure 44. MFT 9.1 agents on z/OS can connect to a queue manager using the CLIENT transport, assuming
the queue manager is licensed for Advanced VUE.

If:

• The agent is running Managed File Transfer for z/OS on IBM MQ 9.0 or earlier
• Or, the agent queue manager is running Managed File Transfer for z/OS on IBM MQ 9.0 or later, and the

agent queue manager is licensed for either MFT, IBM MQ Advanced for z/OS, or Advanced VUE

the agent must connect to the queue manager using the BINDINGS transport.

Figure 45. MFT 9.0 agents on z/OS and 9.1 agents that have an agent queue manager licensed for either
MFT or IBM MQ Advanced, must connect using the BINDINGS transport.

Command queue managers

The Which MFT commands and processes connect to which queue manager topic shows all of the
commands that connect to the command queue manager for a Managed File Transfer topology.

Note: When running these commands on z/OS, the command queue manager must also be on z/OS.

Planning an IBM MQ architecture 199

If the command queue manager is licensed for Advanced VUE, the commands can connect to the queue
manger using the CLIENT transport. Otherwise, the commands must connect to the command queue
manager using the BINDINGS transport.

Figure 46. Commands connect to the command queue manager for an MFT topology. When running these
commands on z/OS, the command queue manager must also be on z/OS

Coordination queue managers

IBM MQ Managed File Transfer for z/OS agents can be part of a topology where the coordination queue
manager is either running on z/OS, or is running on a multiplatform.

Figure 47. MFT agents running on z/OS can be part of an MFT topology where the coordination queue
manager is running on an IBM MQ multiplatform.

The Which MFT commands and processes connect to which queue manager topic shows the commands
that connect to the coordination queue manager for a Managed File Transfer topology. It is possible to
run these commands on z/OS and have then connect to the coordination queue manager running on a
different platform.

200 Planning for IBM MQ

Figure 48. Certain commands, such as fteListAgents, connect directly to the coordination queue
manager for an MFT topology.

How many agents do I need?
The agents do the work in transferring data, and when you make a request to transfer data you specify the
name of an agent.

By default an agent can process 25 send and 25 receive requests concurrently. You can configure these
processes. See Managed File Transfer configuration options on z/OS for more information.

If the agent is busy then work is queued. The time taken to process a request depends on multiple
factors, for example, the amount of data to be sent, the network bandwidth, and the delay on the network.

You might want to have multiple agents to process work in parallel.

You can also control which resources an agent can access, so you might want some agents to work with a
limited subset of data.

If you want to process requests with different priority you can use multiple agents and use workload
manager to set the priority of the jobs.

Running the agents
Typically the agents are long running processes. The processes can be submitted as jobs that run in batch,
or as started tasks.

Planning for Managed File Transfer - security considerations on
z/OS
Use this topic as guidance on what security considerations you need on your system to run Managed File
Transfer (MFT) on z/OS.

Security
You need to identify which user IDs are going to be used for MFT configuration and for MFT operation.

You need to identify the files or queues you transfer, and which user IDs are going to be submitting
transfer requests to MFT.

When you customize the agents and logger, you specify the group of users that is allowed to run MFT
services, or do MFT administration.

You should set up this group before you start customizing MFT. As MFT uses IBM MQ queues, if you have
security enabled in the queue manager, MFT requires access to the following resources:

Planning an IBM MQ architecture 201

Table 26. MQADMIN resource class

Name Access required

QUEUE.SYSTEM.FTE.EVENT.agent_name Update

QUEUE.SYSTEM.FTE.COMMAND.agent_name Update

CONTEXT.SYSTEM.FTE.COMMAND.agent_name Update

QUEUE.SYSTEM.FTE.STATE.agent_name Update

QUEUE.SYSTEM.FTE.DATA.agent_name Update

QUEUE.SYSTEM.FTE.REPLY.agent_name Update

QUEUE.SYSTEM.FTE.AUTHAGT1.agent_name Update

QUEUE.SYSTEM.FTE.AUTHTRN1.agent_name Update

QUEUE.SYSTEM.FTE.AUTHOPS1.agent_name Update

QUEUE.SYSTEM.FTE.AUTHSCH1.agent_name Update

QUEUE.SYSTEM.FTE.AUTHMON1.agent_name Update

QUEUE.SYSTEM.FTE.AUTHADM1.agent_name Update

Table 27. MQQUEUE resource class

Name Access required

SYSTEM.FTE.AUTHAGT1.agent_name Update

SYSTEM.FTE.AUTHTRN1.agent_name Update

SYSTEM.FTE.AUTHOPS1.agent_name Update

SYSTEM.FTE.AUTHSCH1.agent_name Update

SYSTEM.FTE.AUTHMON1.agent_name Update

You can use user sandboxing to determine which parts of the file system the user who requests the
transfer can access.

To enable user sandboxing, add the userSandboxes=true statement to the agent.properties file for
the agent that you want to restrict, and add appropriate values to the MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/agents/agent_name/UserSandboxes.xml file.

See Working with user sandboxes for further information.

This user ID is configured in UserSandboxes.xml files.

This XML file has information like user ID, or user ID* and a list of resource that can be used (included),
or cannot be used (excluded). You need to define specific user IDs that can access which resources: for
example:

Table 28. Example user ID together with access to specific resources

User ID Access
Include or
Exclude Resource

Admin* Read Include /home/user/**

Admin* Read Exclude /home/user/private/**

Sysprog Read Include /home/user/**

Admin* Read Include Application.reply.queue

202 Planning for IBM MQ

Notes:

1. If type=queue is specified, the resource is either a queue name, or queue@qmgr.
2. If the resource begins with //, the resource is a data set; otherwise the resource is a file in z/OS UNIX.
3. The user ID is the user ID from the MQMD structure, so this might not reflect the user ID that actually

puts the message.
4. For requests on the local queue manager you can use MQADMIN CONTEXT.* to limit which users can

set this value.
5. For requests coming in over a remote queue manager, you have to assume that the distributed queue

managers have security enabled to prevent unauthorized setting of the user ID in the MQMD structure.
6. A user ID of SYSPROG1 on a Linux machine, is the same user ID SYSPROG1 for the security checking

on z/OS.

Planning to use the IBM MQ Console and REST API on z/OS
The IBM MQ Console and REST API are applications that run in a WebSphere Liberty (Liberty) server
known as mqweb. The mqweb server runs as a started task. The IBM MQ Console allows a web browser
to be used to administer queue managers. The REST API provides a simple programmatic interface for
applications to do queue manager administration, and to perform messaging.

Installation and configuration files
You need to install the IBM MQ for z/OS UNIX System Services Web Components feature, which will
install the files needed to run the mqweb server in z/OS UNIX System Services (z/OS UNIX). You need to
be familiar with z/OS UNIX to be able to configure and manage the mqweb server.

See IBM MQ for z/OS Program Directory PDF files for information on installing IBM MQ for z/OS UNIX
System Services Components.

The IBM MQ files in z/OS UNIX are installed with various attributes set that are required for the correct
operation of the mqweb server. If you need to copy the IBM MQ z/OS UNIX installation files, for example
if you have installed IBM MQ on one system, and run IBM MQ on a different system, you should copy the
IBM MQ ZFS created during the installation, and mount it read only at the destination. Copying the files in
other ways might cause some file attributes to be lost.

You need to decide upon the location for, and create, a Liberty user directory when you create the mqweb
server. This directory contains configuration and log files, and the location can be something similar
to /var/mqm/mqweb.

Using the IBM MQ Console and REST API with queue managers at different levels
The REST API can directly interact only with queue managers that run at the same Version, Release, and
Modification (VRM) as the mqweb server which runs the REST API. For example, the IBM MQ 9.4.0 REST
API can directly interact only with local queue managers at IBM MQ 9.4.0, and the IBM MQ 9.3.5 REST
API can directly interact only with local queue managers at IBM MQ 9.3.5.

You can use the REST API to administer a queue manager at a different version from the mqweb server
by configuring a gateway queue manager. However, you need at least one queue manager at the same
version as the mqweb server to act as the gateway queue manager. For more information, see Remote
administration using the REST API.

The IBM MQ Console can be used to manage local queue managers that run at the same version as
the IBM MQ Console. From IBM MQ 9.3.0, you can also use the IBM MQ Console to administer a
queue manager running on a remote system, or at a different version to the IBM MQ Console. For more
information, see IBM MQ Console: Adding a remote queue manager.

Planning an IBM MQ architecture 203

Migration
If you have only one queue manager, you can run the mqweb server as a single started task, and change
the libraries it uses when you migrate your queue manager.

If you have more than one queue manager, during migration you can start mqweb servers at different
versions by using started tasks with different names. These names can be any name you want. For
example, you can start an IBM MQ 9.3.0 mqweb server using a started task named MQWB0930, and an
IBM MQ 9.3.5 mqweb server using a started task named MQWB0935.

Then, when you migrate the queue managers from one version to a later version, the queue managers
become available in the mqweb server for the later version, and are no longer available in the mqweb
server for the earlier version.

After you have migrated all the queue managers to the later version, you can delete the mqweb server for
the earlier version.

HTTP ports
The mqweb server uses up to two ports for HTTP:

• One for HTTPS, with a default value of 9443.
• One for HTTP. HTTP is not enabled by default, but if enabled, has a default value of 9080.

If the default port values are in use, you must allocate other ports. If you have more than one mqweb
server running simultaneously for more than one version of IBM MQ, you must allocate separate ports for
each version. For more information on setting the ports that the mqweb server uses, see Configuring the
HTTP and HTTPS ports.

You can use the following TSO command to display information about a port:

NETSTAT TCP tcpip (PORT portNumber)

where tcpip is the name of the TCP/IP address space, and portNumber specifies the number of the port to
display information about.

Security - starting the mqweb server
The mqweb server user ID needs certain authorities. For more information, see Authority required by the
mqweb server started task user ID.

Security - using the IBM MQ Console and REST API
When you use the IBM MQ Console and REST API, you must authenticate as a user that is included in
a configured registry. These users are assigned specific roles that determine the actions the users can
perform. For example, to use the messaging REST API, a user must be assigned the MQWebUser role. For
more information about the available roles for the IBM MQ Console and REST API, and the access that
these roles grant, see Roles on the IBM MQ Console and REST API.

For more information about configuring security for the IBM MQ Console and REST API, see IBM MQ
Console and REST API security.

204 Planning for IBM MQ

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2024 205

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

206 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (https://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 207

208 Planning for IBM MQ

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Planning
	IBM MQ release types: planning considerations
	IBM MQ and IBM MQ Appliance on premises considerations for GDPR readiness
	Architectures based on a single queue manager
	Architectures based on multiple queue managers
	Planning your distributed queues and clusters
	Designing distributed queue manager networks
	Designing clusters
	Planning how you use multiple cluster transmission queues
	Automatically-defined cluster transmission queues
	Planning for manually-defined cluster transmission queues

	Access control and multiple cluster transmission queues
	Comparison of clustering and distributed queuing
	How to choose cluster queue managers to hold full repositories
	Organizing a cluster
	Cluster naming conventions
	Queue sharing groups and clusters
	Overlapping clusters
	Clustering tips
	How long do the queue manager repositories retain information?
	Example clusters
	Clustering: Best practices
	Clustering: Special considerations for overlapping clusters
	Clustering: Topology design considerations
	Clustering: Application isolation using multiple cluster transmission queues
	Clustering: Planning how to configure cluster transmission queues
	How to choose what type of cluster transmission queue to use
	Clustering: Example configuration of multiple cluster transmission queues
	Creating the example clusters

	Clustering: Switching cluster transmission queues
	Switching active cluster-sender channels to another set of cluster-transmission queues
	Switching a stopped cluster-sender channel to another cluster transmission queue

	Clustering: Migration and modification best practices
	Clustering: Using REFRESH CLUSTER best practices
	Clustering: Availability, multi-instance, and disaster recovery

	Planning your distributed publish/subscribe network
	Designing publish/subscribe clusters
	Direct routing in publish/subscribe clusters
	Topic host routing in publish/subscribe clusters
	Publish/subscribe clustering: Best practices
	Defining cluster topics
	Cluster topic attributes
	Multiple cluster topic definitions of the same name
	Availability of cluster topic host queue managers

	Inhibiting clustered publish/subscribe
	Publish/subscribe and multiple clusters
	Design considerations for retained publications in publish/subscribe clusters
	REFRESH CLUSTER considerations for publish/subscribe clusters

	Routing in publish/subscribe hierarchies
	Distributed publish/subscribe system queues
	Distributed publish/subscribe system queue errors

	Planning your storage and performance requirements on Multiplatforms
	Disk space requirements on Multiplatforms
	Planning file system support on Multiplatforms
	Requirements for shared file systems on Multiplatforms
	Verifying shared file system behavior on Multiplatforms
	Running amqsfhac to test message integrity

	Sharing IBM MQ files on Multiplatforms
	Directory structure on AIX and Linux systems
	Directory content on AIX and Linux systems
	Example directory configurations on AIX and Linux systems

	Directory structure on Windows systems
	Directory content

	Directory structure on IBM i

	Planning file system support for MFT on Multiplatforms
	Choosing circular or linear logging on Multiplatforms
	Shared memory on AIX
	IBM MQ and UNIX System V IPC resources
	IBM MQ and UNIX Process Priority

	Planning your IBM MQ environment on z/OS
	Planning for your queue manager
	Planning your storage and performance requirements on z/OS
	Determining z/OS workload management importance
	Storage configuration
	Queue manager storage configuration
	Channel initiator storage configuration from IBM MQ 9.4.0

	Disk storage
	Where to find more information about storage and performance requirements

	Planning your page sets and buffer pools
	Enabling dynamic page set expansion
	Defining your buffer pools

	Planning your logging environment
	Log data set definitions
	Using MetroMirror with IBM MQ
	Faster log throughput with zHyperLink
	Planning your log archive storage
	Changing the storage medium for archive logs

	How long do I need to keep archive logs
	Planning to increase the maximum addressable log range

	Planning your channel initiator
	Planning for channel initiator SMF data
	Planning your z/OS TCP/IP environment

	Planning your queue sharing group (QSG)
	Planning your coupling facility and offload storage environment
	Planning your shared message data set (SMDS) environment
	Planning your Db2 environment

	Planning for backup and recovery
	Tips for backup and recovery
	Recovering page sets
	Recovering CF structures
	Achieving specific recovery targets
	Backup considerations for other products
	Preparing for recovery on an alternative site
	Example of queue manager backup activity

	Planning your z/OS UNIX environment
	Planning for Advanced Message Security on z/OS
	Planning for Managed File Transfer on z/OS
	Planning for Managed File Transfer - hardware and software requirements on z/OS
	Planning for Managed File Transfer - topologies on z/OS
	Planning for Managed File Transfer - security considerations on z/OS

	Planning to use the IBM MQ Console and REST API on z/OS

	Notices
	Programming interface information
	Trademarks

