
9.4

Developing Applications for IBM MQ

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
1249.

This edition applies to version 9 release 4 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Developing applications...5
Application development concepts...6

Actions that your applications can perform...7
Applications, application names, and application instances.. 9
Application programs using the MQI... 10
Using client connections to connect to multiple IBM MQ queue managers.......................................11
Developing flexible and scalable client applications.. 14
Object-oriented applications... 15
IBM MQ messages..17
Preparing and running Microsoft Transaction Server applications...47

Design considerations for IBM MQ applications...47
Specifying the application name in supported programming languages... 50
Design techniques for messages... 56
Application design and performance considerations..57
Design techniques for advanced applications...59
Design and performance considerations for IBM i applications...61
Design considerations for Linux on Power Systems - Little Endian applications............................... 62
Design and performance considerations for z/OS applications..62
IMS and IMS bridge applications on IBM MQ for z/OS..66

Developing JMS/Jakarta Messaging and Java applications... 78
Using IBM MQ classes for JMS/Jakarta Messaging...79
Using IBM MQ classes for Java..335
Using the IBM MQ resource adapter... 420
Using IBM MQ and WebSphere Application Server together..481
Using the IBM MQ Headers package... 497
Setting up IBM MQ on IBM i with Java and JMS .. 500
Java application development using a Maven repository...507

Developing C++ applications...508
C++ sample programs..511
C++ language considerations.. 515
Messaging in C++... 519
Building IBM MQ C++ programs.. 525

Developing .NET applications..535
Installing IBM MQ classes for .NET... 537
Installing IBM MQ classes for .NET Framework..543
Options for connecting IBM MQ classes for .NET to a queue manager..544
Sample applications for .NET...544
Configuring your queue manager to accept TCP/IP client connections... 547
Distributed transactions in .NET..547
Writing and deploying IBM MQ .NET programs...559

Developing XMS .NET applications... 594
Styles of messaging supported by XMS...595
The XMS object model... 596
The XMS message model...598
Installing IBM MQ classes for XMS .NET... 599
Setting up the messaging server environment..603
Using the XMS sample applications.. 608
Writing XMS .NET applications.. 611
Working with XMS .NET administered objects.. 635
Preventing applications from using a newer XMS version.. 642
Securing communications for XMS applications...642
XMS messages... 645

 iii

Developing AMQP client applications... 654
MQ Light, Apache Qpid JMS, and AMQP (Advanced Message Queuing Protocol)656
AMQP 1.0 support.. 657
Point-to-point support on AMQP channels... 659
Mapping AMQP and IBM MQ message fields.. 660
Message delivery reliability ...667
Topologies for AMQP clients with IBM MQ..671
IBM MQ AMQP listener control properties ... 678

Developing REST applications with IBM MQ...679
Messaging using the REST API.. 680

Developing MQI applications with IBM MQ.. 692
IBM MQ data definition files.. 693
Writing a procedural application for queuing.. 696
Writing client procedural applications...879
User exits, API exits, and IBM MQ installable services...902
Building a procedural application..962
Handling procedural program errors... 999
Multicast programming..1004
Coding in C... 1010
Coding in Visual Basic.. 1012
Coding in COBOL.. 1013
Coding in System/390 assembler language (Message queue interface)....................................... 1014
Coding IBM MQ programs in RPG (IBM i only).. 1017
Coding in PL/I (z/OS only)..1017
Using the IBM MQ sample procedural programs..1018

Developing applications for Managed File Transfer... 1175
Specifying programs to run with MFT..1175
Using Apache Ant with MFT...1177
Customizing MFT with user exits...1182
Controlling MFT by putting messages on the agent command queue... 1195

Developing applications for MQ Telemetry...1196
IBM MQ Telemetry Transport sample programs...1196
MQTT client programming concepts... 1198

Developing Microsoft Windows Communication Foundation applications with IBM MQ................... 1218
Introduction to the IBM MQ custom channel for WCF with .NET...1219
Using IBM MQ custom channels for WCF..1223
Using the WCF samples... 1242

Notices..1249
Programming interface information..1250
Trademarks..1250

iv

Developing applications for IBM MQ

You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.

New to developing applications for IBM MQ?
To learn about developing applications for IBM MQ, visit IBM Developer:

• IBM MQ Developer Essentials (learn the basics, run a demo, code an app, take more advanced tutorials)
• IBM MQ Downloads for Developers (including free developer editions and trial versions)

You might also find it easier to develop your applications if you are familiar with the concepts described in
the following sections:

• “Application development concepts” on page 6
• “Design considerations for IBM MQ applications” on page 47

Support for object oriented languages and frameworks
IBM MQ provides core support for applications developed in the following languages and frameworks:

• JMS
• Java
• C++
• .NET

See also “Object-oriented applications” on page 15.

.NET supports applications developed in many languages. To illustrate using the IBM MQ classes for .NET
to access IBM MQ queues, the MQ product documentation contains information for the following
languages:

• C# example code and sample applications
• C++ sample applications
• Visual Basic sample applications

See “Writing and deploying IBM MQ .NET programs” on page 559.

IBM MQ supports .NET Core for applications in Windows environments from IBM MQ 9.1.1 and for
applications in Linux® environments from IBM MQ 9.1.2. For more information, see “Installing IBM MQ
classes for .NET” on page 537.

IBM MQ also supports the AMQP clients that implement the OASIS AMQP 1.0 protocol.

MQ Light, Apache Qpid clients like Apache Qpid Proton and Apache Qpid JMS APIs are based on this
protocol.

The MQ Light APIs are available at IBM MQ Light.

The Apache Qpid clients are available at QPid Proton.

The following language bindings are provided as-is:

• a Go binding
• a JavaScript API implementation that works with Node.js applications

Support for programmatic REST APIs
IBM MQ provides support for the following programmatic REST APIs to send and receive messages:

© Copyright IBM Corp. 2007, 2024 5

https://ibm.biz/learn-mq
https://developer.ibm.com/articles/mq-downloads/
https://github.com/mqlight
https://qpid.apache.org/proton/
https://github.com/ibm-messaging/mq-golang
https://github.com/ibm-messaging/mq-mqi-nodejs

• IBM MQ messaging REST API

• IBM z/OS Connect EE
• IBM Integration Bus
• IBM DataPower® Gateway

See “Developing REST applications with IBM MQ” on page 679, and also the tutorial Get started with the
IBM MQ messaging REST API in the IBM MQ area of IBM Developer. This tutorial includes examples in the
following languages, provided as-is, for use with the IBM MQ messaging REST API:

• Go example that uses the MQ messaging REST API
• Node.js example using HTTPS module
• Node.js example with Promise module

Support for procedural programming languages
IBM MQ provides support for applications developed in the following procedural programming languages:

• C

• Visual Basic (Windows systems only)
• COBOL

• Assembler (IBM MQ for z/OS only)

• PL/I (IBM MQ for z/OS only)

• RPG (IBM MQ for IBM i only)

These languages use the message queue interface (MQI) to access message queuing services. See
“Developing MQI applications with IBM MQ” on page 692. Note that the IBM MQ Object Model, used by
the object oriented languages and frameworks, provides additional functions that are not available to the
procedural languages using the MQI.

Specifying the application name

Before IBM MQ 9.1.2, you could specify an application name on Java or JMS client applications. From
IBM MQ 9.1.2, you can also specify the application name on additional programming languages. For more
information, see “Specifying the application name in supported programming languages” on page 50.

Related tasks
“Developing applications for MQ Telemetry” on page 1196
“Developing Microsoft Windows Communication Foundation applications with IBM MQ” on page 1218
The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.
Related reference
“Developing applications for Managed File Transfer” on page 1175
Specify programs to run with Managed File Transfer, use Apache Ant with Managed File Transfer,
customise Managed File Transfer with user exits, and control Managed File Transfer by putting messages
on the agent command queue.

Application development concepts
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.

For information about the types of application you can write for IBM MQ, see “Developing applications for
IBM MQ” on page 5 and “Actions that your applications can perform” on page 7.

6 Developing Applications for IBM MQ

https://developer.ibm.com/components/ibm-mq/tutorials/mq-develop-mq-rest-api
https://developer.ibm.com/components/ibm-mq/tutorials/mq-develop-mq-rest-api

Related concepts
“Design considerations for IBM MQ applications” on page 47
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

Actions that your applications can perform
You can develop applications to send and receive messages that you need to support your business
processes. You can also develop applications to manage your queue managers and related resources.

Actions that your applications can perform on IBM MQ for Multiplatforms

On Multiplatforms, you can write applications that perform the following actions:

• Send messages to other applications running under the same operating systems. The applications can
be on either the same or another system.

• Send messages to applications that run on other IBM MQ platforms.
• Use message queuing from within CICS® for the following systems:

– TXSeries® for AIX®

– IBM i

– Windows
• Use message queuing from within Encina for the folllowing systems:

– AIX

– Windows
• Use message queuing from within Tuxedo for the following systems:

– AIX
– AT&T

– Windows
• Use IBM MQ as a transaction manager, coordinating updates made by external resource managers

within IBM MQ units of work. The following external resource managers are supported and comply with
the X/OPEN XA interface

– Db2®

– Informix®

– Oracle
– Sybase

• Process several messages together as a single unit of work that can be committed or backed out.
• Run from a full IBM MQ environment, or run from an IBM MQ client environment.

Actions that your applications can perform on IBM MQ for z/OS

On z/OS, you can write applications that perform the following actions:

• Use message queuing within CICS or IMS.
• Send messages between batch, CICS, and IMS applications, selecting the most appropriate

environment for each function.

Developing applications for IBM MQ 7

• Send messages to applications that run on other IBM MQ platforms.
• Process several messages together as a single unit of work that can be committed or backed out.
• Send messages to, and interact with, IMS applications by means of the IMS bridge.
• Participate in units of work coordinated by RRS.

Each environment within z/OS has its own characteristics, advantages, and disadvantages. The advantage
of IBM MQ for z/OS is that applications are not tied to any one environment, but can be distributed to
take advantage of the benefits of each environment. For example, you can develop end-user interfaces
using TSO or CICS, you can run processing-intensive modules in z/OS batch, and you can run database
applications in IMS or CICS. In all cases, the various parts of the application can communicate using
messages and queues.

Designers of IBM MQ applications must be aware of the differences and limitations imposed by these
environments. For example:

• IBM MQ provides facilities that allow intercommunication between queue managers (this is known as
distributed queuing).

• Methods of committing and backing out changes differ between the batch and CICS environments.
• IBM MQ for z/OS provides support in the IMS environment for online message processing programs

(MPPs), interactive fast path programs (IFPs), and batch message processing programs (BMPs). If you
are writing batch DL/I programs, follow the guidance given in topics such as “Building z/OS batch
applications” on page 985 and “z/OS batch considerations” on page 706 for z/OS batch programs.

• Although multiple instances of IBM MQ for z/OS can exist on a single z/OS system, a CICS region can
connect to only one queue manager at a time. However, more than one CICS region can be connected to
the same queue manager. In the IMS and z/OS batch environments, programs can connect to more than
one queue manager.

• IBM MQ for z/OS allows local queues to be shared by a group of queue managers, giving improved
throughput and availability. Such queues are called shared queues, and the queue managers form a
queue sharing group, which can process messages on the same shared queues. Batch applications can
connect to one of several queue managers within a queue sharing group by specifying the queue sharing
group name, instead of a particular queue manager name. This is known as group batch attach, or more
simply group attach. See Shared queues and queue sharing groups.

The differences between the supported environments, and their limitations, are explained
further in “Using and writing applications on IBM MQ for z/OS” on page 857.

Related concepts
“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
“Design considerations for IBM MQ applications” on page 47
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Writing a procedural application for queuing” on page 696
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 879
What you need to know to write client applications on IBM MQ using a procedural language.
“Using IBM MQ classes for JMS/Jakarta Messaging” on page 79
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are the Java messaging providers
supplied with IBM MQ. As well as implementing the interfaces defined in the JMS and Jakarta Messaging
specifications, these messaging providers add two sets of extensions to the Java messaging API.
“Using IBM MQ classes for Java” on page 335

8 Developing Applications for IBM MQ

Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.
“Developing C++ applications” on page 508
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.
“Building a procedural application” on page 962
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
Related tasks
“Using the IBM MQ sample procedural programs” on page 1018
These sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
“Developing .NET applications” on page 535
IBM MQ classes for .NET allow .NET applications to connect to IBM MQ as an IBM MQ MQI client or to
connect directly to an IBM MQ server.
“Developing Microsoft Windows Communication Foundation applications with IBM MQ” on page 1218
The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.
Securing

Applications, application names, and application instances
Before you start to design and write your applications, familiarize yourself with the basic concepts of
applications, application names, and application instances.

Applications

Connections to a queue manager are considered to be from the same application if they provide the same
application name. The application name is displayed as the APPLTAG attribute of the DISPLAY CONN(*)
TYPE CONN command.

Notes:

1. For applications using a version of the IBM MQ client earlier than IBM MQ 9.1.2, the application name
is automatically set by the IBM MQ client. Its value depends on the application programming language,
and the platform the application is running on. See PutApplName for more information.

2. For IBM MQ client applications using an IBM MQ client at IBM MQ 9.1.2 or later, it is possible to set the
application name to a specific value. In most cases, this does not require changes to application code
or a need to recompile the application. See “Using the application name in supported programming
languages” on page 51 for further information.

Application instances

Connections are further subdivided into application instances. An instance of an application is a set
of closely related connections which provide one 'unit of execution' for that application. Typically, this
is a single operating system process, which can have a number of threads and associated IBM MQ
connections.

On IBM MQ for Multiplatforms an application instance is associated with a specific Connection Tag. The
queue manager automatically associates new connections with an existing application instance, when it
can see that they are related.

Notes:

Developing applications for IBM MQ 9

• If using client connections, these processes might connect to the queue manager over one or more
running channels.

• In JMS applications, an application instance maps to a specific JMS connection and all associated JMS
sessions.

Application instances are particularly important on IBM MQ for Multiplatforms when using uniform
cluster automatic application balancing. On IBM MQ for Multiplatforms platforms, you can view currently
connected application instances using the DISPLAY APSTATUS command.

In some cases, the queue manager cannot correctly perform connection to application instance
association, in particular:

• If multiple connections are made on a shared conversation from the same process, using different
application names.

• If older level client libraries are in use. For example, IBM MQ JMS client installations at IBM MQ 9.1.2
and earlier.

In these situations, if the applications do not define themselves as reconnectable, this will be permitted,
but some of the application instance groupings might be incorrect. If any of the connections are declared
as MQCNO_RECONNECT then this significantly negatively affects application balancing; the MQCONN call
will, therefore, be rejected with MQCNO_RECONNECT_INCOMPATIBLE.

Related concepts
“Specifying the application name in supported programming languages” on page 50
Before IBM MQ 9.2.0, you could already specify an application name on Java or JMS client applications.
From IBM MQ 9.2.0 this feature is extended to other programming languages on IBM MQ for
Multiplatforms.

Application programs using the MQI
IBM MQ application programs need certain objects before they can run successfully.

Figure 1 on page 10 shows an application that removes messages from a queue, processes them, and
then sends some results to another queue on the same queue manager.

Figure 1. Queues, messages, and applications

Whereas applications can put messages onto local or remote queues (using MQPUT), they can only get
messages directly from local queues (using MQGET).

Before this application can run, the following conditions must be satisfied:

• The queue manager must exist and be running.
• The first application queue, from which the messages are to be removed, must be defined.

10 Developing Applications for IBM MQ

• The second queue, on which the application puts the messages, must also be defined.
• The application must be able to connect to the queue manager. To do this it must be linked to IBM MQ.

See “Building a procedural application” on page 962.
• The applications that put the messages on the first queue must also connect to a queue manager. If

they are remote, they must also be set up with transmission queues and channels. This part of the
system is not shown in Figure 1 on page 10.

Using client connections to connect to multiple IBM MQ queue managers
It is possible to configure client connected applications to connect to more than one queue manager (for
load balancing or service availability reasons).

The primary mechanisms to achieve this in the IBM MQ client are use of client channel definition tables,
see Configuring client channel definition tables, or connection lists.

It is also possible to achieve similar behavior using external load balancing products or by wrapping IBM
MQ connection code in a 'stub' which can redirect host names or IP addresses.

Each of these techniques comes with some restrictions, and might be more or less suitable to particular
application requirements. The following sections, although not exhaustive, describe particular aspects
you should consider, and the effect of these different approaches on these aspects.

IBM MQ uniform clusters, see About uniform clusters, provide a powerful mechanism to achieve
horizontal scaling of applications across multiple queue managers building on the basic mechanism of the
CCDT to provide multiple destinations. Uniform clusters can provide capabilities beyond what is possible
using an external load balancer unaware of the underlying IBM MQ protocols, and avoid some of the
problems discussed below, therefore, consider using a uniform cluster in preference to other techniques
where applicable.

Attention: You should use with caution applications using IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging, including those using one of the IBM MQ Resource Adapters,
that connect to queue managers using load balancing technologies. If you encounter problems,
recreate those problems without attempting to use load balancing.

There are multiple issues involved, all of which mean that such connections are at best
problematic and at worst wholly unreliable:

• Particular care is required when connecting any application which makes multiple connections to
the queue manager using any form of load balancing. This includes all applications using the IBM
MQ Classes for JMS/Jakarta Messaging as these create multiple IBM MQ connections in general
usage. If using an external load balancer or custom code stub, this must route connections from
the same application instance to the same queue manager at all times.

• Use of XA transaction management or JTA (Java Transaction API) relies on the ability to connect
consistently to the same queue manager – in practice this is unlikely to ever be practical with any
form of load balancing.

• - Uniform cluster management relies on being able to instruct clients to reconnect to specific
queue managers without interference. It is not advisable to attempt to combine external load
balancing with use of Uniform Clusters

You should use the IBM MQ uniform cluster functionality to achieve horizontal scaling of
applications across multiple queue managers, rather than external load balancing technologies.
See Configuring a uniform cluster, and the following topics, for information on uniform clusters,
including how you create and use uniform clusters.

Terms used in this information
CCDT- multi-QMGR

Means a CCDT file that contains multiple client connection (CLNTCONN) channels with the same
group, that is the queue manager name client connection (QMNAME CLNTCONN) attribute, where
different CLNTCONN entries resolve to different queue managers.

Developing applications for IBM MQ 11

This is distinct from a CCDT file that contains multiple CLNTCONN entries that are simply different IP
addresses or host names for the same multi-instance queue manager, which is an approach you might
choose to combine with a code stub.
If you do choose a CCDT multi queue manager approach, you need to choose whether to prioritize the
entries or have randomized work load management (WLM):
Prioritized

Use multiple alphabetically ordered entries with CLNTWGHT(1) and AFFINITY(PREFERRED)
attributes to remember the last good connection.

Randomized
Use CLNTWGHT(1) and AFFINITY(NONE) attributes. You can adjust the WLM weighting across
differently scaled IBM MQ servers by adjusting the CLNTWGHT

Note: You should avoid large differences in CLNTWGHT between channels.

Load balancer
Means a network appliance with a Virtual IP address (VIP) configured with port monitoring of the
TCP/IP listeners of multiple IBM MQ queue managers. How the VIP is configured in the network
appliance depends on the network appliance you are using.

The following choices relate only to applications sending messages, or initiating synchronous request and
reply messaging. The considerations for applications servicing those messages and requests, for example,
the listeners are completely separate, and discussed in detail in "Connecting a message listener to a
queue".

Scale of code change required for existing applications that connect to a single
queue manager
CONNAME list, CCDT multi-QMGR, and Load balancer

MQCONN("QMNAME") to MQCONN("*QMNAME")
The queue manager name might be in the Java Naming and Directory Interface (JNDI) configuration
for Java Platform, Enterprise Edition (Java EE) applications. Otherwise this requires a one character
code-change.

Code stub
Replace existing JMS or MQI connection logic with a code stub.

Support for different WLM strategies
CONNAME list

Prioritized only.
This is likely to have a negative effect on the code.

CCDT multi-QMGR
Prioritized or random.
This is not likely to have any effect on the code.

Load balancer
Any, including each connection for all messages.
This is likely to have a positive effect on the code.

Code stub
Any, including each message for all messages.
This is likely to have a positive effect on the code.

Performance overhead while primary queue manager is unavailable
CONNAME list

Always tries first in list.
This is likely to have a negative effect on the code.

12 Developing Applications for IBM MQ

CCDT multi-QMGR
Remembers last good connection.
This is likely to have a positive effect on the code.

Load balancer
Port monitoring avoids bad queue managers.
This is likely to have a positive effect on the code.

Code stub
Can remember last good connection, and retry intelligently.
This is likely to have a positive effect on the code.

XA transaction support
CONNAME list, CCDT multi-QMGR, and Load balancer

The transaction manager needs to store recovery information that reconnects to the same queue
manager resource.
An MQCONN call that resolves to different queue managers generally invalidates this. For example, in
Java EE, a single connection factory should resolve to a single queue manager when using XA.
This is likely to have a negative effect on the code.

Code stub
Code stub can meet the XA requirements for a transaction manager, for example, multiple connection
factories.
This is likely to have a positive effect on the code.

Admin flexibility to hide infrastructure changes from apps
CONNAME list

DNS only.
This is likely to have a negative effect on the code.

CCDT multi-QMGR
DNS and shared file-system, or shared file-system, or CCDT file push.
This is not likely to have any effect on the code.

Load balancer
Dynamic virtual IP address (VIP).
This is likely to have a positive effect on the code.

Code stub
DNS or single queue manager CCDT entries.
This is not likely to have any effect on the code.

Avoiding disruption around planned maintenance
There is another situation that you need to consider and plan for, which is how to avoid disruption to
applications, for example, errors and timeouts visible to the end users, during planned maintenance of a
queue manager. The best approach to avoid disruption is to remove all work from a queue manager before
it is stopped.

Consider a request and reply scenario. You want all in-flight requests to complete, and the replies to be
processed by the application, but you do not want any additional work to be submitted into the system.
Simply quiescing the queue manager does not fulfill this need, as well-coded applications receive a return
code RC2161 MQRC_Q_MGR_QUIESCING exception, before they receive their reply messages for in-flight
requests.

You can set PUT(DISABLED) on the request queues used to submit work, while leaving the reply
queues both PUT(ENABLED) and GET(ENABLED). In this way, you can monitor the depth of the request,

Developing applications for IBM MQ 13

transmission, and reply queues. Once they all stabilize, that is, in-flight requests complete or time out,
you can stop the queue manager.

However, good coding in the requesting applications is required to handle a PUT(DISABLED) request
queue, which results in the return code RC2051 MQRC_PUT_INHIBITED error, when trying to send a
message.

Note that the exception does not occur when creating the connection to IBM MQ, or opening the request
queue. The exception occurs only when an attempt is made to actually send a message, using the MQPUT
call.

Building a code stub that includes this error handling logic for request and reply scenarios, and asking
your application teams to use such a code stub in the future, can help you develop applications with
consistent behavior.

Developing flexible and scalable client applications
For fault tolerance and scalability, deploying client applications which support connections options into
uniform clusters allows the instances of the application to be rebalanced between queue managers.

See About uniform clusters for an overview of uniform clusters.

Ideally, this re-balancing is invisible to the application, but only certain types of application are suitable
for this type of deployment, and some consideration might be needed in the application design.

These considerations fall into two main categories:

• Rare error paths which might exist already for re-connectable applications, but become more likely
when deployed into a uniform cluster. For example, following a reconnect, any inflight unit of work is
backed out, and browse cursors reset. These might be a rare event for your re-connectable application
in its current environment and, therefore, not handled as cleanly as possible by the application code.
Reviewing application logic, to ensure appropriate handling is in place for such situations, helps avoid
unexpected issues arising.

• Affinities to a particular queue manager. If you know that an application must always connect back to
the same or a specific queue manager, the application should be configured to reconnect to that queue
manager, or not have its connection to that queue manager enabled. However, these affinities might be
temporary, such as waiting for a response message. Influencing the balancing algorithm to account for
these affinities from the application code is discussed in the following section. For more details on these
options, and how to achieve a similar approach through configuration, rather than application code, see
Influencing application re-balancing in uniform clusters.

Influencing reconnection options in the MQI
See Reconnection options for more information on MQCNO_RECONNECT.

If you know that an application must always connect back to the same or a specific queue manager, it
should be configured as MQCNO_RECONNECT_Q_MGR or MQCNO_RECONNECT_DISABLED.

Influencing the balancing algorithm in the MQI
However, you might want to control or influence that re-balancing behavior to suit the needs of specific
types of application; for example, minimizing interruptions to in flight transactions, or ensuring requester
applications receive their responses before being moved.

Certain default desirable behaviors are assumed and discussed in Influencing application re-balancing
in uniform clusters. You can also influence the behavior for specific applications at configuration or
deployment time through the client.ini file as discussed in that topic.

In other situations, it might make more sense to make the balancing behavior and requirements part of
the application logic. In these cases, the same relevant characteristics of the application can be supplied
to IBM MQ when connecting to the queue manager on the MQCONNX call, in a structure called MQBNO
(balancing options).

14 Developing Applications for IBM MQ

If you provide an MQBNO structure, it must supply all of the information required by IBM MQ to make a
decision about how and when the application should be asked to reconnect to a different queue manager.

You must supply:

• The Type of application
• The Timeout at which the instance is rebalanced regardless of state
• Any special BalanceOptions

The exception to this, is that you can leave the timeout as MQBNO_TIMEOUT_DEFAULT if required. In this
case, the timeout resolves to any value in the client.ini file, application, or global stanzas, if provided, and
failing that, to the base default of 10 seconds.

See MQBNO for details on the format of this structure.

For .NET applications, see Influencing application re-balancing in .NET for further information.

Object-oriented applications
IBM MQ provides support for JMS, Java, C++, and .NET. These languages and frameworks use the IBM
MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls and
structures.

Some of the languages and frameworks that use the IBM MQ Object Model provide additional functions
that are not available when you use procedural languages with the message queue interface (MQI).

For details of the classes, methods and properties provided by this model, see “The IBM MQ Object
Model” on page 16.

JMS
IBM MQ provides classes that implement the Jakarta Messaging 3.0 and Java Message Service
2.0 specifications. For details of IBM MQ classes for JMS, see Using IBM MQ classes for JMS. For
information about the differences between IBM MQ classes for Java and IBM MQ classes for JMS,
to help you decide which to use, see “Developing JMS/Jakarta Messaging and Java applications” on
page 78.

IBM MQ Message Service Client (XMS) for C/C++ and IBM MQ Message Service Client (XMS) for .NET
provide an application programming interface (API) called XMS that has the same set of interfaces as
the Java Message Service (JMS) API. For more information, see “Developing XMS .NET applications”
on page 594.

Java
See Using IBM MQ classes for Java for information about coding programs using the IBM MQ Object
Model in Java.

IBM will make no further enhancements to the IBM MQ classes for Java and they are
functionally stabilized at the level shipped in IBM MQ 8.0. For information about the differences
between the IBM MQ classes for Java and the IBM MQ classes for JMS to help you decide which to
use, see “Developing JMS/Jakarta Messaging and Java applications” on page 78.

C++
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent
to the array data types. It provides a number of features not available through the MQI. See Using
C++ for information about coding programs using the IBM MQ Object Model in C++. Message Service
Clients for C/C++ and .NET provide an application programming Interface (API) called XMS that has
the same set of interfaces as the Java Message Service (JMS) API.

.NET
See Developing .NET applications for information about coding .NET programs using the IBM MQ .NET
classes. Message Service Clients for C/C++ and .NET provide an application programming Interface
(API) called XMS that has the same set of interfaces as the Java Message Service (JMS) API.

Related concepts
“Developing MQI applications with IBM MQ” on page 692

Developing applications for IBM MQ 15

IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These procedural
languages use the message queue interface (MQI) to access message queuing services.
Technical overview
“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
Related reference
Developing applications reference

The IBM MQ Object Model
The IBM MQ Object Model consists of classes, methods and properties.

The IBM MQ Object Model consists of:

• Classes representing familiar IBM MQ concepts such as queue managers, queues, and messages.
• Methods on each class corresponding to MQI calls.
• Properties on each class corresponding to attributes of IBM MQ objects.

When creating an IBM MQ application using the IBM MQ Object Model, you create instances of these
classes in the application. An instance of a class in object-oriented programming is called an object. When
an object has been created, you interact with the object by examining or setting the values of the object's
properties (the equivalent of issuing an MQINQ or MQSET call), and by making method calls against the
object (the equivalent of issuing the other MQI calls).

Classes
The IBM MQ Object Model provides the following base set of classes.

The actual implementation of the model varies slightly between the different supported object-oriented
environments.
MQQueueManager

An object of the MQQueueManager class represents a connection to a queue manager. It has methods
to Connect(), Disconnect(), Commit(), and Backout() (the equivalent of MQCONN or MQCONNX,
MQDISC, MQCMIT, and MQBACK). It has properties corresponding to the attributes of a queue
manager. Accessing a queue manager attribute property implicitly connects to the queue manager if
not already connected. Destroying an MQQueueManager object implicitly disconnects from the queue
manager.

MQQueue
An object of the MQQueue class represents a queue. It has methods to Put() and Get() messages
to and from the queue (the equivalent of MQPUT and MQGET). It has properties corresponding to
the attributes of a queue. Accessing a queue attribute property, or issuing a Put() or Get() method
call, implicitly opens the queue (the equivalent of MQOPEN). Destroying an MQQueue object implicitly
closes the queue (the equivalent of MQCLOSE).

MQTopic
An object of the MQTopic class represents a topic. It has methods to Put() (publish) and Get()
(receive or subscribe) messages to and from the topic (the equivalent of MQPUT and MQGET). It has
properties corresponding to the attributes of a topic. An MQTopic object can only be accessed for
publication or subscription, not both simultaneously. When used for receiving messages the MQTopic
object can be created with an unmanaged or managed subscription and as a durable or non-durable
subscriber - multiple overloaded constructors are provided for these differing scenarios.

MQMessage
An object of the MQMessage class represents a message to be put on a queue or got from a queue. It
contains a buffer, and encapsulates both application data and MQMD. It has properties corresponding
to MQMD fields, and methods that allow you to write and read user data of different types (for
example, strings, long integers, short integers, single bytes) to and from the buffer.

16 Developing Applications for IBM MQ

MQPutMessageOptions
An object of the MQPutMessageOptions class represents the MQPMO structure. It has properties
corresponding to MQPMO fields.

MQGetMessageOptions
An object of the MQGetMessageOptions class represents the MQGMO structure. It has properties
corresponding to MQGMO fields.

MQProcess
An object of the MQProcess class represents a process definition (used with triggering). It has
properties that represent the attributes of a process definition.

MQDistributionList
An object of the MQDistributionList class represents a distribution list (used to send multiple
messages with a single MQPUT). It contains a list of MQDistributionListItem objects.

MQDistributionListItem
An object of the MQDistributionListItem class represents a single distribution list destination. It
encapsulates the MQOR, MQRR, and MQPMR structures, and has properties corresponding to the
fields of these structures.

Object references
In an IBM MQ program that uses the MQI, IBM MQ returns connection handles and object handles to the
program.

These handles must be passed as parameters on subsequent IBM MQ calls. With the IBM MQ Object
Model, these handles are hidden from the application program. Instead, the creation of an object from a
class results in an object reference being returned to the application program. It is this object reference
that is used when making method calls and property accesses against the object.

Return codes
Issuing a method call or setting a property value results in return codes being set.

These return codes are a completion code and a reason code, and are themselves properties of the
object. The values of completion code and reason code are the same as those defined for the MQI, with
some extra values specific to the object-oriented environment.

IBM MQ messages
An IBM MQ message consists of message properties and application data. The message queuing message
descriptor (MQMD) contains the control information that accompanies the application data when a
message travels between the sending and receiving applications.

Parts of a message
IBM MQ messages consist of two parts:

• Message properties
• Application data

Figure 2 on page 18 represents a message and shows how it is logically divided into message properties
and application data.

Developing applications for IBM MQ 17

Figure 2. Representation of a message

The application data that is carried in an IBM MQ message is not changed by a queue manager unless
data conversion is carried out on it. Also, IBM MQ does not put any restrictions on the content of this data.
The length of the data in each message cannot exceed the value of the MaxMsgLength attribute of both
the queue and queue manager.

On AIX, Linux, and Windows, the MaxMsgLength attribute of the queue manager and the
queue defaults to 4 MB (4 194 304 bytes) which you can change up to a maximum of 100 MB (104 857
600 bytes) if required.

On IBM i, the MaxMsgLength attribute of the queue manager and the queue defaults to 4
MB (4 194 304 bytes) which you can change up to a maximum of 100 MB (104 857 600 bytes) if required.
If you are intending to use IBM MQ messages greater than 15 MB on IBM i, see “Building your procedural
application on IBM i” on page 968.

On z/OS, the MaxMsgLength attribute of the queue manager is fixed at 100 MB and the
MaxMsgLength attribute of the queue defaults to 4 MB (4 194 304 bytes) which you can change up to a
maximum of 100 MB if required.

Make your messages slightly shorter than the value of the MaxMsgLength attribute in some
circumstances. For more information, see “The data in your message” on page 731.

You create a message when you use the MQPUT or MQPUT1 MQI calls. As input to these calls, you supply
the control information (such as the priority of the message and the name of a reply queue) and your data,
and the call then puts the message on a queue. See MQPUT and MQPUT1 for more information about
these calls.

Message descriptor
You can access message control information by using the MQMD structure, which defines the message
descriptor.

For a full description of the MQMD structure, see MQMD - Message descriptor.

For a description of how to use the fields within the MQMD that contain information about the origin of the
message, see “Message context” on page 45.

There are different versions of the message descriptor. Additional information for grouping and
segmenting messages (see “Message groups” on page 42) is provided in Version 2 of the message
descriptor (or the MQMDE). This is the same as the Version 1 message descriptor but has extra fields.
These fields are described in the MQMDE - Message descriptor extension.

Types of message
There are four types of messages defined by IBM MQ.

These four messages are:

18 Developing Applications for IBM MQ

• Datagram
• Request messages
• Reply messages
• Report messages

– Types of report message
– Report message options

Applications can use the first three types of messages to pass information between themselves. The
fourth type, report, is for applications and queue managers to use to report information about events such
as the occurrence of an error.

Each type of message is identified by an MQMT_* value. You can also define your own types of message.
For the range of values you can use, see MsgType.

Datagrams
Use a datagram when you do not require a reply from the application that receives the message (that is,
gets the message from the queue).

An example of an application that might use datagrams is one that displays flight information in an airport
lounge. A message might contain the data for a whole screen of flight information. Such an application is
unlikely to request an acknowledgment for a message because it probably does not matter if a message is
not delivered. The application sends an update message after a short time.

Request messages
Use a request message when you want a reply from the application that receives the message.

An example of an application that could use request messages is one that displays the balance of a
checking account. The request message could contain the number of the account, and the reply message
would contain the account balance.

If you want to link your reply message with your request message, there are two options:

• Make the application that handles the request message responsible for ensuring that it puts information
into the reply message that relates to the request message.

• Use the report field in the message descriptor of your request message to specify the content of the
MsgId and CorrelId fields of the reply message:

– You can request that either the MsgId or the CorrelId of the original message is to be copied into
the CorrelId field of the reply message (the default action is to copy MsgId).

– You can request that either a new MsgId is generated for the reply message, or that the MsgId of the
original message is to be copied into the MsgId field of the reply message (the default action is to
generate a new message identifier).

Reply messages
Use a reply message when you reply to another message.

When you create a reply message, respect any options that were set in the message descriptor of the
message to which you are replying. Report options specify the content of the message identifier (MsgId)
and correlation identifier (CorrelId) fields. These fields allow the application that receives the reply to
correlate the reply with its original request.

Report messages
Report messages inform applications about events such as the occurrence of an error when processing a
message.

They can be generated by:

Developing applications for IBM MQ 19

• A queue manager,
• A message channel agent (for example, if they cannot deliver the message), or
• An application (for example, if it cannot use the data in the message).

Report messages can be generated at any time, and might arrive on a queue when your application is not
expecting them.

Types of report message

When you put a message on a queue, you can select to receive:

• An exception report message. This is sent in response to a message with the exceptions flag set. It is
generated by the message channel agent (MCA) or the application.

• An expiry report message. This indicates that an application attempted to retrieve a message that
had reached its expiry threshold; the message is marked to be discarded. This type of report is
generated by the queue manager.

• A confirmation of arrival (COA) report message. This indicates that the message has reached its
target queue. It is generated by the queue manager.

• A confirmation of delivery (COD) report message. This indicates that the message has been retrieved
by a receiving application. It is generated by the queue manager.

• A positive action notification (PAN) report message. This indicates that a request has been
successfully serviced (that is, the action requested in the message has been performed
successfully). This type of report is generated by the application.

• A negative action notification (NAN) report message. This indicates that a request has not been
successfully serviced (that is, the action requested in the message has not been performed
successfully). This type of report is generated by the application.

Note: Each type of report message contains one of the following:

• The entire original message
• The first 100 bytes of data in the original message
• No data from the original message

You can request more than one type of report message when you put a message on a queue. If you
select the delivery confirmation report message and the exception report message options, if the
message fails to be delivered, you receive an exception report message. However, if you select only
the delivery confirmation report message option and the message fails to be delivered, you do not get
an exception report message.

The report messages that you request, when the criteria for generating a particular message are met,
are the only ones that you receive.

Report message options

You can discard a message after an exception has arisen. If you select the discard option, and
have requested an exception report message, the report message goes to the ReplyToQ and
ReplyToQMgr, and the original message is discarded.

Note: A benefit of this is that you can reduce the number of messages going to the dead-letter queue.
However, it does mean that your application, unless it sends only datagram messages, has to deal
with returned messages. When an exception report message is generated, it inherits the persistence
of the original message.

If a report message cannot be delivered (if the queue is full, for instance), the report message is
placed on the dead-letter queue.

If you want to receive a report message, specify the name of your reply-to queue in
the ReplyToQ field; otherwise the MQPUT or MQPUT1 of your original message fails with
MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message to specify the
content of the MsgId and CorrelId fields of any report messages that are created for the message:

20 Developing Applications for IBM MQ

• You can request that either the MsgId or the CorrelId of the original message is to be copied into
the CorrelId field of the report message. The default action is to copy the message identifier. Use
MQRO_COPY_MSG_ID_TO_CORRELID because it enables the sender of a message to correlate the
reply or report message with the original message. The correlation identifier of the reply or report
message is identical to the message identifier of the original message.

• You can request that either a new MsgId is generated for the report message, or that the MsgId of
the original message is to be copied into the MsgId field of the report message. The default action
is to generate a new message identifier. Use MQRO_NEW_MSG_ID because it ensures that each
message in the system has a different message identifier, and can be distinguished unambiguously
from all other messages in the system.

• Specialized applications might need to use MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID.
However, you need to design the application that reads the messages from the queue to ensure
that it works correctly when, for example, the queue contains multiple messages with the same
message identifier.

Server applications must check the settings of these flags in the request message, and set the
MsgId and CorrelId fields in the reply or report message appropriately.

Applications that act as intermediaries between a requester application and a server application
do not need to check the settings of these flags. This is because these applications typically need
to forward the message to the server application with the MsgId, CorrelId, and Report fields
unchanged. This allows the server application to copy the MsgId from the original message in the
CorrelId field of the reply message.

When generating a report about a message, server applications must test to see if any of these
options have been set.

For more information about how to use report messages, see Report.

To indicate the nature of the report, queue managers use a range of feedback codes. They put these
codes in the Feedback field of the message descriptor of a report message. Queue managers can
also return MQI reason codes in the Feedback field. IBM MQ defines a range of feedback codes for
applications to use.

For more information about feedback and reason codes, see Feedback.

An example of a program that could use a feedback code is one that monitors the workloads of other
programs serving a queue. If there is more than one instance of a program serving a queue, and the
number of messages arriving on the queue no longer justifies this, such a program can send a report
message (with the feedback code MQFB_QUIT) to one of the serving programs to indicate that the
program should terminate its activity. (A monitoring program could use the MQINQ call to find out how
many programs are serving a queue.)

Reports and segmented messages
If a message is segmented and you ask for reports to be generated, you might receive more reports than
you would have done had the message not been segmented. Reports on segmented messages are only
available on Multiplatforms.

For a description of segmented messages, see “Message segmentation” on page 764.

For reports generated by IBM MQ
If you segment your messages or allow the queue manager to do so, there is only one case in which you
can expect to receive a single report for the entire message. This is when you have requested only COD
reports, and you have specified MQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports; usually one for each
segment.

Note: If you segment your messages, and you need only the first 100 bytes of the original message
data to be returned, change the setting of the report options to ask for reports with no data for
segments that have an offset of 100 or more. If you do not do this, and you leave the setting so that

Developing applications for IBM MQ 21

each segment requests 100 bytes of data, and you retrieve the report messages with a single MQGET
specifying MQGMO_COMPLETE_MSG, the reports assemble into a large message containing 100 bytes
of read data at each appropriate offset. If this happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

For reports generated by applications
If your application generates reports, always copy the IBM MQ headers that are present at the start of the
original message data to the report message data.

Then add none, 100 bytes, or all of the original message data (or whatever other amount you would
usually include) to the report message data.

You can recognize the IBM MQ headers that must be copied by looking at the successive Format names,
starting with the MQMD and continuing through any headers present. The following Format names
indicate these IBM MQ headers:

• MQMDE
• MQDLH
• MQXQH
• MQIIH
• MQH*

MQH* means any name that starts with the characters MQH.

The Format name occurs at specific positions for MQDLH and MQXQH, but for the other IBM MQ headers
it occurs at the same position. The length of the header is contained in a field that also occurs at the same
position for MQMDE, MQIMS, and all MQH* headers.

If you are using a Version 1 MQMD, and you are reporting on a segment, or a message in a group,
or a message for which segmentation is allowed, the report data must start with an MQMDE. Set the
OriginalLength field to the length of the original message data excluding the lengths of any IBM MQ
headers that you find.

Retrieving reports
If you ask for COA or COD reports, you can ask for them to be reassembled for you with
MQGMO_COMPLETE_MSG.

An MQGET with MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single type, for
example COA, and with the same GroupId) are present on the queue to represent one complete original
message. This is true even if the report messages themselves do not contain the complete original data;
the OriginalLength field in each report message gives the length of original data represented by that
report message, even if the data itself is not present.

You can use this technique even if there are several different report types present on the queue (for
example, both COA and COD), because an MQGET with MQGMO_COMPLETE_MSG reassembles report
messages only if they have the same Feedback code. However, you cannot usually use this technique for
exception reports, because, in general, these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has arrived.
However, in most circumstances you need to cater for the possibility that some segments arrive
while others might generate an exception (or expiry, if you have allowed this). You cannot use
MQGMO_COMPLETE_MSG in this case, because, in general, you might get different Feedback codes
for different segments and, you might get more than one report for a segment. You can, however, use
MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you might need to retrieve reports as they arrive, and build up a picture in your
application of what happened to the original message. You can use the GroupId field in the report
message to correlate reports with the GroupId of the original message, and the Feedback field to

22 Developing Applications for IBM MQ

identify the type of each report message. The way in which you do this depends on your application
requirements.

One approach is as follows:

• Ask for COD reports and exception reports.
• After a specific time, check whether a complete set of COD reports has been received using

MQGMO_COMPLETE_MSG. If so, your application knows that the entire message has been processed.
• If not, and exception reports relating to this message are present, handle the problem as for

unsegmented messages, but ensure that you clean up orphan segments at some point.
• If there are segments for which there are no reports of any kind, the original segments (or the reports)

might be waiting for a channel to be reconnected, or the network might be overloaded at some point.
If no exception reports at all have been received (or if you think that the ones you have might be
temporary only), you might decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with unsegmented messages,
except that you must also consider the possibility of cleaning up orphan segments.

If the original message is not critical (for example, if it is a query, or a message that can be repeated later),
set an expiry time to ensure that orphan segments are removed.

Back-level queue managers
When a report is generated by a queue manager that supports segmentation, but is received on a queue
manager that does not support segmentation, the MQMDE structure (which identifies the Offset and
OriginalLength represented by the report) is always included in the report data, in addition to zero,
100 bytes, or all of the original data in the message.

However, if a segment of a message passes through a queue manager that does not support
segmentation, if a report is generated there, the MQMDE structure in the original message is treated
purely as data. It is not therefore included in the report data if zero bytes of the original data have been
requested. Without the MQMDE, the report message might not be useful.

Request at least 100 bytes of data in reports if there is a possibility that the message might travel through
a back-level queue manager.

Format of message control information and message data
The queue manager is only interested in the format of the control information within a message, whereas
applications that handle the message are interested in the format of both the control information and the
data.

Format of message control information
Control information in the character-string fields of the message descriptor must be in the character set
used by the queue manager.

The CodedCharSetId attribute of the queue manager object defines this character set. Control
information must be in this character set because, when applications pass messages from one queue
manager to another, message channel agents that transmit the messages use the value of this attribute to
determine what data conversion to perform.

Format of message data
You can specify any of the following things:

• The format of the application data
• The character set of the character data
• The format of numeric data

To do this, use these fields:

Developing applications for IBM MQ 23

Format
This indicates to the receiver of a message the format of the application data in the message.

When the queue manager creates a message, in some circumstances it uses the Format field to
identify the format of that message. For example, when a queue manager cannot deliver a message,
it puts the message on a dead-letter (undelivered message) queue. It adds a header (containing more
control information) to the message, and changes the Format field to show this.

The queue manager has a number of built-in formats with names beginning MQ, for example
MQFMT_STRING. If these do not meet your needs, you can define your own formats (user-defined
formats), but you must not use names beginning with MQ for these.

When you create and use your own formats, you must write a data-conversion exit to support a
program getting the message using MQGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want to set this character
set to that of the queue manager, you can set this field to the constant MQCCSI_Q_MGR or
MQCCSI_INHERIT.

When you get a message from a queue, compare the value of the CodedCharSetId field with the
value that your application is expecting. If the two values differ, you might need to convert any
character data in the message or use a data-conversion message exit if one is available.

Encoding
This describes the format of numeric message data that contains binary integers, packed-decimal
integers, and floating point numbers. It is typically encoded according to the particular machine on
which the queue manager is running.

When you put a message on a queue, you typically specify the constant MQENC_NATIVE in the
Encoding field. This means that the encoding of your message data is the same as that of the
machine on which your application is running.

When you get a message from a queue, compare the value of the Encoding field in the message
descriptor with the value of the constant MQENC_NATIVE on your machine. If the two values differ,
you might need to convert any numeric data in the message or use a data-conversion message exit if
one is available.

Application data conversion
Application data might need to be converted to the character set and the encoding required by another
application where different platforms are concerned.

It can be converted at the sending queue manager, or at the receiving queue manager. If the library of
built-in formats does not meet your needs, you can define your own. The type of conversion depends on
the message format that is specified in the format field of the message descriptor, MQMD.

Note: Messages with MQFMT_NONE specified are not converted.

Conversion at the sending queue manager
Set the CONVERT channel attribute to YES if you need the sending message channel agent (MCA) to
convert the application data.

The conversion is performed at the sending queue manager for certain built-in formats and for user-
defined formats if a suitable user exit is supplied.

Built-in formats

These include:

• Messages that are all characters (using the format name MQFMT_STRING)
• IBM MQ defined messages, for example Programmable Command Formats

IBM MQ uses Programmable Command Format messages for administration messages and events
(the format name used is MQFMT_ADMIN in this case). You can use the same format (using

24 Developing Applications for IBM MQ

the format name MQFMT_PCF) for your own messages, and take advantage of the built-in data
conversion.

The queue manager built-in formats all have names beginning with MQFMT. They are listed and
described in Format.

Application-defined formats

For user-defined formats, application data conversion must be performed by a data-conversion exit
program (for more information, see “Writing data-conversion exits” on page 947). In a client-server
environment, the exit is loaded at the server and conversion takes place there.

Conversion at the receiving queue manager
Application message data can be converted by the receiving queue manager for both built-in and user-
defined formats.

The conversion is performed during the processing of an MQGET call if you specify the MQGMO_CONVERT
option. For details, see the Options

Coded character sets
IBM MQ products support the coded character sets that are provided by the underlying operating system.

When you create a queue manager, the queue manager coded character set ID (CCSID) used is based on
that of the underlying environment. If this is a mixed code page, IBM MQ uses the SBCS part of the mixed
code page as the queue manager CCSID.

For general data conversion, if the underlying operating system supports DBCS code pages, IBM MQ can
use it.

See the documentation for your operating system for details of the coded character sets that it supports.

You need to consider application data conversion, format names, and user exits when writing applications
that span multiple platforms. See “Writing data-conversion exits” on page 947 for information about
invoking and writing data-conversion exits.

Message priorities
You can either set the priority of message to a numeric value, or let the message take the default priority
of the queue.

You set the priority of a message (in the Priority field of the MQMD structure) when you put the
message on a queue. You can set a numeric value for the priority, or you can let the message take the
default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on the queue are
stored in FIFO (first in, first out) sequence, or in FIFO within priority sequence. If this attribute is set
to MQMDS_PRIORITY, messages are enqueued with the priority specified in the Priority field of their
message descriptors; but if it is set to MQMDS_FIFO, messages are enqueued with the default priority of
the queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages being put on that
queue. This value is set when the queue is created, but it can be changed afterward. Alias queues, and
local definitions of remote queues, can have different default priorities from the base queues to which
they resolve. If there is more than one queue definition in the resolution path (see “Name resolution”
on page 719), the default priority is taken from the value (at the time of the put operation) of the
DefPriority attribute of the queue specified in the open command.

The value of the MaxPriority attribute of the queue manager is the maximum priority that you can
assign to a message processed by that queue manager. You cannot change the value of this attribute. In
IBM MQ, the attribute has the value 9; you can create messages having priorities between 0 (the lowest)
and 9 (the highest).

Developing applications for IBM MQ 25

Message properties
Use message properties to allow an application to select messages to process, or to retrieve information
about a message without accessing MQMD or MQRFH2 headers. They also facilitate communication
between IBM MQ and JMS applications.

A message property is data associated with a message, consisting of a textual name and a value of a
particular type. Message properties are used by message selectors to filter publications to topics or to
selectively get messages from queues. Message properties can be used to include business data or state
information without having to store it in the application data. Applications do not have to access data in
the MQ Message Descriptor (MQMD) or MQRFH2 headers because fields in these data structures can be
accessed as message properties using Message Queue Interface (MQI) function calls.

The use of message properties in IBM MQ mimics the use of properties in JMS. This means that you
can set properties in a JMS application and retrieve them in a procedural IBM MQ application, or
the other way round. To make a property available to a JMS application, assign it the prefix "usr";
it is then available (without the prefix) as a JMS message user property. For example, the IBM MQ
property usr.myproperty (a character string) is accessible to a JMS application using the JMS call
message.getStringProperty('myproperty'). Note that JMS applications are unable to access
properties with the prefix "usr" if they contain two or more U+002E (".") characters. A property with no
prefix and no U+002E (".") character is treated as if it had the prefix "usr". Conversely, a user property set
in a JMS application can be accessed in an IBM MQ application by adding the "usr." prefix to the property
name inquired on in an MQINQMP call.

Message properties and message length
Use the queue manager attribute MaxPropertiesLength to control the size of the properties that can flow
with any message in an IBM MQ queue manager.

In general, when you use MQSETMP to set properties, the size of a property is the length of the property
name in bytes, plus the length of the property value in bytes as passed into the MQSETMP call. It is
possible for the character set of the property name and the property value to change during transmission
of the message to its destination because these can be converted into Unicode; in this case the size of the
property might change.

On an MQPUT or MQPUT1 call, properties of the message do not count toward the length of the message
for the queue and the queue manager, but they do count toward the length of the properties as perceived
by the queue manager (whether they were set using the message property MQI calls or not).

If the size of the properties exceeds the maximum properties length, the message is rejected with
MQRC_PROPERTIES_TOO_BIG. Because the size of the properties is dependent on its representation, you
should set the maximum properties length at a gross level.

It is possible for an application to successfully put a message with a buffer that is larger than the value
of MaxMsgLength, if the buffer includes properties. This is because, even when represented as MQRFH2
elements, message properties do not count toward the length of the message. The MQRFH2 header fields
add to the properties length only if one or more folders are contained and every folder in the header
contains properties. If one or more folders are contained in the MQRFH2 header and any folder does not
contain properties, the MQRFH2 header fields count toward the message length instead.

On an MQGET call, properties of the message do not count toward the length of the message as far as the
queue and the queue manager are concerned. However, because the properties are counted separately
it is possible that the buffer returned by an MQGET call is larger than the value of the MaxMsgLength
attribute.

Do not have your applications query the value of MaxMsgLength and then allocate a buffer of this size
before calling MQGET; instead, allocate a buffer you consider large enough. If the MQGET fails, allocate a
buffer guided by the size of the DataLength parameter.

The DataLength parameter of the MQGET call returns the length in bytes of the application data and any
properties returned in the buffer you have provided, if a message handle is not specified in the MQGMO
structure.

26 Developing Applications for IBM MQ

The Buffer parameter of the MQPUT call contains the application message data to be sent and any
properties represented in the message data.

There is a length limit of 100 MB for message properties, excluding the message descriptor or extension
for each message.

The size of a property in its internal representation is the length of the name, plus the size of its value,
plus some control data for the property. There is also some control data for the set of properties after one
property is added to the message.

Property names
A property name is a character string. Certain restrictions apply to its length and the set of characters that
can be used.

A property name is a case-sensitive character string, limited to 4095 characters unless otherwise
restricted by the context. This limit is contained in the MQ_MAX_PROPERTY_NAME_LENGTH constant.

If you exceed this maximum length when using a message property MQI call, the call fails with reason
code MQRC_PROPERTY_NAME_LENGTH_ERR.

Because there is no maximum property name length in JMS, it is possible for a JMS application to set a
valid JMS property name that is not a valid IBM MQ property name when stored in an MQRFH2 structure.

In this case, when parsed, only the first 4095 characters of the property name are used; the following
characters are truncated. This could cause an application using selectors to fail to match a selection
string, or to match a string when not expecting to, since more than one property might truncate to the
same name. When a property name is truncated, IBM MQ issues an error log message.

All property names must follow the rules defined by the Java Language Specification for Java Identifiers,
with the exception that Unicode character U+002E (.) is permitted as part of the name - but not the start.
The rules for Java Identifiers equate to those contained in the JMS specification for property names.

White space characters and comparison operators are prohibited. Embedded nulls are allowed in
a property name but not recommended. If you use embedded nulls, this prevents the use of the
MQVS_NULL_TERMINATED constant when used with the MQCHARV structure to specify variable length
strings.

Keep property names simple because applications can select messages based on the property names and
the conversion between the character set of the name and of the selector might cause the selection to fail
unexpectedly.

IBM MQ property names use character U+002E (.) for logical grouping of properties. This divides up
the namespace for properties. Properties with the following prefixes, in any mixture of lowercase or
uppercase are reserved for use by the product:

• mcd
• jms
• usr
• mq
• sib
• wmq
• Root
• Body
• Properties

A good way to avoid name clashes is to ensure that all applications prefix their message properties
with their Internet domain name. For example, if you are developing an application using domain
name ourcompany.com you could name all properties with the prefix com.ourcompany. This naming
convention also allows for easy selection of properties; for example, an application can inquire on all
message properties starting com.ourcompany.%.

Developing applications for IBM MQ 27

See Property name restrictions for further information about the use of property names.

Property name restrictions
When you name a property, you must observe certain rules.

The following restrictions apply to property names:

1. A property must not begin with the following strings:

• "JMS" - reserved for use by IBM MQ classes for JMS.
• "usr.JMS" - not valid.

The only exceptions are the following properties providing synonyms for JMS properties:

Property Synonym for

JMSCorrelationID Root .MQMD.CorrelId or jms.Cid

JMSDeliveryMode Root .MQMD.Persistence or jms.Dlv

JMSDestination jms.Dst

JMSExpiration Root .MQMD.Expiry or jms.Exp

JMSMessageID Root .MQMD.MsgId

JMSPriority Root .MQMD.Priority or jms.Pri

JMSRedelivered Root .MQMD.BackoutCount

JMSReplyTo (a string
encoded as a URI)

Root .MQMD.ReplyToQ or Root .MQMD.ReplyToQMgr or jms.Rto

JMSTimestamp Root .MQMD.PutDate or Root .MQMD.PutTime or jms.Tms

JMSType mcd.Type or mcd.Set or mcd.Fmt

JMSXAppID Root .MQMD.PutApplName

JMSXDeliveryCount Root .MQMD.BackoutCount

JMSXGroupID Root .MQMD.GroupId or jms.Gid

JMSXGroupSeq Root .MQMD.MsgSeqNumber or jms.Seq

JMSXUserID Root .MQMD.UserIdentifier

These synonyms allow an MQI application to access JMS properties in a similar fashion to IBM MQ
classes for JMS client application. Of these properties, only JMSCorrelationID, JMSReplyTo, JMSType,
JMSXGroupID, and JMSXGroupSeq can be set using the MQI.

Note that the JMS_IBM_* properties available from within IBM MQ classes for JMS are not available
using the MQI. The fields that the JMS_IBM_* properties reference can be accessed in other ways by
MQI applications.

2. A property must not be called, in any mixture of lower or uppercase, "NULL", "TRUE", "FALSE", "NOT",
"AND", "OR", "BETWEEN", "LIKE", "IN", "IS" and "ESCAPE". These are the names of SQL keywords used
in selection strings.

3. A property name beginning " mq " in any mixture of lowercase or uppercase and not beginning
"mq_usr" can contain only one "." character (U+002E). Multiple "." characters are not allowed in
properties with those prefixes.

4. Two "." characters must contain other characters in between; you cannot have an empty point in the
hierarchy. Similarly a property name cannot end in a "." character.

5. If an application sets the property "a.b" and then the property "a.b.c", it is unclear whether in the
hierarchy "b" contains a value or another logical grouping . Such a hierarchy is "mixed content" and this
is not supported. Setting a property that causes mixed content is not allowed.

28 Developing Applications for IBM MQ

These restrictions are enforced by the validation mechanism as follows:

• Property names are validated when setting a property using the MQSETMP - Set message property call,
if validation was requested when the message handle was created . If an attempt to validate a property
is undertaken and fails due to an error in the specification of the property name, the completion code is
MQCC_FAILED with reason:

– MQRC_PROPERTY_NAME_ERROR for reasons 1-4.
– MQRC_MIXED_CONTENT_NOT_ALLOWED for reason 5.

• The names of properties specified directly as MQRFH2 elements are not guaranteed to be validated by
the MQPUT call.

Message descriptor fields as properties
Most message descriptor fields can be treated as properties. The property name is constructed by adding
a prefix to the message descriptor field's name.

If an MQI application wants to identify a message property contained in a message descriptor field, for
example, in a selector string or using the message property APIs, use the following syntax:

Property name Message descriptor field

Root.MQMD.Field Field

Specify Field with the same case as for the MQMD structure fields in the C language declaration. For
example, the property name Root.MQMD.AccountingToken accesses the AccountingToken field of
the message descriptor.

The StrucId and Version fields of the message descriptor are not accessible using the syntax shown.

Message descriptor fields are never represented in an MQRFH2 header as for other properties.

If the message data starts with an MQMDE that is honored by the queue manager, the MQMDE fields can
be accessed using the Root.MQMD.Field notation described. In this case the MQMDE fields are treated
as logically part of the MQMD from a properties perspective. See Overview of MQMDE.

Property data types and values
A property can be a boolean, a byte string, a character string, or a floating-point or integer number. The
property can store any valid value in the range of the data type unless otherwise restricted by the context.

The data type of a property value must be one of the following values:

• MQBOOL
• MQBYTE[]
• MQCHAR[]
• MQFLOAT32
• MQFLOAT64
• MQINT8
• MQINT16
• MQINT32
• MQINT64

A property can exist but have no defined value; it is a null property. A null property is different from a byte
property (MQBYTE[]) or character string property (MQCHAR[]) in that it has a defined but empty value,
that is, one with a zero-length value.

Byte string is not a valid property data type in JMS or XMS. You are advised not to use byte string
properties in the usr folder.

Developing applications for IBM MQ 29

Selecting messages from queues
You can select messages from queues using the MsgId and CorrelId fields on an MQGET call, or by using a
SelectionString on an MQOPEN or MQSUB call.

Selectors
A message selector is a variable-length string used by an application to register its interest in only those
messages that have properties that satisfy the Structured Query Language (SQL) query that the selection
string represents.

Selection using the MQSUB and MQOPEN function calls
You use the SelectionString, which is a structure of type MQCHARV, to make selections using the
MQSUB and MQOPEN calls.

The SelectionString structure is used to pass a variable-length selection string to the queue manager.

The CCSID associated with the selector string is set via the VSCCSID field of the MQCHARV structure. The
value used must be a CCSID that is supported for selector strings. See Code page conversion for a list of
supported code pages.

Specifying a CCSID for which there is no IBM MQ supported Unicode conversion, results in an error of
MQRC_SOURCE_CCSID_ERROR. This error is returned at the time that the selector is presented to the
queue manager, that is, on the MQSUB, MQOPEN, or MQPUT1 call.

The default value for the VSCCSID field is MQCCSI_APPL, which indicates that the CCSID of the selection
string is equal to the queue manager CCSID, or the client CCSID if connected through a client. The
MQCCSI_APPL constant can however be overridden by an application redefining it before compiling.

If the MQCHARV selector represents a NULL string, no selection takes place for that message consumer
and messages are delivered as if a selector had not been used.

The maximum length of a selection string is limited only by what can be described by the MQCHARV field
VSLength.

The SelectionString is returned on the output from an MQSUB call using the MQSO_RESUME subscribe
option, if you have provided a buffer and there is a positive buffer length in VSBufSize. If you do not
provide a buffer, only the length of the selection string is returned in the VSLength field of the MQCHARV.
If the buffer provided is smaller than the space required to return the field, only VSBufSize bytes are
returned in the provided buffer.

An application cannot alter a selection string without first closing either the handle to the queue (for
MQOPEN), or subscription (for MQSUB). A new selection string can then be specified on a subsequent
MQOPEN or MQSUB call.
MQOPEN

Use MQCLOSE to close the opened handle, then specify a new selection string on a subsequent
MQOPEN call.

MQSUB
Use MQCLOSE to close the returned subscription handle (hSub), then specify a new selection string on
a subsequent MQSUB call.

Figure 3 on page 31 shows the process of selection using the MQSUB call.

30 Developing Applications for IBM MQ

Figure 3. Selection using MQSUB call

A selector can be passed in on the call to MQSUB by using the SelectionString field in the MQSD
structure. The effect of passing in a selector on the MQSUB is that only those messages published to the
topic being subscribed to, that match a supplied selection string, are made available on the destination
queue.

Figure 4 on page 32 shows the process of selection using the MQOPEN call.

Developing applications for IBM MQ 31

Figure 4. Selection using MQOPEN call

A selector can be passed in on the call to MQOPEN by using the SelectionString field in the MQOD
structure. The effect of passing in a selector on the MQOPEN call is that only those messages on the
opened queue, that match a selector, are delivered to the message consumer.

The main use for the selector on the MQOPEN call is for the point-to-point case where an application can
elect to receive only those messages on a queue that match a selector. The previous example shows a
simple scenario where two messages are put to a queue opened by MQOPEN but only one is received by
the application getting it, as it is the only one that matches a selector.

Note that subsequent MQGET calls result in MQRC_NO_MSG_AVAILABLE as no further messages exist on
the queue that match the given selector.

Related concepts
“Selection string rules and restrictions” on page 39

32 Developing Applications for IBM MQ

Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Selection behavior
Overview of IBM MQ selection behavior.

The fields in an MQMDE structure are considered to be the message properties for the corresponding
message descriptor properties if the MQMD:

• Has format MQFMT_MD_EXTENSION
• Is immediately followed by a valid MQMDE structure
• Is version one or contains the default version two fields only

It is possible for a selection string to resolve to either TRUE or FALSE before any matching against
message properties takes place. For example, it might be the case if the selection string is set to "TRUE
<> FALSE". Such early evaluation is guaranteed to take place only when there are no message property
references in the selection string.

If a selection string resolves to TRUE before any message properties are considered, all messages
published to the topic subscribed to by the consumer are delivered. If a selection string resolves to FALSE
before any message properties are considered, a reason code of MQRC_SELECTOR_ALWAYS_FALSE, and
completion code MQCC_FAILED are returned on the function call that presented the selector.

Even if a message contains no message properties (other than header properties) then it can still be
eligible for selection. If a selection string references a message property that does not exist, this property
is assumed to have the value of NULL or 'Unknown'.

For example, a message might still satisfy a selection string like 'Color IS NULL', where 'Color'
does not exist as a message property in the message.

Selection can be performed only on the properties that are associated with a message, not the message
itself, unless an extended message selection provider is available. Selection can be performed on the
message payload only if an extended message selection provider is available.

Each message property has a type associated with it. When you perform a selection, you must ensure
that the values used in expressions to test message properties are of the correct type. If a type mismatch
occurs, the expression in question resolves to FALSE.

It is your responsibility to ensure that the selection string and message properties use compatible types.

Selection criteria continue to be applied on behalf of inactive durable subscribers, so that only messages
that match the selection string that was originally supplied are kept.

Selection strings are non-alterable when a durable subscription is resumed with alter (MQSO_ALTER).
If a different selection string is presented when a durable subscriber resumes activity, then
MQRC_SELECTOR_NOT_ALTERABLE is returned to the application.

Applications receive a return code of MQRC_NO_MSG_AVAILABLE if there is no message on a queue that
meets the selection criteria.

If an application has specified a selection string containing property values then only those messages
that contain matching properties are eligible for selection. For example, a subscriber specifies a selection
string of "a = 3" and a message is published containing no properties, or properties where 'a' does not
exist or is not equal to 3. The subscriber does not receive that message to its destination queue.

Messaging performance
Selecting messages from a queue requires IBM MQ to sequentially inspect each message on the queue.
Messages are inspected until a message is found that matches the selection criteria or there are no more
messages to examine. Therefore, messaging performance suffers if message selection is used on deep
queues.

To optimize message selection on deep queues when selection is based on JMSCorrelationID or
JMSMessageID, use a selection string of the form:

Developing applications for IBM MQ 33

• JMSCorrelationID ='ID:correlation_id'
• JMSMessageID='ID:message_id'

where:

• correlation_id is a String containing a standard IBM MQ correlation identifier.
• message_id is a String containing a standard IBM MQ message identifier.

Note: The selector should only reference one of the properties. Using a selector that has one of these
formats offers a significant improvement in performance when selecting on JMSCorrelationID and offers a
marginal performance improvement for JMSMessageID. For more information, see “Message selectors in
JMS” on page 139.

Using complex selectors
Selectors can contain many components, for example:

 a and b or c and d or e and f or g and h or i and j... or y and z

Use of such complex selectors can have serious performance implications and excessive resource
requirements. As such, IBM MQ will protect the system by failing to process overly complex selectors
that could result in a system resource shortage. Protection can occur on selection strings that contain
more than 100 tests, or when IBM MQ detects that the limit on the size of the operating system stack is
being approached. You should thoroughly try and test the use of selection strings with many components,
on the appropriate platforms, to ensure that the protection limits are not reached.

The performance and complexity of selectors can be improved by simplifying them using additional
parenthesis to combine components. For example:

(a and b or c and d) or (e and f or g and h) or (i and j) ...

Related concepts
“Selection string rules and restrictions” on page 39
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Message selector syntax
An IBM MQ message selector is a string with syntax that is based on a subset of the SQL92 conditional
expression syntax.

The order in which a message selector is evaluated is from left to right within a precedence level. You can
use parentheses to change this order. Predefined selector literals and operator names are written here in
uppercase; however, they are not case-sensitive.

If the selector is provided via the API, IBM MQ verifies the syntactic correctness of a message selector
at the time it is presented. If the syntax of the selection string is incorrect or a property name is not
valid, and an extended message selection provider is not available, MQRC_SELECTION_NOT_AVAILABLE
is returned to the application. If the syntax of the selection string is incorrect or a property name is not
valid when a subscription is resumed, a MQRC_SELECTOR_SYNTAX_ERROR is returned to the application.
If property name validation was disabled when the property was set (by setting MQCMHO_NONE instead of
MQCMHO_VALIDATE) and an application subsequently puts a message with in invalid property name, this
message is never selected.

No error is returned at the time the selector is presented if IBM MQ determines that an administratively
defined subscription selector is using extended message syntax, as indicated by the DISPLAY SUB
parameter SELTYPE having the value EXTENDED. In this case, the checking of the syntax of the selection
string is deferred until publish time (see MQRC_SELECTION_NOT_AVAILABLE).

A selector can contain:

• Literals:

34 Developing Applications for IBM MQ

– String literals are enclosed in single quotation marks. Two consecutive single quotation marks
represent a single quotation mark. Examples are 'literal' and 'literal''s'. Like Java string literals, these
use the Unicode character encoding. You cannot use double quotation marks to enclose a string
literal. Any sequence of bytes can be used between the single quotation marks.

– A byte string is one or more pair of hexadecimal characters enclosed in double quotation marks and
prefixed by 0x. Examples are "0x2F1C" or "0XD43A". The length of a byte string must be at least
one byte. If a selector byte string is matched to a message property of type MQTYPE_BYTE_STRING,
no special action is taken on leading or trailing zero. The bytes are treated as another character.
Endianness is also not considered. The length of both selector and property byte strings must be
equal, and the sequence of bytes must be the same.

Examples of byte string selections (assume myBytes = 0AFC23) which match are:

- "myBytes = "0x0AFC23"" = TRUE

The following string selections do not match:

- "myBytes = "0xAFC23"" = MQRC_SELECTOR_SYNTAX_ERROR (because number of bytes is
not multiple of two)

- "myBytes = "0x0AFC2300"" = FALSE (because the trailing zero is significant in the
comparison)

- "myBytes = "0x000AFC23"" = FALSE (because leading zero is significant in the comparison)
- "myBytes = "0x23FC0A"" = FALSE (because endianness is not considered)

– Hex numbers begin with a zero, followed by an uppercase or lowercase x. The remainder of the literal
contains one or more valid hex characters. Examples are 0xA, 0xAF, 0X2020.

– A leading zero followed by one or more digits in the range 0-7 is always interpreted as being the start
of an octal number. You cannot represent a zero-prefixed decimal number like this, for example, 09
returns a syntax error because 9 is not a valid octal digit. Examples of octal numbers are 0177, 0713.

– An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and
+62. An exact numeric literal can have a trailing uppercase or lowercase L; this does not
affect how the number is stored or interpreted. IBM MQ supports exact numerals in the range
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

– An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or
a numeric value with a decimal, such as 7., -95.7, or +6.2. IBM MQ supports numbers in the range
-1.797693134862315E+308 to 1.797693134862315E+308.

The significand should follow an optional sign character (+ or -). The significand should be either an
integer or a fraction. A fractional part of the significand need not have a leading digit.

An uppercase or lowercase E indicates the start of an optional exponent. The exponent has a decimal
radix and the number part of the exponent can be prefixed by an optional sign character.

Approximate numeric literals can be terminated by an F or a D character (not case-sensitive). This
syntax exists to support the cross-language method of tagging single or double precision numbers.
These characters are optional and do not affect how an approximate numeric literal is stored or
processed. These numbers are always stored and processed using double-precision.

– The boolean literals TRUE and FALSE.

Note: Non-finite IEEE-754 representations such as NaN, +Infinity, -Infinity are not supported in
selection strings. It is therefore not possible to use these values as operands in an expression. Negative
zero is treated the same as positive zero for mathematical operations.

• Identifiers:

An identifier is a variable-length character sequence that must begin with a valid identifier start
character, followed by zero or more valid identifier part characters. The rules for identifier names are
the same as those for message property names, see “Property names” on page 27 and “Property name
restrictions” on page 28 for more information.

Developing applications for IBM MQ 35

Note: Selection can be performed on the message payload only if an extended message selection
provider is available.

Identifiers are either header field references or property references. The type of a property value in a
message selector must correspond to the type used to set the property, although numeric promotion is
performed where possible. If a type mismatch occurs then the result of the expression is FALSE. If a
property that does not exist in a message is referenced, its value is NULL.

Type conversions that apply to the get methods for properties do not apply when a property is used
in a message selector expression. For example, if you set a property as a string value and then use a
selector to query it as a numeric value, the expression returns FALSE.

JMS field and property names that map to property names or MQMD field names are also valid identifiers
in a selection string. IBM MQ maps the recognized JMS field and property names to the message
property values. See “Message selectors in JMS” on page 139 for more information. As an example, the
selection string "JMSPriority >=" selects on the Pri property found in the jms folder of the current
message.

• Overflow/underflow:

For both decimal and approximate numeric numbers, the following conditions are undefined:

– Specifying a number that is out of the defined range
– Specifying an arithmetic expression which would cause overflow or underflow

No checks are performed for these conditions.
• White space:

Defined as a space, form-feed, newline, carriage return, horizontal tab, or vertical tab. The following
Unicode characters are recognized as white space:

– \u0009 to \u000D
– \u0020
– \u001C
– \u001D
– \u001E
– \u001F
– \u1680
– \u180E
– \u2000 to \u200A
– \u2028
– \u2029
– \u202F
– \u205F
– \u3000

• Expressions:

– A selector is a conditional expression. A selector that evaluates to true matches; a selector that
evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (identifier
value is treated as a numeric literal), and numeric literals.

– Conditional expressions are composed of themselves, comparison operations, and logical operations.

• Standard bracketing (), to set the order in which expressions are evaluated, is supported.
• Logical operators in precedence order: NOT, AND, OR.
• Comparison operators: =, >, >=, <, <=, <> (not equal).

36 Developing Applications for IBM MQ

– Two byte strings are equal only if the strings are of the same length and the sequence of bytes is
equal.

– Only values of the same type can be compared. One exception is that it is valid to compare exact
numeric values and approximate numeric values, (the type conversion required is defined by the
rules of Java numeric promotion). If there is an attempt to compare different types, the selector is
always false.

– String and boolean comparison is restricted to = and <>. Two strings are equal only if they contain the
same sequence of characters.

• Arithmetic operators in precedence order:

– +, - unary.
– * multiplication, and / division.
– + addition, and - subtraction.
– Arithmetic operations on a NULL value are not supported. If they are attempted, the complete

selector is always false.
– Arithmetic operations must use Java numeric promotion.

• arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:

– Age BETWEEN 15 and 19 is equivalent to age>= 15 AND age <= 19.
– Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19.
– If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If any

of the expressions of a NOT BETWEEN operation are NULL, the value of the operation is true.
• identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where
identifier has a String or NULL value.

– Country IN ('UK', 'US', 'France') is true for 'UK' and false for 'Peru'. It is equivalent to
the expression (Country = 'UK') OR (Country = 'US') OR (Country = 'France').

– Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'. It is
equivalent to the expression NOT ((Country = 'UK') OR (Country = 'US') OR (Country
= 'France')).

– If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.
• identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison

operator, where identifier has a string value. pattern-value is a string literal, where _ stands for
any single character and % stands for any sequence of characters (including the empty sequence). All
other characters stand for themselves. The optional escape-character is a single character string literal
that is used to escape the special meaning of the _ and % in pattern-value. The LIKE operator must be
used only to compare two string values.

– phone LIKE '12%3' is true for 123 and 12993 and false for 1234.
– word LIKE 'l_se' is true for lose and false for loose.
– underscored LIKE '_%' ESCAPE '\' is true for _foo and false for bar.
– phone NOT LIKE '12%3' is false for 123 and 12993 and true for 1234.
– If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

Note: The LIKE operator must be used to compare two string values. The value of
Root.MQMD.CorrelId is a 24-byte byte array, not a character string. The selector string
Root.MQMD.CorrelId LIKE 'ABC%' is accepted by the parser as syntactically valid, but it is
evaluated to false. When you are comparing a byte array with a character string, LIKE therefore cannot
be used.

• identifier IS NULL comparison operator tests for a NULL header field value, or a missing property
value.

• identifier IS NOT NULL comparison operator tests for the existence of a non-null header field
value or a property value.

Developing applications for IBM MQ 37

• Null values

The evaluation of selector expressions that contain NULL values is defined by SQL 92 NULL semantics,
in summary:

– SQL treats a NULL value as unknown.
– Comparison or arithmetic with an unknown value always yields an unknown value.
– The IS NULL and IS NOT NULL operators convert an unknown value into TRUE and FALSE values.

The boolean operators use three-valued logic (T=TRUE, F=FALSE, U=UNKNOWN)

Table 1. Value of the Boolean operator outcome when the logic is A AND B

Operator A Operator B Outcome (A AND B)

T F F

T U U

T T T

F T F

F U F

F F F

U T U

U U U

U F F

Table 2. Value of the Boolean operator outcome when the logic is A OR B

Operator A Operator B Outcome (A OR B)

T F T

T U T

T T T

F T T

F U U

F F F

U T T

U U U

U F U

Table 3. Value of the Boolean operator outcome when the logic is NOT A

Operator A Outcome (NOT A)

T F

F T

U U

The following message selector selects messages with a message type of car, color of blue, and weight
greater than 2500 lbs:

38 Developing Applications for IBM MQ

"JMSType = 'car' AND color = 'blue' AND weight > 2500"

Although SQL supports fixed decimal comparison and arithmetic, message selectors do not. This is why
exact numeric literals are restricted to those without a decimal. It is also why there are numerics with a
decimal as an alternative representation for an approximate numeric value.

SQL comments are not supported.

Related concepts
“Message properties” on page 26
Use message properties to allow an application to select messages to process, or to retrieve information
about a message without accessing MQMD or MQRFH2 headers. They also facilitate communication
between IBM MQ and JMS applications.
Related reference
MsgHandle
MQBUFMH - Convert buffer into message handle

Selection string rules and restrictions
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

• Message selection for publish/subscribe messaging occurs on the message as sent by the publisher.
See Selection strings.

• Equivalence is tested using a single equals character; for example, a = b is correct, whereas a == b is
incorrect.

• An operator used by many programming languages to represent 'not equal to' is !=. This representation
is not a valid synonym for <> ; for example, a <> b is valid, whereas a != b is not valid.

• Single quotation marks are recognized only if the ' (U+0027) character is used. Similarly, double
quotation marks, valid only when used to enclose byte strings, must use the " (U+0022) character.

• The symbols &, &&, | and || are not synonyms for logical conjunction/disjunction; for example, a && b
must be specified as a AND b.

• The wildcard characters * and ? are not synonyms for % and _.
• Selectors containing compound expressions such as 20 < b < 30 are not valid. The parser evaluates

operators that have the same precedence from left to right. The example would therefore become (20
< b) < 30, which does not make sense. Instead the expression must be written as (b > 20) AND
(b < 30).

• Byte strings must be enclosed in double quotation marks; if single quotation marks are used, the byte
string is taken to be a string literal. The number of characters (not the number that the characters
represent) following the 0x must be a multiple of two.

• The keyword IS is not a synonym for the equals character. Thus the selection strings a IS 3 and b IS
'red' are not valid. The IS keyword exists only to support IS NULL and IS NOT NULL cases.

Related concepts
“Selection behavior” on page 33
Overview of IBM MQ selection behavior.
Related reference
Selection strings

UTF-8 and Unicode considerations when using message selectors

Characters, not enclosed in single quotation marks, that make up the reserved keywords of a selection
string must be entered in Basic Latin Unicode (ranging from character U+0000 to U+0007F). It is not valid
to use other code point representations of alphanumeric characters. For example, the number 1 must be
expressed as U+0031 in Unicode, it is not valid to use the Fullwidth Digit equivalent U+FF11 or the Arabic
equivalent U+0661.

Developing applications for IBM MQ 39

Message property names can be specified using any valid sequence of Unicode characters. Message
property names contained within selection strings that are encoded in UTF-8 will be validated even if
they contain multi-byte characters. Validation of multi-byte UTF-8 is strict and you must ensure that
valid UTF-8 sequences are used for message property names. Characters beyond the Unicode Basic
Multilingual Plane (those above U+FFFF), represented in UTF-16 by surrogate code points (X'D800'
through X'DFFF'), or four bytes in UTF-8, are not supported in message property names.

No extra processing is performed on property names or values when comparing for equality. This means
for example that no pre/de-composition takes place and ligatures are not given any special meaning. For
example, the pre-composed umlaut character U+00FC is not considered to be equivalent to U+0075 +
U+0308 and the character sequence ff is not considered to be equivalent to the Unicode U+FB00 (LATIN
SMALL LIGATURE FF)

Property data enclosed in single quotation marks can be represented by any sequence of bytes and is not
validated.

Selecting on the content of a message
It is possible to subscribe based on a selection of message payload content (also known as content
filtering), but the decision about which messages should be delivered to such a subscription cannot
be performed directly by IBM MQ; instead an extended message selection provider, for example IBM
Integration Bus, is required to process the messages.

When an application publishes on a topic string, where one or more subscribers have a selection string
selecting on the content of the message, IBM MQ will request that the extended message selection
provider parse the publication and inform IBM MQ whether the publication matches the selection criteria
specified by each subscriber with a content filter.

If the extended message selection provider determines that the publication matches the subscriber's
selection string, the message will continue to be delivered to the subscriber.

If the extended message selection provider determines that the publication does not match, the message
is not delivered to the subscriber. This might cause the MQPUT or MQPUT1 call to fail with reason
code MQRC_PUBLICATION_FAILURE. If the extended message selection provider is unable to parse the
publication, reason code MQRC_CONTENT_ERROR is returned and the MQPUT or MQPUT1 call fails.

If the extended message selection provider is unavailable or is unable to determine whether the
subscriber should receive the publication, reason code MQRC_SELECTION_NOT_AVAILABLE is returned
and the MQPUT or MQPUT1 call fails.

When a subscription is being created with a content filter and the extended message selection provider
is not available, the MQSUB call fails with reason code MQRC_SELECTION_NOT_AVAILABLE. If a
subscription with a content filter is being resumed and the extended message selection provider is not
available, the MQSUB call returns a warning of MQRC_SELECTION_NOT_AVAILABLE, but the subscription
is allowed to be resumed.

Related reference
Selection strings

Asynchronous consumption of IBM MQ messages
Asynchronous consumption uses a set of Message Queue Interface (MQI) extensions, the MQI calls MQCB
and MQCTL, which allow an MQI application to be written to consume messages from a set of queues.
Messages are delivered to the application by invoking a 'unit of code', identified by the application passing
either the message, or a token representing the message.

In the most straightforward of application environments, the unit of code is defined by a function pointer,
however in other environments the unit of code can be defined by a program or module name.

In asynchronous consumption of messages, the following terms are used:
Message consumer

A programming construct that allows you to define a program, or function, to be invoked with a
message when one which matches the applications requirement becomes available.

40 Developing Applications for IBM MQ

Event handler
A programming construct that allows you to define a program or function to invoke when an
asynchronous event, such as queue manager quiescing, occurs.

Callback
A generic term used to refer to either a Message Consumer or an Event Handler routine.

Asynchronous consumption can simplify the design and implementation of new applications, especially
those that process multiple input queues or subscriptions. However, if you are using more than one
input queue and you are processing messages in priority sequence, priority sequence is observed
independently within each queue: you might get low-priority messages from one queue ahead of high-
priority messages from another. Message order across multiple queues is not guaranteed. Also note that if
you use API exits, you might need to change them to include the MQCB and MQCTL calls.

The following illustrations give an example of how you can use this function.

Figure 5 on page 41 shows a multithreaded application consuming messages from two queues. The
example shows all of the messages being delivered to a single function.

Figure 5. Standard Message Driven application consuming from two queues

On z/OS, the main control thread must issue an MQDISC call before ending. This allows any
callback threads to end and release system resources.

Figure 6 on page 42 This sample flow shows a single threaded application consuming messages from
two queues. The example shows all of the messages being delivered to a single function.

The difference from the asynchronous case is that control does not return to the issuer of MQCTL until all
of the consumers have deactivated themselves; that is one consumer has issued an MQCTL STOP request
or the queue manager quiesces.

Developing applications for IBM MQ 41

Figure 6. Single Threaded Message Driven application consuming from two queues

Message groups
Messages can occur within groups to allow ordering of messages.

Message groups allow multiple messages to be marked as related to one another, and a logical order to
be applied to the group (see “Logical and physical ordering” on page 747). On Multiplatforms, message
segmentation enables large messages to be broken up into smaller segments. You cannot use grouped or
segmented messages when putting to a topic.

The hierarchy within a group is as follows:
Group

This is the highest level in the hierarchy and is identified by a GroupId. It consists of one or more
messages that contain the same GroupId. These messages can be stored anywhere on the queue.

Note: The term message is used here to denote one item on a queue, such as would be returned by a
single MQGET that does not specify MQGMO_COMPLETE_MSG.

Figure 7 on page 42 shows a group of logical messages:

Figure 7. Group of logical messages

By opening a queue and specifying MQOO_BIND_ON_GROUP, you force all messages in a group that
are sent to this queue to be sent to the same instance of the queue. For more information on the
BIND_ON_GROUP option, see Handling message affinities.

Logical message
Logical messages within a group are identified by the GroupId and MsgSeqNumber fields. The
MsgSeqNumber starts at 1 for the first message within a group, and if a message is not in a group, the
value of the field is 1.

Use logical messages within a group to:

42 Developing Applications for IBM MQ

• Ensure ordering (if this is not guaranteed under the circumstances in which the message is
transmitted).

• Allow applications to group similar messages (for example, those that must all be processed by the
same server instance).

Each message within a group consists of one physical message, unless it is split into segments.
Each message is logically a separate message, and only the GroupId and MsgSeqNumber fields in
the MQMD need to bear any relationship to other messages in the group. Other fields in the MQMD
are independent; some might be identical for all messages in the group whereas others might be
different. For example, messages in a group can have different format names, CCSIDs, and encodings.

Segment
Segments are used to handle messages that are too large for either the putting or getting application
or the queue manager (including intervening queue managers through which the message passes).
For more information, see “Message segmentation” on page 764.

An individual message is broken down into smaller messages called segments. A segment of a
message is identified by the GroupId, MsgSeqNumber, and Offset fields. The Offset field starts at
zero for the first segment within a message.

Each segment consists of one physical message that might belong to a group (Figure 8 on page
43 shows an example of messages within a group). A segment is logically part of a single message,
so only the MsgId, Offset, and MsgFlags fields in the MQMD should differ between separate
segments of the same message. If a segment fails to arrive, reason code MQRC_INCOMPLETE_GROUP
or MQRC_INCOMPLETE_MSG is returned as appropriate.

Figure 8 on page 43 shows a group of logical messages, some of which are segmented:

Figure 8. Segmented messages

Segmentation is not supported on IBM MQ for z/OS.

You cannot use segmented or grouped messages with Publish/Subscribe.

Related concepts
“Message segmentation” on page 764
Use this information to learn about segmenting messages. This feature is not supported on IBM MQ for
z/OS or by applications using IBM MQ classes for JMS.
Related reference
“Logical and physical ordering” on page 747
Within each priority level, messages on queues can occur in physical or logical order.
MQMD - Message descriptor

Message persistence
Persistent messages are written to logs and queue data files. If a queue manager is restarted after a
failure, it recovers these persistent messages as necessary from the logged data. Messages that are not
persistent are discarded if a queue manager stops, whether the stoppage is as a result of an operator
command or because of the failure of some part of your system.

Developing applications for IBM MQ 43

Nonpersistent messages stored in a coupling facility (CF) on z/OS are an exception to this.
They persist as long as the CF remains available.

When you create a message, if you initialize the message descriptor (MQMD) using the defaults, the
persistence for the message is taken from the DefPersistence attribute of the queue specified in the
MQOPEN command. Alternatively, you can set the persistence of the message using the Persistence
field of the MQMD structure to define the message as persistent or nonpersistent.

The performance of your application is affected when you use persistent messages; the extent of the
effect depends on the performance characteristics of the machine's I/O subsystem and how you use the
sync point options on each platform:

• A persistent message, outside the current unit of work, is written to disk on every put and get operation.
See “Committing and backing out units of work” on page 823.

• For all platforms except IBM i, a persistent message within the current unit
of work is logged only when the unit of work is committed, and the unit of work can contain many queue
operations.

Nonpersistent messages can be used for fast messaging. See Safety of messages for further information
about fast messages.

Note: A combination of writing persistent messages within a unit of work, and writing persistent
messages outside a unit or work, can cause potentially severe performance problems for your
applications. This is particularly true when the same target queue is used for both operations.

Messages that fail to be delivered
When a queue manager cannot put a message on a queue, you have various options.

You can:

• Attempt to put the message on the queue again.
• Request that the message is returned to the sender.
• Put the message on the dead-letter queue.

See“Handling procedural program errors” on page 999for more information.

Messages that are backed out

When processing messages from a queue under the control of a unit of work, the unit of work can consist
of one or more messages. If a backout occurs, the messages that were retrieved from the queue are
reinstated on the queue, and they can be processed again in another unit of work. If the processing
of a particular message is causing the problem, the unit of work is backed out again. This can cause a
processing loop. Messages that were put to a queue are removed from the queue.

An application can detect messages that are caught up in such a loop by testing the BackoutCount field
of MQMD. The application can either correct the situation, or issue a warning to an operator.

The backout count always survives restarts of the queue manager. Any change to the
HardenGetBackout attribute is ignored.

For shared queues, the backout count always survives restarts of the queue manager. For all
other configurations on z/OS, to ensure that the backout count for private queues survives restarts of the
queue manager, set the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED; otherwise, if the
queue manager has to restart, it does not maintain an accurate backout count for each message. Setting
the attribute this way adds the cost of extra processing.

For more information on committing and backing out messages, see “Committing and backing out units of
work” on page 823.

44 Developing Applications for IBM MQ

Reply-to queue and queue manager

There are occasions when you might receive messages in response to a message you send:

• A reply message in response to a request message
• A report message about an unexpected event or expiry
• A report message about a COA (Confirmation Of Arrival) or a COD (Confirmation Of Delivery) event
• A report message about a PAN (Positive Action Notification) or a NAN (Negative Action Notification)

event

Using the MQMD structure, specify the name of the queue to which you want reply and report messages
sent, in the ReplyToQ field. Specify the name of the queue manager that owns the reply-to queue in the
ReplyToQMgr field.

If you leave the ReplyToQMgr field blank, the queue manager sets the contents of the following fields in
the message descriptor on the queue:
ReplyToQ

If ReplyToQ is a local definition of a remote queue, the ReplyToQ field is set to the name of the
remote queue; otherwise this field is not changed.

ReplyToQMgr
If ReplyToQ is a local definition of a remote queue, the ReplyToQMgr field is set to the name of the
queue manager that owns the remote queue; otherwise the ReplyToQMgr field is set to the name of
the queue manager to which your application is connected.

Note: You can request that a queue manager makes more than one attempt to deliver a message, and you
can request that the message is discarded if it fails. If the message, after failing to be delivered, is not
to be discarded, the remote queue manager puts the message on its dead-letter (undelivered message)
queue (see “Using the dead-letter (undelivered message) queue” on page 1002).

Message context
Message context information allows the application that retrieves the message to find out about the
originator of the message.

The retrieving application might want to:

• Check that the sending application has the correct level of authority
• Perform some accounting function so that it can charge the sending application for any work that it has

to perform
• Keep an audit trail of all the messages that it has worked with

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have
the appropriate level of authority can add extra context information. For more information about how to
specify context information, see “Controlling message context information” on page 733.

The user context is used by the queue manager when generating the following types of report message:

• Confirm on delivery
• Expiry

When these report messages are generated, the user context is checked for +put and +passid authority
on the destination of the report. Where the user context has insufficient authority, the report message is
placed on the dead-letter queue if one has been defined. Where there is no dead-letter queue, the report
message is discarded.

All context information is stored in the context fields of the message descriptor. The type of information
falls into identity, origin, and user context information.

Developing applications for IBM MQ 45

Identity context
Identity context information identifies the user of the application that first put the message on a queue.
Suitably authorized applications can set the following fields:

• The queue manager fills the UserIdentifier field with a name that identifies the user; the way that
the queue manager can do this depends on the environment in which the application is running.

• The queue manager fills the AccountingToken field with a token or number that it determined from
the application that put the message.

• Applications can use the ApplIdentityData field for any extra information that they want to include
about the user (for example, an encrypted password).

A Windows systems security identifier (SID) is stored in the AccountingToken field when a message is
created under IBM MQ for Windows. The SID can be used to supplement the UserIdentifier field and
to establish the credentials of a user.

For information about how the queue manager fills the UserIdentifier and AccountingToken fields,
see the descriptions of these fields in UserIdentifier and AccountingToken.

Applications that pass messages from one queue manager to another should also pass on the identity
context information so that other applications know the identity of the originator of the message.

Origin context
Origin context information describes the application that put the message on the queue on which the
message is currently stored. The message descriptor contains the following fields for origin context
information:

• PutApplType defines the type of application that put the message (for example, a CICS transaction).
• PutApplName defines the name of the application that put the message (for example, the name of a job

or transaction).
• PutDate defines the date on which the message was put on the queue.
• PutTime defines the time at which the message was put on the queue.
• ApplOriginData defines any extra information that an application wants to include about the origin

of the message. For example, it could be set by suitably authorized applications to indicate whether the
identity data is trusted.

Origin context information is typically supplied by the queue manager. Greenwich Mean Time (GMT) is
used for the PutDate and PutTime fields. See the descriptions of these fields in PutDate and PutTime.

An application with enough authority can provide its own context. This allows accounting information to
be preserved when a single user has a different user ID on each of the systems that process a message
that they have originated.

IBM MQ objects
This information provides details on IBM MQ objects which include: queue managers, queue sharing
groups, queues, administrative topic objects, namelists, process definitions, authentication information
objects, channels, storage classes, listeners, and services.

Queue managers define the properties (known as attributes) of these objects. The values of these
attributes affect the way in which IBM MQ processes these objects. From your applications, you use
the Message Queue Interface (MQI) to control these objects. Objects are identified by an object descriptor
(MQOD) when addressed from a program.

When you use IBM MQ commands to define, alter, or delete objects, for example, the queue manager
checks that you have the required level of authority to perform these operations. Similarly, when an
application uses the MQOPEN call to open an object, the queue manager checks that the application has
the required level of authority before it allows access to that object. The checks are made on the name of
the object being opened.

46 Developing Applications for IBM MQ

Related concepts
“Controlling message context information” on page 733
When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have
the appropriate level of authority can add extra context information. You can use the options field in the
MQPMO structure to control context information.
Related reference
“MQOPEN options relating to message context” on page 724
If you want to be able to associate context information with a message when you put it on a queue, you
must use one of the message context options when you open the queue.

Preparing and running Microsoft Transaction Server applications
To prepare an MTS application to run as an IBM MQ MQI client application, follow these instructions as
appropriate for your environment.

For general information about how to develop Microsoft Transaction Server (MTS) applications that access
IBM MQ resources, see the section on MTS in the IBM MQ Help Center.

To prepare an MTS application to run as an IBM MQ MQI client application, do one of the following for
each component of the application:

• If the component uses the C language bindings for the MQI, follow the instructions in “Preparing C
programs in Windows” on page 978 but link the component with the library mqicxa.lib instead of
mqic.lib.

• If the component uses the IBM MQ C++ classes, follow the instructions in “Building C++ programs on
Windows” on page 531 but link the component with the library imqx23vn.lib instead of imqc23vn.lib.

• If the component uses the Visual Basic language bindings for the MQI, follow the instructions in the
“Preparing Visual Basic programs in Windows” on page 981 but when you define the Visual Basic
project, type MqType=3 in the Conditional Compilation Arguments field.

Design considerations for IBM MQ applications
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

When designing an IBM MQ application consider the following questions and options:
Type of application

What is the purpose of your application? See the following links for information about that different
types of application you can develop:

• Server
• Client
• Publish/subscribe
• Web services
• User exits, API exits, and installable services

Additionally, you can also write your own applications to automate administration of IBM MQ. For
more information, see The IBM MQ Administration Interface (MQAI) and Automating administration
tasks.

Programming language
IBM MQ supports a number of different programming languages for writing applications. For more
information see, “Developing applications for IBM MQ” on page 5.

Developing applications for IBM MQ 47

Applications for more than one platform

Will your application run on more than one platform? Do you have a strategy to move to a different
platform from the one that you use today? If the answer to either of these questions is yes, ensure
that you code your programs for platform independence.

For example if you are using C, code in ANSI standard C. Use a standard C library function rather
than an equivalent platform-specific function even if the platform-specific function is faster or more
efficient. The exception is when efficiency in the code is paramount, when you should code for both
situations using #ifdef. For example:

#ifdef _AIX
 AIX specific code
#else
 generic code
#endif

Types of queues
Do you want to create a queue each time that you need one, or do you want to use queues that have
already been set up? Do you want to delete a queue when you have finished using it, or is it going to
be used again? Do you want to use alias queues for application independence? To see what types of
queues are supported, refer to Queues.

Using shared queues, queue sharing groups, and queue sharing group clusters (IBM MQ
for z/OS only)

You might want to take advantage of the increased availability, scalability, and workload balancing
that are possible when you use shared queues with queue sharing groups. See Shared queues and
queue sharing groups for more information.

You might also want to estimate the average and peak message flows and consider using queue
sharing group clusters to spread the workload. See Shared queues and queue sharing groups for more
information.

Using queue manager clusters
You might want to take advantage of the simplified system administration, and increased availability,
scalability, and workload balancing that are possible when you use clusters.

Types of messages
You might want to use datagrams for simple messages, but request messages (for which you expect
replies) for other situations. You might want to assign different priorities to some of your messages.
For more information about designing messages, see “Design techniques for messages” on page 56.

Using publish/subscribe or point-to-point messaging
Using publish/subscribe messaging, a sending application sends the information that it wants to
share in an IBM MQ message to a standard destination managed by IBM MQ publish?subscribe,
and lets IBM MQ handle the distribution of that information. The target application does not have
to know anything about the source of the information it receives, it just registers an interest in one
or more topics and receives that information when it is available. For more information about publish/
subscribe messaging, see Publish/subscribe messaging.

Using point-to-point messaging, a sending application sends a message to a specific queue, from
where it knows a receiving application will retrieve it. A receiving application gets messages from a
specific queue and acts on their contents. An application will often function both as a sender and a
receiver, sending a query to another application and receiving a response.

Controlling your IBM MQ programs
You might want to start some programs automatically or make programs wait until a particular
message arrives on a queue (using the IBM MQ triggering feature, see “Starting IBM MQ applications
using triggers” on page 834). Alternatively, you might want to start another instance of an
application when the messages on a queue are not getting processed fast enough (using the IBM
MQ instrumentation events feature as described in Instrumentation events).

48 Developing Applications for IBM MQ

Running your application on an IBM MQ client
The full MQI is supported in the client environment, and almost any IBM MQ application written in a
procedural language can be relinked to run on an IBM MQ MQI client. Link the application on the IBM

MQ MQI client to the MQIC library, rather than to the MQI library. Get(signal) on z/OS is
not supported.

Note: An application running on an IBM MQ client can connect to more than one queue manager
concurrently, or use a queue manager name with an asterisk (*) on an MQCONN or MQCONNX call.
Change the application if you want to link to the queue manager libraries instead of the client libraries,
as this function will not be available.

See “Running applications in the IBM MQ MQI client environment” on page 887 for more information.

Application performance
Design decisions can impact your application performance, for suggestions for enhancing
performance of IBM MQ applications, see “Application design and performance considerations” on

page 57 and “Design and performance considerations for IBM i applications” on page
61 .

Advanced IBM MQ techniques
For more advanced applications you might want to use some advanced IBM MQ techniques such as
correlating replies, and generating and sending IBM MQ context information. For more information,
see “Design techniques for advanced applications” on page 59.

Securing your data and maintaining its integrity
You can use the context information that is passed with a message to test that the message has been
sent from an acceptable source. You can use the syncpointing facilities provided by IBM MQ or your
operating system to ensure that your data remains consistent with other resources (see “Committing
and backing out units of work” on page 823 for further details). You can use the persistence feature of
IBM MQ messages to assure the delivery of important messages.

Testing IBM MQ applications

The application development environment for IBM MQ programs is no different from that for any other
application, so you can use the same development tools as well as the IBM MQ trace facilities.

When testing CICS applications with IBM MQ for z/OS, you can use the CICS Execution
Diagnostic Facility (CEDF). CEDF traps the entry and exit of every MQI call as well as calls to all
CICS services. Also, in the CICS environment, you can write an API-crossing exit program to provide
diagnostic information before and after every MQI call. For information about how to do this, see
“Using and writing applications on IBM MQ for z/OS” on page 857.

When testing IBM i applications, you can use the standard Debugger. To start this, use
the STRDBG command.

Handling exceptions and errors
You need to consider how to process messages that cannot be delivered, and how to resolve error
situations that are reported to you by the queue manager. For some reports, you must set report
options on MQPUT.

Related concepts
IBM MQ technical overview
“Design and performance considerations for z/OS applications” on page 62
Application design is one of the most important factors affecting performance. Use this topic to
understand some of the design factors involved in performance.
“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.
“Application development concepts” on page 6

Developing applications for IBM MQ 49

You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
“Writing a procedural application for queuing” on page 696
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 879
What you need to know to write client applications on IBM MQ using a procedural language.
“Developing C++ applications” on page 508
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.
“Using IBM MQ classes for JMS/Jakarta Messaging” on page 79
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are the Java messaging providers
supplied with IBM MQ. As well as implementing the interfaces defined in the JMS and Jakarta Messaging
specifications, these messaging providers add two sets of extensions to the Java messaging API.
“Using IBM MQ classes for Java” on page 335
Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.
Related tasks
“Developing .NET applications” on page 535
IBM MQ classes for .NET allow .NET applications to connect to IBM MQ as an IBM MQ MQI client or to
connect directly to an IBM MQ server.

Specifying the application name in supported programming languages
Before IBM MQ 9.2.0, you could already specify an application name on Java or JMS client applications.
From IBM MQ 9.2.0 this feature is extended to other programming languages on IBM MQ for
Multiplatforms.

How the application name is used
The application name is output from:

• runmqsc DISPLAY CONN APPLTAG
• runmqsc DISPLAY QSTATUS TYPE(HANDLE) APPLTAG
• runmqsc DISPLAY CHSTATUS RAPPLTAG
• MQMD.PutApplName
• Application activity trace

The application name is also used when configuring application activity trace. The default application
name for non-Java applications is the truncated name of the executable, except on Windows and IBM i.

On Windows, the default name is the fully qualified executable name, truncated to 28
characters on the left.

On IBM i, the default name is the job name.

For Java applications it is the class name prefixed by the package name truncated on the left to 28
characters.

For more information, see PutApplName.

Applications on IBM MQ for Multiplatforms can set their application names either administratively or
by using various programming methods. This enables applications to provide a more meaningful platform-
independent name, when you configure application activity trace or when output from various runmqsc
commands.

50 Developing Applications for IBM MQ

You can rebalance applications across a uniform cluster. Meaningful application names are used to
achieve this.

Supported characters
See “Recommended application name characters” on page 51 for more information on how you specify
the application name.

Programming languages
See “Programming language connections” on page 53 for more information on how applications
resolving to the IBM MQ libraries in C, and other programming languages, can provide the application
name.

Managed .NET applications
See “Managed .NET applications” on page 54 for information on how managed .NET applications can
provide the application name.

XMS applications
See “XMS applications” on page 55 for information on how XMS applications can provide the application
name.

Java and JMS bindings applications

See “Java and JMS bindings applications” on page 55 for information on how Java and JMS applications
can provide the application name.

Related concepts
Application activity trace
About uniform clusters
Related reference
MQCNO
MQCNO on IBM i

Using the application name in supported programming languages
Use this information to learn how the application name is selected in the various languages that IBM MQ
supports.

Recommended application name characters
Application names must be in the character set given by the CodedCharSetId attribute of the queue
manager field. For more information on this attribute, see Attributes for the queue manager.

However, if the application is running as an IBM MQ MQI client, the application name must be in the
character set and encoding of the client.

To ensure a smooth transition of the application name between queue managers, and to allow application
resource monitoring through the resource monitoring topics, application names should contain only
single-byte printable characters.

Notes:

• You should also avoid the use of forward slash and ampersand characters in application names.

Developing applications for IBM MQ 51

• You should avoid use of the ampersand character in application names. System topic STATAPP metrics
for application names containing an ampersand will not be produced.

This limits the name to:

• Alphanumeric characters: A-Z, a-z, and 0-9

Note: You should not use the lowercase a-z characters in application names on systems using EBCDIC
Katakana.

• The space character
• Printable characters that are invariant in EBCDIC: + < = > % * ' () , _ - . : ; ?
• The / character. When subscribing to activity trace or STATAPP system topic metrics for an application

whose name contains a forward slash, you must replace any forward slash characters with an
ampersand character. For example, to receive STATAPP metrics for an application called "DEPT1/
APPS/STOCKQUOTE" you must subscribe to the topic string "$SYS/MQ/INFO/QMGR/QMBASIC/Monitor/
STATAPP/DEPT1&APPS&STOCKQUOTE/INSTANCE". The amqsact and amqsrua sample applications will
automatically convert forward slash characters to ampersands when creating their subscriptions.

How you set the characters
The following table summarizes the means by which the application name is chosen in the various
languages IBM MQ supports. The means by which the name is chosen is in order of precedence, highest
first.

C
binding
s and
client

Java
binding
s and
client

JMS
binding
s and
client

Manag
ed .NE
T client

Unman
aged .N
ET
binding
s and
client

Manag
ed XMS
client

Unman
aged .X
MS
binding
s and
client

Connection property override Java
connect
ion
propert
y
overrid
e

.NET
connect
ion
propert
y
overrid
e

.NET
connect
ion
propert
y
overrid
e

Overridden property Java
overrid
den
propert
y

.NET
overrid
den
propert
y

.NET
overrid
den
propert
y

MQEnvironment Java
MQEnvi
ronmen
t

.NET
MQEnvi
ronmen
t

.NET
MQEnvi
ronmen
t

Connection factory property Connec
tion
factory
propert
y

Connec
tion
factory
propert
y

Connec
tion
factory
propert
y

JMSAdmin JMSAd
min

JMSAd
min

JMSAd
min

52 Developing Applications for IBM MQ

C
binding
s and
client

Java
binding
s and
client

JMS
binding
s and
client

Manag
ed .NE
T client

Unman
aged .N
ET
binding
s and
client

Manag
ed XMS
client

Unman
aged .X
MS
binding
s and
client

MQCNO Connec
tion
options

Environment variable Environ
ment
variable
s

Environ
ment
variable
s

Environ
ment
variable
s

mqclient.ini

(Applicable to client connections
only)

Client
connect
ions

Client
connect
ions

Client
connect
ions

Java class name Java
class
name

Java
class
name

Default name Default
name

.NET
Default
name

.NET
Default
name

.NET
Default
name

.NET
Default
name

Note: The C bindings and client column applies to the following programming languages as well:

• COBOL
• Assembler
• Visual Basic
• RPG

Programming language connections
Applications resolving to the IBM MQ libraries in C, and other programming languages, can provide the
application name in the following ways.

The methods of connection are listed in order of precedence, starting with the highest.

Connection options

• MQCNO

Note: When connecting to an IBM MQ for z/OS queue manager, you can only set the
application name by using client mode connections, or by using IBM MQ classes for JMS or IBM MQ
classes for Java applications.

• MQCNO on IBM i

Environment variables

If you have not yet selected an application name, you can use the MQAPPLNAME environment variable to
identify the connection to the queue manager. For example:

export MQAPPLNAME=ExampleApplName

Note that the first 28 characters only are used, and these characters must not be all blanks or nulls.

Developing applications for IBM MQ 53

Note: The attribute applies to the supported programming languages, unmanaged .NET, and unmanaged
XMS connections only.

Client configuration file

If the you have not yet selected an application name, and the connection is a client connection, you can
specify the following information in the client configuration file (for example, mqclient.ini) to identify
the connection to the queue manager.

Connection:
 ApplName=ExampleApplName

Notes:

1. The first 28 characters only are used, and these characters must not be all blanks or nulls.
2. The attribute applies only to client connections on the supported programming languages,

unmanaged .NET, and unmanaged XMS connections only.

For more information, see IBM MQ MQI client configuration file, mqclient.ini.

Default name

If you have still not chosen the application name, the default name continues to be used, which contains
as much of the path and executable name as the operating system displays. For more information, see
PutApplName.

Managed .NET applications
Managed .NET applications can provide the application name in the following ways.

The methods of connection are listed in order of precedence, starting with the highest.

Connection property override

You can provide a connection details override file to applications in the following way:

<appSettings>
 <add key="overrideConnectionDetails" value="true" />
 <add key="overrideConnectionDetailsFile" value="<location>" />
</appSettings>

The file specified by overrideConnectionDetailsFile contains a list of properties prefixed by mqj.
Applications need to define the mqj.APPNAME property where the value of the mqj.APPNAME property
specifies the name used to identify the connection to the queue manager.

Only the first 28 characters of the name are used. For example:

mqj.APPNAME=ExampleApplName

Overridden property

A constant MQC.APPNAME_PROPERTY has been defined with the value APPNAME. You can now pass
this property to the MQQueueManager constructor, using the first 28 characters only of the name. For
example:

Hashtable properties = new Hashtable();
properties.Add(MQC.APPNAME_PROPERTY, "ExampleApplName");
MQQueueManager qMgr = new MQQueueManager("qmgrname", properties);

For more information, see “Managed and unmanaged operations in .NET” on page 612.

54 Developing Applications for IBM MQ

MQEnvironment

The AppName property is added to the MQEnvironmentclass, and the first 28 characters only are used.
For example:

MQEnvironment.AppName = "ExampleApplName";

Default name

If you have not provided the application name by any of the means described in the preceding text, the
application name is automatically set to be the executable name (and as much of the path that will fit).

XMS applications
The methods of connection are listed in order of precedence, starting with the highest.

Connection factory property

XMS applications can provide the application name on the connection factory using the
XMSC.WMQ_APPLICATIONNAME property ("XMSC_WMQ_APPNAME") in a similar way to JMS. You can
specify up to 28 characters.

For more information, see “XMS .NET creating administered objects” on page 639 and “Properties of an
XMS message” on page 646.

JMSAdmin

In the administrative tooling the property is known as "APPLICATIONNAME" or "APPNAME" for short.

Java and JMS bindings applications
The methods of connection are listed in order of precedence, starting with the highest.

Java and JMS client applications can already specify an application name, and this has been
extended on IBM MQ for Multiplatforms to bindings applications, by making use of the MQCNO ApplName
field.

Connection property override

The Application name property has been added to the list of connection properties that you can
override. For more information, see Using IBM MQ connection property override.

Attention: The connection properties and the way to use the Connection Property Override file is
the same for both IBM MQ classes for Java and .NET.

Overridden property

A constant MQC.APPNAME_PROPERTY has been defined with the value APPNAME. You can now pass this
property to the MQQueueManager constructor, using the first 28 characters only of the name. For more
information, see Using connection property override in IBM MQ classes for Java.

MQEnvironment

The AppName property is added to the MQEnvironment class, and the first 28 characters only are used.

For more information, see “Setting up the IBM MQ environment for IBM MQ classes for Java” on page
361.

Java class name

If you have not provided the application name by any of the means in the preceding text, the application
name is derived from the main class name.

Developing applications for IBM MQ 55

For more information, see “Setting up the IBM MQ environment for IBM MQ classes for Java” on page
361.

Attention: On IBM i it is not possible to query the main class name, so IBM MQ client
for Java is used instead.

Related concepts
“Setting up the IBM MQ environment for IBM MQ classes for Java” on page 361
For an application to connect to a queue manager in client mode, the application must specify the channel
name, host name, and port number.
Related reference
MQCNO
MQCNO on IBM i

Design techniques for messages
Considerations to help you design messages, including considerations for selectors and message
properties.

Things to consider at the design stage
You create a message when you use an MQI call to put the message on a queue. As input to the call, you
supply some control information in a message descriptor (MQMD) and the data that you want to send to
another program. But at the design stage, you need to consider the following, because they affect the way
that you create your messages:
Type of message to use

Are you designing a simple application in which you can send a message, then take no further action?
Or are you asking for a reply to a question? If you are asking a question, you might include in the
message descriptor the name of the queue on which you want to receive the reply.

Do you want your request and reply messages to be synchronous? This implies that you set a timeout
period for the reply to answer your request, and if you do not receive the reply within that period, it is
treated as an error.

Or would you prefer to work asynchronously, so that your processes do not have to depend upon the
occurrence of specific events, such as common timing signals?

Another consideration is whether you have all your messages inside a unit of work.

Assigning different priorities to messages
You can assign a priority value to each message, and define the queue so that it maintains its
messages in order of their priority. If you do this, when another program retrieves a message from
the queue, it always gets the message with the highest priority. If the queue does not maintain its
messages in priority order, a program that retrieves messages from the queue will retrieve them in the
order in which they were added to the queue.

Programs can also select a message using the identifier that the queue manager assigned when the
message was put on the queue. Alternatively, you can generate your own identifiers for each of your
messages.

Effect of restarting queue manager on messages
The queue manager preserves all persistent messages, recovering them when necessary from the
IBM MQ log files, when it is restarted. Nonpersistent messages and temporary dynamic queues are
not preserved. Any messages that you do not want discarded must be defined as persistent when
they are created. When writing an application for IBM MQ for Windows or IBM MQ on AIX and Linux
systems, make sure that you know how your system has been set up in respect of log file allocation to
reduce the risk of designing an application that will run to the log file limits.

56 Developing Applications for IBM MQ

Because messages on shared queues (only available on IBM MQ for z/OS) are held in
the coupling facility (CF), nonpersistent messages are preserved across restarts of a queue manager
as long as the CF remains available. If the CF fails, nonpersistent messages are lost.

Giving information about yourself to the recipient of messages
Usually, the queue manager sets the user ID, but suitably authorized applications can also set this
field, so that you can include your own user ID and other information that the receiving program can
use for accounting or security purposes.

Amount of receiving queues
If a message might need to be put on several queues, you can publish to a topic or a

distribution list.

If a message might need to be put on several queues, you can publish to a topic.

Selectors and message properties
Messages can have metadata associated with them alongside the main message payload. These message
properties can be useful in supplying additional data.

There are two aspects to this additional data that it is important to know about:

• The properties are not subject to Advanced Message Security (AMS) protection. If you want to use AMS
to protect your data, then put it in the payload and not the message properties.

• The properties can be used to perform the selection of messages.

It is important to note that using selectors breaks the standard message convention of first in first out.
As the queue manager is optimized for this workload, providing complex selectors is not advised for
performance reasons. The queue manager does not store indexes of the message properties, therefore
searching for a message must be a linear search. The deeper the queue, the more complex the selector,
and the lower probability that the selector matching a message will adversely affect performance.

If complex selection is required, it is suggested to filter the messages by using any application or
processing engine, such as IBM Integration Bus, to different destinations. Alternatively, the use of a
topic hierarchy might be useful.

Note: IBM MQ classes for Java do not support the use of selectors, if you do wish to use selectors these
should be done via the JMS API.

Application design and performance considerations
There are a number of ways in which poor program design can affect performance. These can be difficult
to detect because the program can appear to perform well itself, but affect the performance of other
tasks. Several problems specific to programs making IBM MQ calls are explained in this topic.

Here are a few ideas to help you to design efficient applications:

• Design your application so that processing goes on in parallel with a user's thinking time:

– Display a panel and allow the user to start typing while the application is still initializing.
– Get the data that you need in parallel from different servers.

• Keep connections and queues open if you are going to reuse them instead of repeatedly opening and
closing, connecting, and disconnecting.

• However, a server application that is putting only one message should use MQPUT1.
• Queue managers are optimized for messages between 4 KB and 100 KB in size. Very large messages

are inefficient; it is probably better to send 100 messages of 1 MB each than a single 100 MB message.
Very small messages are also inefficient. The queue manager does the same amount of work for a
single-byte message as for a 4 KB message.

• Keep your messages within a unit of work so that they can be committed or backed out simultaneously.
• Use the nonpersistent option for messages that do not need to be recoverable.

Developing applications for IBM MQ 57

• If you need to send a message to a number of target queues, consider using a distribution list.

Effect of message length
The amount of data in a message can affect the performance of the application that processes the
message. To achieve the best performance from your application, send only the essential data in a
message. For example, in a request to debit a bank account, the only information that might need to be
passed from the client to the server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are usually logged. Logging messages reduces the performance of your application,
so use persistent messages for essential data only. If the data in a message can be discarded if the queue
manager stops or fails, use a nonpersistent message.

MQPUT and MQGET operations for persistent messages will block when there is insufficient
recovery log space to record the operations. Such a condition is indicated in the queue manager job log
by messages CSQJ110E and CSQJ111A. Ensure monitoring processes are in place so that such conditions
are managed and avoided.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the message and correlation
identifiers (MsgId and CorrelId) in the message descriptor to specify a particular message, the queue
manager has to search the queue until it finds that message. Using the MQGET call in this way affects the
performance of your application.

Queues that contain messages of different lengths
If your application cannot use messages of a fixed length, grow and shrink the buffers dynamically to
suit the typical message size. If the application issues an MQGET call that fails because the buffer is too
small, the size of the message data is returned. Add code to your application so that the buffer is resized
accordingly and the MQGET call is reissued.

Note: If you do not set the MaxMsgLength attribute explicitly, it defaults to 4 MB, which might be very
inefficient if this is used to influence the application buffer size.

Frequency of sync points
Programs that issue very large numbers of MQPUT or MQGET calls within sync point, without committing
them, can cause performance problems. Affected queues can fill up with messages that are currently
inaccessible, while other tasks might be waiting to get these messages. This has implications in terms of
storage, and in terms of threads that are tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more than
one message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE call.

Number of threads in use

For IBM MQ for Windows, an application might require a large number of threads. Each
queue manager process is allocated a maximum allowable number of application threads.

Applications might use too many threads. Consider whether the application takes into account this
possibility and that it takes actions either to stop or to report this type of occurrence.

58 Developing Applications for IBM MQ

Put persistent messages under syncpoint
Persistent messages should be put and got under syncpoint. This is because when getting a persistent
message outside of syncpoint, if the get fails, there is no way for the application to know whether the
message has been got from the queue or not, and whether, if the message has been got, then it has also
been lost. When getting persistent messages under syncpoint, if anything fails, the transaction is rolled
back and the persistent message is not lost because it is still on the queue.

Similarly, when putting persistent messages, put them under syncpoint. Another reason for putting and
getting persistent messages under syncpoint is that the persistent message code in IBM MQ is heavily
optimized for syncpoint. So putting and getting persistent messages under syncpoint is faster than putting
and getting persistent messages outside of syncpoint.

If your application does put persistent messages outside syncpoint, the queue manager checks to see if it
can create an implicit syncpoint on behalf of the application. If the queue manager can do so, it includes
the put inside that syncpoint, and commits it automatically. See “Implicit syncpoint on Multiplatforms” on
page 831 for a more detailed description.

However, it is faster to put and get non-persistent messages outside of syncpoint because the
nonpersistent code in IBM MQ is optimized for being outside of syncpoint. Putting and getting persistent
messages go at disk speeds because the persistent message is persisted to disk. However, putting and
getting non-persistent messages go at CPU speeds because there is no disk write involved, not even when
using syncpoint.

If an application is getting messages and does not know in advance whether they are persistent or not,
the GMO option MQGMO_SYNCPOINT_IF_PERSISTENT can be used.

Design techniques for advanced applications
When designing more advanced applications, there are some techniques that you might want to
consider such as waiting for messages, correlating replies, setting and using context information, starting
applications automatically, generating reports and removing message affinities when using clustering.

For a simple IBM MQ application, you need to decide which IBM MQ objects to use in your application,
and which types of message you want to use. For a more advanced application, you might want to use
some of the techniques introduced in the following sections.

Waiting for messages
A program that is serving a queue can await messages by:

• Waiting until either a message arrives, or a specified time interval expires (see “Waiting for messages”
on page 769).

• On IBM MQ for z/OS only, setting a signal so that the program is informed when a message
arrives. For more information, see “Signaling” on page 770.

• Establishing a callback exit to be driven when a message arrives; see “Asynchronous consumption of
IBM MQ messages” on page 40.

• Making periodic calls on the queue to see whether a message has arrived (polling). This is not typically
advisable because it can have performance implications.

Correlating replies
In IBM MQ applications, when a program receives a message that requests it to do some work, the
program typically sends one or more reply messages to the requester.

To help the requester to associate these replies with its original request, an application can set a
correlation identifier field in the descriptor of each message. Programs then copy the message identifier of
the request message into the correlation identifier field of their reply messages.

Developing applications for IBM MQ 59

Setting and using context information
Context information is used for associating messages with the user who generated them, and for
identifying the application that generated the message. Such information is useful for security,
accounting, auditing, and problem determination.

When you create a message, you can specify an option that requests that the queue manager associates
default context information with your message.

For more information about using and setting context information, see “Message context” on page 45.

Starting IBM MQ programs automatically
Use IBM MQ triggering to start a program automatically when messages arrive on a queue.

You can set trigger conditions on a queue so that a program starts to process that queue:

• Every time that a message arrives on the queue
• When the first message arrives on the queue
• When the number of messages on the queue reaches a predefined number

For more information about triggering, see “Starting IBM MQ applications using triggers” on page 834.
Triggering is just one way of starting a program automatically. For example, you can start a program
automatically on a timer using non-IBM MQ facilities.

On Multiplatforms, IBM MQ can define service objects to start IBM MQ programs when the
queue manager starts; see Service objects.

Generating IBM MQ reports
You can request the following reports within an application:

• Exception reports
• Expiry reports
• Confirm-on-arrival (COA) reports
• Confirm-on-delivery (COD) reports
• Positive action notification (PAN) reports
• Negative action notification (NAN) reports

These are described in “Report messages” on page 19.

Clusters and message affinities
Before starting to use clusters with multiple definitions for the same queue, examine your applications to
see whether there are any that require an exchange of related messages.

Within a cluster, a message can be routed to any queue manager that hosts an instance of the appropriate
queue. Therefore, the logic of applications with message affinities can be upset.

For example, you might have two applications that rely on a series of messages flowing between them
in the form of questions and answers. It might be important that all the questions are sent to the same
queue manager and that all the answers are sent back to the other queue manager. In this situation, it is
important that the workload management routine does not send the messages to any queue manager that
just happens to host an instance of the appropriate queue.

Where possible, remove the affinities. Removing message affinities improves the availability and
scalability of applications.

For more information, see Handling message affinities.

60 Developing Applications for IBM MQ

Design and performance considerations for IBM i applications
Use this information to understand how application design, threads, and storage, can affect performance.

This information is split into two sections:

• “Application design considerations” on page 61
• “Specific performance problems” on page 62

Application design considerations
There are a number of ways in which poor program design can affect performance. These problems can
be difficult to detect because the program can appear to perform well, while affecting the performance
of other tasks. Several problems specific to programs making IBM MQ for IBM i calls are explained in the
following sections.

For more information about application design, see “Design considerations for IBM MQ applications” on
page 47.

Effect of message length
Although IBM MQ for IBM i allows messages to hold up to 100 MB of data, the amount of data in
a message affects the performance of the application that processes the message. To achieve the
best performance from your application, send only the essential data in a message; for example, in a
request to debit a bank account, the only information that might need to be passed from the client to
the server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are journaled. Journaling messages reduces the performance of your
application, so use persistent messages for essential data only. If the data in a message can be
discarded if the queue manager stops or fails, use a nonpersistent message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the message and
correlation identifiers (MsgId and CorrelId) in the message descriptor to specify a particular
message, the queue manager must search the queue until it finds that message. The use of the
MQGET call in this way affects the performance of your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a message, your
application can use the MQGET call with the BufferLength field set to zero so that, even though the
call fails, it returns the size of the message data. The application can then repeat the call, specifying
the identifier of the message it measured in its first call and a buffer of the correct size. However,
if there are other applications serving the same queue, you might find that the performance of your
application is reduced because its second MQGET call spends time searching for a message that
another application has retrieved in the time between your two calls.

If your application cannot use messages of a fixed length, another solution to this problem is to use
the MQINQ call to find the maximum size of messages that the queue can accept, then use this value
in your MQGET call. The maximum size of messages for a queue is stored in the MaxMsgLen attribute
of the queue. This method might use large amounts of storage, however, because the value of this
queue attribute can be the maximum allowed by IBM MQ for IBM i, which might be greater than 2 GB.

Frequency of sync points
Programs that issue numerous MQPUT calls within sync point, without committing them, can cause
performance problems. Affected queues can fill up with messages that are currently unusable, while
other tasks might be waiting to get these messages. This problem has implications in terms of
storage, and in terms of threads tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more
than one message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE
call.

Developing applications for IBM MQ 61

Number of threads in use
An application might require many threads. Each queue manager process is allocated a maximum
allowable number of threads. If some applications are troublesome, it might be due to their design
using too many threads. Consider whether the application takes into account this possibility and that
it takes actions either to stop or to report this type of occurrence. The maximum number of threads
that IBM i allows is 4,095. However, the default is 64. IBM MQ makes available up to 63 threads to its
processes.

Specific performance problems
This section explains the problems of storage and poor performance.
Storage problems

If you receive the system message CPF0907. Serious storage condition may exist it is
possible that you are filling up the space associated with the IBM MQ for IBM i queue managers.

Is your application or IBM MQ for IBM i running slowly?
If your application is running slowly, it might indicate that it is in a loop, or waiting for a resource
that is not available. This slow running might also be caused by a performance problem. Perhaps it is
because your system is operating near the limits of its capacity. This type of problem is probably worst
at peak system load times, typically at mid-morning and mid-afternoon. (If your network extends
across more than one time zone, peak system load might seem to you to occur at some other time.)

If you find that performance degradation is not dependent on system loading, but happens sometimes
when the system is lightly loaded, a poorly designed application program is probably to blame. This
problem might manifest itself as a problem that only occurs when certain queues are accessed.

QTOTJOB and QADLTOTJ are system values worth investigating.

The following symptoms might indicate that IBM MQ for IBM i is running slowly:

• If your system is slow to respond to MQSC commands.
• If repeated displays of the queue depth indicate that the queue is being processed slowly for an

application with which you would expect a large amount of queue activity.
• Is IBM MQ trace running?

Design considerations for Linux on Power Systems - Little Endian
applications

As Linux on Power® Systems - Little Endian supports 64-bit applications only, there is no support provided
in IBM MQ for 32-bit applications.
Related concepts
“Design considerations for IBM MQ applications” on page 47
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

Design and performance considerations for z/OS applications
Application design is one of the most important factors affecting performance. Use this topic to
understand some of the design factors involved in performance.

There are a number of ways in which poor program design can affect performance. These problems can
be difficult to detect because the program can appear to perform well, while affecting the performance of
other tasks. Several problems specific to programs making MQI calls are demonstrated in the following
sections.

For more information about application design, see “Design considerations for IBM MQ applications” on
page 47.

62 Developing Applications for IBM MQ

Effect of message length
Although IBM MQ for z/OS allows messages to hold up to 100 MB of data, the amount of data in a
message affects the performance of the application that processes the message. To achieve the best
performance from your application, send only the essential data in a message. For example, in a request
to debit a bank account, the only information that might need to be passed from the client to the server
application is the account number and the amount to debit.

Effect of message persistence

Persistent messages are logged. Logging messages reduces the performance of your application, so use
persistent messages for essential data only. If the data in a message can be discarded if the queue
manager stops or fails, use a nonpersistent message.

Data for persistent messages is written to log buffers. These buffers are written to the log data sets when:

• A commit occurs
• A message is got or put out of syncpoint
• WRTHRSH buffers are filled

Processing many messages in one unit of work can cause less input/output than if the messages were
processed one for each unit of work, or out of syncpoint.

Searching for a particular message

The MQGET call typically retrieves the first message from a queue. If you use the message and correlation
identifiers (MsgId and CorrelId) in the message descriptor to specify a particular message, the queue
manager searches the queue until it finds that message. Using MQGET in this way affects the performance
of your application because, to find a particular message, IBM MQ might have to scan the entire queue.

You can use the IndexType queue attribute to specify that you want the queue manager to maintain
an index that can be used to increase the speed of MQGET operations on the queue. However, there is a
small performance reduction for maintaining an index, so only generate one if you need to use it. You can
choose to build an index of message identifiers or of correlation identifiers, or you can choose not to build
an index for queues where messages are retrieved sequentially. Try to have many different key values,
not lots with the same value. For example Balance1, Balance2, and Balance3, not three with Balance. For
shared queues, you must have the correct IndexType. For details of the IndexType queue attribute, see
IndexType.

To avoid affecting queue manager restart time by using indexed queues, use the QINDXBLD(NOWAIT)
parameter in the CSQ6SYSP macro. This allows the queue manager restart to complete without waiting
for queue index building to complete.

For a full description of the IndexType attribute, and other object attributes see Attributes of objects.

Queues that contain messages of different lengths

Get a message, using a buffer size matching the expected size of the message. If you receive the return
code indicating that the message is too long, get a bigger buffer. When the get fails in this way, the data
length returned is the size of the unconverted message data. If you specify MQGMO_CONVERT on the
MQGET call, and the data expands during conversion, it still might not fit in the buffer, in which case you
need to further increase the size of the buffer.

If you issue the MQGET with a buffer length of zero, it returns the size of the message and the application
can then get a buffer of this size and reissue the get. If you have multiple applications processing the
queue, another application might have already processed the message when the original application
reissued the get. If you occasionally have large messages, you might need to get a large buffer just for

Developing applications for IBM MQ 63

these messages, and release it after the message has been processed. This should help reduce virtual
storage problems if all applications have large buffers.

If your application cannot use messages of a fixed length, another solution to this problem is to use the
MQINQ call to find the maximum size of messages that the queue can accept, then use this value in your
MQGET call. The maximum size of messages for a queue is stored in the MaxMsgL attribute of the queue.
This method could use large amounts of storage, however, because the value of MaxMsgL could be as high
as 100 MB, the maximum allowed by IBM MQ for z/OS.

Note: You can lower the MaxMsgL parameter after large messages have been put to the queue. For
example you can put a 100 MB message, then set MaxMsgL to 50 bytes. This means that it is still possible
to get bigger messages than the application expected.

Frequency of syncpoints

Programs that issue many MQPUT calls within syncpoint, without committing them, can cause
performance problems. Affected queues can fill up with messages that are currently unusable, while
other tasks might be waiting to get these messages. This has implications in terms of storage, and in
terms of threads tied up with tasks that are attempting to get messages.

As a rule if you have multiple applications processing a queue you typically get the best performance
when you have either

• 100 short messages (less than 1 KB), or
• One message for larger messages (100 KB)

for each syncpoint. If there is only one application processing the queue, you must have more messages
for each unit of work.

You can limit the number of messages that a task can get or put within a single unit of recovery with the
MAXUMSGS queue manager attribute. For information about this attribute, see the ALTER QMGR command
in MQSC commands.

Advantages of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more than one
message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE call.

How many messages can a queue manager contain

Local Queues

The number of local messages a queue manager can hold is basically the size of the page sets. You
can have up to 100 page sets (though it is recommended page set 0 and page set 1 are for system
related objects and queues). You can use a page set with extended format and increase the capacity
of a page set.

Shared Queues

The capacity for shared queues depends on the size of the coupling facility (CF). IBM MQ uses CF list
structures where fundamental storage units are entries and elements. Each message is stored as 1
entry and multiple elements containing the associated MQMD and other message data. The number of
elements consumed by a single message depends on the size of the message and, for CFLEVEL(5), the
offload rules in effect at MQPUT time. Fewer elements are needed when message data is offloaded
to either Db2 or SMDS. Message data access is slower when the message has been offloaded. See
Performance Supportpac MP1H for further comparison of performance and CPU overhead associated
with message offload.

64 Developing Applications for IBM MQ

What affects performance

Performance can mean how fast messages can be processed, and it can also mean how much CPU is
needed per message.

What affects how fast messages can be processed

For persistent messages the biggest impact is the speed of the log data sets. The speed of the log
data sets depends on the DASD they are on. Therefore care should be taken to put log data set on low
used volumes to reduce contention. Striping the MQ logs improves the log performance when there
are multiple pages written per I/O. Z High Performance Fibre connection (zHPF) also has a significant
performance to I/O response time when the I/O subsystem is busy.

When there is a request to get and put a message, access to the queue is locked during the request
to preserve integrity of the queue. For planning purposes consider the queue locked for the whole
request. So if the time for a put is 100 microseconds, and you have more than 10,000 requests a
second you might experience delays. You might achieve better than this in practice, but it is a good
general rule. You can use different queues to improve performance.

Possible reasons for this can be:

• use a common reply queue which every CICS transaction uses
• each CICS transaction is given a unique reply to queue
• a reply to a queue for CICS region and all transactions in the CICS region use this queue.

The answer depends on the number of requests a second, and the response time of the requests.

If messages have to be read from a page set, they will be slower compared to when the messages are
in the buffer pool. If you have more messages than fit into a buffer pool, then they will spill to disk.
So you need to ensure that the buffer pool is big enough for your short lived messages. If you have
messages that you process many hours later, these are likely to spill to disk, so you should expect a
get for these messages to be slower than if they were in the buffer pool.

For a shared queue, the speed of the messages depends on the speed of the Coupling Facility. A CF
within the physical processor is likely to be faster than an external CF. The CF response time depends
on how busy the CF is. For example on the Hursley systems, when the CF was 17% busy the response
time was 14 microseconds. When the CF was 95% busy the response time was 45 microseconds.

If your MQ requests use a lot of CPU, this can affect how fast messages are processed. Because if the
Logical Partition (LPAR) is constrained for CPU, applications will be delayed waiting for CPU.

How much CPU per message

In general bigger messages use more CPU, so avoid large (x MB) messages if possible.

When getting specific messages from queues, the queue should be indexed so the queue manager
can go directly to the message (and so avoids potentially an entire scan of the queue). If the queue is
not indexed then the queue is scanned from the beginning looking for the message. If there are 1000
messages on the queue, it may have to scan all 1000 messages. The result is a lot of unnecessary CPU
usage.

Channels using TLS have an additional cost due to the encryption of the message.

In MQ V7 you can select messages by a selector string in addition to the CORRELID or MSGID. Every
message has to be looked in, so if there are many messages on the queue this is expensive.

It is more efficient for an application to do OPEN PUT PUT CLOSE than PUT1 PUT1.

Triggering in CICS

When the message arrival rate of messages for a triggered queue is low, it is efficient to use trigger
first. When the message arrival rate is more than 10 messages a second, it is more efficient to trigger
the first transaction, then have the transaction process a message and get the next message, and so
on. If a message has not arrived in a short period (say between 0.1 and 1 second) the transaction
ends. At high throughput you might need multiple transactions running to process the messages and

Developing applications for IBM MQ 65

to prevent a build up of messages. For every trigger message produced, this requires a put and a get of
a trigger message, which in effect doubles the cost of the message.

How many connections or concurrent users are supported

Each connection uses virtual storage within the queue manager, so the more concurrent users the
more storage used. If you need a very large buffer pool and large number of users, then you might be
constrained for virtual storage, and you might need to reduce the size of your buffer pools.

If security is being used, the queue manager caches information within the queue manager for a long
period. The amount of virtual storage that is used within the queue manager is affected.

The CHINIT can support up to about 10,000 connections. This is limited by virtual storage. If a
connection uses more storage, for example using by TLS, the storage per connection increases, which
therefore means the CHINIT can support less connections. If you are processing large messages,
these will require more storage for buffers in the CHINIT, so the CHINIT can support less messages.

Connections to a remote queue manager are more efficient than client connections. For example,
every MQ client requests requires two network flows (one for the request and one for the response).
With a channel to a remote queue manager, there may be 50 sends over the network before a
response comes back. If you are considering a large client network, it may be more efficient to use
a concentrator queue manager on a distributed box, and have one channel coming in and out of the
concentrator.

Other things affecting performance

Log data set should be at least 1000 cylinders in size. If the logs are smaller than this, checkpoint activity
may be too frequent. On a busy system a checkpoint typically should be every 15 minutes or longer,
at very high throughputs it may less than this. When a checkpoint occurs the buffer pools are scanned
and 'old' messages and changed pages are written to disk. If checkpoints are too frequent, this can
impact performance. The value of LOGLOAD can also affect checkpoint frequency. If the queue manager
abnormally ends, then at restart it may have to read back to 3 checkpoints. The best checkpoint interval is
a balance between the activity when a checkpoint is taken, and the amount of log data that may need to
be read when the queue manager restarts.

There is a significant overhead incurred when starting a channel. It is usually better to start a channel and
leave it connected, rather than frequent starts and stops of the channel.

Related information
MP1K: IBM MQ for z/OS 9.0 Performance Report

IMS and IMS bridge applications on IBM MQ for z/OS
This information helps you to write IMS applications using IBM MQ.

• To use syncpoints and MQI calls in IMS applications, see “Writing IMS applications using IBM MQ” on
page 67.

• To write applications that use the IBM MQ - IMS bridge, see “Writing IMS bridge applications” on page
71.

Use the following links to find out more about IMS and IMS bridge applications on IBM MQ for z/OS:

• “Writing IMS applications using IBM MQ” on page 67
• “Writing IMS bridge applications” on page 71

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709

66 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/587315

To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

Writing IMS applications using IBM MQ
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

Use the following links to find out more about writing IMS applications on IBM MQ for z/OS:

• “Syncpoints in IMS applications” on page 67
• “MQI calls in IMS applications” on page 68

Restrictions
There are restrictions on which IBM MQ API calls can used by an application using the IMS adapter.

The following IBM MQ API calls are not supported within an application using the IMS adapter:

• MQCB
• MQCB_FUNCTION
• MQCTL

Related concepts
“Writing IMS bridge applications” on page 71
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB
and CHKP (checkpoint).

To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see ROLB call in the IMS documentation.

The queue manager is a participant in a two-phase commit protocol; the IMS syncpoint manager is the
coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven
BMP environment). This is because a different user could initiate the next unit of work and IBM MQ

Developing applications for IBM MQ 67

https://www.ibm.com/docs/en/ims/15.4.0?topic=dcitss-rolb-call

security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not when
the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify
IBM MQ to close the handles until either the next message arrives or a QC status code is returned to the
application. If the application is waiting in the IMS region and any of these handles belong to triggered
queues, triggering will not occur because the queues are open. For this reason, applications running in
a WFI or PWFI environment should explicitly MQCLOSE the queue handles before doing the GU to the
IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no
implicit syncpoint is taken. If the application ends normally, any open queues are closed and an implicit
commit occurs. If the application ends abnormally, any open queues are closed and an implicit backout
occurs.

MQI calls in IMS applications
Use this information to learn about the use of MQI calls on Server applications and Enquiry applications.

This section covers the use of MQI calls in the following types of IMS applications:

• “Server applications” on page 68
• “Inquiry applications” on page 70

Server applications
Here is an outline of the MQI server application model:

Initialize/Connect
.
Open queue for input shared
.
Get message from IBM MQ queue
.
Do while Get does not fail
.
If expected message received
Process the message
Else
Process unexpected message
End if
.
Commit
.
Get next message from IBM MQ queue
.
End do
.
Close queue/Disconnect
.
END

Sample program CSQ4ICB3 shows the implementation, in C/370, of a BMP using this model. The program
establishes communication with IMS first, and then with IBM MQ:

main()

Call InitIMS
If IMS initialization successful
Call InitMQM
If IBM MQ initialization successful
Call ProcessRequests
Call EndMQM
End-if
End-if

Return

68 Developing Applications for IBM MQ

The IMS initialization determines whether the program has been called as a message-driven or a batch-
oriented BMP and controls IBM MQ queue manager connection and queue handles accordingly:

InitIMS

Get the IO, Alternate and Database PCBs
Set MessageOriented to true

Call ctdli to handle status codes rather than abend
If call is successful (status code is zero)
While status code is zero
Call ctdli to get next message from IMS message queue
If message received
Do nothing
Else if no IOPBC
Set MessageOriented to false
Initialize error message
Build 'Started as batch oriented BMP' message
Call ReportCallError to output the message
End-if
Else if response is not 'no message available'
Initialize error message
Build 'GU failed' message
Call ReportCallError to output the message
Set return code to error
End-if
End-if
End-while
Else
Initialize error message
Build 'INIT failed' message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

The IBM MQ initialization connects to the queue manager and opens the queues. In a message-driven
BMP this is called after each IMS syncpoint is taken; in a batch-oriented BMP, this is called only during
program startup:

InitMQM

Connect to the queue manager
If connect is successful
Initialize variables for the open call
Open the request queue
If open is not successful
Initialize error message
Build 'open failed' message
Call ReportCallError to output the message
Set return code to error
End-if
Else
Initialize error message
Build 'connect failed' message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

The implementation of the server model in an MPP is influenced by the fact that the MPP processes
a single unit of work per invocation. This is because, when a syncpoint (GU) is taken, the connection
and queue handles are closed and the next IMS message is delivered. This limitation can be partially
overcome by one of the following:

• Processing many messages within a single unit-of-work

This involves:

– Reading a message
– Processing the required updates

Developing applications for IBM MQ 69

– Putting the reply

in a loop until all messages have been processed or until a set maximum number of messages has been
processed, at which time a syncpoint is taken.

Only certain types of application (for example, a simple database update or inquiry) can be approached
in this way. Although the MQI reply messages can be put with the authority of the originator of the MQI
message being handled, the security implications of any IMS resource updates need to be addressed
carefully.

• Processing one message per invocation of the MPP and ensuring multiple scheduling of the MPP to
process all available messages.

Use the IBM MQ IMS trigger monitor program (CSQQTRMN) to schedule the MPP transaction when there
are messages on the IBM MQ queue and no applications serving it.

If trigger monitor starts the MPP, the queue manager name and queue name are passed to the program,
as shown in the following COBOL code extract:

* Data definition extract
01 WS-INPUT-MSG.
05 IN-LL1 PIC S9(3) COMP.
05 IN-ZZ1 PIC S9(3) COMP.
05 WS-STRINGPARM PIC X(1000).
01 TRIGGER-MESSAGE.
COPY CMQTMC2L.
*
* Code extract
GU-IOPCB SECTION.
MOVE SPACES TO WS-STRINGPARM.
CALL 'CBLTDLI' USING GU,
IOPCB,
WS-INPUT-MSG.
IF IOPCB-STATUS = SPACES
MOVE WS-STRINGPARM TO MQTMC.
* ELSE handle error
*
* Now use the queue manager and queue names passed
DISPLAY 'MQTMC-QMGRNAME ='
MQTMC-QMGRNAME OF MQTMC '='.
DISPLAY 'MQTMC-QNAME ='
MQTMC-QNAME OF MQTMC '='.

The server model, which is expected to be a long running task, is better supported in a batch processing
region, although the BMP cannot be triggered using CSQQTRMN.

Inquiry applications
A typical IBM MQ application initiating an inquiry or update works as follows:

• Gather data from the user
• Put one or more IBM MQ messages
• Get the reply messages (you might have to wait for them)
• Provide a response to the user

Because messages put on to IBM MQ queues do not become available to other IBM MQ applications until
they are committed, they must either be put out of syncpoint, or the IMS application must be split into
two transactions.

If the inquiry involves putting a single message, you can use the no syncpoint option; however, if the
inquiry is more complex, or resource updates are involved, you might get consistency problems if failure
occurs and you do not use syncpointing.

70 Developing Applications for IBM MQ

To overcome this, you can split IMS MPP transactions using MQI calls using a program-to-program
message switch; see IMS Intersystem Communication (ISC) for information about this. This allows an
inquiry program to be implemented in an MPP:

Initialize first program/Connect
.
Open queue for output
.
Put inquiry to IBM MQ queue
.
Switch to second IBM MQ program, passing necessary data in save
pack area (this commits the put)
.
END
.
.
Initialize second program/Connect
.
Open queue for input shared
.
Get results of inquiry from IBM MQ queue
.
Return results to originator
.
END

Writing IMS bridge applications
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

For information about the IBM MQ - IMS bridge, see The IMS bridge.

Use the following links to find out more about writing IMS bridge applications on IBM MQ for z/OS:

• “How the IMS bridge deals with messages” on page 71
• “Writing IMS transaction programs through IBM MQ” on page 878

Related concepts
“Writing IMS applications using IBM MQ” on page 67
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

How the IMS bridge deals with messages
When you use the IBM MQ - IMS bridge to send messages to an IMS application, you need to construct
your messages in a special format.

You must also put your messages on IBM MQ queues that have been defined with a storage class that
specifies the XCF group and member name of the target IMS system. These are known as MQ-IMS bridge
queues, or simply bridge queues.

The IBM MQ-IMS bridge requires exclusive input access (MQOO_INPUT_EXCLUSIVE) to the bridge queue
if it is defined with QSGDISP(QMGR), or if it is defined with QSGDISP(SHARED) together with the
NOSHARE option.

A user does not need to sign on to IMS before sending messages to an IMS application. The user ID in
the UserIdentifier field of the MQMD structure is used for security checking. The level of checking
is determined when IBM MQ connects to IMS, and is described in Application access control for the IMS
bridge. This enables a pseudo signon to be implemented.

The IBM MQ - IMS bridge accepts the following types of message:

• Messages containing IMS transaction data and an MQIIH structure (described in MQIIH):

MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

Note:

Developing applications for IBM MQ 71

https://www.ibm.com/docs/en/ims/15.4.0?topic=connections-intersystem-communication-isc

1. The square brackets, [], represent optional multi-segments.
2. Set the Format field of the MQMD structure to MQFMT_IMS to use the MQIIH structure.

• Messages containing IMS transaction data but no MQIIH structure:

LLZZ<trancode><data> \
[LLZZ<data>][LLZZ<data>]

IBM MQ validates the message data to ensure that the sum of the LL bytes plus the length of the MQIIH (if
it is present) is equal to the message length.

When the IBM MQ - IMS bridge gets messages from the bridge queues, it processes them as follows:

• If the message contains an MQIIH structure, the bridge verifies the MQIIH (see MQIIH), builds the
OTMA headers, and sends the message to IMS. The transaction code is specified in the input message.
If this is an LTERM, IMS replies with a DFS1288E message. If the transaction code represents a
command, IMS executes the command; otherwise the message is queued in IMS for the transaction.

• If the message contains IMS transaction data, but no MQIIH structure, the IMS bridge makes the
following assumptions:

– The transaction code is in bytes 5 through 12 of the user data
– The transaction is in nonconversational mode
– The transaction is in commit mode 0 (commit-then-send)
– The Format in the MQMD is used as the MFSMapName (on input)
– The security mode is MQISS_CHECK

The reply message is also built without an MQIIH structure, taking the Format for the MQMD from the
MFSMapName of the IMS output.

The IBM MQ - IMS bridge uses one or two Tpipes for each IBM MQ queue:

• A synchronized Tpipe is used for all messages using Commit mode 0 (COMMIT_THEN_SEND) (these
show with SYN in the status field of the IMS /DIS TMEMBER client TPIPE xxxx command)

• A non-synchronized Tpipe is used for all messages using Commit mode 1 (SEND_THEN_COMMIT)

The Tpipes are created by IBM MQ when they are first used. A non-synchronized Tpipe exists until IMS is
restarted. Synchronized Tpipes exist until IMS is cold started. You cannot delete these Tpipes yourself.

See the following topics for more information about how the IBM MQ - IMS bridge deals with messages:

• “Mapping IBM MQ messages to IMS transaction types” on page 73
• “If the message cannot be put to the IMS queue” on page 73
• “IMS bridge feedback codes” on page 74
• “The MQMD fields in messages from the IMS bridge” on page 74
• “The MQIIH fields in messages from the IMS bridge” on page 75
• “Reply messages from IMS” on page 76
• “Using alternate response PCBs in IMS transactions” on page 76
• “Sending unsolicited messages from IMS” on page 76
• “Message segmentation” on page 77
• “Data conversion for messages to and from the IMS bridge” on page 77

Related concepts
“Writing IMS transaction programs through IBM MQ” on page 878

72 Developing Applications for IBM MQ

The coding required to handle IMS transactions through IBM MQ depends on the message format
required by the IMS transaction and the range of responses it can return. However, there are several
points to consider when your application handles IMS screen formatting information.

Mapping IBM MQ messages to IMS transaction types
A table describing the mapping of IBM MQ messages to IMS transaction types.

Table 4. How IBM MQ messages map to IMS transaction types

IBM MQ message type Commit-then-send (mode 0) -
uses synchronized IMS Tpipes

Send-then-commit (mode 1)
- uses non-synchronized IMS
Tpipes

Persistent IBM MQ messages • Recoverable full function
transactions

• Unrecoverable transactions are
rejected by IMS

• Fastpath transactions
• Conversational transactions
• Full function transactions

Nonpersistent IBM MQ messages • Unrecoverable full function
transactions

• Recoverable transactions are
permitted with IMS V8 and APAR
PQ61404 and all later versions of
IMS

• Fastpath transactions
• Conversational transactions
• Full function transactions

Note: IMS commands cannot use persistent IBM MQ messages with commit mode 0. See Commit mode
(commitMode) for more information.

If the message cannot be put to the IMS queue
Learn about actions to take if the message cannot be put to the IMS queue.

If the message cannot be put to the IMS queue, the following action is taken by IBM MQ:

• If a message cannot be put to IMS because the message is invalid, the message is put to the dead-letter
queue, and a message is sent to the system console.

• If the message is valid, but is rejected by IMS, IBM MQ sends an error message to the system console,
the message includes the IMS sense code, and the IBM MQ message is put to the dead-letter queue. If
the IMS sense code is 001A, IMS sends an IBM MQ message containing the reason for the failure to the
reply-to queue.

Note: In the circumstances listed previously, if IBM MQ cannot put the message to the dead-letter
queue for any reason, the message is returned to the originating IBM MQ queue. An error message is
sent to the system console, and no further messages are sent from that queue.

To resend the messages, do one of the following:

– Stop and restart the Tpipes in IMS corresponding to the queue
– Alter the queue to GET(DISABLED), and again to GET(ENABLED)
– Stop and restart IMS or the OTMA
– Stop and restart your IBM MQ subsystem

• If the message is rejected by IMS for anything other than a message error, the IBM MQ message is
returned to the originating queue, IBM MQ stops processing the queue, and an error message is sent to
the system console.

If an exception report message is required, the bridge puts it to the reply-to queue with the authority of
the originator. If the message cannot be put to the queue, the report message is put to the dead-letter
queue with the authority of the bridge. If it cannot be put to the DLQ, it is discarded.

Developing applications for IBM MQ 73

https://www.ibm.com/docs/en/ims/15.4.0?topic=properties-commit-mode-commitmode
https://www.ibm.com/docs/en/ims/15.4.0?topic=properties-commit-mode-commitmode

IMS bridge feedback codes
IMS sense codes are typically output in hexadecimal format in IBM MQ console messages such as
CSQ2001I (for example, sense code 0x001F). IBM MQ feedback codes as seen in the dead-letter header
of messages put to the dead-letter queue are decimal numbers.

The IMS bridge feedback codes are in the range 301 through 399, or 600 through 855 for NACK sense
code 0x001A. They are mapped from the IMS-OTMA sense codes as follows:

1. The IMS-OTMA sense code is converted from a hexadecimal number to a decimal number.
2. 300 is added to the number resulting from the calculation in 1, giving the IBM MQ Feedback code.
3. The IMS-OTMA sense code 0x001A, decimal 26 is a special case. A Feedback code in the range

600-855 is generated.

a. The IMS-OTMA reason code is converted from a hexadecimal number to a decimal number.
b. 600 is added to the number resulting from the calculation in a, giving the IBM MQ Feedback code.

For information about IMS-OTMA sense codes, see OTMA sense codes for NAK messages.

The MQMD fields in messages from the IMS bridge
Learn about the MQMD fields in messages from the IMS bridge.

The MQMD of the originating message is carried by IMS in the User Data section of the OTMA headers.
If the message originates in IMS, this is built by the IMS Destination Resolution Exit. The MQMD of a
message received from IMS is built as follows:

StrucID
"MD "

Version
MQMD_VERSION_1

Report
MQRO_NONE

MsgType
MQMT_REPLY

Expiry
If MQIIH_PASS_EXPIRATION is set in the Flags field of the MQIIH, this field contains the remaining
expiry time, else it is set to MQEI_UNLIMITED

Feedback
MQFB_NONE

Encoding
MQENC.Native (the encoding of the z/OS system)

CodedCharSetId
MQCCSI_Q_MGR (the CodedCharSetID of the z/OS system)

Format
MQFMT_IMS if the MQMD.Format of the input message is MQFMT_IMS, otherwise IOPCB.MODNAME

Priority
MQMD.Priority of the input message

Persistence
Depends on commit mode: MQMD.Persistence of the input message if CM-1; persistence matches
recoverability of the IMS message if CM-0

MsgId
MQMD.MsgId if MQRO_PASS_MSG_ID, otherwise New MsgId (the default)

CorrelId
MQMD.CorrelId from the input message if MQRO_PASS_CORREL_ID, otherwise MQMD.MsgId from the
input message (the default)

74 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/ims/15.4.0?topic=codes-otma-sense-nak-messages

BackoutCount
0

ReplyToQ
Blanks

ReplyToQMgr
Blanks (set to local qmgr name by the queue manager during the MQPUT)

UserIdentifier
MQMD.UserIdentifier of the input message

AccountingToken
MQMD.AccountingToken of the input message

ApplIdentityData
MQMD.ApplIdentityData of the input message

PutApplType
MQAT_XCF if no error, otherwise MQAT_BRIDGE

PutApplName
<XCFgroupName><XCFmemberName> if no error, otherwise QMGR name

PutDate
Date when message was put

PutTime
Time when message was put

ApplOriginData
Blanks

The MQIIH fields in messages from the IMS bridge
Learn about the MQIIH fields in messages from the IMS bridge.

The MQIIH of a message received from IMS is built as follows:

StrucId
"IIH "

Version
1

StrucLength
84

Encoding
MQENC_NATIVE

CodedCharSetId
MQCCSI_Q_MGR

Format
MQIIH.ReplyToFormat of the input message if MQIIH.ReplyToFormat is not blank, otherwise
IOPCB.MODNAME

Flags
0

LTermOverride
LTERM name (Tpipe) from OTMA header

MFSMapName
Map name from OTMA header

ReplyToFormat
Blanks

Authenticator
MQIIH.Authenticator of the input message if the reply message is being put to an MQ-IMS bridge
queue, otherwise blanks.

Developing applications for IBM MQ 75

TranInstanceId
Conversation ID / Server Token from OTMA header if in conversation. In versions of IMS prior to V14,
this field is always nulls if not in conversation. From IMS V14 onwards, this field may be set by IMS
even if not in conversation.

TranState
"C" if in conversation, otherwise blank

CommitMode
Commit mode from OTMA header ("0" or "1")

SecurityScope
Blank

Reserved
Blank

Reply messages from IMS
When an IMS transaction ISRTs to its IOPCB, the message is routed back to the originating LTERM or
TPIPE.

These are seen in IBM MQ as reply messages. Reply messages from IMS are put onto the reply-to
queue specified in the original message. If the message cannot be put onto the reply-to queue, it is put
onto the dead-letter queue using the authority of the bridge. If the message cannot be put onto the
dead-letter queue, a negative acknowledgment is sent to IMS to say that the message cannot be received.
Responsibility for the message is then returned to IMS. If you are using commit mode 0, messages from
that Tpipe are not sent to the bridge, and remain on the IMS queue; that is, no further messages are sent
until restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MQFMT_IMS; if not, its format type is specified by
the IMS MOD name used when inserting the message.

Using alternate response PCBs in IMS transactions
When an IMS transaction uses alternate response PCBs (ISRTs to the ALTPCB, or issues a CHNG call to
a modifiable PCB), the pre-routing exit (DFSYPRX0) is invoked to determine if the message should be
rerouted.

If the message is to be rerouted, the destination resolution exit (DFSYDRU0) is invoked to confirm the
destination and prepare the header information See Using OTMA exits in IMS and The pre-routing exit
DFSYPRX0 for information about these exit programs.

Unless action is taken in the exits, all output from IMS transactions initiated from an IBM MQ queue
manager, whether to the IOPCB or to an ALTPCB, will be returned to the same queue manager.

Sending unsolicited messages from IMS
To send messages from IMS to an IBM MQ queue, you need to invoke an IMS transaction that ISRTs to an
ALTPCB.

You need to write pre-routing and destination resolution exits to route unsolicited messages from IMS
and build the OTMA user data, so that the MQMD of the message can be built correctly. See The pre-
routing exit DFSYPRX0 and The destination resolution user exit for information about these exit programs.

Note: The IBM MQ - IMS bridge does not know whether a message that it receives is a reply or an
unsolicited message. It handles the message the same way in each case, building the MQMD and MQIIH
of the reply based on the OTMA UserData that arrived with the message

Unsolicited messages can create new Tpipes. For example, if an existing IMS transaction switched to a
new LTERM (for example PRINT01), but the implementation requires that the output be delivered through
OTMA, a new Tpipe (called PRINT01 in this example) is created. By default, this is a non-synchronized
Tpipe. If the implementation requires the message to be recoverable, set the destination resolution exit
output flag. See the IMS Customization Guide for more information.

76 Developing Applications for IBM MQ

Message segmentation
You can define IMS transactions as expecting single- or multi-segment input.

The originating IBM MQ application must construct the user input following the MQIIH structure as one
or more LLZZ-data segments. All segments of an IMS message must be contained in a single IBM MQ
message sent with a single MQPUT.

The maximum length of an LLZZ-data segment is defined by IMS/OTMA (32767 bytes). The total IBM MQ
message length is the sum of the LL bytes, plus the length of the MQIIH structure.

All the segments of the reply are contained in a single IBM MQ message.

There is a further restriction on the 32 KB limitation on messages with format MQFMT_IMS_VAR_STRING.
When the data in an ASCII-mixed CCSID message is converted to an EBCDIC-mixed CCSID message, a
shift-in byte or a shift-out byte is added every time that there is a transition between SBCS and DBCS
characters. The 32 KB restriction applies to the maximum size of the message. That is, because the LL
field in the message cannot exceed 32 KB, the message must not exceed 32 KB including all shift-in and
shift-out characters. The application building the message must allow for this.

Data conversion for messages to and from the IMS bridge
The data conversion is performed by either the distributed queuing facility (which may call any necessary
exits) or by the intra group queuing agent (which does not support the use of exits) when it puts
a message to a destination queue that has XCF information defined for its storage class. The data
conversion does not occur when a message is delivered to a queue by publish/subscribe.

Any exits needed must be available to the distributed queuing facility in the data set referenced by the
CSQXLIB DD statement. This means that you can send messages to an IMS application using the IBM MQ
- IMS bridge from any IBM MQ platform.

If there are conversion errors, the message is put to the queue unconverted; this results eventually in it
being treated as an error by the IBM MQ - IMS bridge, because the bridge cannot recognize the header
format. If a conversion error occurs, an error message is sent to the z/OS console.

See “Writing data-conversion exits” on page 947 for detailed information about data conversion in
general.

Sending messages to the IBM MQ - IMS bridge
To ensure that conversion is performed correctly, you must tell the queue manager what the format of the
message is.

If the message has an MQIIH structure, the Format in the MQMD must be set to the built-in format
MQFMT_IMS, and the Format in the MQIIH must be set to the name of the format that describes your
message data. If there is no MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your format name (in the MQIIH
or MQMD, as appropriate) the built-in format MQFMT_IMS_VAR_STRING. Otherwise, use your own format
name, in which case you must also provide a data-conversion exit for your format. The exit must handle
the conversion of the LLZZs in your message, in addition to the data itself (but it does not have to handle
any MQIIH at the start of the message).

If your application uses MFSMapName, you can use messages with the MQFMT_IMS instead, and define
the map name passed to the IMS transaction in the MFSMapName field of the MQIIH.

Receiving messages from the IBM MQ - IMS bridge
If an MQIIH structure is present on the original message that you are sending to IMS, one is also present
on the reply message.

To ensure that your reply is converted correctly:

• If you have an MQIIH structure on your original message, specify the format that you want for your
reply message in the MQIIH ReplytoFormat field of the original message. This value is placed in the

Developing applications for IBM MQ 77

MQIIH Format field of the reply message. This is particularly useful if all your output data is of the form
LLZZ<character data>.

• If you do not have an MQIIH structure on your original message, specify the format that you want for the
reply message as the MFS MOD name in the IMS application's ISRT to the IOPCB.

Developing JMS/Jakarta Messaging and Java applications
IBM MQ provides three Java language interfaces: IBM MQ classes for Jakarta Messaging, IBM MQ classes
for JMS, and IBM MQ classes for Java.

About this task

IBM MQ classes for Jakarta Messaging
IBM MQ classes for Jakarta Messaging is a Jakarta Messaging provider that implements the Jakarta
Messaging interfaces for IBM MQ as the messaging system. The Jakarta Connectors Architecture
provides a standard way of connecting applications running in a Jakarta EE environment to an
Enterprise Information System (EIS) such as IBM MQ or Db2.
For more information, see “Why should I use IBM MQ classes for Jakarta Messaging?” on page 80
and “Accessing IBM MQ from Java - Choice of API” on page 82.

IBM MQ classes for JMS
IBM MQ classes for JMS is a JMS provider that implements the JMS interfaces for IBM MQ as
the messaging system. The Java Platform, Enterprise Edition Connector Architecture (JCA) provides
a standard way of connecting applications running in a Java EE environment to an Enterprise
Information System (EIS) such as IBM MQ or Db2.
For more information, see “Why should I use IBM MQ classes for JMS?” on page 81 and “Accessing
IBM MQ from Java - Choice of API” on page 82.

IBM MQ classes for Java
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.
IBM MQ classes for Java encapsulates the Message Queue Interface (MQI), the native IBM MQ API,
and uses the same object model as other object-oriented interfaces, whereas IBM MQ classes for JMS
and IBM MQ classes for Jakarta Messaging implement Java messaging interfaces from Oracle and the
Java Community Process respectively.
For more information, see “Why should I use IBM MQ classes for Java?” on page 336 and “Accessing
IBM MQ from Java - Choice of API” on page 82.

Note:

IBM will make no further enhancements to the IBM MQ classes for Java and they are
functionally stabilized at the level shipped in IBM MQ 8.0. Existing applications that use the IBM MQ
classes for Java continue to be fully supported, but new features will not be added and requests for
enhancements will be rejected. Fully supported means that defects will be fixed together with any
changes necessitated by changes to IBM MQ System Requirements.

The IBM MQ classes for Java are not supported in IMS.

The IBM MQ classes for Java are not supported in WebSphere® Liberty. They must not be used with either
the IBM MQ Liberty messaging feature, or with the generic JCA support. For more information, see Using
WebSphere MQ Java Interfaces in J2EE/JEE Environments.

78 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/727251
https://www.ibm.com/support/pages/node/727251

Using IBM MQ classes for JMS/Jakarta Messaging
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are the Java messaging providers
supplied with IBM MQ. As well as implementing the interfaces defined in the JMS and Jakarta Messaging
specifications, these messaging providers add two sets of extensions to the Java messaging API.

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 continues to support JMS 2.0 for existing applications. It is not supported to use both the
JMS 2.0 API and the Jakarta Messaging 3.0 API in the same application.

Note: For Jakarta Messaging 3.0, control of the JMS specification moves from Oracle to the Java
Community Process. However, Oracle retains control of the "javax" name, which is used in other Java
technologies that have not moved to the Java Community Process. So, while Jakarta Messaging 3.0 is
functionally equivalent to JMS 2.0 there are some differences in naming:

• The official name for version 3.0 is Jakarta Messaging rather than Java Message Service.
• The package and constant names are prefixed with jakarta rather than javax. For example, in JMS

2.0 the initial connection to a messaging provider is a javax.jms.Connection object, and in Jakarta
Messaging 3.0 it is a jakarta.jms.Connection object.

The javax.jms packages define the JMS interfaces, and a JMS provider implements these
interfaces for a specific messaging product. IBM MQ classes for JMS is a JMS provider that implements
the JMS interfaces for IBM MQ.

The jakarta.jms packages define the Jakarta Messaging interfaces, and a Jakarta Messaging
provider implements these interfaces for a specific messaging product. IBM MQ classes for Jakarta
Messaging is a Jakarta Messaging provider that implements the Jakarta Messaging interfaces for IBM MQ.

The JMS and Jakarta Messaging specifications expect ConnectionFactory and Destination objects to
be administered objects. An administrator creates and maintains administered objects in a central
repository, and a JMS or Jakarta Messaging application retrieves these objects using the Java Naming
Directory Interface (JNDI).

For JMS 2.0, an administrator can use the IBM MQ JMS administration tool JMSAdmin, or
IBM MQ Explorer, to create and maintain administered objects in a central repository.

For Jakarta Messaging 3.0, you cannot administer JNDI using IBM MQ Explorer. JNDI
administration is supported by the Jakarta Messaging 3.0 variant of JMSAdmin, which is JMS30Admin.

Because JMS and Jakarta Messaging share much in common, further references to JMS in this topic can
be taken as referring to both. Any differences are highlighted as necessary.

IBM MQ classes for JMS also provides two sets of extensions to the JMS API. The main focus of these
extensions concerns creating and configuring connection factories and destinations dynamically at run
time, but the extensions also provide function that is not directly related to messaging, such as function
for problem determination.
The IBM MQ JMS extensions

IBM MQ classes for JMS contains extensions that are implemented in objects such as
MQConnectionFactory, MQQueue, and MQTopic objects. These objects have properties and methods
that are specific to IBM MQ. The objects can be administered objects, or an application can create the
objects dynamically at run time. These extensions are termed the IBM MQ JMS extensions.

The IBM JMS extensions
IBM MQ classes for JMS also provides a more generic set of extensions to the JMS API, which are
not specific to IBM MQ as the messaging system or Java as the programming language used. These
extensions are termed the IBM JMS extensions and have the following broad objectives:

• To provide a greater level of consistency across IBM JMS providers.
• To make it easier to write a bridge application between two IBM messaging systems.
• To make it easier to port an application from one IBM JMS provider to another.

Developing applications for IBM MQ 79

The extensions provide function that is similar to that provided in IBM MQ Message Service Client
(XMS) for C/C++ and IBM MQ Message Service Client (XMS) for .NET.

Related concepts
IBM MQ Java language interfaces
Related tasks
“Writing IBM MQ classes for JMS/Jakarta Messaging applications” on page 134
After a brief introduction to the JMS model, this section provides detailed guidance on how to write IBM
MQ classes for JMS and IBM MQ classes for Jakarta Messaging applications.

Why should I use IBM MQ classes for Jakarta Messaging?
Using IBM MQ classes for Jakarta Messaging has a number of advantages including being able to reuse
any existing Jakarta Messaging skills in your organization, and applications being more independent from
the Jakarta Messaging provider and the underlying IBM MQ configuration.

Summary of advantages of using IBM MQ classes for Jakarta Messaging
Using IBM MQ classes for Jakarta Messaging allows you to reuse existing Jakarta Messaging skills and
provide application independence.

• You can reuse Jakarta Messaging skills.

IBM MQ classes for Jakarta Messaging is a Jakarta Messaging provider that implements the Jakarta
Messaging interfaces for IBM MQ as the messaging system. If your organization is new to IBM MQ,
but already has Jakarta Messaging (or JMS) application development skills, you might find it easier to
use the familiar Jakarta Messaging API to access IBM MQ resources rather than one of the other APIs
provided with IBM MQ.

• Jakarta Messaging is an integral part of Jakarta EE.

Jakarta Messaging is the natural API to use for messaging on the Jakarta EE platform. Every application
server that is Jakarta EE compliant must include a Jakarta Messaging provider. You can use Jakarta
Messaging in application clients, servlets, Java Server Pages (JSPs), enterprise Java beans (EJBs), and
message driven beans (MDBs). Note in particular that Jakarta EE applications use MDBs to process
messages asynchronously, and all messages are delivered to MDBs as Jakarta Messaging messages.

• Connection factories and destinations can be stored as Jakarta Messaging administered objects in a
central repository rather than being hard-coded into an application.

An administrator can create and maintain Jakarta Messaging administered objects in a central
repository, and IBM MQ classes for Jakarta Messaging applications can retrieve these objects by using
the Java Naming Directory Interface (JNDI). Jakarta Messaging connection factories and destinations
encapsulate IBM MQ-specific information such as queue manager names, channel names, connection
options, queue names, and topic names. If connection factories and destinations are stored as
administered objects, this information is not hard-coded into an application. This arrangement therefore
provides the application with a degree of independence from the underlying IBM MQ configuration.

• Jakarta Messaging is an industry standard API that can provide application portability.

A Jakarta Messaging application can use JNDI to retrieve connection factories and destinations that
are stored as administered objects, and use only the interfaces that are defined in the jakarta.jms
(Jakarta Messaging 3.0) package to perform messaging operations. The application is then entirely
independent of any Jakarta Messaging provider, such as IBM MQ classes for Jakarta Messaging, and can
be ported from one Jakarta Messaging provider to another without any change to the application.

If JNDI is not available in a particular application environment, a IBM MQ classes for Jakarta Messaging
application can use extensions to the Jakarta Messaging API to create and configure connection
factories and destinations dynamically at run time. The application is then completely self-contained,
but is tied to IBM MQ classes for Jakarta Messaging as the Jakarta Messaging provider.

• Bridge applications might be easier to write by using Jakarta Messaging.

80 Developing Applications for IBM MQ

A bridge application is an application that receives messages from one messaging system and sends
them to another messaging system. Writing a bridge application can be complicated by using product-
specific APIs and message formats. Instead, you can write a bridge application by using two Jakarta
Messaging providers, one for each messaging system. The application then uses only one API, the
Jakarta Messaging API, and processes only Jakarta Messaging messages.

Deployable environments
To provide integration with a Jakarta EE application server, the Jakarta EE standards require messaging
providers to supply a resource adapter. Following the Jakarta Connectors Architecture specification, IBM
MQ provides a resource adapter that uses Jakarta Messaging to provide messaging functions within any
certified Jakarta EE environment. For more information, see “Liberty and the IBM MQ resource adapter”
on page 425.

Note: WebSphere Application Server traditional does not currently support Jakarta EE.

Outside of the Jakarta EE environment, OSGi and JAR files are provided, making it easier for you to
obtain just the IBM MQ classes for Jakarta Messaging. These JAR files are more readily deployable
either stand-alone or within software management frameworks such as Maven. For more information see
“Obtaining the IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging separately” on page
122.

Related concepts
IBM MQ classes for Jakarta Messaging: an overview
“Accessing IBM MQ from Java - Choice of API” on page 82
IBM MQ provides three Java language interfaces.

Why should I use IBM MQ classes for JMS?
Using IBM MQ classes for JMS has a number of advantages including being able to reuse any existing
JMS skills in your organization, and applications being more independent from the JMS provider and the
underlying IBM MQ configuration.

Summary of advantages of using IBM MQ classes for JMS
Using IBM MQ classes for JMS allows you to reuse existing JMS skills and provide application
independence.

Note: JMS 2.0 has been superseded by Jakarta Messaging. IBM MQ classes for JMS continues to support
the JMS 2.0 standard, but future enhancements to Java messaging will only emerge in Jakarta Messaging,
hence in the IBM MQ classes for Jakarta Messaging. IBM MQ classes for JMS are only recommended for
maintaining and extending existing JMS 2.0 applications. IBM MQ classes for Jakarta Messaging should
be the preferred technology for new development.

• You can reuse JMS skills.

IBM MQ classes for JMS is a JMS provider that implements the JMS interfaces for IBM MQ as the
messaging system. If your organization is new to IBM MQ, but already has JMS application development
skills, you might find it easier to use the familiar JMS API to access IBM MQ resources rather than one of
the other APIs provided with IBM MQ.

• JMS is an integral part of Java Platform, Enterprise Edition (Java EE).

JMS is the natural API to use for messaging on the Java EE platform. Every application server that
is Java EE compliant must include a JMS provider. You can use JMS in application clients, servlets,
Java Server Pages (JSPs), enterprise Java beans (EJBs), and message driven beans (MDBs). Note in
particular that Java EE applications use MDBs to process messages asynchronously, and all messages
are delivered to MDBs as JMS messages.

• Connection factories and destinations can be stored as JMS administered objects in a central repository
rather than being hard-coded into an application.

Developing applications for IBM MQ 81

An administrator can create and maintain JMS administered objects in a central repository, and IBM
MQ classes for JMS applications can retrieve these objects by using the Java Naming Directory
Interface (JNDI). JMS connection factories and destinations encapsulate IBM MQ-specific information
such as queue manager names, channel names, connection options, queue names, and topic names.
If connection factories and destinations are stored as administered objects, this information is not
hard-coded into an application. This arrangement therefore provides the application with a degree of
independence from the underlying IBM MQ configuration.

• JMS is an industry standard API that can provide application portability.

A JMS application can use JNDI to retrieve connection factories and destinations that are stored
as administered objects, and use only the interfaces that are defined in the javax.jms package to
perform messaging operations. The application is then entirely independent of any JMS provider, such
as IBM MQ classes for JMS, and can be ported from one JMS provider to another without any change to
the application.

If JNDI is not available in a particular application environment, an IBM MQ classes for JMS application
can use extensions to the JMS API to create and configure connection factories and destinations
dynamically at run time. The application is then completely self-contained, but is tied to IBM MQ
classes for JMS as the JMS provider.

• Bridge applications might be easier to write by using JMS.

A bridge application is an application that receives messages from one messaging system and sends
them to another messaging system. Writing a bridge application can be complicated by using product-
specific APIs and message formats. Instead, you can write a bridge application by using two JMS
providers, one for each messaging system. The application then uses only one API, the JMS API, and
processes only JMS messages.

Deployable environments
To provide integration with a Java EE application server, the Java EE standards require messaging
providers to supply a resource adapter. Following the Java EE Connector Architecture (JCA) specification,
IBM MQ provides a resource adapter that uses JMS to provide messaging functions within any certified
Java EE environment.

While it has been possible to use the IBM MQ classes for Java inside Java EE, this API is not engineered
or optimized for this purpose. For more information about IBM MQ classes for Java considerations within
Java EE, see “Running IBM MQ classes for Java applications within Java EE” on page 337.

Outside of the Java EE environment, OSGi and JAR files are provided, making it easier for you to obtain
just the IBM MQ classes for JMS. These JAR files are more readily deployable either stand-alone or within
software management frameworks such as Maven. For more information see “Obtaining the IBM MQ
classes for JMS and IBM MQ classes for Jakarta Messaging separately” on page 122.

Related concepts
IBM MQ classes for Jakarta Messaging: an overview
“Why should I use IBM MQ classes for Jakarta Messaging?” on page 80
Using IBM MQ classes for Jakarta Messaging has a number of advantages including being able to reuse
any existing Jakarta Messaging skills in your organization, and applications being more independent from
the Jakarta Messaging provider and the underlying IBM MQ configuration.
“Accessing IBM MQ from Java - Choice of API” on page 82
IBM MQ provides three Java language interfaces.

Accessing IBM MQ from Java - Choice of API
IBM MQ provides three Java language interfaces.

• IBM MQ classes for Jakarta Messaging
• IBM MQ classes for JMS
• IBM MQ classes for Java

82 Developing Applications for IBM MQ

IBM MQ classes for Jakarta Messaging
IBM MQ classes for Jakarta Messaging allows applications written using the Jakarta Messaging 3.0 APIs
to utilise IBM MQ as a messaging provider.

Jakarta Messaging is the strategic direction for messaging in Java applications.

Jakarta Messaging 3.0 is functionally equivalent to JMS 2.0, so for more information see “Using IBM MQ
classes for JMS/Jakarta Messaging” on page 79.

IBM MQ classes for JMS
IBM MQ classes for JMS allows applications written using the JMS 2.0 APIs to utilise IBM MQ as a
messaging provider.

As Jakarta Messaging supersedes JMS, IBM MQ classes for JMS is recommended for use in existing
applications or in environments (for example, WebSphere Application Server) that do not support Jakarta
Messaging.

It is not supported to use both IBM MQ classes for Jakarta Messaging and IBM MQ classes for JMS in the
same application.

For more information see “Using IBM MQ classes for JMS/Jakarta Messaging” on page 79.

IBM MQ classes for Java

The other API that Java applications can use to access IBM MQ resources is IBM MQ classes
for Java, which provides an IBM MQ-oriented API for programs to use IBM MQ as a messaging provider.
However, IBM MQ classes for Java is functionally stabilized at the level shipped in IBM MQ 8.0. For
more information, see “Why should I use IBM MQ classes for Java?” on page 336. Although existing
applications that use IBM MQ classes for Java continue to be fully supported, new applications should
use IBM MQ classes for Jakarta Messaging.

Common features of IBM MQ classes for JMS and IBM MQ classes for Jakarta
Messaging
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging provide access to both the point-
to-point and publish/subscribe messaging features of IBM MQ. As well as sending JMS messages that
provide support for the JMS standard messaging model, applications can also send and receive messages
without additional headers and so can inter-operate with other IBM MQ applications, for example, C MQI
applications. Full control of the MQMD and MQ message payloads is available.

Further IBM MQ features such as message streaming, asynchronous put and report messages are also
available.

Using the supplied PCF helper classes, IBM MQ PCF administration messages can be sent and received
through the JMS API and can be used to administer queue managers.

Features that have recently been added to IBM MQ, such as asynchronous consume and automatic
reconnection, are not available in the IBM MQ classes for Java, but are available in the IBM MQ classes for
JMS and IBM MQ classes for Jakarta Messaging.

Requesting enhancements
If you need access to IBM MQ features that are not available through IBM MQ classes for JMS and IBM
MQ classes for Jakarta Messaging, you can raise an idea.

IBM can then advise whether the implementation is possible in the IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging implementation, or whether there is a best practice that can be followed.

For additional messaging features, as IBM is a contributor to the open standard, these features can be
raised as part of the JCP process. These would only apply to Jakarta Messaging.

Developing applications for IBM MQ 83

Related information
Welcome to the IBM Ideas Portal
JMS Java Specification Review Process
Using JMS to send PCF messages

Prerequisites for IBM MQ classes for Jakarta Messaging
This topic tells you what you need to know before using IBM MQ classes for Jakarta Messaging.
To develop and run IBM MQ classes for Jakarta Messaging applications, you need certain software
components as prerequisites.

For information about the prerequisites for IBM MQ classes for Jakarta Messaging, see System
Requirements for IBM MQ.

To develop IBM MQ classes for Jakarta Messaging applications, you need a Java SE Software
Development Kit (SDK). for details of the JDKs supported by your operating system, see System
Requirements for IBM MQ.

To run IBM MQ classes for Jakarta Messaging applications, you need the following software components:

• An IBM MQ queue manager.
• A Java runtime environment (JRE), for each system on which you run applications.

• For IBM i, Qshell, which is option 30 of the operating system.

• For z/OS, z/OS UNIX System Services (z/OS UNIX).

The IBM JSSE provider includes a FIPS certified cryptographic provider, so can be programmatically
configured for FIPS 140-2 compliance ready for immediate use. Therefore, FIPS 140-2 compliance can be
supported directly from IBM MQ classes for Jakarta Messaging.

Oracle's JSSE provider can have a FIPS certified cryptographic provider that is configured into it, but this
is not ready for immediate use and is not available for programmatic configuration. Therefore, in this case,
IBM MQ classes for Jakarta Messaging cannot enable FIPS 140-2 compliance directly. You might be able
to manually enable such compliance, but IBM cannot currently provide guidance on this.

You can use Internet Protocol version 6 (IPv6) addresses in your IBM MQ classes for Jakarta
Messaging applications if IPv6 addresses are supported by your Java virtual machine (JVM) and the
TCP/IP implementation on your operating system. The IBM MQ Jakarta Messaging administration tool,
JMS30Admin, also accepts IPv6 addresses. For more information about this tool, see Configuring JMS
and Jakarta Messaging objects using the administration tools.

The IBM MQ JMS administration tool and IBM MQ Explorer use the Java Naming Directory Interface
(JNDI) to access a directory service, which stores administered objects. IBM MQ classes for Jakarta
Messaging applications can also use JNDI to retrieve administered objects from a directory service.

Note: For Jakarta Messaging 3.0, you cannot administer JNDI using IBM MQ Explorer. JNDI
administration is supported by the Jakarta Messaging 3.0 variant of JMSAdmin, which is JMS30Admin.

A service provider is code that provides access to a directory service by mapping JNDI calls to the
directory service. A file system service provider in the files fscontext.jar and providerutil.jar is
supplied with IBM MQ classes for Jakarta Messaging. The file system service provider provides access to
a directory service based on the local file system.

If you intend to use a directory service based on an LDAP server, you must install and configure an
LDAP server, or have access to an existing LDAP server. In particular, you must configure the LDAP server
to store Java objects. For information about how to install and configure your LDAP server, see the
documentation that is supplied with the server.

84 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/welcome-ibm-ideas-portal
https://www.jcp.org/en/jsr/detail?id=368
https://www.ibm.com/developerworks/community/blogs/messaging/entry/using_pcf_with_mq_jms?lang=en
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq

Prerequisites for IBM MQ classes for JMS
This topic tells you what you need to know before using IBM MQ classes for JMS. To develop and run IBM
MQ classes for JMS applications, you need certain software components as prerequisites.

For information about the prerequisites for IBM MQ classes for JMS, see System Requirements for IBM
MQ.

To develop IBM MQ classes for JMS applications, you need a Java SE Software Development Kit (SDK). for
details of the JDKs supported by your operating system, see System Requirements for IBM MQ.

To run IBM MQ classes for JMS applications, you need the following software components:

• An IBM MQ queue manager.
• A Java runtime environment (JRE), for each system on which you run applications.

• For IBM i, Qshell, which is option 30 of the operating system.

• For z/OS, z/OS UNIX System Services (z/OS UNIX).

The IBM JSSE provider includes a FIPS certified cryptographic provider, so can be programmatically
configured for FIPS 140-2 compliance ready for immediate use. Therefore, FIPS 140-2 compliance can be
supported directly from IBM MQ classes for Java and IBM MQ classes for JMS.

Oracle's JSSE provider can have a FIPS certified cryptographic provider that is configured into it, but this
is not ready for immediate use and is not available for programmatic configuration. Therefore, in this case,
IBM MQ classes for Java and IBM MQ classes for JMS cannot enable FIPS 140-2 compliance directly. You
might be able to manually enable such compliance, but IBM cannot currently provide guidance on this.

You can use Internet Protocol version 6 (IPv6) addresses in your IBM MQ classes for JMS applications
if IPv6 addresses are supported by your Java virtual machine (JVM) and the TCP/IP implementation
on your operating system. The IBM MQ JMS administration tool (see Configuring JMS objects using the
administration tool) also accepts IPv6 addresses.

The IBM MQ JMS administration tool and IBM MQ Explorer use the Java Naming Directory Interface
(JNDI) to access a directory service, which stores administered objects. IBM MQ classes for JMS
applications can also use JNDI to retrieve administered objects from a directory service. A service
provider is code that provides access to a directory service by mapping JNDI calls to the directory service.
A file system service provider in the files fscontext.jar and providerutil.jar is supplied with IBM
MQ classes for JMS. The file system service provider provides access to a directory service based on the
local file system.

If you intend to use a directory service based on an LDAP server, you must install and configure an
LDAP server, or have access to an existing LDAP server. In particular, you must configure the LDAP server
to store Java objects. For information about how to install and configure your LDAP server, see the
documentation that is supplied with the server.

Installing and configuring IBM MQ classes for JMS/Jakarta Messaging
This section describes the directories and files that are created when you install IBM MQ classes for JMS
and IBM MQ classes for Jakarta Messaging, and tells you how to configure IBM MQ classes for JMS and
IBM MQ classes for Jakarta Messaging after installation.
Related concepts
“Using the IBM MQ resource adapter” on page 420
The resource adapter allows applications that are running in an application server to access IBM MQ
resources. It supports inbound and outbound communication.

What is installed for IBM MQ classes for JMS
A number of files and directories are created when you install IBM MQ classes for JMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On

Developing applications for IBM MQ 85

https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq

other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JMS applications.

For most operating systems, the IBM MQ classes for JMS are installed as an optional component when
you install IBM MQ.

For more information about installing IBM MQ, see:

 Installing IBM MQ

 Installing IBM MQ for z/OS

Important: Apart from the relocatable JAR files described in “IBM MQ classes for JMS/Jakarta Messaging
relocatable JAR files” on page 87, copying the IBM MQ classes for JMS JAR files or native libraries to
other machines, or to a different location on a machine where the IBM MQ classes for JMS have been
installed, is not supported.

Installation directories
Table 5 on page 86 shows where the IBM MQ classes for JMS files are installed on each platform.

Table 5. IBM MQ classes for JMS installation directories

Platform Directory

AIX
and Linux

MQ_INSTALLATION_PATH/java

Windows MQ_INSTALLATION_PATH\java

IBM i /QIBM/ProdData/mqm/java

z/OS MQ_INSTALLATION_PATH/java

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The installation directory includes the following content:

• The IBM MQ classes for JMS JAR files, including the relocatable JAR files, which are in the
MQ_INSTALLATION_PATH\java\lib directory.

• The IBM MQ native libraries, which are used by applications that use the Java Native Interface.

The 32-bit native libraries are installed into the MQ_INSTALLATION_PATH\java\lib directory and the
64-bit native libraries can be found in the MQ_INSTALLATION_PATH\java\lib64 directory.

For more information about the IBM MQ native libraries, see “Configuring the Java Native Interface
(JNI) libraries” on page 92.

• Additional scripts that are described in “Scripts provided with IBM MQ classes for JMS/Jakarta
Messaging” on page 118. These scripts are in the MQ_INSTALLATION_PATH\java\bin directory.

• The specifications of the IBM MQ classes for JMS API. The Javadoc tool has been used to generate the
HTML pages that contain the specifications of the API.

The HTML pages are in the MQ_INSTALLATION_PATH\java\doc\WMQJMSClasses directory:

– On AIX, Linux, and Windows, this subdirectory contains the individual HTML pages.

– On IBM i, the HTML pages are in a file called wmqjms_javadoc.jar.

– On z/OS, the HTML pages are in a file called wmqjms_javadoc.jar.
• Support for OGSi. OSGi bundles are installed in the java\lib\OSGi directory and described in

“Support for OSGi with IBM MQ classes for JMS” on page 119.

86 Developing Applications for IBM MQ

• The IBM MQ resource adapter, which can be deployed into any Java Platform, Enterprise Edition 7 (Java
EE 7) or Jakarta EE compliant application server.

The IBM MQ resource adapter is in the MQ_INSTALLATION_PATH\java\lib\jca directory; for more
information, see “Using the IBM MQ resource adapter” on page 420

• On Windows, symbols that can be used for debugging are installed in the
MQ_INSTALLATION_PATH\java\lib\symbols directory.

The installation directory also includes some files that belong to other IBM MQ components.

Sample applications

Some sample applications are supplied with IBM MQ classes for JMS. Table 6 on page 87
shows where the sample applications are installed on each platform.

For IBM MQ classes for Jakarta Messaging, new samples are being prepared.

Table 6. Samples directories for IBM MQ classes for JMS

Platform Directory

AIX
and Linux

MQ_INSTALLATION_PATH/samp/jms

Windows MQ_INSTALLATION_PATH\tools\jms

IBM i /QIBM/ProdData/mqm/java/samples/jms

z/OS MQ_INSTALLATION_PATH/java/samples/jms

In this table, MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

After installation, you might need to perform some configuration tasks to compile and run applications.

“Setting environment variables for IBM MQ classes for JMS/Jakarta Messaging” on page 90 describes
the classpath that is required to run sample IBM MQ classes for JMS applications. This topic also
describes additional JAR files that need to be referenced in special circumstances and the environment
variables that you must set to run the scripts that are provided with IBM MQ classes for JMS.

To control properties, such as tracing and logging of an application, you need to provide a configuration
properties file. The IBM MQ classes for JMS configuration properties file is described in “The IBM MQ
classes for JMS/Jakarta Messaging configuration file” on page 94.

Related concepts
Problems in deploying the resource adapter
Related tasks
“Using the IBM MQ classes for JMS sample applications” on page 115
The IBM MQ classes for JMS sample applications provide an overview of the common features of the JMS
API. You can use them to verify your installation and messaging server set up and to help you build your
own applications.

IBM MQ classes for JMS/Jakarta Messaging relocatable JAR files
The relocatable JAR files can be moved to systems that need to run IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging.

Important:

• Apart from the relocatable JAR files described in Relocatable JAR files, copying the IBM MQ classes
for JMS or IBM MQ classes for Jakarta Messaging JAR files or native libraries to other machines, or to

Developing applications for IBM MQ 87

a different location on a machine where the IBM MQ classes for JMS or IBM MQ classes for Jakarta
Messaging have been installed, is not supported.

• Do not include the relocatable JAR files within applications deployed into Java EE application servers,
such as WebSphere Application Server or WebSphere Liberty. In these environments, the IBM MQ
resource adapter should be deployed and used instead. Note that WebSphere Application Server
embeds the IBM MQ resource adapter, so there is no need to deploy it manually into this environment.

• To avoid classloader conflicts, it is not recommended to bundle the relocatable JAR files within multiple
applications inside the same Java runtime. In this scenario, make the IBM MQ relocatable JAR files
available on the Java runtime's classpath.

• If you are bundling the relocatable JAR files within your applications, ensure that you include all
prerequisite JAR files as described in Relocatable JAR files. You should also ensure that you have
appropriate procedures to update the bundled JAR files as part of application maintenance, to ensure
that the IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging are still current and known
issues are re-mediated.

Relocatable JAR files
Within an enterprise, the following files can be moved to systems that need to run IBM MQ classes for
JMS or IBM MQ classes for Jakarta Messaging:

• bcpkix-jdk15to18.jar “4” on page 88

• bcpkix-jdk18on.jar “3” on page 88

• bcprov-jdk15to18.jar “4” on page 88

• bcprov-jdk18on.jar “3” on page 88

• bcutil-jdk15to18.jar “4” on page 88

• bcutil-jdk18on.jar “3” on page 88

• com.ibm.mq.allclient.jar“1” on page 88

• com.ibm.mq.jakarta.client.jar “2” on page 88

• fscontext.jar
• jakarta.jms-api.jar
• jms.jar
• org.json.jar
• providerutil.jar

Notes:

1. JMS 2.0 and JMS 1.1
2. Jakarta Messaging 3.0
3. From IBM MQ 9.4.0
4. Before IBM MQ 9.4.0

JMS JAR files
jms.jar contains the JMS 1.1 and JMS 2.0 interfaces - these are named javax.jms.*.

jakarta.jms-api.jar contains the Jakarta Messaging 3.0 interfaces - these are named
jakarta.jms.*.

88 Developing Applications for IBM MQ

fscontext.jar and providerutil.jar
The fscontext.jar and providerutil.jar files are required if your application performs JNDI
lookups using a file system context.

Bouncy Castle security provider and CMS support JAR files
The Bouncy Castle security provider and CMS support JAR files are required. For more information, see
Support for non-IBM JREs with AMS.

The following JAR files are required:

• bcpkix-jdk18on.jar
• bcprov-jdk18on.jar
• bcutil-jdk18on.jar

org.json.jar
The org.json.jar file is required if your IBM MQ classes for JMS application uses a CCDT in JSON
format.

com.ibm.mq.allclient.jar and com.ibm.mq.jakarta.client.jar
The files com.ibm.mq.allclient.jar and com.ibm.mq.jakarta.client.jar contain the IBM MQ
classes for JMS, the IBM MQ classes for Jakarta Messaging, the IBM MQ classes for Java, and the PCF and
Headers Classes. If you move these JAR file to a new location, make sure that you take steps to keep this
new location maintained with new IBM MQ Fix Packs. Also, make sure that the use of the files is made
known to IBM Support if you are getting an interim fix.

To determine the version of the files com.ibm.mq.allclient.jar and
com.ibm.mq.jakarta.client.jar, use the following command:

java -jar com.ibm.mq.jakarta.client.jar

java -jar com.ibm.mq.allclient.jar

The following example shows some sample output from this command:

C:\Program Files\IBM\MQ_1\java\lib>java -jar com.ibm.mq.allclient.jar
Name: Java Message Service Client
Version: 9.3.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: WebSphere MQ classes for Java Message Service
Version: 9.3.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: WebSphere MQ JMS Provider
Version: 9.3.0.0
Level: p000-L140428.1 mqjbnd=p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: Common Services for Java Platform, Standard Edition
Version: 9.3.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Developing applications for IBM MQ 89

Setting environment variables for IBM MQ classes for JMS/Jakarta Messaging
Before you can compile and run IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging
applications, the setting for your CLASSPATH environment variable must include the IBM MQ classes for
JMS or IBM MQ classes for Jakarta Messaging Java archive (JAR) file. Depending on your requirements,
you might need to add other JAR files to your class path. To run the scripts provided with IBM MQ classes
for JMS and IBM MQ classes for Jakarta Messaging, other environment variables must be set.

Before you begin

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 and later continue to support JMS 2.0 for existing applications. It is not supported to use
both the Jakarta Messaging 3.0 API and the JMS 2.0 API in the same application. For more information,
see Using IBM MQ classes for JMS/Jakarta Messaging.

Important: Setting the Java option -Xbootclasspath to include the IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging is not supported.

About this task
To compile and run IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging applications, use
the CLASSPATH setting for your platform and Java messaging version, as shown in the following tables.
Alternatively, you can specify the class path on the java command instead of using the environment
variable.

For IBM MQ classes for JMS, the setting includes the samples directory, so that you can
compile and run the IBM MQ classes for JMS sample applications.

For IBM MQ classes for Jakarta Messaging, new samples are being prepared.

Table 7. CLASSPATH settings for Jakarta Messaging 3.0 to compile and run IBM MQ classes for Jakarta
Messaging applications

Platform CLASSPATH setting

AIX CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.jakarta.client.jar:

Linux CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.jakarta.client.jar:

IBM i CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jakarta.client.jar:

Windows
CLASSPATH= MQ_INSTALLATION_PATH\java\lib\com.ibm.mq.jakarta.client.jar;

z/OS CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.jakarta.client.jar;

Table 8. CLASSPATH settings for JMS 2.0 to compile and run IBM MQ classes for JMS applications,
including the sample applications

Platform CLASSPATH setting

AIX CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.allclient.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

90 Developing Applications for IBM MQ

Table 8. CLASSPATH settings for JMS 2.0 to compile and run IBM MQ classes for JMS applications,
including the sample applications (continued)

Platform CLASSPATH setting

Linux CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.allclient.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

IBM i CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.allclient.jar:
/QIBM/ProdData/mqm/java/samples/jms/samples:

Windows
CLASSPATH= MQ_INSTALLATION_PATH\java\lib\com.ibm.mq.allclient.jar;
MQ_INSTALLATION_PATH\tools\jms\samples;

z/OS CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.allclient.jar:
MQ_INSTALLATION_PATH/java/samples/jms/samples:

In these tables, MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is
installed.

The manifest of the JAR file com.ibm.mq.jakarta.client.jar or com.ibm.mq.allclient.jar
contains references to most of the other JAR files required by IBM MQ classes for JMS applications, and
so you do not need to add these JAR files to your class path. These JAR files include those required by
applications that use the Java Naming Directory Interface (JNDI) to retrieve administered objects from a
directory service and by applications that use the Java Transaction API (JTA).

However, you must include additional JAR files in your class path in the following circumstances:

• If you are using channel exit classes that implement the channel exit interfaces defined in the
com.ibm.mq package, instead of those defined in the com.ibm.mq.exits package, you must add
the IBM MQ classes for Java JAR file, com.ibm.mq.jar, to your class path.

• If your application uses JNDI to retrieve administered objects from a directory service, you must also
add the following JAR files to your class path:

– fscontext.jar
– providerutil.jar

• If your application uses the JTA, you must also add jta.jar to your class path.

Note: These additional JAR files are required only for compiling your applications, not for running them.

The scripts provided with IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging use the
following environment variables:
MQ_JAVA_DATA_PATH

This environment variable specifies the directory for log and trace output.
MQ_JAVA_INSTALL_PATH

This environment variable specifies the directory where IBM MQ classes for JMS is installed.
MQ_JAVA_LIB_PATH

This environment variable specifies the directory where the IBM MQ classes for JMS libraries are
stored, as shown in the previous tables.

Procedure

•
On Windows, after installing IBM MQ, run the command setmqenv.
If you do not run this command first, the following error message might appear when you are issuing a
dspmqver command:

Developing applications for IBM MQ 91

AMQ8351: IBM MQ Java environment has not been configured
correctly, or the IBM MQ JRE feature has not been installed.

Note: This message is to be expected if you did not install the IBM MQ Java runtime environment (JRE)
(see Additional Windows features prerequisite checking.

•
On AIX and Linux systems, set the environment variables yourself:

For JMS 2.0, use one of the following scripts to set the environment variables:

– If you are using a 32-bit JVM, use the script setjmsenv.
– If you are using a 64-bit JVM on an AIX or Linux system, use the script setjmsenv64.

For Jakarta Messaging 3.0, use one of the following scripts to set the environment
variables:

– If you are using a 32-bit JVM, use the script setjms30env.
– If you are using a 64-bit JVM, use the script setjms30env64.

These scripts are in the MQ_INSTALLATION_PATH/java/bin directory, where
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

You can use these scripts in a variety of ways. You can use the script as a basis for setting the required
environment variables, as shown in the table, or add them to .profile using a text editor. If you have
a non-typical setup, edit the script contents as necessary. Alternatively, you can run the script in every
session from which JMS startup scripts are to be run. If you choose this option, you need to run the
script in every shell window you start, during the JMS verification process:

– For JMS 2.0, type . ./setjmsenv or ../setjmsenv64.

– For Jakarta Messaging 3.0, type . ./setjms30env or . ./setjms30env64.

On IBM i, you must set the environment variable QIBM_MULTI_THREADED to Y. You can
then run multithreaded applications in the same way that you run single threaded applications. For
more information, see Setting up IBM MQ with Java and JMS.

Related tasks
“Using the IBM MQ classes for JMS sample applications” on page 115
The IBM MQ classes for JMS sample applications provide an overview of the common features of the JMS
API. You can use them to verify your installation and messaging server set up and to help you build your
own applications.
Related reference
“Scripts provided with IBM MQ classes for JMS/Jakarta Messaging” on page 118
A number of scripts are provided to assist with common tasks that need to be performed when using IBM
MQ classes for JMS and IBM MQ classes for Jakarta Messaging.

Configuring the Java Native Interface (JNI) libraries
IBM MQ classes for JMS applications, that either connect to a queue manager using the bindings
transport, or that connect to a queue manager using the client transport and use channel exit programs
written in languages other than Java, need to be run in an environment that allows access to the Java
Native Interface (JNI) libraries.

Before you begin
See Configuring the IBM MQ messaging provider with native libraries information for more information on
using the WebSphere Application Server environment.

92 Developing Applications for IBM MQ

About this task
To set up this environment, you must configure the environment's library path so that the Java Virtual
Machine (JVM) can load the mqjbnd library before you start the IBM MQ classes for JMS application.

IBM MQ provides two Java Native Interface (JNI) libraries:
mqjbnd

This library is used by applications that connect to a queue manager using the bindings transport.
It provides the interface between the IBM MQ classes for JMS and the queue manager. The mqjbnd
library installed with IBM MQ 9.4 can be used to connect to any IBM MQ 9.4 (or earlier) queue
manager.

mqjexitstub02
The mqjexitstub02 library is loaded by the IBM MQ classes for JMS when an application connects to a
queue manager using the client transport and uses a channel exit program written in a language other
than Java.

On certain platforms, IBM MQ installs 32-bit and 64-bit versions of these JNI libraries. The location of the
libraries for each platform is shown in Table 1.

Table 9. The location of the IBM MQ classes for JMS libraries for each platform

Platform Directory containing the IBM MQ classes for JMS
libraries

AIX

Linux
(POWER, x86-64 and zSeries s390x platforms)

 MQ_INSTALLATION_PATH/java/lib (32-bit libraries)
MQ_INSTALLATION_PATH/java/lib64 (64-bit libraries)

Windows MQ_INSTALLATION_PATH\java\lib (32-bit libraries)
MQ_INSTALLATION_PATH\java\lib64 (64-bit libraries)

z/OS MQ_INSTALLATION_PATH/java/lib
(31-bit and 64-bit libraries)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note: On z/OS, you can use either a 31-bit or 64-bit Java Virtual Machine (JVM). You do not
have to specify which JNI libraries to use; IBM MQ classes for JMS can determine for itself which JNI
libraries to load.

Procedure
1. Configure the JVM's java.library.path property, which can be done in two ways:

• By specifying the JVM argument as shown in the following example:

-Djava.library.path=path_to_library_directory

For example, for a 64-bit JVM on Linux for a default location installation, specify:

-Djava.library.path=/opt/mqm/java/lib64

• By configuring the shell's environment such that the JVM will set up its own java.library.path.
This path varies by platform and by the location in which you installed IBM MQ. For example, for a
64-bit JVM and a default IBM MQ installation location, you can use the following settings:

Developing applications for IBM MQ 93

export LIBPATH=/usr/mqm/java/lib64:$LIBPATH

export LD_LIBRARY_PATH=/opt/mqm/java/lib64:$LD_LIBRARY_PATH

set PATH=C:\Program Files\IBM\MQ\java\lib64;%PATH%

An example of the exception stack that you see when the environment has not been configured
correctly is as follows:
Caused by: com.ibm.mq.jmqi.local.LocalMQ$4: CC=2;RC=2495;
AMQ8598: Failed to load the WebSphere MQ native JNI library: 'mqjbnd'.
 at com.ibm.mq.jmqi.local.LocalMQ.loadLib(LocalMQ.java:1268)
 at com.ibm.mq.jmqi.local.LocalMQ$1.run(LocalMQ.java:309)
 at java.security.AccessController.doPrivileged(AccessController.java:400)
 at com.ibm.mq.jmqi.local.LocalMQ.initialise_inner(LocalMQ.java:259)
 at com.ibm.mq.jmqi.local.LocalMQ.initialise(LocalMQ.java:221)
 at com.ibm.mq.jmqi.local.LocalMQ.<init>(LocalMQ.java:1350)
 at com.ibm.mq.jmqi.local.LocalServer.<init>(LocalServer.java:230)
 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
 at
sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:86)

 at
sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.jav
a:58)
 at java.lang.reflect.Constructor.newInstance(Constructor.java:542)
 at com.ibm.mq.jmqi.JmqiEnvironment.getInstance(JmqiEnvironment.java:706)
 at com.ibm.mq.jmqi.JmqiEnvironment.getMQI(JmqiEnvironment.java:640)
 at
com.ibm.msg.client.wmq.factories.WMQConnectionFactory.createV7ProviderConnection(WMQConnectionF
actory.java:8437)
 ... 7 more
Caused by: java.lang.UnsatisfiedLinkError: mqjbnd (Not found in java.library.path)
 at java.lang.ClassLoader.loadLibraryWithPath(ClassLoader.java:1235)
 at java.lang.ClassLoader.loadLibraryWithClassLoader(ClassLoader.java:1205)
 at java.lang.System.loadLibrary(System.java:534)
 at com.ibm.mq.jmqi.local.LocalMQ.loadLib(LocalMQ.java:1240)
 ... 20 more

2. After either the 32-bit or 64-bit environment has been set up, start the IBM MQ classes for JMS
application using the command:

java application-name

where application-name is the name of the IBM MQ classes for JMS application to be run.

An exception containing IBM MQ Reason code 2495 (MQRC_MODULE_NOT_FOUND) is thrown by the
IBM MQ classes for JMS if:

• The IBM MQ classes for JMS application is run in a 32-bit Java runtime environment, and a
64-bit environment has been set up for the IBM MQ classes for JMS, as the 32-bit Java runtime
environment is unable to load the 64-bit Java Native Library.

• The IBM MQ classes for JMS application is run in a 64-bit Java runtime environment, and a
32-bit environment has been set up for the IBM MQ classes for JMS, as the 64-bit Java runtime
environment is unable to load the 32-bit Java Native Library.

The IBM MQ classes for JMS/Jakarta Messaging configuration file
An IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging configuration files specify
properties that are used to configure IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging.

Note: The properties defined in configuration file can also be set as JVM system properties. If a property
is set both in the configuration file and as a system property, the system property takes precedence.
Therefore, if required, you can override any property in the configuration file by specifying it as a system
property on the java command.

The format of an IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging configuration file
is that of a standard Java properties file. A sample configuration file called jms.config is supplied in

94 Developing Applications for IBM MQ

the bin subdirectory of the IBM MQ classes for JMS installation directory. This file documents all the
supported properties and their default values.

You can choose the name and location of an IBM MQ classes for JMS or IBM MQ classes for Jakarta
Messaging configuration file. When you start your application, use a java command with the following
format:

java -Dcom.ibm.msg.client.config.location= config_file_url application_name

In the command, config_file_url is a uniform resource locator (URL) that specifies the name and location
of the IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging configuration file. URLs of the
following types are supported: http, file, ftp, and jar.

Here is an example of a java command:

java -Dcom.ibm.msg.client.config.location=file:/D:/mydir/myjms.config MyAppClass

This command identifies the IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging
configuration file as the file D:\mydir\mjms.config on the local Windows system.

When an application starts, IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging reads the
contents of the configuration file and stores the specified properties in an internal property store. If the
java command does not identify a configuration file, or if the configuration file cannot be found, IBM MQ
classes for JMS or IBM MQ classes for Jakarta Messaging uses the default values for all the properties.

An IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging configuration file can be used with
any of the supported transports between an application and a queue manager or broker.

Overriding properties specified in an IBM MQ MQI client configuration file
An IBM MQ MQI client configuration file can also specify properties that are used to configure IBM MQ
classes for JMS or IBM MQ classes for Jakarta Messaging. However, properties specified in an IBM MQ
MQI client configuration file apply only when an application connects to a queue manager in client mode.

If required, you can override any attribute in a IBM MQ MQI client configuration file by specifying it as
a property in a IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging configuration file. To
override an attribute in a IBM MQ MQI client configuration file, use an entry with the following format in
the IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging configuration file:

com.ibm.mq.cfg. stanza. propName = propValue

The variables in the entry have the following meanings:
stanza

The name of the stanza in the IBM MQ MQI client configuration file that contains the attribute
propName

The name of the attribute as specified in the IBM MQ MQI client configuration file
propValue

The value of the property that overrides the value of the attribute specified in the IBM MQ MQI client
configuration file

Alternatively, you can override an attribute in an IBM MQ MQI client configuration file by specifying the
property as a system property on the java command. Use the preceding format to specify the property as
a system property.

Only the following attributes in an IBM MQ MQI client configuration file are relevant to IBM MQ classes for
JMS or IBM MQ classes for Jakarta Messaging. If you specify or override other attributes, it has no effect.
Specifically, please note that the ChannelDefinitionFile and ChannelDefinitionDirectory in
the CHANNELS stanza of the client configuration file are not used. See “Using a client channel definition

Developing applications for IBM MQ 95

table with IBM MQ classes for JMS” on page 273 for details of how to use the CCDT with the IBM MQ
classes for JMS or IBM MQ classes for Jakarta Messaging.

Table 10. Which stanza of the client configuration file contains which attribute

Stanza Attribute

CHANNELS stanza of the client configuration file Put1DefaultAlwaysSync

CHANNELS stanza of the client configuration file DefRecon

CHANNELS stanza of the client configuration file ReconDelay

CHANNELS stanza of the client configuration file PasswordProtection

ClientExitPath stanza of the client configuration file ExitsDefaultPath

ClientExitPath stanza of the client configuration file ExitsDefaultPath64

ClientExitPath stanza of the client configuration file JavaExitsClasspath

JMQI stanza of the client configuration file useMQCSPauthentication

MessageBuffer stanza of the client configuration
file

MaximumSize

MessageBuffer stanza of the client configuration
file

PurgeTime

MessageBuffer stanza of the client configuration
file

UpdatePercentage

TCP stanza of the client configuration file ClntRcvBufSize

TCP stanza of the client configuration file ClntSndBufSize

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

For further details on the IBM MQ MQI client configuration see IBM MQ MQI client configuration file,
mqclient.ini

Using Java Standard Environment Trace to configure JMS trace
Use the Java Standard Environment Trace Settings stanza to configure the IBM MQ classes for JMS and
IBM MQ classes for Jakarta Messaging trace facility.

com.ibm.msg.client.commonservices.trace.outputName = traceOutputName
traceOutputName is the directory and file name to which trace output is sent.

By default, trace information is written to a trace file in the current working directory of the
application. The name of the trace file depends upon the environment that the application is running
in:

• From IBM MQ 9.3.0, if the application has loaded the IBM MQ classes for Jakarta
Messaging from the relocatable JAR file com.ibm.mq.jakarta.client.jar (Jakarta Messaging
3.0) or the IBM MQ classes for JMS from the relocatable JAR file com.ibm.mq.allclient.jar
(JMS 2.0), trace is written to a file called mqjavaclient_%PID%.cl%u.trc.

• If the application has loaded the IBM MQ classes for JMS from the relocatable JAR file
com.ibm.mq.allclient.jar, trace is written to a file called mqjavaclient_%PID%.cl%u.trc.

• If the application has loaded the IBM MQ classes for JMS from the JAR file com.ibm.mqjms.jar,
trace is written to a file called mqjava_%PID%.cl%u.trc.

where %PID% is the process identifier of the application that is being traced, and %u is a unique
number to differentiate files between threads running trace under different Java classloaders.

96 Developing Applications for IBM MQ

If a process ID is unavailable, a random number is generated and prefixed with the letter f. To include
the process ID in a file name you specify, use the string %PID%.

If you specify an alternative directory, it must exist, and you must have write permission for this
directory. If you do not have write permission, the trace output is written to System.err.

com.ibm.msg.client.commonservices.trace.include = includeList
includeList is a list of packages and classes that are traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. includeList defaults to ALL, and traces all
packages and classes in IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging.

Note: You can include a package but then exclude subpackages of that package. For example, if you
include package a.b and exclude package a.b.x, the trace includes everything in a.b.y and a.b.z,
but not a.b.x or a.b.x.1.

com.ibm.msg.client.commonservices.trace.exclude = excludeList
excludeList is a list of packages and classes that are not traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. excludeList defaults to NONE, and therefore
excludes no packages and classes in IBM MQ classes for JMS or IBM MQ classes for Jakarta
Messaging from being traced.

Note: You can exclude a package but then include subpackages of that package. For example, if
you exclude package a.b and include package a.b.x, the trace includes everything in a.b.x and
a.b.x.1, but not a.b.y or a.b.z.

Any package or class that is specified, at the same level, as both included and excluded is included.

com.ibm.msg.client.commonservices.trace.maxBytes = maxArrayBytes
maxArrayBytes is the maximum number of bytes that are traced from any byte arrays.

If maxArrayBytes is set to a positive integer, it limits the number of bytes in a byte-array that are
written out to the trace file. It truncates the byte array after writing maxArrayBytes out. Setting
maxArrayBytes reduces the size of the resulting trace file, and reduces the effect of tracing on the
performance of the application.

A value of 0 for this property means that none of the contents of any byte arrays are sent to the trace
file.

The default value is -1, which removes any limit on the number of bytes in a byte array that are sent to
the trace file.

com.ibm.msg.client.commonservices.trace.limit = maxTraceBytes
maxTraceBytes is the maximum number of bytes that are written to a trace output file.

maxTraceBytes works with traceCycles. If the number of bytes of trace written is near to the
limit, the file is closed, and a new trace output file is started.

A value of 0 means that a trace output file has zero length. The default value is -1, which means that
the amount of data to be written to a trace output file is unlimited.

com.ibm.msg.client.commonservices.trace.count = traceCycles
traceCycles is the number of trace output files to cycle through.

If the current trace output file reaches the limit specified by maxTraceBytes, the file is closed.
Further trace output is written to the next trace output file in sequence. Each trace output file is
distinguished by a numeric suffix appended to the file name. The current or most recent trace output
file is mqjms.trc.0, the next most recent trace output file is mqjms.trc.1. Older trace files follow
the same numbering pattern up to the limit.

The default value of traceCycles is 1. If traceCycles is 1, when the current trace output file
reaches its maximum size, the file is closed and deleted. A new trace output file with the same name
is started. Therefore, only one trace output file exists at a time.

com.ibm.msg.client.commonservices.trace.parameter = traceParameters
traceParameters controls whether method parameters and return values are included in the trace.

Developing applications for IBM MQ 97

traceParameters defaults to TRUE. If traceParameters is set to FALSE, only method signatures
are traced.

com.ibm.msg.client.commonservices.trace.startup = startup
There is an initialization phase of IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging
during which resources are allocated. The main trace facility is initialized during the resource
allocation phase.

If startup is set to TRUE, startup trace is used. Trace information is produced immediately and
includes the setup of all components, including the trace facility itself. Startup trace information
can be used to diagnose configuration problems. Startup trace information is always written to
System.err.

startup defaults to FALSE.

startup is checked before initialization is complete. For this reason, only specify the property on the
command line as a Java system property. Do not specify it in the IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging configuration file.

com.ibm.msg.client.commonservices.trace.compress = compressedTrace
Set compressedTrace to TRUE to compress trace output.

The default value of compressedTrace is FALSE.

If compressedTrace is set to TRUE, trace output is compressed. The default trace output file
name has the extension .trz. If compression is set to FALSE, the default value, the file has the
extension .trc to indicate it is uncompressed. However if the file name for the trace output has been
specified in traceOutputName that name is used instead; no suffix is applied to the file.

Compressed trace output is smaller than uncompressed. Because there is less I/O, it can be written
out faster than uncompressed trace. Compressed tracing has less effect on the performance of IBM
MQ classes for JMS and IBM MQ classes for Jakarta Messaging than uncompressed tracing.

If maxTraceBytes and traceCycles are set, multiple compressed trace files are created in place of
multiple flat files.

If IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging ends in an uncontrolled manner,
a compressed trace file might not be valid. For this reason, trace compression must only be used
when IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging closes down in a controlled
manner. Only use trace compression if the problems being investigated do not cause the JVM itself
to stop unexpectedly. Do not use trace compression when diagnosing problems that can result in
System.Halt() shutdowns or abnormal, uncontrolled JVM terminations.

com.ibm.msg.client.commonservices.trace.level = traceLevel
traceLevel specifies a filtering level for the trace. The defined trace levels are as follows:

• TRACE_NONE: 0
• TRACE_EXCEPTION: 1
• TRACE_WARNING: 3
• TRACE_INFO: 6
• TRACE_ENTRYEXIT: 8
• TRACE_DATA: 9
• TRACE_ALL: Integer.MAX_VALUE

Each trace level includes all lower levels. For example, if trace level is set at TRACE_INFO, then any
trace point with a defined level of TRACE_EXCEPTION, TRACE_WARNING, or TRACE_INFO is written to
the trace. All other trace points are excluded.

com.ibm.msg.client.commonservices.trace.standalone = standaloneTrace

standaloneTrace controls whether the IBM MQ JMS client tracing service is used in a WebSphere
Application Server environment.

98 Developing Applications for IBM MQ

If standaloneTrace is set to TRUE, the IBM MQ JMS client tracing properties are used to determine
the trace configuration.

If standaloneTrace is set to FALSE, and the IBM MQ JMS client is running in an WebSphere
Application Server container, the WebSphere Application Server trace service is used. The trace
information that is generated depends upon the trace settings of the application server.

The default value of standaloneTrace is FALSE.

Logging stanza
Use the Logging stanza to configure the IBM MQ classes for JMS log facility.

The following properties can be included in the Logging stanza:

com.ibm.msg.client.commonservices.log.outputName = path
The name of the log file that is used by the IBM MQ classes for JMS log facility. The default value is
mqjms.log, which is written to the current working directory for the Java Runtime Environment that
the IBM MQ classes for JMS are running in.

The property can take one of the following values:

• a single path name
• a comma-separated list of path names (all data is logged to all files)

Each path name can be an absolute or relative path name or:
"stderr" or "System.err"

Represents the standard error stream.
"stdout" or "System.out"

Represents the standard output stream.

com.ibm.msg.client.commonservices.log.maxBytes
The maximum number of bytes that are logged from any call to log message data.

Positive integer
Data is written up to that value of bytes per log call.

0
No data is written.

-1
Unlimited data is written (default).

com.ibm.msg.client.commonservices.log.limit
The maximum number of bytes that are written to any 1 log file (default is 262144).

Positive integer
Data is written up to that value of bytes per log file.

0
No data is written.

-1
Unlimited data is written.

com.ibm.msg.client.commonservices.log.count
The number of log files to cycle through. As each file reaches
com.ibm.msg.client.commonservices.trace.limit trace will begin in the next file, the
default is 3.

Positive integer
Number of files to cycle through.

0
A single file.

Developing applications for IBM MQ 99

Java SE Specifics stanza
Use the Java SE Specifics stanza to configure properties that are used when the IBM MQ classes for JMS
are being used in a Java Standard Edition environment.

com.ibm.msg.client.commonservices.j2se.produceJavaCore = TRUE|FALSE
Determines whether a JavaCore file is written immediately after the IBM MQ classes for JMS has
generated an FDC file. If this is set to TRUE a JavaCore file is produced in the working directory of the
Java Runtime Environment in which the IBM MQ classes for JMS are running.
TRUE

Generate JavaCore, subject to the Java Runtime Environment's ability to do so.
FALSE

Do not generate JavaCore; this is the default value.

IBM MQ Properties stanza
Use the IBM MQ Properties stanza to set properties that affect how the IBM MQ classes for JMS interact
with IBM MQ.

com.ibm.msg.client.wmq.compat.base.internal.MQQueue.smallMsgsBufferReductionThr
eshold

When an application that uses the IBM MQ classes for JMS is connecting to an IBM MQ queue
manager using IBM MQ messaging provider migration mode, the IBM MQ classes for JMS uses a
default buffer size of 4 KB when it is receives messages. If the message that the application is
trying to get is larger than 4 KB, the IBM MQ classes for JMS resizes the buffer to be large enough
to accommodate the message. The larger buffer size is then used when subsequent messages are
received.

This property controls when the buffer size is reduced back to 4 KB. By default, when ten consecutive
messages that are less than the larger buffer size are received, the buffer size is reduced back to 4 KB.
To reset the buffer size back to 4 KB every time a message is received, set the property to the value 0.

0

The buffer always resets to the default size.

10

This is the default value. The buffer will be resized after the tenth message.

com.ibm.msg.client.wmq.receiveConversionCCSID
When an application that is using the IBM MQ classes for JMS is connecting to an IBM MQ queue
manager using IBM MQ messaging provider normal mode, the receiveConversionCCSID property
can be set to override the default CCSID value in the MQMD structure that is used to receive messages
from the queue manager. By default, the MQMD contains a CCSID field set to 1208, but this can be
changed if, for example, the queue manager is unable to convert messages to this code page.

Valid values are any valid CCSID number or one of the following values:
-1

Use the platform default.
1208

This is the default value.

Client-mode specifics stanza
Use the Client-mode specifics stanza to specify properties that are used when the IBM MQ classes for
JMS connect to a queue manager that is using the CLIENT transport.

com.ibm.mq.polling.RemoteRequestEntry
Specifies the polling interval that the IBM MQ classes for JMS uses to check for broken connections
when it is waiting for a response from a queue manager.
Positive integer

The number of milliseconds to wait before checking. The default value is 10000 or 10 seconds.
The minimum value is 3000, and lower values are treated in the same way as this minimum value.

100 Developing Applications for IBM MQ

Properties used to configure JMS client behavior
Use these properties to configure the behavior of the JMS client.

com.ibm.mq.jms.SupportMQExtensions TRUE|FALSE
The JMS 2.0 specification introduces changes to the way certain behaviors work. IBM MQ 8.0 includes
the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE, to revert these
changed behaviors back to previous implementations. Reverting the changed behaviors might be
necessary some for JMS 2.0 applications, and also for some applications that use the JMS 1.1 API but
run against the IBM MQ 8.0 IBM MQ classes for JMS.
TRUE

The following three areas of functionality are reverted by setting SupportMQExtensions to TRUE:
Message priority

Messages can be assigned a priority, 0 - 9. Before JMS 2.0, messages could also use the value
-1, indicating that a queue's default priority is used. JMS 2.0 does not allow a message priority
of -1 to be set. Turning on SupportMQExtensions allows the value of -1 to be used.

Client id
The JMS 2.0 specification requires that non-null client ids are checked for uniqueness when
they make a connection. Turning on SupportMQExtensions, means that this requirement is
disregarded, and that a client ID can be reused.

NoLocal
The JMS 2.0 specification requires that when this constant is turned on, a consumer cannot
receive messages that are published by the same client ID. Before JMS 2.0, this attribute was
set on a subscriber to prevent it receiving messages that are published by its own connection.
Turning on SupportMQExtensions reverts this behavior to its previous implementation.

FALSE
The changes of behavior are retained.

com.ibm.msg.client.jms.ByteStreamReadOnlyAfterSend= TRUE|FALSE
From IBM MQ 8.0.0 Fix Pack 2, after an application has sent a Bytes or Stream message, IBM MQ
classes for JMS can set the state of the message that has just been sent to either read only, or write
only.
TRUE

The objects are set to read only after being sent. Setting this value maintains compatibility with
the JMS 2.0 specification

FALSE
The objects are set to write only after being sent. This is the default value.

Related concepts
“SupportMQExtensions property” on page 316
The JMS 2.0 specification introduced changes to the way certain behaviors work. IBM MQ 8.0 and later
includes the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE to revert
these changed behaviors back to previous implementations.

STEPLIB configuration for IBM MQ classes for JMS on z/OS
On z/OS, the STEPLIB used at run time must contain the IBM MQ SCSQAUTH and SCSQANLE libraries.
Specify these libraries in the startup JCL or using the .profile file.

From z/OS UNIX System Services, you can add these using a line in your .profile as shown in the
following code snippet, replacing thlqual with the high-level data set qualifier that you chose when
installing IBM MQ:

export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include SCSQAUTH and SCSQANLE on
the STEPLIB concatenation:

Developing applications for IBM MQ 101

STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR
 DD DSN=thlqual.SCSQANLE,DISP=SHR

IBM MQ classes for JMS and software management tools
Software management tools such as Apache Maven can be used with the IBM MQ classes for JMS and
IBM MQ classes for Jakarta Messaging.

Many large development organizations use these tools to centrally manage repositories of third-party
libraries.

The IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are composed of a number of
JAR files. When you are developing Java language applications by using this API, an installation of either
an IBM MQ Server, IBM MQ Client, or IBM MQ Client SupportPac is required on the machine where the
application is being developed.

If you want to use such a tool and add the JAR files that make up the IBM MQ classes for JMS to a
centrally managed repository, the following points must be observed:

• A repository or container must be made available only to developers within your organization. Any
distribution outside of the organization is not permitted.

• The repository needs to contain a complete and consistent set of JAR files from a single IBM MQ release
or Fix Pack.

• You are responsible for updating the repository with any maintenance provided by IBM Support.

The following JAR files need to be installed into the repository:

• com.ibm.mq.allclient.jar and jms.jar are required if you are using the IBM MQ
classes for JMS.

• com.ibm.mq.jakarta.client.jar and jakarta.jms-api.jar are required if you
are using IBM MQ classes for Jakarta Messaging.

• fscontext.jar is required if you are using IBM MQ classes for JMS or IBM MQ classes for Jakarta
Messaging and are accessing JMS administered objects that are stored in a file system JNDI context.

• providerutil.jar is required if you are using the IBM MQ classes for JMS or IBM MQ classes for
Jakarta Messaging and are accessing JMS administered objects that are stored in a file system JNDI
context.

• The Bouncy Castle security provider and CMS support JAR files are required for support for non-IBM
JREs. For more information, see Support for non-IBM JREs.

Running IBM MQ classes for JMS applications under the Java security manager
IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java Virtual Machine (JVM) with a
suitable policy configuration file.

The simplest way to create a suitable policy definition file is to change the policy configuration file
supplied with your Java runtime environment (JRE). On most systems, this file is in the directory lib/
security/java.policy relative to your JRE directory. You can edit the policy configuration file either
by using your preferred editor or by using the policy tool program supplied with your JRE.

Example policy configuration file
Here is an example of a policy configuration file that allows IBM MQ classes for JMS to run successfully
under the default security manager. This file will need to be customized, to specify the locations of certain
files and directories: MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is
installed, MQ_DATA_DIRECTORY represents the location of the MQ data directory, and QM_NAME is the
name of the queue manager for which access is being configured.

grant codeBase "file:MQ_INSTALLATION_PATH/java/lib/*" {

102 Developing Applications for IBM MQ

 //We need access to these properties, mainly for tracing
 permission java.util.PropertyPermission "user.name","read";
 permission java.util.PropertyPermission "os.name","read";
 permission java.util.PropertyPermission "user.dir","read";
 permission java.util.PropertyPermission "line.separator","read";
 permission java.util.PropertyPermission "path.separator","read";
 permission java.util.PropertyPermission "file.separator","read";
 permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.log.*","read";
 permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.trace.*","read";
 permission java.util.PropertyPermission "Diagnostics.Java.Errors.Destination.Filename","read";
 permission java.util.PropertyPermission "com.ibm.mq.commonservices","read";
 permission java.util.PropertyPermission "com.ibm.mq.cfg.*","read";

 //Tracing - we need the ability to control java.util.logging
 permission java.util.logging.LoggingPermission "control";
 // And access to create the trace file and read the log file - assumed to be in the current
directory
 permission java.io.FilePermission "*","read,write";

 // We'd like to set up an mBean to control trace
 permission javax.management.MBeanServerPermission "createMBeanServer";
 permission javax.management.MBeanPermission "*","*";

 // We need to be able to read manifests etc from the jar files in the installation directory
 permission java.io.FilePermission "MQ_INSTALLATION_PATH/java/lib/-","read";

 //Required if mqclient.ini/mqs.ini configuration files are used
 permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqclient.ini","read";
 permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqs.ini","read";

 //For the client transport type.
 permission java.net.SocketPermission "*","connect,resolve";

 //For the bindings transport type.
 permission java.lang.RuntimePermission "loadLibrary.*";

 //For applications that use CCDT tables (access to the CCDT AMQCLCHL.TAB)
 permission java.io.FilePermission "MQ_DATA_DIRECTORY/qmgrs/QM_NAME/@ipcc/AMQCLCHL.TAB","read";

 //For applications that use User Exits
 permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits/*","read";
 permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits64/*","read";
 permission java.lang.RuntimePermission "createClassLoader";

 //Required for the z/OS platform
 permission java.util.PropertyPermission "com.ibm.vm.bitmode","read";

 // Used by the internal ConnectionFactory implementation
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

 // Used for controlled class loading
 permission java.lang.RuntimePermission "setContextClassLoader";

 // Used to default the Application name in Client mode connections
 permission java.util.PropertyPermission "sun.java.command","read";

 // Used by the IBM JSSE classes
 permission java.util.PropertyPermission "com.ibm.crypto.provider.AESNITrace","read";

 //Required to determine if an IBM Java Runtime is running in FIPS mode,
 //and to modify the property values status as required.
 permission java.util.PropertyPermission "com.ibm.jsse2.usefipsprovider","read,write";
 permission java.util.PropertyPermission "com.ibm.jsse2.JSSEFIPS","read,write";
 //Required if an IBM FIPS provider is to be used for SSL communication.
 permission java.security.SecurityPermission "insertProvider.IBMJCEFIPS";

 // Required for non-IBM Java Runtimes that establish secure client
 // transport mode connections using mutual TLS authentication
 permission java.util.PropertyPermission "javax.net.ssl.keyStore","read";
 permission java.util.PropertyPermission "javax.net.ssl.keyStorePassword","read";
};

In the example, the grant statement contains the permissions required by IBM MQ classes for JMS. To
use these grant statements in your policy configuration file, you might need to modify the path names
depending on where you have installed IBM MQ classes for JMS and where you store your applications.

The sample applications supplied with IBM MQ classes for JMS, and scripts to run them, do not enable
the security manager.

Developing applications for IBM MQ 103

Important:

The IBM MQ classes for JMS trace facility requires further permissions as it performs additional querying
of system properties, and also further file system operations.

A suitable template security policy file for running under a security manager with tracing
enabled is provided in the samples/wmqjava directory of the IBM MQ installation as
example.security.policy.

Post installation setup for IBM MQ classes for JMS applications
This topic tells you what authorities IBM MQ classes for JMS applications need in order to access the
resources of a queue manager. It also introduces connection modes and describes how to configure a
queue manager so that applications can connect in client mode.

Remember to check the IBM MQ readme file. It might contain information that supersedes the
information in this topic.

Objects used by JMS that require authorization for non-privileged users
Non-privileged users need authorization granted to access the queues used by JMS. Every JMS
application needs authorization to the queue manager with which it works.

For details about access control in IBM MQ, see Setting up security.

IBM MQ classes for JMS applications need connect and inq authority to the queue manager. You can set
appropriate authorizations using the setmqaut control command, for example:

setmqaut -m QM1 -t qmgr -g jmsappsgroup +connect +inq

For the point-to-point domain, the following authorities are required:

• Queues that are used by MessageProducer objects need put authority.
• Queues that are used by MessageConsumer and QueueBrowser objects need get, inq, and browse

authorities.
• The QueueSession.createTemporaryQueue() method needs access to the model queue specified by

the TEMPMODEL property of the QueueConnectionFactory object. By default this model queue is
SYSTEM.TEMP.MODEL.QUEUE.

If any of these queues are alias queues, their target queues require inquire authority. If the target queue is
a cluster queue it also requires browse authority.

For the publish/subscribe domain, the following queues are used if the IBM MQ classes for JMS are
connecting to an IBM MQ queue manager in IBM MQ messaging provider migration mode:

• SYSTEM.JMS.ADMIN.QUEUE
• SYSTEM.JMS.REPORT.QUEUE
• SYSTEM.JMS.MODEL.QUEUE
• SYSTEM.JMS.PS.STATUS.QUEUE
• SYSTEM.JMS.ND.SUBSCRIBER.QUEUE
• SYSTEM.JMS.D.SUBSCRIBER.QUEUE
• SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE
• SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
• SYSTEM.BROKER.CONTROL.QUEUE

For further information on IBM MQ messaging provider migration mode, see Configuring the JMS
PROVIDERVERSION property

Additionally, if the IBM MQ classes for JMS are connecting to a queue manager in this mode,
any application that publishes messages needs access to the stream queue specified by the
TopicConnectionFactory or topic object. By default, this queue is SYSTEM.BROKER.DEFAULT.STREAM.

104 Developing Applications for IBM MQ

If you use ConnectionConsumer, IBM MQ Resource Adapter, or the WebSphere Application Server IBM
MQ messaging provider, additional authorization might be needed.

Queues to be read by the ConnectionConsumer must have get, inq, and browse authorities. The system
dead-letter queue, and any backout-requeue queue or report queue used by the ConnectionConsumer
must have put and passall authorities.

When an application uses IBM MQ messaging provider normal mode to perform publish/subscribe
messaging, the application makes use of the integrated publish/subscribe functionality provided by the
queue manager. See Publish/subscribe security for information on securing the topics and queues that
are used.

Connection modes for IBM MQ classes for JMS
An IBM MQ classes for JMS application can connect to a queue manager in either client or bindings mode.
In client mode, IBM MQ classes for JMS connects to the queue manager over TCP/IP. In bindings mode,
IBM MQ classes for JMS connects directly to the queue manager using the Java Native Interface (JNI).

On z/OS, bindings mode can be used in any environment, but client mode can be used only in the
following environments:

• In WebSphere Application Server or WebSphere Liberty Profile connecting to any queue manager, on
any platform, including z/OS.

• In batch environments when connecting to an IBM MQ for z/OS queue manager, running on any LPAR.

An application running on any other platform can connect to a queue manager in either bindings or client
mode.

You can use the current or any earlier supported version of IBM MQ classes for JMS with a current queue
manager, and you can use a current or earlier supported version of queue manager with the current
version of IBM MQ classes for JMS. If you mix different versions, function is limited to the level of the
earlier version.

The following sections describe each of the connection modes in more detail.

Client mode
To connect to a queue manager in client mode, an IBM MQ classes for JMS application can run on the
same system on which the queue manager is running, or on a different system. In each case, IBM MQ
classes for JMS connects to the queue manager over TCP/IP.

Bindings mode
To connect to a queue manager in bindings mode, an IBM MQ classes for JMS application must run on the
same system on which the queue manager is running.

The IBM MQ classes for JMS connects directly to the queue manager using the Java Native Interface
(JNI). To use the bindings transport, the IBM MQ classes for JMS must be run in an environment that has
access to the IBM MQ Java Native Interface libraries; see “Configuring the Java Native Interface (JNI)
libraries” on page 92 for further information.

The IBM MQ classes for JMS support the following values for ConnectOption:

• MQCNO_FASTPATH_BINDING
• MQCNO_STANDARD_BINDING
• MQCNO_SHARED_BINDING
• MQCNO_ISOLATED_BINDING
• MQCNO_RESTRICT_CONN_TAG_QSG
• MQCNO_RESTRICT_CONN_TAG_Q_MGR

To change the connection options used by the IBM MQ classes for JMS, modify the Connection Factory
property CONNOPT.

Developing applications for IBM MQ 105

For further information on connection options, see “Connecting to a queue manager using the MQCONNX
call” on page 712

To use the bindings transport, the Java Runtime Environment being used must support the Coded
Character Set Identifier (CCSID) of the queue manager that the IBM MQ classes for JMS are connecting to.

Details on how to determine what CCSIDs are supported by a Java Runtime Environment can be found
in IBM MQ FDC with Probe ID 21 generated when using the IBM MQ V7 classes for Java or IBM MQ V7
classes for JMS.

Configuring your queue manager so that IBM MQ classes for JMS applications can connect in client mode
To configure your queue manager so that IBM MQ classes for JMS applications can connect in client
mode, you must create a server connection channel definition and start a listener.

Creating a server connection channel definition
On all platforms, you can use the MQSC command DEFINE CHANNEL to create a server connection
channel definition. See the following example:

DEFINE CHANNEL(JAVA.CHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP)

On IBM i, you can use the CL command CRTMQMCHL instead, as in the following example:

CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN)
TRPTYPE(*TCP)
MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

On Linux and Windows, you can also create a server connection channel
definition using IBM MQ Explorer.

On z/OS you can use the operations and control panels to create a server connection
channel definition .

The name of the channel (JAVA.CHANNEL in the previous examples) must be the same as the channel
name specified by the CHANNEL property of the connection factory that your application uses to connect
to the queue manager. The default value of the CHANNEL property is SYSTEM.DEF.SVRCONN.

Starting a listener
You must start a listener for your queue manager if one is not already started.

On Multiplatforms, you can use the MQSC command START LISTENER to start a listener
after first creating a listener object by using the MQSC command DEFINE LISTENER, as shown in the
following example:

DEFINE LISTENER(LISTENER.TCP) TRPTYPE(TCP) PORT(1414)
START LISTENER(LISTENER.TCP)

On z/OS, you use only the START LISTENER command, as in the following example, but note
that the channel initiator address space must be started before you can start a listener:

START LISTENER TRPTYPE(TCP) PORT(1414)

106 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/459147
https://www.ibm.com/support/pages/node/459147

On IBM i, you can also use the CL command STRMQMLSR to start a listener, as in the
following example:

STRMQMLSR PORT(1414) MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

On AIX, Linux, and Windows, you can also use the control command runmqlsr to start a
listener, as in the following example:

runmqlsr -t tcp -p 1414 -m QMgrName

In this command, QMgrName is the name of your queue manager.

On Linux and Windows, you can also start a listener using IBM MQ Explorer.

On z/OS, you can also use the operations and control panels to start a listener.

The number of the port on which the listener is listening must be the same as the port number specified
by the PORT property of the connection factory that your application uses to connect to the queue
manager. The default value of the PORT property is 1414.

The point-to-point IVT for IBM MQ classes for JMS
A point-to-point installation verification test (IVT) program is supplied with IBM MQ classes for JMS and
IBM MQ classes for Jakarta Messaging. The program connects to a queue manager in either bindings or
client mode, sends a message to the queue called SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives
the message from the queue. The program can create and configure all the objects that it requires
dynamically at run time, or it can use JNDI to retrieve administered objects from a directory service.

Run the installation verification test without using JNDI first because the test is self contained and does
not require the use of a directory service. For a description of administered objects, see Configuring JMS
objects using the administration tool.

The point-to-point installation verification test without using JNDI
In this test, the IVT program creates and configures all the objects that it requires dynamically at run time
and does not use JNDI.

On multiplatforms, a script is provided to run the IVT program. The script is called IVTRun
on AIX and Linux systems and IVTRun.bat on Windows. the script is located in the bin subdirectory of
the IBM MQ classes for JMS installation directory. The classpath must contain com.ibm.mqjms.jar.

To run the test in bindings mode, enter the following command:

IVTRun -nojndi [-m qmgr] [-v providerVersion] [-t]

To run the test in client mode, first set up the queue manager as described in “Configuring a queue
manager to accept client connections on Multiplatforms” on page 1028. Note that the channel to be used
defaults to SYSTEM.DEF.SVRCONN and the queue to be used is SYSTEM.DEFAULT.LOCAL.QUEUE, then
enter the following command:

IVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]
[-v providerVersion] [-ccsid ccsid] [-t]

No equivalent script is provided on z/OS systems. Instead, you run the IVT in bindings mode
by invoking the Java class directly. On z/OS, you choose between two functionally identical instances of
the IVT program:

Developing applications for IBM MQ 107

• com.ibm.mq.jms.MQJMSIVT, which is available with IBM MQ classes for JMS (JMS 2.0). To use this
program, the classpath must contain com.ibm.mqjms.jar or com.ibm.mq.allclient.jar.

• com.ibm.mq.jakarta.jms.MQJMSIVT, which is available with IBM MQ classes for Jakarta
Messaging (Jakarta Messaging 3.0). To use this program, the classpath must contain
com.ibm.mq.jakarta.client.jar.

To run the test in bindings mode on z/OS, enter the following command:

java com.ibm.mq.jms.MQJMSIVT -nojndi [-m qmgr] [-v providerVersion] [-t]

The parameters on the commands have the following meanings:
-m qmgr

The name of the queue manager to which the IVT program connects. If you run the test in bindings
mode and omit this parameter, the IVT program connects to the default queue manager.

-host hostname
The host name or IP address of the system on which the queue manager is running.

-port port
The number of the port on which the listener of the queue manager is listening. The default value is
1414.

-channel channel
The name of the MQI channel that the IVT program uses to connect to the queue manager. The
default value is SYSTEM.DEF.SVRCONN.

-v providerVersion
The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an MQQueueConnectionFactory
object and has the same valid values as those of the PROVIDERVERSION property. For more
information about this parameter therefore, including its valid values, see JMS: changes to
PROVIDERVERSION property and the description of the PROVIDERVERSION property in Properties
of IBM MQ classes for JMS objects.

The default value is unspecified.

-ccsid ccsid
The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The
default value is 819.

-t
Tracing is enabled. By default, tracing is disabled.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008, 2024. All
Rights Reserved.
WebSphere MQ classes for Java(tm) Message Service 7.0
Installation Verification Test

Creating a QueueConnectionFactory
Creating a Connection
Creating a Session
Creating a Queue
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE
Reading the message back again

Got message
JMSMessage class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4

108 Developing Applications for IBM MQ

JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620005e03
JMSTimestamp: 1187170264000
JMSCorrelationID: null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMSXUserID: mwhite
JMS_IBM_Encoding: 273
JMS_IBM_PutApplType: 28
JMSXAppID: IBM MQ Client for Java
JMSXDeliveryCount: 1
JMS_IBM_PutDate: 20070815
JMS_IBM_PutTime: 09310400
JMS_IBM_Format: MQSTR
JMS_IBM_MsgType: 8
A simple text message from the MQJMSIVT
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished

The point-to-point installation verification test using JNDI

In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight
Directory Access Protocol (LDAP) server or the local file system. You must also configure the IBM MQ
JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see “Prerequisites for IBM MQ classes for JMS” on page 85.
For information about how to configure the IBM MQ JMS administration tool, see Configuring the JMS
administration tool.

The IVT program must be able to use JNDI to retrieve an MQQueueConnectionFactory object and an
MQQueue object from the directory service. A script is provided to create these administered objects for
you. The script is called IVTSetup on AIX and Linux systems and IVTSetup.bat on Windows, and is in
the bin subdirectory of the IBM MQ classes for JMS installation directory. To run the script, enter the
following command:

IVTSetup

The script invokes the IBM MQ JMS administration tool to create the administered objects.

The MQQueueConnectionFactory object is bound with the name ivtQCF and is created with the default
values for all its properties, which means that the IVT program runs in bindings mode and connects to
the default queue manager. If you want the IVT program to run in client mode, or connect to a queue
manager other than the default queue manager, you must use the IBM MQ JMS administration tool or
IBM MQ Explorer to change the appropriate properties of the MQQueueConnectionFactory object. For
information about how to use the IBM MQ Explorer JMS administration tool, see Configuring JMS objects
using the administration tool. For information about how to use IBM MQ Explorer, see Introduction to IBM
MQ Explorer or the help provided with IBM MQ Explorer.

The MQQueue object is bound with the name ivtQ and is created with the default values for all its
properties, except for the QUEUE property, which has the value SYSTEM.DEFAULT.LOCAL.QUEUE.

When you have created the administered objects, you can run the IVT program. To run the test using
JNDI, enter the following command:

IVTRun -url "providerURL" [-icf initCtxFact] [-t]

Developing applications for IBM MQ 109

The parameters on the command have the following meanings:
-url "providerURL"

The uniform resource locator (URL) of the directory service. The URL can have one of the following
formats:

• ldap://hostname/contextName , for a directory service based on an LDAP server
• file:/directoryPath , for a directory service based on the local file system

Note that you must enclose the URL in quotation marks (").
-icf initCtxFact

The class name of the initial context factory, which must be one of the following values:

• com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server. This is
the default value.

• com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local
file system.

-t
Tracing is enabled. By default, tracing is disabled.

A successful test produces output similar to that for a successful test without using JNDI.
The main difference is that the output indicates that the test is using JNDI to retrieve an
MQQueueConnectionFactory object and an MQQueue object.

Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered
objects created by the IVTSetup script. A script is provided for this purpose. The script is called IVTTidy
on AIX and Linux systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the IBM MQ
classes for JMS installation directory.

Problem determination for the point-to-point installation verification test

The installation verification test might fail for the following reasons:

• If the IVT program writes a message indicating that it cannot find a class, check that your class path
is set correctly, as described in “Setting environment variables for IBM MQ classes for JMS/Jakarta
Messaging” on page 90.

• The test might fail with the following message:

Failed to connect to queue manager ' qmgr ' with connection mode ' connMode '
and host name ' hostname '

and an associated reason code of 2059. The variables in the message have the following meanings:
qmgr

The name of the queue manager to which the IVT program is trying to connect. This message insert
is blank if the IVT program is trying to connect to the default queue manager in bindings mode.

connMode
The connection mode, which is either Bindings or Client.

hostname
The host name or IP address of the system on which the queue manager is running.

This message means that the queue manager to which the IVT program is trying to connect is not
available. Check that the queue manager is running and, if the IVT program is trying to connect to the
default queue manager, make sure that the queue manager is defined as the default queue manager for
your system.

• The test might fail with the following message:

110 Developing Applications for IBM MQ

Failed to open MQ queue 'SYSTEM.DEFAULT.LOCAL.QUEUE'

This message means that the queue SYSTEM.DEFAULT.LOCAL.QUEUE does not exist on the queue
manager to which the IVT program is connected. Alternatively, if the queue does exist, the IVT program
cannot open the queue because it is not enabled for putting and getting messages. Check that the
queue exists and that it is enabled for putting and getting messages.

• The test might fail with the following message:

Unable to bind to object

This message means that there is a connection to the LDAP server, but that the LDAP server is
not correctly configured. Either the LDAP server is not configured for storing Java objects, or the
permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

• The test might fail with the following message:

The security authentication was not valid that was supplied for
QueueManager ' qmgr ' with connection mode 'Client' and host name ' hostname '

This message means that the queue manager is not correctly set up to accept a client connection from
your system. See “Configuring a queue manager to accept client connections on Multiplatforms” on
page 1028 for details.

The publish/subscribe IVT for IBM MQ classes for JMS
A publish/subscribe installation verification test (IVT) program is supplied with IBM MQ classes for JMS.
The program connects to a queue manager in either bindings or client mode, subscribes to a topic,
publishes a message on the topic, and then receives the message that it has just published. The program
can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to
retrieve administered objects from a directory service.

Run the installation verification test without using JNDI first because the test is self contained and does
not require the use of a directory service. For a description of administered objects, see Configuring JMS
objects using the administration tool.

The publish/subscribe installation verification test without using JNDI
In this test, the IVT program creates and configures all the objects that it requires dynamically at run time
and does not use JNDI.

A script is provided to run the IVT program. The script is called PSIVTRun on AIX and Linux systems and
PSIVTRun.bat on Windows, and is in the bin subdirectory of the IBM MQ classes for JMS installation
directory.

To run the test in bindings mode, enter the following command:

PSIVTRun -nojndi [-m qmgr] [-bqm brokerQmgr] [-v providerVersion] [-t]

To run the test in client mode, first set up the queue manager as described in “Configuring a queue
manager to accept client connections on Multiplatforms” on page 1028 noting that the channel to be used
defaults to SYSTEM.DEF.SVRCONN, then enter the following command:

PSIVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]
[-bqm brokerQmgr] [-v providerVersion] [-ccsid ccsid] [-t]

The parameters on the commands have the following meanings:

Developing applications for IBM MQ 111

-m qmgr
The name of the queue manager to which the IVT program connects. If you run the test in bindings
mode and omit this parameter, the IVT program connects to the default queue manager.

-host hostname
The host name or IP address of the system on which the queue manager is running.

-port port
The number of the port on which the listener of the queue manager is listening. The default value is
1414.

-channel channel
The name of the MQI channel that the IVT program uses to connect to the queue manager. The
default value is SYSTEM.DEF.SVRCONN.

-bqm brokerQmgr
The name of the queue manager on which the broker is running. The default value is the name of the
queue manager to which the IVT program connects.

This parameter is not relevant for queue manager version number v of 7, or greater.

-v providerVersion
The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an MQTopicConnectionFactory
object and has the same valid values as those of the PROVIDERVERSION property. For more
information about this parameter therefore, including its valid values, see the description of the
PROVIDERVERSION property in Properties of IBM MQ classes for JMS objects.

The default value is unspecified.

-ccsid ccsid
The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The
default value is 819.

-t
Tracing is enabled. By default, tracing is disabled.

A successful test produces output similar to the following sample output:

5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008, 2024. All
Rights Reserved.
IBM MQ classes for Java Message Service 7.0
Publish/Subscribe Installation Verification Test

Creating a TopicConnectionFactory
Creating a Connection
Creating a Session
Creating a Topic
Creating a TopicPublisher
Creating a TopicSubscriber
Creating a TextMessage
Adding text
Publishing the message to topic://MQJMS/PSIVT/Information
Waiting for a message to arrive [5 secs max]...

Got message:
JMSMessage class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620006706
JMSTimestamp: 1187182520203
JMSCorrelationID: ID:414d5120514d5f6d627720202020202001edb14620006704
JMSDestination: topic://MQJMS/PSIVT/Information
JMSReplyTo: null
JMSRedelivered: false
JMSXUserID: mwhite
JMS_IBM_Encoding: 273

112 Developing Applications for IBM MQ

JMS_IBM_PutApplType: 26
JMSXAppID: QM_mbw
JMSXDeliveryCount: 1
JMS_IBM_PutDate: 20070815
JMS_IBM_ConnectionID: 414D5143514D5F6D627720202020202001EDB14620006601
JMS_IBM_PutTime: 12552020
JMS_IBM_Format: MQSTR
JMS_IBM_MsgType: 8
A simple text message from the MQJMSPSIVT program
Reply string equals original string
Closing TopicSubscriber
Closing TopicPublisher
Closing Session
Closing Connection
PSIVT finished

The publish/subscribe installation verification test using JNDI
In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight
Directory Access Protocol (LDAP) server or the local file system. You must also configure the IBM MQ
JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see “Prerequisites for IBM MQ classes for JMS” on page 85.
For information about how to configure the IBM MQ JMS administration tool, see Configuring the JMS
administration tool.

The IVT program must be able to use JNDI to retrieve an MQTopicConnectionFactory object and an
MQTopic object from the directory service. A script is provided to create these administered objects for
you. The script is called IVTSetup on AIX and Linux systems and IVTSetup.bat on Windows, and is in
the bin subdirectory of the IBM MQ classes for JMS installation directory. To run the script, enter the
following command:

IVTSetup

The script invokes the IBM MQ JMS administration tool to create the administered objects.

The MQTopicConnectionFactory object is bound with the name ivtTCF and is created with the default
values for all its properties, which means that the IVT program runs in bindings mode, connects to
the default queue manager, and uses the embedded publish/subscribe function. If you want the IVT
program to run in client mode, connect to a queue manager other than the default queue manager,
or use IBM Integration Bus instead of the embedded publish/subscribe function, you must use the
IBM MQ JMS administration tool or IBM MQ Explorer to change the appropriate properties of the
MQTopicConnectionFactory object. For information about how to use the IBM MQ JMS administration
tool, see Configuring JMS objects using the administration tool. For information about how to use IBM MQ
Explorer, see the help provided with IBM MQ Explorer.

The MQTopic object is bound with the name ivtT and is created with the default values for all its
properties, except for the TOPIC property, which has the value MQJMS/PSIVT/Information.

When you have created the administered objects, you can run the IVT program. To run the test using
JNDI, enter the following command:

PSIVTRun -url "providerURL" [-icf initCtxFact] [-t]

The parameters on the command have the following meanings:
-url "providerURL"

The uniform resource locator (URL) of the directory service. The URL can have one of the following
formats:

• ldap://hostname/contextName , for a directory service based on an LDAP server
• file:/directoryPath , for a directory service based on the local file system

Developing applications for IBM MQ 113

Note that you must enclose the URL in quotation marks (").
-icf initCtxFact

The class name of the initial context factory, which must be one of the following values:

• com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server. This is
the default value.

• com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local
file system.

-t
Tracing is enabled. By default, tracing is disabled.

A successful test produces output similar to that for a successful test without using JNDI. The main
difference is that the output indicates that the test is using JNDI to retrieve an MQTopicConnectionFactory
object and an MQTopic object.

Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered
objects created by the IVTSetup script. A script is provided for this purpose. The script is called IVTTidy
on AIX and Linux systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the IBM MQ
classes for JMS installation directory.

Problem determination for the publish/subscribe installation verification test
The installation verification test might fail for the following reasons:

• If the IVT program writes a message indicating that it cannot find a class, check that your class path
is set correctly, as described in “Setting environment variables for IBM MQ classes for JMS/Jakarta
Messaging” on page 90.

• The test might fail with the following message:

Failed to connect to queue manager ' qmgr ' with
connection mode ' connMode ' and host name ' hostname '

and an associated reason code of 2059. The variables in the message have the following meanings:
qmgr

The name of the queue manager to which the IVT program is trying to connect. This message insert
is blank if the IVT program is trying to connect to the default queue manager in bindings mode.

connMode
The connection mode, which is either Bindings or Client.

hostname
The host name or IP address of the system on which the queue manager is running.

This message means that the queue manager to which the IVT program is trying to connect is not
available. Check that the queue manager is running and, if the IVT program is trying to connect to the
default queue manager, make sure that the queue manager is defined as the default queue manager for
your system.

• The test might fail with the following message:

Unable to bind to object

This message means that there is a connection to the LDAP server, but that the LDAP server is
not correctly configured. Either the LDAP server is not configured for storing Java objects, or the
permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

• The test might fail with the following message:

114 Developing Applications for IBM MQ

The security authentication was not valid that was supplied for
QueueManager 'qmgr' with connection mode 'Client' and host name 'hostname'

This message means that the queue manager is not set up correctly to accept a client connection from
your system. For more information, see “Configuring a queue manager to accept client connections on
Multiplatforms” on page 1028.

Using the IBM MQ classes for JMS sample applications
The IBM MQ classes for JMS sample applications provide an overview of the common features of the JMS
API. You can use them to verify your installation and messaging server set up and to help you build your
own applications.

About this task
If you need help to create your own applications, you can use the sample applications as a starting point.
Both the source and a compiled version are provided for each application. Review the sample source
code and identify the key steps to create each required object for your application (ConnectionFactory,
Connection, Session, Destination, and a Producer, or a Consumer, or both), and to set any specific
properties that are needed to specify how you want your application to work. For more information,
see “Writing IBM MQ classes for JMS/Jakarta Messaging applications” on page 134. The samples might
be subject to change in future releases of IBM MQ.

For JMS 2.0, Table 11 on page 115 shows where the IBM MQ classes for JMS sample applications are
installed on each platform.

Note:

For IBM MQ classes for Jakarta Messaging, new samples are being prepared.

Table 11. Installation directories for the IBM MQ classes for JMS sample applications

Platform Directory

AIX

Linux

MQ_INSTALLATION_PATH/samp/jms/samples

Windows MQ_INSTALLATION_PATH\tools\jms\samples

IBM i /qibm/proddata/mqm/java/samples/jms/samples

z/OS MQ_INSTALLATION_PATH/java/samples/jms

Within this directory, there are subdirectories that contain one or more sample applications as shown in
Table 12 on page 115.

Table 12. IBM MQ classes for JMS sample applications

Name of
sample

Description

JmsBrowser
.java

A JMS queue browser application that looks at all available messages on the named
queue, without removing them, in the order they would be received by a consumer
application.

JmsConsum
er.java

A JMS queue browser application that looks at all available messages on the named
queue, without removing them, in the order they would be received by a consumer
application, by looking up the connection factory instance and the destination instance
in an initial context (This sample supports file system context only).

Developing applications for IBM MQ 115

Table 12. IBM MQ classes for JMS sample applications (continued)

Name of
sample

Description

JmsJndiCon
sumer.java

A JMS consumer (receiver or subscriber) application that receives a message from the
named destination (queue or topic) by looking up the connection factory instance and the
destination instance in an initial context (This sample supports file system context only).

JmsJndiPro
ducer.java

A JMS producer (sender or publisher) application that sends a simple message to the
named destination (queue or topic) by looking up the connection factory instance and the
destination instance in an initial context (This sample supports file system context only).

JmsProduce
r.java

A JMS producer (sender or publisher) application that sends a simple message to the
named destination (queue or topic).

/interactive/

SampleCons
umerJava.ja
va

Receive message(s) from a topic/queue.

SampleProd
ucerJava.jav
a

Send message(s) to a topic/queue.

/interactive/helper/

BaseOption
s.java

An abstract class that can be extended to provide user option(s) functionality.

IsValidType.
java

Abstract class for validity checker classes.

JmsApp.jav
a

An abstract class that can be extended to provide consumer/producer functionality.

Keys.java A set of keys that define options for the sample applications.

Literals.java A set of constant literals.

MyContext.j
ava

The context in which options are presented.

Options.java Provides functionality for user option(s).

OptionsPres
enter.java

Context in which current options are presented.

/simple/

SimpleAsyn
cPutPTP.jav
a

A simple application for point-to-point messaging; message is sent asynchronously (also
known as fire-and-forget messaging). No messages are received.

SimpleDura
bleSub.java

A simple application that demonstrates durable subscription facility.

SimpleJNDI
Lookup.java

A minimal and simple application that demonstrates lookup of JMS objects using the
initial context. No connection to the queue manager is made and no messages are sent or
received.

SimpleMQM
DRead.java

A simple application that demonstrates how a JMS application may avail MQ Message
Descriptor (MQMD) fields as JMS message properties. No messages are sent; it is
assumed that the queue in use is populated with some messages.

116 Developing Applications for IBM MQ

Table 12. IBM MQ classes for JMS sample applications (continued)

Name of
sample

Description

SimpleMQM
DWrite.java

A simple application that demonstrates how a JMS application may write MQ Message
Descriptor (MQMD) fields. No messages are received.

SimplePTP.j
ava

A minimal and simple application for point-to-point messaging.

SimplePubS
ub.java

A minimal and simple application for publish-subscribe messaging.

SimpleRead
AheadPTP.ja
va

A simple application for point-to-point messaging; messages are streamed from the
queue manager (also known as the read-ahead facility). No messages are sent; it is
assumed that the queue in use is populated with some messages.

SimpleRequ
estor.java

A simple application that uses a requestor to send a request message and then wait for,
and receive, the reply. Note: It is assumed that some other application will process the
request message and send the reply message.

SimpleResp
onder.java

A simple application that listens on a destination for a message and then sends a reply
to the message's replyTo destination. The application is written to operate in conjunction
with the SimpleRequestor sample.

SimpleRetai
nedPub.java

A simple application that demonstrates a retained publication. No messages are received.

SimpleWMQ
JMSPTP.jav
a

A minimal and simple application for point-to-point messaging.

SimpleWMQ
JMSPubSub
.java

A minimal and simple application for publish/subscribe messaging.

The IBM MQ classes for JMS provide a script called runjms that can be used to run the sample
applications. This script sets up the IBM MQ environment to allow you to run the IBM MQ classes for
JMS sample applications.

Table 13 on page 117 shows the location of the script on each platform:

Table 13. Location of the runjms script

Platform Directory

AIX

Linux

MQ_INSTALLATION_PATH/java/bin/runjms

Windows MQ_INSTALLATION_PATH\java\bin\runjms.bat

IBM i /qibm/proddata/mqm/java/bin/runjms
or
/qibm/proddata/mqm/java/bin/runjms64

z/OS MQ_INSTALLATION_PATH/java/bin/runjms

To use the runjms script to invoke a sample application, complete the following steps:

Developing applications for IBM MQ 117

Procedure
1. Bring up a command prompt and navigate to the directory containing the sample application that you

want to run.
2. Enter the following command:

Path to the runjms script/runjms sample_application_name

The sample application displays a list of parameters that it needs.
3. Enter the following command to run the sample with these parameters:

Path to the runjms script/runjms sample_application_name parameters

Example

For example, to run the JmsBrowser sample on Linux, enter the following commands:

cd /opt/mqm/samp/jms/samples
/opt/mqm/java/bin/runjms JmsBrowser -m QM1 -d LQ1

Related concepts
“What is installed for IBM MQ classes for JMS” on page 85
A number of files and directories are created when you install IBM MQ classes for JMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On
other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JMS applications.

Scripts provided with IBM MQ classes for JMS/Jakarta Messaging
A number of scripts are provided to assist with common tasks that need to be performed when using IBM
MQ classes for JMS and IBM MQ classes for Jakarta Messaging.

Table 14 on page 118 lists all the scripts and their uses. The scripts are in the bin subdirectory of the IBM
MQ classes for JMS or IBM MQ classes for Jakarta Messaging installation directory.

Table 14. Scripts provided with IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging

Utility Use

Cleanup 1 This script is maintained for compatibility with previous releases but
performs no function. Manual cleanup of subscription information is
no longer necessary.

DefaultConfiguration Runs the default configuration application on platforms other than
Windows.

formatLog 1 This script is maintained for compatibility with previous releases but
performs no function. Log output is now produced in readable text.

IVTRun 1

IVTSetup 1

IVTTidy 1

Used in the point-to-point installation verification test, as described
in “The point-to-point IVT for IBM MQ classes for JMS” on page
107.

JMS30Admin 1
Runs the IBM MQ Jakarta Messaging administration tool, as
described in Starting the administration tool.

JMS30Admin.config
The configuration file for the IBM MQ Jakarta Messaging
administration tool, as described in Configuring the JMS
administration tool.

JMSAdmin 1
Runs the IBM MQ JMS administration tool, as described in Starting
the administration tool.

118 Developing Applications for IBM MQ

Table 14. Scripts provided with IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging
(continued)

Utility Use

JMSAdmin.config
The configuration file for the IBM MQ JMS administration tool, as
described in Configuring the JMS administration tool.

PSIVTRun 1 Runs the publish/subscribe installation verification test program, as
described in “The publish/subscribe IVT for IBM MQ classes for
JMS” on page 111.

PSReportDump.class This class is maintained for compatibility with previous releases, but
performs no function.

setjms30env “2” on
page 119

For Jakarta Messaging 3.0, sets the
environment variables for running an IBM MQ classes for JMS
application in a 32-bit Java virtual machine (JVM) on AIX and Linux
systems, as described in “Setting environment variables for IBM MQ
classes for JMS/Jakarta Messaging” on page 90.

setjmsenv “2” on page
119

For JMS 2.0, sets the environment
variables for running an IBM MQ classes for JMS application in a
32-bit Java virtual machine (JVM) on AIX and Linux systems, as
described in “Setting environment variables for IBM MQ classes for
JMS/Jakarta Messaging” on page 90.

setjms30env64 “2”
on page 119

For Jakarta Messaging 3.0, sets the
environment variables for running an IBM MQ classes for JMS
application in a 64-bit JVM on AIX and Linux systems, as described
in “Setting environment variables for IBM MQ classes for JMS/
Jakarta Messaging” on page 90.

setjmsenv64 “2” on
page 119

For JMS 2.0, sets the environment
variables for running an IBM MQ classes for JMS application
in a 64-bit JVM on AIX and Linux systems, as described in
“Setting environment variables for IBM MQ classes for JMS/Jakarta
Messaging” on page 90.

Note:

1. On Windows, the file name has the extension .bat.
2. These scripts are available on AIX and Linux only. On Windows, after installing IBM MQ, run the

command setmqenv. For more information, see “Setting environment variables for IBM MQ classes
for JMS/Jakarta Messaging” on page 90.

Support for OSGi with IBM MQ classes for JMS
OSGi provides a framework that supports the deployment of applications as bundles. The OSGi bundles
are supplied as part of the IBM MQ classes for JMS.

The IBM MQ classes for JMS includes the following OSGi bundles.
com.ibm.msg.client.osgi.jmsversion_number.jar

The common layer of code in the IBM MQ classes for JMS. For information about the layered
architecture of IBM MQ classes for JMS, see IBM MQ classes for JMS architecture.

com.ibm.msg.client.osgi.jms.prereq_version_number.jar
The prerequisite Java archive (JAR) files for the common layer.

com.ibm.msg.client.osgi.commonservices.j2se_version_number.jar
Common services for Java Platform, Standard Edition (Java SE) applications.

Developing applications for IBM MQ 119

com.ibm.msg.client.osgi.nls_version_number.jar
Messages for the common layer.

com.ibm.msg.client.osgi.wmq_version_number.jar
The IBM MQ messaging provider in IBM MQ classes for JMS. For information about the layered
architecture of IBM MQ classes for JMS, see IBM MQ classes for JMS architecture.

com.ibm.msg.client.osgi.wmq.prereq_version_number.jar
The prerequisite JAR files for the IBM MQ messaging provider.

com.ibm.msg.client.osgi.wmq.nls_version_number.jar
Messages for the IBM MQ messaging provider.

com.ibm.mq.jakarta.osgi.allclient_version_number.jar
For Jakarta Messaging 3.0, this JAR file allows applications to use both the IBM MQ

classes for JMS and the IBM MQ classes for Java, and also includes the code to handle PCF messages.
com.ibm.mq.jakarta.osgi.allclientprereqs_version_number.jar

For Jakarta Messaging 3.0, this JAR file provides the prerequisites for
com.ibm.mq.jakarta.osgi.allclient_version_number.jar.

com.ibm.mq.osgi.allclient_version_number.jar
For JMS 2.0, this JAR file allows applications to use both the IBM MQ classes for JMS

and the IBM MQ classes for Java, and also includes the code to handle PCF messages.
com.ibm.mq.osgi.allclientprereqs_version_number.jar

For JMS 2.0, this JAR file provides the prerequisites for
com.ibm.mq.osgi.allclient_version_number.jar.

where version_number is the version number of IBM MQ that is installed.

The bundles are installed into the java/lib/OSGi subdirectory of your IBM MQ installation, or the
java\lib\OSGi folder on Windows.

From IBM MQ 8.0, use the bundles com.ibm.mq.osgi.allclient_8.0.0.0.jar, and
com.ibm.mq.osgi.allclientprereqs_8.0.0.0.jar for any new applications. Using these bundles
removes the restriction of not being able to run both IBM MQ classes for JMS and the IBM MQ classes for
Java within the same OSGi framework, all other restrictions still apply however.

The bundle com.ibm.mq.osgi.javaversion_number.jar, which is also installed into the
java/lib/OSGi subdirectory of your IBM MQ installation, or the java\lib\OSGi folder on Windows, is
part of the IBM MQ classes for Java. This bundle must not be loaded into an OSGi runtime environment
that has the IBM MQ classes for JMS loaded.

The OSGi bundles for the IBM MQ classes for JMS have been written to the OSGi Release 4 specification.
They do not work in an OSGi Release 3 environment.

You must set your system path or library path correctly so that the OSGi runtime environment can find any
required DLL files or shared libraries.

If you use the OSGi bundles for the IBM MQ classes for JMS, temporary topics do not work. In addition,
channel exit classes written in Java are not supported because of an inherent problem in loading classes
in a multiple class loader environment such as OSGi. A user bundle can be aware of the IBM MQ classes
for JMS bundles, but the IBM MQ classes for JMS bundles are not aware of any user bundle. As a result,
the class loader used in an IBM MQ classes for JMS bundle cannot load a channel exit class that is in a
user bundle.

For more information about OSGi, see the OSGi Alliance website.

120 Developing Applications for IBM MQ

https://www.osgi.org

JMS/Jakarta Messaging client connectivity to batch
applications running on z/OS
Under certain conditions, an IBM MQ classes for JMS/Jakarta Messaging application on z/OS can connect
to a queue manager on z/OS by using a client connection. Use of a client connection can simplify IBM MQ
topologies.

By using a client connection, an IBM MQ classes for JMS/Jakarta Messaging application can connect to a
remote z/OS queue manager if the following conditions apply:

• The application is running in a batch environment.
• The queue manager being connected to is running with IBM MQ Advanced for z/OS Value Unit Edition

entitlement, and therefore has the ADVCAP parameter set to ENABLED.

For more information on IBM MQ Advanced for z/OS Value Unit Edition see IBM MQ product identifiers
and export information.

See DISPLAY QMGR for more information on ADVCAP and START QMGR for more information on
QMGRPROD.

Note that batch is the only environment supported; there is no support for JMS/Jakarta Messaging for
CICS or JMS/Jakarta Messaging for IMS.

An IBM MQ classes for JMS/Jakarta Messaging application on z/OS cannot use a client mode connection
to connect to a queue manager that is not running on z/OS.

If an IBM MQ classes for JMS/Jakarta Messaging application on z/OS attempts to connect using client
mode, and is not allowed to do so, exception message JMSFMQ0005 is issued.

Advanced Message Security (AMS) support
IBM MQ classes for JMS/Jakarta Messaging client applications can use AMS when connecting to remote
z/OS queue managers, subject to the conditions previously described in this topic.

To use AMS in this way, the client applications must use a key store type of jceracfks in
keystore.conf, where:

• The property name prefix is jceracfks and this name prefix is case insensitive.
• The key store is a RACF keyring.
• Passwords are not required, and will be ignored. This is because RACF keyrings do not use passwords.
• If you specify the provider, the provider must be IBMJCE.

When you use jceracfks with AMS, the key store must be in the form: safkeyring://user/
keyring, where:

• safkeyring is a literal and this name is case insensitive
• user is the RACF user id that owns the keyring
• keyring is the name of the RACF keyring and the name of the keyring is case sensitive

The following example uses the standard AMS keyring for user JOHNDOE:

jceracfks.keystore=safkeyring://JOHNDOE/drq.ams.keyring

Related concepts
“Java client connectivity to batch applications running on z/OS” on page 358

Developing applications for IBM MQ 121

Under certain conditions, an IBM MQ classes for Java application on z/OS can connect to a queue
manager on z/OS by using a client connection. Use of a client connection can simplify IBM MQ topologies.

Obtaining the IBM MQ classes for JMS and IBM MQ classes for Jakarta
Messaging separately
The libraries and utilities necessary for running applications using IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging are available in a self-extracting JAR file that you download from Fix
Central. You do this if you want to get only these files, for example for deployment into a software
management tool or for use with stand-alone client applications.

Before you begin
Before you start this task, make sure that you have a Java runtime environment (JRE) installed on your
machine and that the JRE has been added to the system path.

The Java installer that is used in this installation process does not require running as root or any specific
user. The only requirement is that the user it is run as has write access to the directory that you want the
files to go in.

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 and later continue to support JMS 2.0 for existing applications. It is not supported to use
both the Jakarta Messaging 3.0 API and the JMS 2.0 API in the same application. For more information,
see Using IBM MQ classes for JMS/Jakarta Messaging.

About this task
A self-extracting JAR file is used to minimize the size of the download, and the time that it takes to
perform the extraction. The exact contents of this JAR file, and the sub-directories into which it extracts
the files, depends on the version of IBM MQ.

When you run the self-extracting JAR file, it displays the IBM MQ license agreement, which must be
accepted. It also lets you change the parent directory for the extraction.

For IBM MQ 9.3 and later, the self-extracting JAR file extracts the files into the following directory
structure:
wmq/JavaEE

The IBM MQ resource adapter EAR and RAR files.

The following files are for use with JMS 2.0 and JMS 1.1 objects:

• wmq.jmsra.ivt.ear
• wmq.jmsra.rar

There is also an equivalent set for use with Jakarta Messaging 3.0 objects:

• wmq.jakarta.jmsra.ivt.ear. Contains Installation Verification Test files.
• wmq.jakarta.jmsra.rar. Contains resource adapter files.

wmq/JavaSE
wmq/JavaSE/bin

The JMSAdmin and JMS30Admin tools. Used to define JNDI entities that represent JMS or Jakarta
Messaging objects.

The following files are for use with JMS 2.0 and JMS 1.1 objects:

• JMSAdmin.bat
• JMSAdmin
• JMSAdmin.config

122 Developing Applications for IBM MQ

There is also an equivalent set for use with Jakarta Messaging 3.0 objects:

• JMS30Admin.bat. A file that is used to start the tool on Windows.
• JMS30Admin. A script that is used to start the tool on Linux and UNIX platforms.
• JMS30Admin.config. A sample configuration file for the tool.

Note:

• Before the JMSAdmin tool was added to the self-extracting JAR file, the files in this directory
were in the parent directory wmq/JavaSE.

• A client that is installed using the self-extracting JAR file can use the JMSAdmin or JMS30Admin
tool to create Java messaging administered objects within a file system context (.bindings
file). The client can also look up and use these administered objects.

• The JMSAdmin tool for use with JMS 2.0 and JMS 1.1 objects was added to the
self-extracting JAR file at IBM MQ 9.2.0 Fix Pack 2 and IBM MQ 9.2.2.

• The JMS30Admin tool for use with Jakarta Messaging 3.0 objects was added to
the self-extracting JAR file at IBM MQ 9.3.0.

wmq/JavaSE/lib
Advanced Message Security uses the following open source Bouncy Castle packages to support
Cryptographic Message Syntax (CMS). See Support for non-IBM JREs with AMS.

From IBM MQ 9.4.0:

• bcpkix-jdk18on.jar
• bcprov-jdk18on.jar
• bcutil-jdk18on.jar

The following files each contain the classes for their specific JMS or Jakarta Messaging level:

• com.ibm.mq.allclient.jar (JMS 2.0 and JMS 1.1)

• com.ibm.mq.jakarta.client.jar (Jakarta Messaging 3.0)

Other prerequisite JAR files:

• fscontext.jar. Required if your application performs JNDI lookups using a file system
context.

• jakarta.jms-api.jar. Contains the Jakarta Messaging 3.0 interface and
Exception definitions.

• jms.jar. Contains the JMS 2.0 interface and Exception definitions.
• org.json.jar. Contains classes that allow the IBM MQ classes for JMS to interpret JSON-

format CCDT files.
• providerutil.jar. Required if your application performs JNDI lookups using a file system

context.

Note: com.ibm.mq.allclient.jar and com.ibm.mq.jakarta.client.jar
both contain a copy of the IBM MQ classes for Java. However, in IBM MQ 9.0, these classes
are declared as functionally stabilized at the level shipped in IBM MQ 8.0. See Deprecations,
stabilizations, and removals at IBM MQ 9.0.

wmq/OSGi
The IBM MQ OSGi client bundles:

• com.ibm.mq.jakarta.osgi.allclient_V.R.M.F.jar

• com.ibm.mq.jakarta.osgi.allclientprereqs_V.R.M.F.jar

Developing applications for IBM MQ 123

https://www.ibm.com/links?url=https%3A%2F%2Fbouncycastle.org%2F

• com.ibm.mq.osgi.allclient_V.R.M.F.jar

• com.ibm.mq.osgi.allclientprereqs_V.R.M.F.jar

where V.R.M.F is the Version, Release, Modification, and Fix Pack number.

Procedure
1. Download the IBM MQ Java / JMS client JAR file from Fix Central.

a) Click this link: IBM MQ Java / JMS client.
b) Find the client for your version of IBM MQ in the displayed list of available fixes.

For example:

release level: 9.3.0.0-IBM-MQ-Install-Java-All
Long Term Support: 9.3.0.0 IBM MQ JMS and Java 'All Client'

Then click the client file name and follow the download process.
2. Start the extraction from the directory to which you downloaded the file.

To start the extraction, enter a command in the following format:

java -jar V.R.M.F-IBM-MQ-Install-Java-All.jar

where V.R.M.F is the product version number, for example 9.3.0.0, and V.R.M.F-IBM-MQ-
Install-Java-All.jar is the name of the file that was downloaded from Fix Central.
For example, to extract the JMS client for the IBM MQ 9.4.0 release, you would use the following
command:

java -jar 9.4.0.0-IBM-MQ-Install-Java-All.jar

Note: To carry out this installation, you must have a JRE installed on your machine and added to the
system path.

When you enter the command, the following information is displayed:
Before you can use, extract, or install IBM MQ V9.4, you must accept
the terms of 1. IBM International License Agreement for Evaluation of
Programs 2. IBM International Program License Agreement and additional
license information. Please read the following license agreements carefully.

The license agreement is separately viewable using the
--viewLicenseAgreement option.

Press Enter to display the license terms now, or 'x' to skip.

3. Review and accept the license terms:
a) To display the license, press Enter.

Alternatively, press x to skip the display of the license.
After the license is displayed, or immediately if you press x, the following message is displayed:
Additional license information is separately viewable using the
--viewLicenseInfo option.

Press Enter to display additional license information now, or 'x' to skip.

b) To display the additional license terms, press Enter.
Alternatively, press x to skip the display of the additional license terms.
After the additional license terms are displayed, or immediately if you press x, the following
message is displayed:
By choosing the "I Agree" option below, you agree to the terms of the
license agreement and non-IBM terms, if applicable. If you do not
agree, select "I do not Agree".

Select [1] I Agree, or [2] I do not Agree:

124 Developing Applications for IBM MQ

https://ibm.biz/mq94javaclient

c) To accept the license agreement and continue with selecting the installation directory, select 1.
Alternatively, select 2 to end the installation immediately.
If you select 1, a message similar to the following message is displayed:
Enter directory for product files or leave blank to accept the default value.
The default target directory is H:\downloads

Target directory for product files?

4. Specify the parent directory for the extraction.

The default location is the current directory.

• If you want to extract the product files to the default location, press Enter without specifying a
value.

• If you want to extract the product files to a different location, specify the name of the directory into
which you want to extract the files, then press Enter to start the extraction.

The directory name that you specify must not already exist, otherwise, when you start the extraction,
an error is reported and no files are installed.
Provided that it does not already exist, the specified directory is created and the program files are
extracted to this directory. During the installation, a new directory with the name wmq is created within
the parent directory that you specified.

Three sub-directories, JavaEE, JavaSE, and OSGi, are created in the wmq directory with the following
contents:
JavaEE

wmq.jakarta.jmsra.ivt.ear

wmq.jakarta.jmsra.rar

wmq.jmsra.ivt.ear

wmq.jmsra.rar
JavaSE

This directory contains the following sub-directories and files:
JavaSE/lib

bcpkix-jdk18on.jar

bcprov-jdk18on.jar

bcutil-jdk18on.jar

com.ibm.mq.allclient.jar

com.ibm.mq.jakarta.client.jar
fscontext.jar
jms.jar
org.json.jar
providerutil.jar

JavaSE/bin
JMSAdmin.bat
JMSAdmin
JMSAdmin.config

OSGi
com.ibm.mq.jakarta.osgi.allclient_V.R.M.F.jar

com.ibm.mq.jakarta.osgi.allclientprereqs_V.R.M.F.jar

Developing applications for IBM MQ 125

com.ibm.mq.osgi.allclient_V.R.M.F.jar

com.ibm.mq.osgi.allclientprereqs_V.R.M.F.jar

When the extraction is completed, a confirmation message is displayed as shown in the following
example:
Extracting files to H:\downloads\wmq
Successfully extracted all product files.

Allowlisting in IBM MQ classes for JMS/Jakarta Messaging
The Java object serialization and deserialization mechanism has been identified as a potential security
risk. Allowlisting in IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging provide some
protection against some serialization risks.

About this task
The Java object serialization and deserialization mechanism has been identified as a potential security
risk because deserialization instantiates arbitrary Java objects, where there is the potential for
maliciously sent data to cause various problems. One notable application of serialization is in Jakarta
Messaging 3.0 and Java Message Service 2.0 ObjectMessages that use serialization to encapsulate and
transfer arbitrary objects.

Serialization allowlisting is a potential mitigation against some of the risks that serialization poses.
By explicitly specifying which classes can be encapsulated in, and extracted from, ObjectMessages,
allowlisting provides some protection against some serialization risks.

Related concepts
“Running IBM MQ classes for JMS applications under the Java security manager” on page 102
IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java Virtual Machine (JVM) with a
suitable policy configuration file.

Allowlisting concepts
In IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging, there is support for allowlisting
of classes in the implementation of the JMS ObjectMessage interface. This provides a potential mitigation
against some of the security risks that potentially relate to the Java object serialization and deserialization
mechanism.

Allowlisting in IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging
Important:

Wherever possible, the term allowlist has replaced the term whitelist. This includes some Java system
property names mentioned in this topic. You do not have to change any existing configuration. The
previous system property names also continue to work.

IBM MQ classes for JMS (JMS 2.0) and IBM MQ classes for Jakarta Messaging (Jakarta Messaging 3.0)
support allowlisting of classes in the implementation of the JMS ObjectMessage interface.

• For IBM MQ classes for JMS, the relevant property names are
com.ibm.mq.jms.allowlist.*.

• For IBM MQ classes for Jakarta Messaging, the relevant property names are
com.ibm.mq.jakarta.jms.allowlist.*

The allowlist defines which Java classes might be serialized with ObjectMessage.setObject() and
deserialized with ObjectMessage.getObject().

126 Developing Applications for IBM MQ

• Attempts to serialize or deserialize an instance of a class not included in the
allowlist with ObjectMessage cause a javax.jms.MessageFormatException to be thrown, with a
java.io.InvalidClassException as its cause.

• Attempts to serialize or deserialize an instance of a class not included in the
allowlist with ObjectMessage cause a jakarta.jms.MessageFormatException to be thrown, with a
java.io.InvalidClassException as its cause.

Producing the allowlist
Important: IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging cannot be distributed
with an allowlist. The choice of classes to be transferred by using ObjectMessages is an application design
choice and IBM MQ cannot preempt that.

For this reason, the allowlisting mechanism allows for two modes of operation:
DISCOVERY

In this mode, the mechanism produces a listing of fully qualified class names, reporting all classes
that have been observed to be serialized or deserialized in ObjectMessages.

ENFORCEMENT
In this mode, the mechanism enforces allowlisting, rejecting attempts to serialize or deserialize
classes that are not in the allowlist.

If you want to use this mechanism, you must initially run in DISCOVERY mode to gather the list of
currently serialized and deserialized classes, review the list and use it as a basis for your allowlist. It might
even be appropriate to use the list unchanged, but the list must be reviewed first before you decide to do
this.

Controlling the allowlisting mechanism
Three system properties are available to control the allowlisting mechanism:
com.ibm.mq.jms.allowlist (JMS 2.0) and com.ibm.mq.jakarta.jms.allowlist (Jakarta Messaging 3.0)

This property can be specified in either of the following ways:

• The path name of the file that contains the allowlist, in file URI format (that is, starting with file:).
In DISCOVERY mode, this file is written to by the allowlisting mechanism. The file must not exist. If
the file does exist, the mechanism throws an exception rather than overwrite it. In ENFORCEMENT
mode, this file is read by the allowlisting mechanism.

• A comma-separated of fully qualified class names that constitute the allowlist.

If this property is unset, the allowlist mechanism is inactive.

If you are using a Java security manager, you must ensure that the IBM MQ classes for JMS JAR files
have read and write access to this file.

com.ibm.mq.jms.allowlist.discover (JMS 2.0) and com.ibm.mq.jakarta.jms.allowlist.discover
(Jakarta Messaging 3.0)

• If this property is unset or set to false, the allowlist mechanism runs in ENFORCEMENT mode.
• If this property is set to true and the allowlist has been specified as a file URI, the allowlist

mechanism runs in DISCOVERY mode.
• If this property is set to true and the allowlist has been specified as a list of class names, the

allowlist mechanism throws a suitable exception.
• If this property is set to true and the allowlist has not been specified by using the

com.ibm.mq.jms.allowlist or com.ibm.mq.jakarta.jms.allowlist property, the allowlist mechanism is
inactive.

• If this property is set to true and the allowlist file already exists, the allowlist mechanism throws a
java.io.InvalidClassException and entries are not added to the file.

Developing applications for IBM MQ 127

com.ibm.mq.jms.allowlist.mode (JMS 2.0) and com.ibm.mq.jakarta.jms.allowlist.mode (Jakarta
Messaging 3.0)

This string property can be specified in any of three ways:

• If this property is set to SERIALIZE, then ENFORCEMENT mode performs allowlist validation only on
the ObjectMessage.setObject() method.

• If this property is set to DESERIALIZE, then ENFORCEMENT mode performs allowlist validation only
on the ObjectMessage.getObject() method.

• If this property is unset, or set to any other value, then ENFORCEMENT mode performs allowlist
validation on both the ObjectMessage.getObject() and the ObjectMessage.setObject() methods.

Format of the allowlist file
These are the main features of the format of the allowlist file:

• The allowlist file is in default platform file encoding with platform-appropriate line-endings.

Note: If an allowlist file is being used, then that file is always written and read using the default file
encoding for the JVM.

This is fine if the allowlist file is generated in any of the following ways:

– Generated by a stand-alone application running on z/OS and used by other stand-alone
applications that are also running on z/OS.

– Generated by an application running inside of WebSphere Application Server on any platform, and
used by another instance of WebSphere Application Server.

– Generated by a stand-alone application running on IBM MQ for Multiplatforms, and
used by other stand-alone applications running on IBM MQ for Multiplatforms, or by applications
running inside of WebSphere Application Server on any platform.

However, as WebSphere Application Server uses ASCII, and a standalone JVM uses EBCDIC, there will
be file encoding issues if the allowlist file is generated in either of the following ways:

– Generated on z/OS, then used by standalone applications running on a platform other than z/OS or by
WebSphere Application Server.

– Generated by either WebSphere Application Server or a standalone application running on a platform
other than z/OS, then used by a stand-alone application on z/OS.

• Each non-empty line contains a fully qualified class name. Empty lines are ignored.
• Comments can be included - anything following a '#' character, to the end of the line, is ignored.
• There is a very basic wildcarding mechanism:

– '*' can be the last element of a class name.
– '*' matches a single element of a class name, that is, the class, but no part of the package.

So com.ibm.mq.* would match com.ibm.mq.MQMessage but not
com.ibm.mq.jmqi.remote.api.RemoteFAP.

Wildcarding does not work for classes in the default package that is for classes without an explicit
package name, so a class name of "*" is rejected.

• Badly formatted allowlist files, for example, files that contain an entry such as
com.ibm.mq.*.Message, where the wildcard is not the last element, result in a
java.lang.IllegalArgumentException being thrown.

• An empty allowlist file has the effect of totally disabling the use of ObjectMessage.

Format of the allowlist as a comma-separated list
The same wildcarding mechanism is available for an allowlist as a comma-separated list.

128 Developing Applications for IBM MQ

• The '*' can be expanded by the operating system if specified on a command line or in a shell script or
batch file, so it might need special handling.

• The '#' comment character is only applicable when a file is specified. If the allowlist is specified as
a comma-separated list of class names, then assuming that the operating system or shell doesn't
process it, as it is the default comment character in many AIX and Linux shells, it is treated as a normal
character.

When does allowlisting happen?
Allowlisting is initiated when the application first runs an ObjectMessage setMessage() or getMessage()
method.

The system properties are evaluated, the allowlist file is opened and in ENFORCEMENT mode, the list of
allowlisted classes are loaded when the mechanism is initialized. At this point, an entry is written in to the
IBM MQ JMS log file for the application.

When the mechanism is initialized, its parameters might not be changed. As the time of initialization is
not easily predicted as it depends on application behavior. The system property settings and the allowlist
file contents should therefore be regarded as fixed from the time that the application is started. Do not
change the properties or the contents of the allowlist file while the application is running, as the results
are not guaranteed.

Points to consider
The best approach to mitigating the risks intrinsic to the Java serialization mechanism would be to
explore alternative approaches to data transfer such as using JSON instead of ObjectMessage. Using
Advanced Message Security (AMS) mechanisms can add further security by ensuring that messages come
from trusted sources.

If you use the Java security manager mechanism with your application, you must grant the following
permissions:

• FilePermission on any allowlist file that you use, with read permission for ENFORCEMENT mode, write
permission for DISCOVER mode.

• PropertyPermission (read) on the com.ibm.mq.jms.allowlist,
com.ibm.mq.jms.allowlist.discover, and com.ibm.mq.jms.allowlist.mode properties.

• PropertyPermission (read) on the
com.ibm.mq.jakarta.jms.allowlist, com.ibm.mq.jakarta.jms.allowlist.discover, and
com.ibm.mq.jakarta.jms.allowlist.mode properties.

More information
See “Setting up and using a JMS or Jakarta Messaging allowlist” on page 130 and “Allowlisting in
WebSphere Application Server ” on page 132 for more information on allowlists.

Related concepts
“Running IBM MQ classes for JMS applications under the Java security manager” on page 102

Developing applications for IBM MQ 129

IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java Virtual Machine (JVM) with a
suitable policy configuration file.

Setting up and using a JMS or Jakarta Messaging allowlist
This information tells you how an allowlist works, and how you set one up using the functionality
contained in the IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging to generate an
allowlist file, containing a list of the types of ObjectMessages that an application can process.

Before you begin
Important:

Wherever possible, the term allowlist has replaced the term whitelist. This includes some Java system
property names mentioned in this topic. You do not have to change any existing configuration. The
previous system property names also continue to work.

Before starting this task, make sure that you have read and understood “Allowlisting concepts” on page
126

About this task
Because JMS and Jakarta Messaging share much in common, further references to JMS in this topic can
be taken as referring to both. Any differences are highlighted as necessary.

When you have enabled the allowlisting functionality, the IBM MQ classes for JMS use that functionality in
the following ways:

• When an application wants to send an ObjectMessage, it can create it in one of two ways, by calling the:

– Session.createObjectMessage(Serializable) method, passing in the object that is to be contained
within the message.

– Session.createObjectMessage() method, to create an empty ObjectMessage, and then calling
ObjectMessage.setObject(Serializable) to store the object to be sent inside the ObjectMessage.

When either the Session.createObjectMessage(Serializable) or the
ObjectMessage.setObject(Serializable) methods are called, the classes for JMS check whether the
object passed in is of a type that is mentioned in the allowlist.

If it is of a type mentioned, the object is serialized and stored within the ObjectMessage. However, if
the object is of a type that is not in the allowlist, the IBM MQ classes for JMS throw a JMSException
containing the message:
JMSCC0052: An exception occurred while serializing the object:
'java.io.InvalidClassException: <object class>; The class may not be serialized
or deserialized as it has not been included in the allowlist '<allowlist>'.

back to the application.

Important: If the exception is thrown from the Session.createObjectMessage(Serializable) method,
the ObjectMessage will not be created. Similarly, if the JMSException is thrown from the
ObjectMessage.setObject(Serializable) method, the object will not be added to the ObjectMessage.

• If an application receives an ObjectMessage, it calls the method ObjectMessage.getObject() to get the
object contained within it. When this method is called, the IBM MQ classes for JMS check the type of
object contained within the ObjectMessage, to see if that object is of a type specified in the allowlist.

If it is, the object is deserialized and returned to the application. However, if the object is of a type that
is not in the allowlist, the IBM MQ classes for JMS throw a JMSException containing the message:
JMSCC0053: An exception occurred while deserializing a message:
'java.io.InvalidClassException: <object class>; The class may not be
serialized or deserialized as it has not been included in the
allowlist '<allowlist>'.'.

back to the application.

130 Developing Applications for IBM MQ

For example, suppose your application contains the following code to send an ObjectMessage containing
an object of type java.net.URI:

java.net.URL testURL = new java.net.URL("https://www.ibm.com/");
ObjectMessage msg = session.createObjectMessage(testURL);
sender.send(msg);

As allowlisting is not enabled, the application is able to successfully put the message to the required
destination.

If you create a file called C:\allowlist.txt containing a single entry, java.net.URL, and you start
the application again with the Java system property set:

-Dcom.ibm.mq.jms.allowlist=file:/C:/allowlist.txt

the allowlist functionality is enabled. The application is still able to create and send the ObjectMessage
containing an object of type java.net.URI , as that type is specified in the allowlist.

However, if you change the allowlist.txt file so that the file contains the single entry
java.util.Calendar, as the allowlist functionality is still enabled, when the application calls:

ObjectMessage msg = session.createObjectMessage(testURL);

the IBM MQ classes for JMS check the allowlist and find that it does not contain an entry for java.net.URI.

As a result, a JMSException containing the JMSCC0052 message is thrown.

Similarly, suppose you have another application that receives ObjectMessages using this code:

ObjectMessage message = (ObjectMessage)receiver.receive(30000);
if (message != null) {
 Object messageBody = objectMessage.getObject();
 if (messageBody instanceof java.net.URI) {
 : : : : : : :

If allowlisting is not enabled, the application is able to receive ObjectMessages that contain an object
of any type. The application then checks if the object is of type java.net.URL before performing the
appropriate processing.

If you now start the application with the Java system property:

-Dcom.ibm.mq.jms.allowlist=java.net.URL

set, the allowlisting functionality is turned on. When the application calls:

Object messageBody = objectMessage.getObject();

the ObjectMessage.getObject() method only returns objects of type java.net.URL.

If the object contained within the ObjectMessage is not of this type, the ObjectMessage.getObject()
method throws a JMSException containing the JMSCC0053 message. The application then needs to
decide what do to with the message; for example, the message could be moved to the dead-letter queue
for that queue manager.

The application only returns normally if the object inside the ObjectMessage is of the type java.net.URL.

Procedure
1. Run the application which processes ObjectMessages, with the following Java system properties

specified:

-Dcom.ibm.mq.jms.allowlist.discover=true
-Dcom.ibm.mq.jms.allowlist=file:/<path to your allowlist file>

Developing applications for IBM MQ 131

When the application runs, the IBM MQ classes for JMS create a file which contained the types of
objects that the application processed.

2. After the application has processed a representative sample of ObjectMessages over a period of time,
stop it.
The allowlist file now contains a list of all of the types of objects contained within the ObjectMessages
that the application processed while it was running.
If you have run the application for a sufficient time, this list includes all the possible types of objects
contained within ObjectMessages that the application is likely to handle.

3. Restart the application with the following system property set:

-Dcom.ibm.mq.jms.allowlist=file:/<path to your allowlist file>

This enables allowlisting, and if the IBM MQ classes for JMS detect an ObjectMessage of a type which
is not in the allowlist, a JMSException containing either the JMSCC0052 or JMSCC0053 message is
thrown.

Allowlisting in WebSphere Application Server
How you use IBM MQ classes for JMS allowlisting in WebSphere Application Server.

Important:

Wherever possible, the term allowlist has replaced the term whitelist. This includes some Java system
property names mentioned in this topic. You do not have to change any existing configuration. The
previous system property names also continue to work.

You must ensure that your WebSphere Application Server installation includes a version of the IBM MQ
resource adapter that supports allowlisting.

See “Using IBM MQ and WebSphere Application Server together” on page 481 for further information on
using the two products.

IBM MQ 9.0.0 Fix Pack 1 onwards include the appropriate functionality.

Once the application server has been updated, you can use the Java system properties:

• -Dcom.ibm.mq.jms.allowlist
• -Dcom.ibm.mq.jms.allowlist.discover

described in “Setting up and using a JMS or Jakarta Messaging allowlist” on page 130.

Note: You need to set the Java system properties as generic JVM arguments, on the Java Virtual Machine
used to run the application server, and the application server restarted for the changes to take effect.

See the section on Generic JVM arguments in Java virtual machine settings for more information.

To set the properties, go to the Java Virtual Machine window in Process definitions and enter the
appropriate argument.

The following setting:

-Dcom.ibm.mq.jms.allowlist=<youruserId>_MyObject

causes the application server to use the allowlist youruserId_MyObject. Only objects of the type are
processed by the application server.

The following settings:

-Dcom.ibm.mq.jms.allowlist.discover=true
-Dcom.ibm.mq.jms.allowlist=file:C/:allowlist.txt

configure the application server to use Discover mode, and record details of the JMS ObjectMessages, that
the application server processes, to the file C:\allowlist.txt

The following setting:

132 Developing Applications for IBM MQ

-Dcom.ibm.mq.jms.allowlist=file:C/:allowlist.txt

causes the application server to load the file C:/allowlist.txt, and use the information in that file to
determine the allowlist.

Related concepts
“Running IBM MQ classes for JMS applications under the Java security manager” on page 102
IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the Java security manager enabled, you must configure your Java Virtual Machine (JVM) with a
suitable policy configuration file.

Character string conversions in IBM MQ classes for JMS
The IBM MQ classes for JMS use CharsetEncoders and CharsetDecoders directly for character string
conversion. The default behavior for character string conversion can be configured with two system
properties. The handling of messages that contain unmappable characters can be configured through
message properties for setting the UnmappableCharacterAction and the replacement bytes.

Before IBM MQ 8.0, string conversions in IBM MQ classes for JMS was done by calling
the java.nio.charset.Charset.decode(ByteBuffer) and Charset.encode(CharBuffer)
methods.

Using either of these methods results in a default replacement (REPLACE) of malformed or
untranslatable data. This behavior can obscure errors in applications, and lead to unexpected characters,
for example ?, in translated data.

From IBM MQ 8.0, to detect such issues earlier and more effectively, the IBM MQ classes for JMS
use CharsetEncoders and CharsetDecoders directly and configure the handling of malformed and
untranslatable data explicitly. The default behavior is to REPORT such issues by throwing a suitable
MQException.

Configuring
Translating from UTF-16 (the character representation used in Java) to a native character set, such as
UTF-8, is termed encoding, while translating in the opposite direction is termed decoding.

Decoding takes the default behavior for CharsetDecoders, reporting errors by throwing an exception.

One setting is used to specify a java.nio.charset.CodingErrorAction to control error handling on
both encoding and decoding. One other setting is used to control the replacement byte, or bytes, when
encoding. The default Java replacement String will be used in decoding operations.

UnmappableCharacterAction and replacement bytes settings in IBM MQ classes for
JMS
From IBM MQ 8.0, the following two properties are available for setting the
UnmappableCharacterAction and the replacement bytes. The appropriate constant definitions are in
com.ibm.msg.client.wmq.WMQConstants.
JMS_IBM_UNMAPPABLE_ACTION

Sets or gets the CodingErrorAction to apply when a character cannot be mapped in an encoding
or decoding operation.

You should set this as CodingErrorAction.{REPLACE|REPORT|IGNORE}.toString() as
follows:

public static final String JMS_IBM_UNMAPPABLE_ACTION = "JMS_IBM_Unmappable_Action";

JMS_IBM_UNMAPPABLE_REPLACEMENT
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation.

Developing applications for IBM MQ 133

The default Java replacement String is used in decoding operations.

public static final String JMS_IBM_UNMAPPABLE_REPLACEMENT = "JMS_IBM_Unmappable_Replacement";

The JMS_IBM_UNMAPPABLE_ACTION and JMS_IBM_UNMAPPABLE_REPLACEMENT properties can be set
on destinations or messages. A value set on a message overrides the value set on the destination to which
the message is being sent.

Note that JMS_IBM_UNMAPPABLE_REPLACEMENT must be set as a single byte.

System properties for setting system defaults
From IBM MQ 8.0, the following two Java system properties are available to configure default behavior
regarding character string conversion.
com.ibm.mq.cfg.jmqi.UnmappableCharacterAction

Specifies the action to be taken for untranslatable data on encoding and decoding. The value can be
REPORT, REPLACE, or IGNORE.

com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation The default Java replacement string is used in decoding operations.

To avoid confusion between Java character and native byte representations, you should specify
com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement as a decimal number representing the
replacement byte in the native character set.

For example, the decimal value of ?, as a native byte, is 63 if the native character set is ASCII-based, such
as ISO-8859-1, while it is 111 if the native character set is EBCDIC.

Note: Note that if an MQMD or MQMessage object has either the unmappableAction or
unMappableReplacement fields set, then the values of these fields take precedence over the Java
system properties. This allows the values specified by the Java system properties to be overridden for
each message if required.

Related concepts
“Character string conversions in IBM MQ classes for Java” on page 339
The IBM MQ classes for Java use CharsetEncoders and CharsetDecoders directly for character string
conversion. The default behavior for character string conversion can be configured with two system
properties. The handling of messages that contain unmappable characters can be configured through
com.ibm.mq.MQMD.

Writing IBM MQ classes for JMS/Jakarta Messaging applications
After a brief introduction to the JMS model, this section provides detailed guidance on how to write IBM
MQ classes for JMS and IBM MQ classes for Jakarta Messaging applications.

About this task

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 and later continue to support JMS 2.0 for existing applications. It is not supported to use
both the Jakarta Messaging 3.0 API and the JMS 2.0 API in the same application. For more information,
see Using IBM MQ classes for JMS/Jakarta Messaging.

Related concepts
IBM MQ classes for Jakarta Messaging: an overview

The JMS and Jakarta Messaging model
The JMS and Jakarta Messaging model defines a set of interfaces that Java applications can use to
perform messaging operations. IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging
are both messaging providers. They define how JMS and Jakarta Messaging objects are related to IBM

134 Developing Applications for IBM MQ

MQ concepts. The JMS and Jakarta Messaging specifications expect certain JMS and Jakarta Messaging
objects to be administered objects.

IBM MQ 8.0 added support for the JMS 2.0 version of the JMS standard, which introduced a
simplified API, while also retaining the classic API, from JMS 1.1.

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 continues to support JMS 2.0 for existing applications. It is not supported to use both the
JMS 2.0 API and the Jakarta Messaging 3.0 API in the same application.

Note: For Jakarta Messaging 3.0, control of the JMS specification moves from Oracle to the Java
Community Process. However, Oracle retains control of the "javax" name, which is used in other Java
technologies that have not moved to the Java Community Process. So, while Jakarta Messaging 3.0 is
functionally equivalent to JMS 2.0 there are some differences in naming:

• The official name for version 3.0 is Jakarta Messaging rather than Java Message Service.
• The package and constant names are prefixed with jakarta rather than javax. For example, in JMS

2.0 the initial connection to a messaging provider is a javax.jms.Connection object, and in Jakarta
Messaging 3.0 it is a jakarta.jms.Connection object.

The javax.jms packages define the JMS interfaces, and a JMS provider implements these
interfaces for a specific messaging product. IBM MQ classes for JMS is a JMS provider that implements
the JMS interfaces for IBM MQ.

The jakarta.jms packages define the Jakarta Messaging interfaces, and a Jakarta Messaging
provider implements these interfaces for a specific messaging product. IBM MQ classes for Jakarta
Messaging is a Jakarta Messaging provider that implements the Jakarta Messaging interfaces for IBM MQ.

Because JMS and Jakarta Messaging share much in common, further references to JMS in this topic can
be taken as referring to both. Any differences are highlighted as necessary.

Simplified API
JMS 2.0 introduced the simplified API, while also retaining the domain specific and domain independent
interfaces from JMS 1.1. The simplified API reduces the number of objects that are needed to send and
receive messages and consists of the following interfaces:
ConnectionFactory

A ConnectionFactory is an administered object that is used by a JMS client to create a Connection.
This interface is also used in the classic API.

JMSContext
This object combines the Connection and Session objects of the classic API. JMSContext objects can
be created from other JMSContext objects, with the underlying connection being duplicated.

JMSProducer
A JMSProducer is created by a JMSContext and is used to send messages to a queue or topic. The
JMSProducer object causes the creation of objects that are required to send the message.

JMSConsumer
A JMSConsumer is created by a JMSContext and is used to receive messages from a topic or a queue.

The simplified API has a number of effects:

• The JMSContext object always automatically starts the underlying connection.
• JMSProducers and JMSConsumers can now work directly with message bodies, without having to get

the whole message object, by using the Message's getBody method.
• Message properties can be set on the JMSProducer object, using method chaining, before sending a

'body', a messages content. The JMSProducer will handle the creation of all objects that are needed to
send the message. Using JMS 2.0, properties can be set, and a message sent as follows:

context.createProducer().

Developing applications for IBM MQ 135

setProperty("foo", "bar").
setTimeToLive(10000).
setDeliveryMode(NON_PERSISTENT).
setDisableMessageTimestamp(true).
send(dataQueue, body);

JMS 2.0 also introduced shared subscriptions where messages can be shared between multiple
consumers. All JMS 1.1 subscriptions are treated as unshared subscriptions.

Classic API
The following list summarizes the main JMS interfaces of the classic API:
Destination

A destination is where an application sends messages, or it is a source from which an application
receives messages, or both.

ConnectionFactory
A ConnectionFactory object encapsulates a set of configuration properties for a connection. An
application uses a connection factory to create a connection.

Connection
A Connection object encapsulates an application's active connection to a messaging server. An
application uses a connection to create sessions.

Session
A session is a single threaded context for sending and receiving messages. An application uses
a session to create messages, message producers, and message consumers. A session is either
transacted or not transacted.

Message
A Message object encapsulates a message that an application sends or receives.

MessageProducer
An application uses a message producer to send messages to a destination.

MessageConsumer
An application uses a message consumer to receive messages sent to a destination.

Figure 9 on page 136 shows these objects and their relationships.

Figure 9. JMS objects and their relationships

A Destination, ConnectionFactory, or Connection object can be used concurrently by different threads
of a multithreaded application, but a Session, MessageProducer, or MessageConsumer object cannot be
used concurrently by different threads. The simplest way of ensuring that a Session, MessageProducer, or
MessageConsumer object is not used concurrently is to create a separate Session object for each thread.

136 Developing Applications for IBM MQ

Messaging domains
JMS supports two styles of messaging:

• Point-to-point messaging
• Publish/subscribe messaging

These styles of messaging are also referred to as messaging domains, and you can combine both styles
of messaging in an application. In the point-to-point domain, a destination is a queue and, in the publish/
subscribe domain, a destination is a topic.

With versions of JMS before JMS 1.1, programming for the point-to-point domain uses one set of
interfaces and methods, and programming for the publish/subscribe domain uses another set. The two
sets are similar, but separate. From JMS 1.1, you can use a common set of interfaces and methods
that support both messaging domains. The common interfaces provide a domain independent view of
each messaging domain. Table 15 on page 137 lists the JMS domain independent interfaces and their
corresponding domain specific interfaces.

Table 15. The JMS domain independent and domain specific interfaces

Domain independent interfaces Domain specific interfaces for
the point-to-point domain

Domain specific interfaces for
the publish/subscribe domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver
QueueBrowser

TopicSubscriber

IBM MQ classes for JMS 2.0 supports both the earlier JMS 1.1 domain specific interfaces
and the simplified API of JMS 2.0. IBM MQ classes for JMS 2.0 can therefore be used for maintaining
existing applications, including developing new function in existing applications.

IBM MQ classes for Jakarta Messaging 3.0 supports the Jakarta Messaging versions of the
same interfaces, and is recommended for new application development.

In IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging, JMS objects are related to IBM MQ
concepts in the following ways:

• A Connection object has properties that are derived from the properties of the connection factory that
was used to create the connection. These properties control how an application connects to a queue
manager. Examples of these properties are the name of the queue manager and, for an application that
connects to the queue manager in client mode, the host name or IP address of the system on which the
queue manager is running.

• A Session object encapsulates an IBM MQ connection handle, which therefore defines the transactional
scope of the session.

• A MessageProducer object and a MessageConsumer object each encapsulates an IBM MQ object
handle.

When using IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging, all the normal rules of IBM
MQ apply. Note, in particular, that an application can send a message to a remote queue but it can receive
a message only from a queue that is owned by the queue manager to which the application is connected.

Developing applications for IBM MQ 137

The JMS specification expects ConnectionFactory and Destination objects to be administered objects. An
administrator creates and maintains administered objects in a central repository, and a JMS application
retrieves these objects using the Java Naming and Directory Interface (JNDI).

In IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging, the implementation of the
Destination interface is an abstract superclass of Queue and Topic, and so an instance of Destination is
either a Queue object or a Topic object. The domain independent interfaces treat a queue or a topic as a
destination. The messaging domain for a MessageProducer or MessageConsumer object is determined by
whether the destination is a queue or a topic.

In IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging therefore, objects of the following
types can be administered objects:

• ConnectionFactory
• QueueConnectionFactory
• TopicConnectionFactory
• Queue
• Topic
• XAConnectionFactory
• XAQueueConnectionFactory
• XATopicConnectionFactory

Related concepts
IBM MQ Java language interfaces
“Creating and configuring connection factories and destinations” on page 197
An IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging application can create connection
factories and destinations by retrieving them as administered objects from a Java Naming and Directory
Interface (JNDI) namespace, by using the IBM JMS extensions, or by using the IBM MQ JMS extensions.
An application can also use the IBM JMS extensions or IBM MQ JMS extensions to set the properties of
connection factories and destinations.

JMS messages
JMS messages are composed of a header, properties, and a body. JMS defines five types of message
body.

JMS messages are composed of the following parts:
Header

All messages support the same set of header fields. Header fields contain values that are used by
both clients and providers to identify and route messages.

Properties
Each message contains a built-in facility to support application-defined property values. Properties
provide an efficient mechanism to filter application-defined messages.

Body
JMS defines five types of message body that cover the majority of messaging styles currently in use:
Stream

A stream of Java primitive values. It is filled and read sequentially.
Map

A set of name-value pairs, where names are strings and values are Java primitive types. The
entries can be accessed sequentially or randomly by name. The order of the entries is undefined.

Text
A message containing a java.lang.String.

Object
A message that contains a serializable Java object

138 Developing Applications for IBM MQ

Bytes
A stream of uninterpreted bytes. This message type is for literally encoding a body to match an
existing message format.

The JMSCorrelationID header field is used to link one message with another. It typically links a reply
message with its requesting message. JMSCorrelationID can hold a provider-specific message ID, an
application-specific String, or a provider-native byte[] value.

Message selectors in JMS
Messages can contain application-defined property values. An application can use message selectors to
have a JMS provider filter messages.

A message contains a built-in facility to support application-defined property values. In effect, this
provides a mechanism to add application-specific header fields to a message. Properties allow an
application, using message selectors, to have a JMS provider select or filter messages on its behalf,
using application-specific criteria. Application-defined properties must obey the following rules:

• Property names must obey the rules for a message selector identifier.
• Property values can be Boolean, byte, short, int, long, float, double, and String.
• The JMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a message, the
message properties are read-only. If a client attempts to set properties at this point, a
MessageNotWriteableException is thrown. If clearProperties is called, the properties can now be both
read from, and written to.

A property value might duplicate a value in a message body. JMS does not define a policy for what might
be made into a property. However, application developers must be aware that JMS providers probably
handle data in a message body more efficiently than data in message properties. For best performance,
applications must use message properties only when they need to customize a message header. The
primary reason for doing this is to support customized message selection.

A JMS message selector allows a client to specify the messages that it is interested in by using the
message header. Only messages with headers that match the selector are delivered.

Message selectors cannot refer to message body values.

A message selector matches a message when the selector evaluates to true when the message header
field and property values are substituted for their corresponding identifiers in the selector.

A message selector is a String, with syntax that is based on a subset of the SQL92 conditional expression
syntax. The order in which a message selector is evaluated is from left to right within a precedence level.
You can use parentheses to change this order. Predefined selector literals and operator names are written
here in uppercase; however, they are not case-sensitive.

Contents of a message selector
A message selector can contain:

• Literals

– A string literal is enclosed in quotation marks. A doubled quotation mark represents a quotation
mark. Examples are 'literal' and 'literal''s'. Like Java string literals, these use the Unicode character
encoding.

– An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and +62.
Numbers in the range of Java long are supported.

– An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or
a numeric value with a decimal, such as 7., -95.7, or +6.2. Numbers in the range of Java double are
supported.

– The Boolean literals TRUE and FALSE.
• Identifiers:

Developing applications for IBM MQ 139

– An identifier is an unlimited length sequence of Java letters and Java digits, the first of which must be
a Java letter. A letter is any character for which the method Character.isJavaLetter returns true. This
includes _ and $. A letter or digit is any character for which the method Character.isJavaLetterOrDigit
returns true.

– Identifiers cannot be the names NULL, TRUE, or FALSE.
– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, or IS.
– Identifiers are either header field references or property references.
– Identifiers are case sensitive.
– Message header field references are restricted to:

- JMSDeliveryMode
- JMSPriority
- JMSMessageID
- JMSTimestamp
- JMSCorrelationID
- JMSType

JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType values can be null, and if so, are
treated as a NULL value.

– Any name beginning with JMSX is a JMS-defined property name.
– Any name beginning with JMS_ is a provider-specific property name.
– Any name that does not begin with JMS is an application-specific property name. If there is a

reference to a property that does not exist in a message, its value is NULL. If it does exist, its value is
the corresponding property value.

• White space is the same as it is defined for Java: space, horizontal tab, form feed, and line terminator.
• Expressions:

– A selector is a conditional expression. A selector that evaluates to true matches; a selector that
evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (with a value
that is treated as a numeric literal), and numeric literals.

– Conditional expressions are composed of themselves, comparison operations, and logical operations.
• Standard bracketing (), to set the order in which expressions are evaluated, is supported.
• Logical operators in precedence order: NOT, AND, OR.
• Comparison operators: =, >, >=, <, <=, <> (not equal).

– Only values of the same type can be compared. One exception is that it is valid to compare exact
numeric values and approximate numeric values. (The type conversion required is defined by the
rules of Java numeric promotion.) If there is an attempt to compare different types, the selector is
always false.

– String and Boolean comparison is restricted to = and <>. Two strings are equal only if they contain the
same sequence of characters.

• Arithmetic operators in precedence order:

– +, - unary.
– *, /, multiplication, and division.
– +, -, addition, and subtraction.
– Arithmetic operations on a NULL value are not supported. If they are attempted, the complete

selector is always false.
– Arithmetic operations must use Java numeric promotion.

• arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:

140 Developing Applications for IBM MQ

– Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19.
– Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age> 19.
– If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If any

of the expressions of a NOT BETWEEN operation are NULL, the value of the operation is true.
• identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where identifier has a String or

NULL value.

– Country IN ('UK', 'US', 'France') is true for 'UK' and false for 'Peru'. It is equivalent to the expression
(Country = 'UK') OR (Country = 'US') OR (Country = 'France').

– Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'. It is equivalent to the
expression NOT ((Country = 'UK') OR (Country = 'US') OR (Country = 'France')).

– If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.
• identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison operator, where identifier

has a string value. pattern-value is a string literal, where _ stands for any single character and %
stands for any sequence of characters (including the empty sequence). All other characters stand for
themselves. The optional escape-character is a single character string literal, with a character that is
used to escape the special meaning of the _ and % in pattern-value.

– phone LIKE '12%3' is true for 123 and 12993 and false for 1234.
– word LIKE 'l_se' is true for "lose" and false for "loose".
– underscored LIKE '_%' ESCAPE '\' is true for "_foo" and false for "bar".
– phone NOT LIKE '12%3' is false for 123 and 12993 and true for 1234.
– If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

• identifier IS NULL comparison operator tests for a null header field value, or a missing property value.

– prop_name IS NULL.
• identifier IS NOT NULL comparison operator tests for the existence of a non-null header field value or a

property value.

– prop_name IS NOT NULL.

Example of a message selector
The following message selector selects messages with a message type of car, color of blue, and weight
greater than 2500 lbs:

"JMSType = 'car' AND color = 'blue' AND weight > 2500"

NULL property values
As noted in the preceding list, property values can be NULL. The evaluation of selector expressions that
contain NULL values is defined by SQL 92 NULL semantics. The following list gives a brief description of
these semantics:

• SQL treats a NULL value as unknown.
• Comparison or arithmetic with an unknown value always yields an unknown value.
• The IS NULL operator converts an unknown value into a TRUE value.
• The IS NOT NULL operator converts an unknown value into a FALSE value.

Special behavior of JMSMessageID and JMSCorrelationID
The IBM MQ classes for JMS contain optimizations when selecting messages from a queue based on
either JMSMessageID or JMSCorrelationID.

If an application specifies a selector of the form:

Developing applications for IBM MQ 141

JMSMessageID='ID:message_id'

where message_id is a String containing a standard IBM MQ message identifier, then the IBM MQ classes
for JMS use the MatchOption MQMO_MATCH_MSG_ID to get the message with the specified message
identifier.

For example, to get a message with the message identifier
414D51207061756C745639314C545320C57C1A5F25ECE602 from a queue, an application should use
the following message selector:

JMSMessageID='ID:414D51207061756C745639314C545320C57C1A5F25ECE602'

Similarly, if the application specifies a selector that has the format:

JMSCorrelationID ='ID:correlation_id'

where correlation_id is a String containing a standard IBM MQ correlation identifier, the IBM MQ classes
for JMS use the MatchOption MQMO_MATCH_CORREL_ID to get the message with the specified
correlation identifier from the queue.

In the following example, a message selector is used to get a message that has a correlation identifier of
414D51207061756C745639314C545320846E5B5F25B1CC02:

JMSCorrelationID='ID:414D51207061756C745639314C545320846E5B5F25B1CC02'

If a message selector contains a value of all zeros for either the message_id or correlation_id, then it
matches any message on the queue. For example, if an application is using the selector:

JMSMessageID='ID:00'

then any message on the queue is considered a match and returned to the application.

For more information about the MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID
MatchOptions, see MatchOptions (MQLONG).

Restrictions
Although SQL supports fixed decimal comparison and arithmetic, JMS message selectors do not. This is
why exact numeric literals are restricted to those without a decimal. It is also why there are numerics with
a decimal as an alternative representation for an approximate numeric value.

SQL comments are not supported.

Mapping JMS messages onto IBM MQ messages
IBM MQ messages are composed of a Message Descriptor, an optional MQRFH2 header, and a body. The
contents of a JMS message are partly mapped and partly copied to an IBM MQ message.

This topic describes how the JMS message structure that is described in the first part of this section is
mapped onto an IBM MQ message. It is of interest to programmers who want to transmit messages
between JMS and traditional IBM MQ applications. It is also of interest to people who want to
manipulate messages transmitted between two JMS applications, for example, in an IBM Integration
Bus implementation.

This section does not apply if an application uses a real-time connection to a broker. When an application
uses a real-time connection, all communication is performed directly over TCP/IP; no IBM MQ queues or
messages are involved.

IBM MQ messages are composed of three components:

• The IBM MQ Message Descriptor (MQMD)
• An IBM MQ MQRFH2 header
• The message body.

142 Developing Applications for IBM MQ

The MQRFH2 is optional, and its inclusion in an outgoing message is governed by the TARGCLIENT flag
in the JMS Destination class. You can set this flag using the IBM MQ JMS administration tool. Because
the MQRFH2 carries JMS-specific information, always include it in the message when the sender knows
that the receiving destination is a JMS application. Normally, omit the MQRFH2 when sending a message
directly to a non-JMS application. This is because such an application does not expect an MQRFH2 in its
IBM MQ message.

If an incoming message does not have an MQRFH2 header, the Queue or Topic object derived from the
JMSReplyTo header field of the message, by default, has this flag set so that a reply message sent to the
queue or topic also does not have an MQRFH2 header. You can switch off this behavior of including an
MQRFH2 header in a reply message only if the original message has an MQRFH2 header, by setting the
TARGCLIENTMATCHING property of the connection factory to NO.

Figure 10 on page 143 shows how the structure of a JMS message is transformed to an IBM MQ message
and back again:

Figure 10. How messages are transformed between JMS and IBM MQ using the MQRFH2 header

The structures are transformed in two ways:
Mapping

Where the MQMD includes a field that is equivalent to the JMS field, the JMS field is mapped onto the
MQMD field. Additional MQMD fields are exposed as JMS properties, because a JMS application might
need to get or set these fields when communicating with a non-JMS application.

Copying
Where there is no MQMD equivalent, a JMS header field or property is passed, possibly transformed,
as a field inside the MQRFH2.

The MQRFH2 header and JMS
This collection of topics describes the MQRFH Version 2 header, which carries JMS-specific data that
is associated with the message content. The MQRFH Version 2 header is extensible, and can also carry
additional information that is not directly associated with JMS. However, this section covers only its use
by JMS. For a full description see MQRFH2 - Rules and formatting header 2.

There are two parts of the header, a fixed portion and a variable portion.
Fixed portion

The fixed portion is modeled on the standard IBM MQ header pattern and consists of the following
fields:

StrucId (MQCHAR4)
Structure identifier.

Must be MQRFH_STRUC_ID (value: "RFH ") (initial value).

MQRFH_STRUC_ID_ARRAY (value: "R", "F", "H", " ") is also defined.

Version (MQLONG)
Structure version number.

Developing applications for IBM MQ 143

Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)
Total length of MQRFH2, including the NameValueData fields.

The value set into StrucLength must be a multiple of 4 (the data in the NameValueData fields can be
padded with space characters to achieve this).

Encoding (MQLONG)
Data encoding.

Encoding of any numeric data in the portion of the message following the MQRFH2 (the next header,
or the message data following this header).

CodedCharSetId (MQLONG)
Coded character set identifier.

Representation of any character data in the portion of the message following the MQRFH2 (the next
header, or the message data following this header).

Format (MQCHAR8)
Format name.

Format name for the portion of the message following the MQRFH2.

Flags (MQLONG)
Flags.

MQRFH_NO_FLAGS =0. No flags set.

NameValueCCSID (MQLONG)
The coded character set identifier (CCSID) for the NameValueData character strings contained in this
header. The NameValueData can be coded in a character set that differs from the other character
strings that are contained in the header (StrucID and Format).

If the NameValueCCSID is a 2 byte Unicode CCSID (1200, 13488, or 17584), the byte order of the
Unicode is the same as the byte ordering of the numeric fields in the MQRFH2. (For example, Version,
StrucLength, and NameValueCCSID itself.)

Table 16. Possible values for NameValueCCSID field

CCSID Meaning

1200 UTF-16, most recent Unicode version supported

13488 UTF-16, Unicode version 2.0 subset

17584 UTF-16, Unicode version 3.0 subset (includes the
Euro symbol)

1208 UTF-8, most recent Unicode version supported

Variable portion
The variable portion follows the fixed portion. The variable portion contains a variable number of
MQRFH2 folders. Each folder contains a variable number of elements or properties. Folders group
related properties. The MQRFH2 headers created by JMS can contain any of the following folders:

The mcd folder

mcd contains properties that describe the format of the message. For example, the message service
domain Msd property identifies a JMS message as being JMSTextMessage, JMSBytesMessage,
JMSStreamMessage, JMSMapMessage, JMSObjectMessage, or null.

The mcd folder is always present in a JMS message containing an MQRFH2.

It is always present in a message containing an MQRFH2 sent from IBM Integration Bus. It describes
the domain, format, type, and message set of a message.

144 Developing Applications for IBM MQ

Table 17. mcd property name, synonym, data type, and folder

Property
synonym

Property
name

Data
type Folder

mcd.Msd strin
g

<mcd><Msd>messageDomain</Msd></mcd>

mcd.Set strin
g

<mcd><Set>messageDomain</Set></mcd>

mcd.Type strin
g

<mcd><Type>messageDomain</Type></mcd>

mcd.Fmt strin
g

<mcd><Fmt>messageDomain</Fmt></mcd>

Do not add your own properties in the mcd folder.

The jms folder

jms contains JMS header fields, and JMSX properties that cannot be fully expressed in the MQMD. The
jms folder is always present in a JMS MQRFH2.

The usr folder

usr contains application-defined JMS properties associated with the message. The usr folder is
present only if an application has set an application-defined property.

The mqext folder

mqext contains the following types of property:

• Properties that are used only by WebSphere Application Server.
• Properties relating to delayed delivery of messages.

The folder is present if the application has either set at least one of the IBM defined properties or
used delivery delay.

Table 18. mqext property name, synonym, data type, and folder

Property synonym
Property
name

Data
type Folder

JMSArmCorrelator mqext.Arm string <mqext><Arm>armCorrelator</Arm></
mqext>

JMSRMCorrelator mqext.Wrm string <mqext><Wrm>wrmCorrelator</Wrm></
mqext>

JMSDeliveryTime mqext.Dlt i8 <mqext><Dlt>DeliveryTime</Dlt></mqext>

JMSDeliveryDelay mqext.Dly i8 <mqext><Dly>DeliveryTime</Dly></mqext>

Do not add your own properties in the mqext folder.

The mqps folder

mqps contains properties that are used only by IBM MQ publish/subscribe. The folder is present only
if the application has set at least one of the integrated publish/subscribe properties.

Developing applications for IBM MQ 145

Table 19. mqps property name, synonym, data type, and folder

Property
synonym

Property
name

Data
type Folder

MQTopicStr
ing

mqps.Top strin
g

<mqps><Top>topicString</Top></mqps>

MQSubUserD
ata

mqps.Sud strin
g

<mqps><Sud>subscriberUserData...</Sud></mqps>

MQIsRetain
ed

mqps.Ret boole
an

<mqps><Ret>isRetained</Ret></mqps>

MQPubOptio
ns

mqps.Pub i8 <mqps><Pub>publicationOptions</Pub></mqps>

MQPubLevel mqps.Pbl i8 <mqps><Pbl>publicationLevel</Pbl></mqps>

MQPubTime mqpse.Pts strin
g

<mqps><Pts>publicationTime</Pts></mqps>

MQPubSeqNu
m

mqpse.Seq i8 <mqps><Seq>publicationSequenceNumber</Seq></
mqps>

MQPubStrIn
tData

mqpse.Sid strin
g

<mqps><Sid>publicationData</Sid></mqps>

MQPubForma
t

mqpse.Pfm
t

i8 <mqps><Pfmt>messageFormat</Pfmt></mqps>

Do not add your own properties in the mqps folder.

Table 20 on page 146 shows a full list of property names.

Table 20. MQRFH2 folders and properties used by JMS

JMS field name Java type MQRFH2 folder
name

Property name Type/values

JMSDestination Destination jms Dst string

JMSExpiration long jms Exp i8

JMSPriority int jms Pri i4

JMSDeliveryMode int jms Dlv i4

JMSCorrelationID String jms Cid string

JMSReplyTo Destination jms Rto string

JMSTimestamp long jms Tms i8

JMSType String mcd Type, Set, Fmt string

JMSXGroupID String jms Gid string

JMSXGroupSeq int jms Seq i4

xxx (user defined) Any usr xxx any

146 Developing Applications for IBM MQ

Table 20. MQRFH2 folders and properties used by JMS (continued)

JMS field name Java type MQRFH2 folder
name

Property name Type/values

mcd Msd jms_none
jms_text
jms_bytes
jms_map
jms_stream
jms_object

NameValueLength (MQLONG)
Length in bytes of the NameValueData string that immediately follows this length field (it does not
include its own length).

NameValueData (MQCHARn)
A single character string, whose length in bytes is given by the preceding NameValueLength field.
It contains a folder holding a sequence of properties. Each property is a name/type/value triplet,
contained within an XML element whose name is the folder name, as follows:

<foldername>
triplet1 triplet2 tripletn </foldername>

The closing </foldername> tag can be followed by spaces as padding characters. Each triplet is
encoded using an XML-like syntax:

<name dt='datatype'>value</name>

The dt='datatype' element is optional and is omitted for many properties, because the data type is
predefined. If it is included, one or more space characters must be included before the dt= tag.
name

is the name of the property; see Table 20 on page 146.
datatype

must match, after folding, one of the data types listed in Table 21 on page 147.
value

is a string representation of the value to be conveyed, using the definitions in Table 21 on page
147.

A null value is encoded using the following syntax:

<name dt='datatype' xsi:nil='true'></name>

Do not use xsi:nil='false'.

Table 21. Property data types

Data type Definition

string Any sequence of characters excluding < and &

boolean The character 0 or 1 (0 = false, 1 = true)

bin.hex Hexadecimal digits representing octets

i1 A number, expressed using digits 0..9, with optional sign (no fractions or exponent).
Must lie in the range -128 to 127 inclusive

Developing applications for IBM MQ 147

Table 21. Property data types (continued)

Data type Definition

i2 A number, expressed using digits 0..9, with optional sign (no fractions or exponent).
Must lie in the range -32768 to 32767 inclusive

i4 A number, expressed using digits 0..9, with optional sign (no fractions or exponent).
Must lie in the range -2147483648 to 2147483647 inclusive

i8 A number, expressed using digits 0..9, with optional sign (no fractions or exponent).
Must lie in the range -9223372036854775808 to 92233720368547750807
inclusive

int A number, expressed using digits 0..9, with optional sign (no fractions or exponent).
Must lie in the same range as i8. This can be used in place of one of the i* types if the
sender does not want to associate a particular precision with the property

r4 Floating point number, magnitude <= 3.40282347E+38,>= 1.175E-37 expressed
using digits 0..9, optional sign, optional fractional digits, optional exponent

r8 Floating point number, magnitude <= 1.7976931348623E+308,>= 2.225E-307
expressed using digits 0..9, optional sign, optional fractional digits, optional
exponent

A string value can contain spaces. You must use the following escape sequences in a string value:

• & for the & character
• < for the < character

You can use the following escape sequences, but they are not required:

• > for the > character
• ' for the ' character
• " for the " character

JMS fields and properties with corresponding MQMD fields
These tables show the MQMD fields equivalent to JMS header fields, JMS properties, and JMS provider-
specific properties.

Table 22 on page 148 lists the JMS header fields and Table 23 on page 149 lists the JMS properties that
are mapped directly to MQMD fields. Table 24 on page 149 lists the provider-specific properties and the
MQMD fields that they are mapped to.

Table 22. JMS header fields mapping to MQMD fields

JMS header field Java
type

MQMD field C type

JMSDeliveryMode int Persistence MQLONG

JMSExpiration long Expiry MQLONG

JMSPriority int Priority MQLONG

JMSMessageID String MsgID MQBYTE24

JMSTimestamp long PutDate
PutTime

MQCHAR8
MQCHAR8

JMSCorrelationID String CorrelId MQBYTE24

148 Developing Applications for IBM MQ

Table 23. JMS properties mapping to MQMD fields

JMS property Java
type

MQMD field C type

JMSXUserID String UserIdentifier MQCHAR12

JMSXAppID String PutApplName MQCHAR28

JMSXDeliveryCount int BackoutCount MQLONG

JMSXGroupID String GroupId MQBYTE24

JMSXGroupSeq int MsgSeqNumber MQLONG

Table 24. JMS provider-specific properties mapping to MQMD fields

JMS provider-specific property Java
type

MQMD field C type

JMS_IBM_Report_Exception int Report MQLONG

JMS_IBM_Report_Expiration int Report MQLONG

JMS_IBM_Report_COA int Report MQLONG

JMS_IBM_Report_COD int Report MQLONG

JMS_IBM_Report_PAN int Report MQLONG

JMS_IBM_Report_NAN int Report MQLONG

JMS_IBM_Report_Pass_Msg_ID int Report MQLONG

JMS_IBM_Report_Pass_Correl_ID int Report MQLONG

JMS_IBM_Report_Discard_Msg int Report MQLONG

JMS_IBM_MsgType int MsgType MQLONG

JMS_IBM_Feedback int Feedback MQLONG

JMS_IBM_Format String Format “1” on page 149 MQCHAR8

JMS_IBM_PutApplType int PutApplType MQLONG

JMS_IBM_Encoding int Encoding MQLONG

JMS_IBM_Character_Set String CodedCharacterSetId “2” on
page 150

MQLONG

JMS_IBM_PutDate String PutDate MQCHAR8

JMS_IBM_PutTime String PutTime MQCHAR8

JMS_IBM_Last_Msg_In_Group boolea
n

MsgFlags MQLONG

Note:

1. JMS_IBM_Format represents the format of the message body. This can be defined by the application
setting the JMS_IBM_Format property of the message (note that there is an 8 character limit), or
can default to the IBM MQ format of the message body appropriate to the JMS message type.
JMS_IBM_Format maps to the MQMD Format field only if the message contains no RFH or RFH2
sections. In a typical message, it maps to the Format field of the RFH2 immediately preceding the
message body.

Developing applications for IBM MQ 149

2. JMS_IBM_Character_Set property value is a String value that contains the Java character set
equivalent for the numeric CodedCharacterSetId value. MQMD field CodedCharacterSetId is a
numeric value that contains the equivalent of the Java character set string specified by the
JMS_IBM_Character_Set property.

Mapping JMS fields onto IBM MQ fields (outgoing messages)
These tables show how JMS header and property fields are mapped into MQMD and MQRFH2 fields at
send() or publish() time.

Table 25 on page 150 shows how the JMS header fields are mapped into MQMD/RFH2 fields at send() or
publish() time. Table 26 on page 150 shows how JMS properties are mapped into MQMD/RFH2 fields at
send() or publish() time. Table 27 on page 151 shows how JMS provider-specific properties are mapped
to MQMD fields at send() or publish() time,

For fields marked Set by Message Object, the value transmitted is the value held in the JMS message
immediately before the send() or publish() operation. The value in the JMS message is left unchanged by
the operation.

For fields marked Set by Send Method, a value is assigned when the send() or publish() is performed (any
value held in the JMS message is ignored). The value in the JMS message is updated to show the value
used.

Fields marked as Receive-only are not transmitted and are left unchanged in the message by send() or
publish().

Table 25. Outgoing message field mapping

JMS header field name MQMD field used for
transmission

Header Set by

JMSDestination MQRFH2 Send Method

JMSDeliveryMode Persistence MQRFH2 Send Method

JMSExpiration Expiry MQRFH2 Send Method

JMSPriority Priority MQRFH2 Send Method

JMSMessageID MsgID Send Method

JMSTimestamp PutDate/PutTime Send Method

JMSCorrelationID CorrelId MQRFH2 Message Object

JMSReplyTo ReplyToQ/ReplyToQMgr MQRFH2 Message Object

JMSType MQRFH2 Message Object

JMSRedelivered Receive-only

Note:

1. MQMD field CodedCharacterSetId is a numeric value that contains the equivalent of the Java character
set string specified by the JMS_IBM_Character_Set property.

Table 26. Outgoing message JMS property mapping

JMS property name MQMD field used for
transmission

Header Set by

JMSXUserID UserIdentifier Send Method

JMSXAppID PutApplName Send Method

JMSXDeliveryCount Receive-only

JMSXGroupID GroupId MQRFH2 Message Object

150 Developing Applications for IBM MQ

Table 26. Outgoing message JMS property mapping (continued)

JMS property name MQMD field used for
transmission

Header Set by

JMSXGroupSeq MsgSeqNumber MQRFH2 Message Object

Note:

These properties are defined as read-only by the JMS specification, and are set (in some cases optionally)
by the JMS provider.

In IBM MQ classes for JMS two of these properties can be overridden by the application. To do this,
ensure that the destination has been configured appropriately by setting the following properties:

1. Set the property WMQConstants.WMQ_MQMD_MESSAGE_CONTEXT to
WMQConstants.WMQ_MDCTX_SET_ALL_CONTEXT.

2. Set the property WMQConstants.WMQ_MQMD_WRITE_ENABLED to true.

The following properties can be overridden by the application:

JMSXAppID
This property can be overridden by setting the property
WMQConstants.JMS_IBM_MQMD_PUTAPPLNAME on the message - the value should be a Java String.

JMSXGroupID
This property can be overridden by setting the property WMQConstants.JMS_IBM_MQMD_GROUPID
on the message - the value should be a byte array.

Table 27. Outgoing message JMS provider-specific property mapping

JMS provider-specific property name MQMD field used for
transmission

Header Set by

JMS_IBM_Report_Exception Report Message Object

JMS_IBM_Report_Expiration Report Message Object

JMS_IBM_Report_COA/COD Report Message Object

JMS_IBM_Report_NAN/PAN Report Message Object

JMS_IBM_Report_Pass_Msg_ID Report Message Object

JMS_IBM_Report_Pass_Correl_ID Report Message Object

JMS_IBM_Report_Discard_Msg Report Message Object

JMS_IBM_MsgType MsgType Message Object

JMS_IBM_Feedback Feedback Message Object

JMS_IBM_Format Format Message Object

JMS_IBM_PutApplType PutApplType Send Method

JMS_IBM_Encoding Encoding Message Object

JMS_IBM_Character_Set CodedCharacterSetId Message Object

JMS_IBM_PutDate PutDate Send Method

JMS_IBM_PutTime PutTime Send Method

JMS_IBM_Last_Msg_In_Group MsgFlags Message Object

Developing applications for IBM MQ 151

Mapping JMS header fields at send() or publish()
These notes relate to the mapping of JMS fields at send() or publish().

JMSDestination to MQRFH2
This is stored as a string that serializes the salient characteristics of the destination object so that a
receiving JMS can reconstitute an equivalent destination object. The MQRFH2 field is encoded as URI
(see “Uniform resource identifiers (URIs)” on page 214 for details of the URI notation).

JMSReplyTo to MQMD.ReplyToQ, ReplyToQMgr, MQRFH2
The queue name is copied to the MQMD.ReplyToQ field, and the queue manager name is copied to
the ReplyToQMgr fields. The destination extension information (other useful details that are kept in
the destination object) is copied into the MQRFH2 field. The MQRFH2 field is encoded as a URI (see
“Uniform resource identifiers (URIs)” on page 214 for details of the URI notation).

JMSDeliveryMode to MQMD.Persistence
The JMSDeliveryMode value is set by the send() or publish() Method or MessageProducer, unless the
Destination Object overrides it. The JMSDeliveryMode value is mapped to the MQMD.Persistence field
as follows:

• JMS value PERSISTENT is equivalent to MQPER_PERSISTENT
• JMS value NON_PERSISTENT is equivalent to MQPER_NOT_PERSISTENT

If the MQQueue persistence property is not set to WMQConstants.WMQ_PER_QDEF, the delivery
mode value is also encoded in the MQRFH2.

JMSExpiration to/from MQMD.Expiry, MQRFH2
JMSExpiration stores the time to expire (the sum of the current time and the time to live), whereas
MQMD stores the time to live. Also, JMSExpiration is in milliseconds, but MQMD.Expiry is in tenths of a
second.

• If the send() method sets an unlimited time to live, MQMD.Expiry is set to MQEI_UNLIMITED, and no
JMSExpiration is encoded in the MQRFH2.

• If the send() method sets a time to live that is less than 214748364.7 seconds (about 7 years), the
time to live is stored in MQMD.Expiry, and the expiration time (in milliseconds), is encoded as an i8
value in the MQRFH2.

• If the send() method sets a time to live greater than 214748364.7 seconds, MQMD.Expiry is set
to MQEI_UNLIMITED. The true expiration time in milliseconds is encoded as an i8 value in the
MQRFH2.

JMSPriority to MQMD.Priority
Directly map JMSPriority value (0-9) onto MQMD priority value (0-9). If JMSPriority is set to a non-
default value, the priority level is also encoded in the MQRFH2.

JMSMessageID from MQMD.MessageID
All messages sent from JMS have unique message identifiers assigned by IBM MQ. The value
assigned is returned in the MQMD.MessageId field after the MQPUT call, and is passed back to the
application in the JMSMessageID field. The IBM MQ messageId is a 24-byte binary value, whereas the
JMSMessageID is a string. The JMSMessageID is composed of the binary messageId value converted
to a sequence of 48 hexadecimal characters, prefixed with the characters ID:. JMS provides a hint
that can be set to disable the production of message identifiers. This hint is ignored, and a unique
identifier is assigned in all cases. Any value that is set into the JMSMessageID field before a send() is
overwritten.
If you do require the ability to specify the MQMD.MessageID, you can do this with one of the IBM MQ
JMS extensions described in “Reading and writing the message descriptor from an IBM MQ classes for
JMS application” on page 236.

JMSTimestamp to MQRFH2
During a send, the JMSTimestamp field is set according to the JVM's clock. This value is set into the
MQRFH2. Any value that is set into the JMSTimestamp field before a send() is overwritten. See also
the JMS_IBM_PutDate and JMS_IBM_PutTime properties.

152 Developing Applications for IBM MQ

JMSType to MQRFH2
This string is set into the MQRFH2 mcd.Type field. If it is in URI format, it can also affect mcd.Set and
mcd.Fmt fields.

JMSCorrelationID to MQMD.CorrelId, MQRFH2
The JMSCorrelationID can hold one of the following:
A provider specific message ID

This is a message identifier from a message previously sent or received, and so should be a
string of 48 lowercase hexadecimal digits that are prefixed with ID: The prefix is removed, the
remaining characters are converted into binary, and then they are set into the MQMD.CorrelId
field.

A provider-native byte[] value
The value is copied into the MQMD.CorrelId field - padded with nulls, or truncated to 24 bytes if
necessary. No CorrelId value is encoded in the MQRFH2.

An application-specific string
The value is copied into the MQRFH2. The first 24 bytes of the string, in UTF8 format, are written
into the MQMD.CorrelID.

Mapping JMS property fields
These notes refer to the mapping of JMS property fields in IBM MQ messages.

JMSXUserID from MQMD UserIdentifier
JMSXUserID is set on return from send call.

JMSXAppID from MQMD PutApplName
JSMXAppID is set on return from send call.

JMSXGroupID to MQRFH2 (point-to-point)
For point-to-point messages, the JMSXGroupID is copied into the MQMD GroupID field. If the
JMSXGroupID starts with the prefix ID:, it is converted into binary. Otherwise, it is encoded
as a UTF8 string. The value is padded or truncated if necessary to a length of 24 bytes. The
MQMF_MSG_IN_GROUP flag is set.

JMSXGroupID to MQRFH2 (publish/subscribe)
For publish/subscribe messages, the JMSXGroupID is copied into the MQRFH2 as a string.

JMSXGroupSeq MQMD MsgSeqNumber (point-to-point)
For point-to-point messages, the JMSXGroupSeq is copied into the MQMD MsgSeqNumber field. The
MQMF_MSG_IN_GROUP flag is set.

JMSXGroupSeq MQMD MsgSeqNumber (publish/subscribe)
For publish/subscribe messages, the JMSXGroupSeq is copied into the MQRFH2 as an i4.

Mapping JMS provider-specific fields
The following notes refer to the mapping of JMS provider-specific fields into IBM MQ messages.

JMS_IBM_Report_XXX to MQMD Report
A JMS application can set the MQMD Report options, using the following JMS_IBM_Report_XXX
properties. The single MQMD is mapped to several JMS_IBM_Report_XXX properties.

The JMS_IBM_Report_XXX constants are in com.ibm.msg.client.jakarta.wmq.WMQConstants
or com.ibm.msg.client.wmq.WMQConstants.

JMS_IBM_Report_Exception

MQRO_EXCEPTION or
MQRO_EXCEPTION_WITH_DATA or
MQRO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration

MQRO_EXPIRATION or
MQRO_EXPIRATION_WITH_DATA or
MQRO_EXPIRATION_WITH_FULL_DATA

Developing applications for IBM MQ 153

JMS_IBM_Report_COA

MQRO_COA or
MQRO_COA_WITH_DATA or
MQRO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD

MQRO_COD or
MQRO_COD_WITH_DATA or
MQRO_COD_WITH_FULL_DATA

JMS_IBM_Report_PAN
MQRO_PAN

JMS_IBM_Report_NAN
MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID
MQRO_PASS_MSG_ID

JMS_IBM_Report_Pass_Correl_ID
MQRO_PASS_CORREL_ID

JMS_IBM_Report_Discard_Msg
MQRO_DISCARD_MSG

The MQRO values are in com.ibm.mq.constants.CMQC.

JMS_IBM_MsgType to MQMD MsgType
Value maps directly onto MQMD MsgType. If the application has not set an explicit value of
JMS_IBM_MsgType, a default value is used. This default value is determined as follows:

• If JMSReplyTo is set to an IBM MQ queue destination, MSGType is set to the value MQMT_REQUEST
• If JMSReplyTo is not set, or is set to anything other than an IBM MQ queue destination, MsgType is

set to the value MQMT_DATAGRAM

JMS_IBM_Feedback to MQMD Feedback
Value maps directly onto MQMD Feedback.

JMS_IBM_Format to MQMD Format
Value maps directly onto MQMD Format.

JMS_IBM_Encoding to MQMD Encoding
If set, this property overrides the numeric encoding of the Destination Queue or Topic.

JMS_IBM_Character_Set to MQMD CodedCharacterSetId
If set, this property overrides the coded character set property of the Destination Queue or Topic.

JMS_IBM_PutDate from MQMD PutDate
The value of this property is set, during send, directly from the PutDate field in the MQMD. Any value
that is set into the JMS_IBM_PutDate property before a send is overwritten. This field is a String
of eight characters, in the IBM MQ Date format of YYYYMMDD. This property can be used with the
JMS_IBM_PutTime property to determine the time the message was put according to the queue
manager.

JMS_IBM_PutTime from MQMD PutTime
The value of this property is set, during send, directly from the PutTime field in the MQMD. Any
value that is set into the JMS_IBM_PutTime property before a send is overwritten. This field is a
String of eight characters, in the IBM MQ Time format of HHMMSSTH. This property can be used with
the JMS_IBM_PutDate property to determine the time the message was put according to the queue
manager.

JMS_IBM_Last_Msg_In_Group to MQMD MsgFlags
For point-to-point messaging, this Boolean value maps to the MQMF_LAST_MSG_IN_GROUP flag in
the MQMD MsgFlags field. It is normally used with the JMSXGroupID and JMSXGroupSeq properties

154 Developing Applications for IBM MQ

to indicate to a legacy IBM MQ application that this message is the last in a group. This property is
ignored for publish/subscribe messaging.

Mapping IBM MQ fields onto JMS fields (incoming messages)
These tables show how JMS header and property fields are mapped into MQMD and MQRFH2 fields at
get() or receive() time.

Table 28 on page 155 shows how JMS header fields are mapped onto MQMD/MQRFH2 fields at get() or
receive() time. Table 29 on page 155 shows how JMS property fields are mapped onto MQMD/MQRFH2
fields at get() or receive() time. Table 30 on page 156 shows how JMS provider-specific properties are
mapped.

Table 28. Incoming message JMS header field mapping

JMS header field name MQMD field retrieved from MQRFH2 field
retrieved from

JMSDestination jms.Dst or mqps.Top
“1” on page 155

JMSDeliveryMode Persistence “2” on page 155 jms.Dlv “2” on page 155

JMSExpiration jms.Exp

JMSPriority Priority

JMSMessageID MsgID

JMSTimestamp PutDate “2” on page 155

PutTime “2” on page 155

jms.Tms “2” on page 155

JMSCorrelationID CorrelId “2” on page 155 jms.Cid “2” on page 155

JMSReplyTo ReplyToQ “2” on page 155

ReplyToQMgr “2” on page 155

jms.Rto “2” on page 155

JMSType mcd.Type, mcd.Set,
mcd.Fmt

JMSRedelivered BackoutCount

Note:

1. If both jms.Dst and mqps.Top are set, the value in jms.Dst is used.
2. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both are available, the

setting in the MQRFH2 is used.
3. JMS_IBM_Character_Set property value is a String value that contains the Java character set

equivalent for the numeric CodedCharacterSetId value.

Table 29. Incoming message property mapping

JMS property name MQMD field retrieved from MQRFH2 field
retrieved from

JMSXUserID UserIdentifier

JMSXAppID PutApplName

JMSXDeliveryCount BackoutCount

JMSXGroupID GroupId “1” on page 156 jms.Gid “1” on page 156

JMSXGroupSeq MsgSeqNumber “1” on page 156 jms.Seq “1” on page 156

Developing applications for IBM MQ 155

Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both are available,
the setting in the MQRFH2 is used. The properties are set from the MQMD values only if the
MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP message flags are set.

Table 30. Incoming message provider-specific JMS property mapping

JMS property name MQMD field retrieved from MQRFH2 field
retrieved from

JMS_IBM_Report_Exception Report

JMS_IBM_Report_Expiration Report

JMS_IBM_Report_COA Report

JMS_IBM_Report_COD Report

JMS_IBM_Report_PAN Report

JMS_IBM_Report_NAN Report

JMS_IBM_Report_ Pass_Msg_ID Report

JMS_IBM_Report_Pass_Correl_ID Report

JMS_IBM_Report_Discard_Msg Report

JMS_IBM_MsgType MsgType

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format

JMS_IBM_PutApplType PutApplType

JMS_IBM_Encoding “1” on page 156 Encoding

JMS_IBM_Character_Set “1” on page 156 CodedCharacterSetId

JMS_IBM_PutDate PutDate

JMS_IBM_PutTime PutTime

JMS_IBM_Last_Msg_In_Group MsgFlags

1. Only set if the incoming message is a Bytes Message.

Exchanging messages between a JMS application and a traditional IBM MQ application
This topic describes what happens when a JMS application exchanges messages with a traditional IBM
MQ application that cannot process the MQRFH2 header.

Figure 11 on page 157 shows the mapping.

The administrator indicates that the JMS application is communicating with a traditional IBM MQ
application by setting the TARGCLIENT property of the destination to MQ. This indicates that no MQRFH2
header is to be produced. If this is not done, the receiving application must be able to handle the MQRFH2
header.

The mapping from JMS to MQMD targeted at a traditional IBM MQ application is the same as mapping
from JMS to MQMD targeted at a JMS application. If IBM MQ classes for JMS receives an IBM MQ
message with the MQMD Format field set to anything other than MQFMT_RFH2, data is being received
from a non-JMS application. If the format is MQFMT_STRING, the message is received as a JMS text
message. Otherwise, it is received as a JMS bytes message. Because there is no MQRFH2, only those JMS
properties that are transmitted in the MQMD can be restored.

156 Developing Applications for IBM MQ

If IBM MQ classes for JMS receives a message that does not have an MQRFH2 header, the TARGCLIENT
property of the Queue or Topic object derived from the JMSReplyTo header field of the message is set
to MQ by default. This means that a reply message sent to the queue or topic also does not have an
MQRFH2 header. You can switch off this behavior of including an MQRFH2 header in a reply message only
if the original message has an MQRFH2 header, by setting the TARGCLIENTMATCHING property of the
connection factory to NO.

Figure 11. How JMS messages are transformed to IBM MQ messages with no MQRFH2 header

The JMS message body
This topic contains information about the encoding of the message body itself. The encoding depends on
the type of JMS message.

ObjectMessage
An ObjectMessage is an object serialized by the Java Runtime in the normal way.

TextMessage
A TextMessage is an encoded string. For an outgoing message, the string is encoded in the character
set given by the destination object. This defaults to UTF8 encoding (the UTF8 encoding starts with the
first character of the message; there is no length field at the start). It is, however, possible to specify
any other character set supported by IBM MQ classes for JMS. Such character sets are used mainly
when you send a message to a non-JMS application.

If the character set is a double-byte set (including UTF16), the destination object's integer encoding
specification determines the order of the bytes.

An incoming message is interpreted using the character set and encoding that are specified in the
message itself. These specifications are in the last IBM MQ header (or MQMD if there are no headers).
For JMS messages, the last header is usually the MQRFH2.

BytesMessage
A BytesMessage is, by default, a sequence of bytes as defined by the JMS 1.0.2 specification and
associated Java documentation.

For an outgoing message that was assembled by the application itself, the destination object's
encoding property can be used to override the encodings of integer and floating point fields contained
in the message. For example, you can request that floating point values are stored in S/390 rather
than IEEE format).

An incoming message is interpreted using the numeric encoding specified in the message itself. This
specification is in the last IBM MQ header (or MQMD if there are no headers). For JMS messages, the
last header is usually the MQRFH2.

If a BytesMessage is received, and is re-sent without modification, its body is transmitted byte
for byte, as it was received. The destination object's encoding property has no effect on the body.
The only string-like entity that can be sent explicitly in a BytesMessage is a UTF8 string. This is
encoded in Java UTF8 format, and starts with a 2-byte length field. The destination object's character
set property has no effect on the encoding of an outgoing BytesMessage. The character set value
in an incoming IBM MQ message has no effect on the interpretation of that message as a JMS
BytesMessage.

Developing applications for IBM MQ 157

Non-Java applications are unlikely to recognize the Java UTF8 encoding. Therefore, for a JMS
application to send a BytesMessage that contains text data, the application itself must convert its
strings to byte arrays, and write these byte arrays into the BytesMessage.

MapMessage
A MapMessage is a string containing XML name/type/value triplets encoded as:

<map>
 <elt name="elementname1" dt="datatype1">value1</elt>
 <elt name="elementname2" dt="datatype2">value2</elt>
 ...
</map>

where datatype is one of the data types listed in Table 21 on page 147. The default data type is
string, and so the attribute dt="string" is omitted for string elements.

The character set used to encode or interpret the XML string that forms the body of a map message is
determined according to the rules that apply to a text message.

Versions of IBM MQ classes for JMS earlier than 5.3 encoded the body of a map message in the
following format:

<map>
 <elementname1 dt="datatype1">value1</elementname1>
 <elementname2 dt="datatype2">value2</elementname2>
 ...
</map>

IBM MQ classes for JMS 5.3 and later can interpret either format, but versions of IBM MQ classes for
JMS earlier than 5.3 cannot interpret the current format.

If an application needs to send map messages to another application that is using a version of IBM
MQ classes for JMS earlier than 5.3, the sending application must call the connection factory method
setMapNameStyle(WMQConstants.WMQ_MAP_NAME_STYLE_COMPATIBLE) to specify that the
map messages are sent in the previous format. By default, all map messages are sent in the current
format.

StreamMessage
A StreamMessage is like a map message, but without element names:

<stream>
 <elt dt="datatype1">value1</elt>
 <elt dt="datatype2">value2</elt>
 ...
</stream>

where datatype is one of the data types listed in Table 21 on page 147. The default data type is
string, and so the attribute dt="string" is omitted for string elements.

The character set used to encode or interpret the XML string that makes up the StreamMessage body
is determined following the rules that apply to a TextMessage.

The MQRFH2.format field is set as follows:
MQFMT_NONE

for ObjectMessage, BytesMessage, or messages with no body.
MQFMT_STRING

for TextMessage, StreamMessage, or MapMessage.

JMS message conversion
Message data conversion in JMS is performed when sending and receiving messages. IBM MQ performs
most data conversion automatically. It converts text and numeric data when transferring a message

158 Developing Applications for IBM MQ

between JMS applications. Text is converted when exchanging a JMSTextMessage between a JMS
application and an IBM MQ application.

If you are planning to do more complex message exchanges, the following topics are of interest you.
Complex message exchanges include:

• Transferring non-text messages between an IBM MQ application and a JMS application.
• Exchanging text data in byte format.
• Converting the text in your application.

JMS message data
Data conversion is necessary to exchange text and numeric data between applications, even between
two JMS applications. The internal representation of text and numbers must be encoded so they can
be transferred in a message. Encoding forces a decision about how numbers and text are represented.
IBM MQ manages the encoding of text and numbers in JMS messages, except for JMSObjectMessage,
see “JMSObjectMessage” on page 165. It uses three message attributes. The three attributes are
CodedCharacterSetId, Encoding, and Format.

These three message attributes are normally stored in the JMS header, MQRFH2, fields of a JMS message.
If the message type is an MQ, rather than JMS type of message, the attributes are stored in the message
descriptor, MQMD. The attributes are used to convert the JMS message data. JMS message data is
transferred in the message data part of an IBM MQ message.

JMS message properties
JMS message properties, such as JMS_IBM_CHARACTER_SET, are exchanged in the MQRFH2 header part
of a JMS message, unless the message has been sent without an MQRFH2. Only JMSTextMessage and
JMSBytesMessage can be sent without an MQRFH2. If a JMS property is stored as an IBM MQ message
property in the message descriptor, MQMD, it is converted as part of the MQMD conversion. If a JMS
property is stored in the MQRFH2, it is stored in the character set specified by MQRFH2.NameValueCCSID.
When a message is sent or received, message properties are converted to and from their internal
representation in the JVM. The conversion is to and from the character set of the message descriptor
or MQRFH2.NameValueCCSID. Numeric data is converted to text.

JMS message conversion
The following topics contain examples and tasks that are useful if you plan to exchange more complex
messages that require conversion.

JMS message conversion approaches
A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.

You can ask a number of questions about how to approach message conversion:
Is it necessary to think about message conversion at all?

In some cases, such as JMS to JMS message transfers, and exchanging text messages with IBM MQ
programs, IBM MQ performs the necessary conversions for you, automatically. You might want to
control data conversion for performance reasons, or you might be exchanging complex messages that
have a predefined format. In cases such as these you must understand message conversion, and read
the following topics.

What kinds of conversion are there?
There are four main types of conversion, which are explained in the following sections:

1. “JMS client data conversion” on page 160
2. “Application data conversion” on page 160

Developing applications for IBM MQ 159

3. “Queue manager data conversion” on page 161
4. “Message channel data conversion” on page 162

Where should conversion be performed?
The section, “Choosing an approach to message conversion: receiver makes good” on page 162,
describes the usual approach of "receiver makes good". "Receiver makes good" also applies to JMS
data conversion.

JMS client data conversion
JMS client 1 data conversion is the conversion of Java primitives and objects into bytes in a JMS message
as it is sent to a destination, and conversion back again, when it is received. JMS client data conversion
uses the methods of the JMSMessage classes. The methods are listed by JMSMessage class type in Table
31 on page 163.

Conversion to and from the internal JVM representation of numbers and text is performed for read, get,
set, and write methods. The conversion is performed when the message is sent, and when any of the read
or get methods is called on a message that has been received.

The code page and numeric encoding used to write or set the contents of a message are defined
as attributes of the destination. The destination code page and numeric encoding can be changed
administratively. An application can also override the destination code page and encoding by setting
the message properties that control writing or setting message content.

If you want to convert number encoding when a JMSBytesMessage message is sent to a destination
that is not defined as Native encoding, you must set the message property JMS_IBM_ENCODING before
sending the message. If you are following the "receiver makes good" pattern, or if you are exchanging
messages between JMS applications, the application does not need to set JMS_IBM_ENCODING. In most
cases you can leave the Encoding property as Native.

For JMSStreamMessage, JMSMapMessage, and JMSTextMessage messages, the character set
identifier properties of the destination are used. Encoding is ignored on sending as numbers are written
out in text format. The JMS client application program does not have to set JMS_IBM_CHARACTER_SET
before sending the message if the destination character set property to apply.

To get the data in a message an application calls the JMS message read or get methods. The methods
refer to the code page and encoding defined in the previous message header to create the Java primitives
and objects correctly.

JMS client data conversion meets the needs of most JMS applications that are exchanging messages
between one JMS client and another. You do not code any explicit data conversion. You do not
use the java.nio.charset.Charset class, which is typically used when writing text to a file. The
writeString and setString methods do the conversion for you.

For more details on JMS client data conversion, see “JMS client message conversion and encoding” on
page 172.

Application data conversion
A JMS client application can perform explicit character data conversion by using the
java.nio.charset.Charset class; see the examples in Figure 14 on page 164 and Figure 15 on page
165. String data is converted into bytes, using the getBytes method, and sent as bytes. The bytes are
converted back into text by using a String constructor that takes a byte array and a Charset. Character
data is converted using the encode and decode Charset methods. Typically the message is sent or
received as JMSBytesMessage, because the message part of a JMSBytesMessage does not contain
anything other than the data written by the application 2 . You can also send and receive bytes using
JMSStreamMessage, JMSMapMessage, or JMSObjectMessage.

1 "JMS Client" refers to the IBM MQ classes for JMS that implement the JMS interface, which runs either in
client or bindings mode.

2 One exception: Data written using writeUTF starts with a 2 byte length field

160 Developing Applications for IBM MQ

There are no Java methods to encode and decode bytes that contain numeric data represented
in different encoding formats. Numeric data is encoded and decoded automatically using the
numeric JMSMessage read and write methods. The read and write methods use the value of the
JMS_IBM_ENCODING attribute of the message data.

A typical use for application data conversion is if a JMS client sends or receives a formatted message
from a non-JMS application. A formatted message contains text, numeric, and bytes data organized
by the length of the data fields. Unless the non-JMS application has specified the message format as
"MQSTR ", the message is constructed as a JMSBytesMessage. To receive formatted message data in
a JMSBytesMessage you must call a sequence of methods. The methods must be called in the same
order the fields were written into the message. If the fields are numeric, you must know the encoding and
length of the numeric data. If any of the fields contain byte or text data, you must know the length of any
byte data in the message. There are two ways to convert a formatted message into a Java object that is
easy to use.

1. Construct a Java class corresponding to the record, to encapsulate reading and writing the message.
Access to the data in the record is with get and set methods of the class.

2. Construct a Java class corresponding to the record by extending the com.ibm.mq.headers
class. Access to the data in the class is with type-specific accessors of the form,
getStringValue(fieldname);

See “Exchanging a formatted record with a non-JMS application” on page 179.

Queue manager data conversion
Code page conversion can be performed by the queue manager when a JMS client program gets a
message. The conversion is the same as the conversion performed for a C program. A C program
sets MQGMO_CONVERT as an MQGET GetMsgOpts parameter option; see Figure 13 on page 164. A
queue manager performs conversion for a JMS client program that is receiving a message, if the
WMQ_RECEIVE_CONVERSION destination property is set to WMQ_RECEIVE_CONVERSION_QMGR, The JMS
client program can also set the destination property; see Figure 12 on page 161.

((MQDestination)destination).setIntProperty(
 WMQConstants.WMQ_RECEIVE_CONVERSION,
 WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Or,

((MQDestination)destination).setReceiveConversion
 (WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Figure 12. Enable queue manager data conversion

The main benefit of queue manager conversion comes when exchanging messages with non-JMS
applications. If the Format field in the message is defined, and the target character set, or encoding,
is different to the message, the queue manager performs data conversion for the target application, if
the application requests it. The queue manager converts message data formatted according to one of
the predefined IBM MQ message types, such as a CICS bridge header (MQCIH). If the Format field is
user-defined, the queue manager looks for a data conversion exit with the name provided in the Format
field.

Queue manager data conversion is used to best effect with the "receiver makes good" design pattern.
A sending JMS client does not need to perform conversion. A non-JMS receiving program relies on the
conversion exit to ensure that the message is delivered in the required code page and encoding. With a
sending JMS client, and non-JMS receiver, the example applies to IBM MQ.

You can create a data conversion exit, using the data conversion exit utility, crtmqcvx, to enable the
queue manager to convert your own record formatted data. You can build your own record format, use the

Developing applications for IBM MQ 161

com.ibm.mq.headers to access it as a Java class, and use your own conversion exit to convert it. On
z/OS the utility is called CSQUCVX, and on IBM i, CVTMQMDTA. See “Exchanging a formatted record with a
non-JMS application” on page 179.

Message channel data conversion
IBM MQ Sender, Server, Cluster-receiver, and Cluster-sender channels have a message conversion
option, CONVERT. The contents of a message can optionally be converted when a message is sent.
The conversion takes place at the sending end of the channel. The cluster-receiver definition is used to
auto-define the corresponding cluster-sender channel.

Data conversion by message channels is typically used if it is not possible to use other forms of
conversion.

Choosing an approach to message conversion: "receiver makes good"
The usual approach in IBM MQ application design for code conversion is "receiver makes good". "Receiver
makes good" reduces the number of message conversions. It also avoids the problem of unexpected
channel errors if message conversion fails on some intermediary queue manager during message transfer.
The "receiver makes good" rule is only broken if there is some reason why the receiver cannot make good.
The receiving platform might not have the right character set, for example.

"Receiver makes good" is also good general guidance for JMS client applications. But in specific cases,
conversion to the correct character set at source can be more efficient. Conversion from the JVM internal
representation must take place when a message containing text or numeric types is sent. Conversion to
the character set required by the receiver, if the receiver is not a JMS client, might remove the need for
the non-JMS recipient to perform conversion. If the recipient is a JMS client, it is going to convert again,
anyway, to decode the message data and create Java primitives and objects.

The difference between JMS client applications, and applications written in a language such as C, is that
Java must perform data conversion. A Java application must convert numbers and text from their internal
representation to an encoded format used in messages.

By setting destination, or message properties, you can set the character set and encoding used by IBM
MQ to encode numbers and text in messages. Normally, you would leave the character set as 1208 and
encoding as Native.

IBM MQ does not convert byte arrays. To encode strings and character arrays into byte arrays use the
java.nio.charset package. Charset specifies the character set used to convert a string or character
array into a byte array. You can also decode a byte array into a string or character array using a Charset.
It is not good practice to rely on java.nio.charset.Charset.defaultCodePage when encoding
strings and character arrays. The default Charset is typically windows-1252 on Windows, and UTF-8 on
AIX and Linux. windows-1252 is a single-byte character set and UTF-8 is a multi-byte character set.

Generally leave the destination character set and encoding properties at their default values of
UTF-8 and Native when exchanging messages with other JMS applications. If you are exchanging
messages containing numbers or text with a JMS application, choose one of the JMSTextMessage,
JMSStreamMessage, JMSMapMessage, or JMSObjectMessage message types that fit your purpose.
There are no other conversion tasks to do.

If you are exchanging messages with non-JMS applications that use a record format, it is more
complicated. Unless the entire record contains text and can be transferred as a JMSTextMessage,
you must encode and decode text in the application. Set the destination message type to MQ, and
use JMSBytesMessage to avoid the IBM MQ classes for JMS adding additional header and tagging
information to the message data. Use JMSBytesMessage methods to write numbers and bytes, and the
Charset class convert text into byte arrays explicitly. A number of factors might influence your choice of
character set:

• Performance: Can you reduce the number of conversions by transforming text into a character set that is
used on the largest number of servers?

• Uniformity: Transfer all messages in the same character set.

162 Developing Applications for IBM MQ

• Richness: What character sets have all the code points that applications must use?
• Simplicity: Single-byte character sets are simpler to use than variable length and multibyte character

sets.

See “Exchanging a formatted record with a non-JMS application” on page 179. for examples of converting
messages exchanged with non-JMS applications.

Examples

Table of message types and conversion types

Table 31. Message types and conversion types

Conversion type

Message type Text Numeric Other None

JMSObjectMessag
e

 getObject
setObject

 JMSTextMessage getText
setText

 JMSBytesMessage

 readUTF
writeUTF

 readDouble
readFloat
readInt
readLong
readShort
readUnsignedShor
t
writeDouble
writeFloat
writeInt
writeLong
writeShort

 readBoolean
readObject
writeBoolean
writeObject

 readByte
readUnsignedByte
readBytes
readChar
writeByte
writeBytes
writeChar

JMSStreamMessag
e

 readString
writeString

 readDouble
readFloat
readInt
readLong
readShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

 readBoolean
readObject
writeBoolean
writeObject

 readByte
readBytes
readChar
writeByte
writeBytes
writeChar

Developing applications for IBM MQ 163

Table 31. Message types and conversion types (continued)

Conversion type

Message type Text Numeric Other None

 JMSMapMessage

 getString
setString

 getDouble
getFloat
getInt
getLong
getShort
setDouble
setFloat
setInt
setLong
setShort

 getBoolean
getObject
setBoolean
setObject

 getByte
getBytes
readChar
setByte
setBytes
setChar

Calling data conversion from a C program

gmo.Options = MQGMO_WAIT /* wait for new messages */
 | MQGMO_NO_SYNCPOINT /* no transaction */
 | MQGMO_CONVERT; /* convert if necessary */

 while (CompCode != MQCC_FAILED) {
 buflen = sizeof(buffer) - 1; /* buffer size available for GET */
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;

 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 buffer, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

Figure 13. Code snippet from amqsget0.c

Sending and receiving text in a JMSBytesMessage

The code in Figure 14 on page 164 sends a string in a BytesMessage. For simplicity, the example sends a
single string, for which a JMSTextMessage is more appropriate. To receive a text string in bytes message
containing a mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH
in Figure 15 on page 165. Even for a string with a fixed number of characters, the length of the byte
representation might be longer.

BytesMessage bytes = session.createBytesMessage();
String codePage = CCSID.getCodepage(((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_CCSID));
bytes.writeBytes("In the destination code page".getBytes(codePage));
producer.send(bytes);

Figure 14. Sending a String in a JMSBytesMessage

164 Developing Applications for IBM MQ

BytesMessage message = (BytesMessage)consumer.receive();
int TEXT_LENGTH = new Long(message.getBodyLength())).intValue();
byte[] textBytes = new byte[TEXT_LENGTH];
message.readBytes(textBytes, TEXT_LENGTH);
String codePage = message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 15. Receiving a String from a JMSBytesMessage

Related concepts
JMS client message conversion and encoding
The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.
Queue manager data conversion
Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.
Related tasks
Exchanging a formatted record with a non-JMS application
Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.
Related reference
JMS message types and conversion
The choice of message type affects your approach to message conversion. The interaction of
message conversion and message type is described for the JMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

JMS message types and conversion
The choice of message type affects your approach to message conversion. The interaction of
message conversion and message type is described for the JMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

JMSObjectMessage
JMSObjectMessage contains one object, and any objects that it references, serialized into a byte stream
by the JVM. Text is serialized into UTF-8, and limited to strings or character arrays of no more than 65534
bytes. An advantage of JMSObjectMessage is that applications are not involved in any data conversion
issues as long as they use only the methods and attributes of the object. JMSObjectMessage provides
data conversion for complex objects without the application programmer considering how to encode an
object in a message. The disadvantage of using JMSObjectMessage is it can be exchanged only with
other JMS applications. By choosing one of the other JMS message types, it is possible to exchange JMS
messages with non-JMS applications.

“Sending and receiving a JMSObjectMessage” on page 168 shows a String object being exchanged in a
message.

A JMS client application can receive a JMSObjectMessage only in a message that has a JMS-style body.
The destination must specify a JMS style body.

JMSTextMessage
JMSTextMessage contains a single text string. When a text message is sent, the text Format is
set to "MQSTR ", WMQConstants.MQFMT_STRING. The CodedCharacterSetId of the text is
set to the coded character set identifier defined for its destination. The text is encoded into the

Developing applications for IBM MQ 165

CodedCharacterSetId by IBM MQ. The CodedCharacterSetId and Format fields are either set in
the message descriptor, MQMD, or into the JMS fields in an MQRFH2. If the message is defined as having an
WMQ_MESSAGE_BODY_MQ message body style, or the body style is unspecified, but the target destination
is WMQ_TARGET_DEST_MQ, then the message descriptor fields are set. Otherwise the message has a JMS
RFH2 and the fields are set in the fixed part of the MQRFH2.

An application can override the coded character set identifier defined for a destination. It must set the
message property JMS_IBM_CHARACTER_SET to a coded character set identifier; see the example in
“Sending and receiving a JMSTextmessage” on page 168.

When the JMS client calls the consumer.receive method queue manager conversion is optional.
Queue manager conversion is enabled by setting the destination property WMQ_RECEIVE_CONVERSION
to WMQ_RECEIVE_CONVERSION_QMGR. The queue manager converts the text message from the
JMS_IBM_CHARACTER_SET specified for the message before transferring the message to the JMS
client. The character set of the converted message is 1208, UTF-8, unless the destination has
a different WMQ_RECEIVE_CCSID. The CodedCharacterSetId in the message that refers to the
JMSTextMessage is updated to the target character set ID. The text is decoded from the target character
set into Unicode by the getText method; see the example in “Sending and receiving a JMSTextmessage”
on page 168.

A JMSTextMessage can be sent in an MQ-style message body, without a JMS MQRFH2 header. The value
of the destination attributes, WMQ_MESSAGE_BODY and WMQ_TARGET_DEST determine the message body
style, unless overridden by the application. The application can override the values set on the destination
by calling destination.setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ) or
destination.setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ).

If you send a JMSTextMessage with an MQ style body by sending it to a destination with
WMQ_MESSAGE_BODY set to WMQ_MESSAGE_BODY_MQ, you cannot receive it as a JMSTextMessage
from the same destination. All messages received from a destination with WMQ_MESSAGE_BODY set to
WMQ_MESSAGE_BODY_MQ are received as a JMSBytesMessage. If you try to receive the message as a
JMSTextMessage it causes an exception, ClassCastException: com.ibm.jms.JMSBytesMessage
cannot be cast to jakarta (or javax).jms.TextMessage.

Note: Text in a JMSBytesMessage is not converted by the JMS client. The client can only receive the
text in the message as a byte array. If queue manager conversion is enabled, the text is converted by the
queue manager, but the JMS client must still receive it as a byte array in a JMSBytesMessage.

It is generally better to use the WMQ_TARGET_DEST property to control whether a JMSTextMessage is
sent with an MQ or JMS body style. You can then receive the message from a destination that has either
WMQ_TARGET_DEST set to WMQ_TARGET_DEST_MQ or WMQ_TARGET_DEST_JMS. WMQ_TARGET_DEST has
no effect on the receiver.

JMSMapMessage and JMSStreamMessage
These two JMS message types are similar. You can read and write primitive types to the messages using
methods based on the DataInputStream and DataOutputStream interfaces; see “Table of message
types and conversion types” on page 170. The details are described in “JMS client message conversion
and encoding” on page 172. Each primitive is tagged; see “The JMS message body” on page 157.

Numeric data is read and written to the message encoded as XML text. No reference is made
to the destination property, JMS_IBM_ENCODING. Text data is treated the same way as text in a
JMSTextMessage. If you were to look at the message contents created by the example in Figure 20
on page 169, all the message data would be in EBCDIC as it was sent with a character set value of 37.

You can send multiple items in a JMSMapMessage or JMSStreamMessage.

You can retrieve the individual items of data by name from a JMSMapMessage, or by position
from a JMSStreamMessage. Each item is decoded when a get or read method is called using the
CodedCharacterSetId value stored in the message. If the method used to retrieve the item returns
a different type to the type that was sent, the type is converted. If the type cannot be converted,
an exception is thrown. See Class JMSStreamMessage for details. The example in “Sending data in

166 Developing Applications for IBM MQ

a JMSStreamMessage and JMSMapMessage” on page 169 illustrates type conversion, and getting the
JMSMapMessage contents out of sequence.

The MQRFH2.format field for the JMSMapMessage and JMSStreamMessage is set to "MQSTR ".
If the destination property WMQ_RECEIVE_CONVERSION is set to WMQ_RECEIVE_CONVERSION_QMGR,
the message data is converted by the queue manager before being sent to the JMS
client. The MQRFH2.CodedCharacterSetId of the message is the WMQ_RECEIVE_CCSID
of the destination. The MQRFH2.Encoding is Native. If WMQ_RECEIVE_CONVERSION is
WMQ_RECEIVE_CONVERSION_CLIENT_MSG the CodedCharacterSetId and Encoding of the MQRFH2
is the value set by the sender.

A JMS client application can receive a JMSMapMessage or JMSStreamMessage only in a message that
has a JMS-style body, and from a destination that does not specify an MQ style body.

JMSBytesMessage
A JMSBytesMessage can contain multiple primitive types. You can read and write primitive types to
the messages using methods based on the DataInputStream and DataOutputStream interfaces; see
“Table of message types and conversion types” on page 170. The details are described in “JMS message
types and conversion” on page 165.

The encoding of numeric data in the message is controlled by the value of JMS_IBM_ENCODING that is set
before writing numeric data to the JMSBytesMessage. An application can override the default Native
encoding defined for JMSBytesMessage by setting the message property JMS_IBM_ENCODING.

Text data can be read and written in UTF-8 using the readUTF and writeUTF, or in Unicode using
the readChar and writeChar methods. There are no methods that use CodedCharacterSetId.
Alternatively, the JMS client can encode and decode text into bytes using the Charset class. It transfers
the bytes between the JVM and message without the IBM MQ classes for JMS performing any conversion;
see “Sending and receiving text in a JMSBytesMessage” on page 169.

A JMSBytesMessage sent to an MQ application is typically sent in an MQ-style message body, without a
JMS MQRFH2 header. If it is sent to a JMS application, the message body style is typically JMS. The value
of the destination attributes, WMQ_MESSAGE_BODY and WMQ_TARGET_DEST determine the message body
style, unless overridden by the application. The application can override the values set on the destination
by calling destination.setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ) or
destination.setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ).

If you send a JMSBytesMessage with an MQ style body, you can receive the message from a destination
that defines either an MQ or a JMS message body style. If you send a JMSBytesMessage with a JMS
style body, then you must receive the message from a destination that defines a JMS message body style.
If you do not, the MQRFH2 is treated as part of the user message data, which might not be what you are
expecting.

Whether a message has an MQ or a JMS body style, the way it is received is not affected by setting
WMQ_TARGET_DEST.

The message might be transformed later, by the queue manager, if a Format is supplied for the message
data, and queue manager data conversion is enabled. Do not use the format field for anything other than
specifying the format of the message data, or leave it blank, MQConstants.MQFMT_NONE

You can send multiple items in a JMSBytesMessage. Each numeric item is converted when the message
is sent using the encoding defined for the message.

You can retrieve the individual items of data from JMSBytesMessage. Call read methods in the same
order as the write methods were called to create the message. Each numeric item is converted when the
message is called using the Encoding value stored in the message.

Unlike JMSMapMessage and JMSStreamMessage, JMSBytesMessage contains only data written by
the application. No additional data is stored in the message data, such as the XML tags used to define
the items in a JMSMapMessage and JMSStreamMessage. For this reason, use JMSBytesMessage to
transfer messages formatted for other applications.

Developing applications for IBM MQ 167

Converting between JMSBytesMessage and DataInputStream and DataOutputStream is useful in
some applications. Code based on the example, “Reading and writing messages using DataInputStream
and DataOutputStream” on page 169, is necessary to use the com.ibm.mq.header package with JMS.

Examples

Sending and receiving a JMSObjectMessage

ObjectMessage omo = session.createObjectMessage();
omo.setObject(new String("A string"));
producer.send(omo);
...
ObjectMessage omi = (ObjectMessage)consumer.receive();
System.out.println((String)omi.getObject());
...
A string

Figure 16. Sending and receiving a JMSObjectMessage

Sending and receiving a JMSTextmessage

A text message cannot contain text in different character sets. The example shows text in different
character sets, sent in two different messages.

TextMessage tmo = session.createTextMessage();
tmo.setText("Sent in the character set defined for the destination");
producer.send(tmo);

Figure 17. Send text message in the character set defined by the destination

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
tmo.setText("Sent in EBCDIC character set 37");
producer.send(tmo);

Figure 18. Send text message in ccsid 37

TextMessage tmi = (TextMessage)consumer.receive();
System.out.println(tmi.getText());
...
Sent in the character set defined for the destination

Figure 19. Receive text message

168 Developing Applications for IBM MQ

Sending data in a JMSStreamMessage and JMSMapMessage

StreamMessage smo = session.createStreamMessage();
smo.writeString("256");
smo.writeInt(512);
smo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
producer.send(smo);
...
MapMessage mmo = session.createMapMessage();
mmo.setString("First", "256");
mmo.setInt("Second", 512);
mmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
producer.send(mmo);
...
StreamMessage smi = (StreamMessage)consumer.receive();
System.out.println("Stream: First as float " + smi.readFloat() +
 " Second as String " + smi.readString());
...
Stream: First as float: 256.0, Second as String: 512
...
MapMessage mmi = (MapMessage)consumer.receive();
System.out.println("Map: Second as String " + mmi.getString("Second") +
 " First as double " + mmi.getDouble("First"));
...
Map: Second as String: 512, First as double: 256.0

Figure 20. Send data in JMSStreamMessage and JMSMapMessage

Sending and receiving text in a JMSBytesMessage

The code in Figure 21 on page 169 sends a string in a BytesMessage. For simplicity, the example sends a
single string, for which a JMSTextMessage is more appropriate. To receive a text string in bytes message
containing a mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH
in Figure 22 on page 169. Even for a string with a fixed number of characters, the length of the byte
representation might be longer.

BytesMessage bytes = session.createBytesMessage();
String codePage = CCSID.getCodepage(((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_CCSID));
bytes.writeBytes("In the destination code page".getBytes(codePage));
producer.send(bytes);

Figure 21. Sending a String in a JMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();
int TEXT_LENGTH = new Long(message.getBodyLength())).intValue();
byte[] textBytes = new byte[TEXT_LENGTH];
message.readBytes(textBytes, TEXT_LENGTH);
String codePage = message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 22. Receiving a String from a JMSBytesMessage

Reading and writing messages using DataInputStream and DataOutputStream

The code in Figure 23 on page 170 creates a JMSBytesMessage using a DataOutputStream.

Developing applications for IBM MQ 169

ByteArrayOutputStream bout = new ByteArrayOutputStream();
DataOutputStream dout = new DataOutputStream(bout);
BytesMessage messageOut = prod.session.createBytesMessage();
// messageOut.setIntProperty(WMQConstants.JMS_IBM_ENCODING,
// ((MQDestination) (prod.destination)).getIntProperty
// (WMQConstants.WMQ_ENCODING));
int ccsidOut = (((MQDestination)prod.destination).getIntProperty(WMQConstants.WMQ_CCSID));
String codePageOut = CCSID.getCodepage(ccsidOut);
dout.writeInt(ccsidOut);
dout.write(codePageOut.getBytes(codePageOut));
messageOut.writeBytes(bout.toByteArray());
producer.send(messageOut);

Figure 23. Send a JMSBytesMessage using a DataOutputStream

The statement that sets the JMS_IBM_ENCODING property is commented out. The statement is valid,
if writing directly to a JMSBytesMessage, but has no effect when writing to DataOutputStream.
Numbers that are written to the DataOutputStream are encoded in Native encoding. Setting
JMS_IBM_ENCODING has no effect.

The code in Figure 24 on page 170 receives a JMSBytesMessage using a DataInputStream.

static final int ccsidIn_SIZE = (Integer.SIZE)/8;
...
connection.start();
BytesMessage messageIn = (BytesMessage) consumer.receive();
int messageLength = new Long(messageIn.getBodyLength()).intValue();
byte [] bin = new byte[messageLength];
messageIn.readBytes(bin, messageLength);
DataInputStream din = new DataInputStream(new ByteArrayInputStream(bin));
int ccsidIn = din.readInt();
byte [] codePageByte = new byte[messageLength - ccsidIn_SIZE];
din.read(codePageByte, 0, codePageByte.length);
System.out.println("CCSID " + ccsidIn + " code page " + new String(codePageByte,
 messageIn.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET)));

Figure 24. Receive a JMSBytesMessage using a DataInputStream

The code page is printed out using the code page property of the input message data,
JMS_IBM_CHARACTER_SET. On input JMS_IBM_CHARACTER_SET is a Java code page and not a numeric
coded character set identifier.

Table of message types and conversion types

Table 32. Message types and conversion types

Conversion type

Message type Text Numeric Other None

JMSObjectMessag
e

 getObject
setObject

 JMSTextMessage getText
setText

170 Developing Applications for IBM MQ

Table 32. Message types and conversion types (continued)

Conversion type

Message type Text Numeric Other None

 JMSBytesMessage

 readUTF
writeUTF

 readDouble
readFloat
readInt
readLong
readShort
readUnsignedShor
t
writeDouble
writeFloat
writeInt
writeLong
writeShort

 readBoolean
readObject
writeBoolean
writeObject

 readByte
readUnsignedByte
readBytes
readChar
writeByte
writeBytes
writeChar

JMSStreamMessag
e

 readString
writeString

 readDouble
readFloat
readInt
readLong
readShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

 readBoolean
readObject
writeBoolean
writeObject

 readByte
readBytes
readChar
writeByte
writeBytes
writeChar

 JMSMapMessage

 getString
setString

 getDouble
getFloat
getInt
getLong
getShort
setDouble
setFloat
setInt
setLong
setShort

 getBoolean
getObject
setBoolean
setObject

 getByte
getBytes
readChar
setByte
setBytes
setChar

Related concepts
JMS message conversion approaches
A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.
JMS client message conversion and encoding
The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.
Queue manager data conversion

Developing applications for IBM MQ 171

Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.
Related tasks
Exchanging a formatted record with a non-JMS application
Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.

JMS client message conversion and encoding
The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.

Conversion and encoding occur when Java primitives or objects are read or written to and from JMS
messages. The conversion is called JMS client data conversion to distinguish it from queue manager data
conversion and application data conversion. The conversion takes place strictly when data is read from
or written to a JMS message. Text is converted to and from the internal 16 bit Unicode representation 3
to the character set used for text in messages. Numeric data is converted to and Java primitive numeric
types to the encoding defined for the message. Whether conversion is performed, and what type of
conversion is performed, depends on the JMS message type and the read or write operation.

Table 33 on page 172 categorizes the read and write methods for different JMS message types by the
type of conversion performed. The conversions types are described in the text following the table.

Table 33. Message types and conversion types

Conversion type

Message type Text Numeric Other None

JMSObjectMessag
e

 getObject
setObject

 JMSTextMessage getText
setText

 JMSBytesMessage

 readUTF
writeUTF

 readDouble
readFloat
readInt
readLong
readShort
readUnsignedShor
t
writeDouble
writeFloat
writeInt
writeLong
writeShort

 readBoolean
readObject
writeBoolean
writeObject

 readByte
readUnsignedByte
readBytes
readChar
writeByte
writeBytes
writeChar

3 Some Unicode representation requires more than 16 bits. See a Java SE reference.

172 Developing Applications for IBM MQ

Table 33. Message types and conversion types (continued)

Conversion type

Message type Text Numeric Other None

JMSStreamMessag
e

 readString
writeString

 readDouble
readFloat
readInt
readLong
readShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

 readBoolean
readObject
writeBoolean
writeObject

 readByte
readBytes
readChar
writeByte
writeBytes
writeChar

 JMSMapMessage

 getString
setString

 getDouble
getFloat
getInt
getLong
getShort
setDouble
setFloat
setInt
setLong
setShort

 getBoolean
getObject
setBoolean
setObject

 getByte
getBytes
readChar
setByte
setBytes
setChar

Text

The default CodedCharacterSetId for a destination is 1208, UTF-8. By default, text is converted
from Unicode and sent as a UTF-8 text string. On receive, the text is converted from the coded
character set in the message received by the client, into Unicode.

The setText and writeString methods convert text from Unicode into the character set defined
for the destination. An application can override the destination character set by setting the message
property JMS_IBM_CHARACTER_SET. JMS_IBM_CHARACTER_SET, when sending a message must be
a numeric coded character set identifier 4 .

The code snippets in “Sending and receiving a JMSTextmessage” on page 175 send two messages.
One is sent in the character set defined for the destination and the other in character set 37, defined
by the application.

The getText and readString methods convert the text in the message from the
character set defined in the message into Unicode. The methods use the code page
defined in the message property, JMS_IBM_CHARACTER_SET. The code page is mapped from
MQRFH2.CodedCharacterSetId unless the message is an MQ-type message and has no MQRFH2.
If the message is a MQ-type message, with no MQRFH2, the code page is mapped from
MQMD.CodedCharacterSetId.

The code snippet in Figure 29 on page 176 receives the message that was sent to the destination. The
text in the message is converted from code page IBM037 back into Unicode.

Note: A simple way to check that the text is converted to coded character set 37 is to use IBM MQ
Explorer. Browse the queue and show the properties of the message before it is retrieved.

Contrast the code snippet in Figure 28 on page 176 with the incorrect code snippet in Figure 25 on
page 174. In the incorrect snippet the text string is converted twice, once by the application, and
again by IBM MQ.

4 When receiving a message JMS_IBM_CHARACTER_SET is a Java Charset code page name.

Developing applications for IBM MQ 173

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
tmo.setText(new String("Sent in EBCDIC character set 37".getBytes(CCSID.getCodepage(37))));
producer.send(tmo);

Figure 25. Incorrect code page conversion

The writeUTF method converts text from Unicode to 1208, UTF-8. The text string is prefaced with a
2 byte length. The maximum length of the text string is 65534 bytes. The readUTF method reads an
item in a message written by the writeUTF method. It reads exactly the number of bytes written by
the writeUTF method.

Numeric

The default numeric encoding for a destination is Native. The Native encoding constant for Java
has the value 273, x'00000111', which is the same for all platforms. On receive, the numbers in
the message are correctly transformed into numeric Java primitives. The transformation uses the
encoding defined in the message and the type returned by the read method.

The send method converts numbers that are added to a message by the set and write into the
numeric encoding defined for the destination. The destination encoding can be overridden for a
message by an application setting the message property, JMS_IBM_ENCODING ; for example:

message.setIntProperty(WMQConstants.JMS_IBM_ENCODING,
WMQConstants.WMQ_ENCODING_INTEGER_REVERSED);

The get and read numeric methods convert numbers in the message from the numeric
encoding defined in the message. They convert the numbers to the type that is specified by the
read or get method; see The ENCODING property. The methods use the encoding defined in
JMS_IBM_ENCODING. The encoding is mapped from MQRFH2.Encoding unless the message is an
MQ-type message and has no MQRFH2. If the message is a MQ-type message, with no MQRFH2, then
the methods use the encoding defined in MQMD.Encoding.

The example in Figure 30 on page 176 shows an application encoding a number in the destination
format and sending it in a JMSStreamMessage. Compare the example in Figure 30 on page 176 to
the example in Figure 31 on page 176. The difference is that JMS_IBM_ENCODING must be set in a
JMSBytesMessage.

Note: A simple way to check that the number is encoded correctly is to use IBM MQ Explorer. Browse
the queue and show the properties of the message before it is consumed.

Other

The boolean methods encode true and false as x'01' and x'00' in a JMSByteMessage,
JMSStreamMessage, and JMSMapMessage.

The UTF methods encode and decode Unicode into UTF-8 text strings. The strings are limited to less
than 65536 characters, and are preceded by the 2 byte length field.

The Object methods wrap primitive types as objects. Numeric and text types are encoded or
converted as if the primitive types had been read or written using the numeric and text methods.

None

The readByte, readBytes, readUnsignedByte, writeByte, and writeBytes methods get or
put single bytes, or arrays of bytes, between the application and the message without conversion. The
readChar and writeChar methods get and put 2 byte Unicode characters between the application
and the message without conversion.

Using the readBytes and writeBytes methods, the application can perform its own code point
conversion, as in “Sending and receiving text in a JMSBytesMessage” on page 177.

174 Developing Applications for IBM MQ

IBM MQ does not perform any code page conversion in the client as the message is a
JMSBytesMessage, and because the readBytes and writeBytes methods are used. Nonetheless,
if the bytes represent text, make sure that code page used by the application matches the coded
character set of the destination. The message might be converted again by a queue manager
conversion exit. Another possibility is that the receiving JMS client program might follow the
convention of converting any byte arrays representing text in the message into strings or characters
using the JMS_IBM_CHARACTER_SET property in the message.

In this example the client uses the destination coded character set for its conversion:

bytes.writeBytes("In the destination code page".getBytes(
CCSID.getCodepage(((MQDestination) destination)
.getIntProperty(WMQConstants.WMQ_CCSID))));

Alternatively, the client might have chosen a code page and then set the corresponding coded
character set in the JMS_IBM_CHARACTER_SET property of the message. The IBM MQ classes for
Java use JMS_IBM_CHARACTER_SET to set the CodedCharacterSetId field in the JMS properties
in the MQRFH2, or in the message descriptor, MQMD:

String codePage = CCSID.getCodepage(37);
message.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, codePage);
5

If a byte array is written into a JMSStringMessage or JMSMapMessage, IBM MQ classes for JMS
does not perform data conversion, as the bytes are typed as hexadecimal data not as text in the
JMSStringMessage and JMSMapMessage.

If the bytes represent characters in your application, you must take into account what code points to
read and write to the message. The code in Figure 26 on page 175 follows the convention of using
the destination coded character set. If you create the string using the default character set for the
JVM, the byte contents depend on the platform. A JVM on Windows typically has a default Charset
of windows-1252, and AIX and Linux has UTF-8. For interchange between Windows, and AIX and
Linux, you have to select an explicit code page for exchanging text as bytes.

StreamMessage smo = producer.session.createStreamMessage();
smo.writeBytes("123".getBytes(CCSID.getCodepage(((MQDestination) destination)
.getIntProperty(WMQConstants.WMQ_CCSID))));

Figure 26. Writing bytes representing a string in a JMSStreamMessage using the destination character
set

Examples

Sending and receiving a JMSTextmessage

A text message cannot contain text in different character sets. The example shows text in different
character sets, sent in two different messages.

5 SetStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET, codePage) currently
accepts only numeric character set identifiers.

Developing applications for IBM MQ 175

TextMessage tmo = session.createTextMessage();
tmo.setText("Sent in the character set defined for the destination");
producer.send(tmo);

Figure 27. Send text message in the character set defined by the destination

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
tmo.setText("Sent in EBCDIC character set 37");
producer.send(tmo);

Figure 28. Send text message in ccsid 37

TextMessage tmi = (TextMessage)consumer.receive();
System.out.println(tmi.getText());
...
Sent in the character set defined for the destination

Figure 29. Receive text message

Encoding examples

Examples showing a number being sent in the encoding defines for a destination. Notice that you must set
the JMS_IBM_ENCODING property of a JMSBytesMessage to the value specified for the destination.

StreamMessage smo = session.createStreamMessage();
smo.writeInt(256);
producer.send(smo);
...
StreamMessage smi = (StreamMessage)consumer.receive();
System.out.println(smi.readInt());
...
256

Figure 30. Sending a number using the destination encoding in a JMSStreamMessage

BytesMessage bmo = session.createBytesMessage();
bmo.writeInt(256);
int encoding = ((MQDestination) (destination)).getIntProperty
 (WMQConstants.WMQ_ENCODING)
bmo.setIntProperty(WMQConstants.JMS_IBM_ENCODING, encoding);
producer.send(bmo);
...
BytesMessage bmi = (BytesMessage)consumer.receive();
System.out.println(bmi.readInt());
...
256

Figure 31. Sending a number using the destination encoding in a JMSBytesMessage

176 Developing Applications for IBM MQ

Sending and receiving text in a JMSBytesMessage

The code in Figure 32 on page 177 sends a string in a BytesMessage. For simplicity, the example sends a
single string, for which a JMSTextMessage is more appropriate. To receive a text string in bytes message
containing a mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH
in Figure 33 on page 177. Even for a string with a fixed number of characters, the length of the byte
representation might be longer.

BytesMessage bytes = session.createBytesMessage();
String codePage = CCSID.getCodepage(((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_CCSID));
bytes.writeBytes("In the destination code page".getBytes(codePage));
producer.send(bytes);

Figure 32. Sending a String in a JMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();
int TEXT_LENGTH = new Long(message.getBodyLength())).intValue();
byte[] textBytes = new byte[TEXT_LENGTH];
message.readBytes(textBytes, TEXT_LENGTH);
String codePage = message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 33. Receiving a String from a JMSBytesMessage

Related concepts
JMS message conversion approaches
A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.
Queue manager data conversion
Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.
Related tasks
Exchanging a formatted record with a non-JMS application
Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.
Related reference
JMS message types and conversion
The choice of message type affects your approach to message conversion. The interaction of
message conversion and message type is described for the JMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

Queue manager data conversion
Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.

The queue manager can convert character and numeric data in message data using the values of
CodedCharacterSetId, Encoding, and Format set for the message data. For non-JMS applications
the conversion capability has always been available by setting the GetMessageOption, GMO_CONVERT.

Developing applications for IBM MQ 177

The queue manager is able to convert messages that are sent to JMS clients. Queue manager
conversion is controlled by setting the destination property, WMQ_RECEIVE_CONVERSION, to
WMQ_RECEIVE_CONVERSION_QMGR, or WMQ_RECEIVE_CONVERSION_CLIENT_MSG. The application can
change the destination setting:

((MQDestination)destination).setIntProperty(
 WMQConstants.WMQ_RECEIVE_CONVERSION,
 WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Or,

((MQDestination)destination).setReceiveConversion
 (WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Figure 34. Enable queue manager data conversion

Queue manager data conversion for a JMS client takes place when the client calls a consumer.receive
method. Text data is transformed into UTF-8 (1208) by default. Subsequent read and get methods decode
text in the received data from UTF-8, creating Java text primitives in their internal Unicode encoding.
UTF-8 is not the only target character set from queue manager data conversion. You can choose a
different CCSID by setting the WMQ_RECEIVE_CCSID destination property.

An application can also change the destination setting, for example setting it to 437, DOS-US:

((MQDestination)destination).setIntProperty
(WMQConstants.WMQ_RECEIVE_CCSID, 437);

Or,

((MQDestination)destination).setReceiveCCSID(437);

Figure 35. Set target coded character set for queue manager conversion

The reason for changing WMQ_RECEIVE_CCSID is specialized; the chosen CCSID makes no difference to
the text objects created in the JVM. However, some JVMs, on some platforms, might not be able to handle
conversion from the CCSID of text in the message into Unicode. The option gives you a choice of CCSID
for any text delivered to the client in the message. Some JMS client platforms have had problems with
message text being delivered in UTF-8.

The JMS code is equivalent to the bold text in the C code in Figure 36 on page 179,

178 Developing Applications for IBM MQ

gmo.Options = MQGMO_WAIT /* wait for new messages */
 | MQGMO_NO_SYNCPOINT /* no transaction */
 | MQGMO_CONVERT; /* convert if necessary */

 while (CompCode != MQCC_FAILED) {
 buflen = sizeof(buffer) - 1; /* buffer size available for GET */
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;

 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 buffer, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

Figure 36. Code snippet from amqsget0.c

Note:

Queue manager conversion is only performed on the message data that has a known IBM MQ format.
MQSTR, or MQCIH are examples of known formats that are predefined. A known format can also be
user-defined format, as long as you have supplied a data-conversion exit.

Messages constructed as JMSTextMessage, JMSMapMessage and JMSStreamMessage, have a MQSTR
format, and can be converted by the queue manager.

Related concepts
JMS message conversion approaches
A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.
JMS client message conversion and encoding
The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.
“Invoking the data-conversion exit” on page 948
A data-conversion exit is a user-written exit that receives control during the processing of an MQGET call.
Related tasks
Exchanging a formatted record with a non-JMS application
Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.
Related reference
JMS message types and conversion
The choice of message type affects your approach to message conversion. The interaction of
message conversion and message type is described for the JMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

Exchanging a formatted record with a non-JMS application
Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The

Developing applications for IBM MQ 179

exchange of a formatted message with a non-JMS application can take place with or without calling a data
conversion exit.

Before you begin
You might be able to design a simpler solution to exchanging messages with a non-JMS application using
a JMSTextMessage. Eliminate that possibility before following the steps in this task.

About this task
A JMS client is easier to write if it is not involved in the details of formatting JMS messages
exchanged with other JMS clients. As long as the message type is JMSTextMessage, JMSMapMessage,
JMSStreamMessage, or JMSObjectMessage, IBM MQ looks after the details of formatting the message.
IBM MQ deals with differences in code pages and numeric encoding on different platforms.

You can use these message types to exchange messages with non-JMS applications. To do so, you must
understand how these messages are constructed by IBM MQ classes for JMS. You might be able to
modify the non-JMS application to interpret the messages; see “Mapping JMS messages onto IBM MQ
messages” on page 142.

An advantage of using one of these message types is the JMS client programming does not depend on
the type of application that it is exchanging messages with. A disadvantage is that it might require a
modification to another program, and you might not be able to change the other program.

An alternative approach is to write a JMS client application that can deal with existing message formats.
Often existing messages are fixed format and contain a mixture of unformatted data, text, and numbers.
Use the steps in this task, and the example JMS client in “Writing classes to encapsulate a record layout
in a JMSBytesMessage” on page 183, as a starting point for building a JMS client that can exchange
formatted records with non-JMS applications.

Procedure
1. Define the record layout, or use one of the predefined IBM MQ header classes.

For handling predefined IBM MQ headers, see Handling IBM MQ message headers.

Figure 37 on page 181 is an example of a user defined, fixed-length record layout, which can be
processed by the data conversion utility.

2. Create the data conversion exit.

Follow the instructions in Writing a data-conversion exit program to write a data conversion exit.

To try out the example in “Writing classes to encapsulate a record layout in a JMSBytesMessage” on
page 183, name the data conversion exit MYRECORD.

3. Write Java classes to encapsulate the record layout, and sending and receiving record. Two
approaches you might take are:

• Write a class to that reads and writes the JMSBytesMessage that contains the record; see “Writing
classes to encapsulate a record layout in a JMSBytesMessage” on page 183.

• Write a class extending com.ibm.mq.header.Header to define the data structure of the record;
see Creating classes for new header types.

4. Decide what coded character set to exchange messages in.

See Choosing an approach to message conversion: receiver makes good.
5. Configure the destination to exchange MQ-type messages, without a JMS MQRFH2 header.

Both the sending and receiving destination must be configured to exchange MQ-type messages. You
can use the same destination for both sending and receiving.

The application can override the destination message body property:

((MQDestination)destination).setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ);

180 Developing Applications for IBM MQ

The example in “Writing classes to encapsulate a record layout in a JMSBytesMessage” on page 183
overrides the destination message body property, ensuring an MQ-style message is sent.

6. Test the solution with JMS and non-JMS applications

Useful tools to test a data conversion exit are:

• The amqsgetc0.c sample program is useful to test receiving a message sent by a JMS client.
See the suggested modifications to use the example header, RECORD.h, in Figure 38 on page
182. With the modifications, amqsgetc0.c receives a message sent by the example JMS client,
TryMyRecord.java ; see “Writing classes to encapsulate a record layout in a JMSBytesMessage”
on page 183.

• The sample IBM MQ browse program, amqsbcg0.c, is useful to inspect the contents of the message
header, the JMS header, MQRFH2, and the message contents.

• The rfhutil program, previously available in SupportPac IH03, allows test messages to be
captured and stored in files, and then used to drive Message Flows. Output messages can also be
read and displayed in a variety of formats. The formats include two types of XML as well as matching
against a COBOL copybook. The data can be in EBCDIC or ASCII. An RFH2 header can be added to
the message before the message is sent.

If you try to receive messages using the modified amqsgetc0.c sample program, and get an error
with reason code 2080, check whether the message has an MQRFH2. The modifications assume that
the message has been sent to a destination that specifies no MQRFH2.

Examples

struct RECORD { MQCHAR StrucID[4];
 MQLONG Version;
 MQLONG StructLength;
 MQLONG Encoding;
 MQLONG CodeCharSetId;
 MQCHAR Format[8];
 MQLONG Flags;
 MQCHAR RecordData[32];
 };

Figure 37. RECORD.h

Developing applications for IBM MQ 181

https://github.com/ibm-messaging/mq-rfhutil

• Declare the RECORD.h data structure

struct tagRECORD {
 MQCHAR4 StrucId;
 MQLONG Version;
 MQLONG StrucLength;
 MQLONG Encoding;
 MQLONG CCSID;
 MQCHAR8 Format;
 MQLONG Flags;
 MQCHAR32 RecordData;
 };
typedef struct tagRECORD RECORD;
 typedef RECORD MQPOINTER PRECORD;
 RECORD record;
 PRECORD pRecord = &(record);

• Modify the MQGET call to use RECORD,

1. Before modification:

 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 buffer, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

2. After modification:

 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 sizeof(RECORD), /* buffer length */
 pRecord, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

• Change the print statement,

1. From:

buffer[messlen] = '\0'; /* add terminator */
printf("message <%s>\n", buffer);

2. To:

/* buffer[messlen] = '\0'; add terminator */
printf("ccsid <%d>, flags <%d>, message <%32.32s>\n \0",
 md.CodedCharSetId, record.Flags, record.RecordData);

Figure 38. Modify amqsget0.c

Related concepts
JMS message conversion approaches
A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.
JMS client message conversion and encoding

182 Developing Applications for IBM MQ

The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.
Queue manager data conversion
Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. JMS clients receiving messages also use queue manager data conversion, which is
optional.
Utility for creating conversion-exit code
Related reference
JMS message types and conversion
The choice of message type affects your approach to message conversion. The interaction of
message conversion and message type is described for the JMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

Writing classes to encapsulate a record layout in a JMSBytesMessage
The purpose of this task is to explore, by example, how to combine data conversion and a fixed record
layout in a JMSBytesMessage. In the task, you create some Java classes to exchange an example record
structure in a JMSBytesMessage. You can modify the example to write classes to exchange other record
structures.

A JMSBytesMessage is the best choice of JMS message type to exchange mixed data type records with
non-JMS programs. It has no additional data inserted into the message body by the JMS provider. It is
therefore the best choice of message type to use if a JMS client program interoperates with an existing
IBM MQ program. The main challenge in using a JMSBytesMessage comes with matching the encoding
and character set expected by the other program. A solution is to create a class that encapsulates the
record. A class that encapsulates reading and writing a JMSBytesMessage, for a specific record type,
makes it easier to send and receive fixed-format records in a JMS program. By capturing the generic
aspects of the interface in an abstract class, much of the solution can be reused for different record
formats. Different record formats can be implemented in classes that extend the abstract generic class.

An alternative approach is to extend the com.ibm.mq.headers.Header class. The Header class has
methods, such as addMQLONG, to build a record format in a more declarative way. A disadvantage of using
the Header class is getting and setting attributes uses a more complicated interpretative interface. Both
approaches result in much the same amount of application code.

A JMSBytesMessage can encapsulate only a single format, in addition to an MQRFH2, in one message,
unless each record uses the same format, coded character set, and encoding. The format, encoding, and
character set of a JMSBytesMessage are properties of all of the message following the MQRFH2. The
example is written on the assumption that a JMSBytesMessage contains only one user record.

Before you begin
1. Your skill level: you must be familiar with Java programming and JMS. No instructions are provided

about setting up the Java development environment. It is advantageous to have written a program
to exchange a JMSTextMessage, JMSStreamMessage, or JMSMapMessage. You can then see the
differences in exchanging a message using a JMSBytesMessage.

2. The example requires IBM WebSphere MQ 7.0.
3. The example was created using the Java perspective of the Eclipse workbench. It requires JRE 6.0

or higher. You can use the Java perspective in IBM MQ Explorer to develop and run the Java classes.
Alternatively, use your own Java development environment.

4. Using IBM MQ Explorer makes setting up the test environment, and debugging, simpler than using
command-line utilities.

About this task
You are guided through creating two classes: RECORD and MyRecord. Together these two classes
encapsulate a fixed-format record. They have methods to get and set attributes. The get method reads
the record from a JMSBytesMessage and the put method writes a record to a JMSBytesMessage.

Developing applications for IBM MQ 183

The purpose of the task is not to create a production quality class that you can reuse. You might
choose to use the examples in the task to get started on your own classes. The purpose of the task
is to provide you with guidance notes, primarily about using character sets, formats, and encoding,
when using a JMSBytesMessage. Each step in creating the classes is explained, and aspects of using
JMSBytesMessage, which are sometimes overlooked, are described.

The RECORD class is abstract and defines some common fields for a user record. The common fields are
modeled on the standard IBM MQ header layout of having an eye catcher, a version, and a length field.
The encoding, character set, and format fields, found in many IBM MQ headers, are omitted. Another
header cannot follow a user-defined format. The MyRecord class, which extends the RECORD class, does
so by literally extending the record with additional user fields. A JMSBytesMessage, created by the
classes, can be processed by the queue manager data conversion exit.

“Classes used to run example” on page 190 includes a full listing of RECORD and MyRecord. It also
includes listings of the extra "scaffolding" classes to test the RECORD and MyRecord. The extra classes
are:
TryMyRecord

The main program to test RECORD and MyRecord.
EndPoint

An abstract class that encapsulates the JMS connection, destination, and session in a single class. Its
interface just meets the needs of testing the RECORD and MyRecord classes. It is not an established
design pattern for writing JMS applications.

Note: The Endpoint class includes this line of code after creating a destination:

((MQDestination)destination).setReceiveConversion
 (WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

In V7.0, from V7.0.1.5, it is necessary to turn on queue manager conversion. It is disabled by default.
In V7.0, up to V7.0.1.4 queue manager conversion is enabled by default, and this line of code causes
an error.

MyProducer and MyConsumer
Classes that extend EndPoint, and create a MessageConsumer and MessageProducer, connected
and ready to accept requests.

Together all the classes make up a complete application you can build and experiment with, to
understand how to use data conversion in a JMSBytesMessage.

Procedure
1. Create an abstract class to encapsulate the standard fields in an IBM MQ header, with a default

constructor. Later, you extend the class to tailor the header to your requirements.

 public abstract class RECORD implements Serializable {
 private static final long serialVersionUID = -1616617232750561712L;
 protected final static int UTF8 = 1208;
 protected final static int MQLONG_LENGTH = 4;
 protected final static int RECORD_STRUCT_ID_LENGTH = 4;
 protected final static int RECORD_VERSION_1 = 1;
 protected final String RECORD_STRUCT_ID = "BLNK";
 protected final String RECORD_TYPE = "BLANK ";
 private String structID = RECORD_STRUCT_ID;
 private int version = RECORD_VERSION_1;
 private int structLength = RECORD_STRUCT_ID_LENGTH + MQLONG_LENGTH * 2;
 private int headerEncoding = WMQConstants.WMQ_ENCODING_NATIVE;
 private String headerCharset = "UTF-8";
 private String headerFormat = RECORD_TYPE;

 public RECORD() {
 super();
 }

184 Developing Applications for IBM MQ

Note:

a. The attributes, structID to nextFormat, are listed in the order they are laid out in a standard
IBM MQ message header.

b. The attributes, format, messageEncoding, and messageCharset, describe the header itself,
and are not part of the header.

c. You must decide whether to store the coded character set identifier or character set of the record.
Java uses character sets and IBM MQ messages use coded character set identifiers. The example
code uses character sets.

d. int is serialized to MQLONG by IBM MQ. MQLONG is 4 bytes.
2. Create the getters and setters for the private attributes.

a) Create or generate the getters:

 public String getHeaderFormat() { return headerFormat; }
 public int getHeaderEncoding() { return headerEncoding; }
 public String getMessageCharset() { return headerCharset; }
 public int getMessageEncoding() { return headerEncoding; }
 public String getStructID() { return structID; }
 public int getStructLength() { return structLength; }
 public int getVersion() { return version; }

b) Create or generate the setters:

 public void setHeaderCharset(String charset) {
 this.headerCharset = charset; }
 public void setHeaderEncoding(int encoding) {
 this.headerEncoding = encoding; }
 public void setHeaderFormat(String headerFormat) {
 this.headerFormat = headerFormat; }
 public void setStructID(String structID) {
 this.structID = structID; }
 public void setStructLength(int structLength) {
 this.structLength = structLength; }
 public void setVersion(int version) {
 this.version = version; }
}

3. Create a constructor to create a RECORD instance from a JMSBytesMessage.

 public RECORD(BytesMessage message) throws JMSException, IOException,
 MQDataException {
 super();
 setHeaderCharset(message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET));
 setHeaderEncoding(message.getIntProperty(WMQConstants.JMS_IBM_ENCODING));
 byte[] structID = new byte[RECORD_STRUCT_ID_LENGTH];
 message.readBytes(structID, RECORD_STRUCT_ID_LENGTH);
 setStructID(new String(structID, getMessageCharset()));
 setVersion(message.readInt());
 setStructLength(message.readInt());
 }

Note:

a. The messageCharset and messageEncoding, are captured from the message properties,
as they override the values set for the destination. format is not updated. The example
does no error checking. If the Record(BytesMessage) constructor is called, it is assumed
that the JMSBytesMessage is a RECORD type message. The line "setStructID(new
String(structID, getMessageCharset()))" sets the eye catcher.

b. The lines of code that complete the method deserialize fields in the message, in order, updating
the default values set in the RECORD instance.

4. Create a put method to write the header fields to a JMSBytesMessage.

Developing applications for IBM MQ 185

 protected BytesMessage put(MyProducer myProducer) throws IOException,
 JMSException, UnsupportedEncodingException {
 setHeaderEncoding(myProducer.getEncoding());
 setHeaderCharset(myProducer.getCharset());
 myProducer.setMQClient(true);
 BytesMessage bytes = myProducer.session.createBytesMessage();
 bytes.setStringProperty(WMQConstants.JMS_IBM_FORMAT, getHeaderFormat());
 bytes.setIntProperty(WMQConstants.JMS_IBM_ENCODING, getHeaderEncoding());
 bytes.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET,
 myProducer.getCCSID());
 bytes.writeBytes(String.format("%1$-" + RECORD_STRUCT_ID_LENGTH + "."
 + RECORD_STRUCT_ID_LENGTH + "s", getStructID())
 .getBytes(getMessageCharset()), 0, RECORD_STRUCT_ID_LENGTH);
 bytes.writeInt(getVersion());
 bytes.writeInt(getStructLength());
 return bytes;
 }

Note:

a. MyProducer encapsulates the JMS Connection, Destination, Session, and
MessageProducer in a single class. MyConsumer, used later on, encapsulates the JMS
Connection, Destination, Session, and MessageConsumer in a single class.

b. For a JMSBytesMessage, if the encoding is other than Native, the encoding must be
set in the message. The destination encoding is copied to the message encoding attribute,
JMS_IBM_CHARACTER_SET, and saved as an attribute of the RECORD class.

i) "setMessageEncoding(myProducer.getEncoding());" calls "(((MQDestination)
destination).getIntProperty(WMQConstants.WMQ_ENCODING));" to get the
destination encoding.

ii) "Bytes.setIntProperty(WMQConstants.JMS_IBM_ENCODING,
getMessageEncoding());" sets the message encoding.

c. The character set used to transform text into bytes is obtained from the destination, and saved as
an attribute of the RECORD class. It is not set in the message, because it is not used by the IBM
MQ classes for JMS when writing a JMSBytesMessage.

"messageCharset = myProducer.getCharset();" calls

 public String getCharset() throws UnsupportedEncodingException,
 JMSException {
 return CCSID.getCodepage(getCCSID());
}

It gets the Java character set from a coded character set identifier.

" CCSID.getCodepage(ccsid) " is in the package com.ibm.mq.headers. The ccsid is
obtained from another method in MyProducer, which queries the destination:

 public int getCCSID() throws JMSException {
 return (((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_CCSID));
 }

d. "myProducer.setMQClient(true);" overrides the destination setting for the client type,
forcing it to an IBM MQ MQI client. You might prefer to omit this line of code, as it obscures
an administrative configuration error.

"myProducer.setMQClient(true);" calls:

((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ); }
if (!getMQDest()) setMQBody();

186 Developing Applications for IBM MQ

The code has the side-effect of setting the IBM MQ body style to unspecified, if it must override a
setting of JMS.

Note:

The IBM MQ classes for JMS write the format, encoding, and character set identifier of the
message into the message descriptor, MQMD, or into the JMS header, MQRFH2. It depends on
whether the message has an IBM MQ style body. Do not set the MQMD fields manually.

A method exists to set the message descriptor properties manually. It uses the JMS_IBM_MQMD_*
properties. You must set the destination property, WMQ_MQMD_WRITE_ENABLED to set the
JMS_IBM_MQMD_* properties:

((MQDestination)destination).setMQMDWriteEnabled(true);

You must set the destination property, WMQ_MQMD_READ_ENABLED, to read the properties.

Use the JMS_IBM_MQMD_* only if you take full control over the whole message payload. Unlike
the JMS_IBM_* properties, the JMS_IBM_MQMD_* properties do not control how IBM MQ classes
for JMS construct a JMS message. It is possible to create message descriptor properties that
conflict with the properties of the JMS message.

e. The lines of code that completes the method serialize the attributes in class as fields in the
message.

The string attributes are padded with blanks. The strings are converted to bytes using the
character set defined for the record, and truncated to the length of the message fields.

5. Complete the class by adding the imports.

 package com.ibm.mq.id;
import java.io.IOException;
import java.io.Serializable;
import java.io.UnsupportedEncodingException;
import jakarta.jms.BytesMessage;
import jakarta.jms.JMSException;
import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.msg.client.wmq.WMQConstants;

6. Create a class to extend the RECORD class to include additional fields. Include a default constructor.

 public class MyRecord extends RECORD {
 private static final long serialVersionUID = -370551723162299429L;
 private final static int FLAGS = 1;
 private final static String STRUCT_ID = "MYRD";
 private final static int DATA_LENGTH = 32;
 private final static String FORMAT = "MYRECORD";
 private int flags = FLAGS;
 private String recordData = "ABCDEFGHIJKLMNOPQRSTUVWXYZ012345";

 public MyRecord() {
 super();
 super.setStructID(STRUCT_ID);
 super.setHeaderFormat(FORMAT);
 super.setStructLength(super.getStructLength() + MQLONG_LENGTH
 + DATA_LENGTH);
 }

Note:

a. The RECORD subclass, MyRecord, customizes the eye catcher, format, and length of the header.
7. Create or generate the getters and setters.

a) Create the getters:

 public int getFlags() { return flags; }

Developing applications for IBM MQ 187

 public String getRecordData() { return recordData; } .

b) Create the setters:

 public void setFlags(int flags) {
 this.flags = flags; }
 public void setRecordData(String recordData) {
 this.recordData = recordData; }
}

8. Create a constructor to create a MyRecord instance from a JMSBytesMessage.

 public MyRecord(BytesMessage message) throws JMSException, IOException,
 MQDataException {
 super(message);
 setFlags(message.readInt());
 byte[] recordData = new byte[DATA_LENGTH];
 message.readBytes(recordData, DATA_LENGTH);
 setRecordData(new String(recordData, super.getMessageCharset()));
 }

Note:

a. The fields that make up the standard message template are read first by the RECORD class.
b. The recordData text is converted to String using the character set property of the message.

9. Create a static method to get a message from a consumer and create a new MyRecord instance.

 public static MyRecord get(MyConsumer myConsumer) throws JMSException,
 MQDataException, IOException {
 BytesMessage message = (BytesMessage) myConsumer.receive();
 return new MyRecord(message);
 }

Note:

a. In the example, for brevity, the MyRecord(BytesMessage) constructor is called from the static
get method. Typically, you might separate receiving the message from creating a new MyRecord
instance.

10. Create a put method to append the customer fields to a JMSBytesMessage containing a message
header.

 public BytesMessage put(MyProducer myProducer) throws JMSException,
 IOException {
 BytesMessage bytes = super.put(myProducer);
 bytes.writeInt(getFlags());
 bytes.writeBytes(String.format("%1$-" + DATA_LENGTH + "."
 + DATA_LENGTH + "s",getRecordData())
 .getBytes(super.getMessageCharset()), 0, DATA_LENGTH);
 myProducer.send(bytes);
 return bytes;
 }

Note:

a. The method calls in the code serialize the attributes in the MyRecord class as fields in the
message.

• The recordData String attribute is padded with blanks, converted to bytes using the
character set defined for the record, and truncated to the length of the RecordData fields.

11. Complete the class by adding the include statements.

188 Developing Applications for IBM MQ

 package com.ibm.mq.id;
import java.io.IOException;
import jakarta.jms.BytesMessage;
import jakarta.jms.JMSException;
import com.ibm.mq.headers.MQDataException;

Results
• The results from running the TryMyRecord class:

– Sending message in coded character set 37, and using a queue manager conversion exit:

Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
In flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 273 CCSID UTF-8

– Sending message in coded character set 37, and not using a queue manager conversion exit:

Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
In flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID IBM037

• The results from modifying the TryMyRecord class not to receive the message, and instead receiving it
using the modified amqsget0.c sample. The modified sample accepts a formatted record; see Figure
38 on page 182 in “Exchanging a formatted record with a non-JMS application” on page 179.

– Sending message in coded character set 37, and using a queue manager conversion exit:

Sample AMQSGET0 start
ccsid <850>, flags <1>, message <ABCDEFGHIJKLMNOPQRSTUVWXYZ012345>
no more messages
Sample AMQSGET0 end

– Sending message in coded character set 37, and not using a queue manager conversion exit:

Sample AMQSGET0 start
MQGET ended with reason code 2110
ccsid <37>, flags <1>, message <--+-+ãÃ++ÐÊËÈiÐÎÐ+ÔÒõõμþÞÚ-±=¾¶§>
no more messages
Sample AMQSGET0 end

To try out the example and experiment with different code pages and a data conversion exit. Create
the Java classes, configure IBM MQ, and run the main program, TryMyRecord ; see “#unique_196/
unique_196_Connect_42_Try” on page 190.

1. Configure IBM MQ and JMS to run the example. The instructions are for running the example on
Windows.

a. Create a queue manager

crtmqm -sa -u SYSTEM.DEAD.LETTER.QUEUE QM1
strmqm QM1

b. Create a queue

echo DEFINE QL('Q1') REPLACE | runmqsc QM1

c. Create a JNDI directory

cd c:\
md JNDI-Directory

Developing applications for IBM MQ 189

d. Switch to the JMS bin directory

The JMS Administration program must be run from here. The path is
MQ_INSTALLATION_PATH\java\bin.

e. Create the following JMS definitions in a file called JMSQM1Q1.txt

DEF CF(QM1) PROVIDERVERSION(7) QMANAGER(QM1)
DEF Q(Q1) CCSID(37) ENCODING(RRR) MSGBODY(MQ) QMANAGER(QM1) QUEUE(Q1) TARGCLIENT(MQ)
VERSION(7)
END

f. Run the JMSAdmin program to create the JMS resources

JMSAdmin < JMSQM1Q1.txt

2. You can create, alter, and browse the definitions you have created using IBM MQ Explorer.
3. Run TryMyRecord.

Classes used to run example
The classes listed in the following code blocks are also available in a compressed file. Download
jm25529_.zip or jm25529_.tar.gz.

TryMyRecord

package com.ibm.mq.id;
public class TryMyRecord {
 public static void main(String[] args) throws Exception {
 MyProducer producer = new MyProducer();
 MyRecord outrec = new MyRecord();
 System.out.println("Out flags " + outrec.getFlags() + " text "
 + outrec.getRecordData() + " Encoding "
 + producer.getEncoding() + " CCSID " + producer.getCCSID()
 + " MQ " + producer.getMQDest());
 outrec.put(producer);
 System.out.println("Out flags " + outrec.getFlags() + " text "
 + outrec.getRecordData() + " Encoding "
 + producer.getEncoding() + " CCSID " + producer.getCCSID()
 + " MQ " + producer.getMQDest());
 MyRecord inrec = MyRecord.get(new MyConsumer());
 System.out.println("In flags " + inrec.getFlags() + " text "
 + inrec.getRecordData() + " Encoding "
 + inrec.getMessageEncoding() + " CCSID "
 + inrec.getMessageCharset());
 }
}

RECORD

package com.ibm.mq.id;
import java.io.IOException;
import java.io.Serializable;
import java.io.UnsupportedEncodingException;
import jakarta.jms.BytesMessage;
import jakarta.jms.JMSException;
import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.msg.client.wmq.WMQConstants;

public abstract class RECORD implements Serializable {
 private static final long serialVersionUID = -1616617232750561712L;
 protected final static int UTF8 = 1208;
 protected final static int MQLONG_LENGTH = 4;
 protected final static int RECORD_STRUCT_ID_LENGTH = 4;
 protected final static int RECORD_VERSION_1 = 1;
 protected final String RECORD_STRUCT_ID = "BLNK";
 protected final String RECORD_TYPE = "BLANK ";
 private String structID = RECORD_STRUCT_ID;
 private int version = RECORD_VERSION_1;

190 Developing Applications for IBM MQ

 private int structLength = RECORD_STRUCT_ID_LENGTH + MQLONG_LENGTH * 2;
 private int headerEncoding = WMQConstants.WMQ_ENCODING_NATIVE;
 private String headerCharset = "UTF-8";
 private String headerFormat = RECORD_TYPE;

 public RECORD() {
 super();
 }

 public RECORD(BytesMessage message) throws JMSException, IOException,
 MQDataException {
 super();
 setHeaderCharset(message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET));
 setHeaderEncoding(message.getIntProperty(WMQConstants.JMS_IBM_ENCODING));
 byte[] structID = new byte[RECORD_STRUCT_ID_LENGTH];
 message.readBytes(structID, RECORD_STRUCT_ID_LENGTH);
 setStructID(new String(structID, getMessageCharset()));
 setVersion(message.readInt());
 setStructLength(message.readInt());
 }

 public String getHeaderFormat() { return headerFormat; }
 public int getHeaderEncoding() { return headerEncoding; }
 public String getMessageCharset() { return headerCharset; }
 public int getMessageEncoding() { return headerEncoding; }
 public String getStructID() { return structID; }
 public int getStructLength() { return structLength; }
 public int getVersion() { return version; }

 protected BytesMessage put(MyProducer myProducer) throws IOException,
 JMSException, UnsupportedEncodingException {
 setHeaderEncoding(myProducer.getEncoding());
 setHeaderCharset(myProducer.getCharset());
 myProducer.setMQClient(true);
 BytesMessage bytes = myProducer.session.createBytesMessage();
 bytes.setStringProperty(WMQConstants.JMS_IBM_FORMAT, getHeaderFormat());
 bytes.setIntProperty(WMQConstants.JMS_IBM_ENCODING, getHeaderEncoding());
 bytes.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET,
 myProducer.getCCSID());
 bytes.writeBytes(String.format("%1$-" + RECORD_STRUCT_ID_LENGTH + "."
 + RECORD_STRUCT_ID_LENGTH + "s", getStructID())
 .getBytes(getMessageCharset()), 0, RECORD_STRUCT_ID_LENGTH);
 bytes.writeInt(getVersion());
 bytes.writeInt(getStructLength());
 return bytes;
 }

 public void setHeaderCharset(String charset) {
 this.headerCharset = charset; }
 public void setHeaderEncoding(int encoding) {
 this.headerEncoding = encoding; }
 public void setHeaderFormat(String headerFormat) {
 this.headerFormat = headerFormat; }
 public void setStructID(String structID) {
 this.structID = structID; }
 public void setStructLength(int structLength) {
 this.structLength = structLength; }
 public void setVersion(int version) {
 this.version = version; }
}

package com.ibm.mq.id;
import java.io.IOException;
import java.io.Serializable;
import java.io.UnsupportedEncodingException;
import javax.jms.BytesMessage;
import javax.jms.JMSException;
import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.msg.client.wmq.WMQConstants;
public abstract class RECORD implements Serializable {
 private static final long serialVersionUID = -1616617232750561712L;
 protected final static int UTF8 = 1208;
 protected final static int MQLONG_LENGTH = 4;
 protected final static int RECORD_STRUCT_ID_LENGTH = 4;
 protected final static int RECORD_VERSION_1 = 1;
 protected final String RECORD_STRUCT_ID = "BLNK";
 protected final String RECORD_TYPE = "BLANK ";

Developing applications for IBM MQ 191

 private String structID = RECORD_STRUCT_ID;
 private int version = RECORD_VERSION_1;
 private int structLength = RECORD_STRUCT_ID_LENGTH + MQLONG_LENGTH * 2;
 private int headerEncoding = WMQConstants.WMQ_ENCODING_NATIVE;
 private String headerCharset = "UTF-8";
 private String headerFormat = RECORD_TYPE;

 public RECORD() {
 super();
 }
 public RECORD(BytesMessage message) throws JMSException, IOException,
 MQDataException {
 super();
 setHeaderCharset(message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET));
 setHeaderEncoding(message.getIntProperty(WMQConstants.JMS_IBM_ENCODING));
 byte[] structID = new byte[RECORD_STRUCT_ID_LENGTH];
 message.readBytes(structID, RECORD_STRUCT_ID_LENGTH);
 setStructID(new String(structID, getMessageCharset()));
 setVersion(message.readInt());
 setStructLength(message.readInt());
 }

 public String getHeaderFormat() { return headerFormat; }
 public int getHeaderEncoding() { return headerEncoding; }
 public String getMessageCharset() { return headerCharset; }
 public int getMessageEncoding() { return headerEncoding; }
 public String getStructID() { return structID; }
 public int getStructLength() { return structLength; }
 public int getVersion() { return version; }

 protected BytesMessage put(MyProducer myProducer) throws IOException,
 JMSException, UnsupportedEncodingException {
 setHeaderEncoding(myProducer.getEncoding());
 setHeaderCharset(myProducer.getCharset());
 myProducer.setMQClient(true);
 BytesMessage bytes = myProducer.session.createBytesMessage();
 bytes.setStringProperty(WMQConstants.JMS_IBM_FORMAT, getHeaderFormat());
 bytes.setIntProperty(WMQConstants.JMS_IBM_ENCODING, getHeaderEncoding());
 bytes.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET,
 myProducer.getCCSID());
 bytes.writeBytes(String.format("%1$-" + RECORD_STRUCT_ID_LENGTH + "."
 + RECORD_STRUCT_ID_LENGTH + "s", getStructID())
 .getBytes(getMessageCharset()), 0, RECORD_STRUCT_ID_LENGTH);
 bytes.writeInt(getVersion());
 bytes.writeInt(getStructLength());
 return bytes;
 }

 public void setHeaderCharset(String charset) {
 this.headerCharset = charset; }
 public void setHeaderEncoding(int encoding) {
 this.headerEncoding = encoding; }
 public void setHeaderFormat(String headerFormat) {
 this.headerFormat = headerFormat; }
 public void setStructID(String structID) {
 this.structID = structID; }
 public void setStructLength(int structLength) {
 this.structLength = structLength; }
 public void setVersion(int version) {
 this.version = version; }
}

MyRecord

package com.ibm.mq.id;
import java.io.IOException;
import jakarta.jms.BytesMessage;
import jakarta.jms.JMSException;
import com.ibm.mq.headers.MQDataException;

public class MyRecord extends RECORD {
 private static final long serialVersionUID = -370551723162299429L;
 private final static int FLAGS = 1;
 private final static String STRUCT_ID = "MYRD";
 private final static int DATA_LENGTH = 32;
 private final static String FORMAT = "MYRECORD";
 private int flags = FLAGS;
 private String recordData = "ABCDEFGHIJKLMNOPQRSTUVWXYZ012345";

192 Developing Applications for IBM MQ

 public MyRecord() {
 super();
 super.setStructID(STRUCT_ID);
 super.setHeaderFormat(FORMAT);
 super.setStructLength(super.getStructLength() + MQLONG_LENGTH
 + DATA_LENGTH);
 }

 public MyRecord(BytesMessage message) throws JMSException, IOException,
 MQDataException {
 super(message);
 setFlags(message.readInt());
 byte[] recordData = new byte[DATA_LENGTH];
 message.readBytes(recordData, DATA_LENGTH);
 setRecordData(new String(recordData, super.getMessageCharset()));
 }

 public static MyRecord get(MyConsumer myConsumer) throws JMSException,
 MQDataException, IOException {
 BytesMessage message = (BytesMessage) myConsumer.receive();
 return new MyRecord(message);
 }

 public int getFlags() { return flags; }
 public String getRecordData() { return recordData; } .

 public BytesMessage put(MyProducer myProducer) throws JMSException,
 IOException {
 BytesMessage bytes = super.put(myProducer);
 bytes.writeInt(getFlags());
 bytes.writeBytes(String.format("%1$-" + DATA_LENGTH + "."
 + DATA_LENGTH + "s",getRecordData())
 .getBytes(super.getMessageCharset()), 0, DATA_LENGTH);
 myProducer.send(bytes);
 return bytes;
 }

 public void setFlags(int flags) {
 this.flags = flags; }
 public void setRecordData(String recordData) {
 this.recordData = recordData; }
}

package com.ibm.mq.id;
import java.io.IOException;
import javax.jms.BytesMessage;
import javax.jms.JMSException;
import com.ibm.mq.headers.MQDataException;
public class MyRecord extends RECORD {
 private static final long serialVersionUID = -370551723162299429L;
 private final static int FLAGS = 1;
 private final static String STRUCT_ID = "MYRD";
 private final static int DATA_LENGTH = 32;
 private final static String FORMAT = "MYRECORD";
 private int flags = FLAGS;
 private String recordData = "ABCDEFGHIJKLMNOPQRSTUVWXYZ012345";

 public MyRecord() {
 super();
 super.setStructID(STRUCT_ID);
 super.setHeaderFormat(FORMAT);
 super.setStructLength(super.getStructLength() + MQLONG_LENGTH
 + DATA_LENGTH);
 }
 public MyRecord(BytesMessage message) throws JMSException, IOException,
 MQDataException {
 super(message);
 setFlags(message.readInt());
 byte[] recordData = new byte[DATA_LENGTH];
 message.readBytes(recordData, DATA_LENGTH);
 setRecordData(new String(recordData, super.getMessageCharset()));
 }
 public static MyRecord get(MyConsumer myConsumer) throws JMSException,
 MQDataException, IOException {
 BytesMessage message = (BytesMessage) myConsumer.receive();
 return new MyRecord(message);
 }
 public int getFlags() { return flags; }

Developing applications for IBM MQ 193

 public String getRecordData() { return recordData; } .

 public BytesMessage put(MyProducer myProducer) throws JMSException,
 IOException {
 BytesMessage bytes = super.put(myProducer);
 bytes.writeInt(getFlags());
 bytes.writeBytes(String.format("%1$-" + DATA_LENGTH + "."
 + DATA_LENGTH + "s",getRecordData())
 .getBytes(super.getMessageCharset()), 0, DATA_LENGTH);
 myProducer.send(bytes);
 return bytes;
 }
 public void setFlags(int flags) {
 this.flags = flags; }
 public void setRecordData(String recordData) {
 this.recordData = recordData; }
}

EndPoint

package com.ibm.mq.id;
import java.io.UnsupportedEncodingException;
import jakarta.jms.Connection;
import jakarta.jms.ConnectionFactory;
import jakarta.jms.Destination;
import jakarta.jms.JMSException;
import jakarta.jms.Session;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import com.ibm.mq.headers.CCSID;
import com.ibm.mq.jms.MQDestination;
import com.ibm.msg.client.wmq.WMQConstants;
public abstract class EndPoint {
 public Context ctx;
 public ConnectionFactory cf;
 public Connection connection;
 public Destination destination;
 public Session session;
 protected EndPoint() throws NamingException, JMSException {
 System.setProperty("java.naming.provider.url", "file:/C:/JNDI-Directory");
 System.setProperty("java.naming.factory.initial",
 "com.sun.jndi.fscontext.RefFSContextFactory");
 ctx = new InitialContext();
 cf = (ConnectionFactory) ctx.lookup("QM1");
 connection = cf.createConnection();
 destination = (Destination) ctx.lookup("Q1");
 ((MQDestination)destination).setReceiveConversion
 (WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }
 protected EndPoint(String cFactory, String dest) throws NamingException,
 JMSException {
 System.setProperty("java.naming.provider.url", "file:/C:/JNDI-Directory");
 System.setProperty("java.naming.factory.initial",
 "com.sun.jndi.fscontext.RefFSContextFactory");
 ctx = new InitialContext();
 cf = (ConnectionFactory) ctx.lookup(cFactory);
 connection = cf.createConnection();
 destination = (Destination) ctx.lookup(dest);
 ((MQDestination)destination).setReceiveConversion
 (WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }
 public int getCCSID() throws JMSException {
 return (((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_CCSID)); }
 public String getCharset() throws UnsupportedEncodingException,
 JMSException {
 return CCSID.getCodepage(getCCSID()); }
 public int getEncoding() throws JMSException {
 return (((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_ENCODING)); }
 public boolean getMQDest() throws JMSException {
 if ((((MQDestination) destination).getMessageBodyStyle()
 == WMQConstants.WMQ_MESSAGE_BODY_MQ)
 || ((((MQDestination) destination).getMessageBodyStyle()
 == WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED)
 && (((MQDestination) destination).getTargetClient()
 == WMQConstants.WMQ_TARGET_DEST_MQ)))
 return true;

194 Developing Applications for IBM MQ

 else
 return false; }
 public void setCCSID(int ccsid) throws JMSException {
 ((MQDestination) destination).setIntProperty(WMQConstants.WMQ_CCSID,
 ccsid); }
 public void setEncoding(int encoding) throws JMSException {
 ((MQDestination) destination).setIntProperty(WMQConstants.WMQ_ENCODING,
 encoding); }
 public void setMQBody() throws JMSException {
 ((MQDestination) destination)
 .setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED); }
 public void setMQBody(boolean mqbody) throws JMSException {
 if (mqbody) ((MQDestination) destination)
 .setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ);
 else ((MQDestination) destination)
 .setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_JMS); }
 public void setMQClient(boolean mqclient) throws JMSException {
 if (mqclient){
 ((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ);
 if (!getMQDest()) setMQBody();
 }
 else
 ((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_JMS); }
 }

package com.ibm.mq.id;
import java.io.UnsupportedEncodingException;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Session;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import com.ibm.mq.headers.CCSID;
import com.ibm.mq.jms.MQDestination;
import com.ibm.msg.client.wmq.WMQConstants;
public abstract class EndPoint {
 public Context ctx;
 public ConnectionFactory cf;
 public Connection connection;
 public Destination destination;
 public Session session;
 protected EndPoint() throws NamingException, JMSException {
 System.setProperty("java.naming.provider.url", "file:/C:/JNDI-Directory");
 System.setProperty("java.naming.factory.initial",
 "com.sun.jndi.fscontext.RefFSContextFactory");
 ctx = new InitialContext();
 cf = (ConnectionFactory) ctx.lookup("QM1");
 connection = cf.createConnection();
 destination = (Destination) ctx.lookup("Q1");
 ((MQDestination)destination).setReceiveConversion
 (WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }
 protected EndPoint(String cFactory, String dest) throws NamingException,
 JMSException {
 System.setProperty("java.naming.provider.url", "file:/C:/JNDI-Directory");
 System.setProperty("java.naming.factory.initial",
 "com.sun.jndi.fscontext.RefFSContextFactory");
 ctx = new InitialContext();
 cf = (ConnectionFactory) ctx.lookup(cFactory);
 connection = cf.createConnection();
 destination = (Destination) ctx.lookup(dest);
 ((MQDestination)destination).setReceiveConversion
 (WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }
 public int getCCSID() throws JMSException {
 return (((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_CCSID)); }
 public String getCharset() throws UnsupportedEncodingException,
 JMSException {
 return CCSID.getCodepage(getCCSID()); }
 public int getEncoding() throws JMSException {
 return (((MQDestination) destination)
 .getIntProperty(WMQConstants.WMQ_ENCODING)); }
 public boolean getMQDest() throws JMSException {
 if ((((MQDestination) destination).getMessageBodyStyle()
 == WMQConstants.WMQ_MESSAGE_BODY_MQ)

Developing applications for IBM MQ 195

 || ((((MQDestination) destination).getMessageBodyStyle()
 == WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED)
 && (((MQDestination) destination).getTargetClient()
 == WMQConstants.WMQ_TARGET_DEST_MQ)))
 return true;
 else
 return false; }
 public void setCCSID(int ccsid) throws JMSException {
 ((MQDestination) destination).setIntProperty(WMQConstants.WMQ_CCSID,
 ccsid); }
 public void setEncoding(int encoding) throws JMSException {
 ((MQDestination) destination).setIntProperty(WMQConstants.WMQ_ENCODING,
 encoding); }
 public void setMQBody() throws JMSException {
 ((MQDestination) destination)
 .setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED); }
 public void setMQBody(boolean mqbody) throws JMSException {
 if (mqbody) ((MQDestination) destination)
 .setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ);
 else ((MQDestination) destination)
 .setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_JMS); }
 public void setMQClient(boolean mqclient) throws JMSException {
 if (mqclient){
 ((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ);
 if (!getMQDest()) setMQBody();
 }
 else
 ((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_JMS); }
 }

MyProducer

package com.ibm.mq.id;
import jakarta.jms.JMSException;
import jakarta.jms.Message;
import jakarta.jms.MessageProducer;
import javax.naming.NamingException;
public class MyProducer extends EndPoint {
 public MessageProducer producer;
 public MyProducer() throws NamingException, JMSException {
 super();
 producer = session.createProducer(destination); }
 public MyProducer(String cFactory, String dest) throws NamingException,
 JMSException {
 super(cFactory, dest);
 producer = session.createProducer(destination); }
 public void send(Message message) throws JMSException {
 producer.send(message); }
}

package com.ibm.mq.id;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageProducer;
import javax.naming.NamingException;
public class MyProducer extends EndPoint {
 public MessageProducer producer;
 public MyProducer() throws NamingException, JMSException {
 super();
 producer = session.createProducer(destination); }
 public MyProducer(String cFactory, String dest) throws NamingException,
 JMSException {
 super(cFactory, dest);
 producer = session.createProducer(destination); }
 public void send(Message message) throws JMSException {
 producer.send(message); }
}

MyConsumer

package com.ibm.mq.id;
import jakarta.jms.JMSException;
import jakarta.jms.Message;

196 Developing Applications for IBM MQ

import jakarta.jms.MessageConsumer;
import javax.naming.NamingException;
public class MyConsumer extends EndPoint {
 public MessageConsumer consumer;
 public MyConsumer() throws NamingException, JMSException {
 super();
 consumer = session.createConsumer(destination);
 connection.start(); }
 public MyConsumer(String cFactory, String dest) throws NamingException,
 JMSException {
 super(cFactory, dest);
 consumer = session.createConsumer(destination);
 connection.start(); }
 public Message receive() throws JMSException {
 return consumer.receive(); }
}

package com.ibm.mq.id;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.naming.NamingException;
public class MyConsumer extends EndPoint {
 public MessageConsumer consumer;
 public MyConsumer() throws NamingException, JMSException {
 super();
 consumer = session.createConsumer(destination);
 connection.start(); }
 public MyConsumer(String cFactory, String dest) throws NamingException,
 JMSException {
 super(cFactory, dest);
 consumer = session.createConsumer(destination);
 connection.start(); }
 public Message receive() throws JMSException {
 return consumer.receive(); }
}

Creating and configuring connection factories and destinations
An IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging application can create connection
factories and destinations by retrieving them as administered objects from a Java Naming and Directory
Interface (JNDI) namespace, by using the IBM JMS extensions, or by using the IBM MQ JMS extensions.
An application can also use the IBM JMS extensions or IBM MQ JMS extensions to set the properties of
connection factories and destinations.

Connection factories and destinations are starting points in the flow of logic of a JMS or Jakarta
Messaging application. An application uses a ConnectionFactory object to create a connection to a
messaging server, and uses a Queue or Topic object as a target to send messages to or a source from
which to receive messages. An application therefore needs to create at least one connection factory and
one or more destinations. Having created a connection factory or destination, the application might then
need to configure the object by setting one or more of its properties.

In summary, an application can create and configure connection factories and destinations in the
following ways:
Using JNDI to retrieve administered objects

An administrator can use the IBM MQ JMS administration tool as described in Configuring JMS
and Jakarta Messaging objects using the administration tools, or IBM MQ Explorer as described in
Configuring JMS 2.0 objects using IBM MQ Explorer, to create and configure connection factories
and destinations as administered objects in a JNDI namespace. An application can then retrieve
the administered objects from the JNDI namespace. Having retrieved an administered object, the
application can, if required, set or change one or more of its properties by using either the IBM JMS
extensions or the IBM MQ JMS extensions.

Note: For Jakarta Messaging 3.0, you cannot administer JNDI using IBM MQ Explorer.
JNDI administration is supported by the Jakarta Messaging 3.0 variant of JMSAdmin, which is
JMS30Admin.

Developing applications for IBM MQ 197

Using the IBM JMS extensions
An application can use the IBM JMS extensions to create connection factories and destinations
dynamically at run time. The application first creates a JmsFactoryFactory object, and then uses
methods of this object to create connection factories and destinations. Having created a connection
factory or destination, the application can use methods inherited from the JmsPropertyContext
interface to set its properties. Alternatively, the application can use a uniform resource identifier
(URI) to specify one or more properties of a destination when it creates the destination.

Using the IBM MQ JMS extensions
An application can also use the IBM MQ JMS extensions to create connection factories and
destinations dynamically at run time. The application uses the supplied constructors to create
connection factories and destinations. Having created a connection factory or destination, the
application can use methods of the object to set its properties. Alternatively, the application can
use a URI to specify one or more properties of a destination when it creates the destination.

Related tasks
Configuring JMS and Jakarta Messaging resources

Using JNDI to retrieve administered objects in a JMS or Jakarta Messaging application
To retrieve administered objects from a Java Naming and Directory Interface (JNDI) namespace, a JMS or
Jakarta Messaging application must create an initial context and then use the lookup() method to retrieve
the objects.

Before an application can retrieve administered objects from a JNDI namespace, an administrator must
first create the administered objects.

For JMS 2.0, the administrator can use the IBM MQ JMS administration tool, JMSAmin,
or IBM MQ Explorer to create and maintain administered objects in a JNDI namespace. For more
information, see Configuring connection factories and destinations in a JNDI namespace.

For Jakarta Messaging 3.0, you cannot administer JNDI using IBM MQ Explorer. JNDI
administration is supported by the Jakarta Messaging 3.0 variant of JMSAdmin, which is JMS30Admin.

An application server, typically provides its own repository for administered objects and its own tools for
creating and maintaining the objects.

To retrieve administered objects from a JNDI namespace, an application must first create an initial
context, as shown in the following example:

import jakarta.jms.*;
import javax.naming.*;
import javax.naming.directory.*;
.
.
.
String url = "ldap://server.company.com/o=company_us,c=us";
String icf = "com.sun.jndi.ldap.LdapCtxFactory";
.
java.util.Hashtable environment = new java.util.Hashtable();
environment.put(Context.PROVIDER_URL, url);
environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
Context ctx = new InitialDirContext(environment);

import javax.jms.*;
import javax.naming.*;
import javax.naming.directory.*;
.
.
.
String url = "ldap://server.company.com/o=company_us,c=us";
String icf = "com.sun.jndi.ldap.LdapCtxFactory";
.
java.util.Hashtable environment = new java.util.Hashtable();
environment.put(Context.PROVIDER_URL, url);

198 Developing Applications for IBM MQ

environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
Context ctx = new InitialDirContext(environment);

In this code, the String variables url and icf have the following meanings:
url

The uniform resource locator (URL) of the directory service. The URL can have one of the following
formats:

• ldap://hostname/contextName , for a directory service based on an LDAP server
• file:/directoryPath , for a directory service based on the local file system

icf
The class name of the initial context factory, which can be one of the following values:

• com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server
• com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local
file system

Note that some combinations of a JNDI package and a Lightweight Directory Access Protocol (LDAP)
service provider can cause LDAP error 84 to occur. To resolve this problem, insert the following line of
code before the call to InitialDirContext():

environment.put(Context.REFERRAL, "throw");

After an initial context is obtained, the application can retrieve administered objects from the JNDI
namespace by using the lookup() method, as shown in the following example:

ConnectionFactory factory;
Queue queue;
Topic topic;
.
.
.
factory = (ConnectionFactory)ctx.lookup("cn=myCF");
queue = (Queue)ctx.lookup("cn=myQ");
topic = (Topic)ctx.lookup("cn=myT");

This code retrieves the following objects from an LDAP based namespace:

• A ConnectionFactory object bound with the name myCF
• A Queue object bound with the name myQ
• A Topic object bound with the name myT

For more information about using JNDI, see the JNDI documentation provided by Oracle Corporation.

Related tasks
Configuring JMS 2.0 objects using IBM MQ Explorer
Configuring JMS and Jakarta Messaging objects using the administration tools
Configuring JMS 2.0 resources in WebSphere Application Server

Using the IBM JMS extensions
IBM MQ classes for JMS (JMS 2.0) and IBM MQ classes for Jakarta Messaging (Jakarta Messaging 3.0)
each contain a functionally-identical set of extensions to the JMS API called the IBM JMS extensions.
An application can use these extensions to create connection factories and destinations dynamically at
run time, and to set the properties of IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging
objects. The extensions can be used with any messaging provider.

The IBM JMS extensions are a set of interfaces and classes in the following packages:

• com.ibm.msg.client.jms
• com.ibm.msg.client.services

Developing applications for IBM MQ 199

For Jakarta Messaging 3.0, these packages are in com.ibm.jakarta.client.jar.

For JMS 2.0, these packages are in com.ibm.mqjms.jar or
com.ibm.mq.allclient.jar.

These extensions provide the following function:

• A factory-based mechanism for creating connection factories and destinations dynamically at run time,
instead of retrieving them as administered objects from a Java Naming and Directory Interface (JNDI)
namespace

• A set of methods for setting the properties of IBM MQ classes for JMS or IBM MQ classes for Jakarta
Messaging objects

• A set of exception classes with methods for obtaining detailed information about a problem
• A set of methods for controlling tracing
• A set of methods for obtaining version information about IBM MQ classes for JMS or IBM MQ classes for

Jakarta Messaging

For creating connection factories and destinations dynamically at run time, and setting and getting
their properties, the IBM JMS extensions provide an alternative set of interfaces to the IBM MQ JMS
extensions. However, whereas the IBM MQ JMS extensions are specific to the IBM MQ messaging
provider, the IBM JMS extensions are not specific to IBM MQ and can be used with any messaging
provider within the layered architecture described in IBM MQ classes for JMS architecture.

The interface com.ibm.msg.client.wmq.WMQConstants (JMS 2.0) or
com.ibm.msg.jakarta.client.wmq.WMQConstants (Jakarta Messaging 3.0) contains the definitions of
constants that an application can use when setting the properties of IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging objects using the IBM JMS extensions. The interface contains constants for
the IBM MQ messaging provider and JMS constants that are independent of any messaging provider.

The examples of code that follow assume that the following import statements are included in the Java
class:

import com.ibm.msg.jakarta.client.jms.*;
import com.ibm.msg.jakarta.client.services.*;
import com.ibm.msg.jakarta.client.wmq.WMQConstants;

import com.ibm.msg.client.jms.*;
import com.ibm.msg.client.services.*;
import com.ibm.msg.client.wmq.WMQConstants;

Creating connection factories and destinations
Before an application can create connection factories and destinations using the IBM JMS extensions, it
must first create a JmsFactoryFactory object. To create a JmsFactoryFactory object, the application calls
the getInstance() method of the JmsFactoryFactory class, as shown in the following example:

JmsFactoryFactory ff = JmsFactoryFactory.getInstance(JmsConstants.JAKARTA_WMQ_PROVIDER);

JmsFactoryFactory ff = JmsFactoryFactory.getInstance(JmsConstants.WMQ_PROVIDER);

The parameter on the getInstance() call is a constant that identifies the IBM MQ messaging provider
as the chosen messaging provider. The application can then use the JmsFactoryFactory object to create
connection factories and destinations.

200 Developing Applications for IBM MQ

To create a connection factory, the application calls the createConnectionFactory() method of the
JmsFactoryFactory object, as shown in the following example:

JmsConnectionFactory factory = ff.createConnectionFactory();

This statement creates a JmsConnectionFactory object with the default values for all its properties, which
means that the application connects to the default queue manager in bindings mode. If you want an
application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the JmsConnectionFactory object before
creating the connection. For information about how to do this, see “Setting the properties of IBM MQ
classes for JMS objects” on page 202.

The JmsFactoryFactory class also contains methods to create connection factories of the following types:

• JmsQueueConnectionFactory
• JmsTopicConnectionFactory
• JmsXAConnectionFactory
• JmsXAQueueConnectionFactory
• JmsXATopicConnectionFactory

To create a Queue object, the application calls the createQueue() method of the JmsFactoryFactory
object, as shown in the following example:

JmsQueue q1 = ff.createQueue("Q1");

This statement creates an JmsQueue object with the default values for all its properties. The object
represents an IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a
local queue, an alias queue, or a remote queue definition.

The createQueue() method can also accept a queue uniform resource identifier (URI) as a parameter.
A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the name of the
queue manager that owns the queue, and one or more properties of the JmsQueue object. The following
statement contains an example of a queue URI:

JmsQueue q2 = ff.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The JmsQueue object created by this statement represents an IBM MQ queue called Q2 that is owned
by queue manager QM2, and all messages sent to this destination are persistent and have a priority of
5. For more information about queue URIs, see “Uniform resource identifiers (URIs)” on page 214. For
an alternative way of setting the properties of a JmsQueue object, see “Setting the properties of IBM MQ
classes for JMS objects” on page 202.

To create a Topic object, an application can use the createTopic() method of the JmsFactoryFactory
object, as shown in the following example:

JmsTopic t1 = ff.createTopic("Sport/Football/Results");

This statement creates a JmsTopic object with the default values for all its properties. The object
represents a topic called Sport/Football/Results.

The createTopic() method can also accept a topic URI as a parameter. A topic URI is a string that
specifies the name of a topic and, optionally, one or more properties of the JmsTopic object. The following
statements contain an example of a topic URI:

String s1 = "topic://Sport/Tennis/Results?persistence=1&priority=0";
JmsTopic t2 = ff.createTopic(s1);

Developing applications for IBM MQ 201

The JmsTopic object created by these statements represents a topic called Sport/Tennis/Results, and all
messages sent to this destination are nonpersistent and have a priority of 0. For more information about
topic URIs, see “Uniform resource identifiers (URIs)” on page 214. For an alternative way of setting the
properties of a JmsTopic object, see “Setting the properties of IBM MQ classes for JMS objects” on page
202.

After an application has created a connection factory or destination, that object can be used only with the
selected messaging provider.

Setting the properties of IBM MQ classes for JMS objects
To set the properties of IBM MQ classes for JMS objects using the IBM JMS extensions, an
application uses the methods of the com.ibm.msg.client.JmsPropertyContext interface. Similarly, to set
the properties of IBM MQ classes for Jakarta Messaging objects using the IBM JMS extensions, an
application uses the methods of the com.ibm.msg.jakarta.client.JmsPropertyContext interface.

For each Java data type, the JmsPropertyContext interface contains a method to set the value of a
property with that data type, and a method to get the value of a property with that data type. For example,
an application calls the setIntProperty() method to set a property with an integer value, and calls the
getIntProperty() method to get a property with an integer value.

Instances of classes in the com.ibm.mq.jms and com.ibm.mq.jakarta.jms packages inherit the methods of
the corresponding JmsPropertyContext interfaces. An application can therefore use these methods to set
the properties of MQConnectionFactory, MQQueue, and MQTopic objects.

When an application creates an IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging object,
any properties with default values are set automatically. When an application sets a property, the new
value replaces any previous value the property had. After a property has been set, it cannot be deleted,
but its value can be changed.

If an application attempts to set a property to a value that is not a valid value for the property,
IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging throws a JMSException exception.
If an application attempts to get a property that has not been set, the behavior is as described in
the JMS specification. IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging throw a
NumberFormatException exception for primitive data types and return null for referenced data types.

In addition to the predefined properties of an IBM MQ classes for JMS or IBM MQ classes for Jakarta
Messaging object, an application can set its own properties. These application-defined properties are
ignored by IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging.

For more information about the properties of IBM MQ classes for JMS and IBM MQ classes for Jakarta
Messaging objects, see Properties of IBM MQ classes for JMS objects.

The following code is an example of how to set properties using the IBM JMS extensions. The code sets
five properties of a connection factory.

factory.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE,
WMQConstants.WMQ_CM_CLIENT);
factory.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");
factory.setStringProperty(WMQConstants.WMQ_HOST_NAME, "HOST1");
factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);
factory.setStringProperty(WMQConstants.WMQ_CHANNEL, "QM1.SVR");
factory.setStringProperty(WMQConstants.WMQ_APPLICATIONNAME, "My Application");

The effect of setting these properties is that the application connects to queue manager QM1 in client
mode, using an MQI channel called QM1.SVR. The queue manager is running on a system with host
name HOST1, and the listener for the queue manager is listening in port number 1415. This connection
and other queue manager connections associated with sessions under it, have the application name "My
Application" associated with them.

Note: Queue managers running on z/OS platforms do not support setting application names, and this
setting is therefore ignored.

202 Developing Applications for IBM MQ

The JmsPropertyContext interface also contains the setObjectProperty() method, which an application
can use to set properties. The second parameter of the method is an object that encapsulates the value
of the property. For example, the following code creates an Integer object that encapsulates the integer
1415, and then calls setObjectProperty() to set the PORT property of a connection factory to the value
1415:

Integer port = new Integer(1415);
factory.setObjectProperty(WMQConstants.WMQ_PORT, port);

This code is therefore equivalent to the following statement:

factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);

Conversely, the getObjectProperty() method returns an object that encapsulates the value of a property.

Implicit conversion of a property value from one data type to another
When an application uses a method of the JmsPropertyContext interface to set or get the property of an
IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging object, the value of the property can be
implicitly converted from one data type to another.

For example, the following statement sets the PRIORITY property of the JmsQueue object q1:

q1.setStringProperty(WMQConstants.WMQ_PRIORITY, "5");

The PRIORITY property has an integer value, and so the setStringProperty() call implicitly converts the
string "5" (the source value) to the integer 5 (the target value), which then becomes the value of the
PRIORITY property.

Conversely, the following statement gets the PRIORITY property of the JmsQueue object q1:

String s1 = q1.getStringProperty(WMQConstants.WMQ_PRIORITY);

The integer 5 (the source value), which is the value of the PRIORITY property, is implicitly converted to
the string "5" (the target value) by the getStringProperty() call.

The conversions supported by IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are
shown in Table 34 on page 203.

Table 34. Supported conversions from one data type to another

Source data type Supported target data types

boolean String

byte int, long, short, String

char String

double String

float double, String

int long, String

long String

short int, long, String

String boolean, byte, double, float, int, long, short

The general rules governing the supported conversions are as follows:

Developing applications for IBM MQ 203

• Numeric values can be converted from one data type to another provided no data is lost during the
conversion. For example, a value with data type int can be converted into a value with data type long,
but cannot be converted into a value with data type short.

• A value of any data type can be converted into a string.
• A string can be converted to a value of any other data type (except char) provided the string is

in the correct format for the conversion. If an application attempts to convert a string that is not
in the correct format, IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging throw a
NumberFormatException exception.

• If an application attempts a conversion that is not supported, IBM MQ classes for JMS and IBM MQ
classes for Jakarta Messaging throw a MessageFormatException exception.

The specific rules for converting a value from one data type to another are as follows:

• When converting a boolean value to a string, the value true is converted to the string "true", and the
value false is converted to the string "false".

• When converting a string to a boolean value, the string "true" (not case-sensitive) is converted to true,
and the string "false" (not case-sensitive) is converted to false. Any other string is converted to false.

• When converting a string to a value with data type byte, int, long, or short, the string must have the
following format:

[blanks][sign] digits

The meanings of the components of the string are as follows:
blanks

Optional leading blank characters.
sign

An optional plus sign (+) or minus sign (-).
digits

A contiguous sequence of digits (0-9). At least one digit must be present.

After the sequence of digits, the string can contain other characters that are not digits, but the
conversion stops as soon as the first of these characters is reached. The string is assumed to represent
a decimal integer.

If the string is not in the correct format, IBM MQ classes for JMS and IBM MQ classes for Jakarta
Messaging throw a NumberFormatException exception.

• When converting a string to a value with data type double or float, the string must have the following
format:

[blanks][sign] digits [e_char [e_sign] e_digits]

The meanings of the components of the string are as follows:
blanks

Optional leading blank characters.
sign

An optional plus sign (+) or minus sign (-).
digits

A contiguous sequence of digits (0-9). At least one digit must be present.
e_char

An exponent character, which is either E or e.
e_sign

An optional plus sign (+) or minus sign (-) for the exponent.
e_digits

A contiguous sequence of digits (0-9) for the exponent. At least one digit must be present if the
string contains an exponent character.

204 Developing Applications for IBM MQ

After the sequence of digits, or the optional characters representing an exponent, the string can contain
other characters that are not digits, but the conversion stops as soon as the first of these characters is
reached. The string is assumed to represent a decimal floating point number with an exponent that is a
power of 10.

If the string is not in the correct format, IBM MQ classes for JMS and IBM MQ classes for Jakarta
Messaging throw a NumberFormatException exception.

• When converting a numeric value (including a value with data type byte) to a string, the value is
converted to the string representation of the value as a decimal number, not the string containing the
ASCII character for that value. For example, the integer 65 is converted to the string "65", not the string
"A".

Setting more than one property in a single call
The JmsPropertyContext interface also contains the setBatchProperties() method, which an application
can use to set more than one property in a single call. The parameter of the method is a Map object that
encapsulates a set of property name-value pairs.

For example, the following code uses the setBatchProperties() method to set the same five properties of a
connection factory as shown in “Setting the properties of IBM MQ classes for JMS objects” on page 202.
The code creates an instance of the HashMap class, which implements the Map interface.

HashMap batchProperties = new HashMap();
batchProperties.put(WMQConstants.WMQ_CONNECTION_MODE,
 new Integer(WMQConstants.WMQ_CM_CLIENT));
batchProperties.put(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");
batchProperties.put(WMQConstants.WMQ_WMQ_HOST_NAME, "HOST1");
batchProperties.put(WMQConstants.WMQ_PORT, "1414");
batchProperties.put(WMQConstants.WMQ_CHANNEL, "QM1.SVR");
factory.setBatchProperties(batchProperties);

Note that the second parameter of the Map.put() method must be an object. Therefore a property value
with a primitive data type must be encapsulated within an object or represented by a string, as shown in
the example.

The setBatchProperties() method validates each property. If the setBatchProperties() method cannot set
a property because, for example, its value is not valid, none of the specified properties are set.

Property names and values
If an application uses the methods of the appropriate JmsPropertyContext interface to set and get the
properties of IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging objects, the application
can specify the names and values of properties in any of the following ways. Each of the accompanying
examples shows how to set the PRIORITY property of the JmsQueue object q1 so that a message sent to
the queue has the priority specified on the send() call.
Using the property names and values that are defined as constants in the
com.ibm.msg.client.wmq.WMQConstants interface

The following statement is an example of how to specify the names and values of properties in this
way:

q1.setIntProperty(WMQConstants.WMQ_PRIORITY, WMQConstants.WMQ_PRI_APP);

Using the property names and values that can be used in queue and topic uniform resource
identifiers (URIs)

The following statement is an example of how to specify the names and values of properties in this
way:

q1.setIntProperty("priority", -2);

Only the names and values of properties of destinations can be specified in this way.

Developing applications for IBM MQ 205

Using the property names and values that are recognized by the IBM MQ JMS administration tool
The following statement is an example of how to specify the names and values of properties in this
way:

q1.setStringProperty("PRIORITY", "APP");

The short form of the property name is also acceptable, as shown in the following statement:

q1.setStringProperty("PRI", "APP");

When an application gets a property, the value returned depends on the way in which the
application specifies the name of the property. For example, if an application specifies the constant
WMQConstants.WMQ_PRIORITY as the property name, the value returned is the integer -2:

int n1 = getIntProperty(WMQConstants.WMQ_PRIORITY);

The same value is returned if the application specifies the string "priority" as the property name:

int n2 = getIntProperty("priority");

However, if the application specifies the string "PRIORITY" or "PRI" as the property name, the value
returned is the string "APP":

String s1 = getStringProperty("PRI");

Internally, IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging store property names and
values as the literal values defined in the matching WMQConstants interface. This is the defined canonical
format for property names and values. As a general rule, if an application sets properties using one of the
other two ways of specifying property names and values, IBM MQ classes for JMS and IBM MQ classes
for Jakarta Messaging have to convert the names and values from the specified input format into the
canonical format. Similarly, if an application gets properties using one of the other two ways of specifying
property names and values, IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging must
convert the names from the specified input format into the canonical format, and convert the values from
the canonical format into the required output format. Having to perform these conversions might have
implications for performance.

Property names and values returned by exceptions, in trace files, or in the IBM MQ classes for JMS or IBM
MQ classes for Jakarta Messaging log, are always in the canonical format.

Using the Map interface
The JmsPropertyContext interface extends the java.util.Map interface. An application can therefore use
the methods of the Map interface to access the properties of an IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging object.

For example, the following code prints out the names and values of all the properties of a connection
factory. The code uses only the methods of the Map interface to get the names and values of the
properties.

// Get the names of all the properties
Set propNames = factory.keySet();

// Loop round all the property names and get the property values
Iterator iterator = propNames.iterator();
while (iterator.hasNext()){
 String pName = (String)iterator.next();
 System.out.println(pName+"="+factory.get(pName));
}

206 Developing Applications for IBM MQ

Using the methods of the Map interface does not bypass any property validations or conversions.

Using the IBM MQ JMS extensions
IBM MQ classes for JMS contains a set of extensions to the JMS API called the IBM MQ JMS extensions.
An application can use these extensions to create connection factories and destinations dynamically at
run time, and to set the properties of connection factories and destinations.

IBM MQ classes for JMS contains a set of classes in the packages com.ibm.jms and com.ibm.mq.jms.
These classes implement the JMS interfaces and contain the IBM MQ JMS extensions. The examples of
code that follow assume that these packages have been imported by the following statements:

import com.ibm.jms.*;
import com.ibm.mq.jms.*;
import com.ibm.msg.client.wmq.WMQConstants;

An application can use the IBM MQ JMS extensions to perform the following functions:

• Create connection factories and destinations dynamically at run time, instead of retrieving them as
administered objects from a Java Naming and Directory Interface (JNDI) namespace

• Set the properties of connection factories and destinations

Creating connection factories
To create a connection factory, an application can use the MQConnectionFactory constructor, as shown in
the following example:

MQConnectionFactory factory = new MQConnectionFactory();

This statement creates an MQConnectionFactory object with the default values for all its properties,
which means that the application connects to the default queue manager in bindings mode. If you want
an application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the MQConnectionFactory object before
creating the connection. For information about how to do this, see “Setting the properties of connection
factories” on page 207.

An application can create connection factories of the following types in a similar way:

• MQQueueConnectionFactory
• MQTopicConnectionFactory
• MQXAConnectionFactory
• MQXAQueueConnectionFactory
• MQXATopicConnectionFactory

Setting the properties of connection factories
An application can set the properties of a connection factory by calling the appropriate methods of the
connection factory. The connection factory can either be an administered object or an object created
dynamically at run time.

Consider the following code, for example:

MQConnectionFactory factory = new MQConnectionFactory();
.
factory.setTransportType(WMQConstants.WMQ_CM_CLIENT);
factory.setQueueManager("QM1");
factory.setHostName("HOST1");
factory.setPort(1415);
factory.setChannel("QM1.SVR");

Developing applications for IBM MQ 207

This code creates an MQConnectionFactory object and then sets five properties of the object. The effect
of setting these properties is that the application connects to queue manager QM1 in client mode using an
MQI channel called QM1.SVR. The queue manager is running on a system with host name HOST1, and the
listener for the queue manager is listening in port number 1415.

An application that uses a real-time connection to a broker can use only the publish/subscribe style of
messaging. It cannot use the point-to-point style of messaging.

Only certain combinations of properties of a connection factory are valid. For information about which
combinations are valid, see Dependencies between properties of IBM MQ classes for JMS objects.

For more information about the properties of a connection factory, and the methods used to set its
properties, see Properties of IBM MQ classes for JMS objects.

Creating destinations
To create a Queue object, an application can use the MQQueue constructor, as shown in the following
example:

MQQueue q1 = new MQQueue("Q1");

This statement creates an MQQueue object with the default values for all its properties. The object
represents an IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a
local queue, an alias queue, or a remote queue definition.

An alternative form of the MQQueue constructor has two parameters, as shown in the following example:

MQQueue q2 = new MQQueue("QM2", "Q2");

The MQQueue object created by this statement represents an IBM MQ queue called Q2 that is owned
by queue manager QM2. The queue manager identified in this way can be the local queue manager or a
remote queue manager. If it is a remote queue manager, IBM MQ must be configured so that, when the
application sends a message to this destination, WebSphere MQ can route the message from the local
queue manager to the remote queue manager.

The MQQueue constructor can also accept a queue uniform resource identifier (URI) as a single
parameter. A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the
name of the queue manager that owns the queue, and one or more properties of the MQQueue object.
The following statement contains an example of a queue URI:

MQQueue q3 = new MQQueue("queue://QM3/Q3?persistence=2&priority=5");

The MQQueue object created by this statement represents an IBM MQ queue called Q3 that is owned
by queue manager QM3, and all messages sent to this destination are persistent and have a priority
of 5. For more information about queue URIs, see “Uniform resource identifiers (URIs)” on page 214.
For an alternative way of setting the properties of an MQQueue object, see “Setting the properties of
destinations” on page 209.

To create a Topic object, an application can use the MQTopic constructor, as shown in the following
example:

MQTopic t1 = new MQTopic("Sport/Football/Results");

This statement creates an MQTopic object with the default values for all its properties. The object
represents a topic called Sport/Football/Results.

The MQTopic constructor can also accept a topic URI as a parameter. A topic URI is a string that
specifies the name of a topic and, optionally, one or more properties of the MQTopic object. The following
statement contains an example of a topic URI:

208 Developing Applications for IBM MQ

MQTopic t2 = new MQTopic("topic://Sport/Tennis/Results?persistence=1&priority=0");

The MQTopic object created by this statement represents a topic called Sport/Tennis/Results, and all
messages sent to this destination are nonpersistent and have a priority of 0. For more information about
topic URIs, see “Uniform resource identifiers (URIs)” on page 214. For an alternative way of setting the
properties of an MQTopic object, see “Setting the properties of destinations” on page 209.

Setting the properties of destinations
An application can set the properties of a destination by calling the appropriate methods of the
destination. The destination can either be an administered object or an object created dynamically at
run time.

Consider the following code, for example:

MQQueue q1 = new MQQueue("Q1");
.
q1.setPersistence(WMQConstants.WMQ_PER_PER);
q1.setPriority(5);

This code creates an MQQueue object and then sets two properties of the object. The effect of setting
these properties is that all messages sent to the destination are persistent and have a priority of 5.

An application can set the properties of MQTopic object in a similar way, as shown in the following
example:

MQTopic t1 = new MQTopic("Sport/Football/Results");
.
t1.setPersistence(WMQConstants.WMQ_PER_NON);
t1.setPriority(0);

This code creates an MQTopic object and then sets two properties of the object. The effect of setting
these properties is that all messages sent to the destination are nonpersistent and have a priority of 0.

For more information about the properties of a destination, and the methods used to set its properties,
see Properties of IBM MQ classes for JMS objects.

Connecting to IBM MQ from a JMS application
To build a connection, a JMS application uses a ConnectionFactory object to create a Connection
object, then starts the connection.

For JMS 2.0 and later, applications usually connect to a messaging provider using a
ConnectionFactory object and the createContext() method.

In earlier versions of JMS, you had to first use createConnection to create a Connection object,
then start the connection call getSession() to create a Session object that could carry out messaging
operations.

A JMSContext object effectively encapsulates both the Connection and Session objects. If you want
to use the traditional approach and create the connection and session objects directly, see “Building a
connection in a JMS application” on page 210 and “Creating a session in a JMS application” on page 211.

To create a JMSContext object, an application uses the createContext() method of a
ConnectionFactory object, as shown in the following example:

ConnectionFactory factory;
Connection connection;
.
.
.
connection = factory.createContext();

Developing applications for IBM MQ 209

When a JMS connection is created, the IBM MQ classes for JMS create a connection handle (Hconn) and
starts a conversation with the queue manager.

Note: Note that the application process ID is used as the default user identity to be passed to the
queue manager. If the application is running in client transport mode then this process ID must exist,
with the relevant authorizations, on the server. If you want a different identity to be used, then use the
createConnection(username,password) method.

This mechanism can also be used to supply an authentication token, see Obtaining an
authentication token from your chosen token issuer.

Building a connection in a JMS application
To build a connection in JMS 1.0, a JMS application uses a ConnectionFactory object to create a
Connection object and then starts the connection.

To create a Connection object, an application uses the createConnection() method of a ConnectionFactory
object, as shown in the following example:

ConnectionFactory factory;
Connection connection;
.
.
.
connection = factory.createConnection();

When a JMS connection is created, the IBM MQ classes for JMS creates a connection handle (Hconn) and
starts a conversation with the queue manager.

The QueueConnectionFactory interface and the TopicConnectionFactory interface each inherits
the createConnection() method from the ConnectionFactory interface. You can therefore use the
createConnection() method to create a domain specific object, as shown in the following example:

QueueConnectionFactory qcf;
Connection connection;
.
.
.
connection = qcf.createConnection();

This fragment of code creates a QueueConnection object. An application can now perform a domain
independent operation on this object, or an operation that is applicable only to the point-to-point domain.
However, if the application attempts to perform an operation that is applicable only to the publish/
subscribe domain, an IllegalStateException exception is thrown with the following message:

JMSMQ1112: Operation for a domain specific object was not valid.
 Operation createProducer() is not valid for type com.ibm.mq.jms.MQTopic

This is because the connection was created from a domain specific connection factory.

Note: Note that the application process ID is used as the default user identity to be passed to the
queue manager. If the application is running in client transport mode then this process ID must exist,
with the relevant authorizations, on the server. If you want a different identity to be used, then use the
createConnection(username, password) method.

The JMS specification states that a connection is created in the stopped state. Until a connection starts,
a message consumer that is associated with the connection cannot receive any messages. To start a
connection, an application uses the start() method of a Connection object, as shown in the following
example:

connection.start();

210 Developing Applications for IBM MQ

This mechanism can also be used to supply an authentication token, see Obtaining an
authentication token from your chosen token issuer.

Creating a session in a JMS application
To create a session in JMS 1.0, a JMS application uses the createSession() method of a Connection object.

The createSession() method has two parameters:

1. A parameter that specifies whether the session is transacted or not transacted
2. A parameter that specifies the acknowledgment mode for the session

For example, the following code creates a session that is not transacted and has an acknowledgment
mode of AUTO_ACKNOWLEDGE:

Session session;
.
boolean transacted = false;
session = connection.createSession(transacted, Session.AUTO_ACKNOWLEDGE);

When a JMS session is created, the IBM MQ classes for JMS creates a connection handle (Hconn) and
starts a conversation with the queue manager.

A Session object, and any MessageProducer or MessageConsumer object created from it, cannot be used
concurrently by different threads of a multithreaded application. The simplest way of ensuring that these
objects are not used concurrently is to create a separate Session object for each thread.

This mechanism can also be used to supply an authentication token, see Obtaining an
authentication token from your chosen token issuer.

Transacted sessions in JMS applications
JMS applications can run local transactions by first creating a transacted session. An application can
commit or roll back a transaction.

JMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager to which the application is connected. To run local transactions, an
application must first create a transacted session by calling the createSession() method of a Connection
object, specifying as a parameter that the session is transacted. Subsequently, all messages sent and
received within the session are grouped into a sequence of transactions. A transaction ends when the
application commits or rolls back the messages it has sent and received since the transaction began.

To commit a transaction, an application calls the commit() method of the Session object. When a
transaction is committed, all messages sent within the transaction become available for delivery to other
applications, and all messages received within the transaction are acknowledged so that the messaging
server does not attempt to deliver them to the application again. In the point-to-point domain, the
messaging server also removes the received messages from their queues.

To roll back a transaction, an application calls the rollback() method of the Session object. When a
transaction is rolled back, all messages sent within the transaction are discarded by the messaging
server, and all messages received within the transaction become available for delivery again. In the
point-to-point domain, the messages that were received are put back on their queues and become visible
to other applications again.

A new transaction starts automatically when an application creates a transacted session or calls the
commit() or rollback() method. Therefore, a transacted session always has an active transaction.

When an application closes a transacted session, an implicit rollback occurs. When an application closes a
connection, an implicit rollback occurs for all the connection's transacted sessions.

If an application ends without closing a connection, an implicit rollback also occurs for all the
connection's transacted sessions.

Developing applications for IBM MQ 211

A transaction is wholly contained within a transacted session. A transaction cannot span sessions. This
means that it is not possible for an application to send and receive messages in two or more transacted
sessions and then commit or roll back all these actions as a single transaction.

Acknowledgment modes of JMS sessions
Every session that is not transacted has an acknowledgment mode that determines how messages
received by the application are acknowledged. Three acknowledgment modes are available, and the
choice of acknowledgment mode affects the design of the application.

If a session is not transacted, the way that messages received by the application are acknowledged
is determined by the acknowledgment mode of the session. The three acknowledgment modes are
described in the following paragraphs:

AUTO_ACKNOWLEDGE

The session automatically acknowledges each message received by the application.

If messages are delivered synchronously to the application, the session acknowledges receipt of a
message every time a Receive call completes successfully. If messages are delivered asynchronously,
the session acknowledges receipt of a message every time a call to the onMessage() method of a
message listener completes successfully.

If the application receives a message successfully, but a failure prevents acknowledgment from
occurring, the message becomes available for delivery again. The application must therefore be able
to handle a message that is re-delivered.

DUPS_OK_ACKNOWLEDGE

The session acknowledges the messages received by the application at times it selects.

Using this acknowledgment mode reduces the amount of work the session must do, but a failure that
prevents message acknowledgment might result in more than one message becoming available for
delivery again. The application must therefore be able to handle messages that are re-delivered.

Restriction: In AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE modes, JMS does not support
an application throwing an unhandled exception in a message listener. This means that messages
are always acknowledged when the message listener returns, regardless of whether it was processed
successfully (provided any failures are non-fatal and do not prevent the application from continuing).
If you require finer control of message acknowledgment, use the CLIENT_ACKNOWLEDGE or
transacted modes, which give the application full control of the acknowledgment functions.

CLIENT_ACKNOWLEDGE

The application acknowledges the messages it receives by calling the Acknowledge method of the
Message class.

The application can acknowledge the receipt of each message individually, or it can receive a batch
of messages and call the Acknowledge method only for the last message it receives. When the
Acknowledge method is called all messages received since the last time the method was called are
acknowledged.

In conjunction with any of these acknowledgment modes, an application can stop and restart the delivery
of messages in a session by calling the Recover method of the Session class. Messages received but
previously unacknowledged are re-delivered. However, they might not be delivered in the same sequence
in which they were previously delivered. In the meantime, higher priority messages might have arrived,
and some of the original messages might have expired. In the point-to-point domain, some of the original
messages might have been consumed by another application.

An application can determine whether a message is being re-delivered by examining the contents of the
JMSRedelivered header field of the message. The application does this by calling the getJMSRedelivered()
method of the Message class.

Creating destinations in a JMS application
Instead of retrieving destinations as administered objects from a Java Naming and Directory Interface
(JNDI) namespace, a JMS application can use a session to create destinations dynamically at run time.

212 Developing Applications for IBM MQ

An application can use a uniform resource identifier (URI) to identify an IBM MQ queue or a topic and,
optionally, to specify one or more properties of a Queue or Topic object.

Using a session to create Queue objects
To create a Queue object, an application can use the createQueue() method of a Session object, as shown
in the following example:

Session session;
.
Queue q1 = session.createQueue("Q1");

This code creates a Queue object with the default values for all its properties. The object represents an
IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a local queue, an
alias queue, or a remote queue definition.

The createQueue() method also accepts a queue URI as a parameter. A queue URI is a string that
specifies the name of an IBM MQ queue and, optionally, the name of the queue manager that owns the
queue and one or more properties of the Queue object. The following statement contains an example of a
queue URI:

Queue q2 = session.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The Queue object created by this statement represents an IBM MQ queue called Q2 that is owned by a
queue manager called QM2, and all messages sent to this destination are persistent and have a priority of
5. The queue manager identified in this way can be the local queue manager or a remote queue manager.
If it is a remote queue manager, IBM MQ must be configured so that, when the application sends a
message to this destination, WebSphere MQ can route the message from the local queue manager to
queue manager QM2. For more information about URIs, see “Uniform resource identifiers (URIs)” on page
214.

Note that the parameter on the createQueue() method contains provider specific information. Therefore,
using the createQueue() method to create a Queue object, instead of retrieving a Queue object as an
administered object from a JNDI namespace, might make your application less portable.

An application can create a TemporaryQueue object by using the createTemporaryQueue() method of a
Session object, as shown in the following example:

TemporaryQueue q3 = session.createTemporaryQueue();

Although a session is used to create a temporary queue, the scope of a temporary queue is the connection
that was used to create the session. Any of the connection's sessions can create message producers and
message consumers for the temporary queue. The temporary queue remains until the connection ends
or the application explicitly deletes the temporary queue by using the TemporaryQueue.delete() method,
whichever is the sooner.

When an application creates a temporary queue, IBM MQ classes for JMS creates a dynamic queue in
the queue manager to which the application is connected. The TEMPMODEL property of the connection
factory specifies the name of the model queue that is used to create the dynamic queue, and the
TEMPQPREFIX property of the connection factory specifies the prefix that is used to form the name of the
dynamic queue.

Using a session to create Topic objects
To create a Topic object, an application can use the createTopic() method of a Session object, as shown in
the following example:

Session session;

Developing applications for IBM MQ 213

.
Topic t1 = session.createTopic("Sport/Football/Results");

This code creates an Topic object with the default values for all its properties. The object represents a
topic called Sport/Football/Results.

The createTopic() method also accepts a topic URI as a parameter. A topic URI is a string that specifies
the name of a topic and, optionally, one or more properties of the Topic object. The following code
contains an example of a topic URI:

String uri = "topic://Sport/Tennis/Results?persistence=1&priority=0";
Topic t2 = session.createTopic(uri);

The Topic object created by this code represents a topic called Sport/Tennis/Results, and all messages
sent to this destination are nonpersistent and have a priority of 0. For more information about topic URIs,
see “Uniform resource identifiers (URIs)” on page 214.

Note that the parameter on the createTopic() method contains provider specific information. Therefore,
using the createTopic() method to create a Topic object, instead of retrieving a Topic object as an
administered object from a JNDI namespace, might make your application less portable.

An application can create a TemporaryTopic object by using the createTemporaryTopic() method of a
Session object, as shown in the following example:

TemporaryTopic t3 = session.createTemporaryTopic();

Although a session is used to create a temporary topic, the scope of a temporary topic is the connection
that was used to create the session. Any of the connection's sessions can create message producers
and message consumers for the temporary topic. The temporary topic remains until the connection ends
or the application explicitly deletes the temporary topic by using the TemporaryTopic.delete() method,
whichever is the sooner.

When an application creates a temporary topic, IBM MQ classes for JMS creates a topic with a name
that commences with the characters TEMP/tempTopicPrefix, where tempTopicPrefix is the value of the
TEMPTOPICPREFIX property of the connection factory.

Uniform resource identifiers (URIs)
A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the name of
the queue manager that owns the queue and one or more properties of the Queue object created by
the application. A topic URI is a string that specifies the name of a topic and, optionally, one or more
properties of the Topic object created by the application.

A queue URI has the following format:

queue://[qMgrName]/qName [? propertyName1 = propertyValue1
& propertyName2 = propertyValue2
&...]

A topic URI has the following format:

topic://topicName [? propertyName1 = propertyValue1
& propertyName2 = propertyValue2
&...]

The variables in these formats have the following meanings:
qMgrName

The name of the queue manager that owns the queue identified by the URI.

214 Developing Applications for IBM MQ

The queue manager can the local queue manager or a remote queue manager. If it is a remote queue
manager, IBM MQ must be configured so that, when an application sends a message to the queue,
WebSphere MQ can route the message from the local queue manager to the remote queue manager.

If no name is specified, the local queue manager is assumed.

qName
The name of the IBM MQ queue.

The queue can be a local queue, an alias queue, or a remote queue definition.

For the rules for creating queue names, see Rules for naming IBM MQ objects.

topicName
The name of the topic.

For the rules for creating topic names, see Rules for naming IBM MQ objects. Avoid the use of the
wildcard characters +, #, *, and ? in topic names. Topic names containing these characters can cause
unexpected results when you subscribe to them. See Combining topic strings.

propertyName1, propertyName2, ...
The names of the properties of the Queue or Topic object created by the application. Table 35 on page
215 lists the valid property names that can be used in a URI.

If no properties are specified, the Queue or Topic object has the default values for all its properties.

propertyValue1, propertyValue2, ...
The values of the properties of the Queue or Topic object created by the application. Table 35 on page
215 lists the valid property values that can be used in a URI.

Brackets ([]) denotes an optional component, and the ellipsis (...) means that the list of property name-
value pairs, if present, can contain one or more name-value pairs.

Table 35 on page 215 lists the valid property names and valid values that can be used in queue and topic
URIs. Although the IBM MQ JMS administration tool uses symbolic constants for the values of properties,
URIs cannot contain symbolic constants.

Table 35. Property names and valid values for use in queue and topic URIs

Property name Description Valid values

CCSID How the character data in the body of a
message is represented when IBM MQ
classes for JMS forwards the message to
the destination

• Any coded character set identifier
supported by IBM MQ.

encoding How the numeric data in the body of a
message is represented when IBM MQ
classes for JMS forwards the message to
the destination

• Any valid value for the Encoding field
in an IBM MQ message descriptor.

expiry The time to live for messages sent to the
destination

• -2 - As specified on the send() call
or, if not specified on the send() call,
the default time to live of the message
producer.

• 0 - A message sent to the destination
never expires.

• A positive integer specifying the time
to live in milliseconds.

Developing applications for IBM MQ 215

Table 35. Property names and valid values for use in queue and topic URIs (continued)

Property name Description Valid values

multicast The multicast setting for a topic when
using a real-time connection to a broker

The following list contains the valid
values. Associated with each value is the
corresponding value of the MULTICAST
property as used in the IBM MQ JMS
administration tool. For a description
of the MULTICAST property and its
valid values, see Properties of IBM MQ
classes for JMS objects.

• -1 - ASCF
• 0 - DISABLED
• 3 - NOTR
• 5 - RELIABLE
• 7 - ENABLED

persistence The persistence of messages sent to the
destination

• -2 - As specified on the send() call
or, if not specified on the send() call,
the default persistence of the message
producer.

• -1 - As specified by the DefPersistence
attribute of the IBM MQ queue or
topic.

• 1 - Nonpersistent.
• 2 - Persistent.
• 3 - Equivalent to the value HIGH for

the PERSISTENCE property as used in
the IBM MQ JMS administration tool.
For an explanation of this value, see
“JMS persistent messages” on page
245.

priority The priority of messages sent to the
destination

• -2 - As specified on the send() call
or, if not specified on the send() call,
the default priority of the message
producer.

• -1 - As specified by the DefPriority
attribute of the IBM MQ queue or
topic.

• An integer in the range 0-9 specifying
the priority of messages sent to the
destination.

targetClient Whether messages sent to the
destination contain an MQRFH2 header

• 0 - Messages contain an MQRFH2
header.

• 1 - Messages do not contain an
MQRFH2 header.

216 Developing Applications for IBM MQ

For example, the following URI identifies an IBM MQ queue called Q1 that is owned by the local queue
manager. A Queue object created using this URI has the default values for all its properties.

queue:///Q1

The following URI identifies an IBM MQ queue called Q2 that is owned by a queue manager called QM2.
All messages sent to this destination have a priority of 6. The remaining properties of the Queue object
created using this URI have their default values.

queue://QM2/Q2?priority=6

The following URI identifies a topic called Sport/Athletics/Results. All messages sent to this destination
are nonpersistent and have a priority of 0. The remaining properties of the Topic object created using this
URI have their default values.

topic://Sport/Athletics/Results?persistence=1&priority=0

Sending messages in a JMS application
Before a JMS application can send messages to a destination, it must first create a MessageProducer
object for the destination. To send a message to the destination, the application creates a Message object
and then calls the send() method of the MessageProducer object.

An application uses a MessageProducer object to send messages. An application normally creates a
MessageProducer object for a specific destination, which can be a queue or a topic, so that all messages
sent using the message producer are sent to the same destination. Therefore, before an application can
create a MessageProducer object, it must first create a Queue or Topic object. For information about how
to create a Queue or Topic object, see the following topics:

• “Using JNDI to retrieve administered objects in a JMS or Jakarta Messaging application” on page 198
• “Using the IBM JMS extensions” on page 199
• “Using the IBM MQ JMS extensions” on page 207
• “Creating destinations in a JMS application” on page 212

To create a MessageProducer object, an application uses the createProducer() method of a Session
object, as shown in the following example:

MessageProducer producer = session.createProducer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

Before an application can send a message, it must create a Message object. The body of a message
contains the application data, and JMS defines five types of message body:

• Bytes
• Map
• Object
• Stream
• Text

Each type of message body has its own JMS interface, which is a sub-interface of the Message interface,
and a method in the Session interface for creating a message with that type of body. For example, the
interface for a text message is called TextMessage, and an application uses the createTextMessage()
method of a Session object to create a text message, as shown in the following statement:

TextMessage outMessage = session.createTextMessage(outString);

Developing applications for IBM MQ 217

For more information about messages and message bodies, see “JMS messages” on page 138.

To send a message, an application uses the send() method of a MessageProducer object, as shown in the
following example:

producer.send(outMessage);

An application can use the send() method to send messages in either messaging domain. The nature of
the destination determines which messaging domain is used. However, TopicPublisher, the sub-interface
of MessageProducer that is specific to the publish/subscribe domain, also has a publish() method, which
can be used instead of the send() method. The two methods are functionally the same.

An application can create a MessageProducer object with no specified destination. In this case, the
application must specify the destination when calling the send() method.

If an application sends a message within a transaction, the message is not delivered to its destination
until the transaction is committed. This means that an application cannot send a message and receive a
reply to the message within the same transaction.

A destination can be configured so that when an application sends messages to it, IBM MQ classes for
JMS forwards the message and returns control back to the application without determining whether the
queue manager has received the message safely. This is sometimes referred to as asynchronous put. For
more information, see “Putting messages asynchronously in IBM MQ classes for JMS” on page 308.

Receiving messages in a JMS application
An application uses a message consumer to receive messages. A durable topic subscriber is a message
consumer that receives all messages sent to a destination, including those sent while the consumer is
inactive. An application can select which messages it wants to receive by using a message selector, and
can receive messages asynchronously by using a message listener.

An application uses a MessageConsumer object to receive messages. An application creates a
MessageConsumer object for a specific destination, which can be a queue or a topic, so that all messages
received using the message consumer are received from the same destination. Therefore, before an
application can create a MessageConsumer object, it must first create a Queue or Topic object. For
information about how to create a Queue or Topic object, see the following topics:

• “Using JNDI to retrieve administered objects in a JMS or Jakarta Messaging application” on page 198
• “Using the IBM JMS extensions” on page 199
• “Using the IBM MQ JMS extensions” on page 207
• “Creating destinations in a JMS application” on page 212

To create a MessageConsumer object, an application uses the createConsumer() method of a Session
object, as shown in the following example:

MessageConsumer consumer = session.createConsumer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

The application then uses the receive() method of the MessageConsumer object to receive a message
from the destination, as shown in the following example:

Message inMessage = consumer.receive(1000);

The parameter on the receive() call specifies how long in milliseconds the method waits for a suitable
message to arrive if no message is available immediately. If you omit this parameter, the call blocks
indefinitely until a suitable message arrives. If you do not want the application to wait for a message, use
the receiveNoWait() method instead.

The receive() method returns a message of a specific type. For example, when an application receives a
text message, the object returned by the receive() call is a TextMessage object.

218 Developing Applications for IBM MQ

However, the declared type of object returned by a receive() call is a Message object. Therefore, in order
to extract the data from the body of a message that has just been received, the application must cast
from the Message class to the more specific subclass, such as TextMessage. If the type of the message
is not known, the application can use the instanceof operator to determine the type. It is always
good practice for an application to determine the type of a message before casting so that errors can be
handled gracefully.

The following code uses the instanceof operator and shows how to extract the data from the body of a
text message:

if (inMessage instanceof TextMessage) {
 String replyString = ((TextMessage) inMessage).getText();
 .
 .
 .
} else {
 // Print error message if Message was not a TextMessage.
 System.out.println("Reply message was not a TextMessage");
}

If an application sends a message within a transaction, the message is not delivered to its destination
until the transaction is committed. This means that an application cannot send a message and receive a
reply to the message within the same transaction.

If a message consumer receives messages from a destination that is configured for read ahead, any
nonpersistent messages that are in the read ahead buffer when the application ends are discarded.

In the publish/subscribe domain, JMS identifies two types of message consumer, nondurable topic
subscriber and durable topic subscriber, which are described in the following two sections.

Nondurable topic subscribers
A nondurable topic subscriber receives only those messages that are published while the subscriber
is active. A nondurable subscription starts when an application creates a nondurable topic subscriber
and ends when the application closes the subscriber, or when the subscriber falls out of scope. As an
extension in IBM MQ classes for JMS, a nondurable topic subscriber also receives retained publications.

To create a nondurable topic subscriber, an application can use the domain independent
createConsumer() method, specifying a Topic object as the destination. Alternatively, an application can
use the domain specific createSubscriber() method, as shown in the following example:

TopicSubscriber subscriber = session.createSubscriber(topic);

The parameter topic is a Topic object that the application has created previously.

Durable topic subscribers
Restriction: An application cannot create durable topic subscribers when using a real-time connection to
a broker.

A durable topic subscriber receives all messages that are published during the life of a durable
subscription. These messages include all those that are published while the subscriber is not active.
As an extension in IBM MQ classes for JMS, a durable topic subscriber also receives retained publications.

To create a durable topic subscriber, an application uses the createDurableSubscriber() method of a
Session object, as shown in the following example:

TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001");

On the createDurableSubscriber() call, the first parameter is a Topic object that the application has
created previously, and the second parameter is a name that is used to identify the durable subscription.

Developing applications for IBM MQ 219

The session used to create a durable topic subscriber must have an associated client identifier. The
client identifier associated with a session is the same as the client identifier for the connection that is
used to create the session. The client identifier can be specified by setting the CLIENTID property of
the ConnectionFactory object. Alternatively, an application can specify the client identifier by calling the
setClientID() method of the Connection object.

The name that is used to identify a durable subscription must be unique only within the client identifier,
and therefore the client identifier forms part of the full, unique identifier of a durable subscription. To
continue using a durable subscription that was created previously, an application must create a durable
topic subscriber using a session with the same client identifier as that associated with the durable
subscription, and using the same subscription name.

A durable subscription starts when an application creates a durable topic subscriber using a client
identifier and subscription name for which no durable subscription currently exists. However, a durable
subscription does not end when the application closes the durable topic subscriber. To end a durable
subscription, an application must call the unsubscribe() method of a Session object that has the same
client identifier as that associated with the durable subscription. The parameter on the unsubscribe() call
is the subscription name, as shown in the following example:

session.unsubscribe("D_SUB_000001");

The scope of a durable subscription is a queue manager. If a durable subscription exists on one queue
manager, and an application connected to another queue manager creates a durable subscription with the
same client identifier and subscription name, the two durable subscriptions are completely independent.

Message selectors
An application can specify that only those messages that satisfy certain criteria are returned by
successive receive() calls. When creating a MessageConsumer object, the application can specify a
Structured Query Language (SQL) expression that determines which messages are retrieved. This SQL
expression is called a message selector. The message selector can contain the names of JMS message
header fields and message properties. For information about how to construct a message selector, see
“Message selectors in JMS” on page 139.

The following example shows how an application can select messages based on a user defined property
called myProp:

MessageConsumer consumer;
.
consumer = session.createConsumer(destination, "myProp = 'blue'");

The JMS specification does not allow an application to change the message selector of a message
consumer. After an application creates a message consumer with a message selector, the message
selector remains for the life of that consumer. If an application requires more than one message selector,
the application must create a message consumer for each message selector.

Note that, when an application is connected to a Version 7 queue manager, the MSGSELECTION property
of the connection factory has no effect. To optimize performance, all message selection is done by the
queue manager.

Suppressing local publications
An application can create a message consumer that ignores publications published on the consumer's
own connection. The application does this by setting the third parameter on a createConsumer() call to
true, as shown in the following example:

MessageConsumer consumer = session.createConsumer(topic, null, true);

220 Developing Applications for IBM MQ

On a createDurableSubscriber() call, the application does this by setting the fourth parameter to true, as
shown in the following example

String selector = "company = 'IBM'";
TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001",
 selector, true);

Asynchronous delivery of messages
An application can receive messages asynchronously by registering a message listener with a message
consumer. The message listener has a method called onMessage, which is called asynchronously when
a suitable message is available and whose purpose is to process the message. The following code
illustrates the mechanism:

import jakarta.jms.*;

public class MyClass implements MessageListener
{
 // The method that is called asynchronously when a suitable message is available
 public void onMessage(Message message)
 {
 System.out.println("Message is "+message);

 // The code to process the message
 .
 .
 .
 }
}
.
.
.
// Main program (possibly in another class)
.
// Creating the message listener
MyClass listener = new MyClass();

// Registering the message listener with a message consumer
consumer.setMessageListener(listener);

// The main program now continues with other processing

import javax.jms.*;

public class MyClass implements MessageListener
{
 // The method that is called asynchronously when a suitable message is available
 public void onMessage(Message message)
 {
 System.out.println("Message is "+message);

 // The code to process the message
 .
 .
 .
 }
}
.
.
.
// Main program (possibly in another class)
.
// Creating the message listener
MyClass listener = new MyClass();

// Registering the message listener with a message consumer
consumer.setMessageListener(listener);

// The main program now continues with other processing

Developing applications for IBM MQ 221

An application can use a session either for receiving messages synchronously using receive() calls, or for
receiving messages asynchronously using message listeners, but not for both. If an application needs to
receive messages synchronously and asynchronously, it must create separate sessions.

Once a session is set up to receive messages asynchronously, the following methods cannot be called on
that session or on objects created from that session:

• MessageConsumer.receive()
• MessageConsumer.receive(long)
• MessageConsumer.receiveNoWait()
• Session.acknowledge()
• MessageProducer.send(Destination, Message)
• MessageProducer.send(Destination, Message, int, int, long)
• MessageProducer.send(Message)
• MessageProducer.send(Message, int, int, long)
• MessageProducer.send(Destination, Message, CompletionListener)
• MessageProducer.send(Destination, Message, int, int, long, CompletionListener)
• MessageProducer.send(Message, CompletionListener)
• MessageProducer.send(Message, int, int, long, CompletionListener)
• Session.commit()
• Session.createBrowser(Queue)
• Session.createBrowser(Queue, String)
• Session.createBytesMessage()
• Session.createConsumer(Destination)
• Session.createConsumer(Destination, String, boolean)
• Session.createDurableSubscriber(Topic, String)
• Session.createDurableSubscriber(Topic, String, String, boolean)
• Session.createMapMessage()
• Session.createMessage()
• Session.createObjectMessage()
• Session.createObjectMessage(Serializable)
• Session.createProducer(Destination)
• Session.createQueue(String)
• Session.createStreamMessage()
• Session.createTemporaryQueue()
• Session.createTemporaryTopic()
• Session.createTextMessage()
• Session.createTextMessage(String)
• Session.createTopic()
• Session.getAcknowledgeMode()
• Session.getMessageListener()
• Session.getTransacted()
• Session.rollback()
• Session.unsubscribe(String)

If any of these methods are called, a JMSException containing the message:

222 Developing Applications for IBM MQ

JMSCC0033: A synchronous method call is not permitted when a session is being used
asynchronously:'method name'

is thrown.

Receiving poison messages
An application can receive a message that cannot be processed. There can be several reasons why the
message cannot be processed, for example the message might have an incorrect format. Such messages
are described as poison messages and require special handling to prevent the message being recursively
processed.

For details on how to handle poison messages, see “Handling poison messages in IBM MQ classes for
JMS” on page 225.

Tailoring buffer sizes to suit the messages being received
When a message is received from IBM MQ by a non-JMS application a message buffer must be provided
by the application for the message to be written into. JMS applications do not need to manually create
a buffer. The IBM MQ classes for JMS automatically create and size message buffers to suit the sizes of
the messages being received. For most applications, automatically managed buffers provide a suitable
balance of performance and convenience for the application developer. In certain circumstances, it might
be beneficial to specify the initial size of the message buffer manually. The default initial size of an IBM
MQ JMS receive buffer is 4 KB. If an application is always going to receive messages that are 256 KB in
size, it might be preferable to configure the initial buffer size to 256 KB. This can avoid the need for the
IBM MQ classes for JMS to attempt and fail to receive the message into a 4 KB buffer before resizing it
to 256 KB and successfully receiving it. For a client-connected application, this can avoid the need for a
potentially wasted network round trip while the IBM MQ classes for JMS determine the correct buffer size
to use.

The initial buffer size can be configured by setting the com.ibm.mq.jmqi.defaultMaxMsgSize Java property
to your chosen value, in bytes. Note that this property affects all IBM MQ JMS applications that are
running inside the Java Virtual Machine, so be careful not to adversely affect other message consumers
that receive messages of a different size.

The IBM MQ classes for JMS still attempt to automatically reduce the size of the buffer if several
messages smaller than the configured size are received. By default, this happens if 10 messages are
received which are all smaller than the buffer size. For example, if 10 messages are received in a row
that are 128 KB in size, the buffer is reduced to from 256 KB to 128 KB. It is then increased again
when larger messages are received. It is possible to configure the number of messages that must
be received before a buffer is reduced in size. For example, this might be useful if the application is
known to receive five large messages followed by 10 smaller messages and then another five large
messages. With the default settings, the buffer would be reduced after the 10 smaller messages had
been received and would need increasing again for the larger messages. The Java system property
com.ibm.mq.jmqi.smallMsgBufferReductionThreshold can be set to the number of messages that must
be received before the size of the buffer is reduced. In this example, it could be set to 20 to prevent 10
smaller messages from reducing the buffer size.

The properties can be set independently of each other. For example, you might choose
to leave the initial buffer size to its default value of 4 KB but increase the value of
com.ibm.mq.jmqi.smallMsgBufferReductionThreshold so once the buffer is increased in size it stays that
size for longer.

If large numbers of MQRC_TRUNCATED_MSG_FAILED (2080) return codes are seen for your JMS
applications in MQI statistics records, this might be an indication that you would benefit from configuring
a higher initial buffer size for those applications, or reducing the frequency with which buffer sizes are
reduced. However, it is important to note that for a long running application you are likely to see only a
very small number of MQRC_TRUNCATED_MSG_FAILED return codes. This is because typically the buffer
is increased to the correct size immediately after the first large message is received, and is not reduced
in size unless a number of smaller messages are received. It is therefore possible that a large number of

Developing applications for IBM MQ 223

MQRC_TRUNCATED_MSG_FAILED indicates other poor application practices such as connecting to IBM
MQ to receive just one or two messages before disconnecting.

Retrieval of subscription user data
If the messages that an IBM MQ classes for JMS application is consuming from a queue are put by an
administratively defined durable subscription, the application needs to access the user data information
that is associated with the subscription. This information is added to the message as a property.

When a message is consumed from a queue that contains an RFH2 header with the MQPS folder, the
value that is associated with the Sud key, if it exists, is added as a String property to the JMS Message
object returned to the IBM MQ classes for JMS application. To enable the retrieval of this property from
the message, the constant JMS_IBM_SUBSCRIPTION_USER_DATA in the JmsConstants interface can be
used with the following method to get the subscription user data:

• jakarta.jms.Message.getStringProperty(java.lang.String)

• javax.jms.Message.getStringProperty(java.lang.String)

In the following example, an administrative durable subscription is defined by using the MQSC command
DEFINE SUB:

DEFINE SUB('MY.SUBCRIPTION') TOPICSTR('PUBLIC') DEST('MY.SUBSCRIPTION.Q')
USERDATA('Administrative durable subscription to put message to the queue MY.SUBSCRIPTION.Q')

Copies of messages that are published to the topic string PUBLIC are put to the queue,
MY.SUBSCRIPTION.Q. The user data that is associated with the durable subscription is then added
as a property to the message, which is stored in the MQPS folder of the RFH2 header with the key Sud.

The IBM MQ classes for JMS application can call:

jakarta.jms.Message.getStringProperty(JmsConstants.JMS_IBM_SUBSCRIPTION_USER_DATA);

javax.jms.Message.getStringProperty(JmsConstants.JMS_IBM_SUBSCRIPTION_USER_DATA);

The following String is then returned:

Administrative durable subscription to put message to the queue MY.SUBSCRIPTION.Q

Related concepts
“The MQRFH2 header and JMS” on page 143
Related tasks
Defining an administrative subscription
Related reference
DEFINE SUB
Interface JmsConstants

Closing down an IBM MQ classes for JMS application
It is important for an IBM MQ classes for JMS application to close certain JMS objects explicitly before
stopping. Finalizers might not be called, so do not rely on them to free resources. Do not allow an
application to terminate with compressed trace active.

Garbage collection alone cannot release all IBM MQ classes for JMS and IBM MQ resources in a
timely manner, especially if an application creates many short lived JMS objects at the session level
or lower. It is therefore important for an application to close a Connection, Session, MessageConsumer, or
MessageProducer object when it is no longer required.

If an application ends without closing a Connection, an implicit rollback occurs for all the connection's
transacted sessions. To ensure any changes made by the application are committed, close the Connection
explicitly before closing the application.

224 Developing Applications for IBM MQ

Do not use finalizers in an application to close JMS objects. Because finalizers might not be called,
resources might not be freed. When a Connection is closed it closes all the Sessions that were created
from it. Similarly, the MessageConsumers and MessageProducers created from a Session are closed when
the Session is closed. However, consider closing Sessions, MessageConsumers, and MessageProducers
explicitly to ensure resources are freed in a timely manner.

If trace compression is activated, System.Halt() shutdowns and abnormal, uncontrolled JVM terminations
are likely to result in a corrupt trace file. Where possible, turn off the trace facility when you have
collected the trace information you need. If you are tracing an application up to an abnormal end, use
uncompressed trace output.

Note: To disconnect from a queue manager, a JMS application invokes the close() method on the
connection object.

Handling poison messages in IBM MQ classes for JMS
A poison message is one which cannot be processed by a receiving application. If a poison message is
delivered to an application and rolled back a specified number of times, the IBM MQ classes for JMS can
move it to a backout queue.

A poison message is a message that cannot be processed by a receiving application. The message could
have an unexpected type, or contain information that cannot be handled by the application's logic. If a
poison message is delivered to an application, the application will be unable to process it and will roll it
back to the queue where it came from. By default, the IBM MQ classes for JMS will repeatedly redeliver
the message to the application. This can result in the application getting stuck in a loop continually trying
to process the poison message and rolling it back.

To prevent this from happening, the IBM MQ classes for JMS can detect poison messages, and move them
to an alternative destination. To do this, the IBM MQ classes for JMS make use of the following properties:

• The value of the BackoutCount field within the MQMD of the message that has been detected.
• The IBM MQ queue attributes BOTHRESH (backout threshold) and BOQNAME (backout requeue queue)

for the input queue containing the message.

Whenever a message is rolled back by an application, the queue manager automatically increments the
value of the BackoutCount field for the message.

When the IBM MQ classes for JMS detect a message that has a BackoutCount greater than zero, they
compare the value of the BackoutCount to the value of the BOTHRESH attribute.

• If the BackoutCount is less than the value of the BOTHRESH attribute, the IBM MQ classes for JMS
deliver it to the application for processing.

• However, if the BackoutCount is greater than or equal to BOTHRESH, then the message is considered
to be a poison message. In this situation, the IBM MQ classes for JMS then move the message to the
queue specified by the BOQNAME attribute. If the message cannot be put to the backout queue, then
it is either moved to the queue manager's dead letter queue or discarded, depending upon the report
options of the message.

Note:

• If the BOTHRESH attribute is left at its default value of 0, then poison message handling is disabled. This
means that any poison messages are put back to the input queue.

• The other thing to note is that IBM MQ classes for JMS query the BOTHRESH and BOQNAME attributes for
the queue the first time they detect a message that has a BackoutCount greater than zero. The values of
these attributes are then cached, and used whenever the IBM MQ classes for JMS encounter a message
that has a BackoutCount greater than zero.

Configuring your system to perform poison message handling
The queue that the IBM MQ classes for JMS use when inquiring the BOTHRESH and BOQNAME attributes
depends on the style of messaging being performed:

Developing applications for IBM MQ 225

• For point-to-point messaging, this is the underlying local queue. This is important when a JMS
application is consuming messages from either alias queues or cluster queues.

• For publish/subscribe messaging, a managed queue is created to hold the messages for an application.
The IBM MQ classes for JMS query the managed queue to determine the values for the BOTHRESH and
BOQNAME attributes.

The managed queue is created from a model queue associated with the Topic object that the
application has subscribed to, and inherits the values of the BOTHRESH and BOQNAME attributes from
the model queue. The model queue that is used depends on whether the receiving application has taken
out a durable or non-durable subscription:

– The model queue used for durable subscriptions is specified by the MDURMDL attribute of the Topic.
The default value of this attribute is SYSTEM.DURABLE.MODEL.QUEUE.

– For non-durable subscriptions, the model queue that is used is specified by the MNDURMDL attribute.
The default value of the MNDURMDL attribute is SYSTEM.NDURABLE.MODEL.QUEUE.

When inquiring the BOTHRESH and BOQNAME attributes, the IBM MQ classes for JMS:

• Open the local queue, or the target queue for an alias queue.
• Inquire the BOTHRESH and BOQNAME attributes.
• Close the local queue, or the target queue for an alias queue.

The open options that are used when opening the local queue, or the target queue for an alias queue,
depend on the version of the IBM MQ classes for JMS being used:

• For IBM MQ classes for JMS in IBM MQ 9.1.0 Fix Pack 1 and earlier, or IBM MQ 9.1.1, if the local queue,
or the target queue for an alias queue, is a cluster queue, then the IBM MQ classes for JMS open the
queue with the MQOO_INPUT_AS_Q_DEF, MQOO_INQUIRE and MQOO_FAIL_IF_QUIESCING options.
This means that the user running the receiving application must have inquire and get access to the local
instance of the cluster queue.

The IBM MQ classes for JMS open all other types of local queue with the open options MQOO_INQUIRE
and MQOO_FAIL_IF_QUIESCING. In order for the IBM MQ classes for JMS to query the values of the
attributes, the user running the receiving application must have inquire access on the local queue.

• When using the IBM MQ classes for JMS in IBM MQ 9.1.0 Fix Pack 2 and later, or for IBM MQ 9.1.2 and
later, the user running the receiving application must have inquire access on the local queue, regardless
of the type of the queue.

To move poison messages to either a backout requeue queue or the queue manager's dead letter queue,
you must grant the user running the application put and passall authorities.

Processing poison messages for synchronous applications
If an application receives messages synchronously, by calling one of the following methods, the IBM MQ
classes for JMS requeue a poison message within the unit of work that was active when the application
tried to get the message:

• JMSConsumer.receive()
• JMSConsumer.receive(long timeout)
• JMSConsumer.receiveBody(Class<T> c)
• JMSConsumer.receiveBody(Class<T> c, long timeout)
• JMSConsumer.receiveBodyNoWait Class<T> c)
• JMSConsumer.receiveNoWait()

• MessageConsumer.receive()
• MessageConsumer.receive(long timeout)
• MessageConsumer.receiveNoWait()

• QueueReceiver.receive()

226 Developing Applications for IBM MQ

• QueueReceiver.receive(long timeout)
• QueueReceiver.receiveNoWait()

• TopicSubscriber.receive()
• TopicSubscriber.receive(long timeout)
• TopicSubscriber.receiveNoWait()

This means that if the application is using either a transacted JMS context or session, then the moving of
the message to the backout queue is not committed until the transaction is committed.

If the BOTHRESH attribute is set to a value other than zero, the BOQNAME attribute should also be set.
If the BOTHRESH is set to a value greater than zero, and the BOQNAME has not been set, the behavior is
determined by the report options of the message:

• If the message has the report option MQRO_DISCARD_MSG set, the message is discarded.
• If the message has the report option MQRO_DEAD_LETTER_Q specified, then the IBM MQ classes for

JMS try to move the message to the queue manager's dead letter queue.
• If the message does not have either the MQRO_DISCARD_MSG or MQRO_DEAD_LETTER_Q set, the IBM

MQ classes for JMS try to put the message to the dead letter queue for the queue manager.

In the event that the attempt to put the message to the dead letter queue fails for some reason, what
happens to the message is determined by whether the receiving application is using a transacted or
non-transacted JMS context or session:

• If the receiving application is using either a transacted JMS context or session, and the transaction is
committed, then the message is discarded.

• If the receiving application is using a transacted JMS context or session, and rolls the transaction back,
the message is returned to the input queue.

• If the receiving application has created a non-transacted JMS context or session, the message is
discarded.

Processing poison messages for asynchronous applications
If an application is receiving messages asynchronously via a MessageListener, the IBM MQ classes for
JMS requeue poison messages without affecting message delivery. The requeue process takes place
outside of any unit of work associated with actual message delivery to the application.

If the BOTHRESH is set to a value greater than zero, and the BOQNAME has not been set, the behavior is
determined by the report options of the message:

• If the message has the report option MQRO_DISCARD_MSG set, the message is discarded.
• If the message has the report option MQRO_DEAD_LETTER_Q specified, then the IBM MQ classes for

JMS try to move the message to the queue manager's dead letter queue.
• If the message does not have either the MQRO_DISCARD_MSG or MQRO_DEAD_LETTER_Q set, the IBM

MQ classes for JMS try to put the message to the dead letter queue for the queue manager.

If the attempt to put the message to the dead letter queue fails for some reason, the IBM MQ classes for
JMS returns the message to the input queue.

For information on how activation specifications and ConnectionConsumers handle poison messages, see
Removing messages from the queue in ASF.

What happens to a message when it is moved to the backout queue
When a poison message is requeued to the backout requeue queue, the IBM MQ classes for JMS add
an RFH2 header to it (if it did not have one already), and update some of the fields within the message
descriptor (MQMD).

Developing applications for IBM MQ 227

If the poison message contains an RFH2 header (because it was a JMS message, for example), the
IBM MQ classes for JMS change the following fields within the MQMD when moving the message to the
backout requeue queue:

• The BackoutCount field is reset to zero.
• The Expiry field of the message is updated to reflect the remaining expiry at the time the poison

message was received by the JMS application.

If the poison message does not contain an RFH2 header, the IBM MQ classes for JMS add one and update
the following fields in the MQMD as part of the backout processing:

• The BackoutCount field is reset to zero.
• The Expiry field of the message is updated to reflect the remaining expiry at the time the poison

message was received by the JMS application.
• The Format field of the message is changed to MQHRF2.
• The CCSID field is changed to be 1208.
• The Encoding field is modified to be 273.

In addition to this, the CCSID and Encoding fields from the poison message are copied into the CCSID and
Encoding fields of the RFH2 header, to ensure that the header chaining of the message on the backout
requeue queue is correct.

Related concepts
“Handling poison messages in ASF” on page 325
Within the Application Server Facilities, poison message handling is handled slightly differently to
elsewhere in IBM MQ classes for JMS.

Exceptions in IBM MQ classes for JMS
An IBM MQ classes for JMS application must handle exceptions that are thrown by JMS API calls or that
are delivered to an exception handler.

IBM MQ classes for JMS reports runtime problems by throwing exceptions. The type of exceptions that
are thrown, and the way that these exceptions must be handled, depends on the version of the JMS
specification that is used by your application:

• Methods on the interfaces that are defined in JMS 1.1 and earlier throw checked exceptions. The
base class of these exceptions is JMSException. For more information about how to handle checked
exceptions, see “Handling checked exceptions” on page 228.

• Methods on the interfaces added in JMS 2.0 throw unchecked exceptions. The base class for these
exceptions is JMSRuntimeException. For more information on how to handle unchecked exceptions,
see “Handling unchecked exceptions” on page 232.

You can also register an ExceptionListener with a JMS Connection or a JMSContext. The MQ
classes for JMS then notify the ExceptionListener if either an issue is detected with a connection
to the queue manager, or if an issue occurs while trying to deliver a message asynchronously. For more
information, see “ExceptionListeners” on page 235.

Related concepts
IBM MQ classes for JMS
Related reference
ASYNCEXCEPTION

Handling checked exceptions
Methods on the interfaces that are defined in JMS 1.1 or earlier throw checked exceptions. The base class
for these exceptions is JMSException. Therefore, catching JMSExceptions provides a generic way of
handling these types of exceptions.

Every JMSException encapsulates the following information:

228 Developing Applications for IBM MQ

• A provider specific exception message, which your application can obtain by calling the
Throwable.getMessage() method.

• A provider specific error code, which your application can obtain by calling the
JMSException.getErrorCode() method.

• A linked exception. An exception that is thrown by a JMS 1.1 API call is often the result of a lower level
problem which is reported by another exception that is linked to this exception. Your application can
obtain a linked exception by calling either the JMSException.getLinkedException() method or
the Throwable.getCause() method.

When you use the JMS 1.1 API, most exceptions that are thrown by the IBM MQ classes
for JMS are instances of subclasses of JMSException. These subclasses implement the
com.ibm.msg.client.jms.JmsExceptionDetail interface, which provides the following additional
information:

• An explanation of the exception message. Your application can obtain this message by calling the
JmsExceptionDetail.getExplanation() method.

• A recommended user response to the exception. Your application can obtain this message by calling the
JmsExceptionDetail.getUserAction() method.

• The keys for the message inserts in the exception message. Your application can obtain an iterator for
all the keys by calling the JmsExceptionDetail.getKeys() method.

• The message inserts in the exception message. For example, a message insert might be the name
of the queue that caused the exception, and it might be useful for your application to access that
name. Your application can obtain the message insert corresponding to a specified key by calling the
JmsExceptionDetail.getValue() method.

All the methods in the JmsExceptionDetail interface return null if no details are available.

For example, if an application tries to create a message producer for an IBM MQ queue that does not
exist, an exception is thrown with the following information:

Message : JMSWMQ2008: Failed to open MQ queue 'Q_test'.
Class : class com.ibm.msg.client.jms.DetailedInvalidDestinationException
Error Code : JMSWMQ2008
Explanation : JMS attempted to perform an MQOPEN, but IBM MQ reported an
 error.
User Action : Use the linked exception to determine the cause of this error. Check
 that the specified queue and queue manager are defined correctly.

The exception that is thrown,
com.ibm.msg.client.jms.DetailedInvalidDestinationException, is a subclass of the
following class, and implements the com.ibm.msg.client.jms.JmsExceptionDetail interface.

• jakarta.jms.InvalidDestinationException

• javax.jms.InvalidDestinationException

Linked exceptions
A linked exception provides further information about a runtime problem. Therefore, for each
JMSException that is thrown, an application should check the linked exception.

The linked exception itself might have another linked exception, and so the linked exceptions form
a chain that leads back to the original underlying problem. A linked exception is implemented by
using the chained exception mechanism of the java.lang.Throwable class, and your application can
obtain a linked exception by calling the Throwable.getCause() method. For a JMSException, the
getLinkedException() method delegates to the Throwable.getCause() method.

For example, if an application specifies an incorrect port number when connecting to a queue manager,
the exceptions form the following chain:

Developing applications for IBM MQ 229

com.ibm.msg.client.jms.DetailIllegalStateException
|
+--->
 com.ibm.mq.MQException
 |
 +--->
 com.ibm.mq.jmqi.JmqiException
 |
 +--->
 com.ibm.mq.jmqi.JmqiException
 |
 +--->
 java.net.ConnectionException

Typically, each exception in a chain is thrown from a different layer in the code. For example, the
exceptions in the preceding chain are thrown by the following layers:

• The first exception, an instance of a subclass of JMSException, is thrown by the common layer in IBM
MQ classes for JMS.

• The next exception, an instance of com.ibm.mq.MQException, is thrown by the IBM MQ messaging
provider.

• The next two exceptions, both of which are instances of com.ibm.mq.jmqi.JmqiException, are
thrown by the Java Message Queueing Interface (JMQI). The JMQI is the component that is used by the
IBM MQ classes for JMS to communicate with a queue manager.

• The final exception, an instance of java.net.ConnectionException, is thrown by the Java class
library.

For more information about the layered architecture of IBM MQ classes for JMS, see IBM MQ classes for
JMS architecture.

You can code your application to iterate through this chain to extract all the appropriate information, as
shown in the following example:

import com.ibm.msg.client.jms.JmsExceptionDetail;
import com.ibm.mq.MQException;
import com.ibm.mq.jmqi.JmqiException;
import jakarta.jms.JMSException;
.
.
.
catch (JMSException je) {
 System.err.println("Caught JMSException");
 // Check for linked exceptions in JMSException
 Throwable t = je;
 while (t != null) {
 // Write out the message that is applicable to all exceptions
 System.err.println("Exception Msg: " + t.getMessage());
 // Write out the exception stack trace
 t.printStackTrace(System.err);

 // Add on specific information depending on the type of exception
 if (t instanceof JMSException) {
 JMSException je1 = (JMSException) t;
 System.err.println("JMS Error code: " + je1.getErrorCode());
 if (t instanceof JmsExceptionDetail){
 JmsExceptionDetail jed = (JmsExceptionDetail)je1;
 System.err.println("JMS Explanation: " + jed.getExplanation());
 System.err.println("JMS Explanation: " + jed.getUserAction());
 }
 } else if (t instanceof MQException) {
 MQException mqe = (MQException) t;
 System.err.println("WMQ Completion code: " + mqe.getCompCode());
 System.err.println("WMQ Reason code: " + mqe.getReason());
 } else if (t instanceof JmqiException){
 JmqiException jmqie = (JmqiException)t;
 System.err.println("WMQ Log Message: " + jmqie.getWmqLogMessage());
 System.err.println("WMQ Explanation: " + jmqie.getWmqMsgExplanation());
 System.err.println("WMQ Msg Summary: " + jmqie.getWmqMsgSummary());
 System.err.println("WMQ Msg User Response: " + jmqie.getWmqMsgUserResponse());
 System.err.println("WMQ Msg Severity: " + jmqie.getWmqMsgSeverity());
 }

230 Developing Applications for IBM MQ

 // Get the next cause
 t = t.getCause();
 }
}

import com.ibm.msg.client.jms.JmsExceptionDetail;
import com.ibm.mq.MQException;
import com.ibm.mq.jmqi.JmqiException;
import javax.jms.JMSException;
.
.
.
catch (JMSException je) {
 System.err.println("Caught JMSException");
 // Check for linked exceptions in JMSException
 Throwable t = je;
 while (t != null) {
 // Write out the message that is applicable to all exceptions
 System.err.println("Exception Msg: " + t.getMessage());
 // Write out the exception stack trace
 t.printStackTrace(System.err);

 // Add on specific information depending on the type of exception
 if (t instanceof JMSException) {
 JMSException je1 = (JMSException) t;
 System.err.println("JMS Error code: " + je1.getErrorCode());
 if (t instanceof JmsExceptionDetail){
 JmsExceptionDetail jed = (JmsExceptionDetail)je1;
 System.err.println("JMS Explanation: " + jed.getExplanation());
 System.err.println("JMS Explanation: " + jed.getUserAction());
 }
 } else if (t instanceof MQException) {
 MQException mqe = (MQException) t;
 System.err.println("WMQ Completion code: " + mqe.getCompCode());
 System.err.println("WMQ Reason code: " + mqe.getReason());
 } else if (t instanceof JmqiException){
 JmqiException jmqie = (JmqiException)t;
 System.err.println("WMQ Log Message: " + jmqie.getWmqLogMessage());
 System.err.println("WMQ Explanation: " + jmqie.getWmqMsgExplanation());
 System.err.println("WMQ Msg Summary: " + jmqie.getWmqMsgSummary());
 System.err.println("WMQ Msg User Response: " + jmqie.getWmqMsgUserResponse());
 System.err.println("WMQ Msg Severity: " + jmqie.getWmqMsgSeverity());
 }
 // Get the next cause
 t = t.getCause();
 }
}

Note that your application should always check the type of each exception in a chain because the type of
exception can vary and exceptions of different types encapsulate different information.

Obtaining IBM MQ specific information about a problem
Instances of com.ibm.mq.MQException and com.ibm.mq.jmqi.JmqiException encapsulate IBM
MQ specific information about a problem.

An MQException encapsulates the following information:

• A completion code, which your application can obtain by calling the getCompCode() method.
• A reason code, which your application can obtain by calling the getReason() method.

For examples of how to use these methods, see the sample code in linked exceptions.

A JmqiException also encapsulates a completion code and a reason code. In addition to this, a
JmqiException contains the information in an AMQ nnnn or CSQ nnnn message, if one is associated
with the exception. Your application can obtain the various components of this message by calling the
following methods:

• The getWmqMsgExplanation() method returns the explanation of the AMQ nnnn or CSQ nnnn
message.

• The getWmqMsgSeverity() method returns the severity of the AMQ nnnn or CSQ nnnn message.

Developing applications for IBM MQ 231

• The getWmqMsgSummary() method returns the summary of the AMQ nnnn or CSQ nnnn message.
• The getWmqMsgUserResponse() method returns the user response that is associated with the AMQ

nnnn or CSQ nnnn message.

Handling unchecked exceptions
Methods on the interfaces that are defined in JMS 2.0 throw unchecked exceptions. The base class for
these exceptions is JMSRuntimeException. Therefore, catching JMSRuntimeExceptions provides a
generic way of handling these types of exceptions.

Every JMSRuntimeException encapsulates the following information:

• A provider specific exception message, which your application can obtain by calling the
JMSRuntimeException.getMessage() method.

• A provider specific error code, which your application can obtain by calling the
JMSRuntimeException.getErrorCode() method.

• A linked exception. An exception that is thrown by a JMS 2.0 API call is often the result of a lower level
problem which is reported by another exception that is linked to this exception. Your application can
obtain a linked exception by calling the JMSRuntimeException.getCause() method.

When you call methods on the interfaces that are provided by the JMS 2.0 API, most exceptions that
are thrown by the IBM MQ classes for JMS are instances of subclasses of JMSRuntimeException.
These subclasses implement the com.ibm.msg.client.jms.JmsExceptionDetail interface, which
provides the following additional information:

• An explanation of the exception message. Your application can obtain this message by calling the
JmsExceptionDetail.getExplanation() method.

• A recommended user response to the exception. Your application can obtain this message by calling the
JmsExceptionDetail.getUserAction() method.

• The keys for the message inserts in the exception message. Your application can obtain an iterator for
all the keys by calling the JmsExceptionDetail.getKeys() method.

• The message inserts in the exception message. For example, a message insert might be the name
of the queue that caused the exception, and it might be useful for your application to access that
name. Your application can obtain the message insert corresponding to a specified key by calling the
JmsExceptionDetail.getValue() method.

All the methods in the JmsExceptionDetail interface return null if no details are available.

For example, if an application tries to create a JMSProducer for an IBM MQ queue that does not exist, an
exception is thrown with the following information:

Message : JMSWMQ2008: Failed to open MQ queue 'Q_test'.
Class : class com.ibm.msg.client.jms.DetailedInvalidDestinationException
Error Code : JMSWMQ2008
Explanation : JMS attempted to perform an MQOPEN, but IBM MQ reported an
 error.
User Action : Use the linked exception to determine the cause of this error. Check
 that the specified queue and queue manager are defined correctly.

The exception that is thrown,
com.ibm.msg.client.jms.DetailedInvalidDestinationException, is a subclass of the
following class, and implements the com.ibm.msg.client.jms.JmsExceptionDetail interface.

• jakarta.jms.InvalidDestinationException

• javax.jms.InvalidDestinationException

Chained exceptions
Typically, exceptions are caused by other exceptions. Therefore, for each JMSRuntimeException that is
thrown, your application should check the linked exception.

232 Developing Applications for IBM MQ

The cause of the JMSRuntimeException might be another exception. These exceptions form a chain
that leads back to the original underlying problem. The cause of an exception is implemented by using
the chained exception mechanism of the java.lang.Throwable class, and your application can obtain
a linked exception by calling the Throwable.getCause() method.

For example, if an application specifies an incorrect port number when connecting to a queue manager,
the exceptions form the following chain:

com.ibm.msg.client.jms.DetailIllegalStateException
|
+--->
 com.ibm.mq.MQException
 |
 +--->
 com.ibm.mq.jmqi.JmqiException
 |
 +--->
 com.ibm.mq.jmqi.JmqiException
 |
 +--->
 java.net.ConnectionException

Typically, each exception in a chain is thrown from a different layer in the code. For example, the
exceptions in the preceding chain are thrown by the following layers:

• The first exception, an instance of a subclass of JMSRuntimeException, is thrown by the common
layer in IBM MQ classes for JMS.

• The next exception, an instance of com.ibm.mq.MQException, is thrown by the IBM MQ messaging
provider.

• The next two exceptions, both of which are instances of com.ibm.mq.jmqi.JmqiException, are
thrown by the Java Message Queueing Interface (JMQI). The JMQI is the component that is used by the
IBM MQ classes for JMS to communicate with a queue manager.

• The final exception, an instance of java.net.ConnectionException, is thrown by the Java class
library.

For more information about the layered architecture of IBM MQ classes for JMS, see IBM MQ classes for
JMS architecture.

You can code your application to iterate through this chain to extract all the appropriate information, as
shown in the following example:

import com.ibm.msg.client.jms.JmsExceptionDetail;
import com.ibm.mq.MQException;
import com.ibm.mq.jmqi.JmqiException;
import jakarta.jms.JMSRuntimeException;
.
.
.
catch (JMSRuntimeException je) {
 System.err.println("Caught JMSRuntimeException");
 // Check for linked exceptions in JMSRuntimeException
 Throwable t = je;
 while (t != null) {
 // Write out the message that is applicable to all exceptions
 System.err.println("Exception Msg: " + t.getMessage());
 // Write out the exception stack trace
 t.printStackTrace(System.err);

 // Add on specific information depending on the type of exception
 if (t instanceof JMSRuntimeException) {
 JMSRuntimeException je1 = (JMSRuntimeException) t;
 System.err.println("JMS Error code: " + je1.getErrorCode());
 if (t instanceof JmsExceptionDetail){
 JmsExceptionDetail jed = (JmsExceptionDetail)je1;
 System.err.println("JMS Explanation: " + jed.getExplanation());
 System.err.println("JMS Explanation: " + jed.getUserAction());
 }
 } else if (t instanceof MQException) {
 MQException mqe = (MQException) t;

Developing applications for IBM MQ 233

 System.err.println("WMQ Completion code: " + mqe.getCompCode());
 System.err.println("WMQ Reason code: " + mqe.getReason());
 } else if (t instanceof JmqiException){
 JmqiException jmqie = (JmqiException)t;
 System.err.println("WMQ Log Message: " + jmqie.getWmqLogMessage());
 System.err.println("WMQ Explanation: " + jmqie.getWmqMsgExplanation());
 System.err.println("WMQ Msg Summary: " + jmqie.getWmqMsgSummary());
 System.err.println("WMQ Msg User Response: " + jmqie.getWmqMsgUserResponse());
 System.err.println("WMQ Msg Severity: " + jmqie.getWmqMsgSeverity());
 }
 // Get the next cause
 t = t.getCause();
 }
}

import com.ibm.msg.client.jms.JmsExceptionDetail;
import com.ibm.mq.MQException;
import com.ibm.mq.jmqi.JmqiException;
import javax.jms.JMSRuntimeException;
.
.
.
catch (JMSRuntimeException je) {
 System.err.println("Caught JMSRuntimeException");
 // Check for linked exceptions in JMSRuntimeException
 Throwable t = je;
 while (t != null) {
 // Write out the message that is applicable to all exceptions
 System.err.println("Exception Msg: " + t.getMessage());
 // Write out the exception stack trace
 t.printStackTrace(System.err);

 // Add on specific information depending on the type of exception
 if (t instanceof JMSRuntimeException) {
 JMSRuntimeException je1 = (JMSRuntimeException) t;
 System.err.println("JMS Error code: " + je1.getErrorCode());
 if (t instanceof JmsExceptionDetail){
 JmsExceptionDetail jed = (JmsExceptionDetail)je1;
 System.err.println("JMS Explanation: " + jed.getExplanation());
 System.err.println("JMS Explanation: " + jed.getUserAction());
 }
 } else if (t instanceof MQException) {
 MQException mqe = (MQException) t;
 System.err.println("WMQ Completion code: " + mqe.getCompCode());
 System.err.println("WMQ Reason code: " + mqe.getReason());
 } else if (t instanceof JmqiException){
 JmqiException jmqie = (JmqiException)t;
 System.err.println("WMQ Log Message: " + jmqie.getWmqLogMessage());
 System.err.println("WMQ Explanation: " + jmqie.getWmqMsgExplanation());
 System.err.println("WMQ Msg Summary: " + jmqie.getWmqMsgSummary());
 System.err.println("WMQ Msg User Response: " + jmqie.getWmqMsgUserResponse());
 System.err.println("WMQ Msg Severity: " + jmqie.getWmqMsgSeverity());
 }
 // Get the next cause
 t = t.getCause();
 }
}

Note that your application should always check the type of each exception in a chain because the type of
exception can vary and exceptions of different types encapsulate different information.

Obtaining IBM MQ specific information about a problem
Instances of com.ibm.mq.MQException and com.ibm.mq.jmqi.JmqiException encapsulate IBM
MQ specific information about a problem.

An MQException encapsulates the following information:

• A completion code, which your application can obtain by calling the getCompCode() method.
• A reason code, which your application can obtain by calling the getReason() method.

For examples of how to use these methods, see the sample code in chained exceptions.

234 Developing Applications for IBM MQ

A JmqiException also encapsulates a completion code and a reason code. In addition to this, a
JmqiException contains the information in an AMQ nnnn or CSQ nnnn message, if one is associated
with the exception. Your application can obtain the various components of this message by calling the
following methods:

• The getWmqMsgExplanation() method returns the explanation of the AMQ nnnn or CSQ nnnn
message.

• The getWmqMsgSeverity() method returns the severity of the AMQ nnnn or CSQ nnnn message.
• The getWmqMsgSummary() method returns the summary of the AMQ nnnn or CSQ nnnn message.
• The getWmqMsgUserResponse() method returns the user response that is associated with the AMQ

nnnn or CSQ nnnn message.

ExceptionListeners
JMS Connection and JMSContext objects have an associated connection to a queue manager.
Your application can register an ExceptionListener with a JMS Connection or JMSContext. If a
problem occurs that makes the connection that is associated with the Connection or JMSContext
unusable, the IBM MQ classes for JMS delivers an exception to the ExceptionListener by calling its
onException() method. Your application then has the opportunity to reestablish the connection.

IBM MQ classes for JMS can also deliver an exception to the exception listener if a problem occurs while
trying to deliver a message asynchronously.

Exception listeners
From IBM MQ 8.0.0 Fix Pack 2, to maintain behavior for current JMS applications that configure a
JMS MessageListener and a JMS ExceptionListener, and to ensure that the IBM MQ classes
for JMS are consistent with the JMS specification, the default value for the ConnectionFactory
property ASYNCEXCEPTION is changed to ASYNC_EXCEPTIONS_CONNECTIONBROKEN. As a result, only
exceptions that correspond to broken connection error codes are delivered to the ExceptionListener
of an application.

APAR IT14820, included from IBM MQ 9.0.0 Fix Pack 1, updates IBM MQ classes for JMS so that:

• An ExceptionListener that is registered by an application is invoked for any connection broken
exceptions, regardless of whether the application is using synchronous or asynchronous message
consumers.

• Non-connection broken exceptions (for example MQRC_GET_INHIBITED) that arise during message
delivery are delivered to the ExceptionListener of an application when the application is using
asynchronous message consumers and the JMS ConnectionFactory that is used by the application has
the ASYNC_EXCEPTION property set to the value ASYNC_EXCEPTIONS_ALL.

Note: An ExceptionListener is invoked only once for a connection broken exception, even if two
TCP/IP connections (one used by a JMS Connection and one used by a JMS Session) are broken.

For any other type of problem, an exception is thrown by the current JMS API call. The type of exception
that is thrown depends on the version of the JMS API that the application is using:

• If the application is using the interfaces that are provided by the JMS 1.1 specification, the exception
is a JMSException. For more information on how to handle these exceptions, see “Handling checked
exceptions” on page 228.

• If the application is using JMS 2.0 interfaces, the exception is a JMSRuntimeException. For more
information on how to handle these exceptions, see “Handling unchecked exceptions” on page 232.

If an application does not register an exception listener with a Connection or JMSContext, any
exceptions that would be delivered to the exception listener are written to the IBM MQ classes for JMS
log.

Developing applications for IBM MQ 235

https://www.ibm.com/support/pages/apar/IT14820

Accessing IBM MQ features from an IBM MQ classes for JMS application
IBM MQ classes for JMS provides facilities to exploit a number of features of IBM MQ.

Attention: These features are outside the JMS specification or, in certain cases, violate the JMS
specification. If you use them, your application is unlikely to be compatible with other JMS
providers. Those features which do not comply with the JMS specification are labeled with an
Attention notice.

Reading and writing the message descriptor from an IBM MQ classes for JMS application
You control the ability to access the message descriptor (MQMD) by setting properties on a Destination
and a Message.

Some IBM MQ applications require specific values to be set in the MQMD of messages sent to them. IBM
MQ classes for JMS provides message attributes that allow JMS applications to set MQMD fields and so
enable JMS applications to "drive" IBM MQ applications.

You must set the Destination object property WMQ_MQMD_WRITE_ENABLED to true for the setting of
MQMD properties to have any effect. You can then use the property setting methods of the message (for
example setStringProperty) to assign values to the MQMD fields. All MQMD fields are exposed except
StrucId and Version; BackoutCount can be read but not written to.

This example results in a message being put to a queue or topic with MQMD.UserIdentifier set to
"JoeBloggs".

 // Create a ConnectionFactory, connection, session, producer, message
 // ...

 // Create a destination
 // ...

 // Enable MQMD write
 dest.setBooleanProperty(WMQConstants.WMQ_MQMD_WRITE_ENABLED, true);

 // Optionally, set a message context if applicable for this MD field
 dest.setIntProperty(WMQConstants.WMQ_MQMD_MESSAGE_CONTEXT,
 WMQConstants.WMQ_MDCTX_SET_IDENTITY_CONTEXT);

 // On the message, set property to provide custom UserId
 msg.setStringProperty("JMS_IBM_MQMD_UserIdentifier", "JoeBloggs");

 // Send the message
 // ...

It is necessary to set WMQ_MQMD_MESSAGE_CONTEXT before setting JMS_IBM_MQMD_UserIdentifier.
For more information about the use of WMQ_MQMD_MESSAGE_CONTEXT, see “JMS message object
properties” on page 239.

Similarly, you can extract the contents of the MQMD fields by setting WMQ_MQMD_READ_ENABLED
to true before receiving a message and then using the get methods of the message, such as
getStringProperty. Any properties received are read-only.

This example results in the value field holding the value of the MQMD.ApplIdentityData field of a message
got from a queue or a topic.

 // Create a ConnectionFactory, connection, session, consumer
 // ...

 // Create a destination
 // ...

 // Enable MQMD read
 dest.setBooleanProperty(WMQConstants.WMQ_MQMD_READ_ENABLED, true);

 // Receive a message
 // ...

 // Get MQMD field value using a property
 String value = rcvMsg.getStringProperty("JMS_IBM_MQMD_ApplIdentityData");

236 Developing Applications for IBM MQ

JMS destination object properties
Two properties of the Destination object control access to the MQMD from JMS, and a third controls
message context.

Table 36. Property names and descriptions

Property Short form Description

WMQ_MQMD_WRITE_ENABLED MDW Whether a JMS application can set the values
of MQMD fields

WMQ_MQMD_READ_ENABLED MDR Whether a JMS application can extract the
values of MQMD fields

WMQ_MQMD_MESSAGE_ CONTEXT MDCTX What level of message context is to be set by
the JMS application. The application must be
running with appropriate context authority for
this property to take effect

Table 37. Property names, values, and set methods

Property Valid values in administration tool
(defaults in bold)

Valid
values in
programs

Set method

WMQ_MQMD_WRITE
_ENABLED

• NO

All JMS_IBM_MQMD* properties are
ignored and their values are not
copied into the underlying MQMD
structure.

• YES

JMS_IBM_MQMD* properties are
processed. Their values are copied
into the underlying MQMD structure.

• False
• True

setMQMDWriteEnabled

Developing applications for IBM MQ 237

Table 37. Property names, values, and set methods (continued)

Property Valid values in administration tool
(defaults in bold)

Valid
values in
programs

Set method

WMQ_MQMD_READ
_ENABLED

• NO

When sending messages, the
JMS_IBM_MQMD* properties on a
sent message are not updated to
reflect the updated field values in
the MQMD.

When receiving messages, none of
the JMS_IBM_MQMD* properties
are available on a received message,
even if the sender had set some or
all of them.

• YES

When sending messages, all of the
JMS_IBM_MQMD* properties on a
sent message are updated to reflect
the updated field values in the
MQMD, including those that the
sender did not set explicitly.

When receiving messages, all of the
JMS_IBM_MQMD* properties are
available on a received message,
including those that the sender did
not set explicitly.

• False
• True

setMQMDReadEnabled

WMQ_MQMD
_MESSAGE_CONTEXT

• DEFAULT

The MQOPEN API call and the
MQPMO structure specify no explicit
message context options

• SET_IDENTITY_CONTEXT

The MQOPEN API call specifies
the message context option
MQOO_SET_IDENTITY_CONTEXT
and the MQPMO structure specifies
MQPMO_SET_IDENTITY_CONTEXT

• SET_ALL_CONTEXT

The MQOPEN API call specifies
the message context option
MQOO_SET_ALL_CONTEXT and
the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT

• WMQ_MD
CTX_DEF
AULT

• WMQ_MD
CTX_SET_
IDENTITY
_CONTEX
T

• WMQ_MD
CTX_SET_
ALL_CON
TEXT

setMQMDMessageContext

238 Developing Applications for IBM MQ

JMS message object properties
Message object properties prefixed JMS_IBM_MQMD allow you to set or read the corresponding MQMD
field.

Sending messages
All MQMD fields except StrucId and Version are represented. These properties refer only to the MQMD
fields; where a property occurs both in the MQMD and in the MQRFH2 header, the version in the MQRFH2
is not set or extracted.

Any of these properties can be set, except JMS_IBM_MQMD_BackoutCount. Any value set for
JMS_IBM_MQMD_BackoutCount is ignored.

If a property has a maximum length and you supply a value that is too long, the value is truncated.

For certain properties, you must also set the WMQ_MQMD_MESSAGE_CONTEXT property on the
Destination object. The application must be running with appropriate context authority for this property
to take effect. If you do not set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value, the property
value is ignored. If you set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value but you do not have
sufficient context authority for the queue manager, a JMSException is issued. Properties requiring specific
values of WMQ_MQMD_MESSAGE_CONTEXT are as follows.

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to
WMQ_MDCTX_SET_IDENTITY_CONTEXT or WMQ_MDCTX_SET_ALL_CONTEXT:

• JMS_IBM_MQMD_UserIdentifier
• JMS_IBM_MQMD_AccountingToken
• JMS_IBM_MQMD_ApplIdentityData

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to
WMQ_MDCTX_SET_ALL_CONTEXT :

• JMS_IBM_MQMD_PutApplType
• JMS_IBM_MQMD_PutApplName
• JMS_IBM_MQMD_PutDate
• JMS_IBM_MQMD_PutTime
• JMS_IBM_MQMD_ApplOriginData

Receiving messages
All these properties are available on a received message if WMQ_MQMD_READ_ENABLED property is set
to true, irrespective of the actual properties the producing application has set. An application cannot
modify the properties of a received message unless all properties are cleared first, according to the JMS
specification. The received message can be forwarded without modifying the properties.

Attention: If your application receives a message from a destination with
WMQ_MQMD_READ_ENABLED property set to true, and forwards it to a destination with
WMQ_MQMD_WRITE_ENABLED set to true, this results in all the MQMD field values of the received
message being copied into the forwarded message.

Table of properties
This table lists the properties of the Message object representing the MQMD fields. See the links for full
descriptions of the fields and their allowable values.

Table 38. Property names, descriptions, and types

Property Description Java Type Link to full description

JMS_IBM_MQMD_Report Options for report
messages

Integer Report

Developing applications for IBM MQ 239

Table 38. Property names, descriptions, and types (continued)

Property Description Java Type Link to full description

JMS_IBM_MQMD_MsgType Message type Integer MsgType

JMS_IBM_MQMD_Expiry Message lifetime Integer Expiry

JMS_IBM_MQMD_Feedback Feedback or reason code Integer Feedback

JMS_IBM_MQMD_Encoding Numeric encoding of
message data

Integer Encoding

JMS_IBM_MQMD_CodedCharSetId Character set identifier
of message data

Integer CodedCharSetId

JMS_IBM_MQMD_Format Format name of
message data

String Format

JMS_IBM_MQMD_Priority 1 Message priority Integer Priority

JMS_IBM_MQMD_Persistence Message persistence Integer Persistence

JMS_IBM_MQMD_MsgId 2 Message identifier Object
(byte[]) 4

MsgId

JMS_IBM_MQMD_CorrelId 3 Correlation identifier Object
(byte[]) 4

CorrelId

JMS_IBM_MQMD_BackoutCount Backout counter Integer BackoutCount

JMS_IBM_MQMD_ReplyToQ Name of reply queue String ReplyToQ

JMS_IBM_MQMD_ReplyToQMgr Name of reply queue
manager

String ReplyToQMgr

JMS_IBM_MQMD_UserIdentifier User identifier String UserIdentifier

JMS_IBM_MQMD_AccountingToke
n

Accounting token Object
(byte[]) 4

AccountingToken

JMS_IBM_MQMD_ApplIdentityDat
a

Application data relating
to identity

String ApplIdentityData

JMS_IBM_MQMD_PutApplType Type of application that
put the message

Integer PutApplType

JMS_IBM_MQMD_PutApplName Name of application that
put the message

String PutApplName

JMS_IBM_MQMD_PutDate Date when message was
put

String PutDate

JMS_IBM_MQMD_PutTime Time when message was
put

String PutTime

JMS_IBM_MQMD_ApplOriginData Application data relating
to origin

String ApplOriginData

JMS_IBM_MQMD_GroupId Group identifier Object
(byte[]) 4

GroupId

JMS_IBM_MQMD_MsgSeqNumber Sequence number of
logical message within
group

Integer MsgSeqNumber

240 Developing Applications for IBM MQ

Table 38. Property names, descriptions, and types (continued)

Property Description Java Type Link to full description

JMS_IBM_MQMD_Offset Offset of data in physical
message from start of
logical message

Integer Offset

JMS_IBM_MQMD_MsgFlags Message flags Integer MsgFlags

JMS_IBM_MQMD_OriginalLength Length of original
message

Integer OriginalLength

1. Attention: If you assign a value to JMS_IBM_MQMD_Priority that is not within the range 0-9,
this violates the JMS specification.

2. Attention: The JMS specification states that the message ID must be set by the JMS provider
and that it must either be unique or null. If you assign a value to JMS_IBM_MQMD_MsgId, this
value is copied to the JMSMessageID. Thus it is not set by the JMS provider and might not be
unique: this violates the JMS specification.

3. Attention: If you assign a value to JMS_IBM_MQMD_CorrelId that starts with the string 'ID:',
this violates the JMS specification.

4. Attention: The use of byte array properties on a message violates the JMS specification.

Accessing IBM MQ Message data from an application using IBM MQ classes for JMS
You can access the complete IBM MQ message data within an application using IBM MQ classes for JMS.
To access all the data, the message must be a JMSBytesMessage. The body of the JMSBytesMessage
includes any MQRFH2 header, any other IBM MQ headers, and the following message data.

Set the WMQ_MESSAGE_BODY property of the destination to WMQ_MESSAGE_BODY_MQ, to receive all the
message body data in the JMSBytesMessage.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS or WMQ_MESSAGE_BODY_UNSPECIFIED, the
message body is returned without the JMS MQRFH2 header, and the properties of the JMSBytesMessage
reflect the properties set in the RFH2.

Some applications cannot use the functions described in this topic. If an application is connected to an
IBM MQ V6 queue manager, or if it has set PROVIDERVERSION to 6, the functions are not available.

Sending a message
When sending messages the destination property, WMQ_MESSAGE_BODY, takes precedence over
WMQ_TARGET_CLIENT.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, IBM MQ classes for JMS automatically
generates an MQRFH2 header based on the settings of the JMSMessage properties and header fields.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, no additional header is added to the message
body

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, IBM MQ classes for JMS sends
an MQRFH2 header, unless WMQ_TARGET_CLIENT is set to WMQ_TARGET_DEST_MQ. On receive, setting
WMQ_TARGET_CLIENT to WMQ_TARGET_DEST_MQ results in any MQRFH2 being removed from the
message body.

Note: JMSBytesMessage and JMSTextMessage do not require an MQRFH2, whereas
JMSStreamMessage, JMSMapMessage, and JMSObjectMessage do.

WMQ_MESSAGE_BODY_UNSPECIFIED is the default setting for WMQ_MESSAGE_BODY, and
WMQ_TARGET_DEST_JMS is the default setting for WMQ_TARGET_CLIENT.

Developing applications for IBM MQ 241

If you send a JMSBytesMessage, you can override the default settings for the JMS message body when
the IBM MQ message is constructed. Use the following properties:

• JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the format of the IBM MQ
header or application payload that starts the JMS message body if there is no preceding WebSphere MQ
header.

• JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property specifies the CCSID
of the IBM MQ header or application payload that starts the JMS message body if there is no preceding
WebSphere MQ header.

• JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the encoding of the IBM
MQ header or application payload that starts the JMS message body if there is no preceding WebSphere
MQ header.

If both types of property are specified, the JMS_IBM_MQMD_* properties override the corresponding
JMS_IBM_* properties, as long as the destination property WMQ_MQMD_WRITE_ENABLED is set to true.

The differences in effect between setting message properties using JMS_IBM_MQMD_* and JMS_IBM_*
are significant:

1. The JMS_IBM_MQMD_* properties are specific to the IBM MQ JMS provider.
2. The JMS_IBM_MQMD_* properties are only set in the MQMD. JMS_IBM_* properties are set in the MQMD

only if the message does not have an MQRFH2 JMS header. Otherwise they are set in the JMS RFH2
header.

3. The JMS_IBM_MQMD_* properties have no affect on the encoding of text and numbers written into a
JMSMessage.

A receiving application is likely to assume the values of MQMD.Encoding and
MQMD.CodedCharSetId correspond to the encoding and character set of numbers and text in
the message body. If JMS_IBM_MQMD_* properties are used, it is the responsibility of the sending
application to make it so. The encoding and character set of numbers and text in the message body are
set by the JMS_IBM_* properties.

The badly coded snippet in Figure 39 on page 242 sends a message encoded in character set 1208,
with MQMD.CodedCharSetId set to 37.

a. Send wrongly encoded message

TextMessage tmo = session.createTextMessage();
((MQDestination) destination).setMessageBodyStyle
 (WMQConstants.WMQ_MESSAGE_BODY_MQ);
((MQDestination)destination).setMQMDWriteEnabled(true);
tmo.setIntProperty(WMQConstants.JMS_IBM_MQMD_CODEDCHARSETID, 37);
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 1208);
tmo.setText("String one");
producer.send(tmo);

b. Receiving the message, relying on the value of JMS_IBM_CHARACTER_SET set by the value of
MQMD.CodedCharSetId:

TextMessage tmi = (TextMessage) cons.receive();
System.out.println("Message is \"" + tmi.getText() + "\"");

c. Resulting output:

Message is "éÈÊ'>...??>?"

Figure 39. Inconsistently coded MQMD and message data

242 Developing Applications for IBM MQ

Either of the snippets of code in Figure 40 on page 243 results in a message being put to a queue or topic,
with its body containing the application payload without an automatically generated MQRFH2 header being
added.

1. Setting WMQ_MESSAGE_BODY_MQ:

((MQDestination) destination).setMessageBodyStyle
 (WMQConstants.WMQ_MESSAGE_BODY_MQ);

2. Setting WMQ_TARGET_DEST_MQ:

((MQDestination) destination).setMessageBodyStyle
 (WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED);
((MQDestination) destination).
 setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ);

Figure 40. Send a message with an MQ message body.

Receiving a message
If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, the inbound JMS message type and body are
determined by the contents of the received WebSphere MQ message. The message type and body are
determined by fields in the MQRFH2 header, or in the MQMD, if there is no MQRFH2.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, the inbound JMS message type is
JMSBytesMessage. The JMS message body is the message data returned by the underlying MQGET
API call. The length of message body is the length returned by the MQGET call. The character set and
encoding of the data in the message body is determined by the CodedCharSetId and Encoding fields
of the MQMD. The format of the data in the message body is determined by the Format field of the MQMD

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, the default value, IBM MQ classes
for JMS sets it to WMQ_MESSAGE_BODY_JMS.

When you receive a JMSBytesMessage, you can decode it by reference to the following properties:

• JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the format of the IBM MQ
header or application payload that starts the JMS message body if there is no preceding WebSphere MQ
header.

• JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property specifies the CCSID
of the IBM MQ header or application payload that starts the JMS message body if there is no preceding
WebSphere MQ header.

• JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the encoding of the IBM
MQ header or application payload that starts the JMS message body if there is no preceding WebSphere
MQ header.

The following code snippet results in a received message that is a JMSBytesMessage. Irrespective of
the content of the received message and of the format field of the received MQMD, the message is a
JMSBytesMessage.

 ((MQDestination)destination).setMessageBodyStyle
 (WMQConstants.WMQ_MESSAGE_BODY_MQ);

Developing applications for IBM MQ 243

Destination property WMQ_MESSAGE_BODY
WMQ_MESSAGE_BODY determines whether a JMS application processes the MQRFH2 of an IBM MQ
message as part of the message payload (that is, as part of the JMS message body).

Table 39. Property names and descriptions

Property Short form Description

WMQ_MESSAGE_BODY MBODY Whether a JMS application
processes the MQRFH2 of an
IBM MQ message as part of the
message payload (that is, as part of
the JMS message body).

Table 40. Property names, values, and set methods

Property Valid values in administration
tool (defaults in bold)

Valid values in programs Set method

WMQ_MESSAGE
_BODY

• UNSPECIFIED

When sending, IBM MQ
classes for JMS does or
does not generate and
include an MQRFH2 header,
depending on the value of
WMQ_TARGET_CLIENT.

When receiving, acts as value
JMS.

• JMS

When sending, IBM MQ
classes for JMS automatically
generates an MQRFH2 header
and includes it in the IBM MQ
message.

When receiving, IBM MQ
classes for JMS set the JMS
message properties according
to values in the MQRFH2 (if
present); it does not present
the MQRFH2 as part of the
JMS message body.

• MQ

When sending, IBM MQ
classes for JMS does not
generate an MQRFH2.

When receiving, IBM MQ
classes for JMS presents the
MQRFH2 as part of the JMS
message body.

• WMQ_MESSAGE_
BODY_UNSPECIFIED

• WMQ_MESSAGE_BODY_JMS
• WMQ_MESSAGE_BODY_MQ

setMessageBodySty
le

244 Developing Applications for IBM MQ

JMS persistent messages
IBM MQ classes for JMS applications can use the NonPersistentMessageClass queue attribute to
provide better performance for JMS persistent messages, at the expense of some reliability.

An IBM MQ queue has an attribute called NonPersistentMessageClass. The value of this attribute
determines whether nonpersistent messages on the queue are discarded when the queue manager
restarts.

You can set the attribute for a local queue by using the IBM MQ Script (MQSC) command, DEFINE
QLOCAL, with either of the following parameters:
NPMCLASS(NORMAL)

Nonpersistent messages on the queue are discarded when the queue manager restarts. This is the
default value.

NPMCLASS(HIGH)
Nonpersistent messages on the queue are not discarded when the queue manager restarts following a
quiesced or immediate shutdown. Nonpersistent messages might be discarded, however, following a
preemptive shutdown or a failure.

This topic describes how IBM MQ classes for JMS applications can use this queue attribute to provide
better performance for JMS persistent messages.

The PERSISTENCE property of a Queue or Topic object can have the value HIGH. You can use the IBM
MQ JMS administration tool to set this value, or an application can call the Destination.setPersistence()
method passing the value WMQConstants.WMQ_PER_NPHIGH as a parameter.

If an application sends a JMS persistent message or a JMS nonpersistent message to a destination
where the PERSISTENCE property has the value HIGH, and the underlying IBM MQ queue is set to
NPMCLASS(HIGH), the message is put on the queue as an IBM MQ nonpersistent message. If the
PERSISTENCE property of the destination does not have the value HIGH, or if the underlying queue is
set to NPMCLASS(NORMAL), a JMS persistent message is put on the queue as an IBM MQ persistent
message, and a JMS nonpersistent message is put on the queue as an IBM MQ nonpersistent message.

If a JMS persistent message is put on a queue as an IBM MQ nonpersistent message, and you want
to ensure that the message is not discarded following a quiesced or immediate shutdown of a queue
manager, all queues through which the message might be routed must be set to NPMCLASS(HIGH).
In the publish/subscribe domain, these queues include subscriber queues. As an aid to enforcing this
configuration, IBM MQ classes for JMS throws an InvalidDestinationException if an application tries to
create a message consumer for a destination where the PERSISTENCE property has the value HIGH and
the underlying IBM MQ queue is set to NPMCLASS(NORMAL).

Setting the PERSISTENCE property of a destination to HIGH does not affect how a message is received
from that destination. A message sent as a JMS persistent message is received as a JMS persistent
message, and a message sent as a JMS nonpersistent message is received as a JMS nonpersistent
message.

When an application sends the first message to a destination where the PERSISTENCE property has the
value HIGH, or when an application creates the first message consumer for a destination where the
PERSISTENCE property has the value HIGH, IBM MQ classes for JMS issues an MQINQ call to determine
whether NPMCLASS(HIGH) is set on the underlying IBM MQ queue. The application must therefore have
the authority to inquire on the queue. In addition, IBM MQ classes for JMS preserves the result of the
MQINQ call until the destination is deleted, and does not issue more MQINQ calls. Therefore, if you
change the NPMCLASS setting on the underlying queue while the application is still using the destination,
IBM MQ classes for JMS does not notice the new setting.

By allowing JMS persistent messages to be put on IBM MQ queues as IBM MQ nonpersistent messages,
you are gaining performance at the expense of some reliability. If you require maximum reliability for JMS
persistent messages, do not send the messages to a destination where the PERSISTENCE property has
the value HIGH.

The JMS Layer can use SYSTEM.JMS.TEMPQ.MODEL, instead of SYSTEM.DEFAULT.MODEL.QUEUE.
SYSTEM.JMS.TEMPQ.MODEL creates permanent dynamic queues that accept persistent messages,
because SYSTEM.DEFAULT.MODEL.QUEUE cannot accept persistent messages. To use temporary queues

Developing applications for IBM MQ 245

to accept persistent messages, you must therefore use SYSTEM.JMS.TEMPQ.MODEL, or change the model
queue to an alternative queue of your choosing.

Using TLS with IBM MQ classes for JMS
IBM MQ classes for JMS applications can use Transport Layer Security (TLS) encryption. To do this they
require a JSSE provider.

IBM MQ classes for JMS connections using TRANSPORT(CLIENT) support TLS encryption. TLS provides
communication encryption, authentication, and message integrity. It is typically used to secure
communications between any two peers on the Internet or within an intranet.

IBM MQ classes for JMS uses Java Secure Socket Extension (JSSE) to handle TLS encryption, and
therefore requires a JSSE provider. JSE v1.4 JVMs have a JSSE provider built-in. Details of how to manage
and store certificates can vary from provider to provider. For information about this, see your JSSE
provider's documentation.

This section assumes that your JSSE provider is correctly installed and configured, and that suitable
certificates have been installed and made available to your JSSE provider. You can now use JMSAdmin to
set a number of administrative properties.

If your IBM MQ classes for JMS application uses a client channel definition table (CCDT) to connect to a
queue manager, see “Using a client channel definition table with IBM MQ classes for JMS” on page 273.

SSLCIPHERSUITE object property
Set SSLCIPHERSUITE to enable TLS encryption on a ConnectionFactory object.

To enable TLS encryption on a ConnectionFactory object, use JMSAdmin to set the SSLCIPHERSUITE
property to a CipherSuite supported by your JSSE provider. This must match the CipherSpec set on the
target channel. However, CipherSuites are distinct from CipherSpecs and therefore have different names.
“TLS CipherSpecs and CipherSuites in IBM MQ classes for JMS ” on page 249 contains a table mapping
the CipherSpecs supported by IBM MQ to their equivalent CipherSuites as known to JSSE. For more
information about CipherSpecs and CipherSuites with IBM MQ, see Securing IBM MQ.

For example, to set up a ConnectionFactory object that can be used to create a connection over an
TLS enabled MQI channel with a CipherSpec of TLS_RSA_WITH_AES_128_CBC_SHA, issue the following
command to JMSAdmin:

ALTER CF(my.cf) SSLCIPHERSUITE(SSL_RSA_WITH_AES_128_CBC_SHA)

This can also be set from an application, using the setSSLCipherSuite() method on an
MQConnectionFactory object.

For convenience, if a CipherSpec is specified on the SSLCIPHERSUITE property, JMSAdmin attempts to
map the CipherSpec to an appropriate CipherSuite and issues a warning. This attempt to map is not made
if the property is specified by an application.

Alternatively, use the Client Channel Definition Table (CCDT). For more information, see “Using a client
channel definition table with IBM MQ classes for JMS” on page 273.

SSLFIPSREQUIRED object property
If you require a connection to use a CipherSuite that is supported by the IBM Java JSSE FIPS provider
(IBMJSSEFIPS), set the SSLFIPSREQUIRED property of the connection factory to YES.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the IBM Crypto for
C (ICC) cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C (ICC) certificate and be aware of any advice provided
by NIST. A replacement FIPS 140-3 module is currently in progress and its status can be viewed by
searching for it in the NIST CMVP modules in process list.

The IBM MQ Operator 3.2.0 and queue manager container image 9.4.0.0 onwards are based on UBI
9. FIPS 140-3 compliance is currently pending and its status can be viewed by searching for "Red Hat
Enterprise Linux 9 - OpenSSL FIPS Provider" in the NIST CMVP modules in process list.

246 Developing Applications for IBM MQ

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

The default value of this property is NO, which means that a connection can use any CipherSuite that is
supported by IBM MQ.

If an application uses more than one connection, the value of SSLFIPSREQUIRED that is used when
the application creates the first connection determines the value that is used when the application
creates any subsequent connection. This means that the value of the SSLFIPSREQUIRED property of
the connection factory that is used to create a subsequent connection is ignored. You must restart the
application if you want to use a different value of SSLFIPSREQUIRED.

An application can set this property by calling the setSSLFipsRequired() method of a ConnectionFactory
object. The property is ignored if no CipherSuite is set.

Related tasks
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Related reference
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

SSLPEERNAME object property
Use SSLPEERNAME to specify a distinguished name pattern, to ensure that your JMS application connects
to the correct queue manager.

A JMS application can ensure that it connects to the correct queue manager by specifying a distinguished
name (DN) pattern. The connection succeeds only if the queue manager presents a DN that matches the
pattern. For more details of the format of this pattern, see the related topics.

The DN is set using the SSLPEERNAME property of a ConnectionFactory object. For example, the following
JMSAdmin command sets a ConnectionFactory object to expect the queue manager to identify itself with
a Common Name beginning with the characters QMGR., and with at least two Organizational Unit names,
the first of which must be IBM and the second WEBSPHERE:

ALTER CF(my.cf) SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

Checking is not case sensitive and semicolons can be used in place of commas. SSLPEERNAME can also
be set from an application using the setSSLPeerName() method on an MQConnectionFactory object. If
this property is not set, no checking is performed on the Distinguished Name supplied by the queue
manager. This property is ignored if no CipherSuite is set.

SSLCERTSTORES object property
Use SSLCERTSTORES to specify a list of LDAP servers to use for certificate revocation list (CRL) checking.

It is common to use a certificate revocation list (CRL) to identify certificates that are no longer trusted.
CRLs are typically hosted on LDAP servers. JMS allows an LDAP server to be specified for CRL checking
under Java 2 v1.4 or later. The following JMSAdmin example directs JMS to use a CRL hosted on an LDAP
server named crl1.ibm.com:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com)

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make sure that your Java
Software Development Kit (SDK) is compatible with the CRL. Some SDKs require that the CRL conforms to
RFC 2587, which defines a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

If your LDAP server is not running on the default port of 389, you can specify the port by appending a
colon (:) and the port number to the host name. If the certificate presented by the queue manager is
present in the CRL hosted on crl1.ibm.com, the connection is not completed. To avoid a single point of
failure, JMS allows multiple LDAP servers to be supplied by supplying a list of LDAP servers delimited by
the space character. Here is an example:

ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com ldap://crl2.ibm.com)

Developing applications for IBM MQ 247

When multiple LDAP servers are specified, JMS tries each one in turn until it finds a server with which it
can successfully verify the queue manager's certificate. Each server must contain identical information.

A string in this format can be supplied by an application on the MQConnectionFactory.setSSLCertStores()
method. Alternatively, the application can create one or more java.security.cert.CertStore objects, place
these in a suitable Collection object, and supply this Collection object to the setSSLCertStores() method.
In this way, the application can customize CRL checking. See your JSSE documentation for details on
constructing and using CertStore objects.

The certificate presented by the queue manager when a connection is being set up is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to identify a CRL server.
2. An attempt is made to contact the CRL server.
3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the connection request fails
with reason code MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is used to identify a CRL

server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no CertStore
objects, the search process has failed and the connection request fails with reason code
MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

If your application uses setSSLCertStores() to set a Collection of CertStore objects, the
MQConnectionFactory can no longer be bound into a JNDI namespace. Attempting to do so causes an
exception. If the sslCertStores property is not set, no revocation checking is performed on the certificate
provided by the queue manager. This property is ignored if no CipherSuite is set.

SSLRESETCOUNT object property
This property represents the total number of bytes sent and received by a connection before the secret
key that is used for encryption is renegotiated.

The number of bytes sent is the number before encryption, and the number of bytes received is the
number after decryption. The number of bytes also includes control information sent and received by IBM
MQ classes for JMS.

For example, to configure a ConnectionFactory object that can be used to create a connection over an
TLS enabled MQI channel with a secret key that is renegotiated after 4 MB of data have flowed, issue the
following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

An application can set this property by calling the setSSLResetCount() method of a ConnectionFactory
object.

If the value of this property is zero, which is the default value, the secret key is never renegotiated. The
property is ignored if no CipherSuite is set.

SSLSocketFactory object property
To customize other aspects of the TLS connection for an application, create an SSLSocketFactory and
configure JMS to use it.

You might want to customize other aspects of the TLS connection for an application. For example, you
might want to initialize cryptographic hardware or change the keystore and truststore in use. To do this,
the application must first create a javax.net.ssl.SSLSocketFactory object that is customized accordingly.
See your JSSE documentation for information about how to do this, because the customizable
features vary from provider to provider. After a suitable SSLSocketFactory object is obtained, use

248 Developing Applications for IBM MQ

the MQConnectionFactory.setSSLSocketFactory() method to configure JMS to use the customized
SSLSocketFactory object.

If your application uses the setSSLSocketFactory() method to set a customized SSLSocketFactory object,
the MQConnectionFactory object can no longer be bound into a JNDI namespace. Attempting to do so
causes an exception. If this property is not set, the default SSLSocketFactory object is used. See your
JSSE documentation for details of the behavior of the default SSLSocketFactory object. This property is
ignored if no CipherSuite is set.

Important: Do not assume that the use of the SSL properties ensures security when a ConnectionFactory
object is retrieved from a JNDI namespace that is not itself secure. Specifically, the standard LDAP
implementation of JNDI is not secure. An attacker can imitate the LDAP server, misleading a JMS
application into connecting to the wrong server without noticing. With suitable security arrangements
in place, other implementations of JNDI (such as the fscontext implementation) are secure.

Making changes to the JSSE keystore or truststore
If you make changes to the keystore or truststore, you must take certain actions for the changes to be
picked up.

If you change the contents of the JSSE keystore or truststore, or change the location of the keystore or
truststore file, IBM MQ classes for JMS applications that are running at the time do not automatically pick
up the changes. For the changes to take effect, the following actions must be performed:

• The applications must close all their connections, and destroy any unused connections in connection
pools.

• If your JSSE provider caches information from the keystore and truststore, this information must be
refreshed.

After these actions have been performed, the applications can then re-create their connections.

Depending on how you design your applications, and on the function provided by your JSSE provider, it
might be possible to perform these actions without stopping and restarting your applications. However,
stopping and restarting the applications might be the simplest solution.

TLS CipherSpecs and CipherSuites in IBM MQ classes for JMS
The ability of IBM MQ classes for JMS applications to establish connections to a queue manager, depends
on the CipherSpec specified at the server end of the MQI channel and the CipherSuite specified at the
client end.

The following table lists the CipherSpecs supported by IBM MQ and their equivalent CipherSuites.

You should review the topic Deprecated CipherSpecs to see if any of the CipherSpecs, listed
in the following table, have been deprecated by IBM MQ and, if so, at which update the CipherSpec was
deprecated.

Important: The CipherSuites listed are those supported by the IBM Java Runtime Environment (JRE)
supplied with IBM MQ. The CipherSuites that are listed include those supported by the Oracle Java JRE.
For more information about configuring your application to use an Oracle Java JRE, see Configuring your
application to use IBM Java or Oracle Java CipherSuite mappings.

The table also indicates the protocol that is used for the communication, and whether or not the
CipherSuite conforms to the FIPS 140-2 standard.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the IBM Crypto for
C (ICC) cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C (ICC) certificate and be aware of any advice provided
by NIST. A replacement FIPS 140-3 module is currently in progress and its status can be viewed by
searching for it in the NIST CMVP modules in process list.

The IBM MQ Operator 3.2.0 and queue manager container image 9.4.0.0 onwards are based on UBI
9. FIPS 140-3 compliance is currently pending and its status can be viewed by searching for "Red Hat
Enterprise Linux 9 - OpenSSL FIPS Provider" in the NIST CMVP modules in process list.

Developing applications for IBM MQ 249

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Ciphersuites denoted as FIPS 140-2 compliant can be used if the application has not been configured to
enforce FIPS 140-2 compliance, but if FIPS 140-2 compliance has been configured for the application
(see the following notes on configuration) only those CipherSuites which are marked as FIPS 140-2
compatible can be configured; attempting to use other CipherSuites results in an error.

Note: Each JRE can have multiple cryptographic security providers, each of which can contribute an
implementation of the same CipherSuite. However, not all security providers are FIPS 140-2 certified.
If FIPS 140-2 compliance is not enforced for an application then it is possible that an uncertified
implementation of the CipherSuite might be used. Uncertified implementations might not operate in
compliance with FIPS 140-2, even if the CipherSuite theoretically meets the minimum security level
required by the standard. See the following notes for more information about configuring FIPS 140-2
enforcement in IBM MQ JMS applications.

For more information about FIPS 140-2 and Suite-B compliance for CipherSpecs and CipherSuites,
see Specifying CipherSpecs. You might also need to be aware of information that concerns US Federal
Information Processing Standards.

To use the full set of CipherSuites and to operate with certified FIPS 140-2 and/or Suite-B compliance, a
suitable JRE is required. IBM Java 7 Service Refresh 4 Fix Pack 2 or a higher level of IBM JRE provides the
appropriate support for the TLS 1.2 CipherSuites listed in Table 41 on page 251.

To be able to use TLS 1.3 Ciphers, the JRE running your application must support TLS 1.3.

Note: To use some CipherSuites, the 'unrestricted' policy files need to be configured in the JRE. For more
details of how policy files are set up in an SDK or JRE, see the IBM SDK Policy files topic in the Security
Reference for IBM SDK, Java Technology Edition for the version you are using.

250 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_3DES_EDE_CBC_SHA
256

SSL_ECDHE_ECDSA_WITH_3DES_EDE_CB
C_SHA

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_3
DE
S_
ED
E_
CB
C_
SH
A

TLS 1.2 yes

Developing applications for IBM MQ 251

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_128_CBC_SHA2
56

SSL_ECDHE_ECDSA_WITH_AES_128_CBC
_SHA256

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A2
56

TLS 1.2 yes

252 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_128_GCM_SHA2
56

SSL_ECDHE_ECDSA_WITH_AES_128_GC
M_SHA256

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_1
28
_G
C
M
_S
H
A2
56

TLS 1.2 yes

Developing applications for IBM MQ 253

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_256_CBC_SHA3
84

SSL_ECDHE_ECDSA_WITH_AES_256_CBC
_SHA384

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A3
84

TLS 1.2 yes

254 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_256_GCM_SHA3
84

SSL_ECDHE_ECDSA_WITH_AES_256_GC
M_SHA384

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_2
56
_G
C
M
_S
H
A3
84

TLS 1.2 yes

ECDHE_ECDSA_NULL_SHA256 SSL_ECDHE_ECDSA_WITH_NULL_SHA TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_N
UL
L_
SH
A

TLS 1.2 no

Developing applications for IBM MQ 255

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_RC4_128_SHA256 SSL_ECDHE_ECDSA_WITH_RC4_128_SHA TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_R
C4
_1
28
_S
H
A

TLS 1.2 no

ECDHE_RSA_3DES_EDE_CBC_SHA25
6

SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_
SHA

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_3
DE
S_
ED
E_
CB
C_
SH
A

TLS 1.2 yes

256 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_128_CBC_SHA256 SSL_ECDHE_RSA_WITH_AES_128_CBC_S
HA256

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A2
56

TLS 1.2 yes

Developing applications for IBM MQ 257

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_128_GCM_SHA256 SSL_ECDHE_RSA_WITH_AES_128_GCM_S
HA256

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_1
28
_G
C
M
_S
H
A2
56

TLS 1.2 yes

258 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_256_CBC_SHA384 SSL_ECDHE_RSA_WITH_AES_256_CBC_S
HA384

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A3
84

TLS 1.2 yes

Developing applications for IBM MQ 259

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_256_GCM_SHA384 SSL_ECDHE_RSA_WITH_AES_256_GCM_S
HA384

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_2
56
_G
C
M
_S
H
A3
84

TLS 1.2 yes

ECDHE_RSA_NULL_SHA256 SSL_ECDHE_RSA_WITH_NULL_SHA TL
S_
EC
D
HE
_R
SA
_
WI
TH
_N
UL
L_
SH
A

TLS 1.2 no

260 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_RC4_128_SHA256 SSL_ECDHE_RSA_WITH_RC4_128_SHA TL
S_
EC
D
HE
_R
SA
_
WI
TH
_R
C4
_1
28
_S
H
A

TLS 1.2 no

TLS_RSA_WITH_3DES_EDE_CBC_SHA
“2” on page 269

SSL_RSA_WITH_3DES_EDE_CBC_SHA TL
S_
RS
A_
WI
TH
_3
DE
S_
ED
E_
CB
C_
SH
A

TLS 1.0 no “4”
on
page
269

Developing applications for IBM MQ 261

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA TL
S_
RS
A_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A

TLS 1.0 no “4”
on
page
269

TLS_RSA_WITH_AES_128_CBC_SHA2
56

SSL_RSA_WITH_AES_128_CBC_SHA256 TL
S_
RS
A_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A2
56

TLS 1.2 no “4”
on
page
269

262 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_AES_128_GCM_SHA
256

SSL_RSA_WITH_AES_128_GCM_SHA256 TL
S_
RS
A_
WI
TH
_A
ES
_1
28
_G
C
M
_S
H
A2
56

TLS 1.2 no “4”
on
page
269

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA TL
S_
RS
A_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A

TLS 1.0 no “4”
on
page
269

Developing applications for IBM MQ 263

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_AES_256_CBC_SHA2
56

SSL_RSA_WITH_AES_256_CBC_SHA256 TL
S_
RS
A_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A2
56

TLS 1.2 no “4”
on
page
269

TLS_RSA_WITH_AES_256_GCM_SHA
384

SSL_RSA_WITH_AES_256_GCM_SHA384 TL
S_
RS
A_
WI
TH
_A
ES
_2
56
_G
C
M
_S
H
A3
84

TLS 1.2 no “4”
on
page
269

264 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA SS
L_
RS
A_
WI
TH
_D
ES
_C
BC
_S
H
A

TLS 1.0 no

TLS_RSA_WITH_NULL_SHA256 SSL_RSA_WITH_NULL_SHA256 TL
S_
RS
A_
WI
TH
_N
UL
L_
SH
A2
56

TLS 1.2 no

TLS_RSA_WITH_RC4_128_SHA256 SSL_RSA_WITH_RC4_128_SHA SS
L_
RS
A_
WI
TH
_R
C4
_1
28
_S
H
A

TLS 1.2 no

Developing applications for IBM MQ 265

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ANY_TLS12 *TLS12 *T
LS
12

TLS 1.2 yes

TLS_AES_128_GCM_SHA256 “3” on page
269

TLS_AES_128_GCM_SHA256 TL
S_
AE
S_
12
8_
GC
M
_S
H
A2
56

TLS V1.3 no

TLS_AES_256_GCM_SHA384 “3” on page
269

TLS_AES_256_GCM_SHA384 TL
S_
AE
S_
25
6_
GC
M
_S
H
A3
84

TLS V1.3 no

266 Developing Applications for IBM MQ

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_CHACHA20_POLY1305_SHA256
“3” on page 269

TLS_CHACHA20_POLY1305_SHA256 TL
S_
C
H
AC
H
A2
0_
PO
LY
13
05
_S
H
A2
56

TLS V1.3 no

TLS_AES_128_CCM_SHA256 “3” on page
269

TLS_AES_128_CCM_SHA256 TL
S_
AE
S_
12
8_
CC
M
_S
H
A2
56

TLS V1.3 no

Developing applications for IBM MQ 267

Table 41. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 269 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_AES_128_CCM_8_SHA256 “3” on
page 269

TLS_AES_128_CCM_8_SHA256 TL
S_
AE
S_
12
8_
CC
M
_8
_S
H
A2
56

TLS V1.3 no

ANY “3” on page 269 *ANY *A
NY

Multiple no

ANY_TLS13 “3” on page 269 *TLS13 *T
LS
13

TLS V13 no

ANY_TLS12_OR_HIGHER “3” on page 269 *TLS12ORHIGHER *T
LS
12
O
R
HI
G
HE
R

TLS 1.2 and
above

no

ANY_TLS13_OR_HIGHER “3” on page 269 *TLS13ORHIGHER *T
LS
13
O
R
HI
G
HE
R

TLS 1.3 and
above

no

268 Developing Applications for IBM MQ

Notes:

1. This is the value configured on a channel in IBM MQ, including in a CCDT (binary or JSON).

2. CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be
used to transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To
avoid this error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

3. To be able to use TLS v1.3 Ciphers, the Java runtime environment (JRE) running your application must
support TLS v1.3.

4. From IBM MQ 9.4.0, the IBM Java 8 JRE removes support for RSA key
exchange when operating in FIPS mode.

Configuring Ciphersuites and FIPS-compliance in an IBM MQ classes for JMS
application
• An application that uses IBM MQ classes for JMS can use either of two methods to set the CipherSuite

for a connection:

– Call the setSSLCipherSuite method of a ConnectionFactory object.
– Use the IBM MQ JMS administration tool to set the SSLCIPHERSUITE property of a

ConnectionFactory object.
• An application that uses IBM MQ classes for JMS can use either of two methods to enforce FIPS 140-2

compliance:

– Call the setSSLFipsRequired method of a ConnectionFactory object.
– Use the IBM MQ JMS administration tool to set the SSLFIPSREQUIRED property of a

ConnectionFactory object.

Configuring your application to use IBM Java or Oracle Java CipherSuite mappings

From IBM MQ 9.4.0, a Cipher can be defined as either the CipherSpec or CipherSuite name
and is handled correctly by IBM MQ.

Note: The Java System Property com.ibm.mq.cfg.useIBMCipherMappings, which
controlled which mappings were used in earlier versions of IBM MQ, is no longer needed and is removed
from the product at IBM MQ 9.4.0.

Interoperability limitations
Certain CipherSuites might be compatible with more than one IBM MQ CipherSpec, depending on
the protocol in use. However, only the CipherSuite/CipherSpec combination that uses the TLS version
specified in Table 1 is supported. Attempting to use the unsupported combinations of CipherSuites
and CipherSpecs will fail with an appropriate exception. Installations using any of these CipherSuite/
CipherSpec combinations should move to a supported combination.

The following table shows the CipherSuites to which this limitation applies.

Table 42. CipherSuites and their supported and unsupported CipherSpecs

CipherSuite Supported TLS CipherSpec Unsupported SSL
CipherSpec

SSL_RSA_WITH_3DES_EDE_CBC_SH
A

TLS_RSA_WITH_3DES_EDE_CBC_SH
A “1” on page 270

TRIPLE_DES_SHA_US

SSL_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA DES_SHA_EXPORT

SSL_RSA_WITH_RC4_128_SHA TLS_RSA_WITH_RC4_128_SHA256 RC4_SHA_US

Developing applications for IBM MQ 269

Note:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can
still be used to transfer up to 32 GB of data before the connection is terminated with error AMQ9288.
To avoid this error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Writing channel exits in Java for IBM MQ classes for JMS
You create channel exits by defining Java classes that implement specified interfaces.

For an introduction to security exits, start with the Channel security exit programs topic.

Three interfaces are defined in the com.ibm.mq.exits package:

• WMQSendExit, for a send exit
• WMQReceiveExit, for a receive exit
• WMQSecurityExit, for a security exit

The following sample code defines a class that implements all three interfaces:

public class MyMQExits implements
WMQSendExit, WMQReceiveExit, WMQSecurityExit {
 // Default constructor
 public MyMQExits(){
 }
 // This method implements the send exit interface
 public ByteBuffer channelSendExit(
 MQCXP channelExitParms,
 MQCD channelDefinition,
 ByteBuffer agentBuffer)
 {
 // Complete the body of the send exit here
 }
 // This method implements the receive exit interface
 public ByteBuffer channelReceiveExit(
 MQCXP channelExitParms,
 MQCD channelDefinition,
 ByteBuffer agentBuffer)
 {
 // Complete the body of the receive exit here
 }
 // This method implements the security exit interface
 public ByteBuffer channelSecurityExit(
 MQCXP channelExitParms,
 MQCD channelDefinition,
 ByteBuffer agentBuffer)
 {
 // Complete the body of the security exit here
 }
}

Each exit receives as parameters an MQCXP object and an MQCD object. These objects represent the
MQCXP and MQCD structures defined in the procedural interface.

When a send exit is called, the agentBuffer parameter contains the data that is about to be sent to the
server queue manager. A length parameter is not required because the expression agentBuffer.limit()
provides the length of the data. The send exit returns as its value the data to be sent to the server queue
manager. However, if the send exit is not the last send exit in a sequence of send exits, the data returned
is passed instead to the next send exit in the sequence. A send exit can return a modified version of
the data that it receives in the agentBuffer parameter, or it can return the data unchanged. The simplest
possible exit body is therefore:

{ return agentBuffer; }

When a receive exit is called, the agentBuffer parameter contains the data that has been received from
the server queue manager. The receive exit returns as its value the data to be passed to the application by

270 Developing Applications for IBM MQ

IBM MQ classes for JMS. However, if the receive exit is not the last receive exit in a sequence of receive
exits, the data returned is passed instead to the next receive exit in the sequence.

When a security exit is called, the agentBuffer parameter contains the data that has been received in a
security flow from the security exit at the server end of the connection. The security exit returns as its
value the data to be sent in a security flow to the server security exit.

Channel exits are called with a buffer that has a backing array. For best performance, the exit should
return a buffer with a backing array.

Up to 32 characters of user data can be passed to a channel exit when it is called. The exit accesses
the user data by calling the getExitData() method of the MQCXP object. Although the exit can change the
user data by calling the setExitData() method, the user data is refreshed every time the exit is called. Any
changes made to the user data are therefore lost. However, the exit can pass data from one call to the
next by using the exit user area of the MQCXP object. The exit accesses the exit user area by reference by
calling the getExitUserArea() method.

Every exit class must have a constructor. The constructor can be either the default constructor, as shown
in the previous example, or a constructor with a string parameter. The constructor is called to create an
instance of the exit class for each exit defined in the class. Therefore, in the previous example, an instance
of the MyMQExits class is created for the send exit, another instance is created for the receive exit, and
a third instance is created for the security exit. When a constructor with a string parameter is called, the
parameter contains the same user data that is passed to the channel exit for which the instance is being
created. If an exit class has both a default constructor and a single parameter constructor, the single
parameter constructor takes precedence.

Do not close the connection from within a channel exit.

When data is sent to the server end of a connection, TLS encryption is performed after any channel
exits are called. Similarly, when data is received from the server end of a connection, TLS decryption is
performed before any channel exits are called.

In versions of IBM MQ classes for JMS earlier than IBM WebSphere MQ 7.0, channel exits were
implemented using the interfaces MQSendExit, MQReceiveExit, and MQSecurityExit. You can still use
these interfaces, but the new interfaces are preferred for improved function and performance.

Configuring IBM MQ classes for JMS to use channel exits
An IBM MQ classes for JMS application can use channel security, send, and receive exits on the MQI
channel that starts when the application connects to a queue manager. The application can use exits
written in Java, C, or C++. The application can also use a sequence of send or receive exits that are run in
succession.

The following properties are used specify a send exit, or a sequence of send exits, used by a JMS
connection:

• The SENDEXIT property of an MQConnectionFactory object.
• The sendexit property on an activation specification used by the IBM MQ resource adapter for

inbound communication,
• The sendexit property on a ConnectionFactory object used by the IBM MQ resource adapter for output

communication.

The value of the property is a string that comprises one or more items separated by commas. Each item
identifies a send exit in one of the following ways:

• The name of a class that implements the WMQSendExit interface for a send exit written in Java.
• A string in the format libraryName (entryPointName) for a send exit written in C or C++.

In a similar way, the following properties specify the receive exit, or sequence of receive exits, used by a
connection:

• The RECEXIT property of an MQConnectionFactory object.
• The receiveexit property on an activation specification used by the IBM MQ resource adapter for

inbound communication,

Developing applications for IBM MQ 271

• The receiveexit property on a ConnectionFactory object used by the IBM MQ resource adapter for
output communication.

The following properties specify the security exit used by a connection:

• The SECEXIT property of an MQConnectionFactory object.
• The securityexit property on an activation specification used by the IBM MQ resource adapter for

inbound communication,
• The securityexit property on a ConnectionFactory object used by the IBM MQ resource adapter for

output communication.

For MQConnectionFactories, you can set the SENDEXIT, RECEXIT and SECEXIT properties by using the
IBM MQ JMS administration tool or IBM MQ Explorer. Alternatively, an application can set the properties
by calling the setSendExit(), setReceiveExit(), and setSecurityExit() methods.

Channel exits are loaded by their own class loader. To find a channel exit, the class loader searches the
following locations in the specified order.

1. The class path specified by the property
com.ibm.mq.cfg.ClientExitPath.JavaExitsClasspath or by the JavaExitsClassPath
attribute in the Channels stanza of the IBM MQ client configuration file.

2. The class path specified by the Java system property com.ibm.mq.exitClasspath.
Note that this property is now deprecated.

3. The IBM MQ exits directory, as shown in Table 43 on page 272. The class loader first searches the
directory for class files that are not packaged in Java archive (JAR) files. If the channel exit is not
found, the class loader then searches the JAR files in the directory.

Table 43. The IBM MQ exits directory

Platform Directory

AIX and
Linux

/var/mqm/exits (32-bit channel exits)
/var/mqm/exits64 (64-bit channel exits)

Windows install_data_dir\exits

where install_data_dir is the directory that you chose for
the IBM MQ data files during installation. The default
directory is C:\ProgramData\IBM\MQ.

Note: If a channel exit exists in more than one location, the IBM MQ classes for JMS loads the first
instance that it finds.

The parent of the class loader is the class loader that is used to load IBM MQ classes for JMS.
It is therefore possible for the parent class loader to load a channel exit if it cannot be found in
any of the preceding locations. However, when you are using the IBM MQ classes for JMS in an
environment such as a JEE application server, you are not likely to be able to influence the choice of
the parent class loader and so the class loader should be configured by setting the Java system property
com.ibm.mq.cfg.ClientExitPath.JavaExitsClasspath on the application server.

If your application is being run with the Java security manager enabled, then the policy configuration
file used by the Java runtime environment that the application is running in must have the permissions
to load a channel exit class. For information on how to do this, see Running IBM MQ classes for JMS
applications under the Java Security Manager.

The MQSendExit, MQReceiveExit, and MQSecurityExit interfaces supplied with versions earlier
than IBM WebSphere MQ 7.0 are still supported. If you use channel exits that implement these interfaces,
com.ibm.mq.jar must be present in the class path.

272 Developing Applications for IBM MQ

For information about how to write channel exits in C, see “Channel-exit programs for messaging
channels” on page 926. You must store channel exit programs written in C or C++ in the directory shown
in Table 43 on page 272.

If your application uses a client channel definition table (CCDT) to connect to a queue manager, see
“Using a client channel definition table with IBM MQ classes for JMS” on page 273.

Specifying the user data to be passed to channel exits when using IBM MQ classes for JMS
Up to 32 characters of user data can be passed to a channel exit when it is called.

The SENDEXITINIT property of an MQConnectionFactory object specifies the user data that is passed to
each send exit when it is called. The value of the property is a string that comprises one or more items
of user data separated by commas. The position of each item of user data within the string determines
which send exit, in a sequence of send exits, the user data is passed to. For example, the first item of user
data in the string is passed to the first send exit in a sequence of send exits.

You can set the SENDEXITINIT property by using the IBM MQ JMS administration tool or IBM MQ
Explorer. Alternatively, an application can set the property by calling the setSendExitInit() method.

In a similar way, the RECEXITINIT property of a ConnectionFactory object specifies the user data
that is passed to each receive exit, and the SECEXITINIT property specifies the user data passed to
a security exit. You can set these properties by using the IBM MQ JMS administration tool or IBM
MQ Explorer. Alternatively, an application can set the properties by calling the setReceiveExitInit() and
setSecurityExitInit() methods.

Note the following rules when specifying user data that is passed to channel exits:

• If the number of items of user data in a string is more than the number of exits in a sequence, the
excess items of user data are ignored.

• If the number of items of user data in a string is less than the number of exits in a sequence, each
unspecified item of user data is set to an empty string. Two commas in succession within a string, or a
comma at the beginning of a string, also denotes an unspecified item of user data.

If an application uses a client channel definition table (CCDT) to connect to a queue manager, any user
data specified in a client connection channel definition is passed to channel exits when they are called.
For more information about using a client channel definition table, see “Using a client channel definition
table with IBM MQ classes for JMS” on page 273.

Using a client channel definition table with IBM MQ classes for JMS
An IBM MQ classes for JMS application can use client connection channel definitions that are stored in a
client channel definition table (CCDT). You configure a ConnectionFactory object to use the CCDT. There
are some restrictions on its use.

As an alternative to creating a client connection channel definition by setting certain properties of a
ConnectionFactory object, an IBM MQ classes for JMS application can use client connection channel
definitions that are stored in a client channel definition table. These definitions are created by IBM
MQ Script (MQSC) commands or IBM MQ Programmable Command Format (PCF) commands. When the
application creates a Connection object, IBM MQ classes for JMS searches the client channel definition
table for a suitable client connection channel definition, and uses the channel definition to start an MQI
channel. For more information about client channel definition tables and how to construct one, see Client
channel definition table.

To use a client channel definition table, the CCDTURL property of a ConnectionFactory object must be
set to a URL object. IBM MQ classes for JMS do not read the information about the CCDT from the IBM
MQ MQI client configuration file, although some other values are used from there (see “The IBM MQ
classes for JMS/Jakarta Messaging configuration file” on page 94 for which value apply). The URL object
encapsulates a uniform resource locator (URL) that identifies the name and location of the file containing
the client channel definition table and specifies how the file can be accessed. You can set the CCDTURL
property by using the IBM MQ JMS administration tool, or an application can set the property by creating
a URL object and calling the setCCDTURL() method of the ConnectionFactory object.

Developing applications for IBM MQ 273

For example, if the file ccdt1.tab contains a client channel definition table and is stored on the same
system on which the application is running, the application can set the CCDTURL property in the following
way:

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");
factory.setCCDTURL(chanTab1);

As another example, suppose the file ccdt2.tab contains a client channel definition table and is stored on
a system that is different from the one on which the application is running. If the file can be accessed
using the FTP protocol, the application can set the CCDTURL property in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");
factory.setCCDTURL(chanTab2);

In addition to setting the CCDTURL property of the ConnectionFactory object, the QMANAGER property of
the same object must be set to one of the following values:

• The name of a queue manager
• An asterisk (*) followed by the name of a queue manager group

These are the same values that can be used for the QMgrName parameter on an MQCONN call issued by a
client application that is using Message Queue Interface (MQI). For more information about the meaning
of these values therefore, see MQCONN. You can set the QMANAGER property by using the IBM MQ JMS
administration tool or IBM MQ Explorer. Alternatively, an application can set the property by calling the
setQueueManager() method of the ConnectionFactory object.

If an application then creates a Connection object from the ConnectionFactory object, IBM MQ classes
for JMS accesses the client channel definition table identified by the CCDTURL property, uses the
QMANAGER property to search the table for a suitable client connection channel definition, and then
uses the channel definition to start an MQI channel to a queue manager.

Note that the CCDTURL and CHANNEL properties of a ConnectionFactory object cannot both be set when
the application calls the createConnection() method. If both properties are set, the method throws an
exception. The CCDTURL or CHANNEL property is considered to be set if its value is anything other than
null, an empty string, or a string containing all blank characters.

When IBM MQ classes for JMS finds a suitable client connection channel definition in the client channel
definition table, it uses only the information extracted from the table to start an MQI channel. Any channel
related properties of the ConnectionFactory object are ignored.

In particular, note the following points if you are using TLS:

• An MQI channel uses TLS only if the channel definition extracted from the client channel definition table
specifies the name of a CipherSpec supported by IBM MQ classes for JMS.

• A client channel definition table also contains information about the location of Lightweight Directory
Access Protocol (LDAP) servers that hold certificate revocation lists (CRLs). IBM MQ classes for JMS
uses only this information to access LDAP servers that hold CRLs.

• A client channel definition table can also contain the location of an OCSP responder. IBM MQ classes
for JMS cannot use the OCSP information in a client channel definition table file. However, you can
configure OCSP as described in the section Online Certificate Status Protocol (OCSP) in Java and JMS
client applications.

For more information about using TLS with a client channel definition table, see Using the extended
transactional client with TLS channels.

Note also the following points if you are using channel exits:

• An MQI channel uses only the channel exits and associated user data specified by the channel definition
extracted from the client channel definition table.

• A channel definition extracted from a client channel definition table can specify channel exits that
are written in Java. This means, for example, that the SCYEXIT parameter on the DEFINE CHANNEL

274 Developing Applications for IBM MQ

command to create a client connection channel definition can specify the name of a class that
implements the WMQSecurityExit interface. Similarly, the SENDEXIT parameter can specify the name of
a class that implements the WMQSendExit interface, and the RCVEXIT parameter can specify the name
of a class that implements the WMQReceiveExit interface. For more information about how to write a
channel exit in Java, see“Writing channel exits in Java for IBM MQ classes for JMS” on page 270.

The use of channel exits written in a language other than Java is also supported. For information about
how to specify the SCYEXIT, SENDEXIT, and RCVEXIT parameters on the DEFINE CHANNEL command
for channel exits written in another language, see DEFINE CHANNEL.

Automatic JMS client reconnection
Configure your JMS client to reconnect automatically following a network, queue manager, or server
failure.

Normally, if a stand-alone IBM MQ classes for JMS application is connected to a queue manager by using
the client transport, and the queue manager becomes unavailable for some reason (due to a network
outage, a queue manager failure, or the queue manager being stopped, for example), the IBM MQ classes
for JMS will throw a JMSException the next time the application tries to communicate with the queue
manager. The application must catch the JMSException and attempt to reconnect to the queue manager.
You can simplify the design of the application by enabling automatic client reconnection. When the queue
manager becomes unavailable, the IBM MQ classes for JMS attempts to reconnect to the queue manager
automatically on behalf of the application. This means that the application does not need to contain logic
to reconnect.

The use of this implementation of automatic client reconnection is not supported within Java
Platform, Enterprise Edition application servers. See “Using automatic client reconnection in Java EE
environments” on page 281 for an alternative implementation.

Using automatic JMS client reconnection
If a stand-alone IBM MQ classes for JMS application uses a Connection Factory that has the
CONNECTIONNAMELIST or the CCDTURL property set, the application is eligible to use automatic client
reconnection.

Automatic client reconnection can be used to reconnect to queue managers including those that are part
of a high availability (HA) configuration. HA configurations include multi-instance queue managers, RDQM
queue managers, or HA queue managers on an IBM MQ appliance.

The behavior of the automatic client reconnection functionality that is provided by the IBM MQ classes for
JMS depends on the properties that follow:

The JMS Connection Factory property TRANSPORT (Short name TRAN)

TRANSPORT specifies how applications that use the Connection Factory connects to a queue
manager. This property must be set to the value CLIENT for automatic client reconnection to be used.
Automatic client reconnection is not available to applications that connect to a queue manager that
uses a Connection Factory that has the TRANSPORT property set to BIND, DIRECT, or DIRECTHTTP.

The JMS Connection Factory property QMANAGER (Short name QMGR)

The QMANAGER property specifies the name of the queue manager that the Connection Factory
connects to.

The JMS Connection Factory property CONNECTIONNAMELIST (Short name CRHOSTS)

The CONNECTIONNAMELIST property is a comma-separated list, where each entry contains
information on the host name and port that are to be used to connect to the queue manager specified
by the QMANAGER property when you are using the CLIENT transport. The list has the following
format: host name(port), host name(port).

The JMS Connection Factory property CCDTURL (Short name CCDT)

The CCDTURL property points to the client channel definition table that the IBM MQ classes for JMS
uses when it connects to a queue manager using a CCDT.

Developing applications for IBM MQ 275

The JMS Connection Factory property CLIENTRECONNECTOPTIONS (Short name CROPT)

CLIENTRECONNECTOPTIONS controls whether the IBM MQ classes for JMS will attempt to
automatically connect to a queue manager on behalf of an application if a queue manager becomes
available.

The DefRecon attribute in the Channels stanza of the client configuration file

The DefRecon attribute provides an administrative option to enable all applications to automatically
reconnect, or to disable the automatic reconnection for applications that are written to reconnect
automatically.

Automatic client reconnection is only available when an application successfully connects to a queue
manager.

When an application connects to a queue manager that uses the CLIENT transport, the IBM MQ classes
for JMS use the value of the Connection Factory property CLIENTRECONNECTOPTIONS to determine
whether to use automatic client reconnection, if the queue manager that the application is connected to
becomes unavailable. Table 1 shows the possible values for the CLIENTRECONNECTOPTIONS property,
and the behavior of the IBM MQ classes for JMS for each of these values:

Table 44. Possible CLIENTRECCECTOPTIONS property values.

CLIENTRECONNECTOPTIONS Behavior of IBM MQ classes for JMS

ANY If CONNECTIONNAMELIST is set, use the value
of the CONNECTIONNAMELIST property to open a
connection to a host name and port combination,
and connect to any queue manager. In order to
use this automatic client reconnection option, the
QMANAGER property must be set to either the
default value or "*".

If CCDTURL is set, open the client channel
definition table that is specified by the CCDTURL
property, pick an entry in the table, and then use
that entry to start a client connection channel to
a queue manager. To use this automatic client
reconnection option, the QMANAGER property
must be set to either:

• An asterisk (*)
• An asterisk (*) followed by the name of a queue

manager group
• An empty string, or a string that contains all

blank characters

ASDEF Use the value of DefRecon to determine whether
automatic client reconnection is available.

DISABLED Do not perform any automatic client reconnection
and return a JMSException to the application.

276 Developing Applications for IBM MQ

Table 44. Possible CLIENTRECCECTOPTIONS property values. (continued)

CLIENTRECONNECTOPTIONS Behavior of IBM MQ classes for JMS

QMGR Specifies that the client must reconnect to the
same queue manager. This option must be used
for high availability solutions, where reconnection
to another instance of the same queue manager is
required.

If CONNECTIONNAMELIST is set, use the value
of the CONNECTIONNAMELIST property to open a
connection to a host name and port combination,
and connect to the queue manager specified by the
QMANAGER property.

If CCDTURL is set, open the client channel
definition table that is specified by the CCDTURL
property, find the entries in the table that match
the queue manager name that is specified by the
QMANAGER property and then use those entries
to start a client connection channel to that queue
manager.

If CONNECTIONNAMELIST is set, when you perform automatic client reconnection, the IBM MQ classes
for JMS uses the information in the Connection Factory property CONNNECTIONNAMELIST to determine
what system to reconnect to.

The IBM MQ classes for JMS initially tries to reconnect by using the host name and port that is specified
in the first entry in the CONNECTIONNAMELIST. If a connection is made, the IBM MQ classes for JMS
then tries to connect to the queue manager that has the name specified in the QMANAGER property. If a
connection to the queue manager can be established, the IBM MQ classes for JMS reopens all of the IBM
MQ objects that the application had open before automatic client reconnection and continue running as
before.

If a connection cannot be established to the required queue manager by using the first entry
in the CONNECTIONNAMELIST, the IBM MQ classes for JMS tries the second entry in the
CONNECTIONNAMELIST, and so on.

When the IBM MQ classes for JMS have tried all of the entries in the CONNECTIONNAMELIST, they
wait for a period of time before they try to reconnect again. To perform the new reconnection attempt,
the IBM MQ classes for JMS start with the first entry in the CONNECTIONNAMELIST. They then try
each entry in the CONNECTIONNAMELIST in turn until either a reconnection occurs or the end of the
CONNECTIONNAMELIST is reached, at which point the IBM MQ classes for JMS waits for a period of time
before they try again.

If CCDTURL is set, when performing automatic client reconnection, the IBM MQ classes for JMS uses the
client channel definition table that is specified in the CCDTURL property to determine what system to
reconnect to.

The IBM MQ classes for JMS initially parses the client channel definition table and finds a suitable entry
that matches the value of the QMANAGER property. When an entry is found, the IBM MQ classes for JMS
tries to reconnect to the required queue manager using that entry. If a connection to the queue manager
can be established, the IBM MQ classes for JMS reopens all of the IBM MQ objects that the application
had open before automatic client reconnection and continue running as before.

If a connection cannot be established to the required queue manager, the IBM MQ classes for JMS looks
for another suitable entry in the client channel definition table and tries to use that, and so on.

When the IBM MQ classes for JMS have tried all of the suitable entries in the client channel definition
table, they wait for a period of time before trying to reconnect again. To perform the new reconnection
attempt, the IBM MQ classes for JMS parses the client channel definition table again and tries the first

Developing applications for IBM MQ 277

suitable entry. They will then try each suitable entry in the client channel definition table in turn until
either a reconnection occurs or the last suitable entry in the client channel definition table has been tried,
at which point the IBM MQ classes for JMS waits for a period of time before trying again.

Whether using CONNECTIONNAMELIST, or CCDTURL, the process of automatic client reconnection
continues until the IBM MQ classes for JMS successfully reconnected to the queue manager specified
by the QMANAGER property.

By default, the reconnection attempts happen at the following intervals:

• The first attempt is made after an initial delay of 1 second, plus a random element up to 250
milliseconds.

• The second attempt is made 2 seconds, plus a random interval of up to 500 milliseconds, after the first
attempt fails.

• The third attempt is made 4 seconds, plus a random interval of up to 1 second, after the second attempt
fails.

• The fourth attempt is made 8 seconds, plus a random interval of up to 2 seconds, after the third attempt
fails.

• The fifth attempt is made 16 seconds, plus a random interval of up to 4 seconds, after the fourth
attempt fails.

• The sixth attempt, and all subsequent attempts are made 25 seconds, plus a random interval of up to 6
seconds and 250 milliseconds after the previous attempt fails.

The reconnection attempts are delayed by intervals that are partly fixed and partly random. This is to
prevent all of the IBM MQ classes for JMS applications that were connected to a queue manager that is no
longer available from reconnecting simultaneously.

If you need to increase the default values, to more accurately reflect the amount of time that is required
for a queue manager to recover, or a standby queue manager to become active, modify the ReconDelay
attribute in the Channel stanza of the client configuration file, for more information, see CHANNELS stanza
of the client configuration file.

Whether an IBM MQ classes for JMS application continues to work correctly after being reconnected
automatically depends on its design. Read the related topics to understand how to design applications
can use the automatic reconnection functionality.

Reason codes indicating that a queue manager is no longer available
What reason codes indicate that a queue manager is no longer available, or cannot be reached, when
attempting automatic IBM MQ classes for JMS reconnection.

“Automatic JMS client reconnection” on page 275 gives an overview of JMSExceptions and how your
applications can restart automatically, and the information in “Using automatic JMS client reconnection”
on page 275 details the requirements for automatic client reconnection.

The following information lists the IBM MQ reason codes that your application should check for:
RC2009

MQRC_CONNECTION_BROKEN
RC2059

MQRC_Q_MGR_NOT_AVAILABLE
RC2161

MQRC_Q_MGR_QUIESCING
RC2162

MQRC_Q_MGR_STOPPING
RC2202

MQRC_CONNECTION_QUIESCING
RC2203

MQRC_CONNECTION_STOPPING

278 Developing Applications for IBM MQ

RC2223
MQRC_Q_MGR_NOT_ACTIVE

RC2279
MQRC_CHANNEL_STOPPED_BY_USER

RC2537
MQRC_CHANNEL_NOT_AVAILABLE

RC2538
MQRC_HOST_NOT_AVAILABLE

Most JMSExceptions that are thrown back to enterprise applications contain a linked MQException which
holds the reason code. To implement the retry logic for the reason codes in the previous list, your
enterprise applications should check this linked exception using code similar to the following example:

} catch (JMSException ex) {
 Exception linkedEx = ex.getLinkedException();
 if (ex.getLinkedException() != null) {
 if (linkedEx instanceof MQException) {
 MQException mqException = (MQException) linkedEx;
 int reasonCode = mqException.reasonCode;
 // Handle the reason code accordingly
 }
 }
 }

Related concepts
IBM MQ classes for JMS

Using automatic client reconnection in Java SE and Java EE environments
You can make use of IBM MQ automatic client reconnection to facilitate various high availability (HA) and
disaster recovery (DR) solutions within a Java SE and Java EE environment.

Various HA and DR solutions are available on different platforms:

• Multi-instance queue managers are instances of the same queue manager configured on
different servers (see Multi-instance queue managers). One instance of the queue manager is defined
as the active instance and another instance is defined as the standby instance. If the active instance
fails, the multi-instance queue manager restarts automatically on the standby server.

Both the active and standby queue managers have the same queue manager identifier (QMID). IBM MQ
client applications that connect to a multi-instance queue manager can be configured to automatically
reconnect to a standby instance of a queue manager by using automatic client reconnection.

• RDQM (replicated data queue manager) is a high availability solution that is available
on Linux platforms (see RDQM high availability). An RDQM configuration consists of three servers
configured in a high availability (HA) group, each with an instance of the queue manager. One instance
is the running queue manager, which synchronously replicates its data to the other two instances. If the
server running this queue manager fails, another instance of the queue manager starts and has current
data to operate with. The three instances of the queue manager share a floating IP address, so clients
only need to be configured with a single IP address. Client applications that connect to an RDQM queue
manager can be configured to automatically reconnect to a standby instance of a queue manager by
using automatic client reconnection.

• An HA solution can also be provided by a pair of IBM MQ Appliances (see High Availability
and Disaster Recovery in the IBM MQ Appliance documentation). An HA queue manager runs on one of
the appliances, while synchronously replicating data to the standby instance of the queue manager on
the other appliance. If the primary appliance fails, the queue manager automatically starts and runs on
the other appliance. The two instances of the queue manager can be configured to share a floating IP
address, so clients only need to be configured with a single IP address. Client applications that connect
to an HA queue manager on an IBM MQ Appliance can be configured to automatically reconnect to the
standby instance of a queue manager by using automatic client reconnection.

Developing applications for IBM MQ 279

Note: Within Java EE environments, such as WebSphere Application Server, automatic client
reconnection with activation specifications using the functionality provided by IBM MQ classes for
JMS is not supported. The IBM MQ resource adapter provides its own mechanism for reconnecting
activation specifications if the queue manager that the activation specification was connecting to
becomes unavailable. For more information, see “Support for automatic client reconnection in Java EE
environments” on page 281.

Related concepts
Multi-instance queue managers
Automatic client reconnection
Related reference
rdqm high availability

Using automatic client reconnection in Java SE environments
Applications using the IBM MQ classes for JMS running in Java SE environments can use the automatic
client reconnection functionality through the connection factory property CLIENTRECONNECTOPTIONS.

The connection factory property CLIENTRECONNECTOPTIONS uses two additional connection factory
properties, CONNECTIONNAMELIST and CCDTURL, to determine how to connect to the server on which
the queue manager is running.

CONNECTIONNAMELIST property
The CONNECTIONNAMELIST property is a comma-separated list that contains the host name and port
information to be used to connect to a queue manager in client mode. This property is used with the
QMANAGER and CHANNEL values. When an application uses the CONNECTIONNAMELIST property to create
a client connection, the IBM MQ classes for JMS try to connect to each host in list order. If the first queue
manager host is unavailable, the IBM MQ classes for JMS attempt to connect to the next host on the list. If
the end of the connection name list is reached without creating a connection, the IBM MQ classes for JMS
throw the MQRC_QMGR_NOT_AVAILABLE IBM MQ reason code.

If the queue manager that the application is connected to fails, any applications that used a
CONNECTIONNAMELIST to connect to that queue manager receive an exception indicating the queue
manager is not available. The application must catch the exception and clear any resources that it was
using. To create a connection, the application must use the connection factory. The connection factory
attempts to connect to each host in list order again, the queue manager that failed is now not available.
The connection factory attempts to connect to another host in the list.

CCDTURL property
The CCDTURL property contains a Uniform Resource Locator (URL) that points to a Client Channel
Definition Table (CCDT), this property is used with the QMANAGER property. The CCDT contains a list
of client channels that are used to connect to a queue manager defined on an IBM MQ system. For
information on how CCDTs are used by the IBM MQ classes for JMS, see “Using a client channel definition
table with IBM MQ classes for JMS” on page 273.

Using the CLIENTRECONNECTOPTIONS property to enable automatic client
reconnection within the IBM MQ classes for JMS
The CLIENTRECONNECTOPTIONS property is used to enable automatic client reconnection within the
IBM MQ classes for JMS. The possible values for this property are as follows:
ASDEF

The automatic client reconnection behavior is defined by the default value that is specified in the
channel stanza of the IBM MQ client configuration file (mqclient.ini).

DISABLED
Automatic client reconnection is disabled.

280 Developing Applications for IBM MQ

QMGR
The IBM MQ classes for JMS attempt to connect to a queue manager with the same queue manager
identifier as the queue manager that it was connected to, using either of the following options:

• The CONNECTIONNAMELIST property and the channel that is defined in the CHANNEL property.
• The CCDT defined in the CCDTURL property.

ANY
The IBM MQ classes for JMS attempt to reconnect to a queue manager of the same name with the use
of either the CONNECTIONNAMELIST property or the CCDTURL.

Related information
CHANNELS stanza of the client configuration file

Using automatic client reconnection in Java EE environments
The IBM MQ resource adapter, which can be deployed into Java EE (Java Platform, Enterprise Edition)
environments, and the WebSphere Application Server IBM MQ messaging provider use the IBM MQ
classes for JMS to communicate with IBM MQ queue managers. The IBM MQ resource adapter and
the WebSphere Application Server IBM MQ messaging provider provide a number of mechanisms to
allow activation specifications, WebSphere Application Server listener ports and applications running
inside client containers to automatically reconnect to a queue manager. Enterprise JavaBeans (EJBs) and
web-based applications need to implement their own reconnection logic.

Note: Automatic client reconnection with activation specifications using the functionality provided by IBM
MQ classes for JMS is not supported (see “Automatic JMS client reconnection” on page 275). The IBM
MQ resource adapter provides its own mechanism for reconnecting activation specifications if the queue
manager that the activation specification was connecting to becomes unavailable.

The mechanism that the resource adapter provides is controlled by:

• The IBM MQ resource adapter property reconnectionRetryCount.
• The IBM MQ resource adapter property reconnectionRetryInterval.
• The activation specification property connectionNameList.

For more information on these properties, see “Configuration for ResourceAdapter object properties” on
page 433.

The use of automatic client reconnection within a message-driven bean application's onMessage()
method, or any other application that is running within the Java Platform, Enterprise Edition environment
is not supported. The application needs to implement its own reconnection logic if the queue manager it
was connecting to becomes unavailable. For more information, see “Implementing reconnection logic in a
Java EE application” on page 288.

Support for automatic client reconnection in Java EE environments
Within Java EE environments, such as WebSphere Application Server, the IBM MQ resource adapter, and
the WebSphere Application Server IBM MQ messaging provider provide a number of mechanisms that
allow applications to reconnect to a queue manager automatically. However, in some cases, restrictions
apply to this support.

The IBM MQ resource adapter that can be deployed into Java EE environments and the WebSphere
Application Server IBM MQ messaging provider, use the IBM MQ classes for JMS to communicate with the
IBM MQ queue managers.

The following table summarizes the support that the IBM MQ resource adapter and the WebSphere
Application Server IBM MQ messaging provider provide support for automatic client reconnection.

Developing applications for IBM MQ 281

Table 45. Summary of support for automatic client reconnection options in Java EE environments

Options for
automatic
reconnection

CONNECTIONNAM
ELIST property

CCDTURL property CLIENTRECONNE
CTOPTIONS
property

Alternative
approach to
automatic client
reconnection

Activation
specifications

Supported with
restrictions

Supported with
restrictions

Not supported Java EE
environment
and activation
specifications
provide their
own reconnection
mechanism

WebSphere
Application Server
listener ports

Supported with
restrictions

Supported with
restrictions

Not supported WebSphere
Application Server
provides its
own reconnection
mechanism

Enterprise
JavaBeans and
web-based
applications

Supported with
restrictions

Supported with
restrictions

Not supported Application must
implement its own
reconnection logic

Applications
running inside
client containers

Supported Supported Supported Not applicable

Message-driven bean applications that are installed in a Java EE environment, such as IBM MQ classes
for JMS, can use activation specifications to process messages on an IBM MQ system. Activation
specifications are used to detect messages that arrive on an IBM MQ system and deliver them to
message-driven beans for processing. Message-driven beans can also make more connections to IBM
MQ systems from inside their onMessage() method. For more information about how these connections
can use automatic client reconnection, see Enterprise JavaBeans and Web-based applications.

Activation specifications
For activation specifications, the CONNECTIONNAMELIST and CCDTURL properties are supported with
restrictions and the CLIENTRECONNECTOPTIONS property is not supported.

Message-driven bean (MDB) applications that are installed in a Java EE environment, such as WebSphere
Application Server, can use activation specifications to process messages on an IBM MQ system.

Activation specifications are used to detect messages arriving on an IBM MQ system, and then deliver
them to MDBs for processing. This section deals with how activation specification monitors the IBM MQ
system.

MDBs can also make additional connections to IBM MQ systems from inside their onMessage() method.

Details about how these connections can use automatic client reconnection can be found in “Enterprise
JavaBeans and web-based applications” on page 286.

CONNECTIONNAMELIST property
When starting, the activation specification attempts to connect to the queue manager using the:

• One specified in the QMANAGER property
• Channel mentioned in the CHANNEL property
• Host name and port information from the first entry in the CONNECTIONNAMELIST

282 Developing Applications for IBM MQ

If the activation specification is unable to connect to the queue manager using the first entry in the list,
the activation specification moves on to the second entry, and so on, until either a connection to the
queue manager has been made, or the end of the list has been reached.

If the activation specification is unable to connect to the specified queue manager, using any of the
entries in the CONNECTIONNAMELIST, the activation specification stops and must be restarted.

Once the activation specification is running, the activation specification gets messages from the IBM MQ
system, and delivers the messages to an MDB for processing.

If the queue manager fails while a message is being processed, the Java EE environment detects the
failure and attempts to reconnect the activation specification.

The activation specification uses the information in the CONNECTIONNAMELIST property as before, when
the activation specification performs the reconnection attempts.

If the activation specification tries all of the entries in the CONNECTIONNAMELIST and is still unable to
connect to the queue manager, then the activation specification waits for the period of time specified by
the IBM MQ resource adapter property reconnectionRetryInterval before trying again.

The IBM MQ resource adapter property reconnectionRetryCount defines the number of consecutive
reconnection attempts that are be made before an activation specification is stopped,, and requires a
manual restart

Once the activation specification has reconnected to an IBM MQ system, the Java EE environment
performs any transactional cleanup that is required, and resumes delivering messages to MDBs for
processing.

In order for the transactional cleanup to work correctly, the Java EE environment must be able to access
the logs for the queue manager that failed.

If the activation specifications are being used with transactional MDBs that participate in XA transactions,
and are connecting to a multi-instance queue manager, the CONNECTIONNAMELIST must contain an entry
for both the active and standby queue manager instance.

This means that the Java EE environment can access the queue manager logs if the environment needs
to perform transaction recovery, regardless of which queue manager the environment reconnects to
following a failure.

If the transactional MDBs are being used with stand-alone queue managers, the CONNECTIONNAMELIST
property must contain a single entry, to ensure that the activation specification always reconnects to the
same queue manager running on the same system following a failure.

CCDTURL property
When starting, the activation specification tries to connect to the queue manager specified in the
QMANAGER property using the first entry in the client channel definition table (CCDT).

If the activation specification is unable to connect to the queue manager using the first entry in the table,
the activation specification moves on to the second entry, and so on, until either a connection to the
queue manager has been made, or the end of the table has been reached.

If the activation specification is unable to connect to the specified queue manager, using any of the
entries in the CCDT, the activation specification stops and must be restarted.

Once the activation specification is running, the activation specification gets messages from the IBM MQ
system, and delivers the messages to an MDB for processing.

If the queue manager fails while a message is being processed, the Java EE environment detects the
failure and attempts to reconnect the activation specification.

The activation specification uses the information in the CCDT property as before, when the activation
specification performs the reconnection attempts.

Developing applications for IBM MQ 283

If the activation specification tries all of the entries in the CCDT and is still unable to connect to the
queue manager, the activation specification waits for the period of time specified by the IBM MQ resource
adapter property reconnectionRetryInterval before trying again.

The IBM MQ resource adapter property reconnectionRetryCount defines the number of consecutive
reconnection attempts that are be made before an activation specification is stopped,, and requires a
manual restart

Once the activation specification has reconnected to an IBM MQ system, the Java EE environment
performs any transactional cleanup that is required, and resumes delivering messages to MDBs for
processing.

In order for the transactional cleanup to work correctly, the Java EE environment must be able to access
the logs for the queue manager that failed.

If the activation specifications are being used with transactional MDBs that participate in XA transactions,
and are connecting to a multi-instance queue manager, the CCDT must contain an entry for both the active
and standby queue manager instance.

This means that the Java EE environment can access the queue manager logs if the environment needs
to perform transaction recovery, regardless of which queue manager the environment reconnects to
following a failure.

If the transactional MDBs are being used with stand-alone queue managers, the CCDT must contain a
single entry, to ensure that the activation specification always reconnects to the same queue manager
running on the same system following a failure.

Ensure that you have set the default value of PREFERRED for the AFFINITY property on the CCDTs, used
with activation specifications, so that connections are made to the same active queue manager.

CLIENTRECONNECTOPTIONS property
Activation specifications provide their own reconnection functionality. The provided functionality allows
the specifications to automatically reconnect to an IBM MQ system if the queue manager they were
connected to fails.

Because of this, the automatic client reconnection functionality provided by the IBM MQ classes for JMS
is not supported.

You must set the CLIENTRECONNECTOPTIONS property to DISABLED for all activation specifications that
are used in the Java EE.

WebSphere Application Server listener ports
Message-driven bean (MDB) applications that are installed in WebSphere Application Server can also use
listener ports to process messages on an IBM MQ system.

Listener ports are used to detect messages arriving on an IBM MQ system, and then deliver them to MDBs
for processing. This topic explains how the listener port monitors the IBM MQ system.

MDBs can also make additional connections to IBM MQ systems from inside their onMessage() method.

See “Enterprise JavaBeans and web-based applications” on page 286 for more information on how these
connections can use automatic client reconnection

For WebSphere Application Server listener ports:

• CONNECTIONNAMELIST and CCDTURL are supported with restrictions
• CLIENTRECONNECTOPTIONS is not supported

CONNECTIONNAMELIST property
Listener ports make use of JMS connection pools when connecting to IBM MQ, so are subject to
the implications of using connection pools. See “Activation specifications” on page 282 for further
information.

284 Developing Applications for IBM MQ

If there are no free connections, and the maximum number of connections have not yet been created
from this connection factory, the CONNECTIONNAMELIST property is used to try and create a new
connection to IBM MQ.

If all the IBM MQ systems in the CONNECTIONNAMELIST are not accessible, the listener port stops.

The listener port then waits for the period of time specified by the message listener service custom
property RECOVERY.RETRY.INTERVAL and tries to reconnect again.

This reconnection attempt checks if there are any free connections in the connection pool, just in case
one was returned in between the connection attempts. If one is not available, the listener port uses the
CONNECTIONNAMELIST as before.

Once the listener port has reconnected to an IBM MQ system, the Java EE environment performs any
transactional cleanup that is required, and then resumes delivering messages to MDBs for processing.

In order for the transactional cleanup to work correctly, the Java EE environment must be able to access
the logs for the queue manager that failed.

If the listener ports are being used with transactional MDBs that participate in XA transactions, and are
connecting to a multi-instance queue manager, the CONNECTIONNAMELIST must contain an entry for
both the active and standby queue manager instance.

This means that the Java EE environment can access the queue manager logs if the environment needs
to perform transaction recovery, regardless of which queue manager the environment reconnects to
following a failure.

If the transactional MDBs are being used with stand-alone queue managers, the CONNECTIONNAMELIST
property must contain a single entry, to ensure that the activation specification always reconnects to the
same queue manager running on the same system following a failure.

CCDTURL property
When starting, the listener port attempts to connect to the queue manager specified in the QMANAGER
property using the first entry in the CCDT.

If the listener port is not able to connect to the queue manager using the first entry in the table, the
listener port moves on to the second entry, and so on, until either a connection to the queue manager has
been made, or the end of the table has been reached.

If the listener port is unable to connect to the specified queue manager using any of the entries in the
CCDT, the listener port stops.

The listener port then waits for the period of time specified by the message listener service custom
property RECOVERY.RETRY.INTERVAL and tries to reconnect again.

This reconnection attempt works its way through all of the entries in the CCDT as before.

Once the Listener Port is running, it gets messages from the IBM MQ system and delivers them to an MDB
for processing.

If the queue manager fails while a message is being processed, the Java EE environment detects the
failure and tries to reconnect the listener port. The listener port uses the information in the CCDT when it
performs the reconnection attempts.

If the listener port tries all of the entries in the CCDT and is still unable to connect to the queue manager,
then the port waits for the period of time specified by the RECOVERY.RETRY.INTERVAL property before
trying again.

The message listener service property MAX.RECOVERY.RETRIES defines the number of consecutive
reconnection attempts that are made before a listener port stops and requires a manual restart.

Once the listener port has reconnected to an IBM MQ system, the Java EE environment performs any
transactional cleanup that is required, and then resumes delivering messages to MDBs for processing.

In order for the transactional cleanup to work correctly, the Java EE environment must be able to access
the logs for the queue manager that failed.

Developing applications for IBM MQ 285

If the listener ports are being used with transactional MDBs that participate in XA transactions, and are
connecting to a multi-instance queue manager, the CCDT must contain an entry for both the active and
standby queue manager instance.

This means that the Java EE environment can access the queue manager logs if the environment needs
to perform transaction recovery, regardless of which queue manager the environment reconnects to
following a failure.

If the transactional MDBs are being used with stand-alone queue managers, the CCDT must contain a
single entry, to ensure that the listener port always reconnects to the same queue manager running on the
same system following a failure.

Ensure that you have set the default value of PREFERRED for the AFFINITY property on the CCDTs, used
with listener ports, so that connections are made to the same active queue manager.

CLIENTRECONNECTOPTIONS property
Listener ports provide their own reconnection functionality. The provided functionality allows the listener
ports to automatically reconnect to an IBM MQ system if the queue manager they were connected to fails.

Because of this, the automatic client reconnection functionality provided by the IBM MQ classes for JMS
is not supported.

You must set the CLIENTRECONNECTOPTIONS property to DISABLED for all listener ports that are used in
the Java EE.

Enterprise JavaBeans and web-based applications
Enterprise JavaBean (EJB) applications and applications that run within the web container, such as
Servlets, use a JMS connection factory to create a connection to an IBM MQ queue manager.

The following restrictions apply to EJBs and web-based applications:

• CONNECTIONNAMELIST and CCDTURL are supported with restrictions
• CLIENTRECONNECTOPTIONS is not supported

CONNECTIONNAMELIST property
If the Java EE environment provides a connection pool for JMS connections, see “Using
CONNECTIONNAMELIST or CCDT in a connection pool” on page 288 for information on how this affects
the behavior of the CONNECTIONNAMELIST property.

If the Java EE environment does not provide a JMS connection pool. the application uses the
CONNECTIONNAMELIST property in the same way as Java SE applications.

If the applications are being used with transactional MDBs that participate in XA transactions, and are
connecting to a multi-instance queue manager, the CONNECTIONNAMELIST must contain an entry for
both the active and standby queue manager instance.

This means that the Java EE environment can access the queue manager logs if the environment needs
to perform transaction recovery, regardless of which queue manager the environment reconnects to
following a failure.

If the applications are being used with stand-alone queue managers, the CONNECTIONNAMELIST
property must contain a single entry, to ensure that the application always reconnects to the same queue
manager, running on the same system, following a failure.

CCDTURL property
If the Java EE environment provides a connection pool for JMS connections, see “Using
CONNECTIONNAMELIST or CCDT in a connection pool” on page 288 for information on how this affects
the behavior of the CCDTURL property.

286 Developing Applications for IBM MQ

If the Java EE environment does not provide a JMS connection pool. the application uses the CCDTURL
property in the same way as Java SE applications.

If the applications are being used with transactional MDBs that participate in XA transactions, and are
connecting to a multi-instance queue manager, the CCDT must contain an entry for both the active and
standby queue manager instance.

This means that the Java EE environment can access the queue manager logs if the environment needs
to perform transaction recovery, regardless of which queue manager the environment reconnects to
following a failure.

If the applications are being used with stand-alone queue managers, the CCDT must contain a single
entry, to ensure that the activation specification always reconnects to the same queue manager running
on the same system following a failure.

CLIENTRECONNECTOPTIONS property
You must set the CLIENTRECONNECTOPTIONS property to DISABLED for all JMS connection factories
used by EJBs, or applications, that run in the web container.

Applications that require to automatically reconnect to a new queue manager, if the queue manager they
are using fails, need to implement their own reconnection logic. See “Implementing reconnection logic in
a Java EE application” on page 288 for more information.

Scenarios: WebSphere Application Server with IBM MQ
Scenarios: WebSphere Application Server Liberty profile with IBM MQ

Applications running inside client containers
Some Java EE environments, such as WebSphere Application Server, provide a client container that can
be used to run Java SE applications.

Applications running inside of these environments use a JMS connection factory to connect to an IBM MQ
queue manager.

For applications running inside client containers:

• CONNECTIONNAMELIST and CCDTURL are fully supported
• CLIENTRECONNECTOPTIONS is fully supported

CONNECTIONNAMELIST property
If the Java EE environment provides a connection pool for JMS connections, see “Using
CONNECTIONNAMELIST or CCDT in a connection pool” on page 288 for information on how this affects
the behavior of the CONNECTIONNAMELIST property.

If the Java EE environment does not provide a JMS connection pool. the application uses the
CONNECTIONNAMELIST property in the same way as Java SE applications.

CCDTURL property
If the Java EE environment provides a connection pool for JMS connections, see “Using
CONNECTIONNAMELIST or CCDT in a connection pool” on page 288 for information on how this affects
the behavior of the CCDTURL property.

If the Java EE environment does not provide a JMS connection pool. the application uses the CCDTURL
property in the same way as Java SE applications.

Developing applications for IBM MQ 287

Using CONNECTIONNAMELIST or CCDT in a connection pool
Some Java EE environments, for example, WebSphere Application Server, provide a JMS connection pool.
container that can be used to run Java SE applications.

Applications that create a connection using a connection factory that has been defined in the Java
EE environment either obtain an existing free connection from the connection pool for this connection
factory, or a new connection if there is not a suitable one in the connection pool.

This can have implications if the connection factory has been configured with either the
CONNECTIONNAMELIST or CCDTURL property defined.

The first time the connection factory is used to create a connection, the Java EE environment uses either
the CONNECTIONNAMELIST. or the CCDTURL to create a new connection to the IBM MQ system. When
this connection is no longer required, it is returned to the connection pool where the connection becomes
available for reuse.

If something else creates a connection from the connection factory, the Java EE environment returns
the connection from the connection pool, rather than using the CONNECTIONNAMELIST or the CCDTURL
properties to create a new connection.

If a connection is being used when a queue manager instance fails, the connection is discarded. However,
the contents of the connection pool might not be, which means that the pool can potentially still contain
connections to a queue manager that is no longer running.

In this situation, the next time a request is made to create a connection from the connection factory, a
connection to the failed queue manager is returned. Any attempts to use this connection fail, as the queue
manager is no longer running, causing the connection to be discarded.

Only when the connection pool is empty, will the Java EE environment use the CONNECTIONNAMELIST or
CCDTURL properties to create a new connection to IBM MQ.

Due to the way the CONNECTIONNAMELIST and CCDTs are used to create JMS connections, it is also
possible to have a connection pool that contains connections to different IBM MQ systems.

For example, assume that a connection factory has been configured with the CONNECTIONNAMELIST
property set to the following value:

CONNECTIONNAMELIST = hostname1(port1), hostname2(port2)

Suppose that the first time an application tries to create a connection to a stand-alone queue manager
from this connection factory, the queue manager running on the system hostname1(port1) is not
accessible. This means that the application ends up with a connection to the queue manager running on
hostname2(port2).

Another application now comes along and creates a JMS connection from the same connection factory.
The queue manager on hostname1(port1) is now available, so a new JMS connection is created to this
IBM MQ system and is returned to the application.

When both applications have finished, they close their JMS Connections, which causes the connections to
be returned to the connection pool.

The result is that the connection pool for our connection factory now contains two JMS connections:

• One connection to the queue manager running on hostname1(port1)
• One connection to the queue manager running on hostname2(port2)

This can lead to issues relating to transaction recovery. If the Java EE system needs to roll back a
transaction, it needs to be able to connect to a queue manager that has access to the transaction logs.

Implementing reconnection logic in a Java EE application
Enterprise JavaBeans and web-based applications that want to automatically reconnect if a queue
manager fails need to implement their own reconnection logic.

The following options give more information on how you might achieve this.

288 Developing Applications for IBM MQ

Allow the application to fail
This approach requires no application changes, but does require an administrative reconfiguration of the
connection factory definition to include the CONNECTIONNAMELIST property. However, this approach
does require the invoker to be able to handle a failure appropriately . Note that this is also required for
failures such as MQRC_Q_FULL that are not related to connection failure.

Example code for this process:

public class SimpleServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 try {
 // get connection factory/ queue
 InitialContext ic = new InitialContext();
 ConnectionFactory cf =
 (ConnectionFactory)ic.lookup("java:comp/env/jms/WMQCF");
 Queue q = (Queue) ic.lookup("java:comp/env/jms/WMQQueue");

 // send a message
 Connection c = cf.createConnection();
 Session s = c.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer p = s.createProducer(q);
 Message m = s.createTextMessage();
 p.send(m);

 // done, release the connection
 c.close();
 }
 catch (JMSException je) {
 // process exception
 }
 }
}

The preceding code assumes that the connection factory, this servlet is using, has the
CONNECTIONNAMELIST property defined.

When the servlet first processes, a new connection is created using the CONNECTIONNAMELIST
property, assuming that no pooled connections are available from other applications connecting to the
same queue manager.

When the connection is released following a close() call, this connection is returned to the pool
and reused the next time the servlet runs - without referring to the CONNECTIONNAMELIST - until a
connection failure occurs, at which point a CONNECTION_ERROR_OCCURRED event is generated. This
event prompts the pool to destroy the failed connection.

When the application next runs, no pooled connection is available and the CONNECTIONNAMELIST is used
to connect to the first available queue manager. If queue manager fail over has taken place (for example,
the failure was not a transitory network failure) the servlet connects to the backup instance once it is
available.

If other resources, such as databases, are involved in the application, it might be appropriate to indicate
that the application server should roll back the transaction.

Handle reconnection within the application
If the invoker is unable to process a failure from the servlet, then reconnection must be handled
within the application. As shown in the following example, to handle a reconnection within
the application requires the application to request a new connection so that it can cache the
connection factory that it looked up from JNDI and handle a JMSException such as JMSCMQ0001:
WebSphere MQ call failed with compcode '2' ('MQCC_FAILED') reason '2009'
('MQRC_CONNECTION_BROKEN').

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

Developing applications for IBM MQ 289

 // get connection factory/ queue
 InitialContext ic = new InitialContext();
 ConnectionFactory cf = (ConnectionFactory)
 ic.lookup("java:comp/env/jms/WMQCF");
 Destination destination = (Destination) ic.lookup("java:comp/env/jms/WMQQueue");

 setupResources();

 // loop sending messages
 while (!sendComplete) {
 try {
 // create the next message to send
 msg.setText("message sent at "+new Date());
 // and send it
 producer.send(msg);
 }
 catch (JMSException je) {
 // drive reconnection
 setupResources();
 }
 }

In the following example, setupResources() creates the JMS objects and includes a sleep and retry
loop to handle non-instantaneous reconnection. In practice, this method prevents many reconnect
attempts. Note that exit conditions have been omitted from the example for clarity.

 private void setupResources() {

 boolean connected = false;
 while (!connected) {
 try {
 connection = cf.createConnection(); // cf cached from JNDI lookup
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 msg = session.createTextMessage();
 producer = session.createProducer(destination); // destination cached from JNDI lookup
 // no exception? then we connected ok
 connected = true;
 }
 catch (JMSException je) {
 // sleep and then have another attempt
 try {Thread.sleep(30*1000);} catch (InterruptedException ie) {}
 }
 }

If the application manages reconnection, it is important that the application releases any connections that
are held to other resources, whether these resources are other IBM MQ queue managers or other back
end services such as databases. You must reestablish these connections when reconnection to a new IBM
MQ queue manager instance is complete. If you do not do reestablish the connections, application server
resources are held unnecessarily during the reconnection attempt, and might have timed out by the time
they are reused.

Use of the WorkManager
For long-lived applications (for example, batch processing) where processing time is greater than a few
tens of seconds, the WebSphere Application Server WorkManager can be used. A code fragment example
for WebSphere Application Server follows:

public class BatchSenderServlet extends HttpServlet {

 private WorkManager workManager = null;
 private MessageSender sender; // background sender WorkImpl

 public void init() throws ServletException {
 InitialContext ctx = new InitialContext();
 workManager = (WorkManager)ctx.lookup(java:comp/env/wm/default);
 sender = new MessageSender(5000);
 workManager.startWork(sender);
 }

 public void destroy() {
 sender.halt();
 }

290 Developing Applications for IBM MQ

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 res.setContentType("text/plain");
 PrintWriter out = res.getWriter();
 if (sender.isRunning()) {
 out.println(sender.getStatus());
 }
}

where web.xml contains:

<resource-ref>
 <description>WorkManager</description>
 <res-ref-name>wm/default</res-ref-name>
 <res-type>com.ibm.websphere.asynchbeans.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>

and the batch is now implemented through the work interface:

import com.ibm.websphere.asynchbeans.Work;

public class MessageSender implements Work {

 public MessageSender(int messages) {numberOfMessages = messages;}

 public void run() {
 // get connection factory/ queue
 InitialContext ic = new InitialContext();
 ConnectionFactory cf = (ConnectionFactory)
 ic.lookup("java:comp/env/jms/WMQCF");
 Destination destination = (Destination) ic.lookup("jms/WMQQueue");

 setupResources();

 // loop sending messages
 while (!sendComplete) {
 try {
 // create the next message to send
 msg.setText("message sent at "+new Date());
 // and send it
 producer.send(msg);
 // are we finished?
 if (sendCount == numberOfMessages) {sendComplete = true);
 }
 catch (JMSException je) {
 // drive reconnection
 setupResources();
 }
 }

 public boolean isRunning() {return !sendComplete;}

 public void release() {sendComplete = true;}

If the batch processing takes a long time to run, for example, large messages, slow network, or extensive
database access (especially when coupled with slow fail over) then the server starts to output hung
thread warnings, similar to the following example:

WSVR0605W: Thread "WorkManager.DefaultWorkManager : 0" (00000035) has been active for
694061 milliseconds and may be hung. There is/are 1 thread(s) in total in the server that may be hung.

These warnings can be minimized by reducing the batch size, or increasing the hung thread timeout.
However, it is generally preferable if you implement this processing in an EJB (for batch send) or
message-driven bean (for consume or consume and reply) processing.

Note that application-managed reconnection does not provide a general solution to handling run time
errors, and the application must still handle errors that are not related to connection failure.

Developing applications for IBM MQ 291

For example, attempting to put a message to a queue that is full (2053 MQRC_Q_FULL), or
attempting to connect to a queue manager using security credentials that are not valid (2035
MQRC_NOT_AUTHORIZED).

The application must also handle 2059 MQRC_Q_MGR_NOT_AVAILABLE errors when no instances are
immediately available when fail over is in progress. This can be achieved by the application reporting the
JMS exceptions as they occur, instead of silently attempting to reconnect.

IBM MQ classes for JMS object pooling
Using a form of connection pooling outside of Java EE helps to reduce overall load resulting, for example,
from some stand-alone applications using frameworks, or being deployed into cloud environments, and
also from a greater number of client connections into QueueManagers leading to an increase in server
consolidation of applications and queue managers

Within the Java EE programming model, there is a well defined life cycle of the various objects in use.
Message-driven beans (MDBs) are most constrained, whilst Servlets provide more freedom. Therefore,
the pooling options that are available within the Java EE servers suit the various programming models
used.

With Java SE (or with another framework such as Spring) the programming models are extremely flexible.
Therefore a single pooling strategy does not suit all. You should consider if there is going to a framework
in place that could do any form of pooling, for example, Spring.

The pooling strategy to use depends on the environment in which your application is running.

Object pooling in a Java EE environment
Java EE application servers provide connection pooling functionality that can be used by message-driven
bean applications, Enterprise Java Beans and Servlets.

WebSphere Application Server maintains a pool of connections to a JMS provider, in order to improve
performance. When an application creates a JMS connection, the application server determines if a
connection already exists in the free connection pool. If so, the connection is returned to the application;
otherwise, a new connection is created.

Figure 41 on page 292 shows how both activation specifications and listener ports establish a JMS
connection and use that connection to monitor a destination for messages in normal mode.

Figure 41. Normal mode

When using the IBM MQ messaging provider, applications that perform outbound messaging (such as
enterprise Java Beans and servlets), and the message-driven bean listener port component, can make
use of these connection pools.

292 Developing Applications for IBM MQ

IBM MQ messaging provider activation specifications use connection pooling functionality provided by the
IBM MQ resource adapter. See Configuring properties for the WebSphere MQ resource adapter for more
information.

“Examples of using the connection pool” on page 297 explains how applications that perform outbound
messaging, and listener ports, use the free pool when creating JMS connections.

“Free connection pool maintenance threads” on page 299 explains what happens to these connections
when an application, or listener port, has finished with the connections.

“Pool maintenance thread examples” on page 301 explains how the free connection pool is cleaned to
prevent JMS connections from becoming stale.

WebSphere Application Server has a limit on the number of connections that can be created from a
factory, specified by the maximum connections property of the Connection Factory. The default value for
this property is 10, which means there can be up to 10 connections created from a factory at any one
time.

Each factory has an associated free connection pool. When the application server starts up, the free
connection pools are empty. The maximum number of connections that can exist in the free pool for a
factory is also specified by the Maximum connections property.

Tip: With JMS 2.0, a connection factory can be used to create both connections and contexts. As a result,
it is possible to have a connection pool associated with a connection factory that contains a mixture of
both connections and contexts. It is recommended that a connection factory is only used for creating
connections or creating contexts. This ensures that the connection pool for that connection factory only
contains objects of a single type, which makes the pool more efficient.

For information about how connection pooling works in WebSphere Application Server, see Configuring
connection pooling for JMS connections. For other application servers, refer to the appropriate application
server documentation.

How the connection pool is used
Every JMS connection factory has a connection pool associated with it, and the connection pool contains
zero or more JMS connections. Every JMS connection has an associated JMS session pool, and every JMS
session pool contains zero or more JMS sessions.

Figure 42 on page 294 shows the relationship between these objects.

Developing applications for IBM MQ 293

Figure 42. Connection pools and session pools

When a listener port starts up, or an application that wants to do outbound messaging uses the factory to
create a connection, the port or application calls one of the following methods:

• connectionFactory.createConnection()
• ConnectionFactory.createConnection(String, String)
• QueueConnectionFactory.createQueueConnection()
• QueueConnectionFactory.createQueueConnection(String, String)
• TopicConnectionFactory.createTopicConnection()
• TopicConnectionFactory.createTopicConnection(String, String)

The WebSphere Application Server connection manager tries to obtain a connection from the free pool for
this factory, and return it to the application.

If there are no free connections in the pool, and the number of connections created from this factory
has not reached the limit specified in the maximum connections property of that factory, the Connection
Manager creates a new connection for the application to use.

However, if an application attempts to create a connection, but the number of connections created from
this factory already is equal to the maximum connections property of the factory, the application waits for
a connection to become available (to be put back in the free pool).

The time that the application waits is specified in the connection timeout property of the connection pool,
which has a default value of 180 seconds. If a connection is put back in the free pool within this 180
second period, the Connection Manager immediately takes it out of the pool again and passes it to the
application. However, if the timeout period elapses, a ConnectionWaitTimeoutException is thrown.

When an application has finished with the connection and closes it by calling:

• Connection.close()
• QueueConnection.close()
• TopicConnection.close()

294 Developing Applications for IBM MQ

the connection is actually kept open, and is returned to the free pool so that it can be reused by another
application. Therefore, you can have connections open between WebSphere Application Server and the
JMS provider, even if no JMS applications are running on the application server.

Advanced connection pool properties
There are a number of advanced properties that can be used to control the behavior of JMS connection
pools.

Surge protection
“How applications that perform outbound messaging use the connection pool” on page 298 describes the
use of the sendMessage()method, which incorporates connectionFactory.createConnection().

Consider the situation where you have 50 EJBs all creating JMS connections from the same connection
factory as part of their ejbCreate() method.

If all of these beans are created at the same time, and there are no connections in the free connection
pool of the factory, the application server tries to create 50 JMS connections to the same JMS provider
simultaneously. The result is a significant load on both WebSphere Application Server and the JMS
provider.

The surge protection properties can prevent this situation by limiting the number of JMS connections
that can be created from a connection factory at any one time, and staggering the creation of additional
connections.

Limiting the number of JMS connections at any one time is achieved by using two properties:

• Surge threshold
• Surge creation interval.

When EJB applications try to create a JMS connection from a connection factory, the connection manager
checks to see how many connections are being created. If that number is less than or equal to the value
of the surge threshold property, the connection manager continues opening new connections.

However, if the number of connections being created exceeds the surge threshold property, then the
connection manager waits for the period of time specified by the surge creation interval property
before creating and opening a new connection.

Stuck connections
A JMS connection is considered stuck, if a JMS application uses that connection to send a request to the
JMS provider, and the provider does not respond within a certain amount of time.

WebSphere Application Server provides a way to detect stuck JMS connections To use this function, you
must set three properties:

• Stuck Time Timer
• Stuck Time
• Stuck Threshold

“Pool maintenance thread examples” on page 301 explains how the pool maintenance thread runs
periodically and checks the contents of the free pool of a connection factory, looking for connections that
have either gone unused for a period of time, or have been in existence for too long.

To detect stuck connections, the application server also manages a stuck connection thread that checks
the state of all active connections created from a connection factory to see if any of them are waiting for a
reply from the JMS provider.

When the stuck connection thread runs is determined by the Stuck time timer property. The default
value for this property is zero, which means that stuck connection detection never runs.

If the thread finds one waiting for a response, it determines how long it has been waiting, and compares
this time to the value of the Stuck time property.

Developing applications for IBM MQ 295

If the time taken for the JMS provider to respond exceeds the time specified by the Stuck time
property, the application server marks the JMS connection as stuck.

For example, suppose the connection factory jms/CF1 has the Stuck time timer property set to 10,
and the Stuck time property set to 15.

The stuck connection thread becomes active every 10 seconds, and checks if any connection created
from jms/CF1 has been waiting for longer than 15 seconds for a response from IBM MQ.

Suppose an EJB creates a JMS connection to IBM MQ using jms/CF1, and then tries to create a JMS
Session using that connection by calling Connection.createSession().

However, something is preventing the JMS provider from responding to the request. Perhaps the machine
has frozen, or a process running on the JMS provider is deadlocked, preventing any new work from being
processed:

Ten seconds after the EJB called Connection.createSession(), the stuck connection timer becomes
active, and looks at the active connections created from jms/CF1.

Assume there is only one active connection, for example called c1. The first EJB has been waiting 10
seconds for a response to a request it sent down to c1, which is less than the value of Stuck time, so
the stuck connection timer ignores this connection and becomes inactive.

10 seconds later, the stuck connection thread becomes active again, and looks at the active connections
for jms/CF1. As before, assume that there is only the one connection, c1.

It is now 20 seconds since the first EJB called createSession(), and the EJB is still waiting for
a response. 20 seconds is longer than the time specified in the Stuck time property, so the stuck
connection thread marks c1 as stuck.

If, five seconds later, IBM MQ finally responds, and allows the first EJB to create a JMS Session, the
connection is back in use.

The application server counts the number of JMS connections created from a connection factory that are
stuck. When an application uses that connection factory to create a new JMS Connection, and there are
no free connections in the free pool of that factory, the connection manager compares the number of
stuck connections to the value of the Stuck threshold property.

If the number of stuck connections is less than the value set for the Stuck threshold, property, the
connection manager creates a new connection and gives it to the application.

However, if the number of stuck connections is equal to the value of the Stuck threshold property, the
application gets a resource exception.

Pool partitions
WebSphere Application Server provides two properties that let you partition the free connection pool for a
connection factory:

• Number of free pool partitions tells the application server how many partitions you want to
divide the free connection pool into.

• Free pool distribution table size determines how the partitions are indexed.

Leave these properties at their default values of zero, unless you are asked to change them by your IBM
Support Center.

Note that WebSphere Application Server has one additional advanced connection pool property called
Number of shared partitions. This property specifies the number of partitions used to store shared
connections. However, as JMS connections are always unshared, this property does not apply.

296 Developing Applications for IBM MQ

Examples of using the connection pool
The message-driven bean listener port component, and applications that perform outbound messaging,
use a JMS connection pool.

Figure 43 on page 297 shows how the connection pool works for WebSphere Application Server V7.5 and
V8.0.

Figure 43. WebSphere Application Server V7.5 and V8.0 - how the connection pool works

Figure 44 on page 297 shows how the connection pool works for WebSphere Application Server V8.5.

Figure 44. WebSphere Application Server V8.5 - how the connection pool works

How MDB listener ports use the connection pool
Assume you have a MDB deployed on a WebSphere Application Server Network Deployment system,
that is using IBM MQ as the JMS provider. The MDB is deployed against a listener port which is using a
connection factory called, for example, jms/CF1, that has the maximum connections property set to 2,
which means that only two connections can be created from this factory at any one time.

Developing applications for IBM MQ 297

When the listener port starts up, the port attempts to create a connection to IBM MQ, using thejms/CF1
connection factory.

To do so, the port requests a connection from the connection manager. Since this is the first time the
jms/CF1 connection factory has been used, there are no connections in the jms/CF1 free connection
pool, so the connection manager creates a new one called, for example, c1. Note, that this connection
exists for the entire life of the listener port.

Now, consider the situation where you stop the listener port using the WebSphere Application Server
administrative console. In this case, the connection manager takes the connection, and puts it back into
the free pool. However, the connection to IBM MQ remains open.

If you restart the listener port, the port once again asks the connection manager for a connection to the
queue manager. As you now have a connection (c1) in the free pool, the connection manager takes this
connection out of the pool and makes it available to the listener port.

Now, assume that you have a second MDB deployed into the application server, and it is using a different
listener port.

Suppose you then try to start a third listener port, that is also configured to use the jms/CF1 connection
factory. The third listener port requests a connection from the connection manager, which looks in the
free pool for jms/CF1 and finds that it is empty. It then checks how many connections have already been
created from the jms/CF1 factory.

Since the maximum connections property for jms/CF1 is set to 2, and you have already created two
connections from this factory, the connection manager waits for 180 seconds (the default value of the
connection timeout property) for a connection to become available.

However, if you stop the first listener port, its connection c1 is put into the free pool for jms/CF1. The
connection manager retrieves this connection and gives it to the third listener.

If you now try to restart the first listener, this listener has to wait for one of the other listener ports to stop
before the first listener can restart. If none of the running listener ports is stopped within 180 seconds,
the first listener receives a ConnectionWaitTimeoutException error and stops.

How applications that perform outbound messaging use the connection pool
For this option, suppose that there is a single EJB called, for example EJB1, installed in the application
server. The bean implements a method called sendMessage() by:

• Creating a JMS connection to IBM MQ from a factory jms/CF1, using
connectionFactory.createConnection().

• Creating a JMS session from the connection.
• Creating a message producer from the session.
• Sending a message.
• Closing the producer.
• Closing the session.
• Closing the connection, by calling connection.close().

Assume that the free pool for the factory jms/CF1 is empty. When the EJB is invoked for the first time,
the bean attempts to create a connection to IBM MQ from the factory jms/CF1. As the free pool for the
factory is empty, the connection manager creates a new connection and gives it to EJB1.

Just before the method exits, the method calls connection.close(). Rather than closing c1, the
connection manager takes the connection and puts it into the free pool for jms/CF1.

The next time sendMessage() is called, the connectionFactory.createConnection() method
returns c1 to the application.

Assume that you have a second instance of the EJB running at the same time as the first instance. When
both instances are calling sendMessage(), two connections are created from the jms/CF1 connection
factory.

298 Developing Applications for IBM MQ

Now assume that a third instance of the bean is created. When the third bean invokes sendMessage(),
the method calls connectionFactory.createConnection() to create a connection from jms/CF1.

However, there are currently two connections created from jms/CF1, which equals the value of maximum
connections for this factory. Therefore, the createConnection() method waits for 180 seconds (the
default value of the connection timeout property) for a connection to become available.

However, if the sendMessage() method for the first EJB calls connection.close() and exits, the
connection it was using, c1, is put back into the free connection pool. The connection manager takes
the connection back out of the free pool and gives it to the third EJB. The call from that bean to
connectionFactory.createConnection() then returns, allowing the sendMessage() method to
complete.

MDB listener ports and EJBs using the same connection pool
The two previous examples show how listener ports and EJBs can use the connection pool in isolation.
However, you can have both a listener port and an EJB running inside the same application server and
creating JMS connections using the same connection factory.

You need to consider the implications of this situation

The key thing to remember is that the connection factory is shared between the listener port and the EJB.

For example, assume that you have a listener and EJB running at the same time. Both are using
the jms/CF1 connection factory, which means that the connection limit specified by the maximum
connections property for that factory has been reached.

If you try to start either another listener port, or another instance of an EJB, either has to wait for a
connection to be returned to the free connection pool for jms/CF1.

Free connection pool maintenance threads
Associated with each free connection pool is a pool maintenance thread, which monitors the free pool to
ensure that the connections in it are still valid.

If the pool maintenance thread decides that a connection in the free pool needs to be discarded, the
thread physically closes the JMS connection to IBM MQ.

How the pool maintenance thread works
The behavior of the pool maintenance thread is determined by the value of four properties of the
connection pool:
Aged timeout

The amount of time a connection remains open.
Minimum connections

The minimum number of connections the connection manager keeps in the free pool of a connection
factory.

Reap time
How often the pool maintenance thread runs.

Unused timeout
How long a connection remains in the free pool before it is closed.

By default, the pool maintained thread runs every 180 seconds, although this value can be changed by
setting the connection pool Reap time property.

The maintenance thread looks at each connection in the pool, checks how long it has been in the pool,
and how much time has elapsed since it was created and last used.

If the connection has not been used for a period longer than the value of the Unused timeout property
for the connection pool, the maintenance thread checks the number of connections currently in the free
pool. If that number is:

• Greater than the value of Minimum connections, the connection manager closes the connection.

Developing applications for IBM MQ 299

• Equals the value of Minimum connections, the connection is not closed and remains in the free pool.

The default value of the Minimum connections property is 1, which means that, for performance
reasons, the connection manager always attempts to keep at least one connection in the free pool.

The Unused timeout property has a default value of 1800 seconds. By default, if a connection is put
back in the free pool and not used again for at least 1800 seconds, that connection is closed, provided
that closing it, leaves at least one connection in the free pool.

This procedure prevents unused connections from becoming stale. To turn this feature off, set the Unused
timeout property to zero.

If a connection is in the free pool, and the elapsed time since its creation is greater than the value of
the Aged timeout property for the connection pool, then it is closed regardless of how long it has been
since it was last used.

By default, the Aged timeout property is set to zero, which means that the maintenance thread never
performs this check. Connections that have been around for longer than the Aged timeout property
are discarded regardless of how many connections will remain in the free pool. Note that the Minimum
connections property has no affect in this situation.

Disabling the pool maintenance thread
From the previous description, you can see that the pool maintenance thread does a great deal of work
when active, particularly if there are a large number of connections in the free pool of the connection
factory.

For example, suppose there are three JMS connection factories, with the Maximum connections
property set to 10 for each factory. Every 180 seconds, three pool maintenance threads become active
and scan the free pools for each connection factory respectively. If the free pools have many connections,
the maintenance threads have much work to do, which can significantly impact performance.

You can disable the pool maintenance thread for an individual free connection pool by setting its Reap
time property to zero.

Disabling the maintenance thread means that connections are never closed, even if the Unused
timeout has elapsed. However, the connections can still be closed if the Aged timeout has passed.

When an application has finished with a connection, the connection manager checks to see how long the
connection has existed, and if that period is longer than the value of the Aged timeout property, the
connection manager closes the connection rather than returning it to the free pool.

Transactional implications of Aged timeout
As described in the previous section, the Aged timeout property specifies how long a connection to the
JMS provider remains open before the connection manager closes it.

The default value for the Aged timeout property is zero, which means that the connection will never
be closed because it is too old. You should leave the Aged timeout property at this value, because
enabling Aged timeout can have transactional implications when using JMS inside of EJBs.

In JMS, the unit of a transaction is a JMS session, which is created from a JMS connection. It is the JMS
session that is enlisted into transactions, and not the JMS connection.

Due to the design of the application server, JMS connections can be closed because the Aged timeout
has elapsed, even if JMS sessions created from that connection are involved in a transaction.

Closing a JMS connection causes any outstanding transactional work on JMS sessions to be rolled back,
as described in the JMS specification. However, the application server is unaware that the JMS sessions
created from the connection are no longer valid. When the server tries to use the session to commit or roll
back a transaction, an IllegalStateException occurs.

Important: If you want to use Aged timeout with JMS connections from within EJBs, ensure that any
JMS work is explicitly committed on the JMS session, before the EJB method that performs the JMS
operations exits.

300 Developing Applications for IBM MQ

Pool maintenance thread examples
Using the Enterprise JavaBean (EJB) example to understand how the pool maintenance thread works.
Note that you can also use Message Driven Beans (MDBs) and listener ports, as all you need is a way to
get connections in the free pool.

See “How applications that perform outbound messaging use the connection pool” on page 298 for
further details of the sendMessage() method.

You have configured the connection factory with the following values:

• Reap time at its default value of 180 seconds
• Aged timeout at its default value of zero seconds
• Unused timeout set to 300 seconds

After the application server starts up, the sendMessage() method is invoked.

The method creates a connection called, for example c1, using the factory jms/CF1, uses that factory to
send a message, and then calls connection.close(), which causes c1 to be put into the free pool.

After 180 seconds, the pool maintenance thread starts up, and looks at the jms/CF1 free connection
pool. There is a free connection c1 in the pool, so the maintenance thread looks at the time the
connection was put back, and compares this to the current time.

180 seconds have passed since the connection was put in the free pool, which is less than the value of
the Unused timeout property for jms/CF1. Therefore the maintenance thread leaves the connection
alone.

180 seconds later, the pool maintenance thread runs again. The maintenance thread finds the connection
c1, and determines that the connection has been in the pool for 360 seconds, which is longer than the
Unused timeout value set, so the connection manager closes the connection.

If you now run the sendMessage() method again, when the application calls
connectionFactory.createConnection() , the connection manager creates a new connection to
IBM MQ because the free connection pool for the connection factory is empty.

The preceding example shown how the maintenance thread uses the Reap time and Unused timeout
properties to prevent stale connections, when the Aged timeout property is set to zero.

How does the Aged timeout property work?

In the following example, assume that you have set the:

• Aged timeout property to 300 seconds
• Unused timeout property to zero.

You invoke the sendMessage() method and this method tries to create a connection from the jms/CF1
connection factory.

As the free pool for this factory is empty, the connection manager creates a new connection, c1, and
returns it to the application. When sendMessage() calls connection.close(), c1 is put back into the
free connection pool.

180 seconds later, the pool maintenance thread runs. The thread finds c1 in the free connection pool, and
checks how long ago it was created. The connection has existed for 180 seconds, which is less than Aged
timeout, so the pool maintenance thread leaves it alone and goes back to sleep.

60 seconds later, sendMessage() is called again. This time, when the method calls
connectionFactory.createConnection(), the connection manager discovers that there is a
connection, c1, available in the free pool for jms/CF1. The connection manager takes c1 out of the
free pool, and gives that connection to the application.

The connection is returned to the free pool when sendMessage() exits. 120 seconds later, the pool
maintenance thread wakes up again, scans the contents of the free pool for jms/CF1 and discovers c1.

Developing applications for IBM MQ 301

Although the connection was only used 120 seconds ago, the pool maintenance thread closes the
connection, because the connection has been in existence for a total of 360 seconds, which is longer
than the 300 second value you set for the Aged timeout property.

How the Minimum connections property affects the pool maintenance thread
Using the “How MDB listener ports use the connection pool” on page 297 example again, assume that
you have two MDBs deployed in your application server, each using a different listener port.

Each listener port is configured to use the jms/CF1 connection factory, which you have configured with
the:

• Unused timeout property set to 120 seconds
• Reap time property set to 180 seconds
• Minimum connections property set to 1

Suppose that the first listener is stopped, and its connection c1 is put into the free pool. 180 seconds
later, the pool maintenance thread wakes up, scans the contents of the free pool for jms/CF1, and
discovers that c1 has been in the free pool for longer than the value of the Unused timeout property for
the connection factory.

However, before closing c1, the pool maintenance thread looks to see how many connections will remain
in the pool if this connection is thrown away. Since c1 is the only connection in the free connection pool,
the connection manager does not close it, because doing so would make the number of connections that
remain in the free pool less than the value set for Minimum connections.

Now, assume that the second listener is stopped. The free connection pool now contains two free
connections - c1 and c2.

180 seconds later, the pool maintenance thread runs again. By this time, c1 has been in the free
connection pool for 360 seconds, and c2 for 180 seconds.

The pool maintenance thread checks c1 and discovers that it has been in the pool for longer than the
value of the Unused timeout property.

The thread then checks to see how many connections are in the free pool, and compares this to the
value of the Minimum connections property. Since the pool contains two connections, and Minimum
connections is set to 1, the connection manager closes c1.

The maintenance thread now looks at c2. This has also been in the free connection pool for longer than
the value of the Unused timeout property. However, since closing c2 would leave the free connection
pool with less than the set number of Minimum connections in it, the connection manager leaves c2
alone.

JMS connections and IBM MQ
Information on the use of IBM MQ as the JMS provider.

Using the bindings transport
If a connection factory has been configured to use the bindings transport, every JMS connection
establishes a conversation (also known as an hconn) with IBM MQ. The conversation uses interprocess
communication (or shared memory) to communicate with the queue manager.

Using the client transport
When an IBM MQ messaging provider connection factory has been configured to use the client transport,
every connection created from that factory will establish a new conversation (also known as anhconn) to
IBM MQ.

For connection factories that connect to a queue manager using IBM MQ messaging provider normal
mode, it is possible for multiple JMS connections created from the connection factory to share a TCP/IP

302 Developing Applications for IBM MQ

connection to IBM MQ. For more information see “Sharing a TCP/IP connection in IBM MQ classes for
JMS” on page 305.

To determine the maximum number of client channels used by JMS connections at any one time, add up
the value of the Maximum connections property for all of the connection factories that point to the same
queue manager.

For example, suppose you have two connection factories, jms/CF1 and jms/CF2 , that have been
configured to connect to the same IBM MQ queue manager using the same IBM MQ channel.

These factories are using the default connection pool properties, which means that Maximum connections
is set to 10. If all of the connections are being used from both jms/CF1 and jms/CF2 at the same time,
there will be 20 conversations between the application server and IBM MQ.

If the connection factory connects to the queue manager using IBM MQ messaging provider normal mode,
then the maximum number of TCP/IP connections that can exist between the application server and the
queue manager for these connection factories is:

20/the value of SHARECNV for the IBM MQ channel

If the connection factory is configured to connect using IBM MQ messaging provider migration mode,
then the maximum number of TCP/IP connections between the application server and IBM MQ for these
connection factories would be 20 (one for each JMS connection in the connection pools for the two
factories).

Related concepts
“Using IBM MQ classes for JMS/Jakarta Messaging” on page 79
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are the Java messaging providers
supplied with IBM MQ. As well as implementing the interfaces defined in the JMS and Jakarta Messaging
specifications, these messaging providers add two sets of extensions to the Java messaging API.

Object pooling in a Java SE environment
With Java SE (or with another framework such as Spring) the programming models are extremely flexible.
Therefore a single pooling strategy does not suit all. You should consider if there is a framework in place
that could do any form of pooling, for example, Spring.

Otherwise, application logic could take this up. Ask yourself how complex is the application itself? It is
best to understand the application and what it demands from the connectivity to the messaging system.
Applications are often written as well within their own wrapper code around the basic JMS API.

Whilst this can be a very sensible approach, and can hide complexity, it is worth keeping in mind that it
can introduce problems. For example, a generic getMessage() method, that is frequently called, should
not just open and close consumers.

Points you should consider:

• How long will the application need access to IBM MQ? All the time, or just occasionally.
• How often will messages be sent? The less frequently, the more a single connection to IBM MQ could be

shared.
• A connection broken exception is usually a sign of needing to re-create a pooled connection. What

about:

– Security exceptions or host not available
– Queue full exceptions

• If a connection broken exception occurs, what should happen to the other free connections in the pool?
Should they be closed off and re-created?

• If TLS is being used, for example, how long do you want a single connection to remain open?
• How will a pooled connection identify itself such that a queue manager administrator can spot the

connection and track it back.

Developing applications for IBM MQ 303

You should consider all JMS objects for pooling, and pool that object whenever it is possible to do so. The
objects include:

• JMS connections
• Session
• Contexts
• Producers and consumers of all different types

When using the client transport, JMS connections, sessions, and contexts, will use sockets when
communicating with the IBM MQ queue manager. By pooling these objects, the savings are on the number
of incoming IBM MQ connections (hConns) to the queue manager and a reduction in the number of
channel instances.

Using the bindings transport to the queue manager removes the networking layer entirely. However,
many applications use the client transport to provide a more highly available, and workload balanced,
configuration.

JMS producers and consumers open destinations on the queue manager. If fewer numbers of queues or
topics are opened, and multiple parts of the application are using these objects, pooling these can be
useful.

From an IBM MQ perspective, this process saves a sequence of MQOPEN and MQCLOSE operations.

Connections, sessions, and contexts
These objects all encapsulate IBM MQ connection handles to the queue manager, and are generated from
a ConnectionFactory. You can add logic to an application to constrain the number of connections, and
other objects, created from a single connection factory to a specific number.

You can use a simple data structure in the application to contain the connections that are created. The
application code that needs to use one of these data structures can check-out an object to use.

Take the following factors into account:

• When should connections be removed from the pool? Generally, create an exception listener on the
connection. When that listener is called to process an exception, you should re-create the connection,
and any sessions created from that connection.

• If a CCDT is in use for workload balancing, the connections could go to different queue managers. This
might be applicable for the pooling requirements.

Remember, that the JMS specification states that it is a programming error for multiple threads to be
accessing a session or context at the same time. The IBM MQ JMS code does attempt to be rigorous in its
handling of threads. However, you should add logic to the application, to ensure that a session or context
object is only used by one thread at a time.

Producers and consumers
Each producer and consumer that is created opens a destination on the queue manager. If the same
destination is going to be used for a variety of tasks, it makes sense to keep the consumer or producer
objects open. Only close the object when all the work is done.

Although opening and closing a destination are short operations, if they are done frequently the time
taken can add up.

The scope of these objects is within the session or context they are created from, therefore, they need to
be held within that scope. Generally, applications are written such that this is quite straightforward to do.

Monitoring
How will the applications monitor their object pools? The answer to this is largely determined by the
complexity of the solution of pooling implemented.

304 Developing Applications for IBM MQ

If you consider a JavaEE pooling implementation, there are a large number of options, including the:

• Current size of the pools
• Time objects have spent in them
• Cleaning of the pools
• Refreshing of the connections

You should also consider how a single re-used session appears on the queue manager. There are
connection factory properties to identify the application (such as appName) that could be useful.

“Using IBM MQ classes for JMS/Jakarta Messaging” on page 79
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are the Java messaging providers
supplied with IBM MQ. As well as implementing the interfaces defined in the JMS and Jakarta Messaging
specifications, these messaging providers add two sets of extensions to the Java messaging API.

Sharing a TCP/IP connection in IBM MQ classes for JMS
Multiple instances of an MQI channel can be made to share a single TCP/IP connection.

Applications that are running inside the same Java runtime environment, and that use the IBM MQ
classes for JMS or the IBM MQ resource adapter to connect to a queue manager by using the CLIENT
transport, can be made to share a channel instance.

If a channel is defined with the SHARECNV parameter set to a value greater than 1, then that number of
conversations can share a channel instance. To enable a connection factory or an activation specification
to use this function, set the SHARECONVALLOWED property to YES.

Every JMS connection and JMS session that is created by a JMS application creates its own conversation
with the queue manager.

When an activation specification starts up, the IBM MQ resource adapter starts a conversation with the
queue manager for the activation specification to use. Every server session in the server session pool that
is associated with the activation specification also starts a conversation with the queue manager.

The SHARECNV attribute is a best effort approach to connection sharing. Therefore, when a SHARECNV
value greater than 0 is used with the IBM MQ classes for JMS, it is not guaranteed that a new connection
request always shares an already established connection.

How the TCP/IP connections are shared
There are two strategies available for sharing TCP/IP connections:
The GLOBAL strategy

This strategy is the default strategy for sharing TCP/IP connections. Any JMS connection or session
can use a conversation on any suitable TCP/IP connection. Suitability is determined by such factors as
host address, port number, user ID and password, and TLS/SSL parameters.
This approach for sharing TCP/IP connections minimizes the number of channel instances that are in
use, but at the cost of contention for access to a global pool of TCP/IP connections.

The CONNECTION strategy
With this strategy, the channel instances are only shared between related JMS objects. Specifically,
when a JMS connection is created, a channel instance is created for it, and additional conversations
on that channel instance are only available to JMS sessions that are created by that JMS connection.
If more conversations are created than the SHARECNV attribute specifies, a new channel instance is
created which can be used only by JMS sessions that are created by the original JMS connection.
This approach to sharing channel instances reduces contention for conversations, at the expense of
potentially requiring significantly more channel instances.

Explicitly specifying a channel instance sharing strategy

Developing applications for IBM MQ 305

By default, the GLOBAL strategy is used if applications are not reconnectable. Reconnectable applications
always use the CONNECTION strategy.

For applications that use IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging,
the CONNECTION strategy can be enabled for non-reconnectable applications on an application-
wide basis. You can enable the CONNECTION strategy by setting the system property
com.ibm.mq.jms.channel.sharing to the value CONNECTION. This value is not case-sensitive, and
any value other than CONNECTION is ignored.

You can set the system property com.ibm.mq.jms.channel.sharing in one of the following ways:

• Set the property as part of the JVM initialization by using the "-D" command line option:

-Dcom.ibm.mq.jms.channel.sharing=CONNECTION

• Set the property before any use of the IBM MQ classes for JMS or IBM MQ classes for Jakarta
Messaging by using System.setProperty()

Calculating the number of channel instances for the GLOBAL sharing strategy
Use the following formulae to determine the maximum number of channel instances that are created by
an application:

Activation specifications

Number of channel instances = (maxPoolDepth_value + 1) / SHARECNV_value

Where maxPoolDepth_value is the value of the maxPoolDepth property and SHARECNV_value is the
value of the SHARECNV property on the channel that is used by the activation specification.

Other JMS applications

Number of channel instances = (jms_connections + jms_sessions) / SHARECNV_value

Where jms_connections is the number of connections that a created by the application, jms_sessions
is the number of JMS sessions that are created by the application, and SHARECNV_value is the value
of the SHARECNV property on the channel that is used by the activation specification.

Calculating the number of channel instances for the CONNECTION sharing strategy
The number of channel instances depends on the distribution of JMS sessions among the JMS
connections in the application.

Allow one conversation for the JMS connection and one conversation for each JMS session under that
JMS connection, then divide by the SHARECNV value, rounding up. This calculation gives the channel
instances that are needed by that JMS connection.

The same principle can be applied to activation specifications. Regard the activation specification as a
JMS connection and the maxPoolDepth property as the number of JMS sessions.

Examples
The following examples show how to use the formulae to calculate the number of channel instances that
are created on a queue manager by applications by using either the IBM MQ classes for JMS or the IBM
MQ resource adapter.

JMS application example
A JMS application connection connects to a queue manager by using the CLIENT transport, and
creates a JMS connection and three JMS sessions. The channel that the application is using to
connect to the queue manager has the SHARECNV property set to the value of 10. When the
application is running, there are four conversations between the application and the queue manager
and one channel instance. The four conversations all share the channel instance.

306 Developing Applications for IBM MQ

Activation specification example
An activation specification connects to a queue manager by using the CLIENT transport. The
activation specification is configured with the maxPoolDepth property set to 10. The channel that the
activation specification is configured to use has the SHARECNV property set to 10. When the activation
specification is running, and processing 10 messages concurrently, the number of conversations
between the activation specification and the queue manager is 11 (10 conversations for the server
sessions, and one for the activation specification). The number of channel instances that are used by
the activation specification is 2.

Activation specification example
An activation specification connects to a queue manager by using the CLIENT transport. The
activation specification is configured with the maxPoolDepth property set to 5. The channel that the
activation specification is configured to use has the SHARECNV property set to 0. When the activation
specification is running, and processing 5 messages concurrently, the number of conversations
between the activation specification and the queue manager is 6 (five conversations for the server
sessions, and one for the activation specification). The number of channel instances that are used
by the activation specification is 6 because the SHARECNV property on the channel is set to 0, every
conversation uses its own channel instance.

Related tasks
“Determining the number of TCP/IP connections that are created from WebSphere Application Server to
IBM MQ” on page 484
Using the sharing conversations feature, multiple conversations can share MQI channel instances, this is
also known as a TCP/IP connection.

Specifying a range of ports for client connections in IBM MQ classes for JMS
Use the LOCALADDRESS property to specify a range of ports that your application can bind to.

When an IBM MQ classes for JMS application attempts to connect to an IBM MQ queue manager in
client mode, a firewall might allow only those connections that originate from specified ports or a
range of ports. In this situation, you can use the LOCALADDRESS property of a ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory object to specify a port, or a range of ports, that the
application can bind to.

You can set the LOCALADDRESS property by using the IBM MQ JMS administration tool, or by calling the
setLocalAddress() method in a JMS application. Here is an example of setting the property from within an
application:

mqConnectionFactory.setLocalAddress("192.0.2.0(2000,3000)");

When the application connects to a queue manager subsequently, the application binds to a local IP
address and port number in the range 192.0.2.0(2000) to 192.0.2.0(3000).

In a system with more than one network interface, you can also use the LOCALADDRESS property to
specify which network interface must be used for a connection.

For a real-time connection to a broker, the LOCALADDRESS property is relevant only when multicast is
used. In this case, you can use the property to specify which local network interface must be used for a
connection, but the value of the property must not contain a port number, or a range of port numbers.

Connection errors might occur if you restrict the range of ports. If an error occurs, a
JMSException is thrown with an embedded MQException that contains the IBM MQ reason code
MQRC_Q_MGR_NOT_AVAILABLE and the following message:
Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the specified IP address, host
name, or port number is not valid (a negative port number, for example).

Because IBM MQ classes for JMS might create connections other than those required by an application,
always consider specifying a range of ports. In general, every session created by an application requires

Developing applications for IBM MQ 307

one port and IBM MQ classes for JMS might require three or four additional ports. If a connection error
does occur, increase the range of ports.

Connection pooling, which is used by default in IBM MQ classes for JMS, might have an effect on the
speed at which ports can be reused. As a result, a connection error might occur while ports are being
freed.

Channel compression in IBM MQ classes for JMS
An IBM MQ classes for JMS application can use IBM MQ facilities to compress a message header or data.

Compressing the data that flows on an IBM MQ channel can improve the performance of the channel
and reduce network traffic. Using function supplied with IBM MQ, you can compress the data that flows
on message channels and MQI channels. On either type of channel, you can compress header data and
message data independently of each other. By default, no data is compressed on a channel.

An IBM MQ classes for JMS application specifies the techniques that can be used for compressing header
or message data on a connection by creating a java.util.Collection object. Each compression technique
is an Integer object in the collection, and the order in which the application adds the compression
techniques to the collection is the order in which the compression techniques are negotiated with
the queue manager when the application creates the connection. The application can then pass the
collection to a ConnectionFactory object by calling the setHdrCompList() method, for header data, or the
setMsgCompList() method, for message data. When the application is ready, it can create the connection.

The following code fragments illustrate the approach described. The first code fragment shows you how
to implement header data compression:

Collection headerComp = new Vector();
headerComp.add(new Integer(WMQConstants.WMQ_COMPHDR_SYSTEM));
.
.
.
((MQConnectionFactory) cf).setHdrCompList(headerComp);
.
.
.
connection = cf.createConnection();

The second code fragment shows you how to implement message data compression:

Collection msgComp = new Vector();
msgComp.add(new Integer(WMQConstants.WMQ_COMPMSG_RLE));
msgComp.add(new Integer(WMQConstants.WMQ_COMPMSG_ZLIBHIGH));
.
.
.
((MQConnectionFactory) cf).setMsgCompList(msgComp);
.
.
.
connection = cf.createConnection();

In the second example, the compression techniques are negotiated in the order RLE, then ZLIBHIGH,
when the connection is created. The compression technique that is selected cannot be changed during
the lifetime of the Connection object. To use compression on a connection, the setHdrCompList() and the
setMsgCompList() methods must be called before creating the Connection object.

Putting messages asynchronously in IBM MQ classes for JMS
Normally, when an application sends messages to a destination, the application has to wait for the queue
manager to confirm that it has processed the request. You can improve messaging performance in some
circumstances by choosing instead to put messages asynchronously. When an application puts a message
asynchronously, the queue manager does not return the success or failure of each call, but you can
instead check for errors periodically.

Whether a destination returns control to the application, without determining whether the queue manager
has received the message safely, depends upon the following properties:

308 Developing Applications for IBM MQ

The JMS destination property PUTASYNCALLOWED (short name - PAALD).
PUTASYNCALLOWED controls whether JMS applications can put messages asynchronously, if this
option is allowed by the underlying queue or topic that the JMS destination represents.

The IBM MQ queue or topic property DEFPRESP (Default put response type).
DEFPRESP specifies whether applications that put messages to the queue, or publish messages to the
topic, can use asynchronous put functionality.

The following table shows the possible values for the PUTASYNCALLOWED and DEFPRESP properties, and
the combinations of values used to enable asynchronous put functionality:

Table 46. How the PUTASYNCALLOWED and DEFPRESP properties combine to determine if messages are put to a
destination asynchronously.

IBM MQ queue property PUTASYNCALLOWED =
NO

PUTASYNCALLOWED =
YES

Asynchronous put
functionality enabled

DEFPRESP=SYNC Asynchronous put
functionality not enabled

Asynchronous put
functionality enabled

PUTASYNCALLOWED =
AS_DEST or AS_Q_DEF or
AS_T_DEF

DEFPRESP=ASYNC Asynchronous put
functionality not enabled

Asynchronous put
functionality enabled

PUTASYNCALLOWED =
AS_DEST or AS_Q_DEF or
AS_T_DEF

You can change the behavior by specifying the IBM MQ-JMS Destination property to say "NO" or "YES"
as shown in the table, but it can also be overridden for the entire Java Virtual Machine using the JVM
SystemProperty and value:

com.ibm.mq.cfg.Channels.Put1DefaultAlwaysSync=Y

For messages sent in a transacted session, the application ultimately determines whether the queue
manager has received the messages safely when it calls commit().

If an application sends persistent messages within a transacted session, and one or more of the
messages are not received safely, the transaction fails to commit and produces an exception. However,
if an application sends nonpersistent messages within a transacted session, and one or more of the
messages are not received safely, the transaction commits successfully. The application does not receive
any feedback that the nonpersistent messages did not arrive safely.

For nonpersistent messages sent in a session that is not transacted, the SENDCHECKCOUNT property of
the ConnectionFactory object specifies how many messages are to be sent, before IBM MQ classes for
JMS checks that the queue manager has received the messages safely.

If a check discovers that one or more messages were not received safely, and the application has
registered an exception listener with the connection, IBM MQ classes for JMS calls the onException()
method of the exception listener to pass a JMS exception to the application.

The JMS exception has an error code of JMSWMQ0028 and this code displays the following message:

At least one asynchronous put message failed or gave a warning.

The JMS exception also has a linked exception that provides more details. The default value of the
SENDCHECKCOUNT property is zero, which means that no such checks are made.

This optimization is of most benefit to an application that connects to a queue manager in client mode,
and needs to send a sequence of messages in rapid succession, but does not require immediate feedback
from the queue manager for each message sent. However, an application can still use this optimization
even if it connects to a queue manager in bindings mode, but the expected performance benefit is not as
great.

Note: If you are using an unidentified MessageProducer to send a message under a transaction, then by
default the messages are put to the queue using the asynchronous put mechanism.

Developing applications for IBM MQ 309

This can occur because the JMS API allows the MessageProducer to be created without specifying a
Destination, using the syntax:

javax.jms.MessageProducer messageProducer = javax.jms.Session.createProducer(null);
 messageProducer.send(Destination destination, Message message, int deliveryMode, int priority, long
timeToLive);

In this scenario, the JMS Destination is provided when the message is sent rather than ahead of time
when the MessageProducer is constructed. In terms of the IBM MQ API, this results in an MQPUT1
being issued to put the message to the queue .

If you do this under an IBM MQ syncpoint, which means (in JMS terminology) putting the message under
a transaction, either using a transacted JMS Session or through the use of an XASession the IBM MQ
classes for JMS API switches to using asynchronous put.

Using read ahead with IBM MQ classes for JMS
The read ahead functionality that is provided by IBM MQ allows non-persistent messages that are
received outside of a transaction to be sent to the IBM MQ classes for JMS before an application requests
them. The IBM MQ classes for JMS store the messages in an internal buffer, and pass the messages to the
application when the application asks for them.

IBM MQ classes for JMS applications that use MessageConsumers or MessageListeners to receive
messages from a destination outside of a transaction can use the read ahead functionality. Using read
ahead allows applications that use these objects to benefit from improved performance when they
receive messages.

Whether an application that uses MessageConsumers or MessageListeners can use read ahead
depends upon the following properties:
The JMS destination property READAHEADALLOWED (short name - RAALD).

READAHEADALLOWED controls whether JMS applications can use read ahead when getting or
browsing non-persistent messages outside of a transaction, if the underlying queue or topic that
the JMS destination represents, allows this option.

The IBM MQ queue or topic property DEFREADA (Default read ahead).
DEFREADA specifies whether applications that are receiving or browsing non-persistent messages
outside of a transaction can use read ahead.

The following table shows the possible values for the READAHEADALLOWED and DEFREADA properties,
and the combinations of values used to enable the read ahead functionality:

Table 47. How the READAHEADALLOWED and DEFREADA properties combine to determine if read ahead
is used when receiving or browsing non-persistent messages outside of a transaction.

IBM MQ queue property READAHEADALLOWED
= YES

READAHEADALLOWED
= NO

AS_DEST or AS_Q_DEF
or AS_T_DEF

DEFREADA = NO Read ahead functionality
enabled

Read ahead functionality
not enabled

Read ahead functionality
not enabled

DEFREADA = YES Read ahead functionality
enabled

Read ahead functionality
not enabled

Read ahead functionality
enabled

DEFREADA = DISABLED Read ahead functionality
not enabled

Read ahead functionality
not enabled

Read ahead functionality
not enabled

If the read ahead functionality is enabled, when a MessageConsumer or MessageListener is created
by an application, the IBM MQ classes for JMS create an internal buffer for the destination that
the MessageConsumer or MessageListener is monitoring. There is one internal buffer for each
MessageConsumer or MessageListener. The queue manager starts sending non-persistent messages
to the IBM MQ classes for JMS when the application calls one of the following methods:

• MessageConsumer.receive()

310 Developing Applications for IBM MQ

• MessageConsumer.receive(long timeout)
• MessageConsumer.receiveNoWait()
• Session.setMessageListener(MessageListener listener)

The IBM MQ classes for JMS automatically returns the first message back to the application, by the
method call that the application has made. The other non-persistent messages are stored by the IBM MQ
classes for JMS in the internal buffer that was created for the destination. When the application requests
the next message to process, the IBM MQ classes for JMS will return the next message in the internal
buffer.

The IBM MQ classes for JMS requests more non-persistent messages from the queue manager when the
internal buffer is empty.

The internal buffer that is used by the IBM MQ classes for JMS is deleted when an application closes a
MessageConsumer, or the JMS Session that a MessageListener is associated with.

For MessageConsumers, any unprocessed messages in the internal buffer is lost.

When using MessageListeners, what happens to the messages in the internal buffer depends
upon the JMS destination property READAHEADCLOSEPOLICY (short name - RACP). The default value
of the property is DELIVER_ALL, which means that the JMS session that was used to create the
MessageListener is not closed until all of the messages in the internal buffer are delivered to the
application. If the property is set to DELIVER_CURRENT, then the JMS session will be closed after the
current message has been processed by the application and all of the remaining messages in the internal
buffer are discarded.

Retained publications in IBM MQ classes for JMS
An IBM MQ classes for JMS client can be configured to use retained publications.

A publisher can specify that a copy of a publication must be retained so that it can be sent to future
subscribers who register an interest in the topic. This is done in IBM MQ classes for JMS by setting the
integer property JMS_IBM_RETAIN to the value 1. Constants have been defined for these values in the
com.ibm.msg.client.jms.JmsConstants interface. For example, if you have created a message msg, to set
it as a retained publication use the following code:

// set as a retained publication
msg.setIntProperty(JmsConstants.JMS_IBM_RETAIN, JmsConstants.RETAIN_PUBLICATION);

You can now send the message as normal. JMS_IBM_RETAIN can also be queried in a received message.
It is therefore possible to query whether a received message is a retained publication.

XA support in IBM MQ classes for JMS
JMS supports XA-compliant transactions in bindings and client modes with a supported transaction
manager within a JEE container.

If you require XA functionality in an application server environment, you must configure your application
appropriately. Refer to your application server's own documentation for information about how to
configure applications to use distributed transactions.

An IBM MQ queue manager cannot act as a transaction manager for JMS.

Delivery delay for JMS messages
For JMS 2.0 or later, you can specify a delivery delay when sending a message. The queue manager does
not deliver the message until after the specified delivery delay has elapsed.

An application can specify a delivery delay in milliseconds, when it sends a
message, by using either MessageProducer.setDeliveryDelay(long deliveryDelay) or
JMSProducer.setDeliveryDelay(long deliveryDelay). This value is added to the time at which
the message is sent and gives the earliest time at which any other application can get that message.

Delivery delay is implemented by using a single internal staging queue. Messages that have a nonzero
delivery delay are placed on this queue with a header that indicates the delivery delay and information

Developing applications for IBM MQ 311

about the target queue. A component of the queue manager that is called the delivery delay processor
monitors the messages on the staging queue. When a message's delivery delay completes, the message is
taken off the staging queue and placed on the target queue.

Messaging clients
The IBM MQ implementation of delivery delay is only available for use when you are using the JMS client.
The following restrictions apply if you are using delivery delay with IBM MQ. These restrictions apply
equally to MessageProducers and JMSProducers, but JMSRuntimeExceptions are thrown in the
case of JMSProducers.

• Any attempt to call MessageProducer.setDeliveryDelay with a nonzero value when
connected to a queue manager earlier than IBM MQ 8.0, results in a JMSException with a
MQRC_FUNCTION_NOT_SUPPORTED message.

• Delivery delay is not supported for clustered destinations that have a DEFBIND value other than
MQBND_BIND_NOT_FIXED. If a MessageProducer has a nonzero delivery delay set and an attempt
is made to send to a destination that does not meet this requirement, then the call results in a
JMSException with an MQRC_OPTIONS_ERROR message.

• Any attempt to set a time to live value that is less than a previously specified nonzero delivery delay, or
vice versa, results in a JMSException with a MQRC_EXPIRY_ERROR message. This checking is done
on calling setTimeToLive or setDeliveryDelay or send methods, depending on the exact set of
operations chosen.

• Use of retained publications and delivery delay is not supported. Attempting
to publish a message with a delivery delay if that message has been
marked as retained by using msg.setIntProperty(JmsConstants.JMS_IBM_RETAIN,
JmsConstants.RETAIN_PUBLICATION) results in a JMSException with a MQRC_OPTIONS_ERROR
message.

• Delivery delay and message grouping is not supported and any attempt to use this combination results
in a JMSException with a MQRC_OPTIONS_ERROR message.

Any failure to send a message with delivery delay results in the client throwing a JMSException with a
suitable error message, for example queue full. In some situations, the error message might apply to the
target destination, or the staging queue, or both.

Note: IBM MQ allows applications that put a message in a unit of work to get the same message again
even though the unit of work has not committed. This technique does not work with delivery delay as the
message is not placed on the staging queue until the unit of work is committed, and as a result will not
have been sent to the target destination.

Authorization
IBM MQ carries out authorization checks on the original target destination when the application sends
a message with a nonzero delivery delay. If the application is not authorized, then the send fails. When
the queue manager detects that a message's delivery delay is complete, it opens the target queue. No
authorization checks are carried out at this point.

SYSTEM.DDELAY.LOCAL.QUEUE
A system queue, SYSTEM.DDELAY.LOCAL.QUEUE, is used to implement delivery delay.

• On Multiplatforms, SYSTEM.DDELAY.LOCAL.QUEUE exists by default. The system queue
must be altered so that its MAXMSGL and MAXDEPTH attributes are sufficient for the expected load.

• On IBM MQ for z/OS, SYSTEM.DDELAY.LOCAL.QUEUE is used as a staging queue for
messages that are sent with delivery delay to both local and shared queues. On z/OS, the queue
must be created and be defined so that its MAXMSGL and MAXDEPTH attributes are sufficient for the
expected load.

312 Developing Applications for IBM MQ

When this queue is created, it must be secured so that as few users as possible have access to it. Access
to the queue must be for maintenance and monitoring purposes only.

When a message is sent by a JMS application with a nonzero delivery delay, it is put to this queue with a
new message ID. The original message ID is placed in the correlation ID of the message. This correlation
ID allows an application to retrieve a message from the staging queue when required, for example if a
large delivery delay was used by mistake.

Considerations for z/OS

If your system is running on z/OS, there are additional considerations to take into account if you want to
use delivery delay.

If delivery delay is to be used, the system queue SYSTEM.DDELAY.LOCAL.QUEUE must be defined. It must
be defined with a storage class that is sufficient for its expected load, and with INDXTYPE(NONE), and
MSGDLVSQ(FIFO) specified. A sample definition of the system queue is provided, commented out, in the
CSQ4INSG JCL.

Shared queues
Delivery delay is supported for sending messages to shared queues. However, there is only a single,
private staging queue that is used regardless of whether the target queue is shared or not. The queue
manager that owns that private queue must be running to send the delayed message to its target shared
queue when the delay completes.

Note: If a non-persistent message is put with a delivery delay to a shared queue, and the queue
manager that owns the staging queue shuts down, the original message is lost. As a result non-persistent
messages sent with delivery delay to a shared queue are more likely to be lost than non-persistent
messages sent without delivery delay to a shared queue.

Target destination resolution
If the message is sent to a queue, resolution is driven twice; once by the JMS application and once by the
queue manager when it takes the message off the staging queue and sends it to the target queue.

Target subscriptions for publications are matched when the JMS application calls the send method.

If a message is sent with persistence or priority according to the queue definition, then the value is set on
the first resolution and not the second.

Expiry interval
Delivery delay preserves the behavior of the expiry property, MQMD.Expiry. For example, if a message
was put from a JMS application with an expiry interval of 20,000 ms and a delivery delay of 5,000 ms, and
got after an elapsed time of 10,000 ms, then the value of the MQMD.expiry field might be approximately
50 tenths of a second. This value indicates that 15 seconds has elapsed from the time the message was
put, to the time when it was got.

If a message expires while on the staging queue and one of the MQRO_EXPIRATION_* options is set, then
the report generated is for the original message as sent by the application, the header used to contain the
delivery delay information is removed.

Stopping and starting the delivery delay processor

On z/OS, the delivery delay processor is integrated into the queue manager MSTR address
space. When the queue manager starts, the delivery delay processor also starts. If the staging queue is
available, it opens the queue and waits for messages to arrive on it to be processed. If the staging queue
has not been defined, or is disabled for gets, or another error occurs, the delivery delay processor shuts
down. If the staging queue is later defined, or altered to be get enabled, the delivery delay processor

Developing applications for IBM MQ 313

restarts. If the delivery delay processor shuts down for any other reason, it can be restarted by altering
the PUT attribute of the staging queue from ENABLED to DISABLED and back to ENABLED again. Should
you need to stop the delivery delay processor for any reason, set the PUT attribute of the staging queue to
DISABLED.

On Multiplatforms, the delay processor starts with the queue manager, and is automatically
restarted in the event of a recoverable failure.

Failure to put to target queue
If a delayed message cannot be put to the target queue once its delay completes, the message is dealt
with as indicated in its report options: it is either discarded or sent to the dead letter queue. If this action
fails, then an attempt is made to put the message later. If the action is successful an exception report is
generated and sent to the specified queue, if the report is requested. If the report message could not be
sent, the report message is sent to the dead letter queue. If sending the report to the dead letter queue
fails and the message is persistent, all changes are discarded and the original message rolled back and
redelivered later. If the message is non-persistent the report message is discarded, but other changes are
committed. If a delayed publication cannot be delivered because a subscriber has unsubscribed, or in the
case of a non-durable subscriber, because it has disconnected, then the message is discarded silently.
Report messages are still generated as described earlier.

If a delayed publication cannot be delivered to a subscriber and is instead put to the dead letter queue,
and the put to the dead letter queue fails then the message is discarded.

To reduce the likelihood of the put to the target queue failing after the delivery delay has completed,
the queue manager performs some basic checks when the JMS client sends a message with a nonzero
delivery delay. These checks include whether the queue is put disabled, if the message is bigger than the
maximum message length allowed, and if the queue is full.

Publish/subscribe
Matching of a publication to available subscriptions occurs when the JMS application sends a
message with a nonzero delivery delay. A message for each matching subscriber is put to the
SYSTEM.DDELAY.LOCAL.QUEUE queue, where it is kept until the delivery delay completes. If one of those
subscribers is a proxy subscription for another queue manager, then the fan-out on that queue manager
occurs after the delivery delay is complete. This might result in subscribers on the other queue manager
receiving publications that were originally published before they subscribed. This is a deviation from the
JMS 2.0 or later specification.

Delivery delay with publish/subscribe is only supported if the target topic is configured with (N)PMSGDLV
= ALLAVAIL. An attempt to use any other values results in a MQRC_PUBLICATION_FAILURE error. If the
delivery delay processor fails while it is putting the message to the target queue, the result is as described
in the "Failure to put to target queue" section.

Report messages
All report options are supported and actioned by the delivery processor, other than the following options
that are ignored, but passed through on the message when it is sent to the target queue:

• MQRO_COA*
• MQRO_COD*
• MQRO_PAN/MQRO_NAN
• MQRO_ACTIVITY

314 Developing Applications for IBM MQ

Cloned and shared subscriptions
There are two methods for giving multiple consumers access to the same subscription. These two
methods are by using cloned subscriptions, or by using shared subscriptions.

Cloned subscriptions
Cloned subscription is an IBM MQ extension. Cloned subscriptions enable multiple consumers in different
Java virtual machines (JVMs) concurrent access to the subscription. This behavior can be used by
setting the CLONESUPP property to Enabled on a ConnectionFactory object. By default CLONESUPP is
Disabled. Cloned subscriptions can be enabled only on durable subscriptions. If CLONESUPP is enabled,
each subsequent connection that is made by using this ConnectionFactory is cloned.

A durable subscription can be considered cloned if one or more consumers are created to receive
messages from that subscription, that is, they were created specifying the same subscription name. This
can be done only if the connection under which the consumers were created has CLONESUPP set to
Enabled on the MQConnectionFactory. When a message is published on the subscription's topic, a copy
of that message is sent to the subscription. The message is available to any of the consumers, but only
one receives it.

Note: Enabling cloned subscriptions extends the JMS specification.

Shared subscriptions
Shared subscriptions, which were introduced by the JMS 2.0 specification, allow messages from a topic
subscription to be shared among multiple consumers. Each message from the subscription is delivered to
only one of the consumers on that subscription. Shared subscriptions are enabled by the relevant call to
the JMS 2.0 or later API.

The APIs can be called in either of the following ways:

• From a Java SE application (or Java EE Client Container).
• From a servlet or the implementation of an MDB.

The JMS 2.0 or later specification does not define any standard way of driving an MDB from a shared
subscription, so IBM MQ provides the sharedSubscription activation specification property for this
purpose. For more information about this property, see “Configuring the resource adapter for inbound
communication” on page 436 and “Examples of how to define the sharedSubscription property” on page
452.

If a shared subscription is enabled, then it cannot be unshared.

Shared subscriptions can be created as either durable or non-durable subscriptions. There is no
requirement to separately create any objects on the queue manager side beyond the normal JMS
configuration. Any objects that are required are created dynamically.

Deciding between shared or cloned subscriptions
When you are deciding whether to use shared or cloned subscriptions, consider the benefits of both.
Where possible, use shared subscriptions as it is specification-defined behavior, rather than an IBM MQ
specific extension.

The following table contains some of the points to consider when you are deciding between shared and
cloned subscriptions:

Table 48. Comparison of considerations for shared subscriptions and cloned subscriptions

Shared Subscriptions Cloned Subscriptions

Shared subscriptions are a standard part of the
JMS 2.0 or later specification.

Cloned subscriptions are an IBM MQ specific
extension.

Developing applications for IBM MQ 315

Table 48. Comparison of considerations for shared subscriptions and cloned subscriptions (continued)

Shared Subscriptions Cloned Subscriptions

Shared subscriptions are created by using explicit
API method calls.

Cloned subscriptions are controlled
administratively at the ConnectionFactory level.

Shared subscriptions can be durable or
nondurable.

Cloned subscriptions can only be durable.

Shared subscriptions are explicitly created on an
individual subscription basis.

Cloned subscriptions are used for any durable
subscription under a connection for which the
function is enabled.

If a subscription is created as shared it cannot
later be changed to unshared, or vice versa.

A subscription can be changed from cloned
to uncloned each time it is reopened if the
CLONESUPP property of the owning connection has
changed.

Related concepts
Subscribers and subscriptions
Subscription durability
Related tasks
Using JMS 2.0 shared subscriptions
Related reference
“Examples of how to define the sharedSubscription property” on page 452
You can define the sharedSubscription property of an activation specification within a WebSphere Liberty
server.xml file. Alternatively, you can define the property within a message driven bean (MDB) using
annotations.
CLONESUPP

SupportMQExtensions property
The JMS 2.0 specification introduced changes to the way certain behaviors work. IBM MQ 8.0 and later
includes the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE to revert
these changed behaviors back to previous implementations.

The com.ibm.mq.jakarta.jms.SupportMQExtensions property (Jakarta Messaging
3.0) is supported by the IBM MQ classes for Jakarta Messaging, which are available in
com.ibm.mq.jakarta.client.jar.

The com.ibm.mq.jms.SupportMQExtensions (JMS 2.0) property is supported
by the IBM MQ classes for JMS, which are available in com.ibm.mq.allclient.jar or
com.ibm.mqjms.jar.

Three areas of functionality are reverted by setting SupportMQExtensions to True:
Message priority

Messages can be assigned a priority of 0 - 9. Before JMS 2.0, messages could also use the value -1,
indicating that a queue's default priority is used. JMS 2.0 and later do not allow a message priority of
-1 to be set. Turning on SupportMQExtensions allows the value of -1 to be used.

Client id
The JMS 2.0 or later specification requires that non-null client IDs are checked for uniqueness
when they make a connection. Turning on SupportMQExtensions means that this requirement is
disregarded, and that a client ID can be reused.

NoLocal
The JMS 2.0 or later specification requires that when this constant is turned on, a consumer cannot
receive messages that are published by the same client ID. Before JMS 2.0, this attribute was set on

316 Developing Applications for IBM MQ

a subscriber to prevent it receiving messages that are published by its own connection. Turning on
SupportMQExtensions reverts this behavior to its previous implementation.

This property can be set as follows:

java -Dcom.ibm.mq.jms.SupportMQExtensions=true

This property can be set either as a standard JVM System property on the java command or contained
within the IBM MQ classes for JMS configuration file.

Related concepts
“The IBM MQ classes for JMS/Jakarta Messaging configuration file” on page 94
An IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging configuration files specify
properties that are used to configure IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging.
Related reference
“Properties used to configure JMS client behavior” on page 101
Use these properties to configure the behavior of the JMS client.

Using shared subscriptions in JMS applications
With shared subscriptions, a single subscription is shared among multiple consumers, with only one of the
consumers receiving a publication at any point in time.

Shared subscriptions are available from JMS 2.0 onwards. When you are developing a JMS application for
IBM MQ 8.0 or later, you might therefore need to consider the impact of this functionality on your queue
manager.

The idea behind shared subscriptions is to share the load among multiple consumers. A durable
subscription can also be shared among multiple consumers.

For example, assume there is a :

• Subscription SUB, subscribing to a topic FIFA2014/UPDATES to receive football match updates, being
shared by three consumers C1, C2, and C3

• Producer P1 publishing on the FIFA2014/UPDATES topic

When a publication is made on FIFA2014/UPDATES, the publication will be received by only one of the
three consumers (C1, or C2, or C3) but not all.

The following sample demonstrates the usage of shared subscriptions, and also demonstrates the usage
of the additional API in JMS 2.0, Message.receiveBody(), to retrieve only the message body.

The sample creates three subscriber threads, which create a shared subscription to the FIFA2014/
UPDATES topic, and one publisher thread.

package mqv91Samples;

import jakarta.jms.JMSException;

import com.ibm.msg.client.jms.JmsConnectionFactory;
import com.ibm.msg.client.jms.JmsFactoryFactory;
import com.ibm.msg.client.wmq.WMQConstants;

import jakarta.jms.JMSContext;
import jakarta.jms.Topic;
import jakarta.jms.Queue;
import jakarta.jms.JMSConsumer;
import jakarta.jms.Message;
import jakarta.jms.JMSProducer;

/*
* Implements both Subscriber and Publisher
*/
class SharedNonDurableSubscriberAndPublisher implements Runnable {
 private Thread t;
 private String threadName;

 SharedNonDurableSubscriberAndPublisher(String name){

Developing applications for IBM MQ 317

 threadName = name;
 System.out.println("Creating Thread:" + threadName);
 }

 /*
 * Demonstrates shared non-durable subscription in JMS 2.0 and later
 */
 private void sharedNonDurableSubscriptionDemo(){
 JmsConnectionFactory cf = null;
 JMSContext msgContext = null;

 try {
 // Create Factory for WMQ JMS provider
 JmsFactoryFactory ff = JmsFactoryFactory.getInstance(WMQConstants.WMQ_PROVIDER);
 // Create connection factory
 cf = ff.createConnectionFactory();
 // Set MQ properties
 cf.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "QM3");
 cf.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE, WMQConstants.WMQ_CM_BINDINGS);
 // Create message context
 msgContext = cf.createContext();

 // Create a topic destination
 Topic fifaScores = msgContext.createTopic("/FIFA2014/UPDATES");

 // Create a consumer. Subscription name specified, required for sharing of subscription.
 JMSConsumer msgCons = msgContext.createSharedConsumer(fifaScores, "FIFA2014SUBID");

 // Loop around to receive publications
 while(true){

 String msgBody=null;

 // Use JMS 2.0 and later receiveBody method as we are interested in message body only.
 msgBody = msgCons.receiveBody(String.class);

 if(msgBody != null){
 System.out.println(threadName + " : " + msgBody);
 }
 }
 }catch(JMSException jmsEx){
 System.out.println(jmsEx);
 }
 }

package mqv91Samples;

import javax.jms.JMSException;

import com.ibm.msg.client.jms.JmsConnectionFactory;
import com.ibm.msg.client.jms.JmsFactoryFactory;
import com.ibm.msg.client.wmq.WMQConstants;

import javax.jms.JMSContext;
import javax.jms.Topic;
import javax.jms.Queue;
import javax.jms.JMSConsumer;
import javax.jms.Message;
import javax.jms.JMSProducer;

/*
* Implements both Subscriber and Publisher
*/
class SharedNonDurableSubscriberAndPublisher implements Runnable {
 private Thread t;
 private String threadName;

 SharedNonDurableSubscriberAndPublisher(String name){
 threadName = name;
 System.out.println("Creating Thread:" + threadName);
 }

 /*
 * Demonstrates shared non-durable subscription in JMS 2.0 and later
 */
 private void sharedNonDurableSubscriptionDemo(){
 JmsConnectionFactory cf = null;
 JMSContext msgContext = null;

318 Developing Applications for IBM MQ

 try {
 // Create Factory for WMQ JMS provider
 JmsFactoryFactory ff = JmsFactoryFactory.getInstance(WMQConstants.WMQ_PROVIDER);
 // Create connection factory
 cf = ff.createConnectionFactory();
 // Set MQ properties
 cf.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "QM3");
 cf.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE, WMQConstants.WMQ_CM_BINDINGS);
 // Create message context
 msgContext = cf.createContext();

 // Create a topic destination
 Topic fifaScores = msgContext.createTopic("/FIFA2014/UPDATES");

 // Create a consumer. Subscription name specified, required for sharing of subscription.
 JMSConsumer msgCons = msgContext.createSharedConsumer(fifaScores, "FIFA2014SUBID");

 // Loop around to receive publications
 while(true){

 String msgBody=null;

 // Use JMS 2.0 and later receiveBody method as we are interested in message body only.
 msgBody = msgCons.receiveBody(String.class);

 if(msgBody != null){
 System.out.println(threadName + " : " + msgBody);
 }
 }
 }catch(JMSException jmsEx){
 System.out.println(jmsEx);
 }
 }

 /*
 * Publisher publishes match updates like current attendance in the stadium, goal score and ball
possession by teams.
 */
 private void matchUpdatePublisher(){
 JmsConnectionFactory cf = null;
 JMSContext msgContext = null;
 int nederlandsGoals = 0;
 int chileGoals = 0;
 int stadiumAttendence = 23231;
 int switchIndex = 0;
 String msgBody = "";
 int nederlandsHolding = 60;
 int chileHolding = 40;

 try {
 // Create Factory for WMQ JMS provider
 JmsFactoryFactory ff = JmsFactoryFactory.getInstance(WMQConstants.WMQ_PROVIDER);

 // Create connection factory
 cf = ff.createConnectionFactory();
 // Set MQ properties
 cf.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "QM3");
 cf.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE, WMQConstants.WMQ_CM_BINDINGS);

 // Create message context
 msgContext = cf.createContext();

 // Create a topic destination
 Topic fifaScores = msgContext.createTopic("/FIFA2014/UPDATES");

 // Create publisher to publish updates from stadium
 JMSProducer msgProducer = msgContext.createProducer();

 while(true){
 // Send match updates
 switch(switchIndex){
 // Attendance
 case 0:
 msgBody ="Stadium Attendence " + stadiumAttendence;
 stadiumAttendence += 314;
 break;

 // Goals
 case 1:
 msgBody ="SCORE: The Netherlands: " + nederlandsGoals + " - Chile:" + chileGoals;
 break;

Developing applications for IBM MQ 319

 // Ball possession percentage
 case 2:
 msgBody ="Ball possession: The Netherlands: " + nederlandsHolding + "% - Chile:
" + chileHolding + "%";
 if((nederlandsHolding > 60) && (nederlandsHolding < 70)){
 nederlandsHolding -= 2;
 chileHolding += 2;
 }else{
 nederlandsHolding += 2;
 chileHolding -= 2;
 }
 break;
 }

 // Publish and wait for two seconds to publish next update
 msgProducer.send (fifaScores, msgBody);
 try{
 Thread.sleep(2000);
 }catch(InterruptedException iex){

 }

 // Increment and reset the index if greater than 2
 switchIndex++;
 if(switchIndex > 2)
 switchIndex = 0;
 }
 }catch(JMSException jmsEx){
 System.out.println(jmsEx);
 }
 }

 /*
 * (non-Javadoc)
 * @see java.lang.Runnable#run()
 */
 public void run() {
 // If this is a publisher thread
 if(threadName == "PUBLISHER"){
 matchUpdatePublisher();
 }else{
 // Create subscription and start receiving publications
 sharedNonDurableSubscriptionDemo();
 }
 }

 // Start thread
 public void start (){
 System.out.println("Starting " + threadName);
 if (t == null)
 {
 t = new Thread (this, threadName);
 t.start ();
 }
 }
}

/*
* Demonstrate JMS 2.0 and later simplified API using IBM MQ 91 JMS Implementation
*/
public class Mqv91jms2Sample {

 public static void main(String[] args) {
 // TODO Auto-generated method stub
 // Create first subscriber and start
 SharedNonDurableSubscriberAndPublisher subOne = new
SharedNonDurableSubscriberAndPublisher("SUB1");
 subOne.start();

 // Create second subscriber and start
 SharedNonDurableSubscriberAndPublisher subTwo = new
SharedNonDurableSubscriberAndPublisher("SUB2");
 subTwo.start();

 // Create third subscriber and start
 SharedNonDurableSubscriberAndPublisher subThree = new
SharedNonDurableSubscriberAndPublisher("SUB3");
 subThree.start();

320 Developing Applications for IBM MQ

 // Create publisher and start
 SharedNonDurableSubscriberAndPublisher publisher = new
SharedNonDurableSubscriberAndPublisher("PUBLISHER");
 publisher.start();
 }
}

Related concepts
IBM MQ Java language interfaces

Configuring your modular application to use IBM MQ classes for
JMS or IBM MQ classes for Jakarta Messaging

You can use IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging in
a modular manner by requiring the appropriate module within your application, and including the
appropriate directory in the module-path.

The modular packaging
The unified JAR files for IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging provide
automatic module names, which replace the default names that are derived from the JAR file names.

• IBM MQ classes for JMS (com.ibm.mq.allclient.jar) are provided with a module name of
com.ibm.mq.javax.

• IBM MQ classes for Jakarta Messaging (com.ibm.mq.jakarta.client.jar) are provided with a
module name of com.ibm.mq.jakarta.

The default MQ_HOME/java/lib directory is unsuitable for modular use because modules cannot
contain the same package, and the default directory contains the same packages in multiple JARs.
Therefore, new directories are available for that contain only the JAR files that are needed, with no
duplication of packages between the JARs. These directories are suitable for inclusion on a module-
path.

Note: If you have applications that use the available JAR files in a modular context by relying on the
default module names, you must update your applications to require the new module names. The default
module names are derived from the JAR file names.

Configuring your modular application to use IBM MQ classes for JMS
You can configure your modular application to use IBM MQ classes for JMS
(com.ibm.mq.allclient.jar) by completing the following steps:

• Configure the application to require the com.ibm.mq.javax module.
• Configure the application to include the MQ_HOME/java/lib/modules/javax directory in the

module-path.

Configuring your modular application to use IBM MQ classes for Jakarta Messaging
You can configure your modular application to use IBM MQ classes for Jakarta Messaging
(com.ibm.mq.jakarta.client.jar) by completing the following steps:

• Configure the application to require the com.ibm.mq.jakarta module.
• Configure the application to include the MQ_HOME/java/lib/modules/jakarta directory in the

module-path.

Configuring your modular application to use IBM MQ classes for Java
To use IBM MQ classes for Java from a modular application, you can use either the configuration for IBM
MQ classes for JMS or the configuration for IBM MQ classes for Jakarta Messaging, as both client JAR files

Developing applications for IBM MQ 321

support IBM MQ classes for Java. However, your application must use only one of these configurations,
not both.

IBM MQ classes for JMS Application Server Facilities
This topic describes how IBM MQ classes for JMS implements the ConnectionConsumer class and
advanced functionality in the Session class. It also summarizes the function of a server session pool.

Important: This information is for reference only. An application must not be written to use this interface:
it is used within the IBM MQ resource adapter to connect to Java EE servers. For practical connection
information, see “Using the IBM MQ resource adapter” on page 420.

IBM MQ classes for JMS supports the Application Server Facilities (ASF) that are specified in the Java
Message Service Specification (see Oracle Technology Network for Java Developers). This specification
identifies three roles within this programming model:

• The JMS provider supplies ConnectionConsumer and advanced Session functionality.
• The application server supplies ServerSessionPool and ServerSession functionality.
• The client application uses the functionality that the JMS provider and application server supply.

The information in this topic does not apply if an application uses a real-time connection to a broker.

The JMS ConnectionConsumer
The ConnectionConsumer interface provides a high-performance method to deliver messages
concurrently to a pool of threads.

The JMS specification enables an application server to integrate closely with a JMS implementation by
using the ConnectionConsumer interface. This feature provides concurrent processing of messages.
Typically, an application server creates a pool of threads, and the JMS implementation makes messages
available to these threads. A JMS-aware application server (such as WebSphere Application Server) can
use this feature to provide high-level messaging functionality, such as message driven beans.

Normal applications do not use the ConnectionConsumer, but expert JMS clients might use it. For such
clients, the ConnectionConsumer provides a high-performance method to deliver messages concurrently
to a pool of threads. When a message arrives on a queue or a topic, JMS selects a thread from the
pool and delivers a batch of messages to it. To do this, JMS runs an associated MessageListener's
onMessage() method.

You can achieve the same effect by constructing multiple Session and MessageConsumer objects, each
with a registered MessageListener. However, the ConnectionConsumer provides better performance, less
use of resources, and greater flexibility. In particular, fewer Session objects are required.

Planning an application with ASF
This section tells you how to plan an application including:

• “General principles for point-to-point messaging using ASF” on page 322
• “General principles for publish/subscribe messaging using ASF” on page 323
• “Removing messages from the queue in ASF” on page 324
• Handling poison messages in ASF. See “Handling poison messages in IBM MQ classes for JMS” on page

225.

General principles for point-to-point messaging using ASF
Use this topic for general information about point-to-point messaging using ASF.

When an application creates a ConnectionConsumer from a QueueConnection object, it specifies a
JMS queue object and a selector string. The ConnectionConsumer then begins to provide messages
to sessions in the associated ServerSessionPool. Messages arrive on the queue, and if they match the
selector, they are delivered to sessions in the associated ServerSessionPool.

In IBM MQ terms, the queue object refers to either a QLOCAL or a QALIAS on the local queue manager.
If it is a QALIAS, that QALIAS must refer to a QLOCAL. The fully resolved IBM MQ QLOCAL is known

322 Developing Applications for IBM MQ

https://www.oracle.com/technetwork/java/index.html

as the underlying QLOCAL. A ConnectionConsumer is said to be active if it is not closed and its parent
QueueConnection is started.

It is possible for multiple ConnectionConsumers, each with different selectors, to run against the same
underlying QLOCAL. To maintain performance, unwanted messages must not accumulate on the queue.
Unwanted messages are those for which no active ConnectionConsumer has a matching selector. You
can set the QueueConnectionFactory so that these unwanted messages are removed from the queue (for
details, see “Removing messages from the queue in ASF” on page 324). You can set this behavior in one
of two ways:

• Use the JMS administration tool to set the QueueConnectionFactory to MRET(NO).
• In your program, use:

MQQueueConnectionFactory.setMessageRetention(WMQConstants.WMQ_MRET_NO)

If you do not change this setting, the default is to retain such unwanted messages on the queue.

When you set up the IBM MQ queue manager, consider the following points:

• The underlying QLOCAL must be enabled for shared input. To do this, use the following MQSC
command:

ALTER QLOCAL(your.qlocal.name) SHARE GET(ENABLED)

• Your queue manager must have an enabled dead-letter queue. If a ConnectionConsumer experiences
a problem when it puts a message on the dead-letter queue, message delivery from the underlying
QLOCAL stops. To define a dead-letter queue, use:

ALTER QMGR DEADQ(your.dead.letter.queue.name)

• The user that runs the ConnectionConsumer must have authority to perform MQOPEN with
MQOO_SAVE_ALL_CONTEXT and MQOO_PASS_ALL_CONTEXT. For details, see the IBM MQ
documentation for your specific platform.

• If unwanted messages are left on the queue, they degrade the system performance. Therefore, plan
your message selectors so that between them, the ConnectionConsumers will remove all messages
from the queue.

For details about MQSC commands, see MQSC commands.

General principles for publish/subscribe messaging using ASF
ConnectionConsumers receive messages for a specified Topic. A ConnectionConsumer can be durable or
non-durable. You must specify which queue or queues the ConnectionConsumer uses.

When an application creates a ConnectionConsumer from a TopicConnection object, it specifies a Topic
object and a selector string. The ConnectionConsumer then begins to receive messages that match the
selector on that Topic , including any retained publications for the topic subscribed to.

Alternatively, an application can create a durable ConnectionConsumer that is associated with a specific
name. This ConnectionConsumer receives messages that have been published on the Topic since the
durable ConnectionConsumer was last active. It receives all such messages that match the selector on
the Topic. However, if the ConnectionConsumer is using read-ahead, it can lose nonpersistent messages
that are in the client buffer when it closes.

If IBM MQ classes for JMS is in IBM MQ messaging provider migration mode, a separate queue
is used for non-durable ConnectionConsumer subscriptions. The CCSUB configurable option on the
TopicConnectionFactory specifies the queue to use. Normally, the CCSUB specifies a single queue for
use by all ConnectionConsumers that use the same TopicConnectionFactory. However, it is possible to
make each ConnectionConsumer generate a temporary queue by specifying a queue name prefix followed
by an asterisk (*).

Developing applications for IBM MQ 323

If IBM MQ classes for JMS is in IBM MQ messaging provider migration mode, the CCDSUB property of
the Topic specifies the queue to use for durable subscriptions. Again, this can be a queue that already
exists or a queue name prefix followed by an asterisk (*). If you specify a queue that already exists, all
durable ConnectionConsumers that subscribe to the Topic use this queue. If you specify a queue name
prefix followed by an asterisk (*), a queue is generated the first time that a durable ConnectionConsumer
is created with a particular name. This queue is reused later when a durable ConnectionConsumer is
created with the same name.

When you set up the IBM MQ queue manager, consider the following points:

• Your queue manager must have an enabled dead-letter queue. If a ConnectionConsumer experiences
a problem when it puts a message on the dead-letter queue, message delivery from the underlying
QLOCAL stops. To define a dead-letter queue, use:

ALTER QMGR DEADQ(your.dead.letter.queue.name)

• The user that runs the ConnectionConsumer must have authority to perform MQOPEN with
MQOO_SAVE_ALL_CONTEXT and MQOO_PASS_ALL_CONTEXT. For details, see the IBM MQ
documentation for your platform.

• You can optimize performance for an individual ConnectionConsumer by creating a separate, dedicated,
queue for it. This is at the cost of extra resource usage.

Removing messages from the queue in ASF
When an application uses ConnectionConsumers, JMS might need to remove messages from the queue in
a number of situations.

These situations are as follows:
Badly formatted message

A message might arrive that JMS cannot parse.
Poison message

A message might reach the backout threshold, but the ConnectionConsumer fails to requeue it on the
backout queue.

No interested ConnectionConsumer
For point-to-point messaging, when the QueueConnectionFactory is set so that it does not retain
unwanted messages, a message arrives that is unwanted by any of the ConnectionConsumers.

In these situations, the ConnectionConsumer attempts to remove the message from the queue. The
disposition options in the report field of the message's MQMD set the exact behavior. These options are:
MQRO_DEAD_LETTER_Q

The message is requeued to the queue manager's dead-letter queue. This is the default.
MQRO_DISCARD_MSG

The message is discarded.

The ConnectionConsumer also generates a report message, and this also depends on the report field of
the message's MQMD. This message is sent to the message's ReplyToQ on the ReplyToQmgr. If there is
an error while the report message is being sent, the message is sent to the dead-letter queue instead.
The exception report options in the report field of the message's MQMD set details of the report message.
These options are:
MQRO_EXCEPTION

A report message is generated that contains the MQMD of the original message. It does not contain
any message body data.

MQRO_EXCEPTION_WITH_DATA
A report message is generated that contains the MQMD, any MQ headers, and 100 bytes of body data.

MQRO_EXCEPTION_WITH_FULL_DATA
A report message is generated that contains all data from the original message.

324 Developing Applications for IBM MQ

default
No report message is generated.

When report messages are generated, the following options are honored:

• MQRO_NEW_MSG_ID
• MQRO_PASS_MSG_ID
• MQRO_COPY_MSG_ID_TO_CORREL_ID
• MQRO_PASS_CORREL_ID

If a poison message cannot be requeued, perhaps because the dead-letter queue is full or authorization
is wrongly specified, what happens depends on the persistence of the message. If the message is
nonpersistent, the message is discarded and no report message is generated. If the message is
persistent, delivery of messages to all connection consumers listening on that destination stops. Such
connection consumers must be closed and the problem resolved before they can be re-created and
message delivery restarted.

It is important to define a dead-letter queue, and to check it regularly to ensure that no problems occur.
Particularly, ensure that the dead-letter queue does not reach its maximum depth, and that its maximum
message size is large enough for all messages.

When a message is requeued to the dead-letter queue, it is preceded by an IBM MQ dead-letter header
(MQDLH). See MQDLH - Dead-letter header for details about the format of the MQDLH. You can identify
messages that a ConnectionConsumer has placed on the dead-letter queue, or report messages that a
ConnectionConsumer has generated, by the following fields:

• PutApplType is MQAT_JAVA (0x1C)
• PutApplName is " MQ JMS ConnectionConsumer "

These fields are in the MQDLH of messages on the dead-letter queue, and the MQMD of report messages.
The feedback field of the MQMD, and the Reason field of the MQDLH, contain a code describing the error.
For details about these codes, see “Reason and feedback codes in ASF” on page 326. Other fields are as
described in MQDLH - Dead-letter header.

Handling poison messages in ASF
Within the Application Server Facilities, poison message handling is handled slightly differently to
elsewhere in IBM MQ classes for JMS.

For information about poison message handling in IBM MQ classes for JMS, see “Handling poison
messages in IBM MQ classes for JMS” on page 225.

When you use Application Server Facilities (ASF), the ConnectionConsumer, rather than the
MessageConsumer, processes poison messages. The ConnectionConsumer requeues messages according
to the BackoutThreshold and BackoutRequeueQName properties of the queue.

When an application uses ConnectionConsumers, the circumstances in which a message is backed out
depend on the session that the application server provides:

• When the session is non-transacted, with AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE, a
message is backed out only after a system error, or if the application terminates unexpectedly.

• When the session is non-transacted with CLIENT_ACKNOWLEDGE, unacknowledged messages can be
backed out by the application server calling Session.recover().

Typically, the client implementation of MessageListener or the application server calls
Message.acknowledge(). Message.acknowledge() acknowledges all messages delivered on the session
so far.

• When the session is transacted, unacknowledged messages can be backed out by the application server
calling Session.rollback().

• If the application server supplies an XASession, messages are committed or backed out depending on a
distributed transaction. The application server takes responsibility for completing the transaction.

Developing applications for IBM MQ 325

Related concepts
“Handling poison messages in IBM MQ classes for JMS” on page 225
A poison message is one which cannot be processed by a receiving application. If a poison message is
delivered to an application and rolled back a specified number of times, the IBM MQ classes for JMS can
move it to a backout queue.

Error handling
This section covers various aspects of error handling, including “Recovering from error conditions in the
ASF” on page 326 and “Reason and feedback codes in ASF” on page 326.

Recovering from error conditions in the ASF
If a ConnectionConsumer experiences a serious error, message delivery to all ConnectionConsumers with
an interest in the same QLOCAL stops. When this occurs, any ExceptionListener that is registered with the
affected Connection is notified. There are two ways in which an application can recover from these error
conditions.

Typically, a serious error of this nature occurs if the ConnectionConsumer cannot requeue a message to
the dead-letter queue, or it experiences an error when reading messages from the QLOCAL.

Because any ExceptionListener that is registered with the affected Connection is notified, you can use
them to identify the cause of the problem. In some cases, the system administrator must intervene to
resolve the problem.

Use one of the following techniques to recover from these error conditions:

• Call close() on all affected ConnectionConsumers. The application can create new
ConnectionConsumers only after all affected ConnectionConsumers are closed and any system
problems are resolved.

• Call stop() on all affected Connections. After all Connections are stopped and any system problems
are resolved, the application can start() its Connections successfully.

Reason and feedback codes in ASF
Use reason and feedback codes to determine the cause of an error. Common reason codes generated by
the ConnectionConsumer are given here.

To determine the cause of an error, use the following information:

• The feedback code in any report messages
• The reason code in the MQDLH of any messages in the dead-letter queue

ConnectionConsumers generate the following reason codes.

MQRC_BACKOUT_THRESHOLD_REACHED (0x93A; 2362)
Cause

The message has reached the Backout Threshold defined on the QLOCAL, but no Backout Queue
is defined.

On platforms where you cannot define the Backout Queue, the message has reached the JMS-
defined backout threshold of 20.

Action
If this is not wanted, define the Backout Queue for the relevant QLOCAL. Also look for the cause of
the multiple backouts.

MQRC_MSG_NOT_MATCHED (0x93B; 2363)
Cause

In point-to-point messaging, there is a message that does not match any of the selectors for the
ConnectionConsumers monitoring the queue. To maintain performance, the message is requeued
to the dead-letter queue.

326 Developing Applications for IBM MQ

Action
To avoid this situation, ensure that ConnectionConsumers using the queue provide a set of
selectors that deal with all messages, or set the QueueConnectionFactory to retain messages.

Alternatively, investigate the source of the message.

MQRC_JMS_FORMAT_ERROR (0x93C; 2364)
Cause

JMS cannot interpret the message on the queue.
Action

Investigate the origin of the message. JMS normally delivers messages of an unexpected format
as a BytesMessage or TextMessage. Occasionally, this fails if the message is very badly formatted.

Other codes that appear in these fields are caused by a failed attempt to requeue the message to a
Backout Queue. In this situation, the code describes the reason that the requeue failed. To diagnose the
cause of these errors, refer to API>API completion and reason codes.

If the report message cannot be put on the ReplyToQ, it is put on the dead-letter queue. In this situation,
the feedback field of the MQMD is completed as described in this topic. The reason field in the MQDLH
explains why the report message could not be placed on the ReplyToQ.

The function of a server session pool in AFS
This topic summarizes the function of a server session pool.

Figure 45 on page 328 summarizes the principles of ServerSessionPool and ServerSession functionality.

Developing applications for IBM MQ 327

Figure 45. ServerSessionPool and ServerSession functionality

1. The ConnectionConsumers get message references from the queue.
2. Each ConnectionConsumer selects specific message references.
3. The ConnectionConsumer buffer holds the selected message references.
4. The ConnectionConsumer requests one or more ServerSessions from the ServerSessionPool.

328 Developing Applications for IBM MQ

5. ServerSessions are allocated from the ServerSessionPool.
6. The ConnectionConsumer assigns message references to the ServerSessions and starts the

ServerSession threads running.
7. Each ServerSession retrieves its referenced messages from the queue. It passes them to the
onMessage method from the MessageListener that is associated with the JMS Session.

8. After it completes its processing, the ServerSession is returned to the pool.

An application server normally supplies ServerSessionPool and ServerSession functionality.

Using IBM MQ classes for JMS in a CICS Liberty JVM server
Java programs running in a CICS Liberty JVM server can use the IBM MQ classes for JMS to access IBM
MQ.

You must be using an IBM MQ 9.1.0 or later version of the IBM MQ resource adapter. You can obtain the
resource adapter from Fix Central (see “Installing the resource adapter in Liberty” on page 429).

There are two flavors of Liberty Profile JVMs available in CICS 5.3 and later, the types of connection
possible to IBM MQ are restricted as follows:
CICS Liberty Standard

• The IBM MQ resource adapter can connect to any in-service version of IBM MQ in CLIENT mode
• The IBM MQ resource adapter can connect to any in-service version of IBM MQ for z/OS in

BINDINGS mode when there is no CICS connection (active CICS MQCONN resource definition) to
the same queue manager from the same CICS region.

CICS Liberty Integrated

• The IBM MQ resource adapter can connect to any in-service version of IBM MQ in CLIENT mode.
• BINDINGS mode connection is not supported.

For details on setting up and configuring your system, see Using IBM MQ classes for JMS in a Liberty JVM
server in the CICS documentation.

Using IBM MQ classes for JMS/ Jakarta Messaging in IMS
Standards-based messaging support within an IMS environment is provided through the use of IBM MQ
classes for JMS or IBM MQ classes for Jakarta Messaging.

Check the system requirements for the IMS system that your enterprise uses. See IMS 15.2 for further
information.

This set of topics describes how to set up the IBM MQ classes for JMS in an IMS environment, and the API
restrictions that apply when using the classic (JMS 1.1) and simplified (JMS 2.0) interfaces. See “JMS API
restrictions” on page 334 for a list of the API-specific information.

Note: Similar restrictions apply to the legacy (JMS 1.0.2) domain-specific interfaces, but they are not
specifically described here.

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 and later continue to support JMS 2.0 for existing applications. It is not supported to use
both the Jakarta Messaging 3.0 API and the JMS 2.0 API in the same application. For more information,
see Using IBM MQ classes for JMS/Jakarta Messaging.

Supported IMS dependent regions
The following dependent region types are supported:

• MPR
• BMP
• IFP

Developing applications for IBM MQ 329

• JMP 31 and 64 bit Java virtual machines (JVMs)
• JBP 31 and 64 bit JVMs

Unless specifically mentioned in the following topics, IBM MQ classes for JMS and IBM MQ classes for
Jakarta Messaging behave the same in all region types.

Supported Java Virtual Machines
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging require IBM Runtime Environment,
Java Technology Edition 8. IBM Semeru Runtime Certified Edition for z/OS, Version 11 is not supported.

Other restrictions
The following restrictions apply when using IBM MQ classes for JMS in an IMS environment:

• Client mode connections are not supported.
• Connections are only supported to IBM MQ 8.0 queue managers using the IBM MQ messaging provider
Normal, mode.

The PROVIDERVERSION attribute on the connection factory must be either unspecified, or a value
greater than, or equal to, seven.

• Use of any of the XA connection factories, for example com.ibm.mq.jms.MQXAConnectionFactory,
is not supported.

Related tasks
Defining IBM MQ to IMS

Setting up the IMS adapter for use with IBM MQ classes for JMS/Jakarta Messaging
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging make use of the same IBM MQ-IMS
adapter as used by other programming languages. This adapter uses the IMS External Subsystem Attach
Facility (ESAF).

Before you begin
Before completing the following procedure, you must configure the IMS adapter for the relevant queue
managers, and IMS control and dependent regions, as described in Setting up the IMS adapter.

Attention: You do not need to perform the step that describes building a dynamic stub, unless you
need the dynamic stub for other purposes.

After you have configured the IMS adapter, carry out the following procedure.

Procedure
1. Update the LIBPATH variable in the member of your IMS PROCLIB that is referenced by the ENVIRON

parameter in your dependent region JCL (for example, DFSJVMEV) so that it includes the IBM MQ
classes for JMS native libraries.
That is, the zFS directory that contains libmqjims.so. For example, DFSJVMEV might look like the
following, where the last line is the directory containing the IBM MQ classes for JMS or IBM MQ
classes for Jakarta Messaging native libraries:

LIBPATH=>
/java/latest/bin/j9vm:>
/java/latest/bin:>
/ims/latest/dbdc/imsjava/classic/lib:>
/ims/latest/dbdc/imsjava/lib:>
/mqm/latest/java/lib

2. Add the IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging to the class path of the
JVM, used by your IMS dependent region, by updating the java.class.path option.

330 Developing Applications for IBM MQ

Do this by following the instructions in DFSJVMMS member of the IMS PROCLIB data set.

For example, you can use the following, where the line in bold indicates the update:

-Djava.class.path=/ims/latest/dbdc/imsjava/imsutm.jar:/ims/latest/dbdc/imsjava/imsudb.jar:
/mqm/latest/java/lib/com.ibm.mq.jakarta.client.jar

-Djava.class.path=/ims/latest/dbdc/imsjava/imsutm.jar:/ims/latest/dbdc/imsjava/imsudb.jar:
/mqm/latest/java/lib/com.ibm.mq.allclient.jar

Note: While there are many different jar files available in the directory containing the IBM MQ classes
for JMS or IBM MQ classes for Jakarta Messaging, you need only com.ibm.mq.allclient.jar (JMS
2.0) or com.ibm.mq.jakarta.client.jar (Jakarta Messaging 3.0).

3. Stop and restart any IMS dependent regions that will make use of the IBM MQ classes for JMS or IBM
MQ classes for Jakarta Messaging.

What to do next
Create and configure connection factories and destinations.

There are three possible approaches for instantiating the IBM MQ implementations of connection
factories and destinations. See “Creating and configuring connection factories and destinations” on page
197 for details.

Note that these three approaches are all valid in an IMS environment.

Related concepts
Setting up the IMS adapter
Defining IBM MQ to IMS

Transactional behavior
Messages sent and received by the IBM MQ classes for JMS in an IMS environment are always associated
with the IMS unit of work (UOW) that is active on the current task.

That UOW can only be completed by calling the commit or rollback methods on an instance of the
com.ibm.ims.dli.tm.Transaction object, or by the IMS task ending normally in which case the
UOW is implicitly committed. If the IMS task ends abnormally, the UOW is rolled back.

As a result of this, the values of the transacted and acknowledgeMode arguments are ignored when
calling any of the Connection.createSession, or ConnectionFactory.createContext methods.
Additionally the following methods are not supported. Calling any of the following methods results in an
IllegalStateException in the session case:

• javax.jms.Session.commit()
• javax.jms.Session.recover()
• javax.jms.Session.rollback()

and an IllegalStateRuntimeSession in the JMS context case:

• javax.jms.JMSContext.commit()
• javax.jms.JMSContext.recover()
• javax.jms.JMSContext.rollback()

There is one exception to this behavior. If a session or JMS context is created using one of the following
mechanisms:

• Connection.createSession(false, Session.AUTO_ACKNOWLEDGE)
• Connection.createSession(Session.AUTO_ACKNOWLEDGE)
• ConnectionFactory.createContext(JMSContext.AUTO_ACKNOWLEDGE)

Developing applications for IBM MQ 331

then the behavior of that session, or JMS context, is as follows:

• Any messages sent, are sent outside of the IMS UOW. That is, they will be available on the target
destination immediately, or when the provided delivery delay interval has completed.

• Any non-persistent messages will be received outside of the IMS UOW, unless the SYNCPOINTALLGETS
property has been specified on the connection factory that created the session or JMS context.

• Persistent messages will always be received inside the IMS UOW.

This might be useful if, for example, you want to write an audit message to a queue even if the UOW rolls
back.

Implications of IMS syncpoints
The IBM MQ classes for JMS build upon the existing IBM MQ adapter support which makes use of ESAF.
This means that the documented behavior applies, including all open handles being closed by the IMS
adapter when a syncpoint occurs.

See “Syncpoints in IMS applications” on page 67 for more information.

To illustrate this point, consider the following code running in a JMP environment. The second call
to mp.send() results in a JMSException as the messageQueue.getUnique(inputMessage) code
results in all open IBM MQ connection and object handles being closed.

Similar behavior is observed if the getUnique() call was replaced with Transaction.commit(), but
not if Transaction.rollback() was used.

//Create a connection to queue manager MQ21.
MQConnectionFactory cf = new MQConnectionFactory();
cf.setQueueManager("MQ21");

Connection c = cf.createConnection();
Session s = c.createSession();

//Send a message to MQ queue Q1.
Queue q = new MQQueue("Q1");
MessageProducer mp = s.createProducer(q);
TextMessage m = s.createTextMessage("Hello world!");
mp.send(m);

//Get a message from an IMS message queue. This results in a GU call
//which results in all MQ handles being closed.
Application a = ApplicationFactory.createApplication();
MessageQueue messageQueue = a.getMessageQueue();
IOMessage inputMessage = a.getIOMessage(MESSAGE_CLASS_NAME);
messageQueue.getUnique(inputMessage);

//This attempt to send another message will result in a JMSException containing a
//MQRC_HCONN_ERROR as the connection/handle has been closed.
mp.send(m);

The correct code to use in this scenario is as follows. In this case the connection to IBM MQ is closed
prior to calling getUnique(). The connection and session are then re-created in order to send another
message.

//Create a connection to queue manager MQ21.
MQConnectionFactory cf = new MQConnectionFactory();
cf.setQueueManager("MQ21");

Connection c = cf.createConnection();
Session s = c.createSession();

//Send a message to MQ queue Q1.
Queue q = new MQQueue("Q1");
MessageProducer mp = s.createProducer(q);
TextMessage m = s.createTextMessage("Hello world!");
mp.send(m);

//Close the connection to MQ, which closes all MQ object handles.
//The send of the message will be committed by the subsequent GU call.
c.close();

332 Developing Applications for IBM MQ

c = null;
s = null;
mp = null;

//Get a message from an IMS message queue. This results in a GU call.
Application a = ApplicationFactory.createApplication();
MessageQueue messageQueue = a.getMessageQueue();
IOMessage inputMessage = a.getIOMessage(MESSAGE_CLASS_NAME);
messageQueue.getUnique(inputMessage);

//Re-create the connection to MQ and send another message;
c = cf.createConnection();
s = c.createSession();
mp = s.createProducer(q);
m = s.createTextMessage("Hello world 2!");
mp.send(m);

Considerations when using the IMS adapter
You need to be aware of the following restrictions. You can have only one connection handle for each
queue manager. There are implications in the interaction with IBM MQ when using both JMS and native
code. There are limitations to connection authentication and authorization.

One connection handle for each queue manager
Only one connection handle at a time to a specific queue manager is allowed in IMS dependent regions.
Any subsequent attempts to connect to the same queue manager reuse the existing handle.

While this behavior should not cause any problems in an application that only uses the IBM MQ classes
for JMS, this behavior can cause problems in applications that interact with IBM MQ, when using both the
IBM MQ classes for JMS and the MQI in native code written in languages, such as COBOL or C.

Implications of interacting with IBM MQ when using both JMS and native code
Problems can occur when interleaving Java code and native code that both use IBM MQ functionality and
when the connection to IBM MQ is not closed before leaving either the native or Java code.

For example, in the following pseudo code, a connection handle to a queue manager is originally
established in Java code using the IBM MQ classes for JMS. The connection handle is reused in COBOL
code and invalidated by a call to MQDISC.

The next time the IBM MQ classes for JMS make use of the connection handle a JMSException with a
reason code of MQRC_HCONN_ERROR results.

COBOL code running in message processing region
 Use the Java Native Interface (JNI) to call Java code
 Create MQ connection and session - this creates an MQ connection handle
 Send message to MQ queue
 Store connection and session in static variable
 Return to COBOL code

 MQCONN - picks up MQ connection handle established in Java code
 MQDISC - invalidates connection handle

 Use the Java Native Interface (JNI) to call Java code
 Get session from static variable
 Create a message consumer - fails as connection handle invalidated

There are other similar usage patterns which can result in MQRC_HCONN_ERROR.

While it is possible to share IBM MQ connection handles between native and Java code (for example, the
previous example would work if there had not been an MQDISC call) in general, the best practice is to
close any connection handles before changing from Java to native code, or the other way round.

Connection authentication and authorization
The JMS specification allows a user name and password to be specified for authentication and
authorization when creating a connection or JMS context object.

Developing applications for IBM MQ 333

This is not supported in an IMS environment. Attempting to create a connection while specifying a user
name and password results in a JMS Exception being thrown. Attempting to create a JMS context,
while specifying a user name and password, results in a JMSRuntimeException being thrown.

Instead, existing mechanisms for authentication and authorization when connecting to IBM MQ from an
IMS environment must be used.

For more information, see Setting up security on z/OS. In particular, refer to User IDs for security
checking, which describes the user IDs that can be used.

Related tasks
Setting up security on z/OS

JMS API restrictions
From a JMS specification perspective, the IBM MQ classes for JMS treat IMS as a Java EE or Jakarta EE
compliant application server, that always has a JTA transaction in progress.

For example, you can never call javax.jms.Session.commit() in IMS, because the JMS specification
states that you can not call it in a JEE EJB, or Web container, while a JTA transaction is in progress.

This results in the following restrictions to the JMS API, in addition to those described in “Transactional
behavior” on page 331.

Classic API restrictions
• javax.jms.Connection.createConnectionConsumer(javax.jms.Destination, String,
javax.jms.ServerSessionPool, int) always throws a JMSException.

• javax.jms.Connection.createDurableConnectionConsumer(javax.jms.Topic, String,
String, javax.jms.ServerSessionPool, int) always throws a JMSException.

• All three variants of javax.jms.Connection.createSession always throws a JMSException if
the connection already has an existing session active.

• javax.jms.Connection.createSharedConnectionConsumer(javax.jms.Topic, String,
String, javax.jms.ServerSessionPool, int) always throws a JMSException.

• javax.jms.Connection.createSharedDurableConnectionConsumer(javax.jms.Topic,
String, String, javax.jms.ServerSessionPool, int) always throws a JMSException.

• javax.jms.Connection.setClientID() always throws a JMSException.
• javax.jms.Connection.setExceptionListener(javax.jms.ExceptionListener) always

throws a JMSException.
• javax.jms.Connection.stop() always throws a JMSException.
• javax.jms.MessageConsumer.setMessageListener(javax.jms.MessageListener) always

throws a JMSException.
• javax.jms.MessageConsumer.getMessageListener() always throws a JMSException.
• javax.jms.MessageProducer.send(javax.jms.Destination,
javax.jms.Message,javax.jms.CompletionListener) always throws a JMSException.

• javax.jms.MessageProducer.send(javax.jms.Destination, javax.jms.Message, int,
int, long, javax.jms.CompletionListener) always throws a JMSException.

• javax.jms.MessageProducer.send(javax.jms.Message, int, int, long,
javax.jms.CompletionListener) always throws a JMSException.

• javax.jms.MessageProducer.send(javax.jms.Message,javax.jms.CompletionListener
) always throws a JMSException.

• javax.jms.Session.run() always throws a JMSRuntimeException.
• javax.jms.Session.setMessageListener(javax.jms.MessageListener) always throws a
JMSException.

• javax.jms.Session.getMessageListener() always throws a JMSException.

334 Developing Applications for IBM MQ

Simplified API restrictions
• javax.jms.JMSContext.createContext(int) always throws a JMSRuntimeException.
• javax.jms.JMSContext.setClientID(String) always throws a JMSRuntimeException.
• javax.jms.JMSContext.setExceptionListener(javax.jms.ExceptionListener) always

throws a JMSRuntimeException.
• javax.jms.JMSContext.stop() always throws a JMSRuntimeException.
• javax.jms.JMSProducer.setAsync(javax.jms.CompletionListener) always throws a
JMSRuntimeException.

Using IBM MQ classes for Java
Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.

Note:

IBM will make no further enhancements to the IBM MQ classes for Java and they are
functionally stabilized at the level shipped in IBM MQ 8.0. Existing applications that use the IBM MQ
classes for Java continue to be fully supported, but new features will not be added and requests for
enhancements will be rejected. Fully supported means that defects will be fixed together with any
changes necessitated by changes to IBM MQ System Requirements.

The IBM MQ classes for Java are not supported in IMS.

The IBM MQ classes for Java are not supported in WebSphere Liberty. They must not be used with either
the IBM MQ Liberty messaging feature, or with the generic JCA support. For more information, see Using
WebSphere MQ Java Interfaces in J2EE/JEE Environments.

IBM MQ classes for Java is one of three alternative APIs that Java applications can for use to access IBM
MQ resources. The other APIs are:

• IBM MQ classes for Jakarta Messaging

• IBM MQ classes for JMS

For more information, see “Accessing IBM MQ from Java - Choice of API” on page 82.

From IBM MQ 9.3, the IBM MQ classes for Java are built with Java 8. The Java 8 runtime environment
supports running earlier class file versions.

IBM MQ classes for Java encapsulate the Message Queue Interface (MQI), the native IBM MQ API and use
a similar object model to the C++ and .NET interfaces to IBM MQ.

Programmable options allow IBM MQ classes for Java to connect to IBM MQ in either of the following
ways:

• In client mode as an IBM MQ MQI client by using Transmission Control Protocol/Internet Protocol
(TCP/IP)

• In bindings mode, connecting directly to IBM MQ by using the Java Native Interface (JNI)

Note: Automatic client reconnection is not supported by IBM MQ classes for Java.

Client mode connection
An IBM MQ classes for Java application can connect to any supported queue manager by using client
mode.

To connect to a queue manager in client mode, an IBM MQ classes for Java application can run on the
same system on which the queue manager is running, or on a different system. In each case, IBM MQ
classes for Java connects to the queue manager over TCP/IP.

Developing applications for IBM MQ 335

https://www.ibm.com/support/pages/node/727251
https://www.ibm.com/support/pages/node/727251

For more information on how to write applications to use client mode connections, see “IBM MQ classes
for Java connection modes” on page 359.

Bindings mode connection
When used in bindings mode, IBM MQ classes for Java uses the Java Native Interface (JNI) to call
directly into the existing queue manager API, rather than communicating through a network. In most
environments, connecting in bindings mode provides better performance for IBM MQ classes for Java
applications than connecting in client mode, by avoiding the cost of TCP/IP communication.

Applications that use the IBM MQ classes for Java to connect in bindings mode must run on the same
system as the queue manager to which they are connecting.

The Java Runtime Environment, that is being used to run the IBM MQ classes for Java application, must
be configured to load the IBM MQ classes for Java libraries; see “IBM MQ classes for Java libraries” on
page 345 for further information.

For more information on how to write applications to use bindings mode connections, see “IBM MQ
classes for Java connection modes” on page 359.

Related concepts
IBM MQ Java language interfaces
“Using IBM MQ classes for JMS/Jakarta Messaging” on page 79
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are the Java messaging providers
supplied with IBM MQ. As well as implementing the interfaces defined in the JMS and Jakarta Messaging
specifications, these messaging providers add two sets of extensions to the Java messaging API.
Related tasks
Tracing IBM MQ classes for Java applications
Troubleshooting Java and JMS problems

Why should I use IBM MQ classes for Java?
A Java application can use either IBM MQ classes for Java or IBM MQ classes for JMS to access IBM MQ
resources.

Note: Although existing applications that use the IBM MQ classes for Java continue to be fully supported,
new applications should use the IBM MQ classes for Jakarta Messaging. Features that have recently been
added to IBM MQ, such as asynchronous consume and automatic reconnection, are not available in the
IBM MQ classes for Java, but are available in the IBM MQ classes for JMS and IBM MQ classes for Jakarta
Messaging. For more information, see “Why should I use IBM MQ classes for JMS?” on page 81 and “Why
should I use IBM MQ classes for Jakarta Messaging?” on page 80.

Note:

IBM will make no further enhancements to the IBM MQ classes for Java and they are
functionally stabilized at the level shipped in IBM MQ 8.0. Existing applications that use the IBM MQ
classes for Java continue to be fully supported, but new features will not be added and requests for
enhancements will be rejected. Fully supported means that defects will be fixed together with any
changes necessitated by changes to IBM MQ System Requirements.

The IBM MQ classes for Java are not supported in IMS.

The IBM MQ classes for Java are not supported in WebSphere Liberty. They must not be used with either
the IBM MQ Liberty messaging feature, or with the generic JCA support. For more information, see Using
WebSphere MQ Java Interfaces in J2EE/JEE Environments.

Related concepts
“Accessing IBM MQ from Java - Choice of API” on page 82

336 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/727251
https://www.ibm.com/support/pages/node/727251

IBM MQ provides three Java language interfaces.

Prerequisites for IBM MQ classes for Java
To use IBM MQ classes for Java, you need certain other software products.

For information about prerequisites for IBM MQ classes for Java, see the System Requirements for IBM
MQ web page.

To develop IBM MQ classes for Java applications, you need a Java Development Kit (JDK). Details of
the JDKs supported with your operating system can be found in the System Requirements for IBM MQ
information.

To run IBM MQ classes for Java applications, you need the following software components:

• An IBM MQ queue manager, for applications that connect to a queue manager
• A Java Runtime Environment (JRE), for each system on which you run applications. A suitable JRE is

supplied with IBM MQ.

• For IBM i, QShell, which is option 30 of the operating system

• For z/OS, z/OS UNIX System Services (z/OS UNIX)

If you require TLS connections to use cryptographic modules that have been FIPS 140-2 certified, you
need the IBM Java JSSE FIPS provider (IBMJSSEFIPS). Every IBM JDK and JRE at version 1.4.2 or later
contains IBMJSSEFIPS.

You can use Internet Protocol version 6 (IPv6) addresses in your IBM MQ classes for Java applications if
IPv6 is supported by your Java virtual machine (JVM) and the TCP/IP implementation on your operating
system.

Running IBM MQ classes for Java applications within Java EE
There are certain restrictions and design considerations that must be taken into account before using IBM
MQ classes for Java in Java EE.

IBM MQ classes for Java has restrictions when used within a Java Platform, Enterprise Edition (Java EE)
environment. There are also additional considerations that must be taken into account when designing,
implementing, and managing an IBM MQ classes for Java application that runs inside a Java EE
environment. These restrictions and considerations are outlined in the following sections.

JTA transactions restrictions
The only supported transaction manager for applications using IBM MQ classes for Java is IBM MQ itself.
Although an application under JTA control can make use IBM MQ classes for Java, any work performed
through these classes is not controlled by the JTA units of work. They instead form local units of work
separate from those managed by the application server through the JTA interfaces. In particular, any
rollback of the JTA transaction does not result in a rollback of any sent or received messages. This
restriction applies to application or bean managed transactions and to container managed transactions,
and all Java EE containers. To perform messaging work directly with IBM MQ inside application server-
coordinated transactions, IBM MQ classes for JMS must be used instead.

Thread creation
IBM MQ classes for Java creates threads internally for various operations. For example, when running
in BINDINGS mode to call directly on a local queue manager, the calls are made on a 'worker' thread
created internally by IBM MQ classes for Java. Other threads can be created internally, for example
to clear unused connections from a connection pool or to remove subscriptions for terminated publish/
subscribe applications.

Some Java EE applications (for example those running in EJB and Web containers) must not create new
threads. Instead, all work must be performed on the main application threads managed by the application

Developing applications for IBM MQ 337

https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq

server. When applications use IBM MQ classes for Java, the application server might not be able to
distinguish between application code and the IBM MQ classes for Java code, so the threads previously
described cause the application to be non-compliant with the container specification. IBM MQ classes for
JMS does not break these Java EE specifications and so can be used instead.

Security restrictions
Security policies implemented by an application server might prevent certain operations that are
undertaken by the IBM MQ classes for Java API, such as creating and operating new threads of control (as
described in the preceding sections).

For example, application servers typically run with Java Security disabled by default, and allow it to be
enabled through some application server-specific configuration (some application servers also allow more
detailed configuration of the policies used within Java Security). When Java Security is enabled, IBM MQ
classes for Java might break the Java Security policy threading rules defined for the application server,
and the API might not be able to create all the threads that it needs in order to function. To prevent
problems with thread management, the use of IBM MQ classes for Java is not supported in environments
where Java Security is enabled.

Application isolation considerations
An intended benefit of running applications within a Java EE environment is application isolation. The
design and implementation of IBM MQ classes for Java predate the Java EE environment. IBM MQ classes
for Java can be used in a manner which does not support the concept of application isolation. Specific
examples of considerations in this area include:

• The use of static (JVM process-wide) settings within the MQEnvironment class, such as:

– the user ID and password to be used for connection identification and authentication
– the host name, port, and channel used for client connections
– TLS configuration for secured client connections

Modifying any of the MQEnvironment properties for the benefit of one application also affect other
applications using the same properties. When running in a multi-application environment such as Java
EE, each application must use its own distinct configuration through the creation of MQQueueManager
objects with a specific set of properties, rather than defaulting to the properties configured in the
process-wide MQEnvironment class.

• The MQEnvironment class introduces a number of static methods which act globally on all applications
using IBM MQ classes for Java within the same JVM process, and there is no way to override this
behavior for particular applications. Examples include:

– configuring TLS properties, such as the location of the keystore
– configuring client channel exits
– enabling or disabling diagnostic tracing
– managing the default connection pool used to optimize the use of connections to queue managers

Invoking such methods affects all applications running in the same Java EE environment.
• Connection pooling is enabled to optimize the process of making multiple connections to the

same queue manager. The default connection pool manager is process-wide, and shared by
multiple applications. Changes to connection pool configuration, such as replacing the default
connection manager for one application using the MQEnvironment.setDefaultConnectionManager()
method therefore affects other applications running in the same Java EE application server.

• TLS is configured for applications using IBM MQ classes for Java using the MQEnvironment class and
MQQueueManager object properties. It is not integrated with the managed security configuration of the
application server itself. You must ensure that you configure IBM MQ classes for Java appropriately to
provide your required level of security, and not use the application server configuration.

338 Developing Applications for IBM MQ

Bindings mode restrictions
IBM MQ and WebSphere Application Server can be installed on the same machine such that the major
versions of the queue manager and of the IBM MQ resource adapter (RA) shipped in WebSphere
Application Server are different.

If the queue manager and resource adapter major versions are different, bindings connections cannot
be used. Any connections from WebSphere Application Server to the queue manager using the resource
adapter must use client type connections. Bindings connections can be used if the versions are the same.

Character string conversions in IBM MQ classes for Java
The IBM MQ classes for Java use CharsetEncoders and CharsetDecoders directly for character string
conversion. The default behavior for character string conversion can be configured with two system
properties. The handling of messages that contain unmappable characters can be configured through
com.ibm.mq.MQMD.

Before IBM MQ 8.0, string conversions in IBM MQ classes for Java was done by calling
the java.nio.charset.Charset.decode(ByteBuffer) and Charset.encode(CharBuffer)
methods.

Using either of these methods results in a default replacement (REPLACE) of malformed or
untranslatable data. This behavior can obscure errors in applications, and lead to unexpected characters,
for example ?, in translated data.

From IBM MQ 8.0, to detect such issues earlier and more effectively, the IBM MQ classes for Java
use CharsetEncoders and CharsetDecoders directly and configure the handling of malformed and
untranslatable data explicitly. The default behavior is to REPORT such issues by throwing a suitable
MQException.

Configuring
Translating from UTF-16 (the character representation used in Java) to a native character set, such as
UTF-8, is termed encoding, while translating in the opposite direction is termed decoding.

Decoding takes the default behavior for CharsetDecoders, reporting errors by throwing an exception.

One setting is used to specify a java.nio.charset.CodingErrorAction to control error handling on
both encoding and decoding. One other setting is used to control the replacement byte, or bytes, when
encoding. The default Java replacement String will be used in decoding operations.

Configuration of untranslatable data handling in IBM MQ classes for Java
From IBM MQ 8.0, com.ibm.mq.MQMD includes the following two fields:
byte[] unMappableReplacement

The byte sequence that will be written to an encoded string if an input character cannot be translated,
and you have specified REPLACE.
Default: "?".getBytes()

The default Java replacement String is used in decoding operations.
java.nio.charset.CodingErrorAction unmappableAction

Specifies the action to be taken for untranslatable data on encoding and decoding:
Default: CodingErrorAction.REPORT;

System properties for setting system defaults
From IBM MQ 8.0, the following two Java system properties are available to configure default behavior
regarding character string conversion.

Developing applications for IBM MQ 339

com.ibm.mq.cfg.jmqi.UnmappableCharacterAction
Specifies the action to be taken for untranslatable data on encoding and decoding. The value can be
REPORT, REPLACE, or IGNORE.

com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation The default Java replacement string is used in decoding operations.

To avoid confusion between Java character and native byte representations, you should specify
com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement as a decimal number representing the
replacement byte in the native character set.

For example, the decimal value of ?, as a native byte, is 63 if the native character set is ASCII-based, such
as ISO-8859-1, while it is 111 if the native character set is EBCDIC.

Note: Note that if an MQMD or MQMessage object has either the unmappableAction or
unMappableReplacement fields set, then the values of these fields take precedence over the Java
system properties. This allows the values specified by the Java system properties to be overridden for
each message if required.

Related concepts
“Character string conversions in IBM MQ classes for JMS” on page 133
The IBM MQ classes for JMS use CharsetEncoders and CharsetDecoders directly for character string
conversion. The default behavior for character string conversion can be configured with two system
properties. The handling of messages that contain unmappable characters can be configured through
message properties for setting the UnmappableCharacterAction and the replacement bytes.

Installing and configuring IBM MQ classes for Java
This section describes the directories and files that are created when you install IBM MQ classes for Java,
and tells you how to configure IBM MQ classes for Java after installation.

What is installed for IBM MQ classes for Java
The latest version of IBM MQ classes for Java is installed with IBM MQ. You might need to override default
installation options to make sure this is done.

For more information about installing IBM MQ see:

• Installing IBM MQ

• Installing the IBM MQ for z/OS product

IBM MQ classes for Java are contained in the Java archive (JAR) files, com.ibm.mq.jar, and
com.ibm.mq.jmqi.jar.

Support for standard message headers, such as Programmable Command Format (PCF), is contained in
the JAR file com.ibm.mq.headers.jar.

Support for Programmable Command Format (PCF) is contained in the JAR file com.ibm.mq.pcf.jar.

Note: It is not recommended to use the IBM MQ classes for Java within an application server. For
information about the restrictions that apply when running in this environment, see “Running IBM MQ
classes for Java applications within Java EE” on page 337. For more information, see Using WebSphere
MQ Java Interfaces in J2EE/JEE Environments.

Important: Apart from the relocatable JAR files described in “IBM MQ classes for Java relocatable JAR
files” on page 340, copying the IBM MQ classes for Java JAR files or native libraries to other machines,
or to a different location on a machine where the IBM MQ classes for Java have been installed, is not
supported.

IBM MQ classes for Java relocatable JAR files
The relocatable JAR files can be moved to systems that need to run IBM MQ classes for Java.

Important:

340 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/727251
https://www.ibm.com/support/pages/node/727251

• Apart from the relocatable JAR files described in Relocatable JAR files, copying the IBM MQ classes for
Java JAR files or native libraries to other machines, or to a different location on a machine where the
IBM MQ classes for Java have been installed, is not supported.

• To avoid classloader conflicts, it is not recommended to bundle the relocatable JAR files within multiple
applications inside the same Java runtime. In this scenario, consider making the IBM MQ relocatable
JAR files available on the Java runtime's classpath.

• Do not include the relocatable JAR files within applications deployed into Java EE application servers,
such as WebSphere Application Server. In these environments, the IBM MQ resource adapter should
be deployed and used instead, as this contains the IBM MQ classes for Java. Note that WebSphere
Application Server embeds the IBM MQ resource adapter, so there is no need to deploy it manually
into this environment. In addition to this, the IBM MQ classes for Java are not supported in WebSphere
Liberty. For more information, see “Liberty and the IBM MQ resource adapter” on page 425.

• If you are bundling the relocatable JAR files within your applications, ensure that you include all
prerequisite JAR files as described in Relocatable JAR files. You should also ensure that you have
appropriate procedures to update the bundled JAR files as part of application maintenance, to ensure
that the IBM MQ classes for Java remain current and known issues are re-mediated.

Relocatable JAR files
Within an enterprise, the following files can be moved to systems that need to run IBM MQ classes for
Java applications:

• com.ibm.mq.allclient.jar “1” on page 341

• com.ibm.mq.jakarta.client.jar “2” on page 341

• bcpkix-jdk18on.jar “3” on page 341

• bcpkix-jdk15to18.jar “4” on page 341

• bcprov-jdk18on.jar “3” on page 341

• bcprov-jdk15to18.jar “4” on page 341

• bcutil-jdk18on.jar “3” on page 341

• bcutil-jdk15to18.jar “4” on page 341

• org.json.jar

Notes:

1. JMS 2.0 and JMS 1.1
2. Jakarta Messaging 3.0
3. From IBM MQ 9.4.0
4. Before IBM MQ 9.4.0

Bouncy Castle security provider and CMS support JAR files
The Bouncy Castle security provider and CMS support JAR files are required. For more information, see
Support for non-IBM JREs with AMS.

The following JAR files are required:

• bcpkix-jdk18on.jar
• bcprov-jdk18on.jar
• bcutil-jdk18on.jar

Developing applications for IBM MQ 341

org.json.jar
The org.json.jar file is required if your IBM MQ classes for Java application uses a CCDT in JSON
format.

com.ibm.mq.allclient.jar and com.ibm.mq.jakarta.client.jar
The files com.ibm.mq.allclient.jar and com.ibm.mq.jakarta.client.jar contain the IBM MQ
classes for JMS, the IBM MQ classes for Java, and the PCF and Headers Classes. If you move these files to
a new location, make sure that you take steps to keep this new location maintained with new IBM MQ Fix
Packs. Also, make sure that the use of the files is made known to IBM Support if you are getting an interim
fix.

To determine the version of the com.ibm.mq.allclient.jar file or the
com.ibm.mq.jakarta.client.jar file, use the following command:

java -jar com.ibm.mq.jakarta.client.jar

java -jar com.ibm.mq.allclient.jar

The following example shows some sample output from this command:

C:\Program Files\IBM\MQ_1\java\lib>java -jar com.ibm.mq.allclient.jar
Name: Java Message Service Client
Version: 9.3.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: IBM MQ classes for Java Message Service
Version: 9.3.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: IBM MQ JMS Provider
Version: 9.3.0.0
Level: p000-L140428.1 mqjbnd=p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: Common Services for Java Platform, Standard Edition
Version: 9.3.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/MQ_1/java/lib/com.ibm.mq.allclient.jar

Installation directories for IBM MQ classes for Java
IBM MQ classes for Java files and samples are installed in different locations according to platform. The
location of the Java Runtime Environment (JRE) that is installed with IBM MQ also varies according to the
platform.

Installation directories for IBM MQ classes for Java files
Table 49 on page 342 shows where the IBM MQ classes for Java files are installed.

Table 49. IBM MQ classes for Java installation directories

Platform Directory

AIX MQ_INSTALLATION_PATH/java/lib

/QIBM/ProdData/mqm/java/lib

342 Developing Applications for IBM MQ

Table 49. IBM MQ classes for Java installation directories (continued)

Platform Directory

Linux MQ_INSTALLATION_PATH/java/lib

Windows MQ_INSTALLATION_PATH\java\lib

z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java /lib

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Installation directories for samples
Some sample applications, such as the Installation Verification Programs (IVPs), are supplied with IBM
MQ. Table 50 on page 343 shows where the sample applications are installed. The IBM MQ classes for
Java samples are in a subdirectory called wmqjava. The PCF samples are in a subdirectory called pcf.

Table 50. Samples directories

Platform Directory

AIX MQ_INSTALLATION_PATH/samp/wmqjava/

IBM i /QIBM/ProdData/mqm/java/samples

Linux MQ_INSTALLATION_PATH/samp/wmqjava/

Windows MQ_INSTALLATION_PATH\tools\wmqjava\

z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/samples

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Installation directories for JRE
The IBM MQ classes for JMS require a Java 7 (or above) Java Runtime Environment (JRE). A suitable JRE
is installed with IBM MQ. Table 51 on page 343 shows where this JRE is installed. To run Java programs
such as the provided samples, using this JRE, either explicitly invoke JRE_LOCATION/bin/java or add
JRE_LOCATION/bin to the PATH environment (or equivalent) for your platform, where JRE_LOCATION is
the directory given in Table 51 on page 343.

Table 51. JRE directories

Platform Directory

AIX MQ_INSTALLATION_PATH/java/jre

IBM i /QIBM/ProdData/mqm/java/jre

Linux MQ_INSTALLATION_PATH/java/jre

Windows MQ_INSTALLATION_PATH\java\jre

z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/jre

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Developing applications for IBM MQ 343

Environment variables relevant to IBM MQ classes for Java
If you want to run IBM MQ classes for Java applications, their class path must include the IBM MQ classes
for Java and samples directories.

For IBM MQ classes for Java applications to run, their class path must include the appropriate IBM
MQ classes for Java directory. To run the sample applications, the class path must also include the
appropriate samples directories. This information can be provided in the Java invocation command or in
the CLASSPATH environment variable.

Important: Setting the Java option -Xbootclasspath to include the IBM MQ classes for Java is not
supported.

Table 52 on page 344 shows the appropriate CLASSPATH setting to use on each platform to run IBM MQ
classes for Java applications, including the sample applications.

Table 52. CLASSPATH setting to run IBM MQ classes for Java applications, including the IBM MQ classes
for Java sample applications

Platform CLASSPATH setting

AIX CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.jar:
MQ_INSTALLATION_PATH/samp/wmqjava/samples:

IBM i CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar:
/QIBM/ProdData/mqm/java/samples/wmqjava/samples:

Linux CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.jar:
MQ_INSTALLATION_PATH/samp/wmqjava/samples:

Windows
CLASSPATH= MQ_INSTALLATION_PATH\Java\lib\com.ibm.mq.jar;
MQ_INSTALLATION_PATH\tools\wmqjava\samples;

z/OS CLASSPATH= MQ_INSTALLATION_PATH/mqm/V9R4M0/java/lib/com.ibm.mq.jar:
MQ_INSTALLATION_PATH/mqm/V9R4M0/java/samples/wmqjava:
MQ_INSTALLATION_PATH/mqm/V9R4M0/java/samples/pcf

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

If you compile using the -Xlint option, you might see a message warning you that
com.ibm.mq.ese.jar is not present. You can ignore the warning. This file is only present if you have
installed Advanced Message Security.

The scripts provided with IBM MQ classes for JMS use the following environment variables:
MQ_JAVA_DATA_PATH

This environment variable specifies the directory for log and trace output.
MQ_JAVA_INSTALL_PATH

This environment variable specifies the directory where IBM MQ classes for Java are installed, as
shown in IBM MQ classes for Java installation directories.

MQ_JAVA_LIB_PATH
This environment variable specifies the directory where the IBM MQ classes for Java libraries are
stored, as shown in The location of the IBM MQ classes for Java libraries for each platform. Some
scripts supplied with IBM MQ classes for Java, such as IVTRun, use this environment variable.

On Windows, all the environment variables are set automatically during installation.

344 Developing Applications for IBM MQ

On AIX and Linux, you can use the script setjmsenv (if you are using a 32-bit
JVM) or setjmsenv64 (if you are using a 64-bit JVM) to set the environment variables. These scripts are
in the MQ_INSTALLATION_PATH/java/bin directory.

On IBM i, the environment variable QIBM_MULTI_THREADED must be set to Y. You can
then run multithreaded applications in the same way that you run single threaded applications. For more
information, see Setting up IBM MQ with Java and JMS.

IBM MQ classes for Java require a Java 7 Java Runtime Environment (JRE). For information about the
location of a suitable JRE that is installed with IBM MQ, see “Installation directories for IBM MQ classes
for Java” on page 342.

IBM MQ classes for Java libraries
The location of the IBM MQ classes for Java libraries varies according to platform. Specify this location
when you start an application.

To specify the location of the Java Native Interface (JNI) libraries, start your application by using a java
command with the following format:

java -Djava.library.path= library_path application_name

where library_path is the path to the IBM MQ classes for Java, which include the JNI libraries. Table 53
on page 345 shows the location of the IBM MQ classes for Java libraries for each platform. In this table,
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Table 53. The location of the IBM MQ classes for Java libraries for each platform

Platform Directory containing the IBM MQ classes for Java
libraries

AIX MQ_INSTALLATION_PATH/java/lib (32-bit libraries)
MQ_INSTALLATION_PATH/java/lib64 (64-bit libraries)

Linux (x86 platform) MQ_INSTALLATION_PATH/java/lib

Linux (POWER, x86-64 and
zSeries s390x platforms)

 MQ_INSTALLATION_PATH/java/lib (32-bit libraries)
MQ_INSTALLATION_PATH/java/lib64 (64-bit libraries)

Windows MQ_INSTALLATION_PATH\Java\lib (32-bit libraries)
MQ_INSTALLATION_PATH\Java\lib64 (64-bit libraries)

z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/lib
(32-bit and 64-bit libraries)

Note:

1. On AIX or Linux (Power platform), use either the 32-bit libraries or the
64-bit libraries. Use the 64-bit libraries only if you are running your application in a 64-bit Java virtual
machine (JVM) on a 64-bit platform. Otherwise, use the 32-bit libraries.

2. On Windows, you can use the PATH environment variable to specify the location of the
IBM MQ classes for Java libraries instead of specifying their location on the java command.

3. To use IBM MQ classes for Java in bindings mode on IBM i, ensure that the library
QMQMJAVA is in your library list.

Developing applications for IBM MQ 345

4. On z/OS, you can use either a 32-bit or 64-bit Java virtual machine (JVM). You do not
have to specify which libraries to use; IBM MQ classes for Java can determine for itself which JNI
libraries to load.

Related concepts
Using IBM MQ classes for Java
After installing IBM MQ classes for Java, you can configure your installation so that you run your own
applications.

Support for OSGi with IBM MQ classes for Java
OSGi provides a framework that supports the deployment of applications as bundles. Three OSGi bundles
are supplied as part of the IBM MQ classes for Java.

OSGi provides a general purpose, secure, and managed Java framework, which supports the deployment
of applications that come in the form of bundles. OSGi-compliant devices can download and install
bundles, and remove them when they are no longer required. The framework manages the installation
and updating of bundles in a dynamic and scalable fashion.

The IBM MQ classes for Java include the following OSGi bundles.
com.ibm.mq.osgi.java_version_number.jar

The JAR files to allow applications to use the IBM MQ classes for Java.
com.ibm.mq.jakarta.osgi.allclient_version_number.jar

For Jakarta Messaging 3.0, this JAR file allows applications to use both the IBM MQ
classes for JMS and the IBM MQ classes for Java, and also includes the code to handle PCF messages.

com.ibm.mq.osgi.allclient_version_number.jar
For JMS 2.0, this JAR file allows applications to use both the IBM MQ classes for JMS

and the IBM MQ classes for Java, and also includes the code to handle PCF messages.
com.ibm.mq.jakarta.osgi.allclientprereqs_version_number.jar

For Jakarta Messaging 3.0, this JAR file provides the prerequisites for
com.ibm.mq.jakarta.osgi.allclient_version_number.jar.

com.ibm.mq.osgi.allclientprereqs_version_number.jar
For JMS 2.0, this JAR file provides the prerequisites for

com.ibm.mq.osgi.allclient_version_number.jar.
where version_number is the version number of IBM MQ that is installed.

The bundles are installed into the java/lib/OSGi subdirectory of your IBM MQ installation, or the
java\lib\OSGi folder on Windows.

From IBM MQ 8.0, use the bundles com.ibm.mq.osgi.allclient_8.0.0.0.jar, and
com.ibm.mq.osgi.allclientprereqs_8.0.0.0.jar for any new applications. Using these bundles
removes the restriction of not being able to run both IBM MQ classes for JMS and the IBM MQ classes for
Java within the same OSGi framework. All other restrictions still apply however. For versions of IBM MQ
before IBM MQ 8.0, the restriction of using either IBM MQ classes for JMS or IBM MQ classes for Java
applies.

Nine other bundles are also installed into the java/lib/OSGi sub directory of your IBM MQ installation,
or the java\lib\OSGi folder on Windows. These bundles are part of the IBM MQ classes for JMS, and
must not be loaded into an OSGi runtime environment that has the IBM MQ classes for Java bundle
loaded. If the IBM MQ classes for Java OSGi bundle is loaded into an OSGi runtime environment that also
has the IBM MQ classes for JMS bundles loaded, errors as shown in the following example occur when
applications using either the IBM MQ classes for Java bundle or the IBM MQ classes for JMS bundles are
run:

java.lang.ClassCastException: com.ibm.mq.MQException incompatible with com.ibm.mq.MQException

The OSGi bundle for the IBM MQ classes for Java has been written to the OSGi Release 4 specification; it
does not work in an OSGi Release 3 environment.

346 Developing Applications for IBM MQ

You must set your system path or library path correctly so that the OSGi runtime environment can find any
required DLL files or shared libraries.

If you use the OSGi bundle for the IBM MQ classes for Java, channel exit classes written in Java are not
supported because of an inherent problem in loading classes in a multiple class loader environment such
as OSGi. A user bundle can be aware of the IBM MQ classes for Java bundle, but the IBM MQ classes for
Java bundle is not aware of any user bundle. As a result, the class loader used in an IBM MQ classes for
Java bundle cannot load a channel exit class that is in a user bundle.

For more information about OSGi, see the OSGi alliance website.

Installation of IBM MQ classes for Java on z/OS
On z/OS, the STEPLIB used at runtime must contain the IBM MQ SCSQAUTH and SCSQANLE libraries.

From z/OS UNIX System Services, you can add these libraries by using a line in your .profile as shown
in the following example, replacing thlqual with the high level data set qualifier that you chose when
installing IBM MQ:

export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include SCSQAUTH on the STEPLIB
concatenation:

 STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR
 DD DSN=thlqual.SCSQANLE,DISP=SHR

The IBM MQ classes for Java configuration file
An IBM MQ classes for Java configuration file specifies properties that are used to configure IBM MQ
classes for Java.

The format of an IBM MQ classes for Java configuration file is that of a standard Java properties file.

A sample configuration file, mqjava.config, is supplied in the bin subdirectory of the IBM MQ classes
for Java installation directory. This file documents all the supported properties and their default values.

Note: The sample configuration file is overwritten when the IBM MQ installation is upgraded to a future
Fix Pack. Therefore, it is recommended that you make a copy of the sample configuration file for use with
your applications.

You can choose the name and location of an IBM MQ classes for Java configuration file. When you start
your application, use a java command with the following format:

java -Dcom.ibm.msg.client.config.location=config_file_url application_name

In the command, config_file_url is a uniform resource locator (URL) that specifies the name and location
of the IBM MQ classes for Java configuration file. URLs of the following types are supported: http, file,
ftp, and jar.

The following example shows a java command:

java -Dcom.ibm.msg.client.config.location=file:/D:/mydir/mqjava.config MyAppClass

This command identifies the IBM MQ classes for Java configuration file as the file
D:\mydir\mqjava.config on the local Windows system.

When an application starts, IBM MQ classes for Java reads the contents of the configuration file and
stores the specified properties in an internal property store. If the java command does not identify a
configuration file, or if the configuration file cannot be found, IBM MQ classes for Java uses the default
values for all the properties. If required, you can override any property in the configuration file by
specifying it as a system property on the java command.

Developing applications for IBM MQ 347

https://www.osgi.org

An IBM MQ classes for Java configuration file can be used with any of the supported transports between
an application and a queue manager or broker.

Overriding properties specified in an IBM MQ MQI client configuration file
An IBM MQ MQI client configuration file can also specify properties that are used to configure IBM MQ
classes for Java. However, properties that are specified in an IBM MQ MQI client configuration file apply
only when an application connects to a queue manager in client mode.

If required, you can override any attribute in an IBM MQ MQI client configuration file by specifying it as a
property in an IBM MQ classes for Java configuration file. To override an attribute in an IBM MQ MQI client
configuration file, use an entry with the following format in the IBM MQ classes for Java configuration file:

com.ibm.mq.cfg.stanza.propName=propValue

The variables in the entry have the following meanings:
stanza

The name of the stanza in the IBM MQ MQI client configuration file that contains the attribute.
propName

The name of the attribute as specified in the IBM MQ MQI client configuration file.
propValue

The value of the property that overrides the value of the attribute that is specified in the IBM MQ MQI
client configuration file.

Alternatively, you can override an attribute in an IBM MQ MQI client configuration file by specifying the
property as a system property on the java command. Use the preceding format to specify the property as
a system property.

Only the following attributes in an IBM MQ MQI client configuration file are relevant to IBM MQ
classes for Java. If you specify or override other attributes, it has no effect. Specifically, note that the
ChannelDefinitionFile and ChannelDefinitionDirectory in the CHANNELS stanza of the client
configuration file are not used. See “Using a client channel definition table with IBM MQ classes for Java”
on page 363 for details of how to use the CCDT with the IBM MQ classes for Java.

Table 54. Which stanza of the client configuration file contains which attribute

Stanza Attribute

CHANNELS stanza of the client configuration file Put1DefaultAlwaysSync

CHANNELS stanza of the client configuration file PasswordProtection

ClientExitPath stanza of the client configuration file ExitsDefaultPath

ClientExitPath stanza of the client configuration file ExitsDefaultPath64

ClientExitPath stanza of the client configuration file JavaExitsClasspath

JMQI stanza of the client configuration file useMQCSPauthentication

MessageBuffer stanza of the client configuration
file

MaximumSize

MessageBuffer stanza of the client configuration
file

PurgeTime

MessageBuffer stanza of the client configuration
file

UpdatePercentage

TCP stanza of the client configuration file ClntRcvBuffSize

TCP stanza of the client configuration file ClntSndBuffSize

348 Developing Applications for IBM MQ

Table 54. Which stanza of the client configuration file contains which attribute (continued)

Stanza Attribute

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

For more information on the IBM MQ MQI client configuration, see IBM MQ MQI client configuration file,
mqclient.ini.

Related tasks
Tracing IBM MQ classes for Java applications

Using Java Standard Environment Trace to configure Java trace
Use the Java Standard Environment Trace Settings stanza to configure the IBM MQ classes for Java trace
facility.

com.ibm.msg.client.commonservices.trace.outputName = traceOutputName
traceOutputName is the directory and file name to which trace output is sent.

By default, trace information is written to a trace file in the current working directory of the
application. The name of the trace file depends upon the environment that the application is running
in:

• If the application has loaded the IBM MQ classes for Java from the relocatable JAR file
com.ibm.mq.allclient.jar, trace is written to a file called mqjavaclient_%PID%.cl%u.trc.

• If the application has loaded the IBM MQ classes for Java from the JAR file com.ibm.mq.jar, trace
is written to a file called mqjava_%PID%.cl%u.trc.

where %PID% is the process identifier of the application that is being traced, and %u is a unique
number to differentiate files between threads running trace under different Java classloaders.

If a process ID is unavailable, a random number is generated and prefixed with the letter f. To include
the process ID in a file name you specify, use the string %PID%.

If you specify an alternative directory, it must exist, and you must have write permission for this
directory. If you do not have write permission, the trace output is written to System.err.

com.ibm.msg.client.commonservices.trace.include = includeList
includeList is a list of packages and classes that are traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. includeList defaults to ALL, and traces all
packages and classes in IBM MQ classes for Java.

Note: You can include a package but then exclude subpackages of that package. For example, if you
include package a.b and exclude package a.b.x, the trace includes everything in a.b.y and a.b.z,
but not a.b.x or a.b.x.1.

com.ibm.msg.client.commonservices.trace.exclude = excludeList
excludeList is a list of packages and classes that are not traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. excludeList defaults to NONE, and therefore
excludes no packages and classes in IBM MQ classes for JMS from being traced.

Note: You can exclude a package but then include subpackages of that package. For example, if
you exclude package a.b and include package a.b.x, the trace includes everything in a.b.x and
a.b.x.1, but not a.b.y or a.b.z.

Any package or class that is specified, at the same level, as both included and excluded is included.

com.ibm.msg.client.commonservices.trace.maxBytes = maxArrayBytes
maxArrayBytes is the maximum number of bytes that are traced from any byte arrays.

If maxArrayBytes is set to a positive integer, it limits the number of bytes in a byte-array that are
written out to the trace file. It truncates the byte array after writing maxArrayBytes out. Setting

Developing applications for IBM MQ 349

maxArrayBytes reduces the size of the resulting trace file, and reduces the effect of tracing on the
performance of the application.

A value of 0 for this property means that none of the contents of any byte arrays are sent to the trace
file.

The default value is -1, which removes any limit on the number of bytes in a byte array that are sent to
the trace file.

com.ibm.msg.client.commonservices.trace.limit = maxTraceBytes
maxTraceBytes is the maximum number of bytes that are written to a trace output file.

maxTraceBytes works with traceCycles. If the number of bytes of trace written is near to the
limit, the file is closed, and a new trace output file is started.

A value of 0 means that a trace output file has zero length. The default value is -1, which means that
the amount of data to be written to a trace output file is unlimited.

com.ibm.msg.client.commonservices.trace.count = traceCycles
traceCycles is the number of trace output files to cycle through.

If the current trace output file reaches the limit specified by maxTraceBytes, the file is closed.
Further trace output is written to the next trace output file in sequence. Each trace output file is
distinguished by a numeric suffix appended to the file name. The current or most recent trace output
file is mqjms.trc.0, the next most recent trace output file is mqjms.trc.1. Older trace files follow
the same numbering pattern up to the limit.

The default value of traceCycles is 1. If traceCycles is 1, when the current trace output file
reaches its maximum size, the file is closed and deleted. A new trace output file with the same name
is started. Therefore, only one trace output file exists at a time.

com.ibm.msg.client.commonservices.trace.parameter = traceParameters
traceParameters controls whether method parameters and return values are included in the trace.

traceParameters defaults to TRUE. If traceParameters is set to FALSE, only method signatures
are traced.

com.ibm.msg.client.commonservices.trace.startup = startup
There is an initialization phase of IBM MQ classes for Java during which resources are allocated. The
main trace facility is initialized during the resource allocation phase.

If startup is set to TRUE, startup trace is used. Trace information is produced immediately and
includes the setup of all components, including the trace facility itself. Startup trace information
can be used to diagnose configuration problems. Startup trace information is always written to
System.err.

startup defaults to FALSE.

startup is checked before initialization is complete. For this reason, only specify the property on
the command line as a Java system property. Do not specify it in the IBM MQ classes for Java
configuration file.

com.ibm.msg.client.commonservices.trace.compress = compressedTrace
Set compressedTrace to TRUE to compress trace output.

The default value of compressedTrace is FALSE.

If compressedTrace is set to TRUE, trace output is compressed. The default trace output file
name has the extension .trz. If compression is set to FALSE, the default value, the file has the
extension .trc to indicate it is uncompressed. However if the file name for the trace output has been
specified in traceOutputName that name is used instead; no suffix is applied to the file.

Compressed trace output is smaller than uncompressed. Because there is less I/O, it can be written
out faster than uncompressed trace. Compressed tracing has less effect on the performance of IBM
MQ classes for Java than uncompressed tracing.

350 Developing Applications for IBM MQ

If maxTraceBytes and traceCycles are set, multiple compressed trace files are created in place of
multiple flat files.

If IBM MQ classes for Java ends in an uncontrolled manner, a compressed trace file might not be
valid. For this reason, trace compression must only be used when IBM MQ classes for Java closes
down in a controlled manner. Only use trace compression if the problems being investigated do not
cause the JVM itself to stop unexpectedly. Do not use trace compression when diagnosing problems
that can result in System.Halt() shutdowns or abnormal, uncontrolled JVM terminations.

com.ibm.msg.client.commonservices.trace.level = traceLevel
traceLevel specifies a filtering level for the trace. The defined trace levels are as follows:

• TRACE_NONE: 0
• TRACE_EXCEPTION: 1
• TRACE_WARNING: 3
• TRACE_INFO: 6
• TRACE_ENTRYEXIT: 8
• TRACE_DATA: 9
• TRACE_ALL: Integer.MAX_VALUE

Each trace level includes all lower levels. For example, if trace level is set at TRACE_INFO, then any
trace point with a defined level of TRACE_EXCEPTION, TRACE_WARNING, or TRACE_INFO is written to
the trace. All other trace points are excluded.

com.ibm.msg.client.commonservices.trace.standalone = standaloneTrace

standaloneTrace controls whether the IBM MQ classes for Java client tracing service is used in a
WebSphere Application Server environment.

If standaloneTrace is set to TRUE, the IBM MQ classes for Java client tracing properties are used to
determine the trace configuration.

If standaloneTrace is set to FALSE, and the IBM MQ classes for Java client is running in an
WebSphere Application Server container, the WebSphere Application Server trace service is used. The
trace information that is generated depends upon the trace settings of the application server.

The default value of standaloneTrace is FALSE.

IBM MQ classes for Java and software management tools
Software management tools such as Apache Maven can be used with the IBM MQ classes for Java.

Many large development organizations use these tools to centrally manage repositories of third-party
libraries.

The IBM MQ classes for Java are composed of a number of JAR files. When you are developing Java
language applications by using this API, an installation of either an IBM MQ Server, IBM MQ Client, or IBM
MQ Client SupportPac is required on the machine where the application is being developed.

If you want to use a software management tool and add the JAR files that make up the IBM MQ classes
for Java to a centrally managed repository, the following points must be observed:

• A repository or container must be made available only to developers within your organization. Any
distribution outside of the organization is not permitted.

• The repository needs to contain a complete and consistent set of JAR files from a single IBM MQ release
or Fix Pack.

• You are responsible for updating the repository with any maintenance provided by IBM Support.

From IBM MQ 8.0, the com.ibm.mq.allclient.jar JAR file needs to be installed into the repository.

From IBM MQ 9.0, the Bouncy Castle security provider and CMS support JAR files are required. For more
information, see “IBM MQ classes for Java relocatable JAR files” on page 340 and Support for non-IBM
JREs.

Developing applications for IBM MQ 351

Post installation setup for IBM MQ classes for Java applications
After installing IBM MQ classes for Java, you can configure your installation so that you run your own
applications.

Remember to check the IBM MQ product readme file for the latest information, or for more specific
information about your environment. The latest version of the product readme file is available on the IBM
MQ, WebSphere MQ, and MQSeries® product readmes web page.

Before attempting to run an IBM MQ classes for Java application in bindings mode, make sure that you
have configured IBM MQ as described in Configuring.

Configuring your queue manager to accept client connections from IBM MQ classes for Java
To configure your queue manager to accept incoming connection requests from clients, define and permit
use of a server connection channel and start a listener program.

See “Configuring a queue manager to accept client connections on Multiplatforms” on page 1028 for
details.

Running IBM MQ classes for Java applications under the Java security manager
IBM MQ classes for Java can run with the Java security manager enabled. To successfully run applications
with the Java security manager enabled, you must configure your Java Virtual Machine (JVM) with a
suitable policy definition file.

The simplest way to create a suitable policy definition file is to change the policy file supplied with
the Java runtime environment (JRE). On most systems, this file is stored in the path lib/security/
java.policy, relative to your JRE directory. You can edit policy files either by using your preferred editor
or by using the policytool program supplied with your JRE.

You must give authority to the com.ibm.mq.jmqi.jar file so that it can:

• Create sockets (in client mode)
• Load the native library (in bindings mode)
• Read various properties from the environment

The system property os.name must be available to the IBM MQ classes for Java when running under the
Java security manager.

If your Java application uses the Java security manager, you must add the following permission to
the java.security.policy file used by the application, otherwise, exceptions will be thrown to the
application:

permission java.lang.RuntimePermission "modifyThread";

This RuntimePermission is required by the client as part of managing the assignment and closure of
multiplexed conversations over TCP/IP connections to queue managers.

Example policy file entry
Here is an example of a policy file entry that allows IBM MQ classes for Java to run successfully under the
default security manager. Replace the string MQ_INSTALLATION_PATH in this example with the location
where IBM MQ classes for Java are installed on your system.

grant codeBase "file: MQ_INSTALLATION_PATH/java/lib/*" {
//We need access to these properties, mainly for tracing
permission java.util.PropertyPermission "user.name","read";
permission java.util.PropertyPermission "os.name","read";
permission java.util.PropertyPermission "user.dir","read";
permission java.util.PropertyPermission "line.separator","read";
permission java.util.PropertyPermission "path.separator","read";
permission java.util.PropertyPermission "file.separator","read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.log.*","read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.trace.*","read";
permission java.util.PropertyPermission "Diagnostics.Java.Errors.Destination.Filename","read";
permission java.util.PropertyPermission "com.ibm.mq.commonservices","read";
permission java.util.PropertyPermission "com.ibm.mq.cfg.*","read";

352 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/317955
https://www.ibm.com/support/pages/node/317955

//Tracing - we need the ability to control java.util.logging
permission java.util.logging.LoggingPermission "control";
// And access to create the trace file and read the log file - assumed to be in the current
directory
permission java.io.FilePermission "*","read,write";

// Required to allow a trace file to be written to the filesystem.
// Replace 'TRACE_FILE_DIRECTORY' with the directory name where trace is to be written to
permission java.io.FilePermission "TRACE_FILE_DIRECTORY","read,write";
permission java.io.FilePermission "TRACE_FILE_DIRECTORY/*","read,write";

// We'd like to set up an mBean to control trace
permission javax.management.MBeanServerPermission "createMBeanServer";
permission javax.management.MBeanPermission "*","*";

// We need to be able to read manifests etc from the jar files in the installation directory
permission java.io.FilePermission "MQ_INSTALLATION_PATH/java/lib/-","read";

//Required if mqclient.ini/mqs.ini configuration files are used
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqclient.ini","read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqs.ini","read";

//For the client transport type.
permission java.net.SocketPermission "*","connect,resolve";

//For the bindings transport type.
permission java.lang.RuntimePermission "loadLibrary.*";

//For applications that use CCDT tables (access to the CCDT AMQCLCHL.TAB)
permission java.io.FilePermission "MQ_DATA_DIRECTORY/qmgrs/QM_NAME/@ipcc/AMQCLCHL.TAB","read";

//For applications that use User Exits
permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits/*","read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits64/*","read";
permission java.lang.RuntimePermission "createClassLoader";

//Required for the z/OS platform
permission java.util.PropertyPermission "com.ibm.vm.bitmode","read";

// Used by the internal ConnectionFactory implementation
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

// Used for controlled class loading
permission java.lang.RuntimePermission "setContextClassLoader";

// Used to default the Application name in Client mode connections
permission java.util.PropertyPermission "sun.java.command","read";

// Used by the IBM JSSE classes
permission java.util.PropertyPermission "com.ibm.crypto.provider.AESNITrace","read";

//Required to determine if an IBM Java Runtime is running in FIPS mode,
//and to modify the property values status as required.
permission java.util.PropertyPermission "com.ibm.jsse2.usefipsprovider","read,write";
permission java.util.PropertyPermission "com.ibm.jsse2.JSSEFIPS","read,write";
//Required if an IBM FIPS provider is to be used for SSL communication.
permission java.security.SecurityPermission "insertProvider.IBMJCEFIPS";

// Required for non-IBM Java Runtimes that establish secure client
// transport mode connections using mutual TLS authentication
permission java.util.PropertyPermission "javax.net.ssl.keyStore","read";
permission java.util.PropertyPermission "javax.net.ssl.keyStorePassword","read";

// Required for Java applications that use the Java Security Manager
permission java.lang.RuntimePermission "modifyThread";
};

This example of a policy file enables the IBM MQ classes for Java to work correctly under the security
manager, but you might still need to enable your own code to run correctly before your applications work.

The sample code shipped with IBM MQ classes for Java has not been specifically enabled for use with
the security manager; however the IVT tests run with this policy file and the default security manager in
place.

Important:

The IBM MQ classes for Java trace facility requires further permissions as it performs additional querying
of system properties, and also further file system operations.

Developing applications for IBM MQ 353

A suitable template security policy file for running under a security manager with tracing
enabled is provided in the samples/wmqjava directory of the IBM MQ installation as
example.security.policy.

For a default installation, the example.security.policy file is located, on:
Windows

In C:\Program Files\IBM\MQ\Tools\wmqjava\samples\example.security.policy
Linux

In /opt/mqm/samp/wmqjava/samples/example.security.policy
Solaris

In /opt/mqm/samp/wmqjava/samples/example.security.policy
AIX

In /usr/mqm/samp/wmqjava/samples/example.security.policy

Running IBM MQ classes for Java applications under CICS Transaction Server
An IBM MQ classes for Java application can be run as a transaction under CICS Transaction Server.

To run an IBM MQ classes for Java application as a transaction under CICS Transaction Server for z/OS,
perform the following steps:

1. Define the application and transaction to CICS by using the supplied CEDA transaction.

2. Ensure that the IBM MQ CICS adapter is installed in your CICS system. (See Using IBM
MQ with CICS for details.)

3. Ensure that the JVM environment specified in CICS includes the appropriate CLASSPATH and LIBPATH
entries.

4. Initiate the transaction by using any of your normal processes.

For more information on running CICS Java transactions, refer to your CICS system documentation.

Verifying the IBM MQ classes for Java installation
An installation verification program, MQIVP, is supplied with IBM MQ classes for Java. You can use this
program to test all the connection modes of IBM MQ classes for Java.

The program prompts for a number of choices and other data to determine which connection mode you
want to verify. Use the following procedure to verify your installation:

1. If you are going to run the program in client mode, configure your queue manager as described in
“Configuring a queue manager to accept client connections on Multiplatforms” on page 1028. The
queue to use is SYSTEM.DEFAULT.LOCAL.QUEUE

2. If you are going to run the program in client mode, see also “Using IBM MQ classes for Java” on page
335.

Perform the remaining steps of this procedure on the system on which you are going to run the
program.

3. Make sure that you have updated your CLASSPATH environment variable according to the instructions
in “Environment variables relevant to IBM MQ classes for Java” on page 344.

4. Change Directory to MQ_INSTALLATION_PATH/mqm/samp/wmqjava/samples, where
MQ_INSTALLATION_PATH is the path to your IBM MQ installation. Then at the command prompt, enter:

java -Djava.library.path= library_path MQIVP

where library_path is the path to the IBM MQ classes for Java libraries (see “IBM MQ classes for Java
libraries” on page 345).

At the prompt marked (1):

• To use a TCP/IP connection, enter an IBM MQ server host name.
• To use native connection (bindings mode), leave the field blank (do not enter a name).

354 Developing Applications for IBM MQ

The program tries to:

• 1. Connect to the queue manager
• 2. Open the queue SYSTEM.DEFAULT.LOCAL.QUEUE, put a message on the queue, get a message

from the queue, and then close the queue
• 3. Disconnect from the queue manager
• 4. Return a message if the operations are successful

Here is an example of the prompts and responses you might see. The actual prompts and your responses
depend on your IBM MQ network.

Please enter the IP address of the MQ server : ipaddress(1)
Please enter the port to connect to : (1414) (2)
Please enter the server connection channel name : channelname (2)
Please enter the queue manager name : qmname
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete -
SUCCESS: This MQ Transport is functioning correctly.
Press Enter to continue ...

Note:

1. On z/OS, leave the field blank at prompt marked (1).
2. If you choose server connection, you do not see the prompts marked (2).

3. On IBM i, you can only issue the java MQIVP command from QShell. Alternatively, you
can run the application by using the CL command RUNJVA CLASS(MQIVP).

Using the IBM MQ classes for Java sample applications
The IBM MQ classes for Java sample applications provide an overview of the common features of IBM MQ
classes for Java API. You can use them to verify your installation and messaging server set up and to help
you build your own applications.

About this task
If you need help to create your own applications, you can use the sample applications as a
starting point. Both the source and a compiled version are provided for each application. Review the
sample source code and identify the key steps to create each required object for your application
(MQQueueManager, MQConstants , MQMessage, MQPutMessageOptions and MQDestination), and to set
any specific properties that are needed to specify how you want your application to work. For more
information, see “Writing IBM MQ classes for Java applications” on page 359. The samples might be
subject to change in future releases of IBM MQ Java.

Table 55 on page 355 shows where the IBM MQ classes for Java sample applications are installed on
each platform:

Table 55. Installation directories for the IBM MQ classes for Java sample applications

Platform Directory

AIX

Linux

MQ_INSTALLATION_PATH/samp/wmqjava/samples

Windows MQ_INSTALLATION_PATH\tools\wmqjava\samples

Developing applications for IBM MQ 355

Table 55. Installation directories for the IBM MQ classes for Java sample applications (continued)

Platform Directory

IBM i /qibm/proddata/mqm/java/samples/wmqjava/samples

z/OS MQ_INSTALLATION_PATH/java/samples/wmqjava

Table 56 on page 356 shows the sets of sample applications that are supplied with IBM MQ classes for
Java.

Table 56. IBM MQ classes for Java sample applications

Name of sample Description

IMSBridgeSampl
e.java

Simple program to demonstrate using the IMS Bridge with the IBM MQ classes for
Java.

MQIVP.java IBM MQ Java installation verification program.

MQMessageProp
ertiesSample.jav
a

Demonstrates the use of the Message Properties API .

MQPubSubApiSa
mple.java

Demonstrates using the publish/subscribe API.

MQSample.java Simple program to demonstrate putting and getting a message from a queue.

MQSampleMessa
geManager.java

Utility class for message handling in the IBM MQ base Java samples.

mqjcivp.propertie
s

This resource bundle contains the messages used by the IBM MQ classes for Java
installation verification program (MQIVP.java).

The IBM MQ classes for Java provide a script called runjms that can be used to run the sample
applications. This script sets up the IBM MQ environment to allow you to run the IBM MQ classes for
Java sample applications.

Table 57 on page 356 shows the location of the script on each platform:

Table 57. Location of the runjms script

Platform Directory

AIX

Linux

MQ_INSTALLATION_PATH/java/bin/runjms

Windows MQ_INSTALLATION_PATH\java\bin\runjms.bat

IBM i /qibm/proddata/mqm/java/bin/runjms
or
/qibm/proddata/mqm/java/bin/runjms64

z/OS MQ_INSTALLATION_PATHjava/bin/runjms

To use the runjms script to invoke a sample application, complete the following steps:

356 Developing Applications for IBM MQ

Procedure
1. Bring up a command prompt and navigate to the directory containing the sample application that you

want to run.
2. Enter the following command:

Path to the runjms script/runjms sample_application_name

The sample application displays a list of parameters that it needs.
3. Enter the following command to run the sample with these parameters:

Path to the runjms script/runjms sample_application_name parameters

Example

For example, to run the MQIVP sample on Linux, enter the following commands:

cd /opt/mqm/samp/wmqjava/samples
/opt/mqm/java/bin/runjms MQIVP

Related concepts
“What is installed for IBM MQ classes for JMS” on page 85
A number of files and directories are created when you install IBM MQ classes for JMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On
other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JMS applications.

Solving IBM MQ classes for Java problems
Initially, run the installation verification program. You might also have to use the trace facility.

If an application does not complete successfully, run the installation verification program, and follow the
advice given in the diagnostic messages. The installation verification program is described in “Verifying
the IBM MQ classes for Java installation” on page 354.

If the problems continue and you need to contact the IBM service team, you might be asked to turn on the
trace facility. Do this as shown in the following example.

To trace the MQIVP program:

• Create a com.ibm.mq.commonservices properties file (see Using com.ibm.mq.commonservices.
• Enter the following command:

java -Dcom.ibm.mq.commonservices=commonservices_properties_file java
-Djava.library.path= library_path MQIVP -trace

where:

• commonservices_properties_file is the path (including the filename) to the
com.ibm.mq.commonservices properties file.

• library_path is the path to the IBM MQ classes for Java libraries (see “IBM MQ classes for Java libraries”
on page 345).

For more information about how to use trace, see Tracing IBM MQ classes for Java applications.

Developing applications for IBM MQ 357

Java client connectivity to batch applications running on
z/OS
Under certain conditions, an IBM MQ classes for Java application on z/OS can connect to a queue
manager on z/OS by using a client connection. Use of a client connection can simplify IBM MQ topologies.

By using a client connection, an IBM MQ classes for Java application can connect to a remote z/OS queue
manager if the following conditions apply:

• The application is running in a batch environment.
• The queue manager being connected to is running with IBM MQ Advanced for z/OS Value Unit Edition

entitlement, and therefore has the ADVCAP parameter set to ENABLED.

For more information on IBM MQ Advanced for z/OS Value Unit Edition see IBM MQ product identifiers
and export information.

See DISPLAY QMGR for more information on ADVCAP and START QMGR for more information on
QMGRPROD.

An IBM MQ classes for Java application on z/OS cannot use a client mode connection to connect to a
queue manager that is not running on z/OS

If an IBM MQ classes for Java application on z/OS attempts to connect using client mode, and is not
allowed to do so, MQRC_ENVIRONMENT_ERROR is returned.

Advanced Message Security (AMS) support
IBM MQ classes for Java client applications can use AMS when connecting to remote z/OS queue
managers, subject to the conditions previously described in this topic.

To use AMS in this way, the client applications must use a key store type of jceracfks in
keystore.conf, where:

• The property name prefix is jceracfks and this name prefix is case insensitive.
• The key store is a RACF keyring.
• Passwords are not required, and will be ignored. This is because RACF keyrings do not use passwords.
• If you specify the provider, the provider must be IBMJCE.

When you use jceracfks with AMS, the key store must be in the form: safkeyring://user/
keyring, where:

• safkeyring is a literal and this name is case insensitive
• user is the RACF user id that owns the keyring
• keyring is the name of the RACF keyring and the name of the keyring is case sensitive

The following example uses the standard AMS keyring for user JOHNDOE:

jceracfks.keystore=safkeyring://JOHNDOE/drq.ams.keyring

Related concepts
“JMS/Jakarta Messaging client connectivity to batch applications running on z/OS” on page 121

358 Developing Applications for IBM MQ

Under certain conditions, an IBM MQ classes for JMS/Jakarta Messaging application on z/OS can connect
to a queue manager on z/OS by using a client connection. Use of a client connection can simplify IBM MQ
topologies.

Writing IBM MQ classes for Java applications
This collection of topics provides information to assist with writing Java applications to interact with IBM
MQ systems.

To use IBM MQ classes for Java to access IBM MQ queues, you write Java applications that contain calls
that put messages onto, and get messages from, IBM MQ queues. For details of individual classes, see
IBM MQ classes for Java.

Note: Automatic client reconnection is not supported by IBM MQ classes for Java.

The IBM MQ classes for Java interface
The procedural IBM MQ application programming interface uses verbs, which act on objects. The Java
programming interface uses objects, which you act upon by calling methods.

The procedural IBM MQ application programming interface is built around verbs such as these:

MQBACK, MQBEGIN, MQCLOSE, MQCONN, MQDISC,
MQGET, MQINQ, MQOPEN, MQPUT, MQSET, MQSUB

These verbs all take, as a parameter, a handle to the IBM MQ object on which they are to operate. Your
program consists of a set of IBM MQ objects, which you act upon by calling methods on those objects.

When you use the procedural interface, you disconnect from a queue manager by using the call
MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to the queue manager.

In the Java interface, the queue manager is represented by an object of class MQQueueManager. You
disconnect from the queue manager by calling the disconnect() method on that class.

// declare an object of type queue manager
MQQueueManager queueManager=new MQQueueManager();
...
// do something...
...
// disconnect from the queue manager
queueManager.disconnect();

IBM MQ classes for Java connection modes
The way you program for IBM MQ classes for Java has some dependencies on the connection modes you
want to use.

If you use client connections, there are a number of differences from the IBM MQ MQI client but it is
conceptually similar. If you use bindings mode you can use fastpath bindings and can issue the MQBEGIN
command. You specify which mode to use by setting variables in the MQEnvironment class.

IBM MQ classes for Java client connections
When IBM MQ classes for Java is used as a client, it is like the IBM MQ MQI client, but has a number of
differences.

If you are programming for IBM MQ classes for Java for use as a client, be aware of the following
differences:

• It supports only TCP/IP.
• It does not read any IBM MQ environment variables at startup.
• Information that would be stored in a channel definition and in environment variables can be stored

in a class called Environment. Alternatively, this information can be passed as parameters when the
connection is made.

Developing applications for IBM MQ 359

• Error and exception conditions are written to a log specified in the MQException class. The default
error destination is the Java console.

• Only the following attributes in an IBM MQ client configuration file are relevant to IBM MQ classes for
Java. If you specify other attributes, they are ineffective.

Stanza Attribute

ClientExitPath stanza of the client configuration
file

ExitsDefaultPath

ClientExitPath stanza of the client configuration
file

ExitsDefaultPath64

ClientExitPath stanza of the client configuration
file

JavaExitsClasspath

MessageBuffer stanza of the client configuration
file

MaximumSize

MessageBuffer stanza of the client configuration
file

PurgeTime

MessageBuffer stanza of the client configuration
file

UpdatePercentage

TCP stanza of the client configuration file ClntRcvBuffSize

TCP stanza of the client configuration file ClntSndBuffSize

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

• If connecting to a queue manager that requires character data to be converted, then the V7 Java client
is now capable of doing the conversion if queue manager is unable to do so. The client JVM must
support the conversion between the CCSID of the client and that of the queue manager.

• Automatic client reconnect is not supported by IBM MQ classes for Java.

When used in client mode, IBM MQ classes for Java does not support the MQBEGIN call.

IBM MQ classes for Java bindings mode
The bindings mode of IBM MQ classes for Java differs from the client mode in three main ways.

When used in bindings mode, IBM MQ classes for Java uses the Java Native Interface (JNI) to call directly
into the existing queue manager API, rather than communicating through a network.

By default, applications that use the IBM MQ classes for Java in bindings mode connect to a queue
manager using the ConnectOption, MQCNO_STANDARD_BINDINGS.

The IBM MQ classes for Java support the following ConnectOptions:

• MQCNO_FASTPATH_BINDING
• MQCNO_STANDARD_BINDING
• MQCNO_SHARED_BINDING
• MQCNO_ISOLATED_BINDING

For further information on ConnectOptions, see “Connecting to a queue manager using the MQCONNX
call” on page 712.

Bindings mode supports the MQBEGIN call to initiate global units of work that are coordinated by the
queue manager, on all platforms apart from IBM MQ for IBM i and IBM MQ for z/OS.

Most of the parameters provided by the MQEnvironment class are not relevant to bindings mode and are
ignored.

360 Developing Applications for IBM MQ

Defining which IBM MQ classes for Java connection to use
The type of connection to use is determined by the setting of variables in the MQEnvironment class.

Two variables are used:
MQEnvironment.properties

The connection type is determined by the value associated with the key name
CMQC.TRANSPORT_PROPERTY. Possible values are as follows:
CMQC.TRANSPORT_MQSERIES_BINDINGS

Connect in bindings mode
CMQC.TRANSPORT_MQSERIES_CLIENT

Connect in client mode
CMQC.TRANSPORT_MQSERIES

Connection mode is determined by the value of the hostname property
MQEnvironment.hostname

Set the value of this variable as follows:

• For client connections, set the value of this variable to the host name of the IBM MQ server to which
you want to connect

• For bindings mode, do not set this variable, or set it to null

Operations on queue managers
This collection of topics describes how to connect to, and disconnect from, a queue manager using IBM
MQ classes for Java.

Setting up the IBM MQ environment for IBM MQ classes for Java
For an application to connect to a queue manager in client mode, the application must specify the channel
name, host name, and port number.

Note: The information in this topic is relevant only if your application connects to a queue manager in
client mode. It is not relevant if it connects in bindings mode. See: “Connection modes for IBM MQ
classes for JMS” on page 105

You can specify the channel name, host name, and port number in one of two ways: either as fields in the
MQEnvironment class or as properties of the MQQueueManager object.

If you set fields in the MQEnvironment class, they apply to your whole application, except where they are
overridden by a properties hash table. To specify the channel name and host name in MQEnvironment,
use the following code:

MQEnvironment.hostname = "host.domain.com";
MQEnvironment.channel = "java.client.channel";

This is equivalent to setting an MQSERVER environment variable:

"java.client.channel/TCP/host.domain.com".

By default, the Java clients attempt to connect to an IBM MQ listener at port 1414. To specify a different
port, use the following code:

MQEnvironment.port = nnnn;

where nnnn is the required port number

If you pass properties to a queue manager object at its creation, they apply only to that queue
manager. Create entries in a Hashtable object with keys of hostname, channel, and, optionally, port,
and with appropriate values. To use the default port, 1414, you can omit the port entry. Create the
MQQueueManager object by using a constructor that accepts the properties hash table.

Developing applications for IBM MQ 361

Identifying a connection to the queue manager by setting an application name
An application can set a name that identifies its connection to the queue manager. This application name
is shown by the DISPLAY CONN MQSC/PCF command (where the field is called APPLTAG) or in the IBM
MQ Explorer Application Connections display (where the field is called App name).

Application names are limited to 28 characters, so longer names are truncated. If an application name
is not specified, a default is provided. The default name is based on the invoking (main) class, but if this
information is not available, the text IBM MQ Client for Java is used.

If the name of the invoking class is used, it is adjusted to fit by removing leading package names, if
necessary. For example, if the invoking class is com.example.MainApp, the full name is used, but if
the invoking class is com.example.dictionaryAndThesaurus.multilingual.mainApp, the name
multilingual.mainApp is used, because it is the longest combination of class name and rightmost
package name that fits into the available length.

If the class name itself is more than 28 characters long, it is truncated
to fit. For example, com.example.mainApplicationForSecondTestCase becomes
mainApplicationForSecondTest.

To set an application name in the MQEnvironment class, add the name to the MQEnvironment.properties
hash table, with a key of MQConstants.APPNAME_PROPERTY, by using the following code:

MQEnvironment.properties.put(MQConstants.APPNAME_PROPERTY, "my_application_name");

To set an application name in the properties hash table that is passed to the
MQQueueManager constructor, add the name to the properties hash table with a key of
MQConstants.APPNAME_PROPERTY.

Overriding properties specified in an IBM MQ client configuration file
An IBM MQ client configuration file can also specify properties that are used to configure IBM MQ classes
for Java. However, properties specified in an IBM MQ MQI client configuration file apply only when an
application connects to a queue manager in client mode.

If required, you can override any attribute in an IBM MQ configuration file in any of the following ways. The
options are shown in order of precedence.

• Set a Java system property for the configuration property.
• Set the property in the MQEnvironment.properties map.
• On Java5 and later releases, set a system environment variable.

Only the following attributes in an IBM MQ client configuration file are relevant to IBM MQ classes for
Java. If you specify or override other attributes, it has no effect.

Stanza Attribute

ClientExitPath stanza of the client configuration file ExitsDefaultPath

ClientExitPath stanza of the client configuration file ExitsDefaultPath64

ClientExitPath stanza of the client configuration file JavaExitsClasspath

MessageBuffer stanza of the client configuration
file

MaximumSize

MessageBuffer stanza of the client configuration
file

PurgeTime

MessageBuffer stanza of the client configuration
file

UpdatePercentage

TCP stanza of the client configuration file ClntRcvBufSize

362 Developing Applications for IBM MQ

Stanza Attribute

TCP stanza of the client configuration file ClntSndBufSize

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

Connecting to a queue manager in IBM MQ classes for Java
Connect to a queue manager by creating a new instance of the MQQueueManager class. Disconnect from
a queue manager by calling the disconnect() method.

You are now ready to connect to a queue manager by creating a new instance of the MQQueueManager
class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the disconnect() method on the queue manager:

queueManager.disconnect();

If you call the disconnect method, all open queues and processes that you have accessed through that
queue manager are closed. However, it is good programming practice to close these resources explicitly
when you finish using them. To do this, use the close() method on the relevant objects.

The commit() and backout() methods on a queue manager are equivalent to the MQCMIT and MQBACK
calls that are used with the procedural interface.

Using a client channel definition table with IBM MQ classes for Java
An IBM MQ classes for Java client application can use client connection channel definitions stored in a
client channel definition table (CCDT).

As an alternative to creating a client connection channel definition by setting certain fields and
environment properties in the MQEnvironment class or passing them to an MQQueueManager in a
properties hash table, an IBM MQ classes for Java client application can use client connection channel
definitions that are stored in a client channel definition table. These definitions are created by IBM MQ
Script (MQSC) commands or IBM MQ Programmable Command Format (PCF) commands, or using the
IBM MQ Explorer .

When the application creates an MQQueueManager object, the IBM MQ classes for Java client searches
the client channel definition table for a suitable client connection channel definition, and uses the channel
definition to start an MQI channel. For more information about client channel definition tables and how to
construct one, see Client channel definition table.

To use a client channel definition table, an application must first create a URL object. The URL object
encapsulates a uniform resource locator (URL) that identifies the name and location of the file containing
the client channel definition table and specifies how the file can be accessed.

For example, if the file ccdt1.tab contains a client channel definition table and is stored on the same
system on which the application is running, the application can create a URL object in the following way:

java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

As another example, suppose the file ccdt2.tab contains a client channel definition table and is stored
on a system that is different from the one on which the application is running. If the file can be accessed
using the FTP protocol, the application can create a URL object in the following way:

java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

Developing applications for IBM MQ 363

After the application has created a URL object, the application can create an MQQueueManager object
using one of the constructors that takes a URL object as a parameter. Here is an example:

MQQueueManager mars = new MQQueueManager("MARS", chanTab2);

This statement causes the IBM MQ classes for Java client to access the client channel definition table
identified by the URL object chanTab2, search the table for a suitable client connection channel definition,
and then use the channel definition to start an MQI channel to the queue manager called MARS.

Note the following points that apply if an application uses a client channel definition table:

• When the application creates an MQQueueManager object using a constructor that takes a URL object
as a parameter, no channel name must be set in the MQEnvironment class, either as a field or as
an environment property. If a channel name is set, the IBM MQ classes for Java client throws an
MQException. The field or environment property specifying the channel name is considered to be set if
its value is anything other than null, an empty string, or a string containing all blank characters.

• The queueManagerName parameter on the MQQueueManager constructor can have one of the
following values:

– The name of a queue manager
– An asterisk (*) followed by the name of a queue manager group
– An asterisk (*)
– Null, an empty string, or a string containing all blank characters

These are the same values that can be used for the QMgrName parameter on an MQCONN call issued
by a client application that is using Message Queue Interface (MQI). For more information about the
meaning of these values, see“The Message Queue Interface overview” on page 697.

If your application uses connection pooling, see“Controlling the default connection pool in IBM MQ
classes for Java” on page 383.

• When the IBM MQ classes for Java client finds a suitable client connection channel definition in the
client channel definition table, it uses only the information extracted from this channel definition to start
an MQI channel. Any channel related fields or environment properties that the application might have
set in the MQEnvironment class are ignored.

In particular, note the following points if you are using Transport Layer Security (TLS):

– An MQI channel uses TLS only if the channel definition extracted from the client channel definition
table specifies the name of a CipherSpec supported by the IBM MQ classes for Java client.

– A client channel definition table also contains information about the location of Lightweight Directory
Access Protocol (LDAP) servers that hold certificate revocation lists (CRLs). The IBM MQ classes for
Java client uses only this information to access LDAP servers that hold CRLs.

– A client channel definition table can also contain the location of an OCSP responder. IBM MQ classes
for Java cannot use the OCSP information in a client channel definition table file. However, you can
configure OCSP as described in the section Using Online Certificate Protocol

For more information about using TLS with a client channel definition table, see Specifying that an MQI
channel uses TLS.

Note also the following points if you are using channel exits:

– An MQI channel uses the channel exits and associated user data specified by the channel definition
extracted from the client channel definition table in preference to channel exits and data specified
using other methods.

– A channel definition extracted from a client channel definition table can specify channel exits that
are written in Java, C, or C++. For more information about how to write a channel exit in Java ,
see“Creating a channel exit in IBM MQ classes for Java” on page 377. For more information about
how to write a channel exit in other languages, see “Using channel exits not written in Java with IBM
MQ classes for Java” on page 380.

364 Developing Applications for IBM MQ

Specifying a range of ports for IBM MQ classes for Java client connections
You can specify a port, or a range of ports, that an application can bind to in either of two ways.

When an IBM MQ classes for Java application attempts to connect to an IBM MQ queue manager in client
mode, a firewall might allow only those connections that originate from specified ports or range of ports.
In this situation, you can specify a port, or a range of ports, that the application can bind to. You can
specify the port(s) in the following ways:

• You can set the localAddressSetting field in the MQEnvironment class. Here is an example:

MQEnvironment.localAddressSetting = "192.0.2.0(2000,3000)";

• You can set the environment property CMQC.LOCAL_ADDRESS_PROPERTY. Here is an example:

(MQEnvironment.properties).put(CMQC.LOCAL_ADDRESS_PROPERTY,
 "192.0.2.0(2000,3000)");

• When you can construct the MQQueueManager object, you can pass a properties hashtable containing a
LOCAL_ADDRESS_PROPERTY with the value "192.0.2.0(2000,3000)"

In each of these examples, when the application later connects to a queue manager, the application binds
to a local IP address and port number in the range 192.0.2.0(2000) to 192.0.2.0(3000).

In a system with more than one network interface, you can also use the localAddressSetting field, or the
environment property CMQC.LOCAL_ADDRESS_PROPERTY, to specify which network interface must be
used for a connection.

Connection errors might occur if you restrict the range of ports. If an error occurs, an MQException is
thrown containing the IBM MQ reason code MQRC_Q_MGR_NOT_AVAILABLE and the following message:

Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the specified IP address, host
name, or port number is not valid (a negative port number, for example).

Accessing queues, topics, and processes in IBM MQ classes for Java
To access queues, topics, and processes, use methods of the MQQueueManager class. The MQOD (object
descriptor structure) is collapsed into the parameters of these methods.

Queues
To open a queue you can use the accessQueue method of the MQQueueManager class. For example, on a
queue manager called queueManager, use the following code:

MQQueue queue = queueManager.accessQueue("qName",CMQC.MQOO_OUTPUT);

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the close() method to close it, as in the following example:

queue.close();

You can also create a queue by using the MQQueue constructor. The parameters are exactly the same as
for the accessQueue method, with the addition of a queue manager parameter. For example:

MQQueue queue = new MQQueue(queueManager,
 "qName",
 CMQC.MQOO_OUTPUT,
 "qMgrName",

Developing applications for IBM MQ 365

 "dynamicQName",
 "altUserID");

You can specify a number of options when you create queues. For details of these, see
Class.com.ibm.mq.MQQueue. Constructing a queue object in this way enables you to write your own
subclasses of MQQueue.

Topics
Similarly, you can open a topic using the accessTopic method of the MQQueueManager class. For
example, on a queue manager called queueManager, use the following code to create a subscriber and
publisher:

MQTopic subscriber =
 queueManager.accessTopic("TOPICSTRING","TOPICNAME",
 CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION, CMQC.MQSO_CREATE);

MQTopic publisher =
 queueManager.accessTopic("TOPICSTRING","TOPICNAME",
 CMQC.MQTOPIC_OPEN_AS_PUBLICATION, CMQC.MQOO_OUTPUT);

When you have finished using the topic, use the close() method to close it.

You can also create a topic by using the MQTopic constructor. The parameters are exactly the same as for
the accessTopic method, with the addition of a queue manager parameter. For example:

MQTopic subscriber = new
 MQTopic(queueManager,"TOPICSTRING","TOPICNAME",
 CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION, CMQC.MQSO_CREATE);

You can specify a number of options when you create topics. For details of these, see Class
com.ibm.mq.MQTopic. Constructing a topic object in this way enables you to write your own subclasses of
MQTopic.

A topic must be opened either for publication or for subscription. The MQQueueManager class has eight
accessTopic methods and the Topic class has eight constructors. In each case, four of these have a
destination parameter and four have a subscriptionName parameter (including two that have both).
These can only be used to open the topic for subscriptions. The two remaining methods have an openAs
parameter, and the topic can be opened for either publication or subscription depending on the value of
the openAs parameter.

To create a topic as a durable subscriber use either an accessTopic method of the MQQueueManager
class or an MQTopic constructor that accepts a subscription name and, in either case, set the
CMQC.MQSO_DURABLE option.

Processes
To access a process, use the accessProcess method of the MQQueueManager. For example, on a queue
manager called queueManager, use the following code to create an MQProcess object:

MQProcess process =
queueManager.accessProcess("PROCESSNAME",
CMQC.MQOO_FAIL_IF_QUIESCING);

To access a process, use the accessProcess method of the MQQueueManager.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object, use the close() method to close it, as in the following
example:

366 Developing Applications for IBM MQ

process.close();

You can also create a process by using the MQProcess constructor. The parameters are exactly the same
as for the accessProcess method, with the addition of a queue manager parameter. For example:

MQProcess process =
 new MQProcess(queueManager,"PROCESSNAME",
 CMQC.MQOO_FAIL_IF_QUIESCING);

Constructing a process object in this way enables you to write your own subclasses of MQProcess.

Handling messages in IBM MQ classes for Java
Messages are represented by the MQMessage class. You put and get messages using methods of the
MQDestination class, which has subclasses of MQQueue and MQTopic.

Put messages onto queues or topics using the put() method of the MQDestination class. You get
messages from queues or topics using the get() method of the MQDestination class. Unlike the procedural
interface, where MQPUT and MQGET put and get arrays of bytes, the Java programming language puts
and gets instances of the MQMessage class. The MQMessage class encapsulates the data buffer that
contains the actual message data, together with all the MQMD (message descriptor) parameters and
message properties that describe that message.

To build a new message, create a new instance of the MQMessage class, and use the writeXXX methods to
put data into the message buffer.

When the new message instance is created, all the MQMD parameters are automatically set to their
default values, as defined in Initial values and language declarations for MQMD. The put() method of
MQDestination also takes an instance of the MQPutMessageOptions class as a parameter. This class
represents the MQPMO structure. The following example creates a message and puts it onto a queue:

// Build a new message containing my age followed by my name
MQMessage myMessage = new MQMessage();
myMessage.writeInt(25);

String name = "Charlie Jordan";
myMessage.writeInt(name.length());
myMessage.writeBytes(name);

// Use the default put message options...
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message
!queue.put(myMessage,pmo);

The get() method of MQDestination returns a new instance of MQMessage, which represents the message
just taken from the queue. It also takes an instance of the MQGetMessageOptions class as a parameter.
This class represents the MQGMO structure.

You do not need to specify a maximum message size, because the get() method automatically adjusts the
size of its internal buffer to fit the incoming message. Use the readXXX methods of the MQMessage class
to access the data in the returned message.

The following example shows how to get a message from a queue:

// Get a message from the queue
MQMessage theMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();
queue.get(theMessage,gmo); // has default values

// Extract the message data
int age = theMessage.readInt();
int strLen = theMessage.readInt();
byte[] strData = new byte[strLen];
theMessage.readFully(strData,0,strLen);
String name = new String(strData,0);

Developing applications for IBM MQ 367

You can alter the number format that the read and write methods use by setting the encoding member
variable.

You can alter the character set to use for reading and writing strings by setting the characterSet member
variable.

See MQMessage class for more information.

Note: The writeUTF() method of MQMessage automatically encodes the length of the string as well as the
Unicode bytes it contains. When your message will be read by another Java program (using readUTF()),
this is the simplest way to send string information.

Improving the performance of nonpersistent messages in IBM MQ classes for Java
To improve performance when browsing messages or consuming nonpersistent messages from a client
application, you can use read ahead. Client applications using MQGET or asynchronous consumption
will benefit from the performance improvements when browsing messages or consuming nonpersistent
messages.

For general information about the read ahead facility, see the related topic.

In IBM MQ classes for Java, you use the CMQC.MQSO_READ_AHEAD and CMQC.MQSO_NO_READ_AHEAD
properties of an MQQueue or MQTopic object to determine whether message consumers and queue
browsers are allowed to use read ahead on that object.

Putting messages asynchronously using IBM MQ classes for Java
To put a message asynchronously, set MQPMO_ASYNC_RESPONSE.

You put messages onto queues or topics using the put() method of the MQDestination class.
To put a message asynchronously, that is, allowing the operation to complete without waiting
for a response from the queue manager, you can set MQPMO_ASYNC_RESPONSE in the options
field of MQPutMessageOptions. To determine the success or failure of asynchronous puts, use the
MQQueueManager.getAsyncStatus call.

Publish/subscribe in IBM MQ classes for Java
In IBM MQ classes for Java, the topic is represented by the MQTopic class, and you publish to it using the
MQTopic.put() methods.

For general information about IBM MQ publish/subscribe, see Publish/subscribe messaging.

Handling IBM MQ message headers with IBM MQ classes for Java
Java classes are provided representing different types of message header. Two helper classes are also
provided.

The MQHeader interface
Header objects are described by the MQHeader interface, which provides general-purpose methods for
accessing header fields and for reading and writing message content. Each header type has its own class
that implements the MQHeader interface and adds getter and setter methods for individual fields. For
example, the MQRFH2 header type is represented by the MQRFH2 class; the MQDLH header type by the
MQDLH class, and so on. The header classes perform any necessary data conversion automatically, and
can read or write data in any specified numeric encoding or character set (CCSID).

Important: The MQRFH2 headers classes treat the message as a random access file, which means that
the cursor must be positioned at the start of the message. Before using an internal message header class
like MQRFH, MQRFH2, MQCIH, MQDEAD, MQIIH or MQXMIT, make sure that you update the message's
cursor position to the correct location before passing the message to the class.

368 Developing Applications for IBM MQ

Helper classes
Two helper classes, MQHeaderIterator and MQHeaderList, assist with reading and decoding (parsing) the
header content in messages:

• The MQHeaderIterator class works like a java.util.Iterator. For as long as there are more headers in
the message, the next() method returns true, and the nextHeader() or next() method returns the next
header object.

• The MQHeaderList works like a java.util.List. Like the MQHeaderIterator, it parses header content, but
it also allows you to search for particular headers, add new headers, remove existing headers, update
header fields and then write the header content back to a message. Alternatively, you can create
an empty MQHeaderList, then populate it with header instances and write it to a message once or
repeatedly.

The MQHeaderIterator and MQHeaderList classes use the information in the MQHeaderRegistry to
know which IBM MQ header classes are associated with particular message types and formats. The
MQHeaderRegistry is configured with knowledge of all current IBM MQ formats and header types and
their implementation classes, and you can also register your own header types.

Support is provided for the following commonly used IBM MQ headers

• MQRFH - Rules and formatting header
• MQRFH2 - Like MQRFH, used to pass messages to and from a message broker belonging to IBM

Integration Bus. Also used to contain message properties
• MQCIH - CICS Bridge
• MQDLH - Dead letter header
• MQIIH - IMS information header
• MQRMH - reference message header
• MQSAPH - SAP header
• MQWIH - Work information header
• MQXQH - Transmission Queue header
• MQDH - Distribution header
• MQEPH - Encapsulated PCF header

You can also define classes representing your own headers.

To use an MQHeaderIterator to get an RFH2 header, either set MQGMO_PROPERTIES_FORCE_MQRFH2 in
the GetMessageOptions, or set the queue property PROPCTL to FORCE.

Printing all the headers in a message using IBM MQ classes for Java
In this example, an instance of MQHeaderIterator parses the headers in an MQMessage that has been
received from a queue. The MQHeader objects returned from the nextHeader() method display their
structure and contents when their toString method is invoked.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeader;
import com.ibm.mq.headers.MQHeaderIterator;
...
MQMessage message = ... // Message received from a queue.
MQHeaderIterator it = new MQHeaderIterator (message);

while (it.hasNext ())
{
 MQHeader header = it.nextHeader ();

 System.out.println ("Header type " + header.type () + ": " + header);
}

Developing applications for IBM MQ 369

Skipping over the headers in a message using IBM MQ classes for Java
In this example, the skipHeaders() method of MQHeaderIterator positions the message read cursor
immediately after the last header.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeaderIterator;
...
MQMessage message = ... // Message received from a queue.
MQHeaderIterator it = new MQHeaderIterator (message);

it.skipHeaders ();

Finding the reason code in a dead-letter message using IBM MQ classes for Java
In this example, the read method populates the MQDLH object by reading from the message. After the
read operation, the message read cursor is positioned immediately after the MQDLH header content.

Messages on the queue manager's dead-letter queue are prefixed with a dead-letter header (MQDLH). To
decide how to handle these messages - for example, to determine whether to retry or discard them - a
dead-letter handling application must look at the reason code contained in the MQDLH.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQDLH;
...
MQMessage message = ... // Message received from the dead-letter queue.
MQDLH dlh = new MQDLH ();

dlh.read (message);

System.out.println ("Reason: " + dlh.getReason ());

All header classes also provide a convenience constructor to initialize themselves directly from the
message in a single step. So the code in this example could be simplified as follows:

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQDLH;
...
MQMessage message = ... // Message received from the dead-letter queue.
MQDLH dlh = new MQDLH (message);

System.out.println ("Reason: " + dlh.getReason ());

Reading and removing the header from a dead-letter message using IBM MQ classes for Java
In this example, MQDLH is used to remove the header from a dead-letter message.

A dead-letter handling application will typically resubmit messages that have been rejected if their reason
code indicates a transient error. Before resubmitting the message, it must remove the MQDLH header.

This example performs the following steps (see the comments in the example code):

1. The MQHeaderList reads the entire message, and each header encountered in the message becomes
an item in the list.

2. Dead-letter messages contain an MQDLH as their first header, so this can be found in the first item of
the header list. The MQDLH has already been populated from the message when the MQHeaderList is
built, so there is no need to invoke its read method.

3. The reason code is extracted using the getReason() method provided by the MQDLH class.
4. The reason code has been inspected, and indicates that it is appropriate to resubmit the message. The

MQDLH is removed using the MQHeaderList remove() method.
5. The MQHeaderList writes its remaining content to a new message object. The new message now

contains everything in the original message except the MQDLH and can be written to a queue. The true
argument to the constructor and to the write method indicates that the message body is to be held
within the MQHeaderList, and written out again.

370 Developing Applications for IBM MQ

6. The format field in the message descriptor of the new message now contains the value that was
previously in the MQDLH format field. The message data matches the numeric encoding and CCSID set
in the message descriptor.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQDLH;
import com.ibm.mq.headers.MQHeaderList;
...
MQMessage message = ... // Message received from the dead-letter queue.
MQHeaderList list = new MQHeaderList (message, true); // Step 1.
MQDLH dlh = (MQDLH) list.get (0); // Step 2.
int reason = dlh.getReason (); // Step 3.
...
list.remove (dlh); // Step 4.

MQMessage newMessage = new MQMessage ();

list.write (newMessage, true); // Step 5.
newMessage.format = list.getFormat (); // Step 6.

Printing the content of a message using IBM MQ classes for Java
This example uses MQHeaderList to print out the content of a message, including its headers.

The output contains a view of all the header contents as well as the body of the message. The
MQHeaderList class decodes all the headers in one go, whereas the MQHeaderIterator steps through
them one at a time under application control. You might use this technique to provide a simple debugging
tool when writing WebSphere MQ applications.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeaderList;
...
MQMessage message = ... // Message received from a queue.

System.out.println (new MQHeaderList (message, true));

This example also prints out the message descriptor fields, using the MQMD class. The copyFrom()
method of the com.ibm.mq.headers.MQMD class populates the header object from the message
descriptor fields of the MQMessage rather than by reading the message body.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQMD;
import com.ibm.mq.headers.MQHeaderList;
...
MQMessage message = ...
MQMD md = new MQMD ();
...
md.copyFrom (message);
System.out.println (md + "\n" + new MQHeaderList (message, true));

Finding a specific type of header in a message using IBM MQ classes for Java
This example uses the indexOf(String) method of MQHeaderList to find an MQRFH2 header in a message,
if one is present.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeaderList;
import com.ibm.mq.headers.MQRFH2;
...
MQMessage message = ...
MQHeaderList list = new MQHeaderList (message);
int index = list.indexOf ("MQRFH2");

if (index >= 0)
{
 MQRFH2 rfh = (MQRFH2) list.get (index);
 ...
}

Developing applications for IBM MQ 371

Analyzing an MQRFH2 header using IBM MQ classes for Java
This example shows how to access a known field value in a named folder, using the MQRFH2 class.

The MQRFH2 class provides a number of ways to access not only the fields in the fixed part of the
structure, but also the XML-encoded folder contents that are carried within the NameValueData field. This
example shows how to access a known field value in a named folder - in this instance, the Rto field in the
jms folder, which represents the reply queue name in an MQ JMS message.

MQRFH2 rfh = ...

String value = rfh.getStringFieldValue ("jms", "Rto");

To discover the contents of an MQRFH2 (as opposed to requesting specific fields directly), you can use
the getFolders method to return a list of MQRFH2.Element, which represents the structure of a folder that
could contain fields and other folders. Setting a field or folder to null removes it from the MQRFH2. When
you manipulate the NameValueData folder contents in this way, the StrucLength field is automatically
updated accordingly.

Reading and writing byte streams other than MQMessage objects using IBM MQ classes for Java
These examples use the header classes to parse and manipulate IBM MQ header content when the data
source is not an MQMessage object.

You can use the header classes to parse and manipulate IBM MQ header content even when the data
source is something other than an MQMessage object. The MQHeader interface implemented by every
header class provides the methods int read (java.io.DataInput message, int encoding,
int characterSet) and int write (java.io.DataOutput message, int encoding,
int characterSet). The com.ibm.mq.MQMessage class implements the java.io.DataInput and
java.io.DataOutput interfaces. This means that you can use the two MQHeader methods to read and
write MQMessage content, overriding the encoding and CCSID specified in the message descriptor. This is
useful for messages that contain a chain of headers in different encodings.

You can also obtain DataInput and DataOutput objects from other data streams, for example file or
socket streams, or byte arrays carried in JMS messages. The java.io.DataInputStream classes implement
DataInput and the java.io.DataOutputStream classes implement DataOutput. This example reads IBM MQ
header content from a byte array:

import java.io.*;
import com.ibm.mq.headers.*;
...
byte [] bytes = ...
DataInput in = new DataInputStream (new ByteArrayInputStream (bytes));
MQHeaderIterator it = new MQHeaderIterator (in, CMQC.MQENC_NATIVE,
 CMQC.MQCCSI_DEFAULT);

The line starting MQHeaderIterator could be replaced with

MQDLH dlh = new MQDLH (in, CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);
// or any other header type

This example writes to a byte array using a DataOutputStream:

MQHeader header = ... // Could be any header type
ByteArrayOutputStream out = new ByteArrayOutputStream ();

header.write (new DataOutputStream (out), CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);
byte [] bytes = out.toByteArray ();

When you work with streams in this way, be careful to use the correct values for the encoding and
characterSet arguments. When reading headers, specify the encoding and CCSID with which the byte
content was originally written. When writing headers, specify the encoding and CCSID that you want to
produce. The data conversion is performed automatically by the header classes.

372 Developing Applications for IBM MQ

Creating classes for new header types using IBM MQ classes for Java
You can create Java classes for header types not supplied with IBM MQ classes for Java.

To add a Java class representing a new header type that you can use in the same way as any header
class supplied with IBM MQ classes for Java, you create a class that implements the MQHeader interface.
The simplest approach is to extend the com.ibm.mq.headers.impl.Header class. This example produces
a fully-functional class representing the MQTM header structure. You do not have to add individual getter
and setter methods for each field, but it is a useful convenience for users of the header class. The generic
getValue and setValue methods that take a string for the field name will work for all fields defined in the
header type. The inherited read, write and size methods will enable instances of the new header type to
be read and written and will calculate the header size correctly based upon its field definition. The type
definition is created just once, however many instances of this header class are created. To make the
new header definition available for decoding using the MQHeaderIterator or MQHeaderList classes, you
would register it using the MQHeaderRegistry. Note however that the MQTM header class is in fact already
provided in this package and registered in the default registry.

import com.ibm.mq.headers.impl.Header;
import com.ibm.mq.headers.impl.HeaderField;
import com.ibm.mq.headers.CMQC;

public class MQTM extends Header {
 final static HeaderType TYPE = new HeaderType ("MQTM");
 final static HeaderField StrucId = TYPE.addMQChar ("StrucId", CMQC.MQTM_STRUC_ID);
 final static HeaderField Version = TYPE.addMQLong ("Version", CMQC.MQTM_VERSION_1);
 final static HeaderField QName = TYPE.addMQChar ("QName", CMQC.MQ_Q_NAME_LENGTH);
 final static HeaderField ProcessName = TYPE.addMQChar ("ProcessName",
 CMQC.MQ_PROCESS_NAME_LENGTH);
 final static HeaderField TriggerData = TYPE.addMQChar ("TriggerData",
 CMQC.MQ_TRIGGER_DATA_LENGTH);
 final static HeaderField ApplType = TYPE.addMQLong ("ApplType");
 final static HeaderField ApplId = TYPE.addMQChar ("ApplId", 256);
 final static HeaderField EnvData = TYPE.addMQChar ("EnvData", 128);
 final static HeaderField UserData = TYPE.addMQChar ("UserData", 128);

 protected MQTM (HeaderType type){
 super (type);
 }
 public String getStrucId () {
 return getStringValue (StrucId);
 }
 public int getVersion () {
 return getIntValue (Version);
 }
 public String getQName () {
 return getStringValue (QName);
 }
 public void setQName (String value) {
 setStringValue (QName, value);
 }
 // ...Add convenience getters and setters for remaining fields in the same way.
}

Handling PCF messages with IBM MQ classes for Java
Java classes are provided to create and parse PCF-structured messages, and to facilitate sending PCF
requests and collecting PCF responses.

Classes PCFMessage & MQCFGR represent arrays of PCF parameter structures. They provide convenience
methods for adding and retrieving PCF parameters.

PCF parameter structures are represented by the classes MQCFH, MQCFIN, MQCFIN64, MQCFST,
MQCFBS, MQCFIL, MQCFIL64 MQCFSL, and MQCFGR. These share basic operational interfaces:

• Methods to read and write message content: read (), write (), and size ()
• Methods to manipulate parameters: getValue (), setValue (), getParameter () and others
• The enumerator method .nextParameter (), which parses PCF content in an MQMessage

The PCF filter parameter is used in inquire commands to provide a filter function. It in encapsulated in the
following classes:

Developing applications for IBM MQ 373

• MQCFIF - integer filter
• MQCFSF - string filter
• MQCFBF - byte filter

Two agent classes, PCFAgent and PCFMessageAgent are provided to manage the connection to a Queue
Manager, the command server queue, and an associated response queue. PCFMessageAgent extends
PCFAgent and should normally be used in preference to it. The PCFMessageAgent class converts the
received MQMessages and passes them back to the caller as a PCFMessage array. PCFAgent returns an
array of MQMessages, which you have to parse before use.

Handling message properties in IBM MQ classes for Java
Function calls to process message handles have no equivalent in IBM MQ classes for Java. To set, return,
or delete message handle properties, use methods of the MQMessage class.

For general information about message properties, see “Property names” on page 27.

In IBM MQ classes for Java access to messages is through the MQMessage class. Message handles are
therefore not provided in the Java environment and there is no equivalent to the IBM MQ function calls
MQCRTMH, MQDLTMH, MQMHBUF, and MQBUFMH

To set message handle properties in the procedural interface, you use the call MQSETMP. In IBM MQ
classes for Java, use the appropriate method of the MQMessage class:

• setBooleanProperty
• setByteProperty
• setBytesProperty
• setShortProperty
• setIntProperty
• setInt2Property
• setInt4Property
• setInt8Property
• setLongProperty
• setFloatProperty
• setDoubleProperty
• setStringProperty
• setObjectProperty

These are sometimes referred to collectively as the set*property methods.

To return the value of message handle properties in the procedural interface, you use the call MQINQMP.
In IBM MQ classes for Java, use the appropriate method of the MQMessage class:

• getBooleanProperty
• getByteProperty
• getBytesProperty
• getShortProperty
• getIntProperty
• getInt2Property
• getInt4Property
• getInt8Property
• getLongProperty
• getFloatProperty
• getDoubleProperty

374 Developing Applications for IBM MQ

• getStringProperty
• getObjectProperty

These are sometimes referred to collectively as the get*property methods.

To delete the value of message handle properties in the procedural interface, you use the call MQDLTMP.
In IBM MQ classes for Java, use the deleteProperty method of the MQMessage class.

Handling errors in IBM MQ classes for Java
Handle errors arising from IBM MQ classes for Java using Java try and catch blocks.

Methods in the Java interface do not return a completion code and reason code. Instead, they throw an
exception whenever the completion code and reason code resulting from an IBM MQ call are not both
zero. This simplifies the program logic so that you do not have to check the return codes after each call to
IBM MQ. You can decide at which points in your program you want to deal with the possibility of failure. At
these points, you can surround your code with try and catch blocks, as in the following example:

try {
 myQueue.put(messageA,putMessageOptionsA);
 myQueue.put(messageB,putMessageOptionsB);
}
catch (MQException ex) {
 // This block of code is only executed if one of
 // the two put methods gave rise to a non-zero
 // completion code or reason code.
 System.out.println("An error occurred during the put operation:" +
 "CC = " + ex.completionCode +
 "RC = " + ex.reasonCode);
 System.out.println("Cause exception:" + ex.getCause());
}

The IBM MQ call reason codes reported back in Java exceptions for z/OS are documented in API
completion and reason codes.

Exceptions that are thrown while an IBM MQ classes for Java application is running are also written to
the log. However, an application can call the MQException.logExclude() method to prevent exceptions
associated with a specific reason code from being logged. You might want to do this in situations where
you expect many exceptions associated with a specific reason code to be thrown, and you do not want
the log to be filled with these exceptions. For example, if your application attempts to get a message
from a queue each time it iterates around a loop and, for most of these attempts, you expect no suitable
message to be on the queue, you might want to prevent exceptions associated with the reason code
MQRC_NO_MSG_AVAILABLE from being logged. If an application has previously prevented exceptions
associated with a specific reason code from being logged, it can allow these exceptions to be logged again
by calling the method MQException.logInclude().

Sometimes the reason code does not convey all details associated with the error. For each exception
that is thrown, an application should check the linked exception. The linked exception itself might
have another linked exception, and so the linked exceptions form a chain leading back to the
original underlying problem. A linked exception is implemented by using the chained exception
mechanism of the java.lang.Throwable class, and an application obtains a linked exception by
calling the Throwable.getCause() method. From an exception that is an instance of MQException,
MQException.getCause() retrieves the underlying instance of com.ibm.mq.jmqi.JmqiException, and
getCause from this exception retrieves the underlying java.lang.Exception that caused the error.

Getting and setting attribute values in IBM MQ classes for Java
getXXX() and setXXX() methods are provided for many common attributes. Others can be accessed using
the generic inquire() and set() methods.

For many of the common attributes, the classes MQManagedObject, MQDestination, MQQueue, MQTopic,
MQProcess, and MQQueueManager contain getXXX() and setXXX() methods. These methods allow you
to get and set their attribute values. Note that for MQDestination, MQQueue, and MQTopic, the methods
work only if you specify the appropriate inquire and set flags when you open the object.

Developing applications for IBM MQ 375

For less common attributes, the MQQueueManager, MQDestination, MQQueue, MQTopic,, and MQProcess
classes all inherit from a class called MQManagedObject. This class defines the inquire() and set()
interfaces.

When you create a new queue manager object by using the new operator, it is automatically opened for
inquire. When you use the accessProcess() method to access a process object, that object is automatically
opened for inquire. When you use the accessQueue() method to access a queue object, that object
is not automatically opened for either inquire or set operations. This is because adding these options
automatically can cause problems with some types of remote queues. To use the inquire, set, getXXX, and
setXXX methods on a queue, you must specify the appropriate inquire and set flags in the openOptions
parameter of the accessQueue() method. The same is true for destination and topic objects.

The inquire and set methods take three parameters:

• selectors array
• intAttrs array
• charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters that are found in
MQINQ, because the length of an array in Java is always known. The following example shows how to
make an inquiry on a queue:

// inquire on a queue
final static int MQIA_DEF_PRIORITY = 6;
final static int MQCA_Q_DESC = 2013;
final static int MQ_Q_DESC_LENGTH = 64;

int[] selectors = new int[2];
int[] intAttrs = new int[1];
byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH]

selectors[0] = MQIA_DEF_PRIORITY;
selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default Priority = " + intAttrs[0]);
System.out.println("Description : " + new String(charAttrs,0));

Multithreaded programs in Java
The Java runtime environment is inherently multithreaded. IBM MQ classes for Java allows a queue
manager object to be shared by multiple threads but ensures that all access to the target queue manager
is synchronized.

Multithreaded programs are hard to avoid in Java. Consider a simple program that connects to a queue
manager and opens a queue at startup. The program displays a single button on the screen. When a user
clicks that button, the program fetches a message from the queue.

The Java runtime environment is inherently multithreaded. Therefore, your application initialization
occurs in one thread, and the code that executes in response to the button press executes in a separate
thread (the user interface thread).

With the C based IBM MQ MQI client, this would cause a problem, because there are limitations to the
sharing of handles by multiple threads. IBM MQ classes for Java relaxes this constraint, allowing a queue
manager object (and its associated queue, topic and process objects) to be shared by multiple threads.

The implementation of IBM MQ classes for Java ensures that, for a particular connection
(MQQueueManager object instance), all access to the target IBM MQ queue manager is synchronized.
A thread that wants to issue a call to a queue manager is blocked until all other calls in progress
for that connection are complete. If you require simultaneous access to the same queue manager
from multiple threads within your program, create a new MQQueueManager object for each thread that
requires concurrent access. (This is equivalent to issuing a separate MQCONN call for each thread.)

Note: Instances of the class com.ibm.mq.MQGetMessageOptions must not be shared between
threads which are requesting messages concurrently. Instances of this class are updated with data during

376 Developing Applications for IBM MQ

the corresponding MQGET request, which can result in unexpected consequences when multiple threads
are operating concurrently on the same instance of the object.

Using channel exits in IBM MQ classes for Java
An overview of how to use channel exits in an application using the IBM MQ classes for Java.

The following topics describe how to write a channel exit in Java, how to assign it, and how to pass data to
it. They then describe how to use channel exits written in C and how to use a sequence of channel exits.

Your application must have the correct security permission to load the channel exit class.

Creating a channel exit in IBM MQ classes for Java
You can provide your own channel exits by defining a Java class that implements an appropriate interface.

To implement an exit, you define a new Java class that implements the appropriate interface. Three exit
interfaces are defined in the com.ibm.mq.exits package:

• WMQSendExit
• WMQReceiveExit
• WMQSecurityExit

Note: Channel exits are supported for client connections only; they are not supported for bindings
connections. You cannot use a Java channel exit outside IBM MQ classes for Java, for example if you are
using a client application written in C.

Any TLS encryption defined for a connection is performed after send and security exits have been invoked.
Similarly, decryption is performed before receive and security exits are invoked.

The following sample defines a class that implements all three interfaces:

public class MyMQExits implements
WMQSendExit, WMQReceiveExit, WMQSecurityExit {
 // Default constructor
 public MyMQExits(){
 }
 // This method comes from the send exit interface
 public ByteBuffer channelSendExit(
MQCXP channelExitParms,
 MQCD channelDefinition,
 ByteBuffer agentBuffer)
 {
 // Fill in the body of the send exit here
 }
 // This method comes from the receive exit interface
 public ByteBuffer channelReceiveExit(
MQCXP channelExitParms,
 MQCD channelDefinition,
 ByteBuffer agentBuffer)
 {
 // Fill in the body of the receive exit here
 }
 // This method comes from the security exit interface
 public ByteBuffer channelSecurityExit(
MQCXP channelExitParms,
 MQCD channelDefinition,
 ByteBuffer agentBuffer)
 {
 // Fill in the body of the security exit here
 }
}

Each exit is passed an MQCXP object and an MQCD object. These objects represent the MQCXP and MQCD
structures defined in the procedural interface.

Any exit class you write must have a constructor. This can be either the default constructor or one that
takes a string argument. If it takes a string then the user data will be passed into the exit class when it is
created. If the exit class contains both a default constructor and a single argument constructor, the single
argument constructor has priority.

Developing applications for IBM MQ 377

For the send and security exits, your exit code must return the data that you want to send to the server.
For a receive exit, your exit code must return the modified data that you want IBM MQ to interpret.

The simplest possible exit body is:

{ return agentBuffer; }

Do not close the queue manager from within a channel exit.

Using existing channel exit classes
In versions of IBM MQ earlier than 7.0, you would implement these exits using the interfaces MQSendExit,
MQReceiveExit, and MQSecurityExit, as in the following example. This method remains valid, but the new
method is preferred for improved functionality and performance.

public class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {
 // Default constructor
 public MyMQExits(){
 }
 // This method comes from the send exit
 public byte[] sendExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefParms,
 byte agentBuffer[])
 {
 // Fill in the body of the send exit here
 }
 // This method comes from the receive exit
 public byte[] receiveExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefParms,
 byte agentBuffer[])
 {
 // Fill in the body of the receive exit here
 }
 // This method comes from the security exit
 public byte[] securityExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefParms,
 byte agentBuffer[])
 {
 // Fill in the body of the security exit here
 }
}

Assigning a channel exit in IBM MQ classes for Java
You can assign a channel exit using IBM MQ classes for Java.

There is no direct equivalent to the IBM MQ channel in IBM MQ classes for Java. Channel exits
are assigned to an MQQueueManager. For example, having defined a class that implements the
WMQSecurityExit interface, an application can use the security exit in one of four ways:

• By assigning an instance of the class to the MQEnvironment.channelSecurityExit field before creating an
MQQueueManager object

• By setting the MQEnvironment.channelSecurityExit field to a string representing the security exit class
before creating an MQQueueManager object

• By creating a key/value pair in the properties hashtable passed to MQQueueManager with a key of
CMQC.SECURITY_EXIT_PROPERTY

• Using a client channel definition table (CCDT)

Any exit assigned by setting the MQEnvironment.channelSecurityExit field to a string, creating a key/value
pair in the properties hashtable, or using a CCDT, must be written with a default constructor. An exit
assigned as an instance of a class does not need a default constructor, depending on the application.

An application can use a send or a receive exit in a similar way. For example, the following code fragment
shows you how to use the security, send, and receive exits that are implemented in the class MyMQExits,
which was defined previously, using MQEnvironment:

378 Developing Applications for IBM MQ

 MyMQExits myexits = new MyMQExits();
 MQEnvironment.channelSecurityExit = myexits;
 MQEnvironment.channelSendExit = myexits;
 MQEnvironment.channelReceiveExit = myexits;
 :
 MQQueueManager jupiter = new MQQueueManager("JUPITER");

If more than one method is used to assign a channel exit, the order of precedence is as follows:

1. If the URL of a CCDT is passed to the MQQueueManager, the contents of the CCDT determine the
channel exits to be used and any exit definitions in MQEnvironment or the properties hashtable are
ignored.

2. If no CCDT URL is passed, exit definitions from MQEnvironment and the hashtable are merged

• If the same exit type is defined in both MQEnvironment and the hashtable, the definition in the
hashtable is used.

• If equivalent old and new types of exit are specified (for example the sendExit field, which can
only be used for the type of exit used in versions earlier than IBM WebSphere MQ 7.0, and the
channelSendExit field, which can be used for any send exit), the new exit (channelSendExit) is used
rather than the old exit.

If you have declared a channel exit as a string, you must enable IBM MQ to locate the channel exit
program. You can do so in various ways, depending on the environment in which the application is running
and on how the channel exit programs are packaged.

• For an application that is running in an application server, you must store the files in the directory shown
in Table 58 on page 379 or packaged in JAR files referenced by exitClasspath.

• For an application that is not running in an application server, the following rules apply:

– If your channel exit classes are packaged in separate JAR files, these JAR files must be included in
the exitClasspath.

– If your channel exit classes are not packaged in JAR files, the class files can be stored in the directory
shown in Table 58 on page 379 or in any directory in the JVM system class path or exitClasspath.

The exitClasspath property can be specified in four ways. In order of priority, these ways are as
follows:

1. The system property com.ibm.mq.exitClasspath (defined on the command line using the -D option)
2. The exitPath stanza of the mqclient.ini file
3. A hashtable entry with the key CMQC.EXIT_CLASSPATH_PROPERTY
4. The MQEnvironment variable exitClasspath

Separate multiple paths using the java.io.File.pathSeparator character.

Table 58. The directory for channel exit programs

Platform Directory

 AIX

 Linux

/var/mqm/exits (32-bit channel exit programs)

/var/mqm/exits64 (64-bit channel exit programs)

Windows install_data_dir\exits

Note: install_data_dir is the directory that you chose for the IBM MQ data files during installation. The
default directory is C:\ProgramData\IBM\MQ.

Developing applications for IBM MQ 379

Passing data to channel exits in IBM MQ classes for Java
You can pass data to channel exits and return data from channel exits to your application.

The agentBuffer parameter
For a send exit, the agentBuffer parameter contains the data that is about to be sent. For a receive exit or
a security exit, the agentBuffer parameter contains the data that has just been received. You do not need a
length parameter, because the expression agentBuffer.limit() indicates the length of the array.

For the send and security exits, your exit code must return the data that you want to send to the server.
For a receive exit, your exit code must return the modified data that you want IBM MQ to interpret.

The simplest possible exit body is:

{ return agentBuffer; }

Channel exits are called with a buffer that has a backing array. For best performance, the exit should
return a buffer with a backing array.

User data
If an application connects to a queue manager by setting channelSecurityExit, channelSendExit,
or channelReceiveExit, 32 bytes of user data can be passed to the appropriate channel exit
class when it is called, using the channelSecurityExitUserData, channelSendExitUserData, or
channelReceiveExitUserData fields. This user data is available to the channel exit class but is refreshed
each time the exit is called. Any changes made to the user data in the channel exit will therefore be lost. If
you want to make persistent changes to data in a channel exit, use the MQCXP exitUserArea. Data in this
field is maintained between invocations of the exit.

If the application sets securityExit, sendExit, or receiveExit, no user data can be passed to these channel
exit classes.

If an application uses a client channel definition table (CCDT) to connect to a queue manager, any user
data specified in a client connection channel definition is passed to channel exit classes when they are
called. For more information about using a client channel definition table, see “Using a client channel
definition table with IBM MQ classes for Java” on page 363.

Using channel exits not written in Java with IBM MQ classes for Java
How to use channel exit programs written in C from a Java application.

In IBM MQ, you can specify the name of a channel exit program written in C as a String passed to
the channelSecurityExit, channelSendExit, or channelReceiveExit fields in the MQEnvironment object or
properties Hashtable. However, you cannot use a channel exit written in Java in an application written in
another language.

Specify the exit program name in the format library(function) and ensure that the location of the
exit program is specified as described in Path to exits.

For information about how to write a channel exit in C, see “Channel-exit programs for messaging
channels” on page 926.

Using a sequence of channel send or receive exits in IBM MQ classes for Java
An IBM MQ classes for Java application can use a sequence of channel send or receive exits that are run
in succession.

To use a sequence of send exits, an application can create either a List or a String containing the send
exits. If a List is used, each element of the List can be any of the following:

• An instance of a user defined class that implements the WMQSendExit interface
• An instance of a user defined class that implements the MQSendExit interface (for a send exit written in

Java)

380 Developing Applications for IBM MQ

• An instance of the MQExternalSendExit class (for a send exit not written in Java)
• An instance of the MQSendExitChain class
• An instance of the String class

A List cannot contain another List.

The application can use a sequence of receive exits in a similar manner.

If a String is used, it must consist of one or more comma-separated exit definitions, each of which can be
the name of a Java class, or a C program in the format library(function).

The application then assigns the List or String object to the MQEnvironment.channelSendExit field before
creating an MQQueueManager object.

The context of information passed to exits is solely within the domain of the exits. For example, if a Java
exit and a C exit are chained, the presence of the Java exit has no effect on the C exit.

Using exit chain classes
In versions earlier than IBM WebSphere MQ 7.0, two classes were provided to allow sequences of exits:

• MQSendExitChain, which implements the MQSendExit interface
• MQReceiveExitChain, which implements the MQReceiveExit interface

The use of these classes remains valid but the new method is preferred. Using the IBM MQ Classes for
Java interfaces means that your application still has a dependency on com.ibm.mq.jar If the new set of
interfaces in the com.ibm.mq.exits package are used there is no dependency on com.ibm.mq.jar.

To use a sequence of send exits, an application created a list of objects, where each object was one of the
following:

• An instance of a user defined class that implements the MQSendExit interface (for a send exit written in
Java)

• An instance of the MQExternalSendExit class (for a send exit not written in Java)
• An instance of the MQSendExitChain class

The application created an MQSendExitChain object by passing this list of objects as a parameter
on the constructor. The application would then have assigned the MQSendExitChain object to the
MQEnvironment.sendExit field before creating an MQQueueManager object.

Channel compression in IBM MQ classes for Java
Compressing the data that flows on a channel can improve the performance of the channel and reduce
network traffic. IBM MQ classes for Java use the compression function built into IBM MQ.

Using function supplied with IBM MQ, you can compress the data that flows on message channels
and MQI channels and, on either type of channel, you can compress header data and message data
independently of each other. By default, no data is compressed on a channel. For a full description of
channel compression, including how it is implemented in IBM MQ, see Data compression (COMPMSG) and
Header compression (COMPHDR).

An IBM MQ classes for Java application specifies the techniques that can be used for compressing
header or message data on a client connection by creating a java.util.Collection object. Each compression
technique is an Integer object in the collection, and the order in which the application adds the
compression techniques to the collection is the order in which the compression techniques are negotiated
with the queue manager when the client connection starts. The application can then assign the
collection to the hdrCompList field, for header data, or the msgCompList field, for message data, in the
MQEnvironment class. When the application is ready, it can start the client connection by creating an
MQQueueManager object.

The following code fragments illustrate the approach described. The first code fragment shows you how
to implement header data compression:

Developing applications for IBM MQ 381

Collection headerComp = new Vector();
headerComp.add(new Integer(CMQXC.MQCOMPRESS_SYSTEM));
:
MQEnvironment.hdrCompList = headerComp;
:
MQQueueManager qMgr = new MQQueueManager(QM);

The second code fragment shows you how to implement message data compression:

Collection msgComp = new Vector();
msgComp.add(new Integer(CMQXC.MQCOMPRESS_RLE));
msgComp.add(new Integer(CMQXC.MQCOMPRESS_ZLIBHIGH));
msgComp.add(new Integer(CMQXC.MQCOMPRESS_LZ4HIGH));
:
MQEnvironment.msgCompList = msgComp;
:
MQQueueManager qMgr = new MQQueueManager(QM);

In the second example, the compression techniques are negotiated in the order RLE, then ZLIBHIGH,
when the client connection starts. The compression technique that is selected cannot be changed during
the lifetime of the MQQueueManager object.

The compression techniques for header and message data that are supported by both the client and the
queue manager on a client connection are passed to a channel exit as collections in the hdrCompList
and msgCompList fields of an MQChannelDefinition object. The actual techniques that are currently being
used for compressing header and message data on a client connection are passed to a channel exit in the
CurHdrCompression and CurMsgCompression fields of an MQChannelExit object.

If compression is used on a client connection, the data is compressed before any channel send exits
are processed and extracted after any channel receive exits are processed. The data passed to send and
receive exits is therefore in a compressed state.

For more information about specifying compression techniques, and about which compression
techniques are available, see Class com.ibm.mq.MQEnvironment and Interface com.ibm.mq.MQC.

Sharing a TCP/IP connection in IBM MQ classes for Java
Multiple instances of an MQI channel can be made to share a single TCP/IP connection.

In IBM MQ classes for Java, you use the MQEnvironment.sharingConversations variable to control the
number of conversations that can share a single TCP/IP connection.

The SHARECNV attribute is a best effort approach to connection sharing. Therefore when a SHARECNV
value greater than 0 is used with the IBM MQ classes for Java it is not guaranteed that a new connection
request will always share an already established connection.

Connection pooling in IBM MQ classes for Java
IBM MQ classes for Java allows spare connections to be pooled for reuse.

IBM MQ classes for Java provides additional support for applications that deal with multiple connections
to IBM MQ queue managers. When a connection is no longer required, instead of destroying it, it can be
pooled and later reused. This can provide a substantial performance enhancement for applications and
middleware that connect serially to arbitrary queue managers.

IBM MQ provides a default connection pool. Applications can activate or deactivate this connection pool
by registering and deregistering tokens through the MQEnvironment class. If the pool is active when IBM
MQ classes for Java constructs an MQQueueManager object, it searches this default pool and reuses any
suitable connection. When an MQQueueManager.disconnect() call occurs, the underlying connection is
returned to the pool.

Alternatively, applications can construct an MQSimpleConnectionManager connection pool for a particular
use. Then, the application can either specify that pool during construction of an MQQueueManager object,
or pass that pool to MQEnvironment for use as the default connection pool.

382 Developing Applications for IBM MQ

To prevent connections from using too much resource, you can limit the total number of connections that
an MQSimpleConnectionManager object can handle, and you can limit the size of the connection pool.
Setting limits is useful if there are conflicting demands for connections within a JVM.

By default, the getMaxConnections() method returns the value zero, which means that there is no
limit to the number of connections that the MQSimpleConnectionManager object can handle. You can
set a limit by using the setMaxConnections() method. If you set a limit and the limit is reached, a
request for a further connection might cause an MQException to be thrown, with a reason code of
MQRC_MAX_CONNS_LIMIT_REACHED.

Controlling the default connection pool in IBM MQ classes for Java
This example shows how to use the default connection pool.

Consider the following example application, MQApp1:

import com.ibm.mq.*;
public class MQApp1
{
 public static void main(String[] args) throws MQException
 {
 for (int i=0; i<args.length; i++) {
 MQQueueManager qmgr=new MQQueueManager(args[i]);
 :
 : (do something with qmgr)
 :
 qmgr.disconnect();
 }
 }
}

MQApp1 takes a list of local queue managers from the command line, connects to each in turn, and
performs some operation. However, when the command line lists the same queue manager many times, it
is more efficient to connect only once, and to reuse that connection many times.

IBM MQ classes for Java provides a default connection pool that you can use to do this. To enable
the pool, use one of the MQEnvironment.addConnectionPoolToken() methods. To disable the pool, use
MQEnvironment.removeConnectionPoolToken().

The following example application, MQApp2, is functionally identical to MQApp1, but connects only once
to each queue manager.

import com.ibm.mq.*;
public class MQApp2
{
 public static void main(String[] args) throws MQException
 {
 MQPoolToken token=MQEnvironment.addConnectionPoolToken();

 for (int i=0; i<args.length; i++) {
 MQQueueManager qmgr=new MQQueueManager(args[i]);
 :
 : (do something with qmgr)
 :
 qmgr.disconnect();
 }

 MQEnvironment.removeConnectionPoolToken(token);

 }
}

The first bold line activates the default connection pool by registering an MQPoolToken object with
MQEnvironment.

The MQQueueManager constructor now searches this pool for an appropriate connection and only creates
a connection to the queue manager if it cannot find an existing one. The qmgr.disconnect() call returns the
connection to the pool for later reuse. These API calls are the same as the sample application MQApp1.

Developing applications for IBM MQ 383

The second highlighted line deactivates the default connection pool, which destroys any queue manager
connections stored in the pool. This is important because otherwise the application would terminate with
a number of live queue manager connections in the pool. This situation could cause errors that would
appear in the queue manager logs.

If an application uses a client channel definition table (CCDT) to connect to a queue manager, the
MQQueueManager constructor first searches the table for a suitable client connection channel definition.
If one is found, the constructor searches the default connection pool for a connection that can be used
for the channel. If the constructor cannot find a suitable connection in the pool, it then searches the
client channel definition table for the next suitable client connection channel definition, and proceeds as
described previously. If the constructor completes its search of the client channel definition table and
fails to find any suitable connection in the pool, the constructor starts a second search of the table. During
this search, the constructor tries to create a new connection for each suitable client connection channel
definition in turn, and uses the first connection that it manages to create.

The default connection pool stores a maximum of ten unused connections, and keeps unused
connections active for a maximum of five minutes. The application can alter this (for details, see
“Supplying a different connection pool in IBM MQ classes for Java” on page 385).

Instead of using MQEnvironment to supply an MQPoolToken, the application can construct its own:

 MQPoolToken token=new MQPoolToken();
 MQEnvironment.addConnectionPoolToken(token);

Some applications or middleware vendors provide subclasses of MQPoolToken in order to
pass information to a custom connection pool. They can be constructed and passed to
addConnectionPoolToken() in this way so that extra information can be passed to the connection pool.

The default connection pool and multiple components in IBM MQ classes for Java
This example shows how to add or remove MQPoolTokens from a static set of registered MQPoolToken
objects.

MQEnvironment holds a static set of registered MQPoolToken objects. To add or remove MQPoolTokens
from this set, use the following methods:

• MQEnvironment.addConnectionPoolToken()
• MQEnvironment.removeConnectionPoolToken()

An application might consist of many components that exist independently and perform work using
a queue manager. In such an application, each component should add an MQPoolToken to the
MQEnvironment set for its lifetime.

For example, the example application MQApp3 creates ten threads and starts each one. Each thread
registers its own MQPoolToken, waits for a length of time, then connects to the queue manager. After the
thread disconnects, it removes its own MQPoolToken.

The default connection pool remains active while there is at least one token in the set of MQPoolTokens,
so it will remain active for the duration of this application. The application does not need to keep a master
object in overall control of the threads.

import com.ibm.mq.*;
public class MQApp3
{
 public static void main(String[] args)
 {
 for (int i=0; i<10; i++) {
 MQApp3_Thread thread=new MQApp3_Thread(i*60000);
 thread.start();
 }
 }
}

class MQApp3_Thread extends Thread
{
 long time;

384 Developing Applications for IBM MQ

 public MQApp3_Thread(long time)
 {
 this.time=time;
 }

 public synchronized void run()
 {
 MQPoolToken token=MQEnvironment.addConnectionPoolToken();
 try {
 wait(time);
 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1");
 :
 : (do something with qmgr)
 :
 qmgr.disconnect();
 }
 catch (MQException mqe) {System.err.println("Error occurred!");}
 catch (InterruptedException ie) {}

 MQEnvironment.removeConnectionPoolToken(token);
 }
}

Supplying a different connection pool in IBM MQ classes for Java
This example shows how to use the class com.ibm.mq.MQSimpleConnectionManager to supply a
different connection pool.

This class provides basic facilities for connection pooling, and applications can use this class to customize
the behavior of the pool.

Once it is instantiated, an MQSimpleConnectionManager can be specified on the MQQueueManager
constructor. The MQSimpleConnectionManager then manages the connection that underlies the
constructed MQQueueManager. If the MQSimpleConnectionManager contains a suitable pooled
connection, that connection is reused and returned to the MQSimpleConnectionManager after an
MQQueueManager.disconnect() call.

The following code fragment demonstrates this behavior:

 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();
 myConnMan.setActive(MQSimpleConnectionManager.MODE_ACTIVE);
 MQQueueManager qmgr=new MQQueueManager("my.qmgr.1", myConnMan);
 :
 : (do something with qmgr)
 :
 qmgr.disconnect();

 MQQueueManager qmgr2=new MQQueueManager("my.qmgr.1", myConnMan);
 :
 : (do something with qmgr2)
 :
 qmgr2.disconnect();
 myConnMan.setActive(MQSimpleConnectionManager.MODE_INACTIVE);

The connection that is forged during the first MQQueueManager constructor is stored in myConnMan after
the qmgr.disconnect() call. The connection is then reused during the second call to the MQQueueManager
constructor.

The second line enables the MQSimpleConnectionManager. The last line disables
MQSimpleConnectionManager, destroying any connections held in the pool. An
MQSimpleConnectionManager is, by default, in MODE_AUTO, which is described later in this section.

An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys
connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used
for five minutes, or if there are more than ten unused connections in the pool. You can alter these values
by calling MQSimpleConnectionManager.setTimeout().

You can also set up an MQSimpleConnectionManager for use as the default connection pool, to be used
when no Connection Manager is supplied on the MQQueueManager constructor.

Developing applications for IBM MQ 385

The following application demonstrates this:

import com.ibm.mq.*;
public class MQApp4
{
 public static void main(String []args)
 {
 MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();
 myConnMan.setActive(MQSimpleConnectionManager.MODE_AUTO);
 myConnMan.setTimeout(3600000);
 myConnMan.setMaxConnections(75);
 myConnMan.setMaxUnusedConnections(50);
 MQEnvironment.setDefaultConnectionManager(myConnMan);
 MQApp3.main(args);
 }
}

The bold lines create and configure an MQSimpleConnectionManager object. The configuration does the
following:

• Ends connections that are not used for an hour
• Limits the number of connections managed by myConnMan to 75
• Limits the number of unused connections in the pool to 50
• Sets MODE_AUTO, which is the default. This means that the pool is active only if it is the

default connection manager, and there is at least one token in the set of MQPoolTokens held by
MQEnvironment.

The new MQSimpleConnectionManager is then set as the default connection manager.

In the last line, the application calls MQApp3.main(). This runs a number of threads, where each thread
uses IBM MQ independently. These threads use myConnMan when they forge connections.

JTA/JDBC coordination using IBM MQ classes for Java
IBM MQ classes for Java supports the MQQueueManager.begin() method, which allows IBM MQ to act as
a coordinator for a database which provides a JDBC type 2 or JDBC type 4 compliant driver.

This support is not available on all platforms. To check which platforms support JDBC coordination, see
System Requirements for IBM MQ.

To use the XA-JTA support, you must use the special JTA switch library. The method for using this library
varies depending on whether you are using Windows or one of the other platforms.

Configuring JTA/JDBC coordination on Windows
The XA library is supplied as a DLL with a name of the format jdbcxxx.dll.

The supplied jdbcora12.dll provides compatibility with Oracle 12C, for an IBM MQ for Windows server
installation.

On Windows systems, the XA library is supplied as a complete DLL. The name of this DLL is jdbcxxx.dll
where xxx indicates the database for which the switch library has been compiled. This library is in the
java\lib\jdbc or java\lib64\jdbc directory of your IBM MQ classes for Java installation. You must
declare the XA library, also described as the switch load file, to the queue manager. Use the IBM MQ
Explorer. Specify the details of the switch load file in the queue manager properties panel, under XA
resource manager. You must only give the name of the library. For example:

For a Db2 database set the SwitchFile field to: dbcdb2

For an Oracle database set the SwitchFile field to: jdbcora

Notes:

1. Oracle 12C is supported by the IBM MQ classes for Java, only on IBM MQ for Windows.
2. The supported version of Oracle 12C is 12.1.0.1.0 Enterprise Edition and future fix packs.
3. Oracle 64-bit databases on 64- bit Windows require the 32-bit Oracle client.

386 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/system-requirements-ibm-mq

4. Using the IBM MQ classes for Java, IBM MQ can act as a transaction coordinator. However it is not
possible to participate in a JTA style transaction.

Configuring JTA/JDBC coordination on platforms other than Windows
Object files are supplied. Link the appropriate one using the supplied makefile, and declare it to the queue
manager using the configuration file.

For each database management system, IBM MQ provides two object files. You must link one object file to
create a 32-bit switch library, and link the other object file to create a 64-bit switch library. For Db2, the
name of each object file is jdbcdb2.o, and for Oracle the name of each object file is jdbcora.o.

You must link each object file using the appropriate makefile supplied with IBM MQ. A switch library
requires other libraries, which might be stored in different locations on different systems. However, a
switch library cannot use the library path environment variable to locate these libraries because the
switch library is loaded by the queue manager, which runs in a setuid environment. The supplied
makefile therefore ensures that a switch library contains the fully qualified path names of these libraries.

To create a switch library, enter a make command with the following format. To create a 32-bit switch
library, enter the command in the /java/lib/jdbc directory of your IBM MQ installation. To create a
64-bit switch library, enter the command in the /java/lib64/jdbc directory.

make DBMS

where DBMS is the database management system for which you are creating the switch library. The valid
values are db2 for Db2 and oracle for Oracle.

Note:

• To run 32-bit applications, you must create both a 32-bit and a 64-bit switch library for each database
management system that you are using. To run 64-bit applications, you need create only a 64-bit switch
library. For Db2, the name of each switch library is jdbcdb2 and, for Oracle, the name of each switch
library is jdbcora. The makefiles ensure that 32-bit and 64-bit switch libraries are stored in different
IBM MQ directories. A 32-bit switch library is stored in the /java/lib/jdbc directory, and a 64-bit
switch library is stored in the /java/lib64/jdbc directory.

• Because you can install Oracle anywhere on a system, the makefiles use the ORACLE_HOME
environment variable to locate where Oracle is installed.

• If IBM MQ is installed to a location other than the default location, alter the value of
MQ_INSTALLATION_PATH in the makefile.

After you have created the switch libraries for Db2, Oracle, or both, you must declare them to your queue
manager. If the queue manager configuration file (qm.ini) already contains XAResourceManager stanzas
for Db2 or Oracle databases, you must replace the SwitchFile entry in each stanza by one of the
following:
For a Db2 database

SwitchFile=jdbcdb2

For an Oracle database

SwitchFile=jdbcora

Do not specify the fully qualified path name of either the 32-bit or 64-bit switch library. Specify only the
name of the library.

If the queue manager configuration file does not already contain XAResourceManager stanzas for Db2
or Oracle databases, or if you want to add additional XAResourceManager stanzas, see Administering
IBM MQ for information about how to construct an XAResourceManager stanza. However, each
SwitchFile entry in a new XAResourceManager stanza must be exactly as described previously for a
Db2 or Oracle database. You must also include the entry ThreadOfControl=PROCESS.

Developing applications for IBM MQ 387

After you have updated the queue manager configuration file, and made sure that all appropriate
database environment variables have been set, you can restart the queue manager.

Using JTA/JDBC coordination
Code your API calls as in the supplied example.

The basic sequence of API calls for a user application is:

 qMgr = new MQQueueManager("QM1")
 Connection con = qMgr.getJDBCConnection(xads);
 qMgr.begin()

 < Perform MQ and DB operations to be grouped in a unit of work >

 qMgr.commit() or qMgr.backout();
 con.close()
 qMgr.disconnect()

xads in the getJDBCConnection call is a database-specific implementation of the XADataSource
interface, which defines the details of the database to connect to. See the documentation for
your database to determine how to create an appropriate XADataSource object to pass into
getJDBCConnection.

You must also update your class path with the appropriate database-specific jar files for performing JDBC
work.

If you must connect to multiple databases, you must call getJDBCConnection several times to perform
the transaction across several different connections.

There are two forms of the getJDBCConnection, reflecting the two forms of
XADataSource.getXAConnection:

 public java.sql.Connection getJDBCConnection(javax.sql.XADataSource xads)
 throws MQException, SQLException, Exception

 public java.sql.Connection getJDBCConnection(XADataSource dataSource,
 String userid, String password)
 throws MQException, SQLException, Exception

These methods declare Exception in their throws clauses to avoid problems with the JVM
verifier for customers who are not using the JTA functions. The actual exception thrown is
javax.transaction.xa.XAException which requires the jta.jar file to be added to the class path for programs
that did not previously require it.

To use the JTA/JDBC support, you must include the following statement in your application:

MQEnvironment.properties.put(CMQC.THREAD_AFFINITY_PROPERTY, new Boolean(true));

Known problems and limitations with JTA/JDBC coordination
Some of the problems and limitations of JTA/JDBC support depend on the database management system
in use, for example, tested JDBC drivers behave differently when the database is shut down while an
application is running. If the connection to the database that an application is using is broken, there are
steps that the application can perform to reestablish a new connection to the queue manager and the
database so that it can then use those new connections to perform the transactional work required.

Because the JTA/JDBC support makes calls to JDBC drivers, the implementation of those JDBC drivers
can have a significant effect on the system behavior. In particular, tested JDBC drivers behave differently
when the database is shut down while an application is running.

Important: Always avoid abruptly shutting down a database while there are applications that are holding
open connections to it.

Note: An IBM MQ classes for Java application must connect by using bindings mode to make IBM MQ act
as a database coordinator.

388 Developing Applications for IBM MQ

Multiple XAResourceManager stanzas
The use of more than one XAResourceManager stanza in a queue manager configuration file, qm.ini,
is not supported. Any XAResourceManager stanza other than the first is ignored.

Db2

Sometimes Db2 returns a SQL0805N error. This problem can be resolved with the following CLP
command:

DB2 bind @db2cli.lst blocking all grant public

For more information, refer to the Db2 documentation.

The XAResourceManager stanza must be configured to use ThreadOfControl=PROCESS. For Db2 8.1
and higher, this does not match the default thread of control setting for Db2, so toc=p must be
specified in the XA Open String. An example XAResourceManager stanza for Db2 with JTA/JDBC
coordination is as follows:

XAResourceManager:
 Name=jdbcdb2
 SwitchFile=jdbcdb2
 XAOpenString=uid=userid,db=dbalias,pwd=password,toc=p
 ThreadOfControl=PROCESS

This does not prevent the Java applications that use JTA/JDBC coordination from being multithreaded
themselves.

Oracle
Calling the JDBC Connection.close() method after MQQueueManager.disconnect() generates an
SQLException. Either call Connection.close() before MQQueueManager.disconnect(), or omit the call to
Connection.close().

Handling issues with database connections
When an IBM MQ classes for Java application uses the JTA/JDBC support that is provided by IBM MQ, it
typically performs the following steps:

1. Creates a new MQQueueManager object to represent a connection to the queue manager that will act
as the transaction manager.

2. Constructs an XADataSource object that contains details about how to connect to the database that
will be enlisted in the transaction.

3. Calls the method MQQueueManager.getJDBCConnection(XADataSource) passing in the XADataSource
that was created previously. This causes the IBM MQ classes for Java to establish a connection to the
database.

4. Calls the method MQQueueManager.begin() to start the XA transaction.
5. Performs the messaging and database work.
6. When all of the required work has been completed, calls the method MQQueueManager.commit(). This

completes the XA transaction.
7. If a new XA transaction is required at this point, the application can repeat steps 4, 5 and 6.
8. When the application has finished, it should close the database connection that was created at step 3,

and then call the method MQQueueManager.disconnect() to disconnect from the queue manager.

The IBM MQ classes for Java maintain an internal list of all of the database connections that have
been created when an application calls MQQueueManager.getJDBCConnection(XADataSource). If a queue
manager needs to communicate with the database during the processing of the XA transaction, the
following processing takes place:

1. The queue manager calls into the IBM MQ classes for Java, passing in details of the XA call that needs
to be passed to the database.

Developing applications for IBM MQ 389

2. The IBM MQ classes for Java then look up the appropriate connection in the list, and then use that
connection to flow the XA call to the database.

If the connection to the database is lost at any point during this processing, the application should:

1. Back out any existing work that was done under the transaction, by calling the method
MQQueueManager.backout().

2. Close the database connection. This should cause the IBM MQ classes for Java to remove details of
the broken database connection from its internal list.

3. Disconnect from the queue manager, by calling the method MQQueueManager.disconnect().
4. Establish a new connection to the queue manager, by constructing a new MQQueueManager object.
5. Create a new database connection, by calling the method

MQQueueManager.getJDBCConnection(XADataSource).
6. Perform the transactional work again.

This allows the application to reestablish a new connection to the queue manager and the database, and
then use those connections to perform the transactional work required.

Transport Layer Security (TLS) support in IBM MQ classes for Java
IBM MQ classes for Java client applications support TLS encryption. You require a JSSE provider to use
TLS encryption.

IBM MQ classes for Java client applications using TRANSPORT(CLIENT) support TLS encryption. TLS
provides communication encryption, authentication, and message integrity. It is typically used to secure
communications between any two peers on the Internet or within an intranet.

IBM MQ classes for Java uses Java Secure Socket Extension (JSSE) to handle TLS encryption, and so
requires a JSSE provider. JSE v1.4 JVMs have a JSSE provider built in. Details of how to manage and store
certificates can vary from provider to provider. For information about this, refer to your JSSE provider's
documentation.

This section assumes that your JSSE provider is correctly installed and configured, and that suitable
certificates have been installed and made available to your JSSE provider.

If your IBM MQ classes for Java client application uses a client channel definition table (CCDT) to connect
to a queue manager, see “Using a client channel definition table with IBM MQ classes for Java” on page
363.

Enabling TLS in IBM MQ classes for Java
To enable TLS, you specify a CipherSuite. There are two ways of specifying a CipherSuite.

TLS is supported only for client connections. To enable TLS, you must specify the CipherSuite to use
when communicating with the queue manager, and this CipherSuite must match the CipherSpec set
on the target channel. Additionally, the named CipherSuite must be supported by your JSSE provider.
However, CipherSuites are distinct from CipherSpecs and so have different names. “TLS CipherSpecs
and CipherSuites in IBM MQ classes for Java ” on page 394 contains a table mapping the CipherSpecs
supported by IBM MQ to their equivalent CipherSuites as known to JSSE.

To enable TLS, specify the CipherSuite using the sslCipherSuite static member variable
of MQEnvironment. The following example attaches to an SVRCONN channel named
SECURE.SVRCONN.CHANNEL, which has been set up to require TLS with a CipherSpec of
TLS_RSA_WITH_AES_128_CBC_SHA256:

MQEnvironment.hostname = "your_hostname";
MQEnvironment.channel = "SECURE.SVRCONN.CHANNEL";
MQEnvironment.sslCipherSuite = "SSL_RSA_WITH_AES_128_CBC_SHA256";
MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

Although the channel has a CipherSpec of TLS_RSA_WITH_AES_128_CBC_SHA256, the Java application
must specify a CipherSuite of SSL_RSA_WITH_AES_128_CBC_SHA256. See “TLS CipherSpecs and

390 Developing Applications for IBM MQ

CipherSuites in IBM MQ classes for Java ” on page 394 for a list of mappings between CipherSpecs
and CipherSuites.

An application can also specify a CipherSuite by setting the environment property
CMQC.SSL_CIPHER_SUITE_PROPERTY.

Alternatively, use the Client Channel Definition Table (CCDT). For more information, see “Using a client
channel definition table with IBM MQ classes for Java” on page 363

If you require a client connection to use a CipherSuite that is supported by the IBM Java
JSSE FIPS provider (IBMJSSEFIPS), an application can set the sslFipsRequired field in the
MQEnvironment class to true. Alternatively, the application can set the environment property
CMQC.SSL_FIPS_REQUIRED_PROPERTY. The default value is false, which means that a client
connection can use any CipherSuite that is supported by IBM MQ.

If an application uses more than one client connection, the value of the sslFipsRequired field that is
used when the application creates the first client connection determines the value that is used when
the application creates any subsequent client connection. Therefore when the application creates a
subsequent client connection, the value of the sslFipsRequired field is ignored. You must restart the
application if you want to use a different value for the sslFipsRequired field.

To connect successfully using TLS, the JSSE truststore must be set up with certificate authority root
certificates from which the certificate presented by the queue manager can be authenticated. Similarly,
if SSLClientAuth on the SVRCONN channel has been set to MQSSL_CLIENT_AUTH_REQUIRED, the JSSE
keystore must contain an identifying certificate that is trusted by the queue manager.

Related reference
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

Using the distinguished name of the queue manager in IBM MQ classes for Java
The queue manager identifies itself using a TLS certificate, which contains a distinguished name (DN). An
IBM MQ classes for Java client application can use this DN to ensure that it is communicating with the
correct queue manager.

A DN pattern is specified using the sslPeerName variable of MQEnvironment. For example, setting:

MQEnvironment.sslPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate with a Common Name
beginning QMGR., and at least two Organizational Unit names, the first of which must be IBM and the
second WebSphere.

If sslPeerName is set, connections succeed only if it is set to a valid pattern and the queue manager
presents a matching certificate.

An application can also specify the distinguished name of the queue manager by setting the environment
property CMQC.SSL_PEER_NAME_PROPERTY. For more information about distinguished names, see
Distinguished names.

Using certificate revocation lists in IBM MQ classes for Java
Specify the certificate revocation lists to use through the java.security.cert.CertStore class. IBM MQ
classes for Java then checks certificates against the specified CRL.

A certificate revocation list (CRL) is a set of certificates that have been revoked, either by the issuing
certificate authority or by the local organization. CRLs are typically hosted on LDAP servers. With Java 2
v1.4, a CRL server can be specified at connect-time and the certificate presented by the queue manager
is checked against the CRL before the connection is allowed. For more information about certificate
revocation lists and IBM MQ, see Working with Certificate Revocation Lists and Authority Revocation Lists
and Accessing CRLs and ARLs with IBM MQ classes for Java and IBM MQ classes for JMS.

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make sure that your Java
Software Development Kit (SDK) is compatible with the CRL. Some SDKs require that the CRL conforms to
RFC 2587, which defines a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

Developing applications for IBM MQ 391

The CRLs to use are specified through the java.security.cert.CertStore class. Refer to documentation on
this class for full details of how to obtain instances of CertStore. To create a CertStore based on an LDAP
server, first create an LDAPCertStoreParameters instance, initialized with the server and port settings to
use. For example:

import java.security.cert.*;
CertStoreParameters csp = new LDAPCertStoreParameters("crl_server", 389);

Having created a CertStoreParameters instance, use the static constructor on CertStore to create a
CertStore of type LDAP:

CertStore cs = CertStore.getInstance("LDAP", csp);

Other CertStore types (for example, Collection) are also supported. Commonly there are several CRL
servers set up with identical CRL information to give redundancy. When you have a CertStore object for
each of these CRL servers, place them all in a suitable Collection. The following example shows the
CertStore objects placed in an ArrayList:

import java.util.ArrayList;
Collection crls = new ArrayList();
crls.add(cs);

This Collection can be set into the MQEnvironment static variable, sslCertStores, before connecting to
enable CRL checking:

MQEnvironment.sslCertStores = crls;

The certificate presented by the queue manager when a connection is being set up is validated as follows:

1. The first CertStore object in the Collection identified by sslCertStores is used to identify a CRL server.
2. An attempt is made to contact the CRL server.
3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the connection request fails
with reason code MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is used to identify a CRL

server and the process repeats from step 2.

If this was the last CertStore in the Collection, or if the Collection contains no CertStore
objects, the search process failed, and the connection request fails with reason code
MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

The Collection of CertStores can also be set using the CMQC.SSL_CERT_STORE_PROPERTY. As a
convenience, this property also allows a single CertStore to be specified without being a member of a
Collection.

If sslCertStores is set to null, no CRL checking is performed. This property is ignored if sslCipherSuite is
not set.

Renegotiating the secret key in IBM MQ classes for Java
An IBM MQ classes for Java client application can control when the secret key that is used for encryption
on a client connection is renegotiated, in terms of the total number of bytes sent and received.

The application can do this in either of the following ways: If the application uses more than one of these
ways, the usual precedence rules apply.

• By setting the sslResetCount field in the MQEnvironment class.

392 Developing Applications for IBM MQ

• By setting the environment property MQC.SSL_RESET_COUNT_PROPERTY in a Hashtable object. The
application then assigns the hashtable to the properties field in the MQEnvironment class, or passes
the hashtable to an MQQueueManager object on its constructor.

The value of the sslResetCount field or environment property MQC.SSL_RESET_COUNT_PROPERTY
represents the total number of bytes sent and received by the IBM MQ classes for Java client code
before the secret key is renegotiated. The number of bytes sent is the number before encryption, and
the number of bytes received is the number after decryption. The number of bytes also includes control
information sent and received by the IBM MQ classes for Java client.

If the reset count is zero, which is the default value, the secret key is never renegotiated. The reset count
is ignored if no CipherSuite is specified.

Supplying a customized SSLSocketFactory in IBM MQ classes for Java
If you use a customized JSSE Socket Factory, set the MQEnvironment.sslSocketFactory to the customized
factory object. Details vary between different JSSE implementations.

Different JSSE implementations can provide different features. For example, a specialized JSSE
implementation might allow configuration of a particular model of encryption hardware. Additionally,
some JSSE providers allow customization of keystores and truststores by program, or allow the choice of
identity certificate from the keystore to be altered. In JSSE, all these customizations are abstracted into a
factory class, javax.net.ssl.SSLSocketFactory.

See your JSSE documentation for details of how to create a customized SSLSocketFactory
implementation. The details vary from provider to provider, but a typical sequence of steps might be:

1. Create an SSLContext object using a static method on SSLContext
2. Initialize this SSLContext with appropriate KeyManager and TrustManager implementations (created

from their own factory classes)
3. Create an SSLSocketFactory from the SSLContext

When you have an SSLSocketFactory object, set the MQEnvironment.sslSocketFactory to the customized
factory object. For example:

javax.net.ssl.SSLSocketFactory sf = sslContext.getSocketFactory();
MQEnvironment.sslSocketFactory = sf;

IBM MQ classes for Java use this SSLSocketFactory to connect to the IBM MQ queue manager. This
property can also be set using the CMQC.SSL_SOCKET_FACTORY_PROPERTY. If sslSocketFactory is set to
null, the default SSLSocketFactory of the JVM is used. This property is ignored if sslCipherSuite is not set.

When you use custom SSLSocketFactories, consider the effect of TCP/IP connection sharing. If
connection sharing is possible then a new socket is not requested of the SSLSocketFactory supplied,
even if the socket produced would be different in some way in the context of a subsequent connection
request. For example, if a different client certificate is to be presented on a subsequent connection, then
connection sharing must not be allowed.

Making changes to the JSSE keystore or truststore in IBM MQ classes for Java
If you change the JSSE keystore or truststore, you must perform certain actions for the changes to take
effect.

If you change the contents of the JSSE keystore or truststore, or change the location of the keystore or
truststore file, IBM MQ classes for Java applications that are running at the time do not automatically pick
up the changes. For the changes to take effect, the following actions must be performed:

• The applications must close all their connections, and destroy any unused connections in connection
pools.

• If your JSSE provider caches information from the keystore and truststore, this information must be
refreshed.

After these actions have been performed, the applications can then re-create their connections.

Developing applications for IBM MQ 393

Depending on how you design your applications, and on the function provided by your JSSE provider, it
might be possible to perform these actions without stopping and restarting your applications. However,
stopping and restarting the applications might be the simplest solution.

Error handling when using TLS with IBM MQ classes for Java
A number of reason codes can be issued by IBM MQ classes for Java when connecting to a queue
manager using TLS.

These are explained in the following list:
MQRC_SSL_NOT_ALLOWED

The sslCipherSuite property was set, but bindings connect was used. Only client connect supports
TLS.

MQRC_JSSE_ERROR
The JSSE provider reported an error that could not be handled by IBM MQ. This could be caused by
a configuration problem with JSSE, or because the certificate presented by the queue manager could
not be validated. The exception produced by JSSE can be retrieved using the getCause() method on
MQException.

MQRC_SSL_INITIALIZATION_ERROR
An MQCONN or MQCONNX call was issued with TLS configuration options specified, but an error
occurred during the initialization of the TLS environment.

MQRC_SSL_PEER_NAME_MISMATCH
The DN pattern specified in the sslPeerName property did not match the DN presented by the queue
manager.

MQRC_SSL_PEER_NAME_ERROR
The DN pattern specified in the sslPeerName property was not valid.

MQRC_UNSUPPORTED_CIPHER_SUITE
The CipherSuite named in sslCipherSuite was not recognized by the JSSE provider. A full list
of CipherSuites supported by the JSSE provider can be obtained by a program using the
SSLSocketFactory.getSupportedCipherSuites() method. A list of CipherSuites that can be used to
communicate with IBM MQ can be found in “TLS CipherSpecs and CipherSuites in IBM MQ classes for
Java ” on page 394.

MQRC_SSL_CERTIFICATE_REVOKED
The certificate presented by the queue manager was found in a CRL specified with the sslCertStores
property. Update the queue manager to use trusted certificates.

MQRC_SSL_CERT_STORE_ERROR
None of the supplied CertStores could be searched for the certificate presented by the queue
manager. The MQException.getCause() method returns the error that occurred while searching the
first CertStore attempted. If the causal exception is NoSuchElementException, ClassCastException,
or NullPointerException, check that the Collection specified on the sslCertStores property contains at
least one valid CertStore object.

TLS CipherSpecs and CipherSuites in IBM MQ classes for Java
The ability of IBM MQ classes for Java applications to establish connections to a queue manager, depends
on the CipherSpec specified at the server end of the MQI channel and the CipherSuite specified at the
client end.

The following table lists the CipherSpecs supported by IBM MQ and their equivalent CipherSuites.

You should review the topic Deprecated CipherSpecs to see if any of the CipherSpecs, listed
in the following table, have been deprecated by IBM MQ and, if so, at which update the CipherSpec was
deprecated.

Important: The CipherSuites listed are those supported by the IBM Java Runtime Environment (JRE)
supplied with IBM MQ. The CipherSuites that are listed include those supported by the Oracle Java JRE.
For more information about configuring your application to use an Oracle Java JRE, see Configuring your
application to use IBM Java or Oracle Java CipherSuite mappings.

394 Developing Applications for IBM MQ

The table also indicates the protocol that is used for the communication, and whether or not the
CipherSuite conforms to the FIPS 140-2 standard.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the IBM Crypto for
C (ICC) cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C (ICC) certificate and be aware of any advice provided
by NIST. A replacement FIPS 140-3 module is currently in progress and its status can be viewed by
searching for it in the NIST CMVP modules in process list.

The IBM MQ Operator 3.2.0 and queue manager container image 9.4.0.0 onwards are based on UBI
9. FIPS 140-3 compliance is currently pending and its status can be viewed by searching for "Red Hat
Enterprise Linux 9 - OpenSSL FIPS Provider" in the NIST CMVP modules in process list.

Ciphersuites denoted as FIPS 140-2 compliant can be used if the application has not been configured to
enforce FIPS 140-2 compliance, but if FIPS 140-2 compliance has been configured for the application
(see the following notes on configuration) only those CipherSuites which are marked as FIPS 140-2
compatible can be configured; attempting to use other CipherSuites results in an error.

Note: Each JRE can have multiple cryptographic security providers, each of which can contribute an
implementation of the same CipherSuite. However, not all security providers are FIPS 140-2 certified.
If FIPS 140-2 compliance is not enforced for an application then it is possible that an uncertified
implementation of the CipherSuite might be used. Uncertified implementations might not operate in
compliance with FIPS 140-2, even if the CipherSuite theoretically meets the minimum security level
required by the standard. See the following notes for more information about configuring FIPS 140-2
enforcement in IBM MQ Java applications.

For more information about FIPS 140-2 and Suite-B compliance for CipherSpecs and CipherSuites,
see Specifying CipherSpecs. You might also need to be aware of information that concerns US Federal
Information Processing Standards.

To use the full set of CipherSuites and to operate with certified FIPS 140-2 and/or Suite-B compliance, a
suitable JRE is required. IBM Java 7 Service Refresh 4 Fix Pack 2 or a higher level of IBM JRE provides the
appropriate support for the TLS 1.2 CipherSuites listed in Table 59 on page 396.

To be able to use TLS 1.3 Ciphers, the JRE running your application must support TLS 1.3.

Note: To use some CipherSuites, the 'unrestricted' policy files need to be configured in the JRE. For more
details of how policy files are set up in an SDK or JRE, see the IBM SDK Policy files topic in the Security
Reference for IBM SDK, Java Technology Edition for the version you are using.

Developing applications for IBM MQ 395

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_3DES_EDE_CBC_SHA
256

SSL_ECDHE_ECDSA_WITH_3DES_EDE_CB
C_SHA

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_3
DE
S_
ED
E_
CB
C_
SH
A

TLS 1.2 yes

396 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_128_CBC_SHA2
56

SSL_ECDHE_ECDSA_WITH_AES_128_CBC
_SHA256

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A2
56

TLS 1.2 yes

Developing applications for IBM MQ 397

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_128_GCM_SHA2
56

SSL_ECDHE_ECDSA_WITH_AES_128_GC
M_SHA256

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_1
28
_G
C
M
_S
H
A2
56

TLS 1.2 yes

398 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_256_CBC_SHA3
84

SSL_ECDHE_ECDSA_WITH_AES_256_CBC
_SHA384

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A3
84

TLS 1.2 yes

Developing applications for IBM MQ 399

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_AES_256_GCM_SHA3
84

SSL_ECDHE_ECDSA_WITH_AES_256_GC
M_SHA384

TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_A
ES
_2
56
_G
C
M
_S
H
A3
84

TLS 1.2 yes

ECDHE_ECDSA_NULL_SHA256 SSL_ECDHE_ECDSA_WITH_NULL_SHA TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_N
UL
L_
SH
A

TLS 1.2 no

400 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_ECDSA_RC4_128_SHA256 SSL_ECDHE_ECDSA_WITH_RC4_128_SHA TL
S_
EC
D
HE
_E
CD
SA
_
WI
TH
_R
C4
_1
28
_S
H
A

TLS 1.2 no

ECDHE_RSA_3DES_EDE_CBC_SHA25
6

SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_
SHA

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_3
DE
S_
ED
E_
CB
C_
SH
A

TLS 1.2 yes

Developing applications for IBM MQ 401

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_128_CBC_SHA256 SSL_ECDHE_RSA_WITH_AES_128_CBC_S
HA256

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A2
56

TLS 1.2 yes

402 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_128_GCM_SHA256 SSL_ECDHE_RSA_WITH_AES_128_GCM_S
HA256

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_1
28
_G
C
M
_S
H
A2
56

TLS 1.2 yes

Developing applications for IBM MQ 403

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_256_CBC_SHA384 SSL_ECDHE_RSA_WITH_AES_256_CBC_S
HA384

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A3
84

TLS 1.2 yes

404 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_AES_256_GCM_SHA384 SSL_ECDHE_RSA_WITH_AES_256_GCM_S
HA384

TL
S_
EC
D
HE
_R
SA
_
WI
TH
_A
ES
_2
56
_G
C
M
_S
H
A3
84

TLS 1.2 yes

ECDHE_RSA_NULL_SHA256 SSL_ECDHE_RSA_WITH_NULL_SHA TL
S_
EC
D
HE
_R
SA
_
WI
TH
_N
UL
L_
SH
A

TLS 1.2 no

Developing applications for IBM MQ 405

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ECDHE_RSA_RC4_128_SHA256 SSL_ECDHE_RSA_WITH_RC4_128_SHA TL
S_
EC
D
HE
_R
SA
_
WI
TH
_R
C4
_1
28
_S
H
A

TLS 1.2 no

TLS_RSA_WITH_3DES_EDE_CBC_SHA
“2” on page 414

SSL_RSA_WITH_3DES_EDE_CBC_SHA TL
S_
RS
A_
WI
TH
_3
DE
S_
ED
E_
CB
C_
SH
A

TLS 1.0 no “4”
on
page
414

406 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA TL
S_
RS
A_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A

TLS 1.0 no “4”
on
page
414

TLS_RSA_WITH_AES_128_CBC_SHA2
56

SSL_RSA_WITH_AES_128_CBC_SHA256 TL
S_
RS
A_
WI
TH
_A
ES
_1
28
_C
BC
_S
H
A2
56

TLS 1.2 no “4”
on
page
414

Developing applications for IBM MQ 407

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_AES_128_GCM_SHA
256

SSL_RSA_WITH_AES_128_GCM_SHA256 TL
S_
RS
A_
WI
TH
_A
ES
_1
28
_G
C
M
_S
H
A2
56

TLS 1.2 no “4”
on
page
414

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA TL
S_
RS
A_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A

TLS 1.0 no “4”
on
page
414

408 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_AES_256_CBC_SHA2
56

SSL_RSA_WITH_AES_256_CBC_SHA256 TL
S_
RS
A_
WI
TH
_A
ES
_2
56
_C
BC
_S
H
A2
56

TLS 1.2 no “4”
on
page
414

TLS_RSA_WITH_AES_256_GCM_SHA
384

SSL_RSA_WITH_AES_256_GCM_SHA384 TL
S_
RS
A_
WI
TH
_A
ES
_2
56
_G
C
M
_S
H
A3
84

TLS 1.2 no “4”
on
page
414

Developing applications for IBM MQ 409

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA SS
L_
RS
A_
WI
TH
_D
ES
_C
BC
_S
H
A

TLS 1.0 no

TLS_RSA_WITH_NULL_SHA256 SSL_RSA_WITH_NULL_SHA256 TL
S_
RS
A_
WI
TH
_N
UL
L_
SH
A2
56

TLS 1.2 no

TLS_RSA_WITH_RC4_128_SHA256 SSL_RSA_WITH_RC4_128_SHA SS
L_
RS
A_
WI
TH
_R
C4
_1
28
_S
H
A

TLS 1.2 no

410 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

ANY_TLS12 *TLS12 *T
LS
12

TLS 1.2 yes

TLS_AES_128_GCM_SHA256 “3” on page
414

TLS_AES_128_GCM_SHA256 TL
S_
AE
S_
12
8_
GC
M
_S
H
A2
56

TLS V1.3 no

TLS_AES_256_GCM_SHA384 “3” on page
414

TLS_AES_256_GCM_SHA384 TL
S_
AE
S_
25
6_
GC
M
_S
H
A3
84

TLS V1.3 no

Developing applications for IBM MQ 411

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_CHACHA20_POLY1305_SHA256
“3” on page 414

TLS_CHACHA20_POLY1305_SHA256 TL
S_
C
H
AC
H
A2
0_
PO
LY
13
05
_S
H
A2
56

TLS V1.3 no

TLS_AES_128_CCM_SHA256 “3” on page
414

TLS_AES_128_CCM_SHA256 TL
S_
AE
S_
12
8_
CC
M
_S
H
A2
56

TLS V1.3 no

412 Developing Applications for IBM MQ

Table 59. CipherSpecs supported by IBM MQ and their equivalent CipherSuites (continued)

CipherSpec “1” on page 414 Equivalent CipherSuite (IBM JRE) Eq
ui
va
le
nt
Ci
ph
er
Su
ite
(O
ra
cl
e
JR
E)

Protocol FIPS
140-2
compa
tible

TLS_AES_128_CCM_8_SHA256 “3” on
page 414

TLS_AES_128_CCM_8_SHA256 TL
S_
AE
S_
12
8_
CC
M
_8
_S
H
A2
56

TLS V1.3 no

ANY “3” on page 414 *ANY *A
NY

Multiple no

ANY_TLS13 “3” on page 414 *TLS13 *T
LS
13

TLS V13 no

ANY_TLS12_OR_HIGHER “3” on page 414 *TLS12ORHIGHER *T
LS
12
O
R
HI
G
HE
R

TLS 1.2 and
above

no

ANY_TLS13_OR_HIGHER “3” on page 414 *TLS13ORHIGHER *T
LS
13
O
R
HI
G
HE
R

TLS 1.3 and
above

no

Developing applications for IBM MQ 413

Notes:

1. This is the value configured on a channel in IBM MQ, including in a CCDT (binary or JSON).

2. CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be
used to transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To
avoid this error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

3. To be able to use TLS v1.3 Ciphers, the Java runtime environment (JRE) running your application must
support TLS v1.3.

4. From IBM MQ 9.4.0, the IBM Java 8 JRE removes support for RSA key
exchange when operating in FIPS mode.

Configuring Ciphersuites and FIPS-compliance in an IBM MQ classes for Java
application
• An application that uses IBM MQ classes for Java can use either of two methods to set the CipherSuite

for a connection:

– Set the sslCipherSuite field in the MQEnvironment class to the CipherSuite name.
– Set the property CMQC.SSL_CIPHER_SUITE_PROPERTY in the properties hashtable passed to the

MQQueueManager constructor to the CipherSuite name.
• An application that uses IBM MQ classes for Java can use either of two methods to enforce FIPS 140-2

compliance:

– Set the sslFipsRequired field to true in the MQEnvironment class.
– Set the property CMQC.SSL_FIPS_REQUIRED_PROPERTYin the properties hash table passed to the

MQQueueManager constructor to true.

Configuring your application to use IBM Java or Oracle Java CipherSuite mappings

From IBM MQ 9.4.0, a Cipher can be defined as either the CipherSpec or CipherSuite name
and is handled correctly by IBM MQ.

Note: The Java System Property com.ibm.mq.cfg.useIBMCipherMappings, which
controlled which mappings were used in earlier versions of IBM MQ, is no longer needed and is removed
from the product at IBM MQ 9.4.0.

Interoperability limitations
Certain CipherSuites might be compatible with more than one IBM MQ CipherSpec, depending on
the protocol in use. However, only the CipherSuite/CipherSpec combination that uses the TLS version
specified in Table 1 is supported. Attempting to use the unsupported combinations of CipherSuites
and CipherSpecs will fail with an appropriate exception. Installations using any of these CipherSuite/
CipherSpec combinations should move to a supported combination.

The following table shows the CipherSuites to which this limitation applies.

Table 60. CipherSuites and their supported and unsupported CipherSpecs

CipherSuite Supported TLS CipherSpec Unsupported SSL
CipherSpec

SSL_RSA_WITH_3DES_EDE_CBC_SH
A

TLS_RSA_WITH_3DES_EDE_CBC_SH
A “1” on page 415

TRIPLE_DES_SHA_US

SSL_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA DES_SHA_EXPORT

SSL_RSA_WITH_RC4_128_SHA TLS_RSA_WITH_RC4_128_SHA256 RC4_SHA_US

414 Developing Applications for IBM MQ

Note:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can
still be used to transfer up to 32 GB of data before the connection is terminated with error AMQ9288.
To avoid this error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Running IBM MQ classes for Java applications
If you write an application (a class that contains a main() method), using either the client or the bindings
mode, run your program using the Java interpreter.

Use the command:

java -Djava.library.path= library_path MyClass

where library_path is the path to the IBM MQ classes for Java libraries. for more information, see “IBM
MQ classes for Java libraries” on page 345.

Related tasks
Tracing IBM MQ classes for Java applications
Tracing the IBM MQ Resource Adapter

IBM MQ classes for Java environment-dependent behavior
IBM MQ classes for Java allow you to create applications that can run against different versions of IBM
MQ. This collection of topics describes the behavior of the Java classes dependent on these different
versions.

IBM MQ classes for Java provides a core of classes, which provide consistent function and behavior in all
the environments. Features outside this core depend on the capability of the queue manager to which the
application is connected.

Except where noted here, the behavior exhibited is as described in the MQI application reference
appropriate to the queue manager.

Core classes in IBM MQ classes for Java
IBM MQ classes for Java contains a core set of classes, which can be used in all environments.

The following set of classes are considered core classes, and can be used in all environments with only
the minor variations listed in “Restrictions and variations for core classes of IBM MQ classes for Java” on
page 416.

• MQEnvironment
• MQException
• MQGetMessageOptions

Excluding:

– MatchOptions
– GroupStatus
– SegmentStatus
– Segmentation

• MQManagedObject

Excluding:

– inquire()
– set()

• MQMessage

Developing applications for IBM MQ 415

Excluding:

– groupId
– messageFlags
– messageSequenceNumber
– offset
– originalLength

• MQPoolServices
• MQPoolServicesEvent
• MQPoolServicesEventListener
• MQPoolToken
• MQPutMessageOptions

Excluding:

– knownDestCount
– unknownDestCount
– invalidDestCount
– recordFields

• MQProcess
• MQQueue
• MQQueueManager

Excluding:

– begin()
– accessDistributionList()

• MQSimpleConnectionManager
• MQTopic
• MQC

Note:

1. Some constants are not included in the core (see “Restrictions and variations for core classes of IBM
MQ classes for Java” on page 416 for details); do not use them in completely portable programs.

2. Some platforms do not support all connection modes. On these platforms, you can use only the core
classes and options that relate to the supported modes.

Restrictions and variations for core classes of IBM MQ classes for Java
The core classes generally behave consistently across all environments, even if the equivalent MQI calls
normally have environment differences. The behavior is as if a AIX, Linux, or Windows queue manager is
used, except for the following minor restrictions and variations.

Restrictions for MQGMO_* values in IBM MQ classes for Java
Certain MQGMO_* values are not supported by all queue managers.

Use of the following MQGMO_* values might result in an MQException being thrown from an
MQQueue.get():

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_LOCK
MQGMO_UNLOCK
MQGMO_LOGICAL_ORDER

416 Developing Applications for IBM MQ

MQGMO_COMPLETE_MESSAGE
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_UNMARKED_BROWSE_MSG
MQGMO_MARK_BROWSE_HANDLE
MQGMO_MARK_BROWSE_CO_OP
MQGMO_UNMARK_BROWSE_HANDLE
MQGMO_UNMARK_BROWSE_CO_OP

Additionally, MQGMO_SET_SIGNAL is not supported when used from Java.

Restrictions for MQPMRF_* values in IBM MQ classes for Java
These are used only when putting messages to a distribution list, and are supported only by queue
managers supporting distribution lists. For example, z/OS queue managers do not support distribution
lists.

Restrictions for MQPMO_* values in IBM MQ classes for Java
Certain MQPMO_* values are not supported by all queue managers

Use of the following MQPMO_* values might result in an MQException being thrown from an
MQQueue.put() or an MQQueueManager.put():

MQPMO_LOGICAL_ORDER
MQPMO_NEW_CORREL_ID
MQPMO_NEW_MESSAGE_ID
MQPMO_RESOLVE_LOCAL_Q

Restrictions and variations for MQCNO_* values in IBM MQ classes for Java
Certain MQCNO_* values are not supported.

• Automatic client reconnect is not supported by the IBM MQ classes for Java. Whatever
value MQCNO_RECONNECT_* you set, the connection continues to behave as if you set
MQCNO_RECONNECT_DISABLED.

• MQCNO_FASTPATH is ignored on queue managers that do not support MQCNO_FASTPATH. It is also
ignored by client connections.

Restrictions for MQRO_* values in IBM MQ classes for Java
The following report options can be set.

MQRO_EXCEPTION_WITH_FULL_DATA
MQRO_EXPIRATION_WITH_FULL_DATA
MQRO_COA_WITH_FULL_DATA
MQRO_COD_WITH_FULL_DATA
MQRO_DISCARD_MSG
MQRO_PASS_DISCARD_AND_EXPIRY

For more information see Report.

Miscellaneous differences between IBM MQ classes for Java on z/OS and other platforms
IBM MQ for z/OS behaves differently from IBM MQ on other platforms in some areas.
BackoutCount

A z/OS queue manager returns a maximum BackoutCount of 255, even if the message has been
backed out more than 255 times.

Default dynamic queue prefix
When connected to a z/OS queue manager using a bindings connection, the default dynamic queue
prefix is CSQ.*. Otherwise, the default dynamic queue prefix is AMQ.*.

Developing applications for IBM MQ 417

MQQueueManager constructor
Client connect is not supported on z/OS. Attempting to connect with client options results in an
MQException with MQCC_FAILED and MQRC_ENVIRONMENT_ERROR.

The MQQueueManager constructor might also fail with MQRC_CHAR_CONVERSION_ERROR (if
it fails to initialize conversion between the IBM-1047 and ISO8859-1 code pages), or
MQRC_UCS2_CONVERSION_ERROR (if it fails to initialize conversion between the queue manager's
code page and Unicode). If your application fails with one of these reason codes, ensure that the
National Language Resources component of Language Environment is installed, and ensure that the
correct conversion tables are available.

Conversion tables for Unicode are installed as part of the z/OS C/C++ optional feature. See the z/OS
C/C++ Programming Guide, SC09-4765, for more information about enabling UCS-2 conversions.

Features outside the core classes of IBM MQ classes for Java
IBM MQ classes for Java contain certain functions that are specifically designed to use API extensions
that are not supported by all queue managers. This collection of topics describes how they behave when
using a queue manager that does not support them.

Variations in the MQQueueManager constructor option
Some of the MQQueueManager constructors include an optional integer argument. Some values of this
argument are not accepted on all platforms.

Where an MQQueueManager constructor include an optional integer argument, it maps onto the
MQCNO options field of the MQI, and is used to switch between normal and fast path connection.
This extended form of the constructor is accepted in all environments, if the only options used are
MQCNO_STANDARD_BINDING or MQCNO_FASTPATH_BINDING. Any other options cause the constructor
to fail with MQRC_OPTIONS_ERROR. The fast path option CMQC.MQCNO_FASTPATH_BINDING is
honored only with a bindings connection to a queue manager that supports it. In other environments,
it is ignored.

Restrictions on the MQQueueManager.begin() method
This method can be used only against an IBM MQ queue manager on AIX, Linux, and Windows systems in
bindings mode. Otherwise, it fails with MQRC_ENVIRONMENT_ERROR.

See “JTA/JDBC coordination using IBM MQ classes for Java” on page 386 for more details.

Variations in the MQGetMessageOptions fields
Some queue managers do not support the Version 2 MQGMO structure, so you must set some fields to
their default values.

When using a queue manager that does not support the Version 2 MQGMO structure, leave the following
fields set to their default values:

GroupStatus
SegmentStatus
Segmentation

Also, the MatchOptions field supports only MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID.
If you put unsupported values into these fields, the subsequent MQDestination.get() fails with
MQRC_GMO_ERROR. If the queue manager does not support the Version 2 MQGMO structure, these
fields are not updated after a successful MQDestination.get().

Restrictions in distribution lists in IBM MQ classes for Java
Not all queue managers allow you to open an MQDistributionList.

The following classes are used to create distribution lists:

MQDistributionList
MQDistributionListItem
MQMessageTracker

418 Developing Applications for IBM MQ

You can create and populate MQDistributionLists and MQDistributionListItems in any environment, but
not all queue managers allow you to open an MQDistributionList. In particular, z/OS queue managers
do not support distribution lists. Attempting to open an MQDistributionList when using such a queue
manager results in MQRC_OD_ERROR.

Variations in MQPutMessageOptions fields
If a queue manager does not support distribution lists, certain MQPMO fields are treated differently.

Four fields in the MQPMO are rendered as the following member variables in the MQPutMessageOptions
class:

knownDestCount
unknownDestCount
invalidDestCount
recordFields

These fields are primarily intended for use with distribution lists. However, a queue manager that
supports distribution lists also fills in the DestCount fields after an MQPUT to a single queue. For example,
if the queue resolves to a local queue, knownDestCount is set to 1 and the other two count fields are set
to 0.

If the queue manager does not support distribution lists, these values are simulated as follows:

• If the put() succeeds, unknownDestCount is set to 1, and the others are set to 0.
• If the put() fails, invalidDestCount is set to 1, and the others are set to 0.

The recordFields variable is used with distribution lists. A value can be written into recordFields at
any time, regardless of the environment. It is ignored if the MQPutMessageOptions object is used on a
subsequent MQDestination.put() or MQQueueManager.put(), rather than MQDistributionList.put().

Restrictions in MQMD fields with IBM MQ classes for Java
Certain MQMD fields concerned with message segmentation should be left at their default value when
using a queue manager that does not support segmentation.

The following MQMD fields are largely concerned with message segmentation:

GroupId
MsgSeqNumber
Offset
MsgFlags
OriginalLength

If an application sets any of these MQMD fields to values other than their defaults, and then does a put()
or get() on a queue manager that does not support these, the put() or get() raises an MQException with
MQRC_MD_ERROR. A successful put() or get() with such a queue manager always leaves the MQMD fields
set to their default values. Do not send a grouped or segmented message to a Java application that runs
against a queue manager that does not support message grouping and segmentation.

If a Java application attempts to get() a message from a queue manager that does not support these
fields, and the physical message to be retrieved is part of a group of segmented messages (that is, it has
non-default values for the MQMD fields), it is retrieved without error. However, the MQMD fields in the
MQMessage are not updated, the MQMessage format property is set to MQFMT_MD_EXTENSION, and the
true message data is prefixed with an MQMDE structure that contains the values for the new fields.

Restrictions for IBM MQ classes for Java under CICS Transaction Server
In the CICS Transaction Server for z/OS environment, only the main (first) thread is allowed to issue CICS
or IBM MQ calls.

Note, that IBM MQ JMS classes are not supported for use in a CICS Java application.

It is therefore not possible to share MQQueueManager or MQQueue objects between threads in this
environment, or to create a new MQQueueManager on a child thread.

Developing applications for IBM MQ 419

 “Miscellaneous differences between IBM MQ classes for Java on z/OS and other platforms”
on page 417 identifies some restrictions and variations that apply to the IBM MQ classes for Java
when running against a z/OS queue manager. Additionally, when running under CICS, the transaction
control methods on MQQueueManager are not supported. Instead of issuing MQQueueManager.commit()
or MQQueueManager.backout(), applications use the JCICS task synchronization methods, Task.commit()
and Task.rollback(). The Task class is supplied by JCICS in the com.ibm.cics.server package.

Using the IBM MQ resource adapter
The resource adapter allows applications that are running in an application server to access IBM MQ
resources. It supports inbound and outbound communication.

What the resource adapter contains
From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications. IBM MQ 9.3.0
and later continue to support JMS 2.0 for existing applications. In addition to the resource adapter that
supports Java EE and JMS 2.0, IBM MQ 9.3.0 and later provide a resource adapter that supports Jakarta
Messaging.

IBM MQ resource adapter for Jakarta Messaging
The Jakarta Connectors Architecture provides a standard way of connecting applications that are
running in a Jakarta EE environment to an Enterprise Information System (EIS) such as IBM MQ or
Db2. The IBM MQ resource adapter for Jakarta Messaging implements the Jakarta Connectors 2.0.0
interfaces and contains the IBM MQ classes for Jakarta Messaging. It allows Jakarta Messaging
applications and message driven beans (MDBs) running in an application server, to access the
resources of an IBM MQ queue manager. The resource adapter supports both the point-to-point
domain and the publish/subscribe domain.

IBM MQ resource adapter for JMS 2.0
The Java Platform, Enterprise Edition Connector Architecture (JCA) provides a standard way of
connecting applications that are running in a Java EE environment to an Enterprise Information
System (EIS) such as IBM MQ or Db2. The IBM MQ resource adapter for JMS 2.0 implements the
JCA 1.7 interfaces and contains the IBM MQ classes for JMS. It allows JMS applications and message
driven beans (MDBs), running in an application server, to access the resources of an IBM MQ queue
manager. The resource adapter supports both the point-to-point domain and the publish/subscribe
domain.

The IBM MQ resource adapter supports two types of communication between an application and a queue
manager:
Outbound communication

An application starts a connection to a queue manager, and then sends JMS messages to JMS
destinations and receives JMS messages from JMS destinations in a synchronous manner.

Inbound communication
A JMS message that arrives at a JMS destination is delivered to an MDB, which processes the
message asynchronously.

The resource adapter also contains the IBM MQ classes for Java. The classes are automatically available
to applications that are running in an application server that the resource adapter has been deployed into,
and allow applications that are running in that application server to use the IBM MQ classes for Java API
when they are accessing resources of an IBM MQ queue manager.

The use of the IBM MQ classes for Java within a Java EE environment is supported with restrictions. For
information about these restrictions, see “Running IBM MQ classes for Java applications within Java EE”
on page 337.

420 Developing Applications for IBM MQ

Which version of the resource adapter to use
The version of the resource adapter that you use depends on whether you are deploying it into an
application server that supports Jakarta EE or Java EE:

Jakarta EE
From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported. The IBM MQ resource adapter for Jakarta
Messaging must be deployed within an application server that supports Jakarta EE.

Java EE 7
The IBM MQ 8.0 and later resource adapter supports JCA v1.7 and provides JMS 2.0 support. This
resource adapter needs to be deployed within a Java EE 7 and later application server (see “IBM MQ
resource adapter statement of support” on page 422).
You can install the IBM MQ 8.0 or later resource adapter on any application server that is certified
as compliant with the Java Platform, Enterprise Edition 7 specification. Using the IBM MQ 8.0 or
later resource adapter, an application can connect to a queue manager using either the BINDINGS or
CLIENT transport.

Important: The IBM MQ 8.0 or later resource adapter can be deployed only into an application server
that supports JMS 2.0.

Using the resource adapter with WebSphere Application Server traditional
The IBM MQ resource adapter is pre-installed within WebSphere Application Server traditional 9.0 or
later. Therefore, there is no requirement to install a new resource adapter.

 WebSphere Application Server traditional does not currently support Jakarta EE. See IBM
MQ resource adapter statement of support.

Note: An IBM MQ 9.0 or later resource adapter can connect in CLIENT or BINDINGS transport mode to
any in-service IBM MQ queue manager.

Using the resource adapter with WebSphere Liberty
To connect to IBM MQ from WebSphere Liberty, you must use the IBM MQ resource adapter. Since Liberty
does not contain the IBM MQ resource adapter, you must obtain it separately from Fix Central.

The version of the resource adapter that you use depends on whether you are deploying it into a version
of Liberty that supports Jakarta EE or Java EE.

For more information about how to download and install the resource adapter, see “Installing the
resource adapter in Liberty” on page 429.

Related concepts
“Configuring the resource adapter for inbound communication” on page 436
To configure inbound communication, define the properties of one or more ActivationSpec objects.
“Configuring the resource adapter for outbound communication” on page 453
To configure outbound communication, define the properties of a ConnectionFactory object and an
administered destination object.
“Using IBM MQ classes for JMS/Jakarta Messaging” on page 79
IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging are the Java messaging providers
supplied with IBM MQ. As well as implementing the interfaces defined in the JMS and Jakarta Messaging
specifications, these messaging providers add two sets of extensions to the Java messaging API.
“Using IBM MQ classes for Java” on page 335
Use IBM MQ in a Java environment. IBM MQ classes for Java allow a Java application to connect to IBM
MQ as an IBM MQ client, or connect directly to an IBM MQ queue manager.
Related reference
Configuring the application server to use the latest resource adapter maintenance level
Problem determination for the IBM MQ resource adapter

Developing applications for IBM MQ 421

WebSphere Application Server topics
Maintaining the IBM MQ resource adapter
Deploying JMS applications to Liberty to use the IBM MQ messaging provider

IBM MQ resource adapter statement of support
The IBM MQ resource adapter that you must use for communication between an application and a queue
manager depends on whether you are using the Jakarta Messaging 3.0 API or the JMS 2.0 API.

IBM MQ 8.0 or later comes with a resource adapter that implements the JMS 2.0
specification. It can be deployed only into an application server that is Java Platform, Enterprise Edition
7 (Java EE 7) compliant and therefore supports JMS 2.0. A list of certified application servers for Java
Platform, Enterprise Edition is maintained on Oracle's web site.

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 and later continue to support JMS 2.0 for existing applications. In addition to the resource
adapter that supports Java EE and JMS 2.0, IBM MQ 9.3.0 and later provide a resource adapter that
supports Jakarta Messaging. It is not supported to use both the Jakarta Messaging 3.0 API and the JMS
2.0 API in the same application. For more information, see Using IBM MQ classes for JMS.

Deployment within WebSphere Liberty
WebSphere Liberty 8.5.5 Fix Pack 6 and later, and WebSphere Application Server Liberty 9.0 and later are
Java EE 7 certified application servers so the IBM MQ 9.0 resource adapter can be deployed into them.

To use the IBM MQ resource adapter for Jakarta Messaging with Liberty, you must use a version of Liberty
that supports Jakarta EE.

WebSphere Liberty has the following features available for working with resource adapters:

• The messaging-3.0 feature to allow working with Jakarta Messaging 3.0 resource
adapters.

• The wmqJmsClient-2.0 feature to allow working with JMS 2.0 resource adapters.
• The wmqJmsClient-1.1 feature to allow working with JMS 1.1 resource adapters.

Important:

• The IBM MQ resource adapter for Jakarta Messaging must be deployed into a version of
Liberty that supports Jakarta EE. This resource adapter cannot be used with versions of Liberty that
support the older Java EE specification not Jakarta EE.

• The IBM MQ 8.0 or later resource adapter that supports JMS 2.0 must be deployed with
the wmqJmsClient-2.0 feature.

Deployment within WebSphere Application Server traditional
WebSphere Application Server traditional 9.0 is supplied with an IBM MQ 9.0 resource adapter already
installed. Therefore, there is no requirement to install a new resource adapter. The installed resource
adapter can connect in CLIENT or BINDINGS transport mode to any queue managers that are running on
a supported version of IBM MQ. For more information, see “Connectivity to IBM MQ 8.0 or later queue
managers” on page 423.

Important:

• The IBM MQ 9.0 resource adapter cannot be deployed into versions of WebSphere Application Server
traditional before IBM MQ 9.0, because these versions are not Java EE 7 certified.

• WebSphere Application Server traditional does not currently support Jakarta EE.

422 Developing Applications for IBM MQ

https://www.oracle.com/index.html

For more information about the versions of the resource adapter that are shipped with WebSphere
Application Server, see the technote Which version of WebSphere MQ Resource Adapter (RA) is shipped
with WebSphere Application Server?

Using the resource adapter with other application servers
For all other Java EE 7 or Jakarta EE compliant application servers, problems that occur following the
successful completion of the IBM MQ resource adapter Installation Verification Test (IVT) can be reported
to IBM for the investigation of IBM MQ product trace and other IBM MQ diagnostic information. If the
IBM MQ resource adapter IVT cannot be run successfully, any problems that are encountered are likely
to be caused by incorrect deployment or incorrect resource definitions that are application server specific
and the problems must be investigated by using the application server documentation and the support
organization for that application server.

Java Runtime
The Java Runtime (JRE) that is used to run the application server must be one that is supported with the
IBM MQ 9.0 or later client. For more information, see System Requirements for IBM MQ. (Select which
version and operating system or component report you want to see then follow the Java link that is listed
under the Supported Software tab.)

Connectivity to IBM MQ 8.0 or later queue managers
The full range of JMS 2.0 functionality is available when connecting to an IBM MQ 8.0 or later queue
manager by using the resource adapter that has been deployed into a Java EE 7 certified application
server. To make use of the JMS 2.0 functionality, the resource adapter needs to connect to the queue
manager by using IBM MQ messaging provider normal mode. For more information, see Configuring the
JMS PROVIDERVERSION property.

The full range of Jakarta Messaging 3.0 functionality is available when connecting to an IBM
MQ 9.3 or later queue manager by using the resource adapter that has been deployed into a Jakarta EE
certified application server.

MQ Extensions
The JMS 2.0 specification introduces changes to how certain behaviors work. Because IBM MQ 8.0 or
later implements this specification, there are changes in behavior between IBM MQ 8.0 and later, and
earlier versions of the product. In IBM MQ 8.0 or later, the IBM MQ classes for JMS include support for the
Java system property com.ibm.mq.jms.SupportMQExtensions that, when set to TRUE, causes these
versions of IBM MQ to revert these behaviors to those of IBM WebSphere MQ 7.5 or earlier. The default
value of the property is FALSE.

The IBM MQ 9.0 or later resource adapter also includes a resource adapter property
called supportMQExtensions that has the same effect and default value as the
com.ibm.mq.jms.SupportMQExtensions Java system property. This resource adapter property is set
to false in the ra.xml by default.

If both the resource adapter property and Java system property are set, then the system property has
precedence.

Note that within the resource adapter that is already deployed within WebSphere Application Server
traditional 9.0, this property is automatically set to TRUE to aid migration.

For more information, see “SupportMQExtensions property” on page 316.

Developing applications for IBM MQ 423

https://www.ibm.com/support/pages/node/86587
https://www.ibm.com/support/pages/node/86587
https://www.ibm.com/support/pages/system-requirements-ibm-mq

General issues
Session interleaving is not supported

Some application servers provide a capability called session interleaving, where the same JMS
session can be used in multiple transactions, although it is only enlisted in one at a time. The IBM MQ
resource adapter does not support this capability, which can lead to the following issues:
An attempt to put a message to a MQ queue fails with reason code 2072
(MQRC_SYNCPOINT_NOT_AVAILABLE).

Calls to xa_close() fail with reason code -3 (XAER_PROTO), and an FDC with probe ID AT040010 is
generated on the IBM MQ queue manager being accessed from the application server. For information
on how to disable this capability, see your application server documentation.

Java Transaction API (JTA) specification of how XA resources are recovered for XA transaction
recovery

Section 3.4.8 of the JTA specification does not define a specific mechanism by which XA resources
are re-created to perform XA transactional recovery. As such, it is up to each individual transaction
manager (and, therefore, the application server) how XA resources involved in an XA transaction are
recovered. It is possible that, for some application servers, the IBM MQ 9.0 resource adapter does
not implement the application server specific mechanisms that are used to perform XA transactional
recovery.

Matching connections in a ManagedConnectionFactory
An application server can invoke the matchManagedConnections method on a
ManagedConnectionFactory instance provided by the IBM MQ resource adapter. A
ManagedConnection is returned only if the method finds one that matches both
the javax.security.auth.Subject and javax.resource.spi.ConnectionRequestInfo
arguments that were passed to the method by the application server.

Limitations of the IBM MQ resource adapter
The IBM MQ resource adapter is supported on all IBM MQ platforms. However, when you use the IBM MQ
resource adapter, some features of IBM MQ are unavailable or limited.

The IBM MQ resource adapter has the following limitations:

• Since IBM MQ 8.0, the resource adapter is a Java Platform, Enterprise Edition 7 (Java EE 7) resource
adapter providing JMS 2.0 function. Consequently, the IBM MQ 8.0 or later resource adapter must be
installed in a Java EE 7 or later certified application server. It can connect in client or bindings transport
mode to any in-service queue manager.

• When running inside the WebSphere Liberty application server, the stabilized IBM MQ classes for Java
are not supported. Within other application servers the IBM MQ classes for Java are not recommended
for use. See the IBM technote Using WebSphere MQ Java Interfaces in J2EE/JEE Environments for
details of IBM MQ classes for Java considerations within Java EE.

• When running inside the WebSphere Liberty application server on z/OS, the wmqJmsClient-2.0 feature
must be used. Generic JCA support is not possible for z/OS.

• The IBM MQ resource adapter does not support channel exit programs that are written in languages
other than Java.

• While an application server is running, the value of the sslFipsRequired property must be true for all
JCA resources or false for all JCA resources. This is a requirement even if the JCA resources are not
used concurrently. If the sslFipsRequired property has different values for different JCA resources, IBM
MQ issues the reason code MQRC_UNSUPPORTED_CIPHER_SUITE, even if a TLS connection is not being
used.

• You cannot specify more than one keystore for an application server. If connections are made to more
than one queue manager, all the connections must use the same keystore. This limitation does not
apply to WebSphere Application Server.

• If you use a client channel definition table (CCDT) with more than one suitable client connection
channel definition, in the event of a failure the resource adapter might select a different channel
definition and therefore a different queue manager from the CCDT, which would cause problems for

424 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/727251

transaction recovery. The resource adapter does not take any action to prevent such a configuration
from being used, and it is your responsibility to avoid configurations that might cause problems for
transaction recovery.

• The connection retry functionality is not supported for outbound connections when running in a Java EE
container (EJB/Servlet). Connection retry is not supported at all for outbound JMS when the adapter is
used in a JEE container context, regardless of transaction configuration or for non-transacted use.

• Re-authentication, as defined in Section 9.1.9 of the Java EE Connector Architecture version 1.7
specification, of JMS connections is not supported. The ra.xml file within the IBM MQ resource
adpater must have the property called reauthentication-support set to the value false. An
attempt by the application server to re-authenticate a JMS connection results in the IBM MQ resource
adapter throwing a javax.resource.spi.SecurityException with the MQJCA1028 message code.

Related tasks
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Related reference
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

WebSphere Application Server and the IBM MQ resource adapter
The IBM MQ resource adapter is used by applications that perform JMS messaging with the IBM MQ
messaging provider in WebSphere Application Server.

Important: Do not use the IBM MQ resource adapter with WebSphere Application Server 6.0 or
WebSphere Application Server 6.1.

WebSphere Application Server traditional 9.0 includes a version of the IBM MQ 9.0 resource adapter. The
IBM MQ 9.0 or later resource adapter cannot be deployed into earlier versions of WebSphere Application
Server, as these versions are not Java EE 7 certified.

 WebSphere Application Server traditional does not currently support Jakarta EE. See IBM
MQ resource adapter statement of support.

If you want to use a JMS application to access the resources of an IBM MQ queue manager from within
WebSphere Application Server, use the IBM MQ messaging provider in WebSphere Application Server.
The IBM MQ messaging provider contains a version of the IBM MQ classes for JMS. For more information,
see the technote Which version of WebSphere MQ Resource Adapter (RA) is shipped with WebSphere
Application Server?.

Important: Do not include any of the IBM MQ classes for JMS or IBM MQ classes for Java JAR files within
your application. Doing so can result in ClassCastExceptions and can be difficult to maintain.

Liberty and the IBM MQ resource adapter
The IBM MQ resource adapter can be installed into WebSphere Liberty by using a Liberty feature. The
feature that you use depends on which version of the resource adapter you are installing. Alternatively
you can, subject to some restrictions, install the resource adapter by using generic Java Platform,
Enterprise Edition Connector Architecture (Java EE JCA) support.

General restrictions when installing the resource adapter into Liberty
The following restrictions apply to the resource adapter when using either the wmqJmsClient-1.1 or
wmqJmsClient-2.0 feature and also when using generic JCA support:

• The IBM MQ classes for Java are not supported in Liberty. They must not be used with either the
IBM MQ Liberty messaging feature or with the generic JCA support. For more information, see Using
WebSphere MQ Java Interfaces in J2EE/JEE Environments.

• The IBM MQ resource adapter has a transport type of BINDINGS_THEN_CLIENT. This transport type is
not supported within the IBM MQ Liberty messaging feature.

Developing applications for IBM MQ 425

https://www.ibm.com/support/pages/node/86587
https://www.ibm.com/support/pages/node/86587
https://www.ibm.com/support/pages/node/727251
https://www.ibm.com/support/pages/node/727251

• Before IBM MQ 9.0, the Advanced Message Security (AMS) feature was not included in the IBM MQ
Liberty messaging feature. However, AMS is supported with an IBM MQ 9.0 or later resource adapter.

Note: On IBM MQ versions greater than IBM MQ 9.0.0.6 and IBM MQ 9.1.0.1 you should use the
transportSecurity-1.0 feature instead of the ssl-1.0 feature.

For more information, see:

Enabling SSL communication in Liberty
SSL defaults in Liberty
Transport Security 1.0

Restrictions when using the Liberty features
With WebSphere Liberty 8.5.5 Fix Pack 2 to WebSphere Liberty 8.5.5 Fix Pack 5 inclusive, only the
wmqJmsClient-1.1 feature was available and only JMS 1.1 could be used. WebSphere Liberty 8.5.5 Fix
Pack 6 added the wmqJmsClient-2.0 feature so JMS 2.0 could be used.

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported. To use the IBM MQ resource
adapter for Jakarta Messaging with Liberty, you must use a version of Liberty that supports Jakarta EE.
You must use the resource adapter for Jakarta Messaging with the Liberty generic messaging-3.0 feature.

The feature that you must use depends on which version of the resource adapter you are using:

• The IBM MQ 8.0.0 Fix Pack 3 and later IBM MQ 8.0 resource adapter can be used with
wmqJmsClient-2.0 feature only.

• The IBM MQ 9.0 resource adapter can be used with wmqJmsClient-2.0 feature only.

• The messaging-3.0 feature allows working with Jakarta Messaging 3.0 resource adapters.

Restrictions when using generic JCA support
If you are using generic JCA support, the following restrictions apply:

• You must specify the level of JMS when using the generic JCA support. JMS 2.0 and JCA 1.7 must be
used only with the IBM MQ 8.0.0 Fix Pack 3 and later IBM MQ 8.0 resource adapters.

• It is not possible to run the IBM MQ resource adapter on z/OS using generic JCA support. In order to run
the IBM MQ resource adapter on z/OS, it must be run with the wmqJmsClient-1.1 or wmqJmsClient-2.0
feature.

• The location of the resource adapter is specified by using the following xml element:

<resourceAdapter id="mqJms" location="${server.config.dir}/
wmq.jakarta.jmsra.rar">
 <classloader apiTypeVisibility="spec, ibm-api, api, third-party"/>
</resourceAdapter>

<resourceAdapter id="mqJms" location="${server.config.dir}/wmq.jmsra.rar">
 <classloader apiTypeVisibility="spec, ibm-api, api, third-party"/>
</resourceAdapter>

Important: The value of the ID tag can be anything EXCEPT for wmqJms. If you do use wmqJms as the
ID, then Liberty is not able to properly load the resource adapter. This is because wmqJms is the ID that
is used internally to refer to the specific feature for IBM MQ. It actually creates a NullPointerException.

The following examples show some snippets from a server.xml file when running JMS 2.0:

<!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>jndi-1.0</feature>
 <feature>jca-1.7</feature>

426 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/was-liberty/core?topic=liberty-enabling-ssl-communication-in
https://www.ibm.com/docs/en/was-liberty/base?topic=liberty-ssl-defaults-in
https://www.ibm.com/docs/en/was-liberty/core?topic=SSD28V_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_transportSecurity-1.0.html

 <feature>jms-2.0</feature>
 </featureManager>

Tip: Note the use of the jca-1.7 and jms-2.0 features and the lack of the wmqJmsClient-2.0 feature.

<resourceAdapter id="mqJms" location="${server.config.dir}/wmq.jmsra.rar">
 <classloader apiTypeVisibility="spec, ibm-api, api, third-party"/>
</resourceAdapter>

Tip: Note the use of mqJms for the ID, which is preferred. Do not use wmqJms.

<application id="WMQHTTP" location="${server.config.dir}/apps/WMQHTTP.war"
name="WMQHTTP" type="war">
 <classloader apiTypeVisibility="spec, ibm-api, api, third-party"
classProviderRef="mqJms"/>
</application>

Tip: Note the classloaderProviderRef back to the resource adapter through the ID mqJms; this is to
permit IBM MQ-specific classes to be loaded.

Restrictions when tracing using generic JCA support
Tracing, and logging are not integrated within the Liberty trace system. Instead, the IBM MQ resource
adapter trace must be enabled by using either Java system properties, or an IBM MQ classes for JMS
configuration file, as described in Tracing IBM MQ classes for JMS applications. For details about how to
set Java system properties in Liberty, see the WebSphere Liberty documentation.

For example, in order to enable trace of IBM MQ resource adapter in Liberty 19.0.0.9, add an entry to the
Liberty file jvm.options:

1. Create a text file named jvm.options.
2. Insert the following JVM options to enable tracing, one per line, into this file:

-Dcom.ibm.msg.client.commonservices.trace.status=ON
-Dcom.ibm.msg.client.commonservices.trace.outputName=C:\Trace\MQRA-WLP_%PID%.trc

3. To apply these settings to a single server, save jvm.options at:

${server.config.dir}/jvm.options

To apply these changes to all Liberty, save jvm.options at:

${wlp.install.dir}/etc/jvm.options

This will take effect for all JVMs that do not have a locally defined jvm.options file.
4. Restart the server to enable changes.

This results in trace being written to a trace file called MQRA-WLP_<process identifier>.trc in the
directory <path_to_trace_to>.

Full Liberty XA support with client channel definition tables
When using WebSphere Liberty 18.0.0.2 or later, you can make use of queue manager groups within
the client channel definition table (CCDT) in conjunction with XA transactions. This means that it is now
possible to make use of workload distribution and availability, provided by queue manager groups, whilst
maintaining transaction integrity.

In the event of connectivity errors to a queue manager, the queue manager needs to become available
again so that the transaction can be resolved. The transaction recovery is managed by Liberty, and you
might need to configure the transaction manager, so that an appropriate period of time is allowed for the
queue managers to become available again. For more information, see Transaction manager (transaction)
in the WebSphere Liberty product documentation.

This is a client-side feature, that is, you need a resource adapter, not a queue manager.

Developing applications for IBM MQ 427

https://www.ibm.com/support/pages/setting-generic-jvm-arguments-websphere-application-server-v85-liberty-profile

Installing the IBM MQ resource adapter
The IBM MQ resource adapter is supplied as a resource archive (RAR) file. Install the RAR file in your
application server. You might need to add directories to the system path.

About this task
The IBM MQ resource adapter is supplied as a resource archive (RAR) file:

• For Jakarta Messaging 3.0, this file is called wmq.jakarta.jmsra.rar. The RAR file
contains IBM MQ classes for Jakarta Messaging and the IBM MQ implementation of the Jakarta
Connectors Architecture (JCA) interfaces.

• For JMS 2.0, this file is called wmq.jmsra.rar. The RAR file contains IBM MQ classes for
JMS and the IBM MQ implementation of the Java EE Connector Architecture (JCA) interfaces.

When you install the resource adapter as part of the IBM MQ product installation, the RAR file is installed
with IBM MQ classes for JMS in the directory shown in Table 61 on page 428.

Table 61. IBM MQ directory containing the RAR file for each platform

Platform Directory

AIX and Linux MQ_INSTALLATION_PATH/java/lib/jca

IBM i /QIBM/ProdData/mqm/java/lib/jca

Windows MQ_INSTALLATION_PATH\java\lib\jca

z/OS MQ_INSTALLATION_PATH/java/lib/jca

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

You must use the IBM MQ resource adapter to connect to IBM MQ from an application server. Depending
on which application server you are using, the resource adapter might be pre-installed, or you might need
to install it yourself.

Table 62. Installation of the resource adapter in an application server

Application server Pre-installed or need to install?

WebSphere Application Server traditional 9.0 The IBM MQ 9.0 resource adapter is pre-installed
within WebSphere Application Server traditional
9.0. Therefore, you do not need to install a new
resource adapter in WebSphere Application Server
traditional 9.0.

WebSphere Liberty WebSphere Liberty does not contain the IBM MQ
resource adapter, so you must obtain it separately
from Fix Central.

Other Java EE or Jakarta EE application server Obtain the resource adapter separately from Fix
Central, as for WebSphere Liberty.

Procedure
• If you are connecting to IBM MQ from WebSphere Liberty, or another Java EE or Jakarta EE application

server, download and install the IBM MQ resource adapter as described in “Installing the resource
adapter in Liberty” on page 429.

•
For bindings connections on AIX and Linux systems, ensure that the directory containing the Java
Native Interface (JNI) libraries is in the system path.

428 Developing Applications for IBM MQ

For the location of this directory, which also contains the IBM MQ classes for JMS libraries, see
“Configuring the Java Native Interface (JNI) libraries” on page 92.

On Windows, this directory is automatically added to the system path during the
installation of IBM MQ classes for JMS.

Tip: As an alternative to setting the system path, the IBM MQ resource adapter has a property called
nativeLibraryPath that can be used to specify the location of the JNI library. For example in WebSphere
Liberty this would be configured as shown in the following example:

<wmqJmsClient nativeLibraryPath="/opt/mqm/java/lib64"/>

Transactions are supported in both client and bindings mode.

Installing the resource adapter in Liberty
To connect to IBM MQ from WebSphere Liberty, or other Java EE or Jakarta EE application servers, you
must use the IBM MQ resource adapter. Since Liberty does not contain the IBM MQ resource adapter, you
must obtain it separately from Fix Central.

Before you begin
Note: The information in this topic does not apply to WebSphere Application Server traditional 9.0.
The IBM MQ 9.0 resource adapter is preinstalled within WebSphere Application Server traditional 9.0.
Therefore, there is no requirement to install a new resource adapter in this case.

Before you start this task, make sure that you have a Java runtime environment (JRE) installed on your
machine and that the JRE has been added to the system path.

The Java installer that is used in this installation process does not require running as root or any specific
user. The only requirement is that the user it is run as has access write to the directory that you want the
files to go in.

For Liberty versions up to WebSphere Liberty 8.5.5 Fix Pack 1, if an EJB is deployed using solely the
configuration within the ejb-jar.xml, the version of WebSphere Application Server that the Liberty
Profile is using must have APAR PM89890 applied. This method of configuration is used for the resource
adapter's installation verification program (IVT), so this APAR is required in order for the IVT to run.

From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported. To use the IBM MQ resource
adapter for Jakarta Messaging with Liberty, you must use a version of Liberty that supports Jakarta EE.
For example, you can use the Liberty generic messaging-3.0 feature.

About this task
The JAR file for the resource adapter that you can download from Fix Central is executable. When you
run this executable file, it displays the IBM MQ license agreement, which must be accepted. It asks for a
directory in which to install the IBM MQ resource adapter. The resource adapter RAR file and installation
verification test (IVT) program are then installed in that directory. You can either accept the default or
specify another directory, which might be the resource adapters directory of an application server, or any
other directory on your system. The directory is created as part of the installation if it does not exist.

Before IBM MQ 9.0, the name of the file to be downloaded was in the format of V.R.M.F-WS-MQ-Java-
InstallRA.jar, for example 8.0.0.6-WS-MQ-Java-InstallRA.jar. From IBM MQ 9.0, the format
of the file name is V.R.M.F-IBM-MQ-Java-InstallRA.jar, for example 9.0.0.0-IBM-MQ-Java-
InstallRA.jar.

After you have downloaded and installed the resource adapter, you are ready to configure it in WebSphere
Liberty.

Developing applications for IBM MQ 429

Procedure
1. Download the IBM MQ resource adapter from Fix Central.

a) Click this link: IBM MQ Resource Adapter.
b) Find the resource adapter for your version of IBM MQ in the displayed list of available fixes.

For example:

release level: 9.1.4.0-IBM-MQ-Java-InstallRA
Continuous Delivery Release: 9.1.4 IBM MQ Resource Adapter for use with Application
Servers

Then click the resource adapter file name and follow the download process.
2. Start the installation by entering the following command from the directory to which you downloaded

the file.
From IBM MQ 9.0, the format of the command is as follows:

java -jar V.R.M.F-IBM-MQ-Java-InstallRA.jar

where V.R.M.F is the Version, Release, Modification, and Fix Pack number and V.R.M.F-IBM-MQ-
Java-InstallRA.jar is the name of the file that was downloaded from Fix Central.
For example, to install the IBM MQ resource adapter for the IBM MQ 9.1.4 release, you would use the
following command:

java -jar 9.1.4.0-IBM-MQ-Java-InstallRA.jar

Note: To carry out this installation, you must have a JRE installed on your machine and added to the
system path.

When you enter the command, the following information is displayed:
Before you can use, extract, or install IBM MQ 9.1, you must accept
the terms of 1. IBM International License Agreement for Evaluation of
Programs 2. IBM International Program License Agreement and additional
license information. Please read the following license agreements carefully.

The license agreement is separately viewable using the
--viewLicenseAgreement option.
Press Enter to display the license terms now, or 'x' to skip.

3. Review and accept the license terms:
a) To display the license, press Enter.

Alternatively, pressing x skips the display of the license.
After display of the license or immediately after selecting x, the following message appears to tell
you that you can choose to display additional license terms:
Additional license information is separately viewable using the
--viewLicenseInfo option.
Press Enter to display additional license information now, or 'x' to skip.

b) To display the additional license terms, press Enter.
Alternatively, pressing x skips the display of the additional license terms.
After display of the additional license terms or immediately after selecting x, the following message
is displayed asking you to accept the license agreement:
By choosing the "I Agree" option below, you agree to the terms of the
license agreement and non-IBM terms, if applicable. If you do not
agree, select "I do not Agree".

Select [1] I Agree, or [2] I do not Agree:

c) To accept the license agreement and continue with selecting the installation directory, select 1.
Alternatively, if you select 2 the installation terminates immediately.

430 Developing Applications for IBM MQ

https://ibm.biz/mq94JRA

If you selected 1, the following message appears, asking you to select a target installation
directory:
Enter directory for product files or leave blank to accept the default value.
The default target directory is H:\Liberty\WMQ
Target directory for product files?

4. Specify the installation directory for the resource adapter:

• If you want to install the resource adapter in the default location, press Enter without specifying a
value.

• If you want to install the resource adapter in a different location from the default, specify the name
of the directory in which you want to install the resource adapter and then press Enter.

After the files have been installed in the selected location, a confirmation message is displayed as
shown in the following example:
Extracting files to H:\Liberty\WMQ\wmq
Successfully extracted all product files.

During the installation, a new directory with the name wmq is created within the selected installation
directory, and the following files are then installed in the wmq directory:

• The installation verification test program, wmq.jakarta.jmsra.ivt (Jakarta Messaging 3.0) or
wmq.jmsra.ivt (JMS 2.0).

• The IBM MQ RAR file,wmq.jakarta.jmsra.rar (Jakarta Messaging 3.0 or wmq.jmsra.rar (JMS
2.0).

5.
Optional: Configure the Java EE 7 (JMS 2.0) resource adapter in WebSphere Liberty Profile.

The steps that you must take to configure the resource adapter in Liberty are as follows. For more
information, see the WebSphere Application Server product documentation.

a) Add the wmqJmsClient-2.0 feature to the server.xml file to allow working with the IBM MQ
resource adapter.
For more information, see “Which version of the resource adapter to use” on page 421.

b) Add a reference to the wmq.jmsra.rar (JMS 2.0) file that you have installed.
An example configuration to support servlets and MDBs, with JNDI might look like this:

 <featureManager>
 <feature>wmqJmsClient-2.0</feature>
 <feature>servlet-3.0</feature>
 <feature>jmsMdb-3.1</feature>
 <feature>jndi-1.0</feature>
 </featureManager>

<variable name="wmqJmsClient.rar.location"
 value="H:\Liberty\WMQ\wmq\wmq.jmsra.rar"/>

6.
Optional: Configure the Jakarta EE 9 (Jakarta Messaging 3.0) resource adapter in WebSphere Liberty
Profile.

The steps that you must take to configure the resource adapter in Liberty are as follows. For more
information, see the WebSphere Application Server product documentation.

a) Add the wmqJmsClient-3.0 feature to the server.xml file to allow working with the IBM MQ
resource adapter.
For more information, see “Which version of the resource adapter to use” on page 421.

b) Add a reference to the wmq.jakarta.jmsra.rar (Jakarta Messaging 3.0) file that you have
installed.

An example configuration to support servlets and MDBs, with JNDI might look like this:

 <featureManager>
 <feature>wmqJmsClient-3.0</feature>

Developing applications for IBM MQ 431

 <feature>servlet-3.0</feature>
 <feature>jmsMdb-3.1</feature>
 <feature>jndi-1.0</feature>
 </featureManager>

<variable name="wmqJmsClient.rar.location"
 value="H:\Liberty\WMQ\wmq\wmq.jmsra.rar"/>

Note: If you are using Open Liberty, rather than WebSphere Liberty Profile, you will need to use the
generic resource adapter support feature "messagingClient-3.0" in place of "wmqJmsClient-3.0" and
other aspects of the configuration will be different. Please refer to the Open Liberty documentation for
more details.

Configuring the IBM MQ resource adapter
To configure the IBM MQ resource adapter, you define various Java Platform, Enterprise Edition Connector
Architecture (JCA) resources and, optionally, system properties. You must also configure the resource
adapter to run the installation verification test (IVT) program. This is important because IBM service
might require this program to be run to indicate that any non-IBM application server has been correctly
configured.

Before you begin
This task assumes that you are already familiar with JMS and IBM MQ classes for JMS. Many of the
properties used to configure the IBM MQ resource adapter are equivalent to properties of IBM MQ classes
for JMS objects and have the same function.

About this task
Every application server provides its own set of administration interfaces. Some application servers
provide graphical user interfaces to define JCA resources, but others require the administrator to write
XML deployment plans. It is therefore beyond the scope of this documentation to provide information
about how to configure the IBM MQ resource adapter for each application server.

The following steps therefore focus only on what you need to configure. Refer to documentation supplied
with your application server for information about how to configure a JCA resource adapter.

Procedure
Define JCA resources in the following categories:
• Define the properties of the ResourceAdapter object.

These properties, which represent the global properties of the resource adapter, such as the level of
diagnostic tracing, are described in “Configuration for ResourceAdapter object properties” on page
433.

• Define the properties of an ActivationSpec object.
These properties determine how an MDB is activated for inbound communication. For more
information, see “Configuring the resource adapter for inbound communication” on page 436.

• Define the properties of a ConnectionFactory object.
The application server uses these properties to create a JMS ConnectionFactory object for
outbound communication. For more information, see “Configuring the resource adapter for outbound
communication” on page 453.

• Define the properties of an administered destination object.
The application server uses these properties to create a JMS Queue object or JMS Topic object for
outbound communication. For more information, see “Configuring the resource adapter for outbound
communication” on page 453.

• Optional: Define a deployment plan for the resource adapter.
The IBM MQ resource adapter RAR file contains a file called META-INF/ra.xml, which contains a
deployment descriptor for the resource adapter. This deployment descriptor is defined by the XML

432 Developing Applications for IBM MQ

schema at https://xmlns.jcp.org/xml/ns/javaee/connector_1_7.xsd and contains information about
the resource adapter and the services that it provides. An application server might also require a
deployment plan for the resource adapter. This deployment plan is specific to the application server.

Specify JVM system properties as required:
• If you are using Transport Layer Security (TLS), specify the locations of the keystore file and truststore

file as JVM system properties, as in the following example:

java ... -Djavax.net.ssl.keyStore=
key_store_location
 -Djavax.net.ssl.trustStore=trust_store_location
 -Djavax.net.ssl.keyStorePassword=key_store_password

These properties cannot be properties of an ActivationSpec or ConnectionFactory object, and you
cannot specify more than one keystore for an application server. The properties apply to the whole
JVM, and might therefore affect the application server if other applications, running in the application
server, are using TLS connections. The application server might also reset these properties to different
values. For more information about using TLS with IBM MQ classes for JMS, see “Using TLS with IBM
MQ classes for JMS” on page 246.

• Optional: If required, configure the resource adapter to log warning messages to your application
server's standard output log.
The resource adapter logs, warning, and error messages use the same mechanism as the IBM MQ
classes for JMS. For more information, see Logging errors for IBM MQ classes for JMS. This means
that, by default, the messages go to a file called mqjms.log. To configure the resource adapter to
additionally log warning messages to your application server's standard output log, set the following
JVM system property for your application server:

-Dcom.ibm.msg.client.commonservices.log.outputName=mqjms.log,stdout

This is the same property as the one that is used to control trace for the IBM MQ classes for JMS. As
with IBM MQ classes for JMS, it is possible to use a system property pointing to the jms.config file
(see “The IBM MQ classes for JMS/Jakarta Messaging configuration file” on page 94). For information
on how to set a JVM system property, see your application server documentation.

Configure the resource adapter to run the installation verification test
• Configure the resource adapter to run the installation verification test (IVT) program supplied with the

IBM MQ resource adapter.
For information about what you need to configure in order to run the IVT program, see “Verifying the
resource adapter installation” on page 473.

This is important because IBM service might require this program to be run to indicate that any
non-IBM application server has been correctly configured.

Important: You must configure the resource adapter before you can run the program.

Configuration for ResourceAdapter object properties
The ResourceAdapter object encapsulates the global properties of the IBM MQ resource adapter, such as
the level of diagnostic tracing. To define these properties, use the facilities of your resource adapter, as
described in the documentation supplied with your application server.

The ResourceAdapter object has two sets of properties:

• Properties associated with diagnostic tracing
• Properties associated with the connection pool managed by the resource adapter

The way in which you define these properties depends on the administration interfaces that your
application server provides. If you are using WebSphere Application Server traditional, see “WebSphere
Application Server traditional configuration” on page 435 or if you are using WebSphere Liberty,
see “WebSphere Liberty configuration” on page 435. For other application servers, see the product
documentation for your application server.

Developing applications for IBM MQ 433

https://xmlns.jcp.org/xml/ns/javaee/connector_1_7.xsd

For more information about defining properties associated with diagnostic trace, see Tracing the IBM MQ
Resource Adapter

The resource adapter manages an internal connection pool of JMS connections that are used to deliver
messages to MDBs. Table 63 on page 434 lists the properties of the ResourceAdapter object that are
associated with the connection pool.

Table 63. Properties of the ResourceAdapter object that are associated with the connection pool

Name of property Type Default value Description

maxConnections String 50 The maximum number of connections to an
IBM MQ queue manager and the maximum
number of MDBs deployed.

connectionConcurrency String 1 The maximum number of MDBs to share a
JMS connection. Sharing connections is not
possible and this property always has the
value 1.

reconnectionRetryCount String 5 The maximum number of attempts made by
the resource adapter to reconnect to an IBM
MQ queue manager if a connection fails.

reconnectionRetryInterval String 300 000 The time, in milliseconds, that the resource
adapter waits before trying to reconnect to
an IBM MQ queue manager.

startupRetryCount String 0 The default number of times to try and
connect a MDB on startup, if the queue
manager is not running when the application
server is started.

startupRetryInterval String 30 000 The default sleep time between startup
connection attempts (in milliseconds).

supportMQExtensions String false Reverts the IBM MQ JMS behavior to pre-
JMS 2.0 behavior. For more information, see
“SupportMQExtensions property” on page
316.

nativeLibraryPath String <empty> The path to use to load the IBM MQ JNI
library to permit bindings mode connections.

On Windows the system path
also needs to contain the location of the
matching IBM MQ installation.

When an MDB is deployed in the application server, a new JMS connection is created and a conversation
started with the queue manager, provided the maximum number of connections specified by the
maxConnection property is not exceeded. The maximum number of MDBs therefore equals the maximum
number of connections. If the number of deployed MDBs reaches this maximum, any attempt to deploy
another MDB fails. If an MDB is stopped, its connection can be used by another MDB.

In general, if many MDBs are to be deployed, you must increase the value of the maxConnections
property.

The reconnectionRetryCount and reconnectionRetryInterval properties govern the behavior of the
resource adapter when connections to an IBM MQ queue manager fail, because of a network failure
for example. When a connection fails, the resource adapter suspends the delivery of messages to all
MDBs supplied by that connection for an interval specified by the reconnectionRetryInterval property. The
resource adapter then attempts to reconnect to the queue manager. If the attempt fails, the resource
adapter makes further attempts to reconnect at intervals specified by the reconnectionRetryInterval

434 Developing Applications for IBM MQ

property until the limit imposed by the reconnectionRetryCount property is reached. If all attempts fail,
delivery is stopped permanently until the MDBs are restarted manually.

In general, the ResourceAdapter object requires no administration. However, to enable diagnostic tracing
on AIX and Linux systems for example, you can set the following properties:

traceEnabled: true
traceLevel: 10

These properties have no effect if the resource adapter has not been started, which is the case,
for example, when applications using IBM MQ resources are running only in the client container. In
this situation, you can set the properties for diagnostic tracing as Java Virtual Machine (JVM) system
properties. You can set the properties by using the -D flag on the java command, as in the following
example:

java ... -DtraceEnabled=true -DtraceLevel=6

You do not need to define all the properties of the ResourceAdapter object. Any properties left
unspecified take their default values. In a managed environment, it is better not to mix the two ways of
specifying properties. If you do mix them, the JVM system properties take precedence over the properties
of the ResourceAdapter object.

WebSphere Application Server traditional configuration
The same properties are available for the resource adapter in WebSphere Application Server traditional,
but they should be set for within the properties panel of the resource adapter (see JMS provider
settings in the WebSphere Application Server traditional product documentation. Trace is controlled
by the diagnostics section of the WebSphere Application Server traditional configuration. For more
information, see Working with Diagnostic Providers in the WebSphere Application Server traditional
product documentation.

WebSphere Liberty configuration
The resource adapter is configured using XML elements in the server.xml file, as shown in the following
example:

<featureManager>
...
 <feature>messaging-3.0</feature>
...
</featureManager>
 <variable name="wmqJmsClient.rar.location"
 value="F:/_rtc_wmq8005/_build/ship/lib/jca/wmq.jakarta.jmsra.rar"/>
...
 <wmqJmsClient supportMQExtensions="true" logWriterEnabled="true"/>

<featureManager>
...
 <feature>wmqJmsClient-2.0</feature>
...
</featureManager>
 <variable name="wmqJmsClient.rar.location"
 value="F:/_rtc_wmq8005/_build/ship/lib/jca/wmq.jmsra.rar"/>
...
 <wmqJmsClient supportMQExtensions="true" logWriterEnabled="true"/>

Trace is enabled by adding this XML element:

<logging traceSpecification="JMSApi=all:WAS.j2c=all:"/>

Developing applications for IBM MQ 435

Configuring the resource adapter for inbound communication
To configure inbound communication, define the properties of one or more ActivationSpec objects.

The properties of an ActivationSpec object determine how a message driven bean (MDB) receives JMS
messages from an IBM MQ queue. The transactional behavior of the MDB is defined in its deployment
descriptor.

An ActivationSpec object has two sets of properties:

• Properties that are used to create a JMS connection to an IBM MQ queue manager
• Properties that are used to create a JMS connection consumer that delivers messages asynchronously

as they arrive on a specified queue

The way in which you define the properties of an ActivationSpec object depends on the administration
interfaces provided by your application server.

Properties used to create a JMS connection to an IBM MQ queue manager
All of the properties in Table 64 on page 436 are optional.

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection

Name of property Type Valid values (default value in bold) Description

applicationName String • The invoking class name, if it is available,
adjusted to be no longer than 28
characters. If it is not available, the string
WebSphere MQ Client for Java is
used.

The name by which an
application is registered
with the queue manager.
This application name is
shown by the DISPLAY
CONN MQSC/PCF command
(where the field is
called APPLTAG) or in
the IBM MQ Explorer
Application Connections
display (where the field is
called App name).

brokerCCDurSubQueue 1 String • SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
• A queue name

The name of the queue
from which a connection
consumer receives durable
subscription messages

brokerCCSubQueue 1 String • SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEU
E

• A queue name

The name of the
queue from which a
connection consumer
receives nondurable
subscription messages

brokerControlQueue 1 String • SYSTEM.BROKER.CONTROL.QUEUE
• A queue name

The name of the broker
control queue

brokerQueueManager 1 String • "" (empty string)
• A queue manager name

The name of the queue
manager on which the
broker is running

brokerSubQueue 1 String • SYSTEM.JMS.ND.SUBSCRIBER.QUEUE
• A queue name

The name of the queue
from which a nondurable
message consumer
receives messages

436 Developing Applications for IBM MQ

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

brokerVersion 1 String • unspecified - After the broker is migrated
from V6 to V7, set this property so
that RFH2 headers are no longer used.
After migration, this property is no longer
relevant.

• V1 - To use an IBM MQ publish/subscribe
broker.This value is the default value if
TRANSPORT is set to BIND or CLIENT.

• V2 - To use a broker of IBM Integration Bus
in native mode. This value is the default
value if TRANSPORT is set to DIRECT or
DIRECTHTTP.

The version of the broker
being used

ccdtURL String • null
• A uniform resource locator (URL)

A URL that identifies the
name and location of the
file containing the client
channel definition table
(CCDT) and specifies how
the file can be accessed

CCSID String • 819
• A coded character set identifier supported

by the Java virtual machine (JVM)

The coded character set
identifier for a connection

channel String • SYSTEM.DEF.SVRCONN
• The name of an MQI channel

The name of the MQI
channel to use

cleanupInterval 1 int • 3 600 000
• A positive integer

The interval, in
milliseconds, between
background runs of the
publish/subscribe cleanup
utility

cleanupLevel 1 String • SAFE
• NONE
• STRONG
• FORCE
• NONDUR

The cleanup level for a
broker-based subscription
store

clientID String • null
• A client identifier

The client identifier for a
connection

cloneSupport String • DISABLED - Only one instance of a durable
topic subscriber can run at a time.

• ENABLED - Two or more instances of the
same durable topic subscriber can run
simultaneously, but each instance must run
in a separate Java virtual machine (JVM).

Whether two or more
instances of the same
durable topic subscriber
can run simultaneously

Developing applications for IBM MQ 437

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

connectionFactoryLookup String • null
• The JNDI name for a ConnectionFactory

object

If this property is set,
the ActivationSpec looks up
a JMS ConnectionFactory
object with the specified
JNDI name in the
JNDI namespace of the
application server, and
then uses the properties
of that object to create
a JMS connection to an
IBM MQ queue manager,
with one exception. The
only property of the
ActivationSpec that will be
used when creating the JMS
connection is the clientID.
For more information,
see “ActivationSpec
connectionFactoryLookup
and destinationLookup
properties” on page 449.

connectionNameList String • localhost(1414)
• A string composed of items separated by

commas where each item takes the format:

 HOSTNAME(PORT)

where HOSTNAME is either a DNS name or
an IP address.

A list of TCP/IP connection
names used for inbound
communications.

When specified,
connectionNameList
supersedes the hostname
and port properties.

This property is used to
reconnect to multi-instance
queue managers.

connectionNameList is
similar in form to
localAddress, but
must not be confused
with it. localAddress
specifies the characteristics
of the local
communications, whereas
connectionNameList
specifies how to reach a
remote queue manager.

dynamicallyBalanced 4 Boole
an

• false
• true

Whether this MDB can
be requested to receive
messages from a different
queue manager as part of
application balancing in a
uniform cluster.

438 Developing Applications for IBM MQ

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

failIfQuiesce Boole
an

• true
• false

Whether calls to certain
methods fail if the queue
manager is in a quiescing
state

headerCompression String • NONE
• SYSTEM - RLE message header

compression is performed

A list of the techniques
that can be used for
compressing header data
on a connection

hostName String • localhost
• A host name
• An IP address

The host name or IP
address of the system on
which the queue manager
resides.

The hostname and
port properties are
superseded by the
connectionNameList
property when it is
specified.

localAddress String • null
• A string in the format:

[host_name][(low_port [, high_port
])]

where host_name is a host name or IP
address, low_port and high_port are TCP
port numbers, and brackets denote an
optional component

For a connection to a queue
manager, this property
specifies either or both of
the following things:

• The local network
interface to be used

• The local port, or range of
local ports, to be used

localAddress is
similar in form to
connectionNameList,
but must not be confused
with it. localAddress
specifies the characteristics
of the local
communications, whereas
connectionNameList
specifies how to reach a
remote queue manager.

messageCompression String • NONE
• A list of one or more of the following values

separated by blank characters:

RLE
ZLIBFAST
ZLIBHIGH

LZ4FAST

LZ4HIGH

A list of the techniques
that can be used for
compressing message data
on a connection

Developing applications for IBM MQ 439

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

messageRetention 1 Boole
an

• true - Unwanted messages remain on the
input queue

• false - Unwanted messages are dealt with
according to their disposition options

Whether the connection
consumer keeps unwanted
messages on the input
queue

messageSelection 1 String • CLIENT
• BROKER

Determines whether
message selection is done
by IBM MQ classes for
JMS or by the broker.
Message selection by the
broker is not supported
when brokerVersion has the
value 1.

password String • null
• A password

The default password to
use when creating a
connection to the queue
manager

pollingInterval 1 int • 5000
• Any positive integer

If each message listener
within a session has
no suitable message on
its queue, this value is
the maximum interval, in
milliseconds, that elapses
before each message
listener tries again to get
a message from its queue.
If it frequently happens
that no suitable message
is available for any of
the message listeners in a
session, consider increasing
the value of this property.
This property is relevant
only if TRANSPORT has the
value BIND or CLIENT.

port int • 1414
• A TCP port number

The port on which the
queue manager listens.

The hostname and
port properties are
superseded by the
connectionNameList
property when it is
specified.

440 Developing Applications for IBM MQ

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

providerVersion string • unspecified
• A string in one of the following formats

– V.R.M.F
– V.R.M
– V.R
– V

where V, R, M, and F are integer values
greater than or equal to zero.

The version, release,
modification level and fix
pack of the queue manager
to which the MDB intends
to connect.

queueManager String • "" (empty string)
• A queue manager name

The name of the queue
manager to connect to

receiveExit 3 String • null
• A string comprising one or more items

separated by commas, where each item
is the fully qualified name of a class that
implements the IBM MQ classes for Java
interface, MQReceiveExit

Identifies a channel receive
exit program, or a sequence
of receive exit programs to
be run in succession

receiveExitInit String • null
• A string comprising one or more items of

user data separated by commas

The user data that is passed
to channel receive exit
programs when they are
called

Developing applications for IBM MQ 441

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

rescanInterval 1 int • 5000
• Any positive integer

When a message consumer
in the point-to-point
domain uses a message
selector to select which
messages it wants to
receive, IBM MQ classes
for JMS searches the IBM
MQ queue for suitable
messages in the sequence
determined by the
MsgDeliverySequence
attribute of the queue.
When IBM MQ classes
for JMS finds a suitable
message and delivers it
to the consumer, IBM MQ
classes for JMS resumes
the search for the next
suitable message from its
current position in the
queue. IBM MQ classes for
JMS continues to search
the queue in this way until
it reaches the end of the
queue, or until the interval
of time in milliseconds, as
determined by the value of
this property, has expired.
In each case, IBM MQ
classes for JMS returns to
the beginning of the queue
to continue its search,
and a new time interval
commences.

securityExit 3 String • null
• The fully qualified name of a class that

implements the IBM MQ classes for Java
interface, MQSecurityExit

Identifies a channel
security exit program

securityExitInit String • null
• A string of user data

The user data that is passed
to a channel security exit
program when it is called

sendExit 3 String • null
• A string comprising one or more items

separated by commas, where each item
is the fully qualified name of a class that
implements the IBM MQ classes for Java
interface, MQSendExit

Identifies a channel send
exit program, or a sequence
of send exit programs to be
run in succession

442 Developing Applications for IBM MQ

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

sendExitInit String • null
• A string comprising one or more items of

user data separated by commas

The user data that is
passed to channel send exit
programs when they are
called

shareConvAllowed Boole
an

• NO - A client connection cannot share its
socket.

• YES - A client connection can share its
socket.

Whether a client connection
can share its socket
with other top-level JMS
connections from the same
process to the same queue
manager, if the channel
definitions match

sparseSubscriptions 1 Boole
an

• false - Subscriptions receive frequent
matching messages.

• true - Subscriptions receive infrequent
matching messages. This value requires
that the subscription queue can be opened
for browse.

Controls the message
retrieval policy of a
TopicSubscriber object

sslCertStores String • null
• A string of one or more LDAP URLs

separated by blanks. Each LDAP URL has
the format:

ldap://host_name [: port]

where host_name is a host name or IP
address, port is a TCP port number, and
brackets denote an optional component.

The Lightweight Directory
Access Protocol (LDAP)
servers that hold certificate
revocation lists (CRLs) for
use on a TLS connection

sslCipherSuite String • null
• The name of a CipherSuite

The CipherSuite to use for a
TLS connection

sslFipsRequired 2 Boole
an

• false
• true

Whether a TLS connection
must use a CipherSuite that
is supported by the IBM
Java JSSE FIPS provider
(IBMJSSEFIPS)

sslPeerName String • null
• A template for distinguished names

For a TLS connection, a
template that is used to
check the distinguished
name in the digital
certificate provided by the
queue manager

sslResetCount int • 0
• An integer in the range 0 - 999 999 999

The total number bytes
sent and received by a
TLS connection before the
secret keys used by TLS are
renegotiated

Developing applications for IBM MQ 443

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

sslSocketFactory String A string representing the fully qualified class
name of a class providing an implementation
of the javax.net.ssl.SSLSocketFactory
interface. Optionally including an argument
to be passed to the constructor method,
enclosed in parentheses.

Any connections
established in the scope
of the administered object
use sockets obtained from
this implementation of the
SSLSocketFactory interface.

statusRefreshInterval 1 int • 60000
• Any positive integer

The interval, in
milliseconds, between
refreshes of the long
running transaction that
detects when a subscriber
loses its connection to
the queue manager. This
property is relevant only if
subscriptionStore has
the value QUEUE.

subscriptionStore 1 String • BROKER
• MIGRATE
• QUEUE

Determines where IBM MQ
classes for JMS stores
persistent data about active
subscriptions

444 Developing Applications for IBM MQ

Table 64. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

transportType String • CLIENT
• BINDINGS
• BINDINGS_THEN_CLIENT

Whether a connection
to a queue manager
uses client mode or
bindings mode. If the value
BINDINGS_THEN_CLIENT
is specified, the resource
adapter first tries to make
a connection in bindings
mode. If this connection
attempt fails the resource
adapter then tries to make
a client mode connection.

If an
activation specification that
is running on a WebSphere
Application Server for
z/OS system has been
configured to use the
BINDINGS_THEN_CLIENT
transport mode and
a previously established
connection is broken,
then any reconnection
attempts by the activation
specification first attempt
to use the BINDINGS
transport mode. If the
BINDINGS transport mode
connection attempt is
unsuccessful, the activation
specification subsequently
attempts a CLIENT
transport mode connection.

username String • null
• A user name

The default user name
to use when creating a
connection to a queue
manager

wildcardFormat String • CHAR- Recognizes character wildcards
only, as used in broker version 1

• TOPIC - Recognizes topic level wildcards
only, as used in broker version 2

Which version of wildcard
syntax is to be used

Notes:

1. This property can be used with version 70 of IBM MQ classes for JMS.
2. For important information about using the sslFipsRequired property, see “Limitations of the IBM MQ

resource adapter” on page 424.
3. For information on how to configure the resource adapter so that it can locate an exit, see “Configuring

IBM MQ classes for JMS to use channel exits” on page 271.

Developing applications for IBM MQ 445

4. The dynamicallyBalanced property is not supported in conjunction with XA transaction support. If
dynamicallyBalanced is "true", then the MDB must be configured to disable XA transactions.

Properties used to create a JMS connection consumer
Note: The destination and destinationType must be defined explicitly. All the other properties in
Table 65 on page 446 are optional.

Table 65. Properties of an ActivationSpec object that are used to create a JMS connection consumer

Name of property Type
Valid values (default value in
bold) Description

destination String A destination name The destination from which to receive
messages. The useJNDI property
determines how the value of this
property is interpreted.

destinationLookup String • null
• The JNDI name for a

Destination object

If this property is set, the
ActivationSpec looks up a JMS
Destination object with the specified
JNDI name in the JNDI namespace
of the application server, and then
uses the properties of that object to
create a JMS connection consumer,
in preference to the other properties
specified on the ActivationSpec. For
more information, see “ActivationSpec
connectionFactoryLookup and
destinationLookup properties” on page
449.

destinationType String • jakarta.jms.Queue (Jakarta
Messaging 3.0)

• jakarta.jms.Topic (Jakarta
Messaging 3.0)

• javax.jms.Queue (JMS 2.0)
• javax.jms.Topic (JMS 2.0)

The type of destination, a queue, or a
topic

maxMessages int • 1
• A positive integer

The maximum number of messages
that can be assigned to a server session
at one time. If the activation spec
is delivering messages to an MDB in
an XA transaction, a value of 1 is
used regardless of the setting of this
property.

maxPoolDepth int • 10
• A positive integer

The maximum number of server
sessions in the server session pool used
by the connection consumer

messageSelector String • null
• An SQL92 message selector

expression

A message selector expression
specifying which messages are to be
delivered

446 Developing Applications for IBM MQ

Table 65. Properties of an ActivationSpec object that are used to create a JMS connection consumer (continued)

Name of property Type
Valid values (default value in
bold) Description

nonASFTimeout int • 0
• A positive integer

A positive value indicates that non-ASF
delivery is used. The value is the time,
in milliseconds, that a get request waits
for messages that might not have yet
arrived (a get with wait call). The default
value, 0, indicates that ASF delivery is
used.

This parameter is valid if:

• The application is running on
WebSphere Application Server 7.0 or
later.

• The application is running in
WebSphere Liberty using the
appropriate level of wmqJmsClient
feature. For more information, see
“Liberty and the IBM MQ resource
adapter” on page 425.

nonASFRollbackEnabled Boole
an

• false - The message is
consumed even if the MDB
fails

• true - Failure within the MDB
causes the message to roll
back to the queue.

Whether message delivery is within
an IBM MQ syncpoint if the MDB is
non-transacted. Ignored if the MDB is
transacted or if nonASFTimeout is set
to 0.

poolTimeout int • 300000
• A positive integer

The time, in milliseconds, that an
unused server session is held open in
the server session pool before being
closed due to inactivity

readAheadAllowed int • DESTINATION - Determine
whether read ahead is allowed
by referring to the queue or
topic definition.

• DISABLED - Read ahead is not
allowed.

• ENABLED - Read ahead is
allowed.

• QUEUE - Determine whether
read ahead is allowed by
referring to the queue
definition.

• TOPIC - Determine whether
read ahead is allowed
by referring to the topic
definition.

Whether the activation specification
browsing thread is allowed to use read
ahead to browse multiple messages
from the destination into an internal
buffer, before handing off to the server
sessions for destructive consumption.

Note: Enabling read ahead might
result in an increase of JMSCC0108
messages, or a reduction in
performance, or both if the MDB
processing rate cannot keep up with
the rate of browsing messages from the
destination.

Developing applications for IBM MQ 447

Table 65. Properties of an ActivationSpec object that are used to create a JMS connection consumer (continued)

Name of property Type
Valid values (default value in
bold) Description

readAheadClosePolicy int • ALL - All messages in the
internal read ahead buffer are
delivered to the MDB before it
stops.

• CURRENT - Only the current
MDB invocation completes,
potentially leaving messages
in the internal read ahead
buffer, which are then
discarded.

What happens to messages in the
internal read ahead buffer when the
MDB is stopped by the administrator.

receiveCCSID int • 0 - Use JVM
Charset.defaultCharset

• 1208 - UTF-8
• A supported coded character

set identifier

Destination property that sets the target
CCSID for queue manager message
conversion. The value is ignored unless
receiveConversion is set to QMGR.

receiveConversion String • CLIENT_MSG
• QMGR

Destination property that determines
whether data conversion is going to be
performed by the queue manager.

sharedSubscription Boole
an

• False - The MDB should not
open the subscription as a
shared subscription.

• True - The MDB should open
the subscription as a shared
subscription (with the rules
that JMS 2.0 implies, see
the JMS 2.0 specification at
Java.net).

Controls how an MDB is driven
from a shared subscription. For
more information about how to use
this property, see “Examples of
how to define the sharedSubscription
property” on page 452.

startTimeout int • 10 000
• A positive integer

The time, in milliseconds, within which
delivery of a message to an MDB must
start after the work to deliver the
message has been scheduled. If this
time elapses, the message is rolled
back onto the queue.

subscriptionDurability String • NonDurable - A nondurable
subscription is used to
deliver messages to an MDB
subscribing to the topic.

• Durable - A durable
subscription is used to
deliver messages to an MDB
subscribing to the topic.

Whether a durable or nondurable
subscription is used to deliver
messages to an MDB subscribing to the
topic

subscriptionName String • "" (empty string)
• A subscription name

The name of the durable subscription

448 Developing Applications for IBM MQ

https://java.net/projects/jms-spec/pages/Home

Table 65. Properties of an ActivationSpec object that are used to create a JMS connection consumer (continued)

Name of property Type
Valid values (default value in
bold) Description

useJNDI Boole
an

• false - The property called
destination is interpreted as
the name of an IBM MQ queue
or a topic.

• true - The property called
destination is interpreted as
the name of one of the
following objects in the JNDI
namespace of the application
server:

– jakarta.jms.Queue (Jakarta
Messaging 3.0)

– jakarta.jms.Topic (Jakarta
Messaging 3.0)

– javax.jms.Queue (JMS 2.0)
– javax.jms.Topic (JMS 2.0)

Determines how the value
of the property called destination is
interpreted

Note: This property is deprecated in
IBM MQ 9.0. The destinationLookup
property should be used instead.

Property conflicts and dependencies
An ActivationSpec object can have conflicting properties. For example, you can specify TLS properties
for a connection in bindings mode. In this case, the behavior is determined by the transport type
and the messaging domain, which is either point-to-point or publish/subscribe as determined by the
destinationType property. Any properties that are not applicable to the specified transport type or
messaging domain are ignored.

If you define a property that requires other properties to be defined, but you do not define these other
properties, the ActivationSpec object throws an InvalidPropertyException exception when its validate()
method is called during the deployment of an MDB. The exception is reported to the administrator of
the application server in a manner that depends on the application server. For example, if you set the
subscriptionDurability property to Durable, indicating that you want use durable subscriptions, you must
also define the subscriptionName property.

If the properties called ccdtURL and channel are both defined, an InvalidPropertyException exception
is thrown. However, if you define the ccdtURL property only, leaving the property called channel with
its default value of SYSTEM.DEF.SVRCONN, no exception is thrown, and the client channel definition table
identified by the ccdtURL property is used to start a JMS connection.

ActivationSpec connectionFactoryLookup and destinationLookup properties
The JMS 2.0 specification introduced two new ActivationSpec properties. The connectionFactoryLookup
and destinationLookup properties can be provided with a JNDI name of an administered object to be used
in preference to the other ActivationSpec properties.

For example, if a connection factory is defined in JNDI and the JNDI name of that object is specified in
the connectionFactoryLookup property for an activation specification, all the properties of the connection
factory that are defined in JNDI are used in preference to the properties in Table 64 on page 436.

If a destination is defined in JNDI and the JNDI name is set in the ActivationSpec's destinationLookup
property then the values of that are used in preference to the values in Table 65 on page 446. For more
information about how these two properties are used, see “ActivationSpec connectionFactoryLookup and
destinationLookup properties” on page 449.

Developing applications for IBM MQ 449

These two properties can be used to specify the JNDI names of ConnectionFactory and Destination
objects that are used in preference to the properties of the ActivationSpec as defined in Table 64 on page
436 and Table 65 on page 446.

It is important to note the following points that describe how these properties work in detail.
connectionFactoryLookup

The ConnectionFactory that is looked up from JNDI is used as a source of the properties
listed in Table 64 on page 436. The ConnectionFactory object is not used to actually create
any JMS connections, only the properties of the object are queried. These properties from the
ConnectionFactory override any properties that are defined on the ActivationSpec. There is a single
exception to this. If the ActivationSpec has the ClientID property set, then the value of this property
overrides the value specified in the ConnectionFactory. This is because a common scenario is using a
single ConnectionFactory with multiple ActivationSpecs. This simplifies administration. However, the
JMS 2.0 specification states that every JMS Connection created from a ConnectionFactory should
have a unique ClientID. Because of this, ActivationSpecs need to have the ability to override any
value set on the ConnectionFactory. If no ClientID is set on the ActivationSpec, any value on the
connection factory is used.

destinationLookup
A Destination and a UseJndi property are defined on the ActivationSpec. If the UseJndi flag is
set to true, then the text specified in the destination property is considered to be a JNDI name and a
destination object with that JNDI name is looked up from JNDI.

The destinationLookup property behaves in exactly the same way. If it has been set, then a
destination object with the JNDI name specified by the property is looked up from JNDI. This property
has precedence over the useJNDI property.

The useJNDI property is deprecated at IBM MQ 9.0 as the destinationLookup
property is the JMS 2.0 specification or later equivalent of performing the same function.

ActivationSpec properties with no equivalents in IBM MQ classes for JMS
Most of the properties of an ActivationSpec object are equivalent to properties of IBM MQ classes for
JMS or IBM MQ classes for Jakarta Messaging objects, or to parameters of IBM MQ classes for JMS IBM
MQ classes for Jakarta Messaging methods. However, three tuning properties, and one usability property,
have no equivalents in IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging:
startTimeout

The time, in milliseconds, that the work manager of the application server waits for resources to
become available after the resource adapter schedules a Work object to deliver a message to an MDB.
If this time elapses before delivery of the message starts, the Work object times out, the message
is rolled back onto the queue, and the resource adapter can then attempt to deliver the message
again. A warning is written to diagnostic trace, if enabled, but does not otherwise affect the process
of delivering messages. You might expect this condition to occur only at times when the application
server is experiencing a very high load. If the condition occurs regularly, consider increasing the value
of this property to give the work manager longer to schedule message delivery.

maxPoolDepth
The maximum number of server sessions in the server session pool used by a connection consumer.
When a server session is created, it starts a conversation with a queue manager. The connection
consumer uses a server session to deliver a message to an MDB. A larger pool depth allows more
messages to be delivered concurrently in high volume situations, but uses more resources of the
application server. If many MDBs are to be deployed, consider making the pool depth smaller in order
to maintain the load on the application server at a manageable level. Each connection consumer uses
its own server session pool, so that this property does not define the total number of server sessions
available to all connection consumers.

poolTimeout
The time, in milliseconds, that an unused server session is held open in the server session pool before
being closed due to inactivity. A transient increase in the message workload causes additional server

450 Developing Applications for IBM MQ

sessions to be created in order to distribute the load but, after the message workload returns to
normal, the additional server sessions remain in the pool and are not used.

Every time a server session is used, it is marked with a timestamp. Periodically a scavenger thread
checks that each server session has been used within the period specified by this property. If a server
session has not been used, it is closed and removed from the server session pool. A server session
might not be closed immediately after the specified period has elapsed, this property represents the
minimum period of inactivity before removal.

useJNDI
For a description of this property, see Table 65 on page 446.

Deploying an MDB
To deploy an MDB, first define the properties of an ActivationSpec object, specifying the properties that
the MDB requires. The following example is a typical set of properties that you might define explicitly:

channel: SYSTEM.DEF.SVRCONN
destination: SYSTEM.DEFAULT.LOCAL.QUEUE
destinationType: jakarta.jms.Queue
hostName: 192.168.0.42
messageSelector: color='red'
port: 1414
queueManager: ExampleQM
transportType: CLIENT

channel: SYSTEM.DEF.SVRCONN
destination: SYSTEM.DEFAULT.LOCAL.QUEUE
destinationType: javax.jms.Queue
hostName: 192.168.0.42
messageSelector: color='red'
port: 1414
queueManager: ExampleQM
transportType: CLIENT

The application server uses the properties to create an ActivationSpec object, which is then associated
with an MDB. The properties of the ActivationSpec object determine how messages are delivered to the
MDB. Deployment of the MDB fails if the MDB requires distributed transactions but the resource adapter
does not support distributed transactions. For information about how to install the resource adapter so
that distributed transactions are supported, see “Installing the IBM MQ resource adapter” on page 428.

If more than one MDB is receiving messages from the same destination, then a message sent in the
point-to-point domain is received by only one MDB, even if other MDBs are eligible to receive the
message. In particular, if two MDBs are using different message selectors, and an incoming message
matches both message selectors, only one of the MDBs receives the message. The MDB chosen to receive
a message is undefined, and you cannot rely on a specific MDB receiving the message. Messages sent in
the publish/subscribe domain are received by all eligible MDBs.

In some circumstances, a message delivered to an MDB might be rolled back onto an IBM MQ queue. This
roll back can happen, for example, if a message is delivered within a unit of work that is then rolled back.
A message that is rolled back is delivered again, but a badly formatted message might repeatedly cause
an MDB to fail and therefore cannot be delivered. Such a message is called a poison message. You can
configure IBM MQ so that IBM MQ classes for JMS automatically transfers a poison message to another
queue for further investigation or discards the message.

For details on how to handle poison messages, see “Handling poison messages in IBM MQ classes for
JMS” on page 225.

Related concepts
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

Developing applications for IBM MQ 451

Related tasks
Configuring JMS resources in WebSphere Application Server

Examples of how to define the sharedSubscription property
You can define the sharedSubscription property of an activation specification within a WebSphere Liberty
server.xml file. Alternatively, you can define the property within a message driven bean (MDB) using
annotations.

Example: defining within a Liberty server.xml file
Within a WebSphere Liberty server.xml file, you define an activation specification as shown in the
following example. This example creates a durable shared subscription to a queue manager on localhost/
port 1490.

<jmsActivationSpec id="SubApp/SubscribingEJB/SubscribingMDB" authDataRef="JMSConnectionAlias">
<properties.wmqJms hostName="localhost" port="1490" maxPoolDepth="5"
subscriptionName="MySubName"
subscriptionDurability="DURABLE" sharedSubscription="true"/>
</jmsActivationSpec>

Example: defining within an MDB
You can also define the sharedSubscription property within the MDB using annotations as shown in the
following example:

@ActioncationConfigProperty(propertyName ="sharedSubscription",
propertyValue = "true")

The following example shows a piece of MDB code that uses the annotations method:

/**
 * Message-Driven Bean example using Annotations for configuration
 */
@MessageDriven(
 activationConfig = {
 @ActivationConfigProperty(
 propertyName = "destinationType", propertyValue = "jakarta.jms.Topic"),
 @ActivationConfigProperty(
 propertyName = "sharedSubscription", propertyValue = "TRUE"),
 @ActivationConfigProperty(
 propertyName = "destination", propertyValue = "JNDI_TOPIC_NAME")
 },
 mappedName = "Stock/IBM")
public class SubscribingMDB implements MessageListener {

 // Default constructor.
 public SubscribingMDB() {
 }

 // @see MessageListener#onMessage(Message)
 public void onMessage(Message message) {
 // implement business logic here
 }

}

/**
 * Message-Driven Bean example using Annotations for configuration
 */
@MessageDriven(
 activationConfig = {
 @ActivationConfigProperty(
 propertyName = "destinationType", propertyValue = "javax.jms.Topic"),
 @ActivationConfigProperty(
 propertyName = "sharedSubscription", propertyValue = "TRUE"),

452 Developing Applications for IBM MQ

 @ActivationConfigProperty(
 propertyName = "destination", propertyValue = "JNDI_TOPIC_NAME")
 },
 mappedName = "Stock/IBM")
public class SubscribingMDB implements MessageListener {

 // Default constructor.
 public SubscribingMDB() {
 }

 // @see MessageListener#onMessage(Message)
 public void onMessage(Message message) {
 // implement business logic here
 }

}

Related concepts
Subscribers and subscriptions
Subscription durability
“Cloned and shared subscriptions” on page 315
There are two methods for giving multiple consumers access to the same subscription. These two
methods are by using cloned subscriptions, or by using shared subscriptions.

Configuring the resource adapter for outbound communication
To configure outbound communication, define the properties of a ConnectionFactory object and an
administered destination object.

Example of using outbound communication
When using outbound communication, an application running in an application server starts a connection
to a queue manager, and then sends messages to its queues and receives messages from its queues in a
synchronous manner. For example, the following servlet method, doGet(), uses outbound communication:

protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

...

// Look up ConnectionFactory and Queue objects from the JNDI namespace

 InitialContext ic = new InitialContext();
 ConnectionFactory cf = (jakarta.jms.ConnectionFactory) ic.lookup("myCF");
 Queue q = (jakarta.jms.Queue) ic.lookup("myQueue");

// Create and start a connection

 Connection c = cf.createConnection();
 c.start();

// Create a session and message producer

 Session s = c.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer pr = s.createProducer(q);

// Create and send a message

 Message m = s.createTextMessage("Hello, World!");
 pr.send(m);

// Create a message consumer and receive the message just sent

 MessageConsumer co = s.createConsumer(q);
 Message mr = co.receive(5000);

// Close the connection

 c.close();
}

Developing applications for IBM MQ 453

protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

...

// Look up ConnectionFactory and Queue objects from the JNDI namespace

 InitialContext ic = new InitialContext();
 ConnectionFactory cf = (javax.jms.ConnectionFactory) ic.lookup("myCF");
 Queue q = (javax.jms.Queue) ic.lookup("myQueue");

// Create and start a connection

 Connection c = cf.createConnection();
 c.start();

// Create a session and message producer

 Session s = c.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer pr = s.createProducer(q);

// Create and send a message

 Message m = s.createTextMessage("Hello, World!");
 pr.send(m);

// Create a message consumer and receive the message just sent

 MessageConsumer co = s.createConsumer(q);
 Message mr = co.receive(5000);

// Close the connection

 c.close();
}

When the servlet receives an HTTP GET request, it retrieves a ConnectionFactory object and a Queue
object from the JNDI namespace, and uses the objects to send a message to an IBM MQ queue. The
servlet then receives the message that it has sent.

Resources needed for outbound communication
To configure outbound communication, define Java EE Connector Architecture (JCA) resources in the
following categories:

• The properties of a ConnectionFactory object, which the application server uses to create a JMS
ConnectionFactory object.

• The properties of an administered destination object, which the application server uses to create a JMS
Queue object or JMS Topic object.

The way you define these properties depends on the administration interfaces provided by your
application server. ConnectionFactory, Queue, and Topic objects created by the application server are
bound into a JNDI namespace from where they can be retrieved by an application.

Typically, you define one ConnectionFactory object for each queue manager that applications might
need to connect to. You define one Queue object for each queue that applications might need to
access in the point-to-point domain. And you define one Topic object for each topic that applications
might want to publish or subscribe to. A ConnectionFactory object can be domain independent.
Alternatively, it can be domain-specific, a QueueConnectionFactory object for the point-to-point domain
or a TopicConnectionFactory object for the publish/subscribe domain.

Tip: With JMS 2.0, a connection factory can be used to create both connections and contexts. As a result,
it is possible to have a connection pool associated with a connection factory that contains a mixture of
both connections and contexts. It is recommended that a connection factory is only used for creating
connections or creating contexts. This ensures that the connection pool for that connection factory only
contains objects of a single type, which makes the pool more efficient.

454 Developing Applications for IBM MQ

Properties of a ConnectionFactory object
Table 66 on page 455 lists the properties of a ConnectionFactory object. The application server uses
these properties to create a JMS ConnectionFactory object.

Table 66. Properties of a ConnectionFactory object

Name of property Type Valid values (default value in bold) Description

applicationName String • The invoking class name, if it is
available, adjusted to be no longer than
28 characters. If it is not available, the
string WebSphere MQ Client for
Java is used.

The name by which an application
is registered with the queue
manager. This application name
is shown by the DISPLAY CONN
MQSC/PCF command (where the
field is called APPLTAG) or in
the IBM MQ Explorer Application
Connections display (where the
field is called App name).

brokerCCSubQueue String • SYSTEM.JMS.ND.CC.SUBSCRIBER.QU
EUE

• A queue name

The name of the queue from
which a connection consumer
receives nondurable subscription
messages.

brokerControlQueue String • SYSTEM.BROKER.CONTROL.QUEUE
• A queue name

The name of the broker control
queue.

brokerPubQueue String • SYSTEM.BROKER.DEFAULT.STREAM
• A queue name

The name of the queue where
published messages are sent (the
stream queue).

brokerQueueManager String • "" (empty string)
• A queue manager name

The name of the queue manager
on which the broker is running.

brokerSubQueue String • SYSTEM.JMS.ND.SUBSCRIBER.QUEU
E

• A queue name

The name of the queue from which
a nondurable message consumer
receives messages.

See BROKERSUBQ property for
more information.

brokerVersion String • unspecified - After the broker has
been migrated from V6 to V7, set this
property so that RFH2 headers are
no longer used. After migration this
property is no longer relevant.

• V1 - To use an IBM MQ Publish/
Subscribe broker. This value is the
default value if TRANSPORT is set to
BIND or CLIENT.

• V2 - To use a broker of IBM Integration
Bus in native mode. This value is the
default value if TRANSPORT is set to
DIRECT or DIRECTHTTP.

The version of the broker being
used.

Developing applications for IBM MQ 455

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

ccdtURL String • null
• A uniform resource locator (URL)

A URL that identifies the name
and location of the file containing
the client channel definition table
(CCDT) and specifies how the file
can be accessed.

CCSID String • 819
• A coded character set identifier

supported by the Java virtual machine
(JVM)

The coded character set identifier
for a connection.

channel String • SYSTEM.DEF.SVRCONN
• The name of an MQI channel

The name of the MQI channel to
use.

cleanupInterval int • 3 600 000
• A positive integer

The interval, in milliseconds,
between background runs of the
publish/subscribe cleanup utility.

cleanupLevel String • SAFE
• NONE
• STRONG
• FORCE
• NONDUR

The cleanup level for a broker-
based subscription store.

clientID String • null
• A client identifier

The client identifier for a
connection.

cloneSupport String • DISABLED - Only one instance of a
durable topic subscriber can run at a
time.

• ENABLED - Two or more instances of
the same durable topic subscriber can
run simultaneously, but each instance
must run in a separate Java virtual
machine (JVM).

Whether two or more instances of
the same durable topic subscriber
can run simultaneously.

456 Developing Applications for IBM MQ

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

connectionNameList String • localhost(1414)
• A string composed of items separated

by commas where each item takes the
format:

 HOSTNAME(PORT)

where HOSTNAME is either a DNS
name or an IP address.

A list of TCP/IP connection
names used for outbound
communications.

connectionNameList
supersedes the hostname and
port properties.

This property is used to
reconnect to multi-instance queue
managers.

connectionNameList is similar
in form to localAddress,
but must not be confused
with it. localAddress specifies
the characteristics of the
local communications, whereas
connectionNameList specifies
how to reach a remote queue
manager.

failIfQuiesce Boole
an

• true
• false

Whether calls to certain methods
fail if the queue manager is in a
quiescing state.

headerCompression String • NONE
• SYSTEM - RLE message header

compression is performed.

A list of the techniques that can be
used for compressing header data
on a connection.

hostName String • localhost
• A host name
• An IP address

The host name or IP address of
the system on which the queue
manager resides.

The hostname and port
properties are superseded by the
connectionNameList property
when it is specified.

localAddress String • null
• A string in the format:

[host_name][(low_port [,
high_port])]

where host_name is a host name or
IP address, low_port and high_port
are TCP port numbers, and brackets
denote an optional component

For a connection to a queue
manager, this property specifies
either or both of the following:

• The local network interface to be
used

• The local port, or range of local
ports, to be used

localAddress is similar in
form to connectionNameList,
but must not be confused
with it. localAddress specifies
the characteristics of the
local communications, whereas
connectionNameList specifies
how to reach a remote queue
manager.

Developing applications for IBM MQ 457

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

messageCompression String • NONE
• A list of one or more of the following

values separated by blank characters:

RLE
ZLIBFAST
ZLIBHIGH

LZ4FAST

LZ4HIGH

A list of the techniques that can
be used for compressing message
data on a connection.

messageSelection String • CLIENT
• BROKER

Determines whether message
selection is done by IBM MQ
classes for JMS or by the
broker. Message selection by the
broker is not supported when
brokerVersion has the value 1.

password String • null
• A password

The default password to use when
creating a connection to the queue
manager.

pollingInterval int • 5000
• Any positive integer

If each message listener within a
session has no suitable message
on its queue, this value is the
maximum interval, in milliseconds,
that elapses before each message
listener tries again to get a
message from its queue. If
it frequently happens that no
suitable message is available for
any of the message listeners in
a session, consider increasing
the value of this property. This
property is relevant only if
TRANSPORT has the value BIND or
CLIENT.

port int • 1414
• A TCP port number

The port on which the queue
manager listens.

The hostname and port
properties are superseded by the
connectionNameList property
when it is specified.

458 Developing Applications for IBM MQ

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

providerVersion string • unspecified
• A string in one of the following formats

– V.R.M.F
– V.R.M
– V.R
– V

where V, R, M, and F are integer values
greater than or equal to zero.

The version, release, modification
level and fix pack of the queue
manager to which the application
intends to connect.

pubAckInterval int • 25
• A positive integer

The number of messages
published by a publisher before
IBM MQ classes for JMS requests
an acknowledgment from the
broker.

queueManager String • "" (empty string)
• A queue manager name

The name of the queue manager
to connect to.

receiveExit 3 String • null
• A string comprising one or more

items separated by commas, where
each item is the fully qualified name
of a class that implements the
IBM MQ classes for Java interface,
MQReceiveExit

Identifies a channel receive exit
program, or a sequence of receive
exit programs to be run in
succession.

receiveExitInit String • null
• A string comprising one or more items

of user data separated by commas

The user data that is passed
to channel receive exit programs
when they are called.

Developing applications for IBM MQ 459

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

rescanInterval int • 5000
• Any positive integer

When a message consumer in
the point-to-point domain uses
a message selector to select
which messages it wants to
receive, IBM MQ classes for JMS
searches the IBM MQ queue
for suitable messages in the
sequence determined by the
MsgDeliverySequence attribute
of the queue. When IBM MQ
classes for JMS finds a suitable
message and delivers it to the
consumer, IBM MQ classes for
JMS resumes the search for the
next suitable message from its
current position in the queue. IBM
MQ classes for JMS continues to
search the queue in this way until
it reaches the end of the queue,
or until the interval of time in
milliseconds, as determined by
the value of this property, has
expired. In each case, IBM MQ
classes for JMS returns to the
beginning of the queue to continue
its search, and a new time interval
commences.

securityExit 3 String • null
• The fully qualified name of a class that

implements the IBM MQ classes for
Java interface, MQSecurityExit

Identifies a channel security exit
program.

securityExitInit String • null
• A string of user data

The user data that is passed to
a channel security exit program
when it is called.

sendCheckCount int • 0
• Any positive integer

The number of send calls to
allow between checking for
asynchronous put errors, within
a single non-transacted JMS
session.

sendExit 3 String • null
• A string comprising one or more items

separated by commas, where each
item is the fully qualified name of a
class that implements the IBM MQ
classes for Java interface, MQSendExit

Identifies a channel send exit
program, or a sequence of send
exit programs to be run in
succession.

sendExitInit String • null
• A string comprising one or more items

of user data separated by commas

The user data that is passed to
channel send exit programs when
they are called.

460 Developing Applications for IBM MQ

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

shareConvAllowed Boole
an

• NO - A client connection cannot share
its socket.

• YES - A client connection can share its
socket.

Whether a client connection can
share its socket with other top-
level JMS connections from the
same process to the same queue
manager, if the channel definitions
match.

sparseSubscriptions Boole
an

• false - Subscriptions receive frequent
matching messages.

• true - Subscriptions receive infrequent
matching messages. This value
requires that the subscription queue
can be opened for browse.

Controls the message retrieval
policy of a TopicSubscriber object.

sslCertStores String • null
• A string of one or more LDAP URLs

separated by blanks. Each LDAP URL
has the format:

ldap://host_name [: port]

where host_name is a host name or
IP address, port is a TCP port number,
and brackets denote an optional
component.

The Lightweight Directory Access
Protocol (LDAP) servers that hold
certificate revocation lists (CRLs)
for use on a TLS connection.

sslCipherSuite String • null
• The name of a CipherSuite

The CipherSuite to use for a TLS
connection.

sslFipsRequired 2 Boole
an

• false
• true

Whether a TLS connection must
use a CipherSuite that is
supported by the IBM Java JSSE
FIPS provider (IBMJSSEFIPS).

sslPeerName String • null
• A template for distinguished names

For a TLS connection, a template
that is used to check the
distinguished name in the digital
certificate provided by the queue
manager.

sslResetCount int • 0
• An integer in the range 0 - 999 999 999

The total number bytes sent and
received by a TLS connection
before the secret keys used by TLS
are renegotiated.

sslSocketFactory String A string representing the fully
qualified class name of a class
providing an implementation of the
javax.net.ssl.SSLSocketFactory interface,
optionally including an argument to
be passed to the constructor method,
enclosed in parentheses.

Any connections established in
the scope of the administered
destination object use sockets
obtained from this implementation
of the SSLSocketFactory interface.

Developing applications for IBM MQ 461

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

statusRefreshInterval int • 60000
• Any positive integer

The interval, in milliseconds,
between refreshes of the long
running transaction that detects
when a subscriber loses its
connection to the queue manager.
This property is relevant only if
SUBSTORE has the value QUEUE.

subscriptionStore String • BROKER
• MIGRATE
• QUEUE

Determines where IBM MQ
classes for JMS stores persistent
data about active subscriptions.

targetClientMatching Boole
an

• true
• false

Whether a reply message, sent
to the queue identified by
the JMSReplyTo header field
of an incoming message, has
an MQRFH2 header only if
the incoming message has an
MQRFH2 header.

You can also configure this
property for an activation
specification. For more
information, see “Configuring the
targetClientMatching property for
an activation specification” on
page 471.

462 Developing Applications for IBM MQ

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

temporaryModel String • SYSTEM.DEFAULT.MODEL.QUEUE
• SYSTEM.JMS.TEMPQ.MODEL
• Any string

The name of the model queue
from which JMS temporary queues
are created.
Use
SYSTEM.DEFAULT.MODEL.QUEUE
if both of the following statements
are true:

• Your application uses a
temporary queue that
will accept non-persistent
messages.

• Only one application will create
a temporary queue on the queue
manager that the
ConnectionFactory points to at a
time. Note that
SYSTEM.DEFAULT.MODEL.QUE
UE can only be opened by one
application at a time.

Use SYSTEM.JMS.TEMPQ.MODEL
in the following situations:

• When your application uses
a temporary queue that will
accept persistent messages.

• If multiple applications can
connect to the queue manager
that the ConnectionFactory
points to and those applications
need to create temporary
queues at the same time.

Define a new model queue with
the DEFPSIST attribute set to
YES, and the DEFSOPT attribute
set to SHARED in the following
situation:

• When your application uses
a temporary queue that
will accept non-persistent
messages, and multiple
applications will connect to
the queue manager that the
ConnectionFactory points to,
and those applications need to
create temporary queues at the
same time.

When the new model
queue is created, set the
temporaryModel property to the
name of the new model queue.

Developing applications for IBM MQ 463

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

tempQPrefix String • "" (empty string)
• A prefix that can be used to form the

name of an IBM MQ dynamic queue.
The rules for forming the prefix are
the same as the rules for forming
the contents of the DynamicQName
field in an IBM MQ object descriptor,
structure MQOD, but the last non-blank
character must be an asterisk (*).
If the value of the property is the
empty string, IBM MQ classes for JMS
uses the value AMQ.* when creating a
dynamic queue.

The prefix that is used to form
the name of an IBM MQ dynamic
queue.

tempTopicPrefix String Any non-null string consisting only of
valid characters for an IBM MQ topic
string

When creating temporary topics,
JMS generates a topic string of the
form "TEMP/TEMPTOPICPREFIX/
unique_id ", or if this property
is left with the default value,
just "TEMP/unique_id". Specifying
a non-empty TEMPTOPICPREFIX
allows specific model queues
to be defined for creating the
managed queues for subscribers
to temporary topics created under
this connection.

464 Developing Applications for IBM MQ

Table 66. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

transportType String • CLIENT
• BINDINGS
• BINDINGS_THEN_CLIENT

Whether a connection to a
queue manager uses client
mode or bindings mode. If the
value BINDINGS_THEN_CLIENT
is specified, the resource adapter
first tries to make a connection in
bindings mode. If this connection
attempt fails, the resource adapter
then tries to make a client mode
connection.

If an activation
specification that is running
on a WebSphere Application
Server for z/OS system has
been configured to use
the BINDINGS_THEN_CLIENT
transport mode and a previously
established connection is broken,
then any reconnection attempts
by the activation specification first
attempt to use the BINDINGS
transport mode. If the BINDINGS
transport mode connection
attempt is unsuccessful,
the activation specification
subsequently attempts a CLIENT
transport mode connection.

username String • null
• A user name

The default user name to use
when creating a connection to a
queue manager.

wildcardFormat int • CHAR- Recognizes character wildcards
only, as used in broker version 1

• TOPIC - Recognizes topic level
wildcards only, as used in broker
version 2

Which version of wildcard syntax
is to be used.

Notes:

1. For important information about using the sslFipsRequired property, see “Limitations of the IBM MQ
resource adapter” on page 424.

2. For information on how to configure the resource adapter so that it can locate an exit, see “Configuring
IBM MQ classes for JMS to use channel exits” on page 271.

The following example shows a typical set of properties of a ConnectionFactory object:

channel: SYSTEM.DEF.SVRCONN
hostName: 192.168.0.42
port: 1414
queueManager: ExampleQM
transportType: CLIENT

Developing applications for IBM MQ 465

Properties of an administered destination object
The application server uses the properties of an administered destination object to create a JMS Queue
object or JMS Topic object.

Table 67 on page 466 lists the properties that are common to a Queue object and a Topic object.

Table 67. Properties that are common to a Queue object and a Topic object

Name of property Type Valid values (default value in bold) Description

CCSID Strin
g

• 1208
• A coded character set identifier supported

by the Java virtual machine (JVM)

The coded character set
identifier for the destination.

encoding Strin
g

• NATIVE
• A string of three characters:

– The first character specifies the
representation of binary integers:

- N denotes normal encoding.
- R denotes reverse encoding.

– The second character specifies the
representation of packed decimal
integers:

- N denotes normal encoding.
- R denotes reverse encoding.

– The third character specifies the
representation of floating point numbers:

- N denotes standard IEEE encoding.
- R denotes reverse IEEE encoding.
- 3 denotes zSeries encoding.

NATIVE is equivalent to the string NNN.

The representation of binary
integers, packed decimal
integers, and floating point
numbers for the destination.

expiry Strin
g

• APP - The expiry time of a message is
determined by the message producer.

• UNLIM - A message never expires.
• 0 - A message never expires.
• A positive integer representing the expiry

time of a message in milliseconds.

The expiry time of a message
sent to the destination.

failIfQuiesce Strin
g

• true
• false

Whether an attempt to access
the destination fails if the
queue manager is in a
quiescing state.

466 Developing Applications for IBM MQ

Table 67. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

messageBodyStyle Strin
g

• UNSPECIFIED
• JMS
• MQ

You can set
the messageBodyStyle
property on JMS queues and
topics:
UNSPECIFIED(default)

• When sending, IBM
MQ classes for JMS
generate and include
an MQRFH2 header,
depending on the value of
WMQ_TARGET_CLIENT.

• When receiving, IBM MQ
classes for JMS set the
JMS message properties
according to values in
the MQRFH2, if present.
MQRFH2 is not presented
as part of the JMS message
body.

JMS

• When sending, IBM
MQ classes for JMS
automatically generates
an MQRFH2 header and
includes the header in the
IBM MQ message.

• When receiving, IBM MQ
classes for JMS set the
JMS message properties
according to values in
the MQRFH2, if present.
MQRFH2 is not presented
as part of the JMS message
body.

MQ

• When sending, IBM MQ
classes for JMS do not
generate an MQRFH2.

• When receiving, IBM MQ
classes for JMS present the
MQRFH2 as part of the JMS
message body.

Developing applications for IBM MQ 467

Table 67. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

persistence Strin
g

• APP - The persistence of a message is
determined by the message producer.

• QDEF - The persistence of a message
is determined by the DefPersistence
attribute of the IBM MQ queue.

• PERS - A message is persistent.
• NON - A message is nonpersistent.
• HIGH - The persistence of a

message is determined by the
NonPersistentMessageClass attribute
of the IBM MQ queue according to the
explanation in “JMS persistent messages”
on page 245.

The persistence of a message
sent to the destination.

priority Strin
g

• APP - The priority of a message is
determined by the message producer.

• QDEF - The priority of a message is
determined by the DefPriority attribute
of the IBM MQ queue.

• An integer in the range 0, lowest priority, to
9, highest priority.

The priority of a message sent
to the destination.

putAsyncAllowed Strin
g

• QUEUE - Determine whether asynchronous
puts are allowed by referring to the queue
definition.

• TOPIC - Determine whether asynchronous
puts are allowed by referring to the topic
definition.

• DESTINATION - Determine whether
asynchronous puts are allowed by referring
to the queue or topic definition.

• DISABLED - Asynchronous puts are not
allowed.

• ENABLED - Asynchronous puts are allowed.

Whether message producers
are allowed to use
asynchronous puts to send
messages to this destination.

readAheadAllowed int • DESTINATION - Determine whether read
ahead is allowed by referring to the queue
or topic definition.

• DISABLED - Read ahead is not allowed.
• ENABLED - Read ahead is allowed.
• QUEUE - Determine whether read ahead is

allowed by referring to the queue definition.
• TOPIC - Determine whether read ahead is

allowed by referring to the topic definition.

Whether message consumers
and queue browsers are
allowed to use read ahead to
get nonpersistent messages
from the destination into
an internal buffer before
receiving them.

468 Developing Applications for IBM MQ

Table 67. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

receiveCCSID int • 0 - Use JVM Charset.defaultCharset
• 1208 - UTF-8
• A supported coded character set identifier

Destination property that
sets the target CCSID
for queue manager
message conversion. The
value is ignored unless
receiveConversion is set
to QMGR.

receiveConversion Strin
g

• CLIENT_MSG
• QMGR

Destination property that
determines whether data
conversion is going to be
performed by the queue
manager.

targetClient Strin
g

• JMS - The target of a message is a JMS
application.

• MQ - The target of a message is a non-JMS
IBM MQ application.

Whether the target of
a message sent to the
destination is a JMS
application. A message with
a target that is a JMS
application contains an
MQRFH2 header.

Table 68 on page 469 lists the properties that are specific to a Queue object.

Table 68. Properties that are specific to a Queue object

Name of property Type
Valid values (default value in
bold) Description

baseQueueManagerNa
me

String • "" (empty string)
• A queue manager name

The name of the queue manager that
owns the underlying IBM MQ queue.

baseQueueName String • "" (empty string)
• A queue name

The name of the underlying IBM MQ
queue.

Table 69 on page 469 lists the properties that are specific to a Topic object.

Table 69. Properties that are specific to a Topic object

Name of property Type Valid values (default value in bold) Description

baseTopicName String • "" (empty string)
• A topic name

The name of the underlying
topic.

brokerCCDurSubQueue > String • SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
• A queue name

The name of the queue from
which a connection consumer
receives durable subscription
messages.

Developing applications for IBM MQ 469

Table 69. Properties that are specific to a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

brokerDurSubQueue String • SYSTEM.JMS.D.SUBSCRIBER.QUEUE
• A queue name

The name of the
queue from which a
durable topic subscriber
receives messages. See the
BROKEDURRSUBQ property
in the IBM MQ Explorer
documentation for more
information.

brokerPubQueue String • Not set
• A queue name

The name of the queue
where published messages
are sent (the stream queue).
The value of this property
overrides the value of the
brokerPubQueue property
of the ConnectionFactory
object. However, if you do
not set the value of this
property, the value of the
brokerPubQueue property
of the ConnectionFactory
object is used instead.

brokerPubQueueManage
r

String • "" (empty string)
• A queue manager name

The name of the queue
manager that owns the queue
where messages published on
the topic are sent.

brokerVersion String • Not set
• 1
• 2

The version of the
broker being used. The
value of this property
overrides the value of the
brokerVersion property
of the ConnectionFactory
object. However, if you do
not set the value of this
property, the value of the
brokerVersion property of
the ConnectionFactory object
is used instead.

The following example shows a set of properties of a Queue object:

expiry: UNLIM
persistence: QDEF
baseQueueManagerName: ExampleQM
baseQueueName: SYSTEM.JMS.TEMPQ.MODEL

The following example shows a set of properties of a Topic object:

expiry: UNLIM
persistence: NON
baseTopicName: myTestTopic

Related tasks
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client

470 Developing Applications for IBM MQ

Configuring JMS resources in WebSphere Application Server
Related reference
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

Configuring the targetClientMatching property for an activation specification
You can configure the targetClientMatching property for an activation specification so that an
MQRFH2 header is included on reply messages when request messages do not contain an MQRFH2
header. This means that any message properties that an application defines on a reply message are
included when the message is sent.

About this task
If a message-driven bean (MDB) application consumes messages that do not contain an MQRFH2
header, through an IBM MQ JCA resource adapter activation specification, and subsequently sends reply
messages to the JMS Destination created from the JMSReplyTo field of the request message, the reply
messages must include an MQRFH2 header, even if the request messages do not, otherwise any message
properties that the application has defined on a reply message are lost.

The targetClientMatching property defines whether a reply message, sent to the queue identified
by the JMSReplyTo header field of an incoming message, has an MQRFH2 header only if the incoming
message has an MQRFH2 header. You can configure this property for an activation specification, in both
WebSphere Application Server traditional and WebSphere Liberty.

If you set the value of the targetClientMatching property to false, an MQRFH2 header can be
included in a reply message sent to a JMS Destination created from the JMSReplyTo header of an
incoming request message that does not contain an MQRFH2. This is because the targetClient
property on the JMS Destination is set to the value 0, which means that messages contain an MQRFH2
header. The presence of the MQRFH2 header in the outbound message permits the storage of user
defined message properties on the message when sent to the IBM MQ queue.

If the targetClientMatching property is set to true and a request message does not include an
MQRFH2 header, an MQRFH2 header is not included in the reply message.

Procedure
• In WebSphere Application Server traditional, use the administration console to define the

targetClientMatching property as a custom property on the IBM MQ activation specification:
a) In the navigation pane, click Resources -> JMS ->Activation specifications.
b) Select the name of the activation specification that you want to view or change.
c) Click Custom properties -> New and then enter the details of the new custom property.

Set the name of the property to targetClientMatching, the type to java.lang.Boolean and
the value to false.

• In WebSphere Liberty, specify the targetClientMatching property on the definition of an
activation specification within the server.xml.
For example:

<jmsActivationSpec id="SimpleMDBApplication/SimpleEchoMDB/SimpleEchoMDB">
<properties.wmqJms destinationRef="MDBRequestQ"
queueManager="MY_QMGR" transportType="BINDINGS" targetClientMatching="false"/>
<authData password="********" user="tom"/>
</jmsActivationSpec>

Related concepts
“Creating destinations in a JMS application” on page 212
Instead of retrieving destinations as administered objects from a Java Naming and Directory Interface
(JNDI) namespace, a JMS application can use a session to create destinations dynamically at run time.
An application can use a uniform resource identifier (URI) to identify an IBM MQ queue or a topic and,
optionally, to specify one or more properties of a Queue or Topic object.

Developing applications for IBM MQ 471

“Configuring the resource adapter for outbound communication” on page 453
To configure outbound communication, define the properties of a ConnectionFactory object and an
administered destination object.

IBM MQ message-driven bean pause in WebSphere Liberty
The maxSequentialDeliveryFailures property for an activation specification defines the maximum
number of sequential message delivery failures to a message-driven bean (MDB) instance that the
resource adapter tolerates before pausing the MDB.

Before you begin
You need to be aware of the set of events that might cause an MDB to pause in WebSphere Liberty. The
resource adapter considers any one of the following as a message delivery failure:

• An unchecked exception being thrown from the onMessage method of the MDB.
• A JMSException occurring in the processing of the resource adapter, prior to delivering the message to

the MDB.
• A JMSException occurring in the processing of the resource adapter, post delivering the message to

the MDB.
• The XA transaction, or local transaction, used to consume the message being rolled-back.
• No thread being available in the application server to deliver the message to the MDB.

About this task
The default value of the maxSequentialDeliveryFailures property is -1, which means that the MDB
is never paused. Any other negative value is treated the same as -1. A value of:

• 0 means that the MDB pauses on the first error
• 1 means that the MDB pauses on two sequential errors
• 2 means that the MDB pauses on three sequential errors, and so on

You can configure this property for an activation specification, only in WebSphere Liberty, and when the
level of Liberty is 18.0.0.4, or higher.

Attention: If you set the attribute to a non-default value in any application server environment
other than Liberty, the value will be ignored and a warning message written to the log.

In addition, it is possible to install the IBM MQ resource adapter into WebSphere Liberty as a
generic resource adapter. Doing this disables all of the IBM MQ and WebSphere Application Server
integration capabilities, and prevents the resource adapter from being able to detect that it is
running in Liberty. Therefore, setting maxSequentialDeliveryFailures to be greater than or
equal to 0 is not supported, and results in a warning message in the log.

Procedure
• In WebSphere Liberty, specify the maxSequentialDeliveryFailures property on the definition of

an activation specification within the server.xml.
For example:

<jmsActivationSpec>
 <properties.wmqJms destinationRef="jndi/MDBQ"
 transportType="BINDINGS"
 queueManager="MQ21"
 maxSequentialDeliveryFailures="1"/>
</jmsActivationSpec>

Related concepts
“Configuring the resource adapter for outbound communication” on page 453

472 Developing Applications for IBM MQ

To configure outbound communication, define the properties of a ConnectionFactory object and an
administered destination object.

Verifying the resource adapter installation
The installation verification test (IVT) program for the IBM MQ resource adapter is supplied as an EAR file.
To use the program, you must deploy it and define some objects as JCA resources.

About this task
The installation verification test (IVT) program is supplied as an enterprise archive (EAR) file called
wmq.jakarta.jmsra.ivt.ear (Jakarta Messaging 3.0) or wmq.jmsra.ivt.ear (JMS 2.0). This file
is installed with IBM MQ classes for JMS in the same directory as the IBM MQ resource adapter RAR
file, wmq.jakarta.jmsra.rar (Jakarta Messaging 3.0) or wmq.jmsra.rar (JMS 2.0). For information
about where these files are installed, see “Installing the IBM MQ resource adapter” on page 428.

You must deploy the IVT program on your application server. The IVT program includes a servlet and an
MDB that tests that a message can be sent to, and received from, an IBM MQ queue. You can use the IVT
program to verify that the IBM MQ resource adapter has been correctly configured to support distributed
transactions. If you are deploying the IBM MQ resource adapter in an non-IBM application server, IBM
Service might ask you to demonstrate the IVT working to validate that your application server is correctly
configured.

Before you can run the IVT program, you must define a ConnectionFactory object, a Queue object and
possibly an Activation Specification object as JCA resources, and ensure that your application server
creates JMS objects from these definitions and binds them into a JNDI namespace. You can choose the
properties of the objects to match the host and port settings of your own QueueManager, but the following
set of properties is a simple example:

ConnectionFactory object:
channel: SYSTEM.DEF.SVRCONN
hostName: localhost
port: 1550
queueManager: QM1
transportType: CLIENT
Queue object:
baseQueueManagerName: QM1
baseQueueName: TEST.QUEUE

The mechanism used to define the ConnectionFactory, Queue and Activation Specification objects varies
depending on your application server. For example, to set these properties within WebSphere Liberty, add
the following entries to the application server's server.xml file:

<!-- IVT Connection factory -->
<jmsQueueConnectionFactory connectionManagerRef="ConMgrIVT" jndiName="IVTCF">
 <properties.wmqJms channel="SYSTEM.DEF.SVRCONN" hostname="localhost" port="1550"
transportType="CLIENT"/>
</jmsQueueConnectionFactory>
<connectionManager id="ConMgrIVT" maxPoolSize="10"/>

<!-- IVT Queues -->
<jmsQueue id="IVTQueue" jndiName="IVTQueue">
 <properties.wmqJms baseQueueName="TEST.QUEUE"/>
</jmsQueue>

<!-- IVT Activation Spec -->
<jmsActivationSpec id="wmq.jakarta.jmsra.ivt/WMQ_IVT_MDB/WMQ_IVT_MDB">
 <properties.wmqJms destinationRef="IVTQueue"
transportType="CLIENT"
queueManager="QM1"
hostName="localhost"
port="1550"
maxPoolDepth="1"/>
</jmsActivationSpec>

<!-- IVT Connection factory -->
<jmsQueueConnectionFactory connectionManagerRef="ConMgrIVT" jndiName="IVTCF">

Developing applications for IBM MQ 473

 <properties.wmqJms channel="SYSTEM.DEF.SVRCONN" hostname="localhost" port="1550"
transportType="CLIENT"/>
</jmsQueueConnectionFactory>
<connectionManager id="ConMgrIVT" maxPoolSize="10"/>

<!-- IVT Queues -->
<jmsQueue id="IVTQueue" jndiName="IVTQueue">
 <properties.wmqJms baseQueueName="TEST.QUEUE"/>
</jmsQueue>

<!-- IVT Activation Spec -->
<jmsActivationSpec id="wmq.jmsra.ivt/WMQ_IVT_MDB/WMQ_IVT_MDB">
 <properties.wmqJms destinationRef="IVTQueue"
transportType="CLIENT"
queueManager="QM1"
hostName="localhost"
port="1550"
maxPoolDepth="1"/>
</jmsActivationSpec>

By default, the IVT program expects a ConnectionFactory object to be bound in the JNDI namespace with
the name jms/ivt/IVTCF and a Queue object to be bound with the name jms/ivt/IVTQueue. You can use
different names, but if you do, you must enter the names of the objects on the initial page of the IVT
program and modify the EAR file appropriately.

After you have deployed the IVT program, and the application server has created the JMS objects and
bound them into the JNDI namespace, you can start the IVT program by completing the following steps.

Procedure
1. Start the IVT program by entering a URL in the following format into your web browser:

http://app_server_host: port/WMQ_IVT/

where app_server_host is the IP address or host name of the system on which your application server
is running, and port is the number of the TCP port on which the application server is listening. Here is
an example:

http://localhost:9080/WMQ_IVT/

Here is an example of the initial page displayed by the IVT program.

Figure 46. The initial page of the IVT program

2. To run the test, click Run IVT.

Here is an example of the page that is displayed if the IVT is successful.

474 Developing Applications for IBM MQ

Figure 47. Page showing the results of a successful IVT

Here is an example of the page that is displayed if the IVT fails. To obtain further information about the
cause of the failure, click View Stack Trace.

Figure 48. Page showing the results of an IVT that failed

Developing applications for IBM MQ 475

Installing and testing the resource adapter in GlassFish Server
To install the IBM MQ resource adapter in GlassFish Server on a Windows operating system, you must first
create and start a domain. You can then deploy and configure the resource adapter, and deploy and run
the installation verification test (IVT) application.

Before you begin
• These instructions are for GlassFish Server version 4.
• This version of GlassFish Server does not support Jakarta EE.

About this task
This task assumes that you have a running GlassFish Server application server, and that you are familiar
with standard administration tasks for it. This task also assumes that you have an IBM MQ installation on
your local system and that you are familiar with standard administration tasks.

Note: In order to complete the following task steps, you must have a functioning IBM MQ installation,
with the following objects configured:

• A queue manager called QM, that is started on port 1414, that uses channel SYSTEM.DEF.SVRCONN,
and that connects using Client transport.

• A queue called Q1.

Procedure
1. Start the GlassFish Server asadmin shell program.

a) Open the Windows command line and navigate to the GlassFish/bin directory, where GlassFish
is the directory where GlassFish Server version 4 is installed.

b) Enter the command asadmin in the command line.
The asadmin command opens a shell program in the command line that enables you to create a
new domain.

GlassFish Server version 4 is started on your system.
2. Create, and then start a domain.

a) Use the create-domain command, specifying the port and domain name, to create a new domain.
Enter the following command on the command line:

create-domain --adminport port domain_name

where port is the port number, and domain_name is the name you want the domain to use.

Note: The create-domain command has many optional parameters associated with it. However,
for this task you need the --adminport parameter only. For more information, see the product
documentation for GlassFish Server version 4.

If the port that you specified is in use, the following message appears:
Port for domain_name port is in use

If the domain name you specified is in use, you receive a message telling you that your specified
name is already in use, as well as a list of all domain names that are currently unavailable.

b) When prompted to input a user name and password, enter the credentials to be used to log on to
the application server through a web browser.
If the command completes successfully, a message summarizing the domain creation is
displayed on the command line, including the message Command create-domain executed
successfully.

You have successfully created a domain.

476 Developing Applications for IBM MQ

c) Start your domain by entering the following command into the command line:

start-domain domain_name

where domain_name is the domain name you previously specified.
3. Use a web browser to access GlassFish application server.

a) In the address bar of a web browser enter the following command:

localhost:port

where port is the port that you specified earlier when creating your domain.
The GlassFish Console is displayed.

b) When the GlassFish Console has loaded, and you are prompted for a user name and password,
enter the credentials that you specified in step 2b.

4. Upload the resource adapter to GlassFish Server 4.
a) On the toolbar Common Tasks select the Applications menu item to display the Applications

page.

b) Click the Deploy button, to open the Deploy Applications or Modules page.
c) Click the Browse button, then navigate to the location of the wmq.jmsra.rar file. Select the file

then click OK.
5. Create a connection pool.

a) On the toolbar, under Resources, select the Connectors menu item.
b) Then select Connector Connection Pools menu item, to open the Connector Connection Pools

page.

c) Click New to open the New Connector Connection Pool (Step 1 of 2) page.
d) On New Connector Connection Pool (Step 1 of 2) page, input the pool name as jms/ivt/IVTCF-

Connection-Pool into the Pool Name field.
e) In the Resource Adapter field select wmq.jmsra.
f) In the Connection Definition field, enter javax.jms.ConnectionFactory.
g) Select Next, then select Finish.

6. Create the connector resources.
a) On the toolbar, under the Connectors menu, select the Connector Resource option, to open the

Connector Resources page.

b) Select New, to open the New Connector Resource page.
c) In the JNDI Name field, enter IVTCF.
d) In the Pool Name field, enter jms/ivt/IVTCF-Connection-Pool.
e) Leave all other fields empty.
f) For each of the following property/value pairs, click Add Property, and enter the property name

and the value as shown in the following example:

• name: host; value: localhost
• name: port; value 1414
• name: channel; value: SYSTEM.DEF.SVRCONN
• name: queueManager; value: QM
• name: transportType; value: CLIENT

Note: Make sure that you use the correct values for your own configuration settings, which might be
different from the ones shown in this example.

Developing applications for IBM MQ 477

g) In the toolbar, under Connectors, select the Admin Object Resources menu item, to open the
Admin Object Resources page.

h) In the Admin Object Resources page, click New to open the New Admin Object Resource page.
i) In the JNDI Name field, enter IVTQueue.
j) In the Resource Adapter field, enter wmq.jmsra.

k) In the Resource Type field, enter javax.jms.Queue.
l) Leave the Class Name field as it is.

m) For each of the following property/value pairs, click Add Property, and enter the property name
and the value as shown in the following example:

• name: name; value: IVTQueue
• name: baseQueueManagerName; value QM
• name: baseQueueName; value: Q1

Note: Make sure that you use the correct values for your own configuration settings, which might be
different from the ones shown in this example.

n) Click OK.
o) Select the Enabled checkbox, then click Enable.

7. Deploy the EAR file wmq.jmsra.ivt.ear into GlassFish Server.
a) Click the Applications option in the toolbar to display the Applications page.
b) Click Deploy to add the IVT application.
c) In the Location field navigate to, and select, the wmq.jmsra.ivt.ear.
d) In the Virtual Servers field, select server, and then click OK.

8. Launch the IVT program.
a) Click the Applications option in the toolbar to display the Applications page.
b) Click on wmq.jmsra.ivt in the Deployed Applications table.
c) Click the Launch button, in the Modules and Components table.
d) Select the http: link.
e) Click Run IVT.

You have launched the IVT program, and if you are successful, the following output is displayed:

478 Developing Applications for IBM MQ

Figure 49. Successful IVT output

Installing and testing the resource adapter in WildFly
If you are installing the IBM MQ resource adapter in WildFly V10, you must first make some configuration
file changes to add a subsystem definition for the IBM MQ resource adapter. You can then deploy the
resource adapter and test it by installing and running the installation verification test (IVT) application.

Before you begin
• These instructions are for WildFly V10.
• This version of WildFly does not support Jakarta EE.

About this task
This task assumes that you have a running WildFly application server, and that you are familiar with
standard administration tasks for it. This task also assumes that you have an IBM MQ installation and that
you are familiar with standard administration tasks.

Procedure
1. Create an IBM MQ queue manager called ExampleQM, and set it up as described in “Configuring a

queue manager to accept client connections on Multiplatforms” on page 1028.
When setting up the queue manager, note the following points:

• The listener must be started on port 1414.
• The channel to be used is called SYSTEM.DEF.SVRCONN.

Developing applications for IBM MQ 479

• The queue used by the IVT application is named TEST.QUEUE.

The model queue SYSTEM.DEFAULT.MODEL.QUEUE also needs to be granted DSP and PUT authority so
this application can create a temporary reply queue.

2. Edit the configuration file WildFly_Home/standalone/configuration/standalone-full.xml
and add the following subsystem:

<subsystem xmlns="urn:jboss:domain:resource-adapters:4.0">
 <resource-adapters>
 <resource-adapter id="wmq.jmsra">
 <archive>
 wmq.jmsra.rar
 </archive>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="com.ibm.mq.connector.outbound.ManagedConnectionFactoryImpl"
 jndi-name="java:jboss/jms/ivt/IVTCF" enabled="true"
use-java-context="true"
 pool-name="IVTCF">
 <config-property name="channel">SYSTEM.DEF.SVRCONN
 </config-property>
 <config-property
 name="hostName">localhost
 </config-property>
 <config-property name="transportType">
 CLIENT
 </config-property>
 <config-property name="queueManager">
 ExampleQM
 </config-property>
 <config-property name="port">
 1414
 </config-property>
 </connection-definition>
 <connection-definition class-
name="com.ibm.mq.connector.outbound.ManagedConnectionFactoryImpl"
 jndi-name="java:jboss/jms/ivt/JMS2CF" enabled="true"
use-java-context="true"
 pool-name="JMS2CF">
 <config-property name="channel">
 SYSTEM.DEF.SVRCONN
 </config-property>
 <config-property name="hostName">
 localhost
 </config-property>
 <config-property name="transportType">
 CLIENT
 </config-property>
 <config-property name="queueManager">
 ExampleQM
 </config-property>
 <config-property name="port">
 1414
 </config-property>
 </connection-definition>
 </connection-definitions>
 <admin-objects>
 <admin-object class-name="com.ibm.mq.connector.outbound.MQQueueProxy"
 jndi-name="java:jboss/jms/ivt/IVTQueue" pool-name="IVTQueue">
 <config-property name="baseQueueName">
 TEST.QUEUE
 </config-property>
 </admin-object>
 </admin-objects>
 </resource-adapter>
 </resource-adapters>
</subsystem>

3. Deploy the resource adapter to your server by copying the wmq.jmsra.rar file into the directory
WildFly_Home/standalone/deployments.

4. Deploy the IVT application by coping the wmq.jmsra.ivt.ear file into the directory
WildFly_Home/standalone/deployments.

5. Start the application server, by bringing up a command prompt, navigating to the directory
WildFly_Home/bin and running the command:

480 Developing Applications for IBM MQ

standalone.bat -c standalone-full.xml

6. Run the IVT application.
For more information, see “Verifying the resource adapter installation” on page 473. For WildFly, the
default URL is http://localhost:8080/WMQ_IVT/.

Using IBM MQ and WebSphere Application Server together
Through the IBM MQ messaging provider in WebSphere Application Server, Java Message Service
(JMS) messaging applications can use your IBM MQ system as an external provider of JMS messaging
resources.

About this task
Applications that are written in Java and are running under WebSphere Application Server can use the
Java Message Service (JMS) specification to perform messaging. Messaging in this environment can be
provided by an IBM MQ queue manager.

A benefit of using an IBM MQ queue manager is that connecting JMS applications can participate fully in
the functionality of an IBM MQ network, which allows the applications to exchange messages with queue
managers that are running on a multitude of platforms.

Applications can use either the client transport or bindings transport for the queue connection factory
object. For bindings transport, the queue manager must exist locally to the application that requires a
connection.

By default, JMS messages that are held on IBM MQ queues use an MQRFH2 header to hold some of the
JMS message header information. Many legacy IBM MQ applications cannot process messages with these
headers, and require their own characteristic headers, for example the MQCIH for CICS Bridge, or MQWIH
for IBM MQ Workflow applications. For more information about these special considerations, see Mapping
JMS messages onto IBM MQ messages.

Related tasks
Configuring JMS resources in WebSphere Application Server
Configuring the application server to use the latest resource adapter maintenance level

Using WebSphere Application Server with IBM MQ
IBM MQ and IBM MQ for z/OS can be used with, or as an alternative to, the default messaging provider
that is included with WebSphere Application Server.

The IBM MQ messaging provider is installed as part of WebSphere Application Server. This includes a
version of the IBM MQ resource adapter, and the IBM MQ Extended Transactional Client functionality,
which allows the queue manager to participate in XA transactions managed by the application
server. Using the resource adapter, message-driven beans can be configured to use either activation
specifications or listener ports.

For the application server to be supported, the IBM MQ resource adapter installation verification test
program needs to be deployed into the application server and run successfully. After the IBM MQ resource
adapter installation verification test program has been run successfully, the IBM MQ resource adapter can
connect to any supported IBM MQ queue manager.

JMS connections from WebSphere Application Server to IBM MQ
Before considering the levels of IBM MQ that can be used with WebSphere Application Server, it is
important to understand how Java Message Service (JMS) applications running inside the application
server can connect to IBM MQ queue managers.

JMS applications that need to access the resources of an IBM MQ queue manager can do so by using one
of the following transport types:

Developing applications for IBM MQ 481

BINDINGS
This transport can be used when the application server and the queue manager are installed on the
same machine and operating system image. When using BINDINGS mode, all of the communication
between the two products is done using Inter-Process Communication (IPC).
The IBM MQ messaging provider does not include the native libraries required to connect to an IBM
MQ queue manager in BINDINGS mode. In order to use a BINDINGS mode connection, IBM MQ
must be installed onto the same machine as the application server, and the resource adapter's native
library path must be configured to point to the IBM MQ directory where these libraries are located. For
more information, see the WebSphere Application Server product documentation:

• For WebSphere Application Server traditional, see Configuring the IBM MQ messaging provider with
native libraries.

• For WebSphere Liberty, see Deploying JMS applications to Liberty to use the IBM MQ messaging
provider.

On z/OS, if you want to connect a WebSphere Application Server connection factory to
an IBM MQ queue manger in bindings mode, you must specify the correct IBM MQ libraries in the
WebSphere Application Server STEPLIB concatenation. For more information, see IBM MQ libraries
and the WebSphere Application Server for z/OS STEPLIB in the WebSphere Application Server product
documentation.

CLIENT
The client transport uses TCP/IP to communicate between WebSphere Application Server and IBM
MQ. As well as being used when the application server and queue manager are located on different
machines, CLIENT mode can also be used when the two products are installed on the same machine
and operating system image.

JMS applications can also specify a transport type of BINDINGS_THEN_CLIENT. When this transport type
is used, the application will initially attempt to connect to the queue manager using BINDINGS mode - if it
is unable to do so, it will try the CLIENT transport.

How to find which version of the IBM MQ resource adapter is installed inside
WebSphere Application Server
For information about which version of the IBM MQ resource adapter is installed inside WebSphere
Application Server, see the technote Which version of WebSphere MQ Resource Adapter (RA) is shipped
with WebSphere Application Server?.

You can use the following Jython and JACL commands to determine the level of the resource adapter that
WebSphere Application Server is currently using:
Jython

wmqInfoMBeansUnsplit = AdminControl.queryNames("WebSphere:type=WMQInfo,*")
wmqInfoMBeansSplit = AdminUtilities.convertToList(wmqInfoMBeansUnsplit)
for wmqInfoMBean in wmqInfoMBeansSplit: print wmqInfoMBean; print
AdminControl.invoke(wmqInfoMBean, 'getInfo', '')

Note: You need to click Return twice after entering this command in order to run it.

JACL

set wmqInfoMBeans [$AdminControl queryNames WebSphere:type=WMQInfo,*]
foreach wmqInfoMBean $wmqInfoMBeans {
puts $wmqInfoMBean;
puts [$AdminControl invoke $wmqInfoMBean getInfo [] []]
}

482 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/node/86587
https://www.ibm.com/support/pages/node/86587

Updating the resource adapter
Updates to the IBM MQ resource adapter that is installed with the application server are included
in WebSphere Application Server Fix Packs. Updating the IBM MQ resource adapter using the
Update resource adapter... facility in the WebSphere Application Server Administrative Console is not
recommended, since doing so will mean that updates provided in WebSphere Application Server Fix
Packs will have no effect.

MQ_INSTALL_ROOT variable
From WebSphere Application Server 7.0, MQ_INSTALL_ROOT is only used to locate native libraries, and is
overridden by any native library path configured on the resource adapter.

Connecting from WebSphere Application Server to IBM MQ
Attention:

1. Any supported version of WebSphere Application Server can use the IBM MQ resource adapter
that is bundled with it, to connect to any supported version of IBM MQ.

2. If bindings mode is used, certain libraries in WebSphere Application Server need to match the
version of the queue manager to which it is connecting:

• WebSphere Application Server must be configured to load the native libraries provided with
IBM MQ 9.4. See “Configuring the Java Native Interface (JNI) libraries” on page 92 for more
information.

• On z/OS, you must specify the correct IBM MQ libraries in the WebSphere
Application Server STEPLIB concatenation.

See IBM MQ libraries and the WebSphere Application Server for z/OS STEPLIB for details of
the IBM MQ libraries you need.

If you have libraries for one version of IBM MQ in LINKLIST (LINKLST), you can connect to a
different version of IBM MQ by overriding the libraries with STEPLIB.

3. The IBM MQ Resource Adapter version is independent of the native (shared) library versions
provided by the queue manager installation.

For example, WebSphere Application Server 8.5, with an IBM MQ 8.0 Resource Adapter can still
manage a bindings connection to an IBM MQ 9.0 queue manager using the IBM MQ 9.0 native
libraries.

For more information, see “IBM MQ resource adapter statement of support” on page 422.

The BINDINGS and CLIENT transport types can be used to connect to IBM MQ from any version of
WebSphere Application Server. For the BINDINGS transport type, the following restrictions apply:

• IBM MQ must be installed on the same machine as the application server.
• WebSphere Application Server must be configured to load the native libraries provided with IBM MQ.

• On z/OS, if you want to connect a WebSphere Application Server connection factory to
an IBM MQ queue manger in bindings mode, the correct IBM MQ libraries must be specified in the
WebSphere Application Server STEPLIB concatenation.

The following table shows the versions of WebSphere Application Server that each version of the IBM MQ
resource adapter is supported to run in.

Developing applications for IBM MQ 483

Table 70. Mapping WebSphere Application Server versions to IBM MQ resource adapter versions.

Version of IBM MQ resource adapter Which version of WebSphere Application Server
can this version of the resource adapter run in?

IBM MQ 9.0 and later The resource adapter can run in:

• Any Java EE 7 compliant version of WebSphere
Liberty.

• WebSphere Application Server traditional 9.0

IBM MQ 8.0 The resource adapter can run in any Java EE 7
compliant version of WebSphere Liberty

The IBM MQ 8.0 resource adapter is not
supported to run in WebSphere Application Server
traditional. The resource adapter already installed
in WebSphere Application Server traditional should
be used to connect to IBM MQ 8.0 queue
managers.

Related concepts
“IBM MQ resource adapter statement of support” on page 422
The IBM MQ resource adapter that you must use for communication between an application and a queue
manager depends on whether you are using the Jakarta Messaging 3.0 API or the JMS 2.0 API.
Related information
System Requirements for IBM MQ

Determining the number of TCP/IP connections that are created from
WebSphere Application Server to IBM MQ
Using the sharing conversations feature, multiple conversations can share MQI channel instances, this is
also known as a TCP/IP connection.

About this task
Applications running inside of WebSphere Application Server 7 and WebSphere Application Server 8,
that use IBM MQ messaging provider normal mode, will automatically use this feature. This means that
multiple applications running within the same application server instance, that connect to the same IBM
MQ queue manager, are able to share the same channel instance.

The number of conversations that can be shared across a single channel instance is determined by the
IBM MQ channel property SHARECNV. The default value of this property for server connection channels is
10.

By looking at the number of conversations that are created by WebSphere Application Server 7 and
WebSphere Application Server 8, you can determine the number of channel instances that are created.

For more information on IBM MQ messaging provider mode, see PROVIDERVERSION normal mode.

Related concepts
Using sharing conversations
In an environment where sharing conversations is permitted, conversations can share an MQI channel
instance.
“Sharing a TCP/IP connection in IBM MQ classes for JMS” on page 305

484 Developing Applications for IBM MQ

https://www.ibm.com/support/pages/system-requirements-ibm-mq

Multiple instances of an MQI channel can be made to share a single TCP/IP connection.

JMS connection factories
Applications running inside of WebSphere Application Server, that use an IBM MQ messaging provider
connection factory to create connections and sessions, have active conversations for every JMS
connection created from the connection factory, and for every JMS session created from a JMS
connection.

One conversation for every JMS connection that has been created from the
connection factory
Each JMS connection factory has an associated connection pool, divided into two sections, the free pool
and the active pool. Both pools are initially empty.

When an application creates a JMS connection from a connection factory, WebSphere Application Server
checks to see if there is a JMS connection in the free pool. If there is, it is moved to the active pool and
given to the application. Otherwise, a new JMS connection is created, put in the active pool and returned
to the application. The maximum number of connections that can be created from a connection factory
is specified by the connection factory connection pool property Maximum connections. The default
valuue for this property is 10.

After an application has finished with a JMS connection and closed it, the connection is moved from
the active pool to the free pool, where it is available for reuse. The connection pool property Unused
timeout defines how long a JMS connection can stay in the free pool before it is disconnected. The
default value for this property is 1800 seconds (30 minutes).

When a JMS connection is first created, a conversation between WebSphere Application Server and IBM
MQ starts. The conversation remains active until the connection is closed when value of the Unused
timeout property for the free pool is exceeded.

One conversation for every JMS session that has been created from a JMS
connection
Every JMS connection that is created from a IBM MQ messaging provider connection factory has an
associated JMS session pool. There session pools work in the same way as connection pools. The
maximum number of JMS Sessions that can be created from a single JMS connection is determined by the
connection factory session pool property Maximum connections. The default value of this property is
10.

A conversation starts when a JMS session is first created, The conversation remains active until the
JMS session is closed because it has remained in the free pool for longer than the value of the Unused
timeout property for the session pool.

Calculating a value for the SHARECNV property
You can calculate the maximum number of conversations from a single connection factory to IBM MQ by
using the following formula:

Maximum number of conversations =
 connection Pool Maximum Connections +
 (connection Pool Maximum Connections * Session Pool Maximum Connections)

The number of channel instances that will be created to allow this number of conversations to take place
can be worked out using the following calculation:

Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

Any remainder from this calculation can be rounded up.

Developing applications for IBM MQ 485

For a simple connection factory that is using the default value for the connection pool Maximum
connections and the session pool Maximum connections properties, the maximum number of
conversations that can exist between WebSphere Application Server and IBM MQ for this connection
factory is:

Maximum number of conversations =
 connection Pool Maximum Connections +
 (connection Pool Maximum Connections * Session Pool Maximum Connections)

For example:

 = 10 + (10 * 10)
 = 10 + 100
 = 110

If this connection factory is connecting to IBM MQ using a channel that has the SHARECNV property set to
10, then the maximum number of channel instances that will be created for this connection factory is:

Maximum number of channel instances = Maximum number of conversations / SHARECNV for the
channel being used

For example:

 = 110 / 10
 = 11 (rounded up to nearest connection)

Activation specifications
Message-driven bean applications, that are configured to use an activation specification, have
conversations active for activation specification to monitor a JMS destination, and for every server session
used to run a message-driven bean instance to process messages.

The following conversations are active for message-driven bean applications that are configured to use an
activation specification:

• One conversation for the activation specification to monitor a JMS destination for suitable messages.
This conversation is starts as soon as the activation specification starts, and remains active until the
activation specification stops.

• One conversation for every server session used to run a message-driven bean instance to process
messages.

The activation specification advanced property Maximum server sessions specifies the maximum
number of server sessions that can be active at any one time for a given activation specification. This
property has the default value of 10. Server sessions are created as they are needed, and are closed
down if they have been idle for the period of time specified by the activation specification advanced
property Server session pool timeout. The default value for this property is 300000 milliseconds
(5 minutes).

Conversations start when a server session is created, and are stopped either when the activation
specification is stopped or when a server session times out.

This means that the maximum number of conversations from a single activation specification to IBM MQ
can be calculated using the following formula:

Maximum number of conversations = Maximum server sessions + 1

The number of channel instances that are created to allow this number of conversations to take place can
be found by sing the following calculation:

486 Developing Applications for IBM MQ

Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

Any remainder from this calculation can be rounded up.

For a simple activation specification, that uses the default value for the Maximum server sessions
property, the maximum number of conversations that can exist between WebSphere Application Server
and IBM MQ for this activation specification is calculated as:

Maximum number of conversations = Maximum server sessions + 1

For example:

 = 10 + 1
 = 11

If this activation specification is connecting to IBM MQ using a channel that has the SHARECNV property
set to 10, then the number of channel instances that are created is calculated as:

Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

For example:

 = 11 / 10
 = 2 (rounded up to nearest connection)

Listener ports running in Application Server Facilities (ASF) mode
Listener ports running in ASF mode used by message-driven bean applications create conversations
for each server session. One monitors a destination for suitable messages and another runs a message-
driven bean instance to process messages. The number of conversations for each listener port can be
calculated from a maximum number of sessions.

By default, listener ports will run in ASF mode as part of the 1.1 specification that defines the mechanism
which application servers should use to detect messages and deliver them to message-driven beans for
processing. Message-driven bean applications that are set up to use listener ports in this default mode of
operation create conversations:

One conversation for the listener port to monitor a destination for suitable messages
Listener ports are configured to use a JMS connection factory. When a listener port starts, a request
is made for a JMS connection from the connection factory free pool. The connection is returned to the
free pool when the listener port is stopped. For more information about how the connection pool is
used, and how this affects the number of conversations to IBM MQ, see “JMS connection factories” on
page 485.

One conversation for every server session used to run a message-driven bean instance to process
messages

The listener port property Maximum sessions specifies the maximum number of server sessions
that can be active at any one time for a given listener port. This property has the default value of 10.
Server sessions are created as they are needed, and make use of JMS sessions taken from the session
pool associated with the JMS connection that the listener port is using.

If a server session has been idle for the period of time specified by the Message Listener Service custom
property SERVER.SESSION.POOL.UNUSED.TIMEOUT, the session is closed and the JMS session used is
returned to the session pool free pool. The JMS session will remain in the session pool free pool until it
is needed, or it is closed because it has been idle in the free pool for longer than the value of the session
pool's Unused timeout property.

Developing applications for IBM MQ 487

For more information about how the session pool is used, and how the conversations between
WebSphere Application Server and IBM MQ are managed, see “JMS connection factories” on page 485.

For more information about the Message Listener Service custom property
SERVER.SESSION.POOL.UNUSED.TIMEOUT, see Monitoring server session pools for listener ports in
the WebSphere Application Server product documentation.

Calculating the maximum number of conversations from a single listener port to
IBM MQ
You can calculate the maximum number of conversations from a single listener port to IBM MQ by using
the following formula:

Maximum number of conversations = Maximum sessions + 1

The number of channel instances that will be created to allow this number of conversations to take place
can be worked out using the following calculation:

 Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

Any remainder from this calculation can be rounded up.

For a simple listener port that is using the default value for the Maximum sessions property, the
maximum number of conversations that can exist between WebSphere Application Server and IBM MQ for
this listener port is calculated as:

Maximum number of conversations = Maximum sessions + 1

For example:

 = 10 + 1
 = 11

If this listener port is connecting to IBM MQ using a channel that has the SHARECNV property set to 10,
then the number of channel instances that will be created is calculated as:

Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

For example:

 = 11 / 10
 = 2 (rounded up to nearest connection)

Listener ports running in non Application Server Facilities (non-ASF) mode
Listener ports running in non-ASF mode can be configured to monitor the queue destination and the
topic destination using Server Sessions. Server sessions can have multiple conversations, the maximum
number of which can be calculated in each case.

Listener ports can be configured to run in non-ASF mode which changes the way the listener ports
monitor JMS destinations. Message-driven bean applications, using listener ports in non-ASF mode of
operation, create a conversation for every server session used to run a message-driven bean instance
to process messages. The listener port property maximum sessions specifies the maximum number of
Server Sessions that can be active at any one time for a given listener port. The default value for this
property is 10.

When running in non-ASF mode, a listener port monitoring a queue destination will automatically
create the number of Server Sessions specified by the listener port property Maximum sessions. All
of these Server Sessions make use of JMS Sessions taken from the session pool associated with the
JMS Connection that the listener port is using, and continually monitor a JMS Destination for suitable
messages.

488 Developing Applications for IBM MQ

If the listener port is configured to monitor a topic destination, the value of Maximum sessions is ignored
and a single Server Session is used.

The Server Sessions used by a listener port running in non-ASF mode remain active until the listener port
is stopped, at which point the JMS Sessions that were used are returned to the session pool Free Pool for
the JMS Connection that the listener port was using.

For more information about how the session pool is used, and how the conversations between
WebSphere Application Server and IBM MQ are managed, see “JMS connection factories” on page 485.

For more information about ASF and non-ASF mode of operation with WebSphere Application Server, and
how to configure Listener Ports to use non-ASF mode, see Message processing in ASF mode and non-ASF
mode.

Calculating the maximum number of conversations while monitoring a queue
destination
The maximum number of conversations from a single listener port, running in non-ASF mode and
monitoring a queue destination to IBM MQ can be calculated using the following formula:

Maximum number of conversations = Maximum sessions

The number of channel instances that will be created to allow this number of conversations to take place
can be found by using the following calculation:

 Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

Any remainder from this calculation can be rounded up.

For a simple listener port running in non-ASF mode that is using the default value for the Maximum
sessions property and monitoring a queue destination, the maximum number of conversations that can
exist between WebSphere Application Server and IBM MQ for this listener port is:

Maximum number of conversations = Maximum sessions

For example:

 = 10

If this listener port is connecting to IBM MQ using a channel that has the SHARECNV property set to 10,
then the number of channel instances that are created is calculated as:

 Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

For example:

 = 10 / 10
 = 1

Developing applications for IBM MQ 489

https://www.ibm.com/docs/en/was/9.0.5?topic=mdbamr-message-processing-in-asf-mode-non-asf-mode
https://www.ibm.com/docs/en/was/9.0.5?topic=mdbamr-message-processing-in-asf-mode-non-asf-mode

Calculating the maximum number of conversations while monitoring a topic
destination
For a listener port running in non-ASF mode and configured to monitor a topic destination, the number of
conversations from the listener port to IBM MQ is:

 Maximum number of conversations = 1

The number of channel instances that will be created to allow this number of conversations to take place
can be found by using the following calculation:

 Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

Any remainder from this calculation can be rounded up.

For a simple listener port running in non-ASF mode that is using the default value for the Maximum
sessions property and monitoring a topic destination, the maximum number of conversations that can
exist between WebSphere Application Server and IBM MQ for this listener port is:

Maximum number of conversations = Maximum sessions

For example:

 = 10

If this listener port is connecting to IBM MQ using a channel that has the SHARECNV property set to 10,
then the number of channel instances that are created is calculated as:

 Maximum number of channel instances =
 Maximum number of conversations / SHARECNV for the channel being used

For example:

 = 10 / 10
 = 1

Configuring authentication aliases to secure WebSphere Application Server
connection to IBM MQ
Authentication aliases map to a user name and password combination that can be used to secure
WebSphere Application Server connection to IBM MQ. You can configure a connection factory with an
authentication alias.

Using authentication aliases with enterprise applications
When an enterprise application running inside of WebSphere Application Server attempts to create a
JMS connection to IBM MQ, the application looks up an IBM MQ messaging provider connection factory
definition from the Java Naming Directory Interface (JNDI) repository of the application server.

When the IBM MQ messaging provider connection factory definition is located from within the JNDI
repository of the application server, one of the following methods is called:

• ConnectionFactory.createConnection()
• ConnectionFactory.createConnection(String username, String password)

If the connection factory has been configured with a J2C authentication alias defined, then the user name
and password in the authentication alias can be flowed down to IBM MQ when the connection factory is
used to create a connection.

490 Developing Applications for IBM MQ

Connection factories and authentication aliases
IBM MQ messaging provider connection factories contain information on how to connect to IBM MQ
queue managers. Enterprise applications running inside of WebSphere Application Server can use the
connection factories to create JMS connections to IBM MQ.

WebSphere Application Server stores connection factories definitions in a repository that can be accessed
using the JNDI. When a connection factory is created, the connection factory is given a JNDI name to
uniquely identify it at the application server scope (either the Cell, Node or Server scope) at which it has
been defined.

For example, an IBM MQ messaging provider connection factory defined at the WebSphere Application
Server Cell scope contains information on how to connect to the queue manager (myQM) using the
BINDINGS transport. This connection factory is given the JNDI name jms/myCF to uniquely identify it.

Connection factories can also be configured to use an authentication alias. Authentication aliases map to
a user name and password combination. Depending on how the connection factory is used, the user name
and password in the authentication alias might, or might not, be flowed down to IBM MQ when the JMS
connection is created.

Important: Prior to IBM MQ 8.0, the default IBM MQ Object Authority Manager (OAM) performed an
authorization check, only to ensure that the user name passed down to IBM MQ, when a connection is
made, had the authority to access the queue manager.

No checks were made to validate the password that was specified. In order to perform an authentication
check, and validate that the user identifier and password match, you needed to write an IBM MQ channel
security exit. Details on how to do this can be found in “Channel security exit programs” on page 933.

From IBM MQ 8.0, the queue manager checks the password in addition to the user name.

Using the connection factory
The following topics contain information about using the connection factory using direct and indirect look
ups:

• “Using the connection factory through a direct lookup” on page 494
• “Using the connection factory through an indirect lookup” on page 495

Using the CLIENT transport
Connection factories that are configured to use the CLIENT transport must specify which IBM MQ server
connection channel (SVRCONN) they are going to use to connect to the queue manager.

If the IBM MQ channel agent user identifier (MCAUSER) property remains blank for the channel that the
connection factory has been configured to use, then the connection factory can be used with either a
direct look up, or indirect look up.

If the MCAUSER property is set to a user identifier, this user identifier is passed down to IBM MQ when
the connection factory is used to create a connection to IBM MQ, regardless of whether the enterprise
application is using a direct or indirect look up.

Summary tables
The following tables summarize what user identifiers are flowed down to IBM MQ when the BINDINGS
transport, and the CLIENT transport, respectively are used:

Developing applications for IBM MQ 491

Table 71. BINDINGS mode

Configuration

Application calls
ConnectionFactory.createC
onnection()

Application calls
ConnectionFactory.createC
onnection(String
username, String
password)

Application's deployment
descriptor does not contain
a Resource Reference for the
connection factory

The user identifier for the
application server process is
flowed down to IBM MQ.

The user identifier and password
that were passed into the
ConnectionFactory.createC
onnection(String
username, String
password) method are flowed
down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory and the res-auth
property is set to "Application"

The user identifier for the
application server process is
flowed down to IBM MQ.

The user identifier and password
that were passed into the
ConnectionFactory.createC
onnection(String
username, String
password) method are flowed
down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory and the res-auth
property is set to "Container"

The user identifier and password
specified in the authentication
alias for the connection factory
are flowed down to IBM MQ.

The user identifier and password
specified in the authentication
alias for the connection factory
are flowed down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory which has the res-
auth property set to "Container"
and the application has been
configured with an authentication
alias

The user identifier and password
specified in the authentication
alias that the application has
been configured to use are
flowed down to IBM MQ.

The user identifier and password
specified in the authentication
alias that the application has
been configured to use are
flowed down to IBM MQ.

Table 72. CLIENT mode

Configuration

Application calls
ConnectionFactory.createC
onnection()

Application calls
ConnectionFactory.createC
onnection(String
username, String
password)

Application's deployment
descriptor does not contain
a Resource Reference for the
connection factory and the
connection factory is configured
to use an IBM MQ channel that
has the MCAUSER property unset

The user identifier for the
application server process is
flowed down to IBM MQ.

The user identifier and password
that were passed into the
ConnectionFactory.createC
onnection(String
username, String
password) method are flowed
down to IBM MQ.

492 Developing Applications for IBM MQ

Table 72. CLIENT mode (continued)

Configuration

Application calls
ConnectionFactory.createC
onnection()

Application calls
ConnectionFactory.createC
onnection(String
username, String
password)

Application's deployment
descriptor does not contain
a Resource Reference for the
connection factory and the
connection factory is configured
to use an IBM MQ channel that
has the MCAUSER property set to
a user identifier

The user identifier specified by
the MCAUSER property on the
IBM MQ channel the connection
factory is configured to use is
flowed down to IBM MQ.

The user identifier specified by
the MCAUSER property on the
IBM MQ channel the connection
factory is configured to use is
flowed down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory which has the res-auth
property is set to Application
and the connection factory is
configured to use an IBM MQ
channel that has the MCAUSER
property unset

The user identifier for the
application server process is
flowed down to IBM MQ.

The user identifier and password
that were passed into the
ConnectionFactory.createC
onnection(String
username, String
password) method are flowed
down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory which has the res-auth
property is set to Application
and the connection factory is
configured to use an IBM MQ
channel that has the MCAUSER
property set to a user identifier

The user identifier specified by
the MCAUSER property on the
IBM MQ channel which the
connection factory is configured
to use is flowed down to IBM MQ.

The user identifier specified by
the MCAUSER property on the
IBM MQ channel which the
connection factory is configured
to use is flowed down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory which has the res-auth
property is set to"Container
and the connection factory is
configured to use an IBM MQ
channel that has the MCAUSER
property unset

The user identifier and password
specified in the authentication
alias for the connection factory
are flowed down to IBM MQ.

The user identifier and password
specified in the authentication
alias for the connection factory
are flowed down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory which has the res-auth
property is set to"Container
and the connection factory is
configured to use an IBM MQ
channel that has the MCAUSER
property set to a user identifier

The user identifier specified by
the MCAUSER property on the
IBM MQ channel which the
connection factory is configured
to use is flowed down to IBM MQ.

The user identifier specified by
the MCAUSER property on the
IBM MQ channel which the
connection factory is configured
to use is flowed down to IBM MQ.

Developing applications for IBM MQ 493

Table 72. CLIENT mode (continued)

Configuration

Application calls
ConnectionFactory.createC
onnection()

Application calls
ConnectionFactory.createC
onnection(String
username, String
password)

Application's deployment
descriptor contains a Resource
Reference for the connection
factory which has the res-auth
property is set to"Container
and the application has been
configured with an authentication
alias and the connection factory
is configured to use an IBM MQ
channel that has the MCAUSER
property unset

The user identifier and password
specified in the authentication
alias that the application has
been configured to use are
flowed down to IBM MQ.

The user identifier and password
specified in the authentication
alias that the application has
been configured to use are
flowed down to IBM MQ.

Application's deployment
descriptor contains a Resource
Reference for the connection
factory which has the res-auth
property is set to Container
and the application has been
configured with an authentication
alias and the connection factory
is configured to use an IBM MQ
channel that has the MCAUSER
set to a user identifier

The user identifier specified by
the MCAUSER property on the
IBM MQ channel which the
connection factory is configured
to use is flowed down to IBM MQ.

The user identifier specified by
the MCAUSER property on the
IBM MQ channel which the
connection factory is configured
to use is flowed down to IBM MQ.

Using the connection factory through a direct lookup
After an IBM MQ messaging provider connection factory has been defined, an enterprise application can
look up the connection factory definition and use it to create a JMS connection to an IBM MQ queue
manager. This can be done through a direct look up.

To use a direct lookup, an enterprise application connects to the JNDI repository of the application server,
by making the following method call:

InitialContext ctx = new InitialContext();

Once it has connected to the JNDI repository, the enterprise application then identifies the connection
factory definition using the JNDI name of the connection factory, as follows:

ConnectionFactory cf = (ConnectionFactory) ctx.lookup("jms/myCF");

Notes:

• Your application developer needs to know the JNDI name of the required connection factory when the
enterprise application is being developed. Because the JNDI name is hard coded inside the application,
if the JNDI name changes, you need to re-write and re-deploy the application.

• When a connection factory definition is used in this way, the user name and password specified in the
authentication alias (that the connection factory has been configured to use) are not flowed down to
IBM MQ. This is to prevent unauthorized applications from identifying the connection factory, and being
able to use it to connect to secure IBM MQ systems.

The user name and password that are flowed down to IBM MQ depends on the method that is used to
create the JMS connection from the connection factory.

494 Developing Applications for IBM MQ

If an application creates a JMS connection using the method:

ConnectionFactory.createConnection()

the default user identity is passed down to IBM MQ. This is the user name and password that started the
application server where the enterprise application is running.

Alternatively, an application can create a JMS connection is by calling the method:

ConnectionFactory.createConnection(String username, String password)

If an application has performed a direct look up of a connection factory, and then called this method, the
user name and password that were passed into the createConnection() method are flowed down to
IBM MQ.

Important: Prior to IBM MQ 8.0, IBM MQ processed an authorization check, only to make sure that the
user name that had been flowed down, had the authority to access the queue manager.

No checks were made on the password. In order to perform an authentication check, and validate that the
user name and password were valid, an IBM MQ channel security exit must be written. Details on how to
do this can be found in “Channel security exit programs” on page 933.

From IBM MQ 8.0, the queue manager checks the password in addition to the user name.

Using the connection factory through an indirect lookup
When you are writing an enterprise application, if the JNDI name of the connection factory is unknown,
or if the application is to be installed onto different application servers using a different connection
factory, with a different JNDI name (depending on what application server it is installed onto), then the
connection factory can be looked up using a resource reference. This can be done through an indirect
lookup.

Example
Rather than directly looking up the connection factory using jms/myCF, an enterprise application
contains a resource reference has the local JNDI name of: jms/myResourceReferenceCF.

To use this JNDI name, the application connects to the JNDI repository of the application server, in the
same way as if the application is performing a direct look up:

InitialContext ctx = new InitialContext();

Rather than identifying jms/myCF directly, the application now identifies the JNDI name of the resource
reference:

ConnectionFactory cf = (ConnectionFactory) ctx.lookup("java:comp/env/jms/
myResourceReferenceCF");

You need the java:comp/env prefix for the local JNDI name, to tell the application server that the
enterprise application is performing an indirect look up.

When the application is deployed, the user maps the JNDI name of the resource reference jms/
myResourceReferenceCF to the JNDI name of the connection factory that the application has already
created: jms/myCF.

When the application is run, it looks up a JMS connection factory using the local JNDI name, which
the application server maps onto: jms/myCF. This connection factory is then used by the application to
create a connection to IBM MQ.

Developing applications for IBM MQ 495

Authentication aliases and indirect lookups
A resource reference also allows additional properties to be defined, that alter the behavior of the
provided connection factory. One of the properties of a resource reference is res-auth. The value of
this property specifies whether the enterprise application should use the authentication alias of the
connection factory that the resource reference maps to when creating a connection to IBM MQ (if an
authentication alias has been defined), or if the application is specifying its own user name and password.

The default value of this property is Application. This means that the user name and password that are
flowed down to the queue manager, when a JMS connection is created, is determined by the application
itself. The authentication alias of the connection factory that the resource reference maps to is not used.

Applications can create JMS connections using one of the following methods:

• ConnectionFactory.createConnection()
• ConnectionFactory.createConnection(String username, String password)

If an application uses ConnectionFactory.createConnection(), and res-auth is set to
Application, the default user identity is flowed down to IBM MQ. This is the user name and password
that started the application server where the enterprise application is running.

If an application uses ConnectionFactory.createConnection(String username, String
password), and res-auth is set to Application, the user name and password passed in to the method
are sent down to IBM MQ.

In order to use the authentication alias defined on the connection factory that the resource reference
maps to when creating a connection, you need to set the res-auth property to the value Container.
When an application creates a JMS connection, the authentication alias details are used, even if the
createConnection call specifies a user name and password.

Overriding the authentication alias when using an indirect lookup
If an application uses a resource reference that has the res-auth property set to Container, you can
override the authentication alias that is used when JMS connections are created.

To override the authentication alias, the resource reference needs to include an extra property called
authDataAlias, that maps to an existing authentication alias that has already been created in the
application server environment into which the application will be deployed. You can specify this property
on any resource references that are created using the Rational® tooling provided by IBM.

Using this method, you can use a different authentication alias when using a JMS connection factory
that has been looked up indirectly. If the authentication alias specified does not exist, then a new one
can be specified after the enterprise application has been installed. For more information, see Resource
references in the WebSphere Application Server product documentation.

Related information for WebSphere Application Server 8.5.5
Resource references
Related information for WebSphere Application Server 8.0
Resource references
Related information for WebSphere Application Server 7.0
Resource references

Workload balancing for message driven beans when using WebSphere
Application Server clusters
When using message driven bean applications deployed in a WebSphere Application Server 7.0 and
WebSphere Application Server 8.0 cluster, and configured to run in IBM MQ messaging provider normal
mode, one of the cluster members processes the majority of the messages. You can balance the workload
of cluster members in order to distribute the processing of messages across more than one cluster
member.

496 Developing Applications for IBM MQ

IBM MQ includes a feature called Asynchronous consume, which allows applications to consume
messages asynchronously from a queue using APIs called MQCB and MQCTL.

Message driven bean applications running inside of WebSphere Application Server 7.0 and WebSphere
Application Server 8.0, that use IBM MQ messaging provider normal mode will automatically make use
of this feature. When the applications start up, they will set up an asynchronous consumer on the JMS
destination that they have been configured to monitor by calling MQCB. The MQCTL API is then called to
indicate that the application is ready to receive messages from the JMS destination.

When message driven bean applications have been deployed into a WebSphere Application Server cluster,
each cluster member will set up an asynchronous consumer for the JMS destination that the message-
driven bean is monitoring for messages. The IBM MQ queue manager that hosts the JMS destination
is then responsible for notifying the cluster member when there is a suitable message on the JMS
destination for it to process.

When WebSphere Application Server is connecting to an IBM MQ queue manager, messages that arrive
on a JMS destination will be distributed more evenly to all of the asynchronous consumers that have
been registered on that JMS destination. For message-driven bean applications deployed inside of a
WebSphere Application Server 7.0 and WebSphere Application Server 8.0 cluster, this means that the
messages will be distributed more evenly between cluster members.

Related tasks
Configuring the JMS PROVIDERVERSION property

Using the IBM MQ Headers package
The IBM MQ Headers package provides a set of helper interfaces and classes that you can use to
manipulate the IBM MQ headers of a message. Typically, you use the IBM MQ Headers package because
you want to perform administrative services by using the command server (by using Programmable
Command Format (PCF) messages).

About this task
The IBM MQ Headers package is located in the com.ibm.mq.headers and com.ibm.mq.headers.pcf
packages. You can use this facility for both of the two alternative APIs that IBM MQ provides for use in
Java applications:

• IBM MQ classes for Java (also referred to as IBM MQ Base Java).
• IBM MQ classes for Java Message Service (IBM MQ classes for JMS, also referred to as IBM MQ JMS).

IBM MQ Base Java applications typically manipulate MQMessage objects, and the Headers support
classes can directly interact with these objects, since they natively understand the IBM MQ Base Java
interfaces.

In IBM MQ JMS, the payload for a message is typically a String or a byte array object, which can be
manipulated with DataInput and DataOutput streams. The IBM MQ Headers package can be used to
interact with these data streams and is suitable for manipulating any MQ messages that are sent and
received by IBM MQ JMS applications.

Therefore, although the IBM MQ Headers package contains references to the IBM MQ Base Java package,
it is also intended for use within IBM MQ JMS applications and is suitable for use within Java Platform,
Enterprise Edition (Java EE) environments.

A typical way in which you might use the IBM MQ Headers package is to manipulate administration
messages in Programmable Command Format (PCF), for example for any of the following reasons:

• To access details about an IBM MQ resource.
• To monitor the depth of a queue.
• To inhibit access to a queue.

Developing applications for IBM MQ 497

By using PCF messages with the IBM MQ JMS API, this kind of administration of application-centric
resources can be performed from within Java EE applications without having to resort to using the IBM
MQ Base Java API.

Procedure
• To use the IBM MQ Headers package to manipulate message headers for IBM MQ classes for Java, see

“Using with IBM MQ classes for Java” on page 498.
• To use the IBM MQ Headers package to manipulate message headers for IBM MQ classes for JMS, see

“Using with IBM MQ classes for JMS” on page 498.

Using with IBM MQ classes for Java
IBM MQ classes for Java applications typically manipulate MQMessage objects, and the Headers support
classes can directly interact with these objects, since they natively understand the IBM MQ classes for
Java interfaces.

About this task
IBM MQ provides some sample applications that demonstrate how to use the IBM MQ Headers package
with the IBM MQ Base Java API (IBM MQ classes for Java).

The samples show two things:

• How to create a PCF message to perform an administrative action and parse the response message.
• How to send this PCF message using the IBM MQ classes for Java.

Depending on which platform you are using, these samples are installed under the pcf directory in the
samples or tools directory of your IBM MQ installation (see “Installation directories for IBM MQ classes
for Java” on page 342).

Procedure
1. Create a PCF message to perform an administrative action and parse the response message.
2. Send this PCF message using the IBM MQ classes for Java.

Related concepts
“Handling IBM MQ message headers with IBM MQ classes for Java” on page 368
Java classes are provided representing different types of message header. Two helper classes are also
provided.
“Handling PCF messages with IBM MQ classes for Java” on page 373
Java classes are provided to create and parse PCF-structured messages, and to facilitate sending PCF
requests and collecting PCF responses.

Using with IBM MQ classes for JMS
To use the IBM MQ Headers with the IBM MQ classes for JMS, you carry out the same essential steps as
for IBM MQ classes for Java. The PCF message can be created and the response parsed in exactly the
same way by using the IBM MQ Headers package and the same sample code as for IBM MQ classes for
Java.

About this task
To send a PCF message using the IBM MQ API, the message payload must be written into a JMS Bytes
Message, and sent using the standard JMS APIs. The only consideration is that the message must not
contain a JMS RFH2 or any other headers with specific values in the MQMD.

498 Developing Applications for IBM MQ

To send a PCF message, complete the following steps. The way in which the PCF message is created,
and information is extracted from the response message is the same as for IBM MQ classes for Java (see
“Using with IBM MQ classes for Java” on page 498).

Procedure
1. Create a JMS Queue Destination that represents the SYSTEM.ADMIN.COMMAND.QUEUE.

IBM MQ JMS applications send the PCF messages to the SYSTEM.ADMIN.COMMAND.QUEUE, and
need access to a JMS Destination object that represents this queue. The Destination must have the
following properties set:

WMQ_MQMD_WRITE_ENABLED = YES
WMQ_MESSAGE_BODY = MQ

If you are using WebSphere Application Server, you must define these properties as custom properties
on the Destination.

To create the destination programmatically from within an application, use the following code:

Queue q1 = session.createQueue("SYSTEM.ADMIN.COMMAND.QUEUE");
((MQQueue) q1).setIntProperty(WMQConstants.WMQ_MESSAGE_BODY,
 WMQConstants.WMQ_MESSAGE_BODY_MQ);
((MQQueue) q1).setMQMDWriteEnabled(true);

2. Convert a PCF message into a JMS Bytes message containing the correct MQMD values.
A JMS Bytes message needs to be created, and the PCF Message written to it. A response queue needs
to be created, but this needs to have no specific settings.

The following sample code snippet shows how to create a JMS Bytes Message and write a
com.ibm.mq.headers,pcf.PCFMessage object into it. The PCFMessage object (pcfCmd) has previously
been built using the IBM MQ Headers package. (Note the package to load the PCFMessage is
com.ibm.mq.headers.pcf.PCFMessage).

 // create the JMS Bytes Message
final BytesMessage msg = session.createBytesMessage();

// Create the wrapping streams to put the bytes into the message payload
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutput dataOutput = new DataOutputStream(baos);

// Set the JMSReplyTo so the answer comes back
msg.setJMSReplyTo(new MQQueue("adminResp"));

// write the pcf into the stream
pcfCmd.write(dataOutput);
baos.flush();
msg.writeBytes(baos.toByteArray());

// we have taken control of the MD, so need to set all
// flags in the MD that we require - main one is the format
msg.setJMSPriority(4);
msg.setIntProperty(WMQConstants.JMS_IBM_MQMD_PERSISTENCE,
 CMQC.MQPER_NOT_PERSISTENT);
msg.setIntProperty(WMQConstants.JMS_IBM_MQMD_EXPIRY, 300);
msg.setIntProperty(WMQConstants.JMS_IBM_MQMD_REPORT,
 CMQC.MQRO_PASS_CORREL_ID);
msg.setStringProperty(WMQConstants.JMS_IBM_MQMD_FORMAT, "MQADMIN");

// and send the message
sender.send(msg);

3. Send the message, and receive the response using the standard JMS APIs.
4. Convert the response message into a PCF message for processing.

To retrieve the response message and process it as a PCF message, use the following code:

 // Get the message back
BytesMessage msg = (BytesMessage) consumer.receive();

// get the size of the bytes message & read into an array
int bodySize = (int) msg.getBodyLength();

Developing applications for IBM MQ 499

byte[] data = new byte[bodySize];
msg.readBytes(data);

// Read into Stream and DataInput Stream
ByteArrayInputStream bais = new ByteArrayInputStream(data);
DataInput dataInput = new DataInputStream(bais);

// Pass to PCF Message to process
PCFMessage response = new PCFMessage(dataInput);

Related concepts
“JMS messages” on page 138
JMS messages are composed of a header, properties, and a body. JMS defines five types of message
body.

Setting up IBM MQ on IBM i with Java and JMS
This collection of topics gives an overview of how you set up and test IBM MQ with Java and JMS on IBM i
using CL commands or the qshell environment.

Note:

• From IBM MQ 8.0, ldap.jar, jndi.jar and jta.jar are part of the JDK.

• From IBM MQ 9.3.0, Jakarta Messaging 3.0 is supported for developing new applications.
IBM MQ 9.3.0 and later continue to support JMS 2.0 for existing applications. It is not supported to use
both the Jakarta Messaging 3.0 API and the JMS 2.0 API in the same application. For more information,
see Using IBM MQ classes for JMS/Jakarta Messaging.

Using CL commands
The CLASSPATH that you set, is for testing with MQ base Java, JMS with JNDI, and JMS without JNDI.

If you do not use a .profile file under your /home/Userprofile directory, you will need to set the
system level environment variables below. You can check to see if they are set using the WRKENVVAR
command.

1. To view the environment variables for the entire system issue the command: WRKENVVAR
LEVEL(*SYS)

2. To view the environment variables specific to your job issue the command : WRKENVVAR
LEVEL(*JOB)

3. If the CLASSPATH is not set, issue the following command:

ADDENVVAR ENVVAR(CLASSPATH)
 VALUE('.:/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar
 :/QIBM/ProdData/mqm/java/lib/connector.jar:/QIBM/ProdData/mqm/java/lib
 :/QIBM/ProdData/mqm/java/samples/base
 :/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jakarta.client.jar
 :/QIBM/ProdData/mqm/java/lib/jms.jar
 :/QIBM/ProdData/mqm/java/lib/providerutil.jar
 :/QIBM/ProdData/mqm/java/lib/fscontext.jar:') LEVEL(*SYS)

ADDENVVAR ENVVAR(CLASSPATH)
 VALUE('.:/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar
 :/QIBM/ProdData/mqm/java/lib/connector.jar:/QIBM/ProdData/mqm/java/lib
 :/QIBM/ProdData/mqm/java/samples/base
 :/QIBM/ProdData/mqm/java/lib/com.ibm.mq.allclient.jar
 :/QIBM/ProdData/mqm/java/lib/jms.jar
 :/QIBM/ProdData/mqm/java/lib/providerutil.jar
 :/QIBM/ProdData/mqm/java/lib/fscontext.jar:') LEVEL(*SYS)

4. If QIBM_MULTI_THREADED is not set, issue the following command:

500 Developing Applications for IBM MQ

ADDENVVAR ENVVAR(QIBM_MULTI_THREADED) VALUE('Y') LEVEL(*SYS)

5. If QIBM_USE_DESCRIPTOR_STDIO is not set, issue the following command:

ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE('I') LEVEL(*SYS)

6. If QSH_REDIRECTION_TEXTDATA is not set , issue the following command:

ADDENVVAR ENVVAR(QSH_REDIRECTION_TEXTDATA) VALUE('Y') LEVEL(*SYS)

Using the qshell environment
If you use the QSHELL environment, you can set up a .profile in your /home/Userprofile directory.
For more information reference the Qshell Interpreter (qsh) documentation.

Specify the following in the .profile. Note that the CLASSPATH statement must be on a single line, or
separated onto different lines using the \ character as shown.

CLASSPATH=.:/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar: \
/QIBM/ProdData/mqm/java/lib/connector.jar: \
/QIBM/ProdData/mqm/java/lib: \
/QIBM/ProdData/mqm/java/samples/base: \
/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jakarta.client.jar: \
/QIBM/ProdData/mqm/java/lib/jms.jar: \
/QIBM/ProdData/mqm/java/lib/providerutil.jar: \
/QIBM/ProdData/mqm/java/lib/fscontext.jar:
HOME=/home/XXXXX
LOGNAME=XXXXX
PATH=/usr/bin:
QIBM_MULTI_THREADED=Y QIBM_USE_DESCRIPTOR_STDIO=I
QSH_REDIRECTION_TEXTDATA=Y
TERMINAL_TYPE=5250

CLASSPATH=.:/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar: \
/QIBM/ProdData/mqm/java/lib/connector.jar: \
/QIBM/ProdData/mqm/java/lib: \
/QIBM/ProdData/mqm/java/samples/base: \
/QIBM/ProdData/mqm/java/lib/com.ibm.mq.allclient.jar: \
/QIBM/ProdData/mqm/java/lib/jms.jar: \
/QIBM/ProdData/mqm/java/lib/providerutil.jar: \
/QIBM/ProdData/mqm/java/lib/fscontext.jar:
HOME=/home/XXXXX
LOGNAME=XXXXX
PATH=/usr/bin:
QIBM_MULTI_THREADED=Y QIBM_USE_DESCRIPTOR_STDIO=I
QSH_REDIRECTION_TEXTDATA=Y
TERMINAL_TYPE=5250

Ensure that the QMQMJAVA library is in the library list by issuing the command DSPLIBL.

If the QMQMJAVA library is not in the list, add it using the following command: ADDLIBLE
LIB(QMQMJAVA)

Testing IBM MQ on IBM i with Java
How you test IBM MQ with Java using the MQIVP sample program.

Testing IBM MQ base Java
Carry out the following procedure:

1. Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by
issuing the following command:

Developing applications for IBM MQ 501

WRKMQM MQMNAME(QMGRNAME)

2. Verify that the JAVA.CHANNEL server connection channel has been created by issuing the following
command:

WRKMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN) MQMNAME(QMGRNAME)

a. If the JAVA.CHANNEL does not exist, issue the following command:

CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN) MQMNAME(QMGRNAME)

3. Verify the queue manager listener is running for port 1414 or whichever port you are using, by issuing
the WRKMQMLSR command.

a. If no listener has been started for the queue manager, issue the following command:

STRMQMLSR PORT(xxxx) MQMNAME(QMGRNAME)

Running the MQIVP sample test program

1. Start the qshell, from the command line by issuing the command STRQSH
2. Verify that the correct CLASSPATH is set by issuing the export command, and then issue the cd

command as follows:

cd /qibm/proddata/mqm/java/samples/wmqjava/samples

3. Run the java program by issuing the following command:

java MQIVP

You can press the ENTER key when prompted for:

• Type of connection
• IP address
• Queue manager name

to use the default values. This verifies the product bindings, which can be found in the QMQMJAVA library.

You receive output similar to the following example. Note that the copyright statement depends upon the
version of the product that you are using.

> java MQIVP
MQSeries for Java Installation Verification Program
5724-H72 (C) Copyright IBM Corp. 2011, 2024. All Rights Reserved.
===

Please enter the IP address of the MQ server :>
Please enter the queue manager name :>
Attaching Java program to QIBM/ProdData/mqm/java/lib/connector.JAR.
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete -
SUCCESS: This MQ Transport is functioning correctly.
Press Enter to continue ...>
$

502 Developing Applications for IBM MQ

Testing IBM MQ Java client connection
You must specify the:

• Connection type
• IP address
• Port
• Server connection channel
• Queue manager

You receive output similar to the following example. Note that the copyright statement depends upon the
version of the product that you are using.

> java MQIVP
MQSeries for Java Installation Verification Program
5724-H72 (C) Copyright IBM Corp. 2011, 2024. All Rights Reserved.
===

Please enter the IP address of the MQ server :> x.xx.xx.xx
Please enter the port to connect to : (1414)> 1470
Please enter the server connection channel name :> JAVA.CHANNEL
Please enter the queue manager name :> KAREN01
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete -
SUCCESS: This MQ Transport is functioning correctly.
Press Enter to continue ...>
$

Testing IBM MQ on IBM i with JMS
How you test IBM MQ with JMS with and without JNDI

Testing JMS without JNDI using the IVTRun sample
Carry out the following procedure:

1. Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by
issuing the following command:

WRKMQM MQMNAME(QMGRNAME)

2. Start the qshell, from the command line, by issuing the STRQSH command.
3. Use the cd command to change directory as follows:

cd /qibm/proddata/mqm/java/bin

4. Run the script file:

IVTRun -nojndi [-m qmgrname]

You receive output similar to the following example. Note that the copyright statements depend upon the
versions of the products that you are using:

 IVTRun -nojndi -m ELCRTP19

Attaching Java program to
/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.JAR.

Developing applications for IBM MQ 503

Attaching Java program to
/QIBM/ProdData/mqm/java/lib/jms.JAR.

5724-H72, 5724-B41, 5655-F10 (c) Copyright IBM Corp. 2011, 2024.
All Rights Reserved.
WebSphere MQ classes for Java Message Service 5.300
Installation Verification Test

Creating a QueueConnectionFactory
Creating a Connection
Creating a Session
Creating a Queue
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE
Reading the message back again

Got message:
JMS Message class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:c1d4d840c5d3c3d9e3d7f1f9404040403ccf041f0000c012
JMSTimestamp: 1020273404500
JMSCorrelationID:null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMS_IBM_PutDate:20040326
JMSXAppID:QP0ZSPWT STANLEY 170302
JMS_IBM_Format:MQSTR
JMS_IBM_PutApplType:8
JMS_IBM_MsgType:8
JMSXUserID:STANLEY
JMS_IBM_PutTime:13441354
JMSXDeliveryCount:1
A simple text message from the MQJMSIVT program
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished
$>
$

Testing IBM MQ JMS client mode without JNDI
Carry out the following procedure:

1. Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by
issuing the following command:

WRKMQM MQMNAME(QMGRNAME)

2. Verify that the server connection channel is created, by issuing the following command:

WRKMQMCHL CHLNAME(SYSTEM.DEF.SVRCONN) CHLTYPE(*SVRCN)
MQMNAME(QMGRNAME)

3. Verify that the listener is started for the correct port, by issuing the WRKMQMLSR command
4. Start the qshell, from the command line, by issuing the STRQSH command.
5. Verify that the CLASSPATH is correct by issuing the export command.
6. Use the cd command to change directory as follows:

cd /qibm/proddata/mqm/java/bin

504 Developing Applications for IBM MQ

7. Run the script file:

IVTRun -nojndi -client -m QMgrName -host hostname [-port port] [-channel channel]

You receive output similar to the following example. Note that the copyright statements depend upon the
versions of the products that you are using.

> IVTRun -nojndi -client -m ELCRTP19 -host ELCRTP19 -port 1414 -channel SYSTEM.DEF.SVRCONN

5724-H72, 5724-B41, 5655-F10 (c) Copyright IBM Corp. 2011, 2024.
All Rights Reserved.
WebSphere MQ classes for Java Message Service 5.300
Installation Verification Test

Creating a QueueConnectionFactory
Creating a Connection
Creating a Session
Creating a Queue
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE
Reading the message back again

Got message:
JMS Message class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:c1d4d840c5d3c3d9e3d7f1f9404040403ccf041f0000d012
JMSTimestamp: 1020274009970
JMSCorrelationID:null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMS_IBM_PutDate:20040326
JMSXAppID:MQSeries Client for Java
JMS_IBM_Format:MQSTR
JMS_IBM_PutApplType:28
JMS_IBM_MsgType:8
JMSXUserID:QMQM
JMS_IBM_PutTime:14085237
JMSXDeliveryCount:1
A simple text message from the MQJMSIVT program
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished
$

Testing IBM MQ JMS with JNDI
Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by issuing
the following command:

WRKMQM MQMNAME(QMGRNAME)

Using the IVTRun sample test script

Carry out the following procedure:

1. Make the appropriate changes to the JMSAdmin.config file. To edit this file use the EDTF (Edit File)
command from an IBM i command line

EDTF '/qibm/proddata/mqm/java/bin/JMSAdmin.config'

.

Developing applications for IBM MQ 505

a. To use LDAP for Weblogic, remove the comment from:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

b. To use LDAP for WebSphere Application Server, remove the comment from:

INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory

c. To test the file system, remove the comment from:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

d. Ensure that you have selected the correct PROVIDER_URL, by removing the comment from the
appropriate line.

e. Comment out all other lines using the # symbol.
f. When you have completed all your changes, press F2=Save and F3=Exit.

2. Start the qshell, from the command line, by issuing the STRQSH command.
3. Verify that the CLASSPATH is correct by issuing the export command.
4. Use the cd command to change directory as follows:

cd /qibm/proddata/mqm/java/bin

5. Start the IVTSetup script to create the administered objects (MQQueueConnectionFactory and
MQQueue), by issuing the IVTSetup command.

6. Run the IVTRun script by issuing the following command:

IVTRun -url providerURL [-icf initCtxFact]

You receive output similar to the following example. Note that the copyright statements depend upon the
versions of the products that you are using.

> IVTSetup
+ Creating script for object creation within JMSAdmin
+ Calling JMSAdmin in batch mode to create objects
Ignoring unknown flag: -i

5724-H72 (c) Copyright IBM Corp. 2011, 2024. All Rights Reserved.
Starting WebSphere MQ classes for Java Message Service Administration

InitCtx>
InitCtx>
InitCtx>
InitCtx>
InitCtx>
Stopping MQSeries classes for Java Message Service Administration

+ Administration done; tidying up files
+ Done!
$
> IVTRun -url file:////tmp/mqjms -icf com.sun.jndi.fscontext.RefFSContextFactory

5724-H72 (c) Copyright IBM Corp. 2011, 2024. All Rights Reserved.
MQSeries classes for Java Message Service
Installation Verification Test

Using administered objects, please ensure that these are available

Retrieving a QueueConnectionFactory from JNDI
Creating a Connection
Creating a Session
Retrieving a Queue from JNDI
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE

506 Developing Applications for IBM MQ

Reading the message back again

Got message:
JMS Message class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:c1d4d840c5d3c3d9e3d7f1f9404040403ccf041f0000e012
JMSTimestamp: 1020274903770
JMSCorrelationID:null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMS_IBM_Format:MQSTR
JMS_IBM_PutApplType:8
JMSXDeliveryCount:1
JMS_IBM_MsgType:8
JMSXUserID:STANLEY
JMSXAppID:QP0ZSPWT STANLEY 170308
A simple text message from the MQJMSIVT program
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished
$

Java application development using a Maven repository
When developing a Java application for IBM MQ, by using a Maven repository to automatically install
dependencies, you do not need to explicitly install anything before using IBM MQ interfaces.

Maven Central Repository
Maven is a tool for building applications and also provides a repository for holding artifacts that your
application may want to access.

The Maven Repository (or Central Repository) has a structure that allows files such as JAR files to have
distinct versions that are then easily discovered with a well-known naming mechanism. Build tools can
then use those names to dynamically pull in the dependencies for your application. In the definition
of your application, which, when using Maven as a build tool, is called the POM file, you name the
dependencies and the build process knows what to do from there.

IBM MQ client files
Copies of the IBM MQ Java client interfaces are available in the Central Repository under the
com.ibm.mq GroupId. You can find the com.ibm.mq.jakarta.client.jar file (Jakarta Messaging
3.0) and the com.ibm.mq.allclient.jar file (JMS 2.0). These files are typically used for
standalone programs. You can also find the wmq.jakarta.jmsra.rar file (Jakarta Messaging 3.0)
and the wmq.jmsra.rar file (JMS 2.0), which is for use in Java EE application servers). The
jakarta.client.jar and the allclient.jar both contain the IBM MQ classes for JMS and the
IBM MQ classes for Java.

Important: Using the Apache Maven Assembly Plugin jar-with-dependencies format to build an
application which includes the IBM MQ relocatable JAR file is not supported.

In a pom.xml file processed by the maven command, you add dependencies for these JAR files as shown
in the following examples:

• To show the relationship between your application code and
com.ibm.mq.jakarta.client.jar:

<dependency>
 <groupId>com.ibm.mq</groupId>
 <artifactId>com.ibm.mq.jakarta.client</artifactId>

Developing applications for IBM MQ 507

https://mvnrepository.com/artifact/com.ibm.mq/com.ibm.mq.jakarta.client/
https://mvnrepository.com/artifact/com.ibm.mq/com.ibm.mq.allclient/
https://mvnrepository.com/artifact/com.ibm.mq/wmq.jakarta.jmsra
https://mvnrepository.com/artifact/com.ibm.mq/wmq.jmsra

 <version>9.3.0.0</version>
 </dependency>

• To show the relationship between your application code and
com.ibm.mq.allclient.jar:

<dependency>
 <groupId>com.ibm.mq</groupId>
 <artifactId>com.ibm.mq.allclient</artifactId>
 <version>9.2.2.0</version>
 </dependency>

• For using the Jakarta EE resource adapter:

<dependency>
 <groupId>com.ibm.mq</groupId>
 <artifactId>wmq.jakarta.jmsra</artifactId>
 <version>9.3.0.0</version>
 </dependency>

• For using the JMS 2.0 Java EE resource adapter:

<dependency>
 <groupId>com.ibm.mq</groupId>
 <artifactId>wmq.jmsra</artifactId>
 <version>9.2.2.0</version>
 </dependency>

For an example of a simple project in Eclipse to run a JMS project, see the IBM Developer article
Developing Java applications for MQ just got easier with Maven.

Developing C++ applications
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.

IBM WebSphere MQ 7.0, enhancements to the IBM MQ programming interfaces are not applied to the
C++ classes.

IBM MQ C++ provides the following features:

• Automatic initialization of IBM MQ data structures.
• Just-in-time queue manager connection and queue opening.
• Implicit queue closure and queue manager disconnection.
• Dead-letter header transmission and receipt.
• IMS bridge header transmission and receipt.
• Reference message header transmission and receipt.
• Trigger message receipt.
• CICS bridge header transmission and receipt.
• Work header transmission and receipt.
• Client channel definition.

The following Booch class diagrams show that all the classes are broadly parallel to those IBM MQ
entities in the procedural MQI (for example using C) that have either handles or data structures. All
classes inherit from the ImqError class (see ImqError C++ class), which allows an error condition to be
associated with each object.

508 Developing Applications for IBM MQ

https://community.ibm.com/community/user/imwuc/viewdocument/developing-java-applications-for-mq?CommunityKey=b382f2ab-42f1-4932-aa8b-8786ca722d55

Figure 50. IBM MQ C++ classes (item handling)

Developing applications for IBM MQ 509

Figure 51. IBM MQ C++ classes (queue management)

To interpret Booch class diagrams correctly, be aware of the following conventions:

• Methods and noteworthy attributes are shown below the class name.
• A small triangle within a cloud denotes an abstract class.
• Inheritance is denoted by an arrow to the parent class.
• An undecorated line between clouds denotes a cooperative relationship between classes.
• A line decorated with a number denotes a referential relationship between two classes. The number

indicates the number of objects that can participate in a particular relationship at any one time.

The following classes and data types are used in the C++ method signatures of the queue management
classes (see Figure 51 on page 510) and the item handling classes (see Figure 50 on page 509):

• The ImqBinary class (see ImqBinary C++ class), which encapsulates byte arrays such as MQBYTE24.
• The ImqBoolean data type, which is defined as typedef unsigned char ImqBoolean.

510 Developing Applications for IBM MQ

• The ImqString class (see ImqString C++ class), which encapsulates character arrays such as
MQCHAR64.

Entities with data structures are subsumed within appropriate object classes. Individual data structure
fields (see C++ and MQI cross-reference) are accessed with methods.

Entities with handles come under the ImqObject class hierarchy (see ImqObject C++ class) and provide
encapsulated interfaces to the MQI. Objects of these classes exhibit intelligent behavior that can reduce
the number of method invocations required relative to the procedural MQI. For example, you can
establish and discard queue manager connections as required, or you can open a queue with appropriate
options, then close it.

The ImqMessage class (see ImqMessage C++ class) encapsulates the MQMD data structure and also acts
as a holding point for user data and items (see “Reading messages in C++” on page 520) by providing
cached buffer facilities. You can provide fixed-length buffers for user data and use the buffer many times.
The amount of data present in the buffer can vary from one use to the next. Alternatively, the system
can provide and manage a buffer of flexible length. Both the size of the buffer (the amount available for
receipt of messages) and the amount actually used (either the number of bytes for transmission or the
number of bytes actually received) become important considerations.

Related concepts
Technical overview
“C++ sample programs” on page 511
Four sample programs are supplied, to demonstrate getting and putting messages.
“C++ language considerations” on page 515
This collection of topics details the aspects of the C++ language usage and conventions that you must
consider when writing application programs that use the Message Queue Interface (MQI).
“Preparing message data in C++” on page 519
Message data is prepared in a buffer, which can be supplied by the system or the application. There are
advantages to either method. Examples of using a buffer are given.
“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.
Related reference
“Building IBM MQ C++ programs” on page 525
The URL of supported compilers is listed, together with the commands to use to compile, link and run C++
programs and samples on IBM MQ platforms.
C++ and MQI cross-reference
IBM MQ C++ classes

C++ sample programs
Four sample programs are supplied, to demonstrate getting and putting messages.

The sample programs are:

• HELLO WORLD (imqwrld.cpp)
• SPUT (imqsput.cpp)
• SGET (imqsget.cpp)
• DPUT (imqdput.cpp)

The sample programs are located in the directories shown in Table 73 on page 512.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Developing applications for IBM MQ 511

Table 73. Location of sample programs

Environment Directory containing source Directory containing built
programs

AIX MQ_INSTALLATION_PATH/samp MQ_INSTALLATION_PATH/samp/bin/ia

AIX

 MQ_INSTALLATION_PATH/samp MQ_INSTALLATION_PATH/samp/bin/ca
(see note “1” on page 512)

IBM i /QIBM/ProdData/mqm/samp/ (see note “2” on page 512)

Linux MQ_INSTALLATION_PATH/samp None

Windows

MQ_INSTALLATION_PATH\tools\cplus\s
amples

 MQ_INSTALLATION_PATH\tools\cplus\
samples\bin\vn
(see note “3” on page 512)

z/OS thlqual.SCSQCPPS

Notes:

1. Programs built using the XLC 17 compiler are located in the "ca" folder,
whilst programs built using the XLC 16 compiler are located in the "ia" folder.

2. Programs built using the ILE C++ compiler for IBM i are in the library QMQM. The source
files are in /QIBM/ProdData/mqm/samp.

3. Programs built using the Microsoft Visual Studio Visual Studio are found in
MQ_INSTALLATION_PATH\tools\cplus\samples\bin\vn. For further information about these
compilers, see “Building C++ programs on Windows” on page 531.

Sample program HELLO WORLD (imqwrld.cpp)
This C++ sample program shows how to put and get a regular datagram (C structure) using the
ImqMessage class.

This program shows how to put and get a regular datagram (C structure) using the ImqMessage class.
This sample uses few method invocations, taking advantage of implicit method invocations such as open,
close, and disconnect.

On all platforms except z/OS
If you are using a server connection to IBM MQ, follow one of the following procedures:

• To use the existing default queue, SYSTEM.DEFAULT.LOCAL.QUEUE, run the program imqwrlds without
passing any parameters

• To use a temporary dynamically assigned queue, run imqwrlds passing the name of the default model
queue, SYSTEM.DEFAULT.MODEL.QUEUE.

If you are using a client connection to IBM MQ, follow one of the following procedures:

• Set up the MQSERVER environment variable (see MQSERVER for more information) and run imqwrldc,
or

512 Developing Applications for IBM MQ

• Run imqwrldc passing as parameters the queue-name, queue-manager-name, and channel-
definition, where a typical channel-definition might be SYSTEM.DEF.SVRCONN/TCP/hostname
(1414)

On z/OS

Construct and run a batch job, using the sample JCL imqwrldr.

See z/OS Batch, RRS Batch and CICS for more information.

Sample code

extern "C" {
#include <stdio.h>
}

#include <imqi.hpp> // IBM MQ C++

#define EXISTING_QUEUE "SYSTEM.DEFAULT.LOCAL.QUEUE"

#define BUFFER_SIZE 12

static char gpszHello[BUFFER_SIZE] = "Hello world" ;
int main (int argc, char * * argv) {
 ImqQueueManager manager ;
 int iReturnCode = 0 ;

 // Connect to the queue manager.
 if (argc > 2) {
 manager.setName(argv[2]);
 }
 if (manager.connect()) {
 ImqQueue * pqueue = new ImqQueue ;
 ImqMessage * pmsg = new ImqMessage ;

 // Identify the queue which will hold the message.
 pqueue -> setConnectionReference(manager);
 if (argc > 1) {
 pqueue -> setName(argv[1]);

 // The named queue can be a model queue, which will result in
 // the creation of a temporary dynamic queue, which will be
 // destroyed as soon as it is closed. Therefore we must ensure
 // that such a queue is not automatically closed and reopened.
 // We do this by setting open options which will avoid the need
 // for closure and reopening.
 pqueue -> setOpenOptions(MQOO_OUTPUT | MQOO_INPUT_SHARED |
 MQOO_INQUIRE);
 } else {
 pqueue -> setName(EXISTING_QUEUE);

 // The existing queue is not a model queue, and will not be
 // destroyed by automatic closure and reopening. Therefore we
 // will let the open options be selected on an as-needed basis.
 // The queue will be opened implicitly with an output option
 // during the "put", and then implicitly closed and reopened
 // with the addition of an input option during the "get".
 }

 // Prepare a message containing the text "Hello world".
 pmsg -> useFullBuffer(gpszHello , BUFFER_SIZE);
 pmsg -> setFormat(MQFMT_STRING);

 // Place the message on the queue, using default put message
 // Options.
 // The queue will be automatically opened with an output option.
 if (pqueue -> put(* pmsg)) {
 ImqString strQueue(pqueue -> name());

 // Discover the name of the queue manager.
 ImqString strQueueManagerName(manager.name());
 printf("The queue manager name is %s.\n",
 (char *)strQueueManagerName);

Developing applications for IBM MQ 513

 // Show the name of the queue.
 printf("Message sent to %s.\n", (char *)strQueue);

 // Retrieve the data message just sent ("Hello world" expected)
 // from the queue, using default get message options. The queue
 // is automatically closed and reopened with an input option
 // if it is not already open with an input option. We get the
 // message just sent, rather than any other message on the
 // queue, because the "put" will have set the ID of the message
 // so, as we are using the same message object, the message ID
 // acts as in the message object, a filter which says that we
 // are interested in a message only if it has this
 // particular ID.

 if (pqueue -> get(* pmsg)) {
 int iDataLength = pmsg -> dataLength();

 // Show the text of the received message.
 printf("Message of length %d received, ", iDataLength);

 if (pmsg -> formatIs(MQFMT_STRING)) {
 char * pszText = pmsg -> bufferPointer();

 // If the last character of data is a null, then we can
 // assume that the data can be interpreted as a text
 // string.
 if (! pszText[iDataLength - 1]) {
 printf("text is \"%s\".\n", pszText);
 } else {
 printf("no text.\n");
 }

 } else {
 printf("non-text message.\n");
 }
 } else {
 printf("ImqQueue::get failed with reason code %ld\n",
 pqueue -> reasonCode());
 iReturnCode = (int)pqueue -> reasonCode();
 }

 } else {
 printf("ImqQueue::open/put failed with reason code %ld\n",
 pqueue -> reasonCode());
 iReturnCode = (int)pqueue -> reasonCode();
 }

 // Deletion of the queue will ensure that it is closed.
 // If the queue is dynamic then it will also be destroyed.
 delete pqueue ;
 delete pmsg ;

 } else {
 printf("ImqQueueManager::connect failed with reason code %ld\n"
 manager.reasonCode());
 iReturnCode = (int)manager.reasonCode();
 }

 // Destruction of the queue manager ensures that it is
 // disconnected. If the queue object were still available
 // and open (which it is not), the queue would be closed
 // prior to disconnection.

 return iReturnCode ;
}

Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)
These C++ programs place messages to, and retrieve messages from, a named queue.

These samples show the use of the following classes:

• ImqError (see ImqError C++ class)
• ImqMessage (see ImqMessage C++ class)
• ImqObject (see ImqObject C++ class)
• ImqQueue (see ImqQueue C++ class)

514 Developing Applications for IBM MQ

• ImqQueueManager (see ImqQueueManager C++ class)

Follow the appropriate instructions to run the programs.

On all platforms except z/OS
1. Run imqsputs queue-name.
2. Type lines of text at the console. These lines are placed as messages onto the specified queue.
3. Enter a null line to end the input.
4. Run imqsgets queue-name to retrieve all the lines and display them at the console.

See “Building C++ programs on z/OS Batch, RRS Batch and CICS” on page 533 for more
information.

On z/OS

1. Construct and run a batch job using the sample JCL imqsputr. The messages are read from the SYSIN
data set.

2. Construct and run a batch job using the sample JCL imqsgetr. The messages are retrieved from the
queue and sent to the SYSPRINT data set.

Sample program DPUT (imqdput.cpp)
This C++ sample program puts messages to a distribution list consisting of two queues.

DPUT shows the use of the ImqDistributionList class (see ImqDistributionList C++ class). This sample is
not supported on z/OS.

1. Run imqdputs queue-name-1 queue-name-2 to place messages on the two named queues.
2. Run imqsgets queue-name-1 and imqsgets queue-name-2 to retrieve the messages from those

queues.

C++ language considerations
This collection of topics details the aspects of the C++ language usage and conventions that you must
consider when writing application programs that use the Message Queue Interface (MQI).

C++ Header files
Header files are provided as part of the definition of the MQI, to help you write IBM MQ application
programs in the C++ language.

These header files are summarized in the following table.

Table 74. C/C++ header files

Filename Contents

IMQI.HPP C++ MQI Classes (includes CMQC.H and IMQTYPE.H)

IMQTYPE.H Defines the ImqBoolean data type

CMQC.H MQI data structures and manifest constants

To improve the portability of applications, code the name of the header file in lowercase on the #include
preprocessor directive:

#include <imqi.hpp> // C++ classes

Developing applications for IBM MQ 515

C++ methods and attributes
Method names are in mixed case. Various considerations apply to parameters and return values.
Attributes are accessed using set and get methods as appropriate.

Parameters of methods that are const are for input only. Parameters with signatures including a pointer (*)
or a reference (&) are passed by reference. Return values that do not include a pointer or a reference are
passed by value; in the case of returned objects, these are new entities that become the responsibility of
the caller.

Some method signatures include items that take a default if not specified. Such items are always at the
end of signatures and are denoted by an equal sign (=); the value after the equal sign indicates the default
value that applies if the item is omitted.

All method names in these classes are mixed case, beginning with lowercase. Each word, except the first
within a method name, begins with a capital letter. Abbreviations are not used unless their meaning is
widely understood. Abbreviations used include id (for identity) and sync (for synchronization).

Object attributes are accessed using set and get methods. A set method begins with the word set ; a get
method has no prefix. If an attribute is read-only, there is no set method.

Attributes are initialized to valid states during object construction, and the state of an object is always
consistent.

Data types in C++
All data types are defined by the C typedef statement.

The type ImqBoolean is defined as unsigned char in IMQTYPE.H and can have the values TRUE and
FALSE. You can use ImqBinary class objects in place of MQBYTE arrays, and ImqString class objects
in place of char *. Many methods return objects instead of char or MQBYTE pointers to ease storage
management. All return values become the responsibility of the caller, and, in the case of a returned
object, the storage can be disposed of using delete.

Manipulating binary strings in C++
Strings of binary data are declared as objects of the ImqBinary class. Objects of this class can be copied,
compared, and set using the familiar C operators. Example code is provided.

The following code sample shows operations on a binary string:

#include <imqi.hpp> // C++ classes

ImqMessage message ;
ImqBinary id, correlationId ;
MQBYTE24 byteId ;

correlationId.set(byteId, sizeof(byteId)); // Set.
id = message.id(); // Assign.
if (correlationId == id) { // Compare.
...

Manipulating character strings in C++
Character data is often returned in ImqString class objects which can be cast to char * using a
conversion operator. The ImqString class contains methods to assist in the processing of character
strings.

When character data is accepted or returned using MQI C++ methods, the character data is always
null-terminated and can be of any length. However, certain limits are imposed by IBM MQ that might
result in information being truncated. To ease storage management, character data is often returned in
ImqString class objects. These objects can be cast to char * using the conversion operator provided, and
used for read-only purposes in many situations where a char * is required.

Note: The char * conversion result from an ImqString class object might be null.

516 Developing Applications for IBM MQ

Although C functions can be used on the char *, there are special methods of the ImqString class
that are preferable; operator length () is the equivalent of strlen and storage () indicates the memory
allocated for the character data.

Initial state of objects in C++
All objects have a consistent initial state reflected by their attributes. The initial values are defined in the
class descriptions.

Using C from C++
When you use C functions from a C++ program, include appropriate headers.

The following example shows string.h included in a C++ program:

extern "C" {
#include <string.h>
}

C++ notational conventions
This example shows how to invoke methods and declare parameters.

This code sample uses the methods and parameters ImqBoolean ImqQueue:: get (ImqMessage & msg)

Declare and use the parameters as follows:

ImqQueueManager * pmanager ; // Queue manager
ImqQueue * pqueue ; // Message queue
ImqMessage msg ; // Message
char szBuffer[100]; // Buffer for message data

pmanager = new ImqQueueManager ;
pqueue = new ImqQueue ;
pqueue -> setName("myreplyq");
pqueue -> setConnectionReference(pmanager);

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));

if (pqueue -> get(msg)) {
 long lDataLength = msg.dataLength();

...
}

Implicit operations in C++
Several operations can occur implicitly, just in time, to satisfy the prerequisite conditions for the
successful execution of a method. These implicit operations are connect, open, reopen, close, and
disconnect. You can control connect and open implicit behavior using class attributes.

Connect
An ImqQueueManager object is connected automatically for any method that results in any call to the
MQI (see C++ and MQI cross-reference).

Open
An ImqObject object is opened automatically for any method that results in an MQGET, MQINQ, MQPUT,
or MQSET call. Use the openFor method to specify one or more relevant open option values.

Developing applications for IBM MQ 517

Reopen
An ImqObject is reopened automatically for any method that results in an MQGET, MQINQ, MQPUT, or
MQSET call, where the object is already open, but the existing open options are not adequate to allow
the MQI call to be successful. The object is temporarily closed using a temporary close options value of
MQCO_NONE. Use the openFor method to add a relevant open option.

Reopen can cause problems in specific circumstances:

• A temporary dynamic queue is destroyed when it is closed and can never be reopened.
• A queue opened for exclusive input (either explicitly or by default) might be accessed by others in the

window of opportunity during closure and reopening.
• A browse cursor position is lost when a queue is closed. This situation does not prevent closure and

reopening, but prevents subsequent use of the cursor until MQGMO_BROWSE_FIRST is used again.
• The context of the last message retrieved is lost when a queue is closed.

If any of these circumstances occur or can be foreseen, avoid reopens by explicitly setting adequate open
options before an object is opened (either explicitly or implicitly).

Setting the open options explicitly for complex queue-handling situations results in better performance
and avoids the problems associated with the use of reopen.

Close
An ImqObject is closed automatically at any point where the object state is no longer viable, for example
if an ImqObject connection reference is severed, or if an ImqObject object is destroyed.

Disconnect
An ImqQueueManager is disconnected automatically at any point where the connection is no longer
viable, for example if an ImqObject connection reference is severed, or if an ImqQueueManager object is
destroyed.

Binary and character strings in C++
The ImqString class encapsulates the traditional char * data format. The ImqBinary class encapsulates
the binary byte array. Some methods that set character data might truncate the data.

Methods that set character (char *) data always take a copy of the data, but some methods might
truncate the copy, because certain limits are imposed by IBM MQ.

The ImqString class (see ImqString C++ class) encapsulates the traditional char * and provides support
for:

• Comparison
• Concatenation
• Copying
• Integer-to-text and text-to-integer conversion
• Token (word) extraction
• Uppercase translation

The ImqBinary class (see ImqBinary C++ class) encapsulates binary byte arrays of arbitrary size. In
particular, it is used to hold the following attributes:

• accounting token (MQBYTE32)
• connection tag (MQBYTE128)
• correlation id (MQBYTE24)
• facility token (MQBYTE8)
• group id (MQBYTE24)

518 Developing Applications for IBM MQ

• instance id (MQBYTE24)
• message id (MQBYTE24)
• message token (MQBYTE16)
• transaction instance id (MQBYTE16)

Where these attributes belong to objects of the following classes:

• ImqCICSBridgeHeader (see ImqCICSBridgeHeader C++ class)
• ImqGetMessageOptions (see ImqGetMessageOptions C++ class)
• ImqIMSBridgeHeader (see ImqIMSBridgeHeader C++ class)
• ImqMessageTracker (see ImqMessageTracker C++ class)
• ImqQueueManager (see ImqQueueManager C++ class)
• ImqReferenceHeader (see ImqReferenceHeader C++ class)
• ImqWorkHeader (see ImqWorkHeader C++ class)

The ImqBinary class also provides support for comparison and copying.

Unsupported functions in C++
The IBM MQ C++ classes and methods are independent of IBM MQ platform. They might therefore offer
some functions that are not supported on certain platforms.

If you try to use a function on a platform on which it is not supported, the function is detected by IBM MQ
but not by the C++ language bindings. IBM MQ reports the error to your program, like any other MQI error.

Messaging in C++
This collection of topics details how to prepare, read, and write messages in C++.

Preparing message data in C++
Message data is prepared in a buffer, which can be supplied by the system or the application. There are
advantages to either method. Examples of using a buffer are given.

When you send a message, message data is first prepared in a buffer managed by an ImqCache object
(see ImqCache C++ class). A buffer is associated (by inheritance) with each ImqMessage object (see
ImqMessage C++ class): it can be supplied by the application (using either the useEmptyBuffer or
useFullBuffer method) or automatically by the system. The advantage of the application supplying the
message buffer is that no data copying is necessary in many cases because the application can use
prepared data areas directly. The disadvantage is that the supplied buffer is of a fixed length.

The buffer can be reused, and the number of bytes transmitted can be varied each time, by using the
setMessageLength method before transmission.

When supplied automatically by the system, the number of bytes available is managed by the system,
and data can be copied into the message buffer using, for example, the ImqCache write method, or the
ImqMessage writeItem method. The message buffer grows according to need. As the buffer grows, there
is no loss of previously written data. A large or multipart message can be written in sequential pieces.

The following examples show simplified message sends.

1. Use prepared data in a user-supplied buffer

char szBuffer[] = "Hello world" ;

msg.useFullBuffer(szBuffer, sizeof(szBuffer));
msg.setFormat(MQFMT_STRING);

2. Use prepared data in a user-supplied buffer, where the buffer size exceeds the data size

Developing applications for IBM MQ 519

char szBuffer[24] = "Hello world" ;

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));
msg.setFormat(MQFMT_STRING);
msg.setMessageLength(12);

3. Copy data to a user-supplied buffer

char szBuffer[12];

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

4. Copy data to a system-supplied buffer

msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

5. Copy data to a system-supplied buffer using objects (objects set the message format as well as
content)

ImqString strText("Hello world");

msg.writeItem(strText);

Reading messages in C++
A buffer can be supplied by the application or the system. Data can be accessed directly from the buffer
or read sequentially. There is a class equivalent to each message type. Sample code is given.

When receiving data, the application or the system can supply a suitable message buffer. The same buffer
can be used for both multiple transmission and multiple receipt for a particular ImqMessage object. If the
message buffer is supplied automatically, it grows to accommodate whatever length of data is received.
However, a message buffer supplied by the application might not be big enough to hold the data received.
Then either truncation or failure might occur, depending on the options used for message receipt.

Incoming data can be accessed directly from the message buffer, in which case the data length indicates
the total amount of incoming data. Alternatively, incoming data can be read sequentially from the
message buffer. In this case, the data pointer addresses the next byte of incoming data, and the data
pointer and data length are updated each time data is read.

Items are pieces of a message, all in the user area of the message buffer, that need to be processed
sequentially and separately. Apart from regular user data, an item might be a dead-letter header or a
trigger message. Items are always associated with message formats; message formats are not always
associated with items.

There is a class of object for each item that corresponds to a recognizable IBM MQ message format.
There is one for a dead-letter header and one for a trigger message. There is no class of object for user
data. That is, once the recognizable formats have been exhausted, processing the remainder is left to the
application program. Classes for user data can be written by specializing the ImqItem class.

The following example shows a message receipt that takes account of a number of potential items that
can precede the user data, in an imaginary situation. Non-item user data is defined as anything that
occurs after items that can be identified. An automatic buffer (the default) is used to hold an arbitrary
amount of message data.

ImqQueue queue ;
ImqMessage msg ;

if (queue.get(msg)) {

 /* Process all items of data in the message buffer. */

520 Developing Applications for IBM MQ

 do while (msg.dataLength()) {
 ImqBoolean bFormatKnown = FALSE ;
 /* There remains unprocessed data in the message buffer. */

 /* Determine what kind of item is next. */

 if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {
 ImqDeadLetterHeader header ;
 /* The next item is a dead-letter header. */
 /* For the next statement to work and return TRUE, */
 /* the correct class of object pointer must be supplied. */
 bFormatKnown = TRUE ;

 if (msg.readItem(header)) {
 /* The dead-letter header has been extricated from the */
 /* buffer and transformed into a dead-letter object. */
 /* The encoding and character set of the dead-letter */
 /* object itself are MQENC_NATIVE and MQCCSI_Q_MGR. */
 /* The encoding and character set from the dead-letter */
 /* header have been copied to the message attributes */
 /* to reflect any remaining data in the buffer. */

 /* Process the information in the dead-letter object. */
 /* Note that the encoding and character set have */
 /* already been processed. */
 ...
 }
 /* There might be another item after this, */
 /* or just the user data. */
 }
 if (msg.formatIs(MQFMT_TRIGGER)) {
 ImqTrigger trigger ;
 /* The next item is a trigger message. */
 /* For the next statement to work and return TRUE, */
 /* the correct class of object pointer must be supplied. */
 bFormatKnown = TRUE ;
 if (msg.readItem(trigger)) {

 /* The trigger message has been extricated from the */
 /* buffer and transformed into a trigger object. */
 /* Process the information in the trigger object. */
 ...
 }

 /* There is usually nothing after a trigger message. */
 }

 if (msg.formatIs(FMT_USERCLASS)) {
 UserClass object ;
 /* The next item is an item of a user-defined class. */
 /* For the next statement to work and return TRUE, */
 /* the correct class of object pointer must be supplied. */
 bFormatKnown = TRUE ;

 if (msg.readItem(object)) {
 /* The user-defined data has been extricated from the */
 /* buffer and transformed into a user-defined object. */

 /* Process the information in the user-defined object. */
 ...
 }

 /* Continue looking for further items. */
 }
 if (! bFormatKnown) {
 /* There remains data that is not associated with a specific*/
 /* item class. */
 char * pszDataPointer = msg.dataPointer(); /* Address.*/
 int iDataLength = msg.dataLength(); /* Length. */

 /* The encoding and character set for the remaining data are */
 /* reflected in the attributes of the message object, even */
 /* if a dead-letter header was present. */
 ...

 }

 }
}

Developing applications for IBM MQ 521

In this example, FMT_USERCLASS is a constant representing the 8-character format name associated
with an object of class UserClass, and is defined by the application.

UserClass is derived from the ImqItem class (see ImqItem C++ class), and implements the virtual
copyOut and pasteIn methods from that class.

The next two examples show code from the ImqDeadLetterHeader class (see ImqDeadLetterHeader C++
class). The first example shows custom-encapsulated message- writing code.

// Insert a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: copyOut (ImqMessage & msg) {
 ImqBoolean bSuccess ;
 if (msg.moreBytes(sizeof(omqdlh))) {
 ImqCache cacheData(msg); // Preserve original message content.
 // Note original message attributes in the dead-letter header.
 setEncoding(msg.encoding());
 setCharacterSet(msg.characterSet());
 setFormat(msg.format());

 // Set the message attributes to reflect the dead-letter header.
 msg.setEncoding(MQENC_NATIVE);
 msg.setCharacterSet(MQCCSI_Q_MGR);
 msg.setFormat(MQFMT_DEAD_LETTER_HEADER);
 // Replace the existing data with the dead-letter header.
 msg.clearMessage();
 if (msg.write(sizeof(omqdlh), (char *) & omqdlh)) {
 // Append the original message data.
 bSuccess = msg.write(cacheData.messageLength(),
 cacheData.bufferPointer());
 } else {
 bSuccess = FALSE ;
 }
 } else {
 bSuccess = FALSE ;
 }
 // Reflect and cache error in this object.
 if (! bSuccess) {
 setReasonCode(msg.reasonCode());
 setCompletionCode(msg.completionCode());
 }

 return bSuccess ;
}

The second example shows custom-encapsulated message- reading code.

// Read a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: pasteIn (ImqMessage & msg) {
 ImqBoolean bSuccess = FALSE ;

 // First check that the eye-catcher is correct.
 // This is also our guarantee that the "character set" is correct.
 if (ImqItem::structureIdIs(MQDLH_STRUC_ID, msg)) {
 // Next check that the "encoding" is correct, as the MQDLH
 // contains numeric data.
 if (msg.encoding() == MQENC_NATIVE) {

 // Finally check that the "format" is correct.
 if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {
 char * pszBuffer = (char *) & omqdlh ;
 // Transfer the MQDLH from the message and move pointer on.
 if (bSuccess = msg.read(sizeof(omdlh), pszBuffer)) {
 // Update the encoding, character set and format of the
 // message to reflect the remaining data.
 msg.setEncoding(encoding());
 msg.setCharacterSet(characterSet());
 msg.setFormat(format());
 } else {

 // Reflect the cache error in this object.
 setReasonCode(msg.reasonCode());
 setCompletionCode(msg.completionCode());
 }
 } else {

522 Developing Applications for IBM MQ

 setReasonCode(MQRC_INCONSISTENT_FORMAT);
 setCompletionCode(MQCC_FAILED);
 }
 } else {
 setReasonCode(MQRC_ENCODING_ERROR);
 setCompletionCode(MQCC_FAILED);
 {
 } else {
 setReasonCode(MQRC_STRUC_ID_ERROR);
 setCompletionCode(MQCC_FAILED);
 }

 return bSuccess ;
}

With an automatic buffer, the buffer storage is volatile. That is, buffer data might be held at a different
physical location after each get method invocation. Therefore, each time buffer data is referenced, use
the bufferPointer or dataPointer methods to access message data.

You might want a program to set aside a fixed area for receiving message data. In this case, invoke the
useEmptyBuffer method before using the get method.

Using a fixed, nonautomatic area limits messages to a maximum size, so it is important to consider the
MQGMO_ACCEPT_TRUNCATED_MSG option of the ImqGetMessageOptions object. If this option is not
specified (the default), the MQRC_TRUNCATED_MSG_FAILED reason code can be expected. If this option
is specified, the MQRC_TRUNCATED_MSG_ACCEPTED reason code might be expected depending on the
design of the application.

The next example shows how a fixed area of storage can be used to receive messages:

char * pszBuffer = new char[100];

msg.useEmptyBuffer(pszBuffer, 100);
gmo.setOptions(MQGMO_ACCEPT_TRUNCATED_MSG);
queue.get(msg, gmo);

delete [] pszBuffer ;

In this code fragment, the buffer can always be addressed directly, with pszBuffer, as opposed to using
the bufferPointer method. However, it is better to use the dataPointer method for general-purpose
access. The application (not the ImqCache class object) must discard a user-defined (nonautomatic)
buffer.

Attention: Specifying a null pointer and zero length with useEmptyBuffer does not nominate a fixed-
length buffer of length zero as might be expected. This combination is interpreted as a request to ignore
any previous user-defined buffer, and instead revert to the use of an automatic buffer.

Writing a message to the dead-letter queue in C++
Example program code for writing a message to the dead-letter queue.

A typical case of a multipart message is one containing a dead-letter header. The data from a message
that cannot be processed is appended to the dead-letter header.

ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueDead ; // Dead-letter message queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqDeadLetterHeader header ; // Dead-letter header information.

// Retrieve the message to be rerouted.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the dead-letter header information.
header.setDestinationQueueManagerName(mgr.name());
header.setDestinationQueueName(queueIn.name());
header.setPutApplicationName(/* ? */);
header.setPutApplicationType(/* ? */);

Developing applications for IBM MQ 523

header.setPutDate(/* TODAY */);
header.setPutTime(/* NOW */);
header.setDeadLetterReasonCode(FB_APPL_ERROR_1234);

// Insert the dead-letter header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the dead-letter queue.
queueDead.setConnectionReference(mgr);
queueDead.setName(mgr.deadLetterQueueName());
queueDead.put(msg);

Writing a message to the IMS bridge in C++
Example program code for writing a message to the IMS bridge.

Messages sent to the IBM MQ - IMS bridge might use a special header. The IMS bridge header is prefixed
to regular message data.

ImqQueueManager mgr; // The queue manager.
ImqQueue queueBridge; // IMS bridge message queue.
ImqMessage msg; // Outgoing message.
ImqIMSBridgeHeader header; // IMS bridge header.

// Set up the message.
//
// Here we are constructing a message with format
// MQFMT_IMS_VAR_STRING, and appropriate data.
//
msg.write(2, /* ? */); // Total message length.
msg.write(2, /* ? */); // IMS flags.
msg.write(7, /* ? */); // Transaction code.
msg.write(/* ? */, /* ? */); // String data.
msg.setFormat(MQFMT_IMS_VAR_STRING); // The format attribute.

// Set up the IMS bridge header information.
//
// The reply-to-format is often specified.
// Other attributes can be specified, but all have default values.
//
header.setReplyToFormat(/* ? */);

// Insert the IMS bridge header into the message.
//
// This will:
// 1) Insert the header into the message buffer, before the existing
// data.
// 2) Copy attributes out of the message descriptor into the header,
// for example the IMS bridge header format attribute will now
// be set to MQFMT_IMS_VAR_STRING.
// 3) Set up the message attributes to describe the header, in
// particular setting the message format to MQFMT_IMS.
//
msg.writeItem(header);

// Send the message to the IMS bridge queue.
//
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

Writing a message to the CICS bridge in C++
Example program code for writing a message to the CICS bridge.

Messages sent to IBM MQ for z/OS using the CICS bridge require a special header. The CICS bridge
header is prefixed to regular message data.

ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueBridge ; // CICS bridge message queue.
ImqMessage msg ; // Incoming and outgoing message.

524 Developing Applications for IBM MQ

ImqCicsBridgeHeader header ; // CICS bridge header information.

// Retrieve the message to be forwarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the CICS bridge header information.
// The reply-to format is often specified.
// Other attributes can be specified, but all have default values.
header.setReplyToFormat(/* ? */);

// Insert the CICS bridge header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the CICS bridge queue.
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

Writing a message with a work header in C++
Example program code for writing a message destined for a queue managed by the z/OS Workload
Manager.

Messages sent to IBM MQ for z/OS, which are destined for a queue managed by the z/OS Workload
Manager, require a special header. The work header is prefixed to regular message data.

ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueWLM ; // WLM managed queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqWorkHeader header ; // Work header information

// Retrieve the message to be forwarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Insert the Work header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the WLM managed queue.
queueWLM.setConnectionReference(mgr);
queueWLM.setName(/* ? */);
queueWLM.put(msg);

Building IBM MQ C++ programs
The URL of supported compilers is listed, together with the commands to use to compile, link and run C++
programs and samples on IBM MQ platforms.

For a list of the compilers for each supported platform and version of IBM MQ, see System Requirements
for IBM MQ.

The command you need to compile and link your IBM MQ C++ program depends on your installation and
requirements. The examples that follow show typical compiling and linking commands for some of the
compilers using the default installation of IBM MQ on a number of platforms.

Building C++ programs on AIX
Build IBM MQ C++ programs on AIX using the XL C Enterprise Edition compiler.

For more information about the different mapping of compiler options between XLC 16 and
XLC 17 compilers, see Mapping of options.

Developing applications for IBM MQ 525

https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/docs/en/openxl-c-and-cpp-aix/17.1.1?topic=options-mapping

Support for the XL C/C++ for AIX 16 compiler on AIX is deprecated from IBM
MQ 9.4.0.

Client

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

32-bit unthreaded application

xlC -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqc23ia -limqb23ia -lmqic

32-bit threaded application

xlC_r -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqc23ia_r -limqb23ia_r -lmqic_r

64-bit unthreaded application

xlC -q64 -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqc23ia -limqb23ia -lmqic

64-bit threaded application

xlC_r -q64 -o imqsputc_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqc23ia_r -limqb23ia_r -lmqic_r

32-bit unthreaded application (XLC 17)

ibm-clang++_r -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqc23ca -limqb23ca -lmqic

32-bit threaded application (XLC 17)

ibm-clang++_r -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqc23ca_r -limqb23ca_r -lmqic_r

64-bit unthreaded application (XLC 17)

ibm-clang++_r -m64 -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqc23ca -limqb23ca -lmqic

64-bit threaded application (XLC 17)

ibm-clang++_r -m64 -o imqsputc_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqc23ca_r -limqb23ca_r -lmqic_r

Server

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

32-bit unthreaded application

xlC -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqs23ia -limqb23ia -lmqm

526 Developing Applications for IBM MQ

32-bit threaded application

xlC_r -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqs23ia_r -limqb23ia_r -lmqm_r

64-bit unthreaded application

xlC -q64 -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqs23ia -limqb23ia -lmqm

64-bit threaded application

xlC_r -q64 -o imqsput_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqs23ia_r -limqb23ia_r -lmqm_r

32-bit unthreaded application (XLC 17)

ibm-clang++_r -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqs23ca -limqb23ca -lmqm

32-bit threaded application (XLC 17)

ibm-clang++_r -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqs23ca_r -limqb23ca_r -lmqm_r

64-bit unthreaded application (XLC 17)

ibm-clang++_r -m64 -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqs23ca -limqb23ca -lmqm

64-bit threaded application (XLC 17)

ibm-clang++_r -m64 -o imqsput_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqs23ca_r -limqb23ca_r -lmqm_r

Building C++ programs on IBM i
Build IBM MQ C++ programs on IBM i using the ILE C++ compiler.

IBM ILE C++ for IBM i is a native compiler for C++ programs. The following instructions describe how to
use this compiler to create IBM MQ C++ applications using the Hello World! IBM MQ sample program as
an example.

1. Install the ILE C++ for IBM i compiler as directed in the Read Me first! manual that accompanies the
product.

2. Ensure that the QCXXN library is in your library list.
3. Create the HELLO WORLD sample program:

a. Create a module:

CRTCPPMOD MODULE(MYLIB/IMQWRLD) +
SRCSTMF('/QIBM/ProdData/mqm/samp/imqwrld.cpp') +
INCDIR('/QIBM/ProdData/mqm/inc') DFTCHAR(*SIGNED) +
TERASPACE(*YES)

The source for the C++ sample programs can be found in /QIBM/ProdData/mqm/samp and the
include files in /QIBM/ProdData/mqm/inc.

Alternatively, the source can be found in library SRCFILE(QCPPSRC/LIB) SRCMBR(IMQWRLD).

Developing applications for IBM MQ 527

b. Bind this with IBM MQ-supplied service programs to produce a program object:

CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +
BNDSRVPGM(QMQM/IMQB23I4 QMQM/IMQS23I4)

To build a threaded application use the re-entrant service programs:

CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +
BNDSRVPGM(QMQM/IMQB23I4[_R] QMQM/IMQS23I4[_R])

c. Execute the HELLO WORLD sample program, using SYSTEM.DEFAULT.LOCAL.QUEUE:

CALL PGM(MYLIB/IMQWRLD)

Building C++ programs on Linux
Build IBM MQ C++ programs on Linux using the GNU g++ compiler.

System p
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: System p
32-bit unthreaded application

g++ -m32 -o imqsputc_32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl
-limqb23gl -lmqic

32-bit threaded application

g++ -m32 -o imqsputc_r32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl_r
-limqb23gl_r -lmqic_r

64-bit unthreaded application

g++ -m64 -o imqsputc_64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl -limqb23gl -lmqic

64-bit threaded application

g++ -m64 -o imqsputc_r64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl_r -limqb23gl_r -lmqic_r

Server: System p
32-bit unthreaded application

g++ -m32 -o imqsput_32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl
-limqb23gl -lmqm

528 Developing Applications for IBM MQ

32-bit threaded application

g++ -m32 -o imqsput_r32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl_r
-limqb23gl_r -lmqm_r

64-bit unthreaded application

g++ -m64 -o imqsput_64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl -limqb23gl -lmqm

64-bit threaded application

g++ -m64 -o imqsput_r64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl_r -limqb23gl_r -lmqm_r

IBM Z
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: IBM Z
32-bit unthreaded application

g++ -m31 -fsigned-char -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl -limqb23gl -lmqic

32-bit threaded application

g++ -m31 -fsigned-char -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl_r -limqb23gl_r -lmqic_r
-lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl -limqb23gl -lmqic

64-bit threaded application

g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

Server: IBM Z
32-bit unthreaded application

g++ -m31 -fsigned-char -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl -limqb23gl -lmqm

Developing applications for IBM MQ 529

32-bit threaded application

g++ -m31 -fsigned-char -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl -limqb23gl -lmqm

64-bit threaded application

g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

x86-64 (32-bit)
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: x86-64 (32-bit)
32-bit unthreaded application

g++ -m32 -fsigned-char -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L
MQ_INSTALLATION_PATH/lib -Wl,
-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl -limqb23gl -lmqic

32-bit threaded application

g++ -m32 -fsigned-char -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl_r -limqb23gl_r
-lmqic_r -lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L
MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqc23gl -limqb23gl
-lmqic

64-bit threaded application

g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L
MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqc23gl_r -limqb23gl_r
-lmqic_r -lpthread

Server: x86-64 (32-bit)
32-bit unthreaded application

g++ -m32 -fsigned-char -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl -limqb23gl -lmqm

530 Developing Applications for IBM MQ

32-bit threaded application

g++ -m32 -fsigned-char -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl_r -limqb23gl_r
-lmqm_r -lpthread

64-bit unthreaded application

g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L
MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqs23gl -limqb23gl -lmqm

64-bit threaded application

g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L
MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqs23gl_r -limqb23gl_r
-lmqm_r -lpthread

Building C++ programs on Windows
Build IBM MQ C++ programs on Windows by using the Microsoft Visual Studio C++ compiler.

Attention: The libraries shipped by IBM MQ are dynamic libraries and not static libraries. IBM MQ
provides something known as "import libraries" that you can use during compilation time
only. For runtime, you must use the dynamic libraries.

From IBM MQ 8.0.0 Fix Pack 4, IBM MQ ships redistributable clients, containing libraries required
for running IBM MQ applications. These libraries can be packaged and redistributed with client
applications. For more information, see Redistributable clients on Windows.

Library (.lib) files and dll files for use with 32-bit applications are installed in MQ_INSTALLATION_PATH/
Tools/Lib. Files for use with 64-bit applications are installed in MQ_INSTALLATION_PATH/Tools/
Lib64. MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client

cl -MD imqsput.cpp /Feimqsputc.exe imqb23vn.lib imqc23vn.lib

Server

cl -MD imqsput.cpp /Feimqsput.exe imqb23vn.lib imqs23vn.lib

Installing the universal C runtime
If you are using Windows 8.1 or Windows Server 2012 R2, you must install the universal C runtime update
(Universal CRT) from Microsoft. This runtime is included as part of Windows 10, and Windows Server
2016.

The Universal CRT update is Microsoft update KB3118401. You can check to see if you have this update
by searching for a file that is called ucrtbase.dll in your C:\Windows\System32 directory. If not, you
can download the update from the following Microsoft page: https://www.catalog.update.microsoft.com/
Search.aspx?q=kb3118401.

Developing applications for IBM MQ 531

https://www.catalog.update.microsoft.com/Search.aspx?q=kb3118401
https://www.catalog.update.microsoft.com/Search.aspx?q=kb3118401

Attempting to run an IBM MQ program, or a program you compile yourself using Microsoft Visual Studio
2017, without the runtime installed results in errors such as the following error:

The program can't start because api-ms-win-crt-runtime-|1-1-0.dll
is missing from your computer. Try reinstalling the program to
fix this problem.

Providing runtimes for Microsoft Visual Studio 2012 programs
If you compiled an IBM MQ program by using Microsoft Visual Studio 2012, be aware that the IBM MQ
installer does not install the Microsoft Visual Studio 2012 C/C++ runtimes. If your previous version of IBM
MQ was installed on the same computer, the Microsoft Visual Studio 2012 runtimes are available from
that installation.

However, if you are using a program that was built by using Microsoft Visual Studio 2012 and no previous
version of IBM MQ was installed, you must do one of the following things:

• Download and install the Microsoft Visual C++ Redistributable for VisualStudio 2017
(32 and 64-bit versions) from Microsoft.

• Recompile your program with Microsoft Visual Studio 2017, or another Microsoft Visual Studio level for
which the runtimes are installed.

C++ client libraries built by using the Microsoft Visual Studio 2015 compiler
IBM MQ provides C++ client libraries that are built with the Microsoft Visual Studio 2015 C++ compiler,
and the Microsoft Visual Studio 2017 C++ compiler.

Both 32-bit and 64-bit versions of the IBM MQ C++ libraries are provided. The 32-bit libraries are
installed under the bin\vs2015 folder, and the 64-bit libraries are installed under the bin64\vs2015
folders.

By default, IBM MQ is configured to use the Microsoft Visual Studio 2017 libraries. To use the Microsoft
Visual Studio 2015 libraries you must set the MQ_PREFIX_VS_LIBRARIES environment variable to
MQ_PREFIX_VS_LIBRARIES=vs2015 before you install IBM MQ, or before you use the setmqenv or
setmqinst command.

Using differently named IBM MQ C++ libraries
IBM MQ provides some additional C++ client libraries that are named differently. These libraries are built
with the Microsoft Visual Studio 2015 and Microsoft Visual Studio 2017 C++ compilers. These libraries are
provided in addition to the existing C++ libraries that are also built with the Microsoft Visual Studio 2017
C++ compiler. Since these additional IBM MQ C++ libraries have different names, you can run IBM MQ
C++ applications that are built by using IBM MQ C++ and compiled with Microsoft Visual Studio 2017 and
earlier versions of the product on the same computer.

The additional Microsoft Visual Studio 2017 libraries have the following names:

• imqb23vnvs2017.dll
• imqc23vnvs2017.dll
• imqs23vnvs2017.dll
• imqx23vnvs2017.dll

The additional Microsoft Visual Studio 2015 libraries have the following names:

• imqb23vnvs2015.dll
• imqc23vnvs2015.dll
• imqs23vnvs2015.dll
• imqx23vnvs2015.dll

532 Developing Applications for IBM MQ

Both 32-bit and 64-bit versions of these libraries are provided. The 32-bit libraries are installed under the
bin folder, and the 64-bit libraries are installed under the bin64 folder. Corresponding import libraries
are installed under the Tools\lib and Tools\lib64 directories.

If your application uses imq*vs2015.lib files, you must compile it using the Microsoft Visual Studio
2015 compiler. To run IBM MQ C++ applications that are compiled with Microsoft Visual Studio 2015, or
applications that are compiled with an earlier version of the product on the same computer, the PATH
environment variable must be prefixed as shown in the following examples:

• For 32-bit applications:

SET PATH=installation folder\bin\vs2015;%PATH%

• For 64-bit applications:

SET PATH=installation folder\bin64\vs2015;%PATH%

Related concepts
Windows: changes from IBM MQ 8.0

Building C++ programs on z/OS Batch, RRS Batch and CICS
Build IBM MQ C++ programs on z/OS for the Batch, RRS batch or CICS environments and run the sample
programs.

You can write C++ programs for three of the environments that IBM MQ for z/OS supports:

• Batch
• RRS batch
• CICS

Compile, prelink and link

Create an z/OS application by compiling, pre-linking, and link-editing your C++ source code.

IBM MQ C++ for z/OS is implemented as z/OS DLLs for the IBM C++ for z/OS language. Using DLLs, you
concatenate the supplied definition sidedecks with the compiler output at pre-link time. This allows the
linker to check your calls to the IBM MQ C++ member functions.

Note: There are three sets of sidedecks for each of the three environments.

To build an IBM MQ for z/OS C++ application, create and run JCL. Use the following procedure:

1. If your application runs under CICS, use the CICS-supplied procedure to translate CICS commands in
your program.

In addition, for CICS applications you need to:

a. Add the SCSQLOAD library to the DFHRPL concatenation.
b. Define the CSQCAT1 CEDA group using the member IMQ4B100 in the SCSQPROC library.
c. Install CSQCAT1.

2. Compile the program to produce object code. The JCL for your compilation must include statements
that make the product data definition files available to the compiler. The data definitions are supplied
in the following IBM MQ for z/OS libraries:

• thlqual.SCSQC370
• thlqual.SCSQHPPS

Be sure to specify the /cxx compiler option.

Note: The name thlqual is the high level qualifier of the IBM MQ installation library on z/OS.

Developing applications for IBM MQ 533

3. Pre-link the object code created in step “2” on page 533, including the following definition sidedecks,
which are supplied in thlqual.SCSQDEFS:

a. imqs23dm and imqb23dm for batch
b. imqs23dr and imqb23dr for RRS batch
c. imqs23dc and imqb23dc for CICS

These are the corresponding DLLs.

a. imqs23im and imqb23im for batch
b. imqs23ir and imqb23ir for RRS batch
c. imqs23ic and imqb23ic for CICS

4. Link-edit the object code created in step “3” on page 534, to produce a load module, and store it in
your application load library.

To run batch or RRS batch programs, include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD in
the STEPLIB or JOBLIB data set concatenation.

To run a CICS program, first get your system administrator to define it to CICS as an IBM MQ program and
transaction. You can then run it in the usual way.

Run the sample programs

The programs are described in “C++ sample programs” on page 511.

The sample applications are supplied in source form only. The files are:

Table 75. z/OS sample program files

Sample Source program (in library
thlqual.SCSQCPPS)

JCL (in library thlqual.SCSQPROC)

HELLO WORLD imqwrld imqwrldr

SPUT imqsput imqsputr

SGET imqsget imqsgetr

To run the samples, compile and link-edit them as with any C++ program (see “Building C++ programs on
z/OS Batch, RRS Batch and CICS” on page 533). Use the supplied JCL to construct and run a batch job.
You must initially customize the JCL, by following the commentary included with it.

Building C++ programs on z/OS UNIX System Services
Build IBM MQ C++ programs on z/OS UNIX System Services (z/OS UNIX).

To build an application under the z/OS UNIX shell, you must give the compiler access to the IBM MQ
include files (located in thlqual.SCSQC370 and hlqual.SCSQHPPS), and link against two of the DLL
sidedecks (located in thlqual.SCSQDEFS). At runtime, the application needs access to the IBM MQ
data sets thlqual.SCSQLOAD, thlqual.SCSQAUTH, and one of the language specific data sets, such as
thlqual.SCSQANLE 6.

Compiling

1. Copy the sample into the file system using the TSO oput command, or use FTP. The rest of this
example assumes that you have copied the sample into a directory called /u/fred/sample, and
named it imqwrld.cpp.

2. Log into the z/OS UNIX shell, and change to the directory where you placed the sample.

6 You can link with any of the sidedecks listed in "Pre-link the object code to run your z/OS UNIX in any of the
three environments, “Building C++ programs on z/OS Batch, RRS Batch and CICS” on page 533

534 Developing Applications for IBM MQ

3. Set up the C++ compiler so that it can accept the DLL sidedeck and .cpp files as input:

/u/fred/sample:> export _CXX_EXTRA_ARGS=1
/u/fred/sample:> export _CXX_CXXSUFFIX="cpp"

4. Compile and link the sample program. The following command links the program with the batch
sidedecks; the RRS batch sidedecks can be used instead. The \ character is used to split the command
over more than one line. Do not enter this character; enter the command as a single line:

/u/fred/sample:> c++ -o imqwrld -I "//'thlqual.SCSQC370'" \
-I "//'thlqual.SCSQHPPS'" imqwrld.cpp \
"//'thlqual.SCSQDEFS(IMQS23DM)'" "//'thlqual.SCSQDEFS(IMQB23DM)'"

For more information on the TSO oput command, refer to the z/OS UNIX Command Reference.

You can also use the make utility to simplify building C++ programs. Here is a sample makefile to
build the HELLO WORLD C++ sample program. It separates the compiling and linking stages. Set up the
environment as in step “3” on page 535 before running make.

flags = -I "//'thlqual.SCSQC370'" -I "//'thlqual.SCSQHPPS'"
decks = "//'thlqual.SCSQDEFS(IMQS23DM)'" "//'thlqual.SCSQDEFS(IMQB23DM)'"

imqwrld: imqwrld.o
 c++ -o imqwrld imqwrld.o $(decks)

imqwrld.o: imqwrld.cpp
 c++ -c -o imqwrld $(flags) imqwrld.cpp

Refer to z/OS UNIX System Services Programming Tools for more information on using make.

Running

1. Log into the z/OS UNIX shell, and change to the directory where you built the sample.
2. Set up the STEPLIB environment variable to include the IBM MQ data sets:

/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQLOAD
/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQAUTH
/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQANLE

3. Run the sample:

/u/fred/sample:> ./imqwrld

Developing .NET applications
IBM MQ classes for .NET allow .NET applications to connect to IBM MQ as an IBM MQ MQI client or to
connect directly to an IBM MQ server.

Before you begin

From IBM MQ 9.4.0, in IBM MQ classes for .NET, the
methods WriteObject(), ReadObject(), CreateObjectMessage(), and the classes ObjectMessage and
XmsObjectMessageImpl used for serialization and deserialization of data are deprecated.

The IBM MQ .NET client library built using .NET Standard 2.0,
which was deprecated at IBM MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

Developing applications for IBM MQ 535

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa232280?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa232282?OpenDocument

About this task
IBM MQ classes for .NET is a set of classes that enable .NET applications to interact with IBM MQ. They
represent the various components of IBM MQ which your application uses, such as queue managers,
queues, channels and messages. For more information about these classes, see The IBM MQ .NET classes
and interfaces.

IBM MQ 9.4.0 provides an IBM MQ .NET client library built against .NET 6 as the target
framework. For more information, see “Installing IBM MQ classes for .NET” on page 537.

From IBM MQ 9.4.0, IBM MQ supports .NET 8 applications using IBM MQ
classes for .NET. For more information, see “Installing IBM MQ classes for .NET” on page 537.

If you have applications that use Microsoft .NET Framework and want to take advantage of the facilities
of IBM MQ, you must use IBM MQ classes for .NET Framework. For more information, see “Installing IBM
MQ classes for .NET Framework” on page 543.

For more information about the differences between IBM MQ classes for .NET Framework and IBM MQ
classes for .NET, see “Installing IBM MQ classes for .NET” on page 537.

IBM MQ .NET managed applications are able to automatically balance connections across clustered
queue managers. Both the IBM MQ classes for .NET and the IBM MQ classes for .NET Framework libraries
are supported. For more information, see About uniform clusters and Automatic application balancing.

The object-oriented IBM MQ .NET interface is different from the MQI interface in that it uses methods
of objects rather than using the MQI verbs. The procedural IBM MQ application programming interface is
built around verbs such as those in the following list:

 MQCONN, MQDISC, MQOPEN, MQCLOSE,
 MQINQ, MQSET, MQGET, MQPUT, MQSUB

These verbs all take, as a parameter, a handle to the IBM MQ object on which they are to operate.
Because .NET is object-oriented, the .NET programming interface turns this round. Your program consists
of a set of IBM MQ objects, which you act upon by calling methods on those objects. You can write
programs in any language supported by .NET.

When you use the procedural interface, you disconnect from a queue manager by using the call
MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to the queue manager. In the .NET
interface, the queue manager is represented by an object of class MQQueueManager. You disconnect from
the queue manager by calling the Disconnect() method on that class.

// declare an object of type queue manager
MQQueueManager queueManager=new MQQueueManager();
...
// do something...
...
// disconnect from the queue manager
queueManager.Disconnect();

Related concepts
Technical overview
“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.
Related tasks
Contacting IBM Support
Troubleshooting IBM MQ .NET problems
“Developing Microsoft Windows Communication Foundation applications with IBM MQ” on page 1218

536 Developing Applications for IBM MQ

The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.
“Developing XMS .NET applications” on page 594
IBM MQ Message Service Client (XMS) for .NET (XMS .NET) provides an application programming interface
(API) called XMS that has the same set of interfaces as the Java Message Service (JMS) API. IBM MQ
Message Service Client (XMS) for .NET contains a fully managed implementation of XMS, which can be
used by any .NET compliant language.

Installing IBM MQ classes for .NET
IBM MQ classes for .NET, including samples, are installed with IBM MQ on Windows and Linux

Prerequisites and installation

IBM MQ 9.4.0 provides an IBM MQ .NET client library built against .NET 6 as the target
framework. From IBM MQ 9.4.0, Microsoft .NET 6.0 is the minimum required version for running
applications using IBM MQ libraries that are built using .NET 6 as the target framework. The IBM MQ .NET
client library built using .NET 6 as the target framework is available under MQ_INSTALLATION_PATH/bin
on Windows and under MQ_INSTALLATION_PATH/lib64 on Linux.

From IBM MQ 9.4.0, IBM MQ supports .NET 8 applications using IBM
MQ classes for .NET. If you are using a .NET 6 application, you can run this application without
any recompilation being required by making a small edit in the runtimeconfig file to set the
targetframeworkversion to "net8.0".

From IBM MQ 9.4.0, in IBM MQ classes for .NET, the
methods WriteObject(), ReadObject(), CreateObjectMessage(), and the classes ObjectMessage and
XmsObjectMessageImpl used for serialization and deserialization of data are deprecated.

The IBM MQ .NET client library built using .NET Standard 2.0,
which was deprecated at IBM MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

The latest version of IBM MQ classes for .NET is installed by default as part of the standard IBM MQ
installation in the Java and .NET Messaging and Web Services feature.

For more information about prerequisites and installation on Windows:

• See Requirements for IBM MQ classes for .NET for the prerequisite software to run IBM MQ classes
for .NET.

• See Installing IBM MQ server on Windows or Installing an IBM MQ client on Windows systems for
installation instructions.

For more information about prerequisites and installation on Linux:

• See Requirements for IBM MQ classes for .NET for the prerequisite software to run IBM MQ classes
for .NET.

• For rpm installation instructions, see Installing an IBM MQ client on Linux systems.
• For Linux Ubuntu, using Debian packages, see Installing an IBM MQ client on Linux systems.

The IBM MQ classes for .NET Standard library, amqmdnetstd.dll, is available for downloading from
the NuGet repository. For more information, see “Downloading IBM MQ classes for .NET from the NuGet
repository” on page 542.

amqmdnetstd.dll library

From IBM MQ 9.4.0, the amqmdnetstd.dll library built using .NET 6 as the
target framework is available at the following locations:

Developing applications for IBM MQ 537

• On Windows: MQ_INSTALLATION_PATH\bin. The sample applications are installed in
MQ_INSTALLATION_PATH/samp/dotnet/samples/cs/core/base.

• On Linux: MQ_INSTALLATION_PATH\lib64. The .NET samples are in
MQ_INSTALLATION_PATH/samp/dotnet/samples/cs/core/base.

Attention: From IBM MQ 9.4.0, IBM MQ .NET client
libraries built using .NET Standard 2.0 as the target framework are removed. These libraries were
deprecated at IBM MQ 9.3.1.

The amqmdnet.dll library for .NET Framework is still supplied, but
this library is stabilized; that is, no new features will be introduced into it. For any of the latest
features you must migrate to the amqmdnetstd.dll library. However, you can continue to use the
amqmdnet.dll library on IBM MQ 9.1 or later Long Term Support or Continuous Delivery releases.

Here are two scenarios that you might encounter following the removal of the
netstandard2.0 libraries:

• If you are using a IBM MQ classes for .NET Framework application that is built using the
netstandard2.0 libraries such as amqmdnetstd.dll, you need to rebuild your application with
the Microsoft.NET Framework 4.7.2 libraries such as amqmdnet.dll, in order for your application to
run successfully. If you do not rebuild your application, you might get an System.IO.Unexceptionable
message:
Exception caught: System.IO.FileLoadException: Could not load file or assembly 'amqmdnetstd,
Version=9.3.5.0, Culture=neutral, PublicKeyToken=23d6cb914eeaac0e' or one of its dependencies.
The located assembly's manifest definition does not match the assembly reference. (Exception
from HRESULT: 0x80131040)
File name: 'amqmdnetstd, Version=9.3.5.0, Culture=neutral, PublicKeyToken=23d6cb914eeaac0e'
 at SimplePut.SimplePut.PutMessages()
 at SimplePut.SimplePut.Main(String[] args) in C:\SampleCode\Program.cs:line 132

• If you are using a .NET 6 application that is built using netstandard2.0 libraries, then you just need
to replace those libraries with the same .NET 6 libraries in the bin folder of the application runtime
directory. No rebuild is required.

Note: The replacement .NET 6 library should always be of the same or higher level than the replaced
netstandard2.0 library.

dspmqver command
You can use the dspmqver command to display version and build information for the .NET Core
component.

Feature comparison between IBM MQ classes for .NET Framework and IBM MQ
classes for .NET
The following table lists the features for IBM MQ classes for .NET Framework compared with the features
for IBM MQ classes for .NET

Table 76. Differences between IBM MQ classes for .NET Framework and IBM MQ classes for .NET .

Feature IBM MQ classes for .NET Framework IBM MQ classes for .NET

Class Names (APIs) All classes remain the same in each
network.

All classes remain the same in each
network.

538 Developing Applications for IBM MQ

Table 76. Differences between IBM MQ classes for .NET Framework and IBM MQ classes for .NET .
(continued)

Feature IBM MQ classes for .NET Framework IBM MQ classes for .NET

Operating System Windows Windows
Dockerized containers

Linux

macOS

app.config file
(Configuration file to
enable Trace in
redistributable client)

app.config file is used to enable
trace for the redistributable package
and stand-alone IBM MQ .NET client.

See Tracing an IBM MQ classes
for .NET Framework client using an
application configuration file for more
information on the variables you use
for trace, including MQTRACEPATH
and MQTRACELEVEL.

app.config is not supported. Use
environment variables.

Developing applications for IBM MQ 539

Table 76. Differences between IBM MQ classes for .NET Framework and IBM MQ classes for .NET .
(continued)

Feature IBM MQ classes for .NET Framework IBM MQ classes for .NET

Trace For a full client installation of IBM
MQ, you can use the strmqtrc
command to enable trace for IBM MQ
classes for .NET Framework.

For redistributable clients, the
app.config file is also used to
enable trace.

For more information, see Tracing
IBM MQ .NET applications.

From IBM MQ 9.4.0, you
can enable and disable trace by using
the mqclient.ini file and setting
the appropriate properties of the
Trace stanza. You can also enable
and disable tracing dynamically with
the mqclient.ini file. For more
information, see Tracing IBM MQ .NET
applications with mqclient.ini.

The environment variable
MQDOTNET_TRACE_ON is used to
enable trace for redistributable
clients. Values equal to and less than
0 do not enable trace. A value of
1 enables default level tracing. A
value greater than 1, enables detailed
tracing. Setting this environment
variable to any other value like string
does not enable trace. See Tracing
IBM MQ .NET applications using
environment variables.

The MQDOTNET_TRACE_ON
environment variable checks whether
the IBM MQ trace directory is
available or not. If the trace directory
is available, the trace file is generated
in the trace directory. However, if
IBM MQ is not installed, the trace
file is copied to the current working
directory.

Other environment variables including
MQERRORPATH, MQLOGLEVEL,
MQSERVER, and so on, that are
used for IBM MQ classes for .NET
Framework, can be used and work in
the same way.

From IBM MQ 9.4.0, you
can enable and disable trace by using
the mqclient.ini file and setting
the appropriate properties of the
Trace stanza. You can also enable
and disable tracing dynamically with
the mqclient.ini file. For more
information, see Tracing IBM MQ .NET
applications with mqclient.ini.

Transport Modes Managed, Unmanaged, and Bindings Managed

540 Developing Applications for IBM MQ

Table 76. Differences between IBM MQ classes for .NET Framework and IBM MQ classes for .NET .
(continued)

Feature IBM MQ classes for .NET Framework IBM MQ classes for .NET

TLS The Windows keystore is used for
storing the certificates. On Windows, the

keystore must be used for storing
the certificates. Permitted values are
*USER or *SYSTEM. Based on the
input, the IBM MQ .NET client looks at
the Windows key store of the current
user, or System wide.

On Linux, it is
recommended to use the
X509Store class to install
certificates and .NET Core installs
certificates to the following
location: ".dotnet/corefx/
cryptography/x509stores".

CCDT Supported Supported, and the settings of the
CCDT path are the same as for .NET
Framework classes.

Client auto reconnect Supported Supported

Distributed transactions Supported Not supported

Installation of dynamic
linked libraries (dll's)
into the global assembly
cache (GAC)

Dll's are installed into the GAC as part
of the IBM MQ installation.

Dll's are not installed into the GAC as
part of the IBM MQ installation.

Note: Windows security identifiers (SIDs):

Domain level authentication is not supported for IBM MQ classes for .NET (.NET Standard and .NET 6
libraries). The logged-in user ID is used for authentication.

Developing IBM MQ .NET Core applications on macOS

IBM MQ .NET Core applications can be developed on macOS.

The IBM MQ .NET libraries are not packaged with the macOS toolkit so you must copy them from a
Windows or Linux IBM MQ client on to macOS. You can then use these libraries to develop IBM MQ .NET
Core applications on macOS.

Once developed, these applications can be run supported on either Windows or Linux environments.

Related concepts
“Installing IBM MQ classes for .NET Framework” on page 543
IBM MQ classes for .NET Framework, including samples, are installed with IBM MQ. There is a
prerequisite of Microsoft.NET Framework on Windows.
“Installing IBM MQ classes for XMS .NET” on page 599

Developing applications for IBM MQ 541

IBM MQ classes for XMS .NET, including samples, are installed with IBM MQ on Windows and Linux.

Downloading IBM MQ classes for .NET from the NuGet
repository
The IBM MQ classes for .NET are available for downloading from the NuGet repository, so that they can be
easily consumed by .NET Developers.

About this task
NuGet is the package manager for Microsoft development platforms including .NET. The NuGet client
tools provide the ability to produce and consume packages. A NuGet package is a single compressed file
with the .nupkg extension that contains compiled code (DLLs), other files related to that code, and a
descriptive manifest that includes information like the package's version number.

You can download the IBMMQDotnetClient NuGet package, which contains the amqmdnetstd.dll
library, from the NuGet Gallery, which is is the central package repository used by all package authors and
consumers.

Note: From IBM MQ 9.4.0, the NuGet package contains libraries built
using .NET 6 as the target framework.

The IBM MQ .NET client library built using .NET Standard 2.0, which was deprecated at IBM
MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

From IBM MQ 9.4.0, IBM MQ supports .NET 8 applications using IBM
MQ classes for .NET. If you are using a .NET 6 application, you can run this application without
any recompilation being required by making a small edit in the runtimeconfig file to set the
targetframeworkversion to "net8.0".

There are three ways of downloading the IBMMQDotnetClient package:

• By using Microsoft Visual Studio. NuGet is distributed as a Microsoft Visual Studio extension. From
Microsoft Visual Studio 2012, NuGet is pre-installed by default.

• From the command line using either the NuGet Package Manager or the .NET CLI.
• By using a web browser.

As for the redistributable package, you enable trace by using the environment variable
MQDOTNET_TRACE_ON.

Procedure
• To download the IBMMQDotnetClient package by using the Package Manager UI in Microsoft Visual

Studio, complete the following steps:
a) Right-click the .NET project and then click Manage Nuget Packages.
b) Click the Browse tab and search for "IBMMQDotnetClient".
c) Select the package and click Install.

During installation, the Package Manager provides progress information in the form of console
statements.

• To download the IBMMQDotnetClient package from the command line, choose one of the following
options:

• Using the NuGet Package Manager, enter the following command:

 Install-Package IBMMQDotnetClient -Version 9.1.4.0

During installation, the Package Manager provides progress information in the form of console
statements. You can redirect the output to a log file.

542 Developing Applications for IBM MQ

• Using the .NET CLI, enter the following command:

dotnet add package IBMMQDotnetClient --version 9.1.4

• Using a web browser, download the IBMMQDotnetClient package from https://www.nuget.org/
packages/IBMMQDotnetClient.

Related concepts
IBM MQ Client for .NET license information
Related tasks
“Downloading IBM MQ classes for XMS .NET from the NuGet repository” on page 602
The IBM MQ classes for XMS .NET are available for downloading from the NuGet repository, so that they
can be easily consumed by .NET Developers.

Installing IBM MQ classes for .NET Framework
IBM MQ classes for .NET Framework, including samples, are installed with IBM MQ. There is a
prerequisite of Microsoft.NET Framework on Windows.

The latest version of IBM MQ classes for .NET Framework is installed by default as part of the
standard IBM MQ installation in the Java and .NET Messaging and Web Services feature. For installation
instructions, see Installing IBM MQ server on Windows or Installing an IBM MQ client on Windows
systems.

From IBM MQ 9.3.0, to run IBM MQ classes for .NET Framework you must install Microsoft.NET
Framework V4.7.2 or later.

Existing applications that are compiled with Microsoft.NET Framework V3.5 can be run without
recompiling by adding the following tag in the app.config file of the application:

<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.7.2"/>
 </startup>
</configuration>

Note: If the Microsoft .NET Framework V4.7.2 or higher is not installed before you install IBM MQ,
then the IBM MQ product installation continues without error, but the IBM MQ classes for .NET is not
available. If the.NET Framework is installed after you install IBM MQ, then the IBM MQ.NET assemblies
must be registered by running the WMQInstallDir\bin\amqiRegisterdotNet.cmd script, where
WMQInstallDir is the directory where IBM MQ is installed. This script installs the required assemblies
in the Global Assembly Cache (GAC). A set of amqi*.log files that record the actions that are taken
are created in the %TEMP% directory. It is not necessary to rerun the amqiRegisterdotNet.cmd script
if .NET is upgraded to V4.7.2 or higher from an earlier version, for example, from .NET V3.5.

In a multiple installation environment, if you previously installed the IBM MQ classes for .NET as a
support pack, you cannot install IBM MQ unless you first uninstall the support pack. The IBM MQ classes
for .NET feature that is installed with IBM MQ contains the same functions as the support pack.

Sample applications, including source files, are also supplied; see “Sample applications for .NET” on page
544.

For information about using the IBM MQ custom channel for the Microsoft WCF with .NET, see
“Developing Microsoft Windows Communication Foundation applications with IBM MQ” on page 1218

Related concepts
“Installing IBM MQ classes for .NET” on page 537
IBM MQ classes for .NET, including samples, are installed with IBM MQ on Windows and Linux
Related tasks
Tracing IBM MQ .NET applications

Developing applications for IBM MQ 543

https://www.nuget.org/packages/IBMMQDotnetClient
https://www.nuget.org/packages/IBMMQDotnetClient

Options for connecting IBM MQ classes for .NET to a queue manager
There are three modes of connecting IBM MQ classes for .NET to a queue manager. Consider which type
of connection best suits your requirements.

Client bindings connection
To use IBM MQ classes for .NET as an IBM MQ MQI client, you can install it, with the IBM MQ MQI client,
either on the IBM MQ server machine, or on a separate machine. A client bindings connection can use XA
or non-XA transactions

Server bindings connection
When used in server bindings mode, IBM MQ classes for .NET use the queue manager API, rather than
communicating through a network. This provides better performance for IBM MQ applications than using
network connections.

To use the bindings connection, you must install IBM MQ classes for .NET on the IBM MQ server.

Managed client connection
A connection made in this mode connects as an IBM MQ client to an IBM MQ server running either on the
local or a remote machine.

The IBM MQ classes for .NET connecting in this mode remain in .NET managed code and make no calls to
native services. For more information about managed code, refer to Microsoft documentation.

There are a number of limitations to using the managed client. For more information about these, see
“Managed client connections” on page 559.

Sample applications for .NET
To run your own .NET applications, use the instructions for the verification programs, substituting your
application name in place of the sample applications.

The following sample applications are supplied:

• A put message application
• A get message application
• A 'hello world' application
• A publish/subscribe application
• An application using message properties

All these sample applications are supplied in the C# language, and some are also supplied in C++ and
Visual Basic. You can write applications in any language supported by .NET.

"Put message" program SPUT (nmqsput.cs, mmqsput.cpp, vmqsput.vb)
This program shows how to put a message to a named queue. The program has three parameters:

• The name of a queue (required), for example, SYSTEM.DEFAULT.LOCAL.QUEUE
• The name of a queue manager (optional)
• The definition of a channel (optional), for example, SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If no queue manager name is given, the queue manager defaults to the default local queue manager.
If a channel is defined, it has the same format as the MQSERVER environment variable.

"Get message" program SGET (nmqsget.cs, mmqsget.cpp, vmqsget.vb)
This program shows how to get a message from a named queue. The program has three parameters:

• The name of a queue (required), for example, SYSTEM.DEFAULT.LOCAL.QUEUE
• The name of a queue manager (optional)

544 Developing Applications for IBM MQ

• The definition of a channel (optional), for example, SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If no queue manager name is given, the queue manager defaults to the default local queue manager.
If a channel is defined, it has the same format as the MQSERVER environment variable.

"Hello World" program (nmqwrld.cs, mmqwrld.cpp, vmqwrld.vb)
This program shows how to put and get a message. The program has three parameters:

• The name of a queue (optional), for example, SYSTEM.DEFAULT.LOCAL.QUEUE or
SYSTEM.DEFAULT.MODEL.QUEUE

• The name of a queue manager (optional)
• A channel definition (optional), for example, SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If no queue name is given, the name defaults to SYSTEM.DEFAULT.LOCAL.QUEUE. If no queue
manager name is given, the queue manager defaults to the default local queue manager.

"Publish/subscribe" program (MQPubSubSample.cs)
This program shows how to use IBM MQ publish/subscribe. It is supplied in C# only. The program has
two parameters:

• The name of a queue manager (optional)
• A channel definition (optional)

"Message properties" program (MQMessagePropertiesSample.cs)
This program shows how to use message properties. It is supplied in C# only. The program has two
parameters:

• The name of a queue manager (optional)
• A channel definition (optional)

You can verify your installation by compiling and running these applications.

Installation locations
The sample applications are installed to the following locations, according to the language in which they
are written. MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
C#

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\nmqswrld.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\nmqsput.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\nmqsget.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\MQPubSubSample.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\MQMessagePropertiesSample.cs

Managed C++

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\mmqswrld.cpp

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\mmqsput.cpp

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\mmqsget.cpp

Visual Basic

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\vmqswrld.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\vmqsput.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\vmqsget.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\xmqswrld.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\xmqsput.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\xmqsget.vb

Developing applications for IBM MQ 545

Building the sample applications
To build the sample applications, a batch file is supplied for each language.

C#

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\bldcssamp.bat

The bldcssamp.bat file contains a line for each sample, which is all that is necessary to build this
sample program:

csc /t:exe /r:System.dll /r:amqmdnet.dll /lib: MQ_INSTALLATION_PATH\bin
/out:nmqwrld.exe nmqwrld.cs

Managed C++

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\bldmcpsamp.bat

The bldmcpsamp.bat file contains a line for each sample, which is all that is necessary to build this
sample program:

cl /clr:oldsyntax MQ_INSTALLATION_PATH\bin mmqwrld.cpp

If you want to compile these applications on Microsoft Visual Studio 2003/.NET SDKv1.1, replace the
compile command:

cl /clr:oldsyntax MQ_INSTALLATION_PATH\bin mmqwrld.cpp

with

cl /clr MQ_INSTALLATION_PATH\bin mmqwrld.cpp

Visual Basic

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\bldvbsamp.bat

The bldvbsamp.bat file contains a line for each sample, which is all that is necessary to build this
sample program:

vbc /r:System.dll /r: MQ_INSTALLATION_PATH\bin\amqmdnet.dll /out:vmqwrld.exe vmqwrld.vb

Samples for using IBM MQ with Microsoft .NET Core
IBM MQ supports .NET Core for IBM MQ .NET applications in Windows environments. IBM MQ classes
for .NET Standard, including samples, are installed by default as part of the standard IBM MQ installation.

The sample applications for IBM MQ .NET are installed in &MQINSTALL_PATH&/samp/dotnet/
samples/cs/core/base. A script is also provided, which can be used to compile the samples.

You can build the samples by using the supplied build.bat files. There is one build.bat for each
sample in the following location on Windows:

• MQ\tools\dotnet\samples\cs\core\base\SimpleGet
• MQ\tools\dotnet\samples\cs\core\base\SimplePut

IBM MQ also supports Core for applications in Linux environments.

For more infromation about using IBM MQ with Microsoft .NET Core, see “Installing IBM MQ classes
for .NET” on page 537.

546 Developing Applications for IBM MQ

Configuring your queue manager to accept TCP/IP client connections
Configure a queue manager to accept incoming connection requests from the clients.

About this task
This task explains the basic steps for configuring a queue manager to accept TCP/IP client connections.
For a production system, you must also consider the security implications when configuring queue
managers.

Procedure
1. Define a server connection channel:

a. Start the queue manager.
b. Define a sample channel called NET.CHANNEL:

DEF CHL('NET.CHANNEL') CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ') +
DESCR('Sample channel for IBM MQ classes for .NET')

Important: This sample is intended for use in a sandbox environment only, as it does not include
any consideration of security implications. For a production system, consider using TLS or a security
exit. See Securing IBM MQ for more information.

2. Start a listener:

runmqlsr -t tcp [-m qmnqme] [-p portnum]

Note: The square brackets indicate optional parameters; qmname is not required for the default queue
manager, and the port number portnum is not required if you are using the default (1414).

Distributed transactions in .NET
Distributed transactions or global transactions allows client applications to include several different
sources of data on two or more networked systems in one transaction.

In distributed transactions, a transaction manager coordinates and manages the transaction among two
or more resource managers.

Transactions can be either single phase or two-phase commit process. The single-phase commit is
a process where only one resource manager participates in the transaction and two-phase commit
process is where there are more than one resource manager participating in the transaction. In the
two-phase commit process, the transaction manager sends a prepare call to check whether all the
resource managers are prepared to commit. When it receives the acknowledgment from all the resource
managers, the commit call is issued. Else, a rollback on the whole transaction happens. See Transaction
management and support for more details. The resource managers should inform the transaction
managers of their participation in the transaction. When the resource manager informs the transaction
manager of its participation, the resource manager gets callbacks from the transaction manager when the
transaction is going to commit or roll back.

IBM MQ .NET classes already supports distributed transactions in unmanaged and server bindings mode
connections. In these modes, IBM MQ .NET classes delegates all its calls to C extended transaction client,
which manages the transaction processing on behalf of .NET.

IBM MQ.NET classes now support distributed transactions in managed mode where IBM MQ .NET Classes
uses System.Transactions namespace for the distributed transactions support. The System.Transactions
infrastructure makes transactional programming simple and efficient by supporting the transactions
initiated in all the resource managers including IBM MQ. The IBM MQ .NET application can put and
get messages using .NET implicit transaction programming or explicit transaction programming model.
In implicit transactions, the transaction boundaries are created by the application program that decides

Developing applications for IBM MQ 547

when to commit, rollback (for explicit transactions) or complete the transaction. In explicit transactions,
you have to explicitly specify whether you want to commit, roll back, and complete the transaction.

IBM MQ.NET uses Microsoft distributed transaction coordinator (MS DTC) as the transaction manager,
which coordinates and manages the transaction between multiple resource managers. IBM MQ is used as
the resource manager. Note that you cannot use TLS with XA transactions. You must use CCDT. For more
information, see Using the extended transactional client with TLS channels.

IBM MQ.NET follows the X/Open Distributed Transaction Processing (DTP) model. The X/Open Distributed
Transaction Processing model is a distributed transaction processing model proposed by the Open Group,
a vendor consortium. This model is a standard among most of the commercial vendors in the transaction
processing and database domains. Most of the commercial transaction management products support
the X/DTP model.

Modes of transaction
• “Distributed transactions in .NET managed mode” on page 549
• Distributed transactions for unmanaged mode

Coordinating transactions in various scenarios
• A connection might participate in several transactions, but only one transaction is active at any point of

time.
• During a transaction, the MQQueueManager.Disconnect call is honored. In this case the transaction is

asked to roll back.
• During a transaction, the MQQueue.Close or MQTopic.Close call is honored. In this case transaction is

asked to roll back.
• The transaction boundaries are created by the application program that decides when to commit,

rollback (for explicit transactions) or complete (for implicit transactions) the transaction.
• If the client application breaks during a transaction with an unexpected error before issuing a Put or Get

call on a queue or topic call, the transaction is rolled back and a MQException is thrown.
• If MQCC_FAILED reason code is returned during a Put or Get call on a queue or Topic call, an

MQException is thrown with reason code and the transaction is rolled. If a prepare call has been already
issued by the transaction manager, then IBM MQ .NET returns the prepare request by forcibly rolling
back the transaction. Then the transaction manager DTC causes a rollback on current work with all the
resource managers in current ambient transactions.

• During a transaction involving multiple resource managers if some environmental reason causes the
Put or Get call to hang indefinitely, the transaction manager waits until a stipulated time. After the
time is out, it causes the rollback of all current work with all the resource managers in current ambient
transactions. If this indefinite wait happens during the prepare phase, the transaction manager might
timeout or issue an in-doubt call on the resource in which case the transaction is rolled back.

• Applications using transactions must Put or Get messages under SYNC_POINT. If a message Put or
Get call is issued under a transactional context that is not under SYNC_POINT, the call fails with
MQRC_UNIT_OF_WORK_NOT_STARTED reason code.

Behavioral differences between Managed and Unmanaged Client transaction
support using Microsoft.NET System.Transactions namespace
Nested Transactions have a TransactionScope inside another TransactionScope

• IBM MQ .NET fully managed client does support nested TransactionScope
• IBM MQ .NET unmanaged client does not support nested TransactionScope

Dependent Transactions from System.Transactions

• IBM MQ .NET fully managed client does support the dependent transactions facility provided by
System.Transactions.

548 Developing Applications for IBM MQ

• IBM MQ .NET unmanaged client does not support the dependent transactions facility provided by
System.Transactions.

Product samples
Product samples SimpleXAPut, and SimpleXAGet are available under WebSphere
MQ\tools\dotnet\samples\cs\base. The samples are C# applications, which demonstrate using
MQPUT and MQGET under Distributed Transactions using SystemTransactions namespace. For more
information about these samples, see “Creating simple put and get messages within a TransactionScope”
on page 552.

Distributed transactions in .NET managed mode
IBM MQ .NET classes use System.Transactions namespace for the distributed transactions support in
managed mode. In the managed mode, MS DTC coordinates and manages distributed transactions across
all the servers enlisted in a transaction.

IBM MQ .NET classes provide an explicit programming model based on the
System.Transactions.Transaction class and an implicit programming model using the
System.Transactions.TransactionScope, class where the transactions are automatically managed by the
infrastructure.

Implicit Transaction
The following piece of code describes how an IBM MQ .NET application puts a message using .NET
implicit transaction programming.

Using (TransactionScope scope = new TransactionScope ())
{
 Q.Put (putMsg,pmo);
 scope.Complete ();
}

Q.close();
qMgr.Disconect();}

Explanation of the code flow of implicit transaction
The code creates TransactionScope and puts the message under the scope. It then calls Complete to
inform the transaction coordinator of the completion of the transaction. The transaction coordinator
now issues prepare and commit to complete the transaction. If an issue is detected, then a rollback is
called.

Explicit Transaction
The following code describes how an IBM MQ .NET application puts messages using .NET explicit
transaction programming model.

MQQueueManager qMgr = new MQQueuemanager ("MQQM);
MQQueue Q = QMGR.AccessQueue("Q", MQC.MQOO_OUTPUT+MQC.MQOO_INPUT_SHARED);
MQPutMessageOptions pmo = new MQPutMessageOptions();
pmo.Options = MQC.MQPMO_SYNCPOINT;
MQMessage putMsg1 = new MQMessage();
Using(CommittableTransaction tx = new CommittableTransaction()){
Transaction.Current = tx;
 try
 {
 Q.Put(MSG,pmo);
 tx.commit();
 }
 catch(Exception)
 {tx.rollback();}
 }

Q.close();
qMgr.Disconnect();
}

Developing applications for IBM MQ 549

Explanation of the code flow of explicit transaction
The piece of code creates transaction using CommitableTransaction class. It puts a message under
that scope and then explicitly calls commit to complete the transaction. If there are any issues
rollback is called.

Distributed transactions in .NET unmanaged mode
IBM MQ.NET classes support unmanaged connections (client) using extended transaction client and
COM+/MTS as the transaction coordinator, using either implicit or explicit transaction programming
model. In the unmanaged mode, IBM MQ .NET classes delegate all its calls to C extended transaction
client that manages the transaction processing on behalf of .NET.

The transaction processing is controlled by an external transaction manager, coordinating the global unit
of work under the control of the API of the transaction manager. The MQBEGIN, MQCMIT, and MQBACK
verbs are unavailable. IBM MQ .NET classes expose this support by way of its unmanaged transport mode
(C client). See Configuring XA-compliant transaction managers

MTS is evolved as a transaction processing (TP) system to provide the same features on Windows NT as
available in CICS, Tuxedo, and on other platforms. When the MTS is installed, a separate service is added
to Windows NT called the Microsoft Distributed Transaction Coordinator (MSDTC). The MSDTC coordinates
the transactions that span separate data stores or resources. To work, it requires each data store to
implement its own proprietary resource manager.

IBM MQ becomes compatible with MSDTC by implementing an interface (proprietary resource manager
interface) where it manages to map DTC XA calls to IBM MQ(X/Open) calls. IBM MQ plays the role of a
resource manager.

When a component such as COM+ requests access to an IBM MQ, the COM usually checks with the
appropriate MTS context object if a transaction is required. If a transaction is required, the COM informs
the DTC and automatically starts an integral IBM MQ transaction for this operation. Then the COM works
with the data through the MQMTS software, putting and getting messages as required. The object instance
obtained from the COM calls the SetComplete or SetAbort method after all the actions on the data
are over. When the application issues SetComplete, the call signals the DTC that the application has
completed the transaction and the DTC can go ahead with the two-phase commit process. The DTC then
issues calls to MQMTS which in turn issues calls to IBM MQ to commit or roll back the transaction.

Writing an IBM MQ .NET application using unmanaged client
To run within the context of COM+, a .NET class must inherit from
System .EnterpriseServices.ServicedComponent. The rules and recommendations to create assemblies
that use serviced components are the following:

Note: The following steps are relevant only if you are using System.EnterpriseServices mode.

• The class and method being started in COM+ must both be public (no internal classes, and no protected
or static methods).

• The class and method attributes: The TransactionOption attribute dictates the transaction level of the
class, that is whether the transactions are disabled, supported, or required. The AutoComplete attribute
on the ExecuteUOW() method instructs COM+ to commit the transaction if no unhandled exception is
thrown.

• Strong-naming an assembly: The assembly must be strong-named and registered in the Global
Assembly Cache (GAC). The assembly is registered in COM+ explicitly or by lazy registration after it
is registered in the GAC.

• Registering an assembly in COM+: Prepare the assembly to be exposed to COM clients. Then create a
type library by using the Assembly Registration tool, regasm.exe.

regasm UnmanagedToManagedXa.dll

• Register the assembly into GAC gacutil /i UnmanagedToManagedXa.dll.

550 Developing Applications for IBM MQ

• Register the assembly in COM+ by using the .NET services installer tool, regsvcs.exe. See the type
library created by regasm.exe:

Regsvcs /appname:UnmanagedToManagedXa /tlb:UnmanagedToManagedXa.tlb UnmanagedToManagedXa.dll

• The assembly is deployed into the GAC, and later it is registered in COM+ by lazy registration. The .NET
framework takes care of the registration after the code is run for the first time.

The example code flow using System.EnterpriseServices model and System.Transactions with COM+ are
described in the following sections:

Example code flow using System.EnterpriseServices model

using System;
using IBM.WMQ;
using IBM.WMQ.Nmqi;
using System.Transactions;
using System.EnterpriseServices;

namespace UnmanagedToManagedXa
{

[ComVisible(true)]
[System.EnterpriseServices.Transaction(System.EnterpriseServices.TransactionOption.Required)]
 public class MyXa : System.EnterpriseServices.ServicedComponent
 {

 public MQQueueManager QMGR = null;
 public MQQueueManager QMGR1 = null;
 public MQQueue QUEUE = null;
 public MQQueue QUEUE1 = null;
 public MQPutMessageOptions pmo = null;
 public MQMessage MSG = null;

 public MyXa()
 {
 }

 [System.EnterpriseServices.AutoComplete()]
 public void ExecuteUOW()
 {
 QMGR = new MQQueueManager("usemq");

 QUEUE = QMGR.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",
 MQC.MQOO_INPUT_SHARED +
 MQC.MQOO_OUTPUT +
 MQC.MQOO_BROWSE);

 pmo = new MQPutMessageOptions();
 pmo.Options = MQC.MQPMO_SYNCPOINT;
 MSG = new MQMessage();
 QUEUE.Put(MSG, pmo);
 QMGR.Disconnect();
 }
 }
}

public void RunNow()
{
 MyXa xa = new MyXa();
 xa.ExecuteUOW();
}

Example code flow using System.Transactions for interactions with COM+

[STAThread]
public void ExecuteUOW()
{
Hashtable t1 = new Hashtable();
t1.Add(MQC.CHANNEL_PROPERTY, "SYSTEM.DEF.SVRCONN");
t1.Add(MQC.HOST_NAME_PROPERTY, "localhost");
t1.Add(MQC.PORT_PROPERTY, 1414);
t1.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_CLIENT);
TransactionOptions opts = new TransactionOptions();

using(TransactionScope scope = new TransactionScope(TransactionScopeOption.RequiresNew,
 opts, EnterpriseServicesInteropOption.Full)
 {

 QMGR = new MQQueueManager("usemq", t1);
 QUEUE = QMGR.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

Developing applications for IBM MQ 551

 MQC.MQOO_INPUT_SHARED +
 MQC.MQOO_OUTPUT +
 MQC.MQOO_BROWSE);

 pmo = new MQPutMessageOptions();
 pmo.Options = MQC.MQPMO_SYNCPOINT;
 MSG = new MQMessage();
 QUEUE.Put(MSG, pmo);
 scope.Complete();
 }
 QMGR.Disconnect();
}

Creating simple put and get messages within a TransactionScope
Product sample C# applications are available within IBM MQ. These simple applications demonstrate
putting and getting messages within a TransactionScope. At the end of the task, you will be able to put
and get messages from a queue or topic.

Before you begin
MSDTC service must be running and enabled for XA Transactions.

About this task
The example is a simple application, SimpleXAPut and SimpleXAGet. The programs SimpleXAPut and
SimpleXAGet are C# applications available within IBM MQ. SimpleXAPut demonstrates using MQPUT,
under Distributed Transactions using SystemTransactions namespace. SimpleXAGet demonstrates using
MQGET, under Distributed Transactions using SystemTransactions namespace.

SimpleXAPut is located in MQ\tools\dotnet\samples\cs\base

Procedure
The applications can be run with the command-line parameters from
tools\dotnet\samples\cs\base\bin

SimpleXAPut.exe -d destinationURI [-h host -p port -l channel -tx transaction -tm mode -n
numberOfMsgs]

SimpleXAGet.exe -d destinationURI [-h host -p port -l channel -tx transaction -tm mode -n
numberOfMsgs]

where the parameters are:

-destinationURI

This can be queue or topic. For a queue, specify as queue://queueName and for a topic specify as
topic://topicName.

-host

This can be a host name such as localhost or an IP address.

-port

The port on which the queue manager is running.

-channel

The connection channel being used. The default is SYSTEM.DEF.SVRCONN

-transaction

The transaction result, for example commit or rollback.

552 Developing Applications for IBM MQ

-mode

The transport mode, for example managed or unmanaged.

-numberOfMsgs

The number of messages. The default is 1.

Example

SimpleXAPut -d topic://T01 -h localhost -p 2345 -tx rollback -tm unmanaged

SimpleXAGet -d queue://Q01 -h localhost -p 2345 -tx rollback -tm unmanaged

Recovering transactions in IBM MQ .NET
This section describes the process of recovering transactions in IBM MQ .NET XA using managed mode.

About this task
In distributed transaction processing, the transactions can be successfully completed, but there can be
scenarios where a transaction might fail for many reasons. These reasons might include a system failure,
hardware failure, network error, incorrect or invalid data, application errors or natural or man-made
disasters. It is not possible to prevent transaction failures. The distributed transaction system must be
capable of handling these failures. It must be able to detect and correct errors when they occur. This
process is known as Transaction Recovery.

An important aspect of the Distributed Transaction Processing is to recover the incomplete or in doubt
transactions. It is essential to run the recovery as the Unit of Work part of a particular transaction is
held locked until it is recovered. Microsoft.NET from its System.Transactions class library provides the
option for recovering incomplete/in-doubt transactions. This recovery support expects Resource Manager
to maintain the transaction logs and run the recovery when in need.

In the Microsoft .NET transaction recovery model, the Transaction Manager (System.Transactions, or
Microsoft Distributed Transaction coordinator (MS DTC), or both), initiates, coordinates, and controls the
transaction recovery. The OLE Tx Protocol (the Microsoft XA protocol) based Resource Managers provide
the options to configure the DTC to drive, coordinate, and control the recovery for them. To do this,
Resource Managers must register XA_Switch with MS DTC by using native interface.

XA_Switch provides the entry points of XA functions like xa_start, xa_end, and xa_recover in the Resource
Manager to the Distributed Transaction Coordinator.

Recovery using Microsoft Distributed Transaction coordinator (DTC):

Microsoft Distributed Transaction coordinator provides two kinds of recovery processes.

Cold Recovery

Cold recovery is performed if the transaction manager process fails while a connection to a XA
resource manager is open. When the transaction manager restarts, it reads the transaction manager
logs and re-establishes the connection to the XA resource manager and then initiates recovery.

Hot Recovery

Hot recovery is performed if the transaction manager remains up while the connection between the
transaction manager and the XA resource manager fails because the XA resource manager or the
network fails. After the failure, the transaction manager periodically attempts to reconnect to the
XA resource manager. When the connection is re-established, the transaction manager initiates XA
recovery.

System.Transactions namespace provides managed implementation of Distributed transactions that
are based on MS DTC as the transaction manager. It provides similar features as that of MS DTC's

Developing applications for IBM MQ 553

native interface but in fully managed environment. The only difference is about the transaction
recovery. System.Transactions expects Resource Managers to drive the recovery by themselves and
then coordinate with the Transaction Managers (MS DTC). Resource Manager must ask for recovery of
a particular incomplete transaction and then Transaction Manager accepts it and coordinates based
on the actual outcome of that particular transaction.

Transaction recovery process for IBM MQ .NET
This section describes how distributed transactions can be recovered with IBM MQ .NET classes.

Overview
To recover an incomplete transaction, the recovery information is required. The transaction
recovery information must be logged to storage by the resource managers. IBM MQ .NET classes
follow a similar path. The transaction recovery information is logged to a system queue called
SYSTEM.DOTNET.XARECOVERY.QUEUE.

Transaction recovery in IBM MQ .NET is a two stage process:

1. Logging of transaction recovery information in SYSTEM.DOTNET.XARECOVERY.QUEUE.
2. Recovering transactions by using the XA Monitor application WmqDotnetXAMonitor.

SYSTEM.DOTNET.XARECOVERY.QUEUE
SYSTEM.DOTNET.XARECOVERY.QUEUE is a system queue that holds transaction recovery information for
incomplete transactions. This queue is created when a queue manager is created.

For every transaction, during the prepare phase a persistent message containing the recovery information
is added to SYSTEM.DOTNET.XARECOVERY.QUEUE. The message is deleted if the commit call succeeds.

Note: You must not delete the SYSTEM.DOTNET.XARECOVERY.QUEUE queue.

WMQDotnetXAMonitor application
IBM MQ .NET XA Monitor application, WmqDotnetXAMonitor, is a .NET managed application that
monitors a queue manager, processes messages in SYSTEM.DOTNET.XARECOVERY.QUEUE and recovers
incomplete transactions

If the message channel agent (MCA) is unable to put the message to the destination queue, it generates
an exception report containing the original message, and puts it on a transmission queue to be sent to the
reply-to queue specified in the original message. (If the reply-to queue is on the same queue manager as
the MCA, the message is put directly to that queue, not to a transmission queue.)

The following are deemed to be incomplete transactions and are recovered:

• If the transaction is prepared but COMMIT did not complete within the timeout period.
• If the transaction is prepared but IBM MQ queue manager has gone down.
• If the transaction is prepared but then Transaction Manager has gone down.

The XA Monitor application must be run from the same system where your IBM MQ .NET client
application is running. If there are applications that are running on multiple systems and connecting to
the same queue manager, WmqDotnetXAMonitor application must be run from all the systems. Though
each client machine has an instance of the XA Monitor application running to recover the application,
each XA Monitor instance should be able to identify the message that corresponds to transaction that
the current XA Monitor's local MS DTC was coordinating so that it can reenlist and complete it.

Related concepts
“Transaction recovery use cases for IBM MQ .NET” on page 555
There are several different use cases from which transactions might need to be recovered.
Related tasks
“Using the WMQDotnetXAMonitor application” on page 556

554 Developing Applications for IBM MQ

The IBM MQ .NET client provides an XA Monitor application, WmqDotnetXAMonitor, that you can use
to recover any incomplete distributed transactions. The WmqDotnetXAMonitor application establishes a
connection to the queue manager where the transactions are in-doubt and then resolves the transaction
based on the parameters that you set.

Transaction recovery use cases for IBM MQ .NET
There are several different use cases from which transactions might need to be recovered.

• IBM MQ Application using single DTC and single queue manager instance: In this use case, when you
connect to the queue manager and run Unit of Work (UoW) under transaction, and if the transaction fails
and becomes incomplete, the XA Monitor application recovers the transaction and completes it.

In this use case, there will be a single instance of the XA Monitor application running, as a single queue
manager is associated with the transactions.

• Multiple IBM MQ applications using single DTC and single queue manager instance: In this use case,
there are more than one IBM MQ application under single DTC and all are connecting to the same queue
manager and running UoW under transactions.

If the transactions fail and become incomplete, the XA Monitor application recovers them and
completes the transactions pertaining to all the applications.

In this use case, a single instance of the XA Monitor application runs, as one queue manager is used in
transactions.

• Multiple IBM MQ Applications, multiple DTCs, different queue manager instances: In this use case,
there are more than one IBM MQ application under different DTCs (that is, each application is running
on a different machine) and connecting to different queue managers.

If failure occurs and transaction becomes incomplete, monitor application checks the
TransactionManagerWhereabouts in the message to determine the DTC address. If the
TransactionManagerWhereabouts value matches with the DTC address under which the monitor is
running, it completes the recovery, else, it continues to search until the message corresponding to its
DTC is found.

In this use case, there will be only one instance of the XA Monitor application running per client (user or
computer) as each client has its own queue manager used in transactions.

• Multiple IBM MQ applications, multiple DTCs, multiple same queue manager instances: In this use
case, there are more than one IBM MQ application under different DTCs (that is each application is
running on a different machine) and all are connecting to same queue manager.

If failure occurs and transaction becomes incomplete, monitor application verifies the
TransactionManagerWhereabouts in the message to check if the DTC address and value match with
the DTC under which the monitor is running. If both the values match, it completes the recovery else
continues to search until it finds the message corresponding to its DTC.

In this use case, there will be only a single instance of the XA Monitor application running per client
(user or computer), as each client has its own queue manager association used in transactions.

• Multiple IBM MQ Applications, single DTC, different queue manager instances: In this use case,
there are more than one IBM MQ applications under a single DTC (that is, on a computer, there are more
than one IBM MQ applications running) and connecting to different queue managers.

If transaction fails and becomes incomplete, monitor application recovers the transaction.

In this use case, there will be as many instances of monitor application running as queue managers
connected to, as each application has its own queue manager used in transactions and each of it must
be recovered.

Note: If the XA monitor application is not running in the background, you can start it.

Related concepts
“Transaction recovery process for IBM MQ .NET” on page 554

Developing applications for IBM MQ 555

This section describes how distributed transactions can be recovered with IBM MQ .NET classes.
Related tasks
“Using the WMQDotnetXAMonitor application” on page 556
The IBM MQ .NET client provides an XA Monitor application, WmqDotnetXAMonitor, that you can use
to recover any incomplete distributed transactions. The WmqDotnetXAMonitor application establishes a
connection to the queue manager where the transactions are in-doubt and then resolves the transaction
based on the parameters that you set.

Using the WMQDotnetXAMonitor application
The IBM MQ .NET client provides an XA Monitor application, WmqDotnetXAMonitor, that you can use
to recover any incomplete distributed transactions. The WmqDotnetXAMonitor application establishes a
connection to the queue manager where the transactions are in-doubt and then resolves the transaction
based on the parameters that you set.

About this task
The WMQDotnetXAMonitor application must be run manually. It can be started at any time. You can start
it when you see the messages on the SYSTEM.DOTNET.XARECOVERY.QUEUE or you can keep it running
in the background before you do any transactional work with the applications that are written using IBM
MQ .NET classes.

You can either set the parameter values for WMQDotnetXAMonitor through the command line or by using
an application configuration file. Values that are provided through the application configuration file take
precedence over values set through the command line.

Before IBM MQ 9.3.0, the connection that WMQDotnetXAMonitor establishes is a nonsecure connection.

From IBM MQ 9.3.0, you have the option of establishing a secure connection to the queue manager by
setting additional parameters for WMQDotnetXAMonitor.

Procedure
• To provide input to WmqDotNETXAMonitor by using an application configuration file, see

“WmqDotNETXAMonitor application configuration file settings” on page 558.
• To start the WMQDotnetXAMonitor application from the command line, use the following command

with the parameters that you require:

Before IBM MQ 9.3.0:

WmqDotnetXAMonitor.exe -m QueueManagerName -n ConnectionName -c ChannelName -i

From IBM MQ 9.3.0:

WmqDotnetXAMonitor.exe -m QueueManagerName -n ConnectionName -c ChannelName -i -k SSL Key
Repository -s Cipher Spec

The parameters that you can specify are as follows:

– -m QueueManagerName
The queue manager name.
Optional

-n ConnectionName
The connection name in host (port) format. ConnectionName can contain more than one
connection name. Multiple connection names must be given in a comma separated list,
for example localhost (1414), localhost (1415), localhost (1416). The
WMQDotnetXAMonitor application runs the recovery for each of the connection names specified
in the comma separated list.

556 Developing Applications for IBM MQ

-c ChannelName
The channel name.

-i
Heuristic branch completion.
Optional

-k SSL Key Repository
The name of the SSL key repository. The supported values are:

- *SYSTEM (this is the default value)
- *USER

Optional
-s Cipher Spec

The CipherSpec that you set must be one of the CipherSpecs for the supported version and
it can preferably be the same as the one specified in the Windows Group Policy. For more
information, see “CipherSpec support for the managed .NET client” on page 578.
Mandatory for establishing a secure connection to the queue manager.

-dn SSLPeer Name
The SSL peer name used to check the Distinguished Name (DN) of the certificate from the peer
queue manager.
Optional

-cl Certificate Label
The label name that identifies the certificate.
Optional

-sn OutboundSNI
Whether the Server Name Indication (SNI) should be set to the target IBM MQ channel name to
the remote system when initiating a TLS connection, or to the hostname. The supported values
for this option are:

- CHANNEL (this is the default value)
- HOSTNAME
- *

If no value is set then the default value, that is CHANNEL, is used.
Optional

-cr Certificate Revocation Check
Whether certification revocation checking is to be done. The supported values for this option
are:

- true
- false (this is the default value)

Optional
-kr KeyResetCount

The total number of unencrypted bytes that are sent and received on the channel before the
secret key used for encryption is renegotiated.
The default value of 0 indicates that secret keys are never renegotiated
Optional

The WMQDotnetXAMonitor application performs the following actions:

1. Checks the queue depth of SYSTEM.DOTNET.XARECOVERY.QUEUE at an interval of 100 seconds.
2. If the queue depth is greater than zero, browses the queue for messages and checks if the

messages satisfy the incomplete transaction criteria.

Developing applications for IBM MQ 557

3. If a message satisfies the incomplete transaction criteria, pulls it out, and retrieves the transaction
recovery information.

4. Determines if the recovery information relates to the local Microsoft Distributed Transaction
coordinator (MS DTC). If this is the case, then WMQDotnetXAMonitor proceeds to recover the
transaction, otherwise it goes back to browse the next message.

5. Makes calls to the queue manager to recover the incomplete transaction.

WmqDotNETXAMonitor application configuration file settings
You can provide input to the IBM MQ .NET XA Monitor application, WmqDotNETXAMonitor, by using an
application configuration file. A sample application configuration file is shipped with IBM MQ .NET. You
can modify this sample file according to your requirements.

Input values provided through the application configuration file take the highest precedence. If you
provide input values both at the command line as described in “Using the WMQDotnetXAMonitor
application” on page 556 and in the application configuration file, then the values from the application
configuration file take precedence.

Sample application configuration file for before IBM MQ 9.3.0.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<configSections>
<sectionGroup name="IBM.WMQ">
<section name="dnetxa" type="System.Configuration.NameValueFileSectionHandler" />
</sectionGroup>
</configSections>
<IBM.WMQ>
<dnetxa>
<add key="ConnectionName" value=""/>
<add key="ChannelName" value="" />
<add key="QueueManagerName" value="" />
<add key="UserId" value="" />
<add key="SecurityExit" value="" />
<add key="SecurityExitUserData" value = "">
</dnetxa>
</dnetxa>
</configuration>

Sample application configuration file from IBM MQ 9.3.0.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<configSections>
<sectionGroup name="IBM.WMQ">
<section name="dnetxa" type="System.Configuration.NameValueFileSectionHandler" />
</sectionGroup>
</configSections>
<IBM.WMQ>
<dnetxa>
<add key="ConnectionName" value=""/>
<add key="ChannelName" value="" />
<add key="QueueManagerName" value="" />
<add key="UserId" value="" />
<add key="SecurityExit" value="" />
<add key="SecurityExitUserData" value = "">
<add key="SSLKeyRepository" value="" />
<add key="SSLCipherSpec" value="" />
<add key="SSLPeerName" value="" />
<add key="SSLKeyResetCount" value="" />
<add key="SSLCertRevocationCheck" value="" />
<add key="CertificateLabel" value="" />
<add key="OutboundSNI" value="" />
</dnetxa>
</dnetxa>
</configuration>

558 Developing Applications for IBM MQ

WmqDotNetXAMonitor Application log
Monitor Application creates a log file in the application directory for logging the Monitor's progress and
transaction recovery status. Logging starts with the connection name and the channel details to show
current queue manager for which the recovery is running.

Once the recovery starts, MessageId of the transaction recovery message, TransactionId of the
incomplete transaction and actual outcome of the transaction as per Transaction Manager Coordination
will be logged.

Sample log file:

Time|ProcessId|ThreadId|WMQ .NET XA Recovery Monitor, Running now for
ConnectionName:xxxx, Time|ProcessId|ThreadId|Channel=xxxx
Time|ProcessId|ThreadId|Current QueueDepth = n
Time|ProcessId|ThreadId|Current MessageId = xxxx
Time|ProcessId|ThreadId|Current Incomplete Transaction being recovered = xxxxx
Time|ProcessId|ThreadId|Actual Outcome of the transaction(as per DTC)= Commit/Roll back
Time|ProcessId|ThreadId|Recovery Completed for TransactionId= xxxxx
Time|ProcessId|ThreadId|Current QueueDepth = n
Time|ProcessId|ThreadId|Current MessageId = xxxx
Time|ProcessId|ThreadId|Current Incomplete Transaction being recovered = xxxxx
Time|ProcessId|ThreadId|Actual Outcome of the transaction(as per DTC)= Commit/Roll back
Time|ProcessId|ThreadId| Recovery Completed for TransactionId= xxxxx

Writing and deploying IBM MQ .NET programs
To use IBM MQ classes for .NET to access IBM MQ queues, you write programs in any language supported
by .NET containing calls that put messages onto, and get messages from, IBM MQ queues.

Before you begin

From IBM MQ 9.4.0, in IBM MQ classes for .NET, the
methods WriteObject(), ReadObject(), CreateObjectMessage(), and the classes ObjectMessage and
XmsObjectMessageImpl used for serialization and deserialization of data are deprecated.

The IBM MQ .NET client library built using .NET Standard 2.0,
which was deprecated at IBM MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

About this task
The IBM MQ documentation contains information only on the C#, C++ and Visual Basic languages.

The topics in this section provide information to assist with writing applications to interact with IBM MQ
systems. For details of individual classes, see The IBM MQ .NET classes and interfaces.

Connection differences
The way that you program for IBM MQ.NET has some dependencies on the connection modes that you
want to use.

When IBM MQ classes for .NET are used as a managed client, there are a number of differences from a
standard IBM MQ MQI client, as some features are not available to a managed client.

IBM MQ.NET determines which connection type to use from the settings that you specify for
the connection name, channel name, the customization value NMQ_MQ_LIB and the property
MQC.TRANSPORT_PROPERTY.

Managed client connections
When IBM MQ classes for .NET are used as a managed client, there are a number of differences from a
standard IBM MQ MQI client.

The following features are not available to a managed client:

• Channel compression

Developing applications for IBM MQ 559

• Channel exit chaining

If you try to use these features with a managed client, it will return an MQException. If the error is
detected at the client end of a connection, it will use reason code MQRC_ENVIRONMENT_ERROR. If it is
detected at the server end, the reason code returned by the server will be used.

Channel exits written for an unmanaged client do not work. You must write new exits specifically for the
managed client. Check that there are no invalid channel exits specified in your client channel definition
table (CCDT).

The name of a managed channel exit can be up to 999 characters long. However, if you use the CCDT to
specify the channel exit name, it is limited to 128 characters.

Communication is supported only over TCP/IP.

When you stop a queue manager using the endmqm command, a server-connection channel to a .NET
managed client can take longer to close than server-connection channels to other clients.

If you are have set NMQ_MQ_LIB to managed in order to use managed IBM MQ problem diagnostics, none
of the parameters -i, -p, -s, -b, or -c of the strmqtrc command is supported.

A managed .NET application using XA transactions will not work with a z/OS queue manager.
A managed .NET client attempting to connect to a z/OS queue manager fails with an error,
MQRC_UOW_ENLISTMENT_ERROR (mqrc=2354), on MQOPEN call. However, a managed .NET application
using XA transactions will work with distributed queue manager.

Defining which connection type to use
The connection type is determined by the setting of the connection name, channel name, the
customization value NMQ_MQ_LIB and the property MQC.TRANSPORT_PROPERTY.

You can specify the connection name as follows:

• Explicitly on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,
string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

• By setting the properties MQC.HOST_NAME_PROPERTY and, optionally, MQC.PORT_PROPERTY in a
hashtable entry on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, Hashtable properties)

• As explicit MQEnvironment values

MQEnvironment.Hostname

MQEnvironment.Port (optional).
• By setting the properties MQC.HOST_NAME_PROPERTY and, optionally, MQC.PORT_PROPERTY in the

MQEnvironment.properties hashtable.

You can specify the channel name as follows:

• Explicitly on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,
string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

560 Developing Applications for IBM MQ

• By setting the property MQC.CHANNEL_PROPERTY in a hashtable entry on an MQQueueManager
constructor:

public MQQueueManager(String queueManagerName, Hashtable properties)

• As an explicit MQEnvironment value

MQEnvironment.Channel

• By setting the property MQC.CHANNEL_PROPERTY in the MQEnvironment.properties hashtable.

You can specify the transport property as follows:

• By setting the property MQC.TRANSPORT_PROPERTY in a hashtable entry on an MQQueueManager
constructor:

public MQQueueManager(String queueManagerName, Hashtable properties)

• By setting the property MQC.TRANSPORT_PROPERTY in the MQEnvironment.properties hashtable.

Select the connection type you require by using one of the following values:

MQC.TRANSPORT_MQSERIES_BINDINGS - connect as server
MQC.TRANSPORT_MQSERIES_CLIENT - connect as non-XA client
MQC.TRANSPORT_MQSERIES_XACLIENT - connect as XA client
MQC.TRANSPORT_MQSERIES_MANAGED - connect as non-XA managed client

You can set the customization value NMQ_MQ_LIB to explicitly choose the connection type as shown in
the following table.

NMQ_MQ_LIB value Connection type

mqic.dll Connect as a non-XA client

mqicxa.dll Connect as an XA client

mqm.dll Connect as a server or as a non-XA client

managed Connect as a non-XA managed client

Note: Values of mqic32.dll and mqic32xa.dll are accepted as synonyms of mqic.dll and mqicxa.dll for
compatibility with earlier releases. However, mqm.dll and mqm.pdb are only part of the client package
from IBM WebSphere MQ 7.1 onwards.

If you choose a connection type which is unavailable in your environment, for example you specify
mqic32xa.dll and do not have XA support, IBM MQ.NET throws an exception.

Setting NMQ_MQ_LIB to "managed" causes the client to use managed IBM MQ problem diagnostic
tests, .NET data conversion, and other managed low-level IBM MQ functions.

All other values for NMQ_MQ_LIB cause the .NET process to use unmanaged IBM MQ problem diagnostic
tests and data conversion, and other unmanaged low-level IBM MQ functions (assuming an IBM MQ MQI
client or server is installed on the system).

IBM MQ.NET chooses the connection type as follows:

1. If MQC.TRANSPORT_PROPERTY is specified, it connects according to the value of
MQC.TRANSPORT_PROPERTY.

Note, however, that setting MQC.TRANSPORT_PROPERTY to MQC.TRANSPORT_MQSERIES_MANAGED
does not guarantee that the client process runs managed. Even with this setting, the client is not
managed in the following cases:

• If another thread in the process has connected with MQC.TRANSPORT_PROPERTY set to something
other than MQC.TRANSPORT_MQSERIES_MANAGED.

Developing applications for IBM MQ 561

• If NMQ_MQ_LIB is not set to "managed", problem diagnostic tests, data conversion, and other
low-level functions are not fully managed (assuming an IBM MQ MQI client or server is installed on
the system).

2. If a connection name has been specified without a channel name, or a channel name has been
specified without a connection name, it throws an error.

3. If both a connection name and a channel name have been specified:

• If NMQ_MQ_LIB is set to mqic32xa.dll, it connects as an XA client.
• If NMQ_MQ_LIB is set to managed, it connects as a managed client.
• Otherwise it connects as a non-XA client.

4. If NMQ_MQ_LIB is specified, it connects according to the value of NMQ_MQ_LIB.
5. If an IBM MQ server is installed, it connects as a server.
6. If an IBM MQ MQI client is installed, it connects as a non-XA client.
7. Otherwise, it connects as a managed client.

Using the IBM MQ .NET project template
The IBM MQ .NET client offers you the ability to use a project template to assist you in developing
your .NET Core applications.

Before you begin
You must have Microsoft Visual Studio 2017, or later, and .NET Core 2.1 on your system.

You must copy the .NET template from the

&MQ_INSTALL_ROOT&\tools\dotnet\samples\cs\core\base\ProjectTemplates\IBMMQ.NETC
lientApp.zip

directory to the

&USER_HOME_DIRECTORY&\Documents\&Visual_Studio_Version&\Templates\ProjectTempla
tes

directory, where:

• &MQ_INSTALL_ROOT is the root directory of your installation
• &USER_HOME_DIRECTORY is your home directory.

You must stop and restart Microsoft Visual Studio to pick up the template.

About this task
The .NET project template includes some common code that you can use to help develop your
applications. With the in-built code, you can connect to the IBM MQ queue manager, and perform a
put or a get operation by simply modifying the properties in the in-built code.

Procedure
1. Open Microsoft Visual Studio.
2. Click on File, followed by New and then Project.
3. In the Create a new project window, select IBM MQ .NET Client App (.NET Core) and click

Next.
4. In the Configure your new project window, change the Project name of your project if you want to, and

click Create to create the .NET project.
MQDotnetApp.cs is the file that is created along with the project file. This file contains the code
which connects to the queue manager, and performs a put and get operation.

562 Developing Applications for IBM MQ

The connection properties are set to default values:

• MQC.CONNECTION_NAME_PROPERTY is set to localhost(1414)
• MQC.CHANNEL_PROPERTY is set to DOTNET.SVRCONN

The queue is set to Q1, and you can modify these properties accordingly.
5. Compile and run the application.

Related concepts
IBM MQ components and features
.NET application runtime - Windows only

Configuration files for IBM MQ classes for .NET
A .NET client application can use an IBM MQ MQI client configuration file and, if you are using the
managed connection type, a .NET application configuration file. Settings in the application configuration
file have priority.

Client configuration file
An IBM MQ classes for .NET client application can use a client configuration file in the same way as any
other IBM MQ MQI client. This file is typically called mqclient.ini, but you can specify a different file
name. For more information about the client configuration file, see IBM MQ MQI client configuration file,
mqclient.ini.

Only the following attributes in an IBM MQ MQI client configuration file are relevant to IBM MQ classes
for .NET. If you specify other attributes, it has no effect.

Table 77. Client configuration file attributes that are relevant to IBM MQ classes for .NET

Stanza Attribute

CHANNELS CCSID

CHANNELS ChannelDefinitionDirectory

CHANNELS ChannelDefinitionFile

CHANNELS ReconDelay

CHANNELS DefRecon

CHANNELS MQReconnectTimeout

CHANNELS ServerConnectionParms

CHANNELS Put1DefaultAlwaysSync

CHANNELS PasswordProtection

ClientExitPath ExitsDefaultPath

ClientExitPath ExitsDefaultPath64

MessageBuffer MaximumSize

MessageBuffer PurgeTime

MessageBuffer UpdatePercentage

Security MQIInitialKeyFile

SSL SSLKeyRepository

SSL SSLKeyRepositoryPassword

TCP ClntRcvBufSize

Developing applications for IBM MQ 563

Table 77. Client configuration file attributes that are relevant to IBM MQ classes for .NET (continued)

Stanza Attribute

TCP ClntSndBufSize

TCP IPAddressVersion

TCP KeepAlive

You can override any of these attributes using the appropriate environment variable.

Application configuration file
If you are running with the managed connection type, you can also override the IBM MQ client
configuration file and the equivalent environment variables using the .NET application configuration file.

The .NET application configuration file settings are only acted upon when running with the managed
connection type, and are ignored for other connection types.

The .NET application configuration file and its format are defined by Microsoft for general use within
the .NET framework, but the particular section names, keys and values mentioned in this documentation
are specific to IBM MQ.

The format of the .NET application configuration file is a number of sections. Each section contains one or
more keys, and each key has an associated value. The following example shows the sections, keys, and
values used in a .NET application configuration file to control the TCP/IP KeepAlive property:

<configuration>
 <configSections>
 <section name="TCP" type="System.Configuration.NameValueSectionHandler"/>
 </configSections>
 <TCP>
 <add key="KeepAlive" value="true"></add>
 </TCP>
<configuration>

The keywords used in the .NET application configuration file section names and keys exactly match the
keywords for the stanzas and attributes defined in the client configuration file.

The section <configSections> must be the first child element of the <configuration> element.

See your Microsoft documentation for further information.

Example C# code fragment for use with .NET
A C# code fragment demonstrating that an application connects to a queue manager, puts a message on
to a queue and receives a reply.

The following C# code fragment demonstrates an application that performs three actions:

1. Connect to a queue manager
2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE
3. Get the message back

It also shows how to change the connection type.

// ===
// Licensed Materials - Property of IBM
// 5724-H72
// (c) Copyright IBM Corp. 2003, 2024
// ===
using System;
using System.Collections;

using IBM.WMQ;

564 Developing Applications for IBM MQ

class MQSample
{
 // The type of connection to use, this can be:-
 // MQC.TRANSPORT_MQSERIES_BINDINGS for a server connection.
 // MQC.TRANSPORT_MQSERIES_CLIENT for a non-XA client connection
 // MQC.TRANSPORT_MQSERIES_XACLIENT for an XA client connection
 // MQC.TRANSPORT_MQSERIES_MANAGED for a managed client connection
 const String connectionType = MQC.TRANSPORT_MQSERIES_CLIENT;

 // Define the name of the queue manager to use (applies to all connections)
 const String qManager = "your_Q_manager";

 // Define the name of your host connection (applies to client connections only)
 const String hostName = "your_hostname";

 // Define the name of the channel to use (applies to client connections only)
 const String channel = "your_channelname";

 /// <summary>
 /// Initialise the connection properties for the connection type requested
 /// </summary>
 /// <param name="connectionType">One of the MQC.TRANSPORT_MQSERIES_ values</param>
 static Hashtable init(String connectionType)
 {
 Hashtable connectionProperties = new Hashtable();

 // Add the connection type
 connectionProperties.Add(MQC.TRANSPORT_PROPERTY, connectionType);

 // Set up the rest of the connection properties, based on the
 // connection type requested
 switch(connectionType)
 {
 case MQC.TRANSPORT_MQSERIES_BINDINGS:
 break;
 case MQC.TRANSPORT_MQSERIES_CLIENT:
 case MQC.TRANSPORT_MQSERIES_XACLIENT:
 case MQC.TRANSPORT_MQSERIES_MANAGED:
 connectionProperties.Add(MQC.HOST_NAME_PROPERTY, hostName);
 connectionProperties.Add(MQC.CHANNEL_PROPERTY, channel);
 break;
 }

 return connectionProperties;
 }
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static int Main(string[] args)
 {
 try
 {
 Hashtable connectionProperties = init(connectionType);

 // Create a connection to the queue manager using the connection
 // properties just defined
 MQQueueManager qMgr = new MQQueueManager(qManager, connectionProperties);

 // Set up the options on the queue we want to open
 int openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;

 // Now specify the queue that we want to open,and the open options
 MQQueue system_default_local_queue =
 qMgr.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE", openOptions);

 // Define an IBM MQ message, writing some text in UTF format
 MQMessage hello_world = new MQMessage();
 hello_world.WriteUTF("Hello World!");

 // Specify the message options
 MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the defaults,
 // same as MQPMO_DEFAULT

 // Put the message on the queue
 system_default_local_queue.Put(hello_world, pmo);

Developing applications for IBM MQ 565

 // Get the message back again

 // First define an IBM MQ message buffer to receive the message
 MQMessage retrievedMessage =new MQMessage();
 retrievedMessage.MessageId =hello_world.MessageId;

 // Set the get message options
 MQGetMessageOptions gmo =new MQGetMessageOptions(); //accept the defaults
 //same as MQGMO_DEFAULT

 // Get the message off the queue
 system_default_local_queue.Get(retrievedMessage,gmo);

 // Prove we have the message by displaying the UTF message text
 String msgText = retrievedMessage.ReadUTF();
 Console.WriteLine("The message is: {0}", msgText);

 // Close the queue
 system_default_local_queue.Close();

 // Disconnect from the queue manager
 qMgr.Disconnect();
 }

 //If an error has occurred,try to identify what went wrong.

 //Was it an IBM MQ error?
 catch (MQException ex)
 {
 Console.WriteLine("An IBM MQ error occurred: {0}", ex.ToString());
 }

 catch (System.Exception ex)
 {
 Console.WriteLine("A System error occurred: {0}", ex.ToString());
 }

 return 0;
 }//end of start
}//end of sample

Setting up the IBM MQ environment
Before you use the client connection to connect to a queue manager, you must set up the IBM MQ
environment.

Note: This step is not necessary when using IBM MQ classes for .NET in server bindings mode.

The .NET programming interface allows you to use the NMQ_MQ_LIB customization value but also
includes a class MQEnvironment. This class allows you to specify details that are to be used during
the connection attempt, such as those in the following list:

• Channel name
• Host name
• Port number
• Channel exits
• SSL parameters
• User ID and password

For full information about the MQEnvironment class, see MQEnvironment.NET class

To specify the channel name and host name, use the following code:

MQEnvironment.Hostname = "host.domain.com";
MQEnvironment.Channel = "client.channel";

566 Developing Applications for IBM MQ

By default, the clients attempt to connect to a IBM MQ listener at port 1414. To specify a different port,
use the code:

MQEnvironment.Port = nnnn;

Connecting to and disconnecting from a queue manager
When you have configured the IBM MQ environment, you are ready to connect to a queue manager.

To connect to a queue manager, create a new instance of the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the Disconnect method on the queue manager:

queueManager.Disconnect();

You must have inquire (inq) authority on the queue manager when attempting to connect to the queue
manager. Without inquire authority, the connection attempt fails.

If you call the Disconnect method, all open queues and processes that you have accessed through that
queue manager are closed. However, it is good programming practice to close these resources explicitly
when you finish using them. To close the resources, use the Close method on the object associated with
each resource.

The Commit and Backout methods on a queue manager replace the MQCMIT and MQBACK calls that are
used with the procedural interface.

Accessing queues and topics
You can access queues and topics using methods of MQQueueManager or appropriate constructors.

To access queues, use the methods of the MQQueueManager class. The MQOD (object descriptor
structure) is collapsed into the parameters of these methods. For example, to open a queue on a queue
manager represented by an MQQueueManager object called queueManager, use the following code:

MQQueue queue = queueManager.AccessQueue("qName",
 MQC.MQOO_OUTPUT,
 "qMgrName",
 "dynamicQName",
 "altUserId");

The options parameter is the same as the Options parameter in the MQOPEN call.

The AccessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the Close() method to close it, as in the following example:

queue.Close();

With IBM MQ .NET, you can also create a queue by using the MQQueue constructor. The parameters
are exactly the same as for the accessQueue method, with the addition of a queue manager parameter
specifying the instantiated MQQueueManager object to use. For example:

MQQueue queue = new MQQueue(queueManager,
 "qName",
 MQC.MQOO_OUTPUT,
 "qMgrName",
 "dynamicQName",
 "altUserId");

Developing applications for IBM MQ 567

Constructing a queue object in this way enables you to write your own subclasses of MQQueue.

Similarly, you can also access topics using the methods of the MQQueueManager class. Use an
AccessTopic() method to open a topic. This returns a new object of class MQTopic. When you have
finished using the topic, use the Close() method of the MQTopic to close it.

You can also create a topic by using an MQTopic constructor. There are a number of constructors for
topics; for more information see MQTopic.NET class.

Handling messages
Messages are handled using the methods of the queue or topic classes. To build a new message, create a
new MQMessageobject.

Put messages onto queues or topics using the Put() method of the MQQueue or MQTopic class. Get
messages from queues or topics using the Get() method of the MQQueue or MQTopic class. Unlike the
procedural interface, where MQPUT and MQGET put and get arrays of bytes, the IBM MQ classes for .NET
put and get instances of the MQMessage class. The MQMessage class encapsulates the data buffer that
contains the actual message data, together with all the MQMD (message descriptor) parameters that
describe that message.

To build a new message, create a new instance of the MQMessage class and use the WriteXXX methods to
put data into the message buffer.

When the new message instance is created, all the MQMD parameters are automatically set to their
default values, as defined in Initial values and language declarations for MQMD. The Put() method
of MQQueue also takes an instance of the MQPutMessageOptions class as a parameter. This class
represents the MQPMO structure. The following example creates a message and puts it onto a queue:

// Build a new message containing my age followed by my name
MQMessage myMessage = new MQMessage();
myMessage.WriteInt(25);

String name = "Charlie Jordan";
myMessage.WriteUTF(name);

// Use the default put message options...
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message
!queue.Put(myMessage,pmo);

The Get() method of MQQueue returns a new instance of MQMessage, which represents the message just
taken from the queue. It also takes an instance of the MQGetMessageOptions class as a parameter. This
class represents the MQGMO structure.

You do not need to specify a maximum message size, because the Get() method automatically adjusts the
size of its internal buffer to fit the incoming message. Use the ReadXXX methods of the MQMessage class
to access the data in the returned message.

The following example shows how to get a message from a queue:

// Get a message from the queue
MQMessage theMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();
queue.Get(theMessage,gmo); // has default values

// Extract the message data
int age = theMessage.ReadInt();
String name1 = theMessage.ReadUTF();

You can alter the number format that the read and write methods use by setting the encoding member
variable.

You can alter the character set to use for reading and writing strings by setting the characterSet member
variable.

568 Developing Applications for IBM MQ

See MQMessage.NET class for more details.

Note: The WriteUTF() method of MQMessage automatically encodes the length of the string as well as the
Unicode bytes it contains. When your message will be read by another .NET program (using ReadUTF()),
this is the simplest way to send string information.

Handling message properties
Message properties allow you to select messages, or to retrieve information about a message without
accessing its headers. The MQMessage class contains methods to get and set properties.

You can use message properties to allow an application to select messages to process, or to retrieve
information about a message without accessing MQMD or MQRFH2 headers. They also facilitate
communication between IBM MQ and JMS applications. For more information about message properties
in IBM MQ, see Message properties.

The MQMessage class provides a number of methods to get and set properties, according to the data
type of the property. The get methods have names of the format Get*Property, and the set methods have
names of the format Set*Property, where the asterisk (*) represents one of the following strings:

• Boolean
• Byte
• Bytes
• Double
• Float
• Int
• Int2
• Int4
• Int8
• Long
• Object
• Short
• String

For example, to get the IBM MQ property myproperty (a character string), use the call
message.GetStringProperty('myproperty'). You can optionally pass a property descriptor, which
IBM MQ will complete.

Handling errors
Handle errors arising from IBM MQ classes for .NET using try and catch blocks.

Methods in the .NET interface do not return a completion code and reason code. Instead, they throw an
exception whenever the completion code and reason code resulting from an IBM MQ call are not both
zero. This simplifies the program logic so that you do not have to check the return codes after each call to
IBM MQ. You can decide at which points in your program you want to deal with the possibility of failure. At
these points, you can surround your code with try and catch blocks, as in the following example:

try
{
 myQueue.Put(messageA,PutMessageOptionsA);
 myQueue.Put(messageB,PutMessageOptionsB);
}
catch (MQException ex)
{
 // This block of code is only executed if one of
 // the two put methods gave rise to a non-zero
 // completion code or reason code.
 Console.WriteLine("An error occurred during the put operation:" +
 "CC = " + ex.CompletionCode +
 "RC = " + ex.ReasonCode);

Developing applications for IBM MQ 569

 Console.WriteLine("Cause exception:" + ex);
}

Getting and setting attribute values
The classes MQManagedObject, MQQueue, and MQQueueManager contain methods that allow you to
get and set their attribute values. Note that for MQQueue, the methods work only if you specify the
appropriate inquire and set flags when you open the queue.

For common attributes, the MQQueueManager and MQQueue classes inherit from a class called
MQManagedObject. This class defines the Inquire() and Set() interfaces.

When you create a new queue manager object by using the new operator, it is automatically opened
for inquire. When you use the AccessQueue() method to access a queue object, that object is not
automatically opened for either inquire or set operations, this could cause problems with some types
of remote queues. To use the Inquire and Set methods and to set properties on a queue, you must specify
the appropriate inquire and set flags in the openOptions parameter of the AccessQueue() method.

The inquire and set methods take three parameters:

• selectors array
• intAttrs array
• charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters that are found in
MQINQ, because the length of an array is always known. The following example shows how to make an
inquiry on a queue:

//inquire on a queue
int [] selectors = new int [2] ;
int [] intAttrs = new int [1] ;
byte [] charAttrs = new byte [MQC.MQ_Q_DESC_LENGTH];
selectors [0] = MQC.MQIA_DEF_PRIORITY;
selectors [1] = MQC.MQCA_Q_DESC;
queue.Inquire(selectors,intAttrs,charAttrs);
ASCIIEncoding enc = new ASCIIEncoding();
String s1 = "";
s1 = enc.GetString(charAttrs);

All attributes of these objects can be inquired on. A subset of attributes is exposed as the properties of an
object. For a list of object attributes, see Attributes of objects. For object properties, see the appropriate
class description.

Multithreaded programs
The .NET runtime environment is inherently multithreaded. IBM MQ classes for .NET allows a queue
manager object to be shared across multiple threads but ensures that all access to the target queue
manager is synchronized.

Consider a simple program that connects to a queue manager and opens a queue at startup. The program
displays a single button on the screen. When a user clicks that button, the program fetches a message
from the queue. In this situation, the application initialization occurs in one thread, and the code that
executes in response to the button press executes in a separate thread (the user interface thread).

The implementation of IBM MQ .NET ensures that, for a particular connection (MQQueueManager object
instance), all access to the target IBM MQ queue manager is synchronized. The default behavior is
that a thread that wants to issue a call to a queue manager is blocked until all other calls in progress
for that connection are complete. If you require simultaneous access to the same queue manager
from multiple threads within your program, create a new MQQueueManager object for each thread that
requires concurrent access. (This is equivalent to issuing a separate MQCONN call for each thread.)

If the default connection options are overridden by MQC.MQCNO_HANDLE_SHARE_NONE or
MQC.MQCNO_SHARE_NO_BLOCK then the queue manager is no longer synchronized.

570 Developing Applications for IBM MQ

Using a client channel definition table with .NET
You can use a client channel definition table (CCDT) with the IBM MQ classes for .NET. You specify the
location of the CCDT in different ways, depending on whether you are using a managed or unmanaged
connection.

Non-XA or XA unmanaged client connection type
With an unmanaged connection type, you can specify the location of the CCDT in two ways:

• Using the environment variables MQCHLLIB to specify the directory where the table is located, and
MQCHLTAB to specify the file name of the table.

• Using the client configuration file. In the CHANNELS stanza, use the attributes
ChannelDefinitionDirectory to specify the directory where the table is located, and
ChannelDefinitionFile to specify the file name.

If the location is specified both in the client configuration file and by using environment variables, the
environment variables take priority. You can use this feature to specify a standard location in the client
configuration file and override it using environment variables when necessary.

Managed client connection type
With a managed connection type, you can specify the location of the CCDT in three ways:

• Using the .NET application configuration file. In the CHANNELS section, use the keys
ChannelDefinitionDirectory to specify the directory where the table is located, and
ChannelDefinitionFile to specify the file name.

• Using the environment variables MQCHLLIB to specify the directory where the table is located, and
MQCHLTAB to specify the file name of the table.

• Using the client configuration file. In the CHANNELS stanza, use the attributes
ChannelDefinitionDirectory to specify the directory where the table is located, and
ChannelDefinitionFile to specify the file name.

If the location is specified in more than one of these ways, the environment variables take priority over
the client configuration file, and the .NET Application Configuration File takes priority over both other
methods. You can use this feature to specify a standard location in the client configuration file and
override it using environment variables or the application configuration file when necessary.

From IBM MQ 9.3.0, the .NET client behaves in the same way as the C and Java clients and returns the
MQRC_Q_MGR_NAME_ERROR when using a CCDT with queue manager grouping.

How a .NET application determines what channel definition to use
In the IBM MQ .NET client environment, the channel definition to be used can be specified in a number
of different ways. Multiple specifications of the channel definition can exist. An application derives the
channel definition from one or more sources.

If more than one channel definition exists, the one used is selected in the following priority order:

1. Properties specified on the MQQueueManager constructor, either explicitly or by including
MQC.CHANNEL_PROPERTY in the properties hashtable

2. A property MQC.CHANNEL_PROPERTY in the MQEnvironment.properties hashtable
3. The property Channel in MQEnvironment
4. The .NET application configuration file, section name CHANNELS, key ServerConnectionParms (applies

to managed connections only)
5. The MQSERVER environment variable
6. The client configuration file, stanza CHANNELS, Attribute ServerConnectionParms
7. The client channel definition table (CCDT). The location of the CCDT is specified in the .NET application

configuration file (applies to managed connections only)

Developing applications for IBM MQ 571

8. The client channel definition table (CCDT). The location of the CCDT is specified using the environment
variables MQCHLIB and MQCHLTAB

9. The client channel definition table (CCDT). The location of the CCDT is specified using the client
configuration file

For items 1-3, the channel definition is built up field by field from values provided by the application.
These values can be provided using different interfaces and multiple values can exist for each one. Field
values are added to the channel definition following the priority order given:

1. The value of connName on the MQQueueManager constructor
2. Values of properties from the MQQueueManager.properties hashtable
3. Values of properties from the MQEnvironment.properties hashtable
4. Values set as MQEnvironment fields (for example, MQEnvironment.Hostname, MQEnvironment.Port)

For items 4-6, the entire channel definition is supplied as the value. Unspecified fields on the channel
definition take the system defaults. No values from other methods of defining channels and their fields
are merged with these specifications.

For items 7-9, the entire channel definition is taken from the CCDT. Fields which were not specified
explicitly when the channel was defined take the system defaults. No values from other methods of
defining channels and their fields are merged with these specifications.

Using channel exits in IBM MQ .NET
If you use client bindings, you can use channel exits as for any other client connection. If you use
managed bindings, you must write an exit program that implements an appropriate interface.

Client bindings
If you use client bindings, you can use channel exits as described in Channel exits. You cannot use
channel exits written for managed bindings.

Managed bindings
If you use a managed connection, to implement an exit, you define a new .NET class that implements the
appropriate interface. Three exit interfaces are defined in the IBM MQ package:

• MQSendExit
• MQReceiveExit
• MQSecurityExit

Note: User exits written using these interfaces are not supported as channel exits in the unmanaged
environment.

The following sample defines a class that implements all three:

class MyMQExits : MQSendExit, MQReceiveExit, MQSecurityExit
{
 // This method comes from the send exit
 byte[] SendExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte[] dataBuffer
 ref int dataOffset
 ref int dataLength
 ref int dataMaxLength)
 {
 // complete the body of the send exit here
 }

 // This method comes from the receive exit
 byte[] ReceiveExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte[] dataBuffer
 ref int dataOffset

572 Developing Applications for IBM MQ

 ref int dataLength
 ref int dataMaxLength)
 {
 // complete the body of the receive exit here
 }

 // This method comes from the security exit
 byte[] SecurityExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefParms,
 byte[] dataBuffer
 ref int dataOffset
 ref int dataLength
 ref int dataMaxLength)
 {
 // complete the body of the security exit here
 }

}

Each exit is passed an MQChannelExit and an MQChannelDefinition object instance. These objects
represent the MQCXP and MQCD structures defined in the procedural interface.

The data to be sent by a send exit, and the data received in a security or receive exit is specified using the
exit's parameters.

On entry, the data at offset dataOffset with length dataLength in the byte array dataBuffer is the data
that is about to be sent by a send exit, and the data received in a security or receive exit. The parameter
dataMaxLength gives the maximum length (from dataOffset) available to the exit in dataBuffer. Note: For
a security exit, it is possible for the dataBuffer to be null, if this is the first time the exit is called or the
partner end elected to send no data.

On return, the value of dataOffset and dataLength should be set to point to the offset and length within
the returned byte array that the .NET classes should then use. For a send exit, this indicates the data
that it should send, and for a security or receive exit, the data that should be interpreted. The exit should
normally return a byte array; exceptions are a security exit which could elect to send no data, and any exit
called with the INIT or TERM reasons. The simplest form of exit that can be written therefore is one which
does nothing more than return dataBuffer:

The simplest possible exit body is:

{
 return dataBuffer;
}

MQChannelDefinition class
The userid and password that are specified with the managed .NET client application are set in the IBM
MQ .NET MQChannelDefinition class that is passed to the client security exit. The security exit copies
the userid and password into the MQCD.RemoteUserIdentifier and MQCD.RemotePassword fields (see
“Writing a security exit” on page 938).

Specifying channel exits (managed client)
If you specify a channel name and connection name when creating your MQQueueManager object (either
in the MQEnvironment or on the MQQueueManager constructor) you can specify channel exits in two
ways.

In order of precedence, these are:

1. Passing hashtable properties MQC.SECURITY_EXIT_PROPERTY, MQC.SEND_EXIT_PROPERTY or
MQC.RECEIVE_EXIT_PROPERTY on the MQQueueManager constructor.

2. Setting the MQEnvironment SecurityExit, SendExit or ReceiveExit properties.

If you do not specify a channel name and connection name, the channel exits to use come from the
channel definition picked up from a client channel definition table (CCDT). It is not possible to override

Developing applications for IBM MQ 573

the values stored in the channel definition. See Client channel definition table and “Using a client channel
definition table with .NET” on page 571 for more information about channel definition tables.

In each case, the specification takes the form of a string with the following format:

Assembly_name(Class_name)

Class_name is the fully qualified name, including namespace specification, of a .NET class that
implements the IBM.WMQ.MQSecurityExit, IBM.WMQ.MQSendExit or IBM.WMQ.MQReceiveExit interface
(as appropriate). Assembly_name is the fully qualified location, including file extension, of the assembly
that houses the class. The length of the string is limited to 999 characters if you use the properties of
MQEnvironment or MQQueueManager. However, if the channel exit name is specified in the CCDT, it is
limited to 128 characters. When necessary, the .NET client code loads and creates an instance of the
specified class by parsing the string specification.

Specifying channel exit user data (managed client)
Channel exits can have user data associated with them. If you specify a channel name and
connection name when creating your MQQueueManager object (either in the MQEnvironment or on the
MQQueueManager constructor) you can specify the user data in two ways.

In order of precedence, these are:

1. Passing hashtable properties MQC.SECURITY_USERDATA_PROPERTY,
MQC.SEND_USERDATA_PROPERTY or MQC.RECEIVE_USERDATA_PROPERTY on the
MQQueueManager constructor.

2. Setting the MQEnvironment SecurityUserData, SendUserData or ReceiveUserData properties.

If you do not specify a channel name and connection name, the exit user data values to use come from
the channel definition picked up from the client channel definition table (CCDT). It is not possible to
override the values stored in the channel definition. See Client channel definition table and “Using a client
channel definition table with .NET” on page 571 for more information about channel definition tables.

In each case, the specification is a string, limited to 32 characters.

Automatic client reconnection in .NET
You can make your client reconnect automatically to a queue manager during an unexpected connection
break.

A client can unexpectedly become disconnected from a queue manager if, for example, the queue
manager stops, or the network or server fails.

Without automatic client reconnection, an error is produced when the connection fails. You can use the
error code to help you reestablish the connection.

A client that uses the automatic client reconnection facility is called a reconnectable client. To create
a reconnectable client, specify certain options called reconnect options while connecting to the queue
manager.

If the client application is an IBM MQ .NET client, it can opt to get automatic client reconnection by
specifying an appropriate value for CONNECT_OPTIONS_PROPERTY when you use the MQQueueManager
class to create a queue manager. See Reconnection options for details of CONNECT_OPTIONS_PROPERTY
values.

You can select whether the client application always connects and reconnects to a queue manager of the
same name, to the same queue manager, or to any set of queue managers that are defined with the same
QMNAME in the client connection table (See Queue Manager Groups in CCDT for details).

574 Developing Applications for IBM MQ

Transport Layer Security (TLS) support for .NET
IBM MQ classes for .NET client applications support Transport Layer Security (TLS) encryption. The TLS
protocol provides communications security over the internet, and allow client/server applications to
communicate in a way that is confidential and reliable.
Related concepts
IBM MQ.NET managed client TLS support
Cryptographic security protocols: TLS

TLS support for the unmanaged .NET client
TLS support for the unmanaged .NET client is based on the C MQI and IBM Global Security Kit (GSKit). The
C MQI handles the TLS operations and GSKit implements the TLS secure socket protocols.

Enabling TLS for the unmanaged .NET client
TLS is supported only for client connections. To enable TLS, you must specify the CipherSpec to use when
communicating with the queue manager, and this must match the CipherSpec set on the target channel.

To enable TLS, specify the CipherSpec using the SSLCipherSpec static member variable
of MQEnvironment. The following example attaches to a SVRCONN channel named
SECURE.SVRCONN.CHANNEL, which has been set up to require TLS with a CipherSpec of
TLS_RSA_WITH_AES_128_CBC_SHA:

MQEnvironment.Hostname = "your_hostname";
MQEnvironment.Channel = "SECURE.SVRCONN.CHANNEL";
MQEnvironment.SSLCipherSpec = "TLS_RSA_WITH_AES_128_CBC_SHA256";
MQEnvironment.SSLKeyRepository = "C:\mqm\key.kdb";
MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

See Specifying CipherSpecs for a list of CipherSpecs.

The SSLCipherSpec property can also be set using the MQC.SSL_CIPHER_SPEC_PROPERTY in the hash
table of connection properties.

To successfully connect using TLS, the client keystore must be set up with Certificate Authority root
certificates chain from which the certificate presented by the queue manager can be authenticated.
Similarly, if SSLClientAuth on the SVRCONN channel has been set to MQSSL_CLIENT_AUTH_REQUIRED,
the client keystore must contain an identifying personal certificate that is trusted by the queue manager.

Using the Distinguished Name of the queue manager
The queue manager identifies itself using a TLS certificate, which contains a Distinguished Name (DN).

An IBM MQ .NET client application can use this DN to ensure that it is communicating with the correct
queue manager. A DN pattern is specified using the sslPeerName variable of MQEnvironment. For
example, setting:

MQEnvironment.SSLPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate with a Common Name
beginning QMGR., and at least two Organizational Unit names, the first of which must be IBM and the
second WEBSPHERE.

The SSLPeerName property can also be set using the MQC.SSL_PEER_NAME_PROPERTY in the hash
table of connection properties. For more information about Distinguished Names and rules for setting
peer names, refer to Securing IBM MQ.

If SSLPeerName is set, connections succeed only if it is set to a valid pattern and the queue manager
presents a matching certificate.

Error handling when using TLS

The following reason codes can be issued by IBM MQ classes for .NET when connecting to a queue
manager using TLS:

Developing applications for IBM MQ 575

MQRC_SSL_NOT_ALLOWED
The SSLCipherSpec property was set, but bindings connect was used. Only client connect supports
TLS.

MQRC_SSL_PEER_NAME_MISMATCH
The DN pattern specified in the SSLPeerName property did not match the DN presented by the queue
manager.

MQRC_SSL_PEER_NAME_ERROR
The DN pattern specified in the SSLPeerName property was not valid.

MQRC_KEY_REPOSITORY_ERROR
The location of the key repository is either not specified, not valid, or cannot be accessed.

TLS support for the managed .NET client
The managed .NET client uses the Microsoft .NET Framework libraries to implement TLS secure socket
protocols. The Microsoft System.Net.SecuritySslStream class operates as a stream over connected TCP
sockets and sends and receives data over that socket connection.

The minimum required .NET Framework level is .NET Framework v3.5. The level of Cipher Algorithm
support is based on the .NET Framework level that the application is using:

• For applications that are based on .NET Framework levels 3.5 and 4.0, the available secure socket
protocols are SSL 3.0 and TSL 1.0.

• For applications that are based on .NET Framework level 4.5, the available secure socket protocols are
SSL 3.0, TLS 1.1 and TLS 1.2.

You might need to move applications that expect higher TLS protocol support to a later version of the
framework as defined for Microsoft Security support in the .NET Framework.

The main features of TLS support for the managed .NET client are as follows:

TLS protocol support
TLS support for the .NET managed client is defined through the .NET SSLStream class, and depends
on the .NET Framework that the application is using. For more information see “TLS protocol support
for the managed .NET client” on page 578.

CipherSpec support
The TLS settings for the .NET managed client are as for the Microsoft.NET TLS steams. For more
information see “CipherSpec support for the managed .NET client” on page 578 and “CipherSpec
mappings for the managed .NET client” on page 580.

Key repositories
The key repository on the client side is a Windows keystore. The server side repository is a
Cryptographic Message Syntax (CMS) type of repository. For more information see “Key repositories
for the managed .NET client” on page 581.

Certificates
You can use self-signed TLS certificates to implement mutual authentication between a client and a
queue manager. For more information see “Using certificates for the managed .NET client” on page
582.

SSLPEERNAME
In .NET, applications can use the optional SSLPEERNAME attribute to specify a Distinguished Name
(DN) pattern. For more information see “SSLPEERNAME” on page 582.

FIPS compliance
Enabling FIPS programmatically is not supported by the Microsoft.NET Security library. FIPS
enablement is controlled by the Windows Group Policy setting.

NSA Suite B compliance
IBM MQ implements RFC 6460. The Microsoft.NET implementation for NSA suite B is 5430. This is
supported from .NET Framework 3.5 onwards.

576 Developing Applications for IBM MQ

Secret key reset or renegotiation
Although the SSLStream class does not support secret key resetting or renegotiation, for consistency
with other IBM MQ clients, the .NET managed client allows applications to set SSLKeyResetCount.
For more information see “Secret key reset or renegotiation for the managed .NET client” on page
583.

Revocation check
The SSLStream class supports certificate revocation checking, which is automatically done by the
certificate chaining engine. For more information see “Revocation check” on page 583.

IBM MQ security exit support
The SSLStream class provides limited support for IBM MQ security exits. Querying local and
remote certificates to get SSLPeerNamePtr(Subject DN) and SSLRemCertIssNamePtr (Issuer DN)
is possible since this is supported in Microsoft.NET. However, there is no support for getting attributes
like DNQ, UNSTRUCTUREDNAME and UNSTRUCTUREDADDRESS, so these values cannot be retrieved
using the exits.

Cryptographic hardware support
Cryptographic hardware is not supported for the managed .NET client.

Support for TLS1.3 on managed IBM MQ .NET and XMS .NET clients

From IBM MQ 9.4.0, IBM MQ .NET and XMS .NET clients support TLS1.3 provided that the operating
system supports TLS1.3.

The managed .NET client uses the Microsoft .NET Framework libraries to implement TLS secure socket
protocols. The Microsoft System.Net.SecuritySslStream class operates as a stream over connected
TCP sockets and sends and receives data over that socket connection.

On Windows, .NET uses SCHANNEL, and on Linux .NET uses OpenSSL for SSL Communication.

For IBM MQ .NET client applications running on Windows

Microsoft had announced that Windows 11 and Windows Server 2022 support TSL1.3 ciphers by default.

TLS_AES_128_GCM_SHA256 and TLS_AES_256_GCM_SHA384 cipher suites are enabled by default on
both versions of Windows.

Attention:

• TLS_CHACHA20_POLY1305_SHA256 Cipher Suite is not enabled by default but is supported.
• For an IBM MQ .NET client with TLS1.3 enabled, to connect to a queue manager successfully,

IBM Global Security Kit (GSKit) 8.0.55.29 is the minimum version that is the required at the
queue manager side.

For IBM MQ .NET client applications running on Linux

As .NET uses OpenSSL on Linux for SSL Communication, to use TLS1.3, OpenSSL v1.1.1 is the minimum
requirement.

Additionally, as .NET uses OpenSSL on Linux, all the ciphers supported by OpenSSL should work for .NET
as well.

OpenSSL supports the following CipherSpecs for TLS1.3:

• TLS_AES_256_GCM_SHA384
• TLS_CHACHA20_POLY1305_SHA256
• TLS_AES_128_GCM_SHA256
• TLS_AES_128_CCM_8_SHA256
• TLS_AES_128_CCM_SHA256

Developing applications for IBM MQ 577

Related concepts
“CipherSpec mappings for the managed .NET client” on page 580
The IBM MQ.NET interface maintains an IBM MQ to Microsoft.NET mapping table that is used to
determine the version of the TLS protocol that the managed client needs to use to establish a secure
connection with a queue manager.

TLS protocol support for the managed .NET client
IBM MQ.NET TLS support is based on the .NET SSLStream class.

Note: TLS protocol support for the managed .NET client depends on the .NET Framework level that the
application is using. For more information, see “TLS support for the managed .NET client” on page 576.

For the Microsoft.NET SSLStream class to initialize TLS and perform a hand-shake with the queue
manager, one of the required parameters that you must set is SSLProtocol, where you must specify
the TLS version number, which must be one of the following values:

• SSL3.0
• TLS1.0
• TLS1.2

The value of this parameter is tightly coupled with the Protocol family to which the preferred CipherSpec
belongs. When SSLStream starts an TLS handshake with the server (queue manager), it uses the TLS
version specified in SSLProtocol to identify list of CipherSpecs to be used for negotiation.

IBM MQ.NET does not make any properties available for applications to use to set this value. Instead, IBM
MQ uses a mapping table to internally map the CipherSpec set to the Protocol family and identifies the
SSLProtocol version to be used. This table shows the mapping each of the supported CipherSpec between
Microsoft.NET and IBM MQ, and the Protocol version to which they belong. For more information, see
“CipherSpec mappings for the managed .NET client” on page 580.

CipherSpec support for the managed .NET client
The CipherSpec settings for an application are used during the handshake with the server.

IBM MQ clients allow you to set a CipherSpec value that is used during the handshake with the queue
manager. IBM MQ clients should set a valid CipherSpec for secured connection to establish, preferably
the CipherSpec specified in the Windows group policy. Leaving this field blank indicates a plain-text
channel without any security on the sockets.

For the IBM MQ.NET managed client, the TLS settings are for the Microsoft.NET SSLStream class. For
SSLStream, a CipherSpec, or a preference list of CipherSpecs, can be set only in the Windows group
policy, which is a computer-wide setting. SSLStream then uses the specified CipherSpec or preference list
during the handshake with the server. In case of other IBM MQ clients, the CipherSpec property can be
set in the application on the IBM MQ channel definition and the same setting is used for TLS negotiation.
As a result of this restriction, the TLS handshake might negotiate any supported CipherSpec regardless of
what is specified in the IBM MQ channel configuration. Therefore, it is likely that this will result in error
AMQ9631 on the queue manager. To avoid this error, set the same CipherSpec as the one that you have
set in the application as the TLS configuration in the Windows group policy.

The new IBM MQ.NET TLS client code checks only that the correct protocol version was negotiated. The
TLS protocol version is derived from the CipherSpec that the application sets and is used for the TLS
handshake with the server (queue manager). Hence it is required by design to set the CipherSpec in the
IBM MQ.NET managed client application. If the CipherSpec set by the IBM MQ client is anything other
than the one from the SSL 3.0, TLS 1.0 and TLS 1.2 protocols, the IBM MQ managed .NET client would
negotiate by default with any of the ciphers from SSL 3.0 or TLS 1.0 protocols and it would not report an
error.

Note: If the CipherSpec value supplied by the application is not a CipherSpec known to IBM MQ, then the
IBM MQ managed .NET client disregards it and negotiates the connection based on the Windows system's
group policy.

578 Developing Applications for IBM MQ

Setting a CipherSpec
There are three ways of setting a CipherSpec:

MQEnvironment .NET class
The following example shows how to set a CipherSpec with the MQEnvironment class.

MQEnvironment.SSLKeyRepository = "*USER";
MQEnvironment.ConnectionName = connectionName;
MQEnvironment.Channel = channelName;
MQEnvironment.properties.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_MANAGED);
MQEnvironment.SSLCipherSpec = "TLS_RSA_WITH_AES_128_CBC_SHA";

TLS CipherSpec property
The following example shows how to set a CipherSpec by adding a hashtable parameter into the
MQQueueManager constructor.

properties = new Hashtable();
properties.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_MANAGED);
properties.Add(MQC.HOST_NAME_PROPERTY, hostName);
properties.Add(MQC.PORT_PROPERTY, port);
properties.Add(MQC.CHANNEL_PROPERTY, channelName);
properties.Add(MQC.SSL_CERT_STORE_PROPERTY, sslKeyRepository);
properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, cipherSpec);
properties.Add(MQC.SSL_PEER_NAME_PROPERTY, sslPeerName);
properties.Add(MQC.SSL_RESET_COUNT_PROPERTY, keyResetCount);
queueManager = new MQQueueManager(queueManagerName, properties);

Windows group policy
When a Cipher Suite list is configured via the Windows group policy management console, the
SVRCONN channel definition must specify a matching CipherSpec. A matching CipherSpec could
either be a generic value such as "ANY_TLS12_OR_HIGHER", or a specific value that maps to the
highest Cipher Suite that would be negotiated from the ordered list. The use of generic CipherSpec
values is recommended for use with .NET clients as it avoids needing to change the SVRCONN
CipherSpec configuration if the order of the client list changes.

CCDT usage
IBM MQ.NET only supports Client Channel Definition Tables (.TAB files) that are on a local computer.
Existing CCDT files that have a CipherSpec value set can be used for IBM MQ.NET connections. However,
the CipherSpec value set on the client connection channel determines the TLS protocol version and also
must match the CipherSpec set in the Windows group policy.

Related concepts
“Setting up the IBM MQ environment” on page 566
Before you use the client connection to connect to a queue manager, you must set up the IBM MQ
environment.
“TLS support for the managed .NET client” on page 576
The managed .NET client uses the Microsoft .NET Framework libraries to implement TLS secure socket
protocols. The Microsoft System.Net.SecuritySslStream class operates as a stream over connected TCP
sockets and sends and receives data over that socket connection.
Related tasks
Specifying CipherSpecs
Related reference
MQEnvironment .NET class

Developing applications for IBM MQ 579

CipherSpec mappings for the managed .NET client
The IBM MQ.NET interface maintains an IBM MQ to Microsoft.NET mapping table that is used to
determine the version of the TLS protocol that the managed client needs to use to establish a secure
connection with a queue manager.

If a CipherSpec is specified on the SVRCONN channel, then after the TLS handshake is complete, the
queue manager tries to match that CipherSpec with the negotiated CipherSpec that the client application
is using. If the queue manager cannot find a matching CipherSpec, the communication fails with error
AMQ9631.

The IBM MQ.NET interface maintains an IBM MQ to Microsoft.NET CipherSpec mapping table. This table
is used to determine the TLS protocol version that client wants to use to establish a secured socket
connection with the queue manager. Based on the SSLCipherSpec value, the SSLProtocol version can be
TLS 1.0, or TLS 1.2, depending on which version of the Microsoft.NET Framework you are using.

Make sure that you provide the correct the SSLCipherSpec value as specifying an incorrect value might
result in SSL 3.0 or TLS 1.0 protocols being used.

Table 78. IBM MQ and Microsoft.NET mapping table

IBM MQ CipherSpec Microsoft.NET CipherSpec
TLS
version

TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA TLS 1.0

TLS_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA TLS 1.0

TLS_RSA_WITH_3DES_EDE_CBC_SHA 1 TLS_RSA_WITH_3DES_EDE_CBC_SHA 1 TLS 1.0

TLS_RSA_WITH_AES_128_CBC_SHA25
6

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS 1.2

TLS_RSA_WITH_AES_256_CBC_SHA25
6

TLS_RSA_WITH_AES_256_CBC_SHA256 TLS 1.2

ECDHE_RSA_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA25
6_P256

TLS 1.2

ECDHE_RSA_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA25
6_P384

TLS 1.2

ECDHE_RSA_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA25
6_P521

TLS 1.2

ECDHE_ECDSA_AES_128_CBC_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
256_P256

TLS 1.2

ECDHE_ECDSA_AES_128_CBC_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
256_P384

TLS 1.2

ECDHE_ECDSA_AES_128_CBC_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
256_P521

TLS 1.2

ECDHE_ECDSA_AES_256_CBC_SHA38
4

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384_P384

TLS 1.2

ECDHE_ECDSA_AES_256_CBC_SHA38
4

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384_P521

TLS 1.2

ECDHE_RSA_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA25
6

TLS 1.2

ECDHE_RSA_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA38
4

TLS 1.2

580 Developing Applications for IBM MQ

Table 78. IBM MQ and Microsoft.NET mapping table (continued)

IBM MQ CipherSpec Microsoft.NET CipherSpec
TLS
version

ECDHE_ECDSA_AES_128_GCM_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA
256_P256

TLS 1.2

ECDHE_ECDSA_AES_128_GCM_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA
256_P384

TLS 1.2

ECDHE_ECDSA_AES_128_GCM_SHA25
6

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA
256_P521

TLS 1.2

ECDHE_ECDSA_AES_256_GCM_SHA38
4

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA
384_P384

TLS 1.2

ECDHE_ECDSA_AES_256_GCM_SHA38
4

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA
384_P521

TLS 1.2

TLS_AES_256_GCM_SHA384

TLS_AES_256_GCM_SHA384 TLS 1.3

TLS_CHACHA20_POLY1305_SHA256

TLS_CHACHA20_POLY1305_SHA256 TLS 1.3

TLS_AES_128_GCM_SHA256

TLS_AES_128_GCM_SHA256 TLS 1.3

TLS_AES_128_CCM_8_SHA256

TLS_AES_128_CCM_8_SHA256 TLS 1.3

TLS_AES_128_CCM_SHA256

TLS_AES_128_CCM_SHA256 TLS 1.3

Notes:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can
still be used to transfer up to 32 GB of data before the connection is terminated with error AMQ9288.
To avoid this error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Related concepts
“TLS support for the managed .NET client” on page 576
The managed .NET client uses the Microsoft .NET Framework libraries to implement TLS secure socket
protocols. The Microsoft System.Net.SecuritySslStream class operates as a stream over connected TCP
sockets and sends and receives data over that socket connection.

Key repositories for the managed .NET client
The key repository used by managed .NET clients is the Windows keystore. Certificates and private keys
must be available in either the user or system keystore to be able to be used by the client application for
both identity and trust during a TLS handshake.

Client side
In the application, you can set either of the following values for the key repository:

• "*USER": IBM MQ.NET accesses the current user's certificate store to retrieve the client certificates.
• "*SYSTEM": IBM MQ.NET accesses the local computer account to retrieve the certificates.

Developing applications for IBM MQ 581

The client's certificates must be stored in the My certificate store of the user or computer account. All the
server (CA) certificates must be stored in the root directory of the certificate store.

Note: You can store more than one certificate in a single file in the following formats:

• Personal Information Exchange - PKCS #12 (.PFX, .P12)
• Cryptographic Message Syntax Standard - PKCS #7 Certificates (.P7B)
• Microsoft Serialized Certificate Store (.SST)

Using certificates for the managed .NET client
For client certificates, the IBM MQ managed .NET client accesses the Windows keystore and loads all of
the client's certificates that are matched either by certificate label or matched by the string.

When selecting a certificate to use, the IBM MQ managed .NET client always uses the first matching
certificate for the SSLStream TLS handshake.

Matching certificates by certificate label
If you set the certificate label, the IBM MQ managed .NET client searches the Windows certificate store
with the given label name to identify the client certificate. It loads all matching certificates and uses the
first certificate on the list. There are two options for setting the certificate label:

• The certificate label can set on the MQEnvironment class accessing MQEnvironment.CertificateLabel.
• The certificate label can also be set in a hash table properties, supplied as input parameter with

MQQueueManager constructor as shown in the following example.

Hashtable properties = new Hashtable();
properties.Add("CertificateLabel", "mycert");

The name("CertificateLabel") and the value are case sensitive.

Matching certificates by string
If certificate label is not set, then the certificate that matches the string "ibmwebspheremq" and the
current logged on user (in lowercase) is searched for and used.

Related tasks
Connecting a client to a queue manager securely
Related reference
MQEnvironment .NET class

SSLPEERNAME
The SSLPEERNAME attribute is used to check the Distinguished Name (DN) of the certificate from the
peer queue manager.

In IBM MQ.NET, applications can use SSLPEERNAME to specify a distinguished name pattern as shown in
the following example.

SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

As for other IBM MQ clients, SSLPEERNAME is an optional parameter.

If SSLPEERNAME value is not set, the IBM MQ.NET managed client does not do any Remote(Server)
certificate validation and the managed client just accepts the Remote(/server) certificate as-is.

The way in which you set SSLPEERNAME depends on which of the IBM MQ stack offerings you are using.
IBM MQ classes for .NET

There are three options as follows.

1. Set MQEnvironment.SSLPeerName in the MQEnvironment class.

582 Developing Applications for IBM MQ

2. MQEnvironment.properties.Add(MQC.SSL_PEER_NAME_PROPERTY, value)
3. Use the queue manager constructor MQQueueManager (String queueManagerName,
Hashtable properties). Supply the SSLPEERNAME in the Hashtable properties as for
option 2.

XMS .NET
Set the SSL peer name in the connection factory:

ConnectionFactory.SetStringProperty(XMSC.WMQ_SSL_PEER_NAME, value);

WCF
Include SslPeerName as a semicolon separated field in the URI.

Related reference
MQEnvironment .NET class

Secret key reset or renegotiation for the managed .NET client
The SSLStream class does not support secret key reset/renegotiation. However, to be consistent with
other IBM MQ clients, the IBM MQ managed .NET client allows applications to set SSLKeyResetCount.

When the limit is reached, IBM MQ.NET disconnects from the queue manager and application are notified
of that as an exception with MQRC_CONNECTION_BROKEN as the reason code. Applications can choose
to handle the exception and re-establish connections or enable the MQCNO_RECONNECT option for IBM
MQ.NET to automatically reconnect to the queue manager.

Enabling the automatic client reconnection facility means that, when the key reset count is reached, all
existing connections are brought down and the IBM MQ.NET client re-creates all the connections afresh.
For more information about automatic client reconnection, see Automatic client reconnection.

Related concepts
Resetting SSL and TLS secret keys

Revocation check
The SSLStream class supports certificate revocation checking.

The revocation checking is automatically done by the certificate chaining engine. This applies for both
Online Certificate Status Protocol (OCSP) and Certificate Revocation lists (CRLs). The SSLStream class
uses the certificate revocation that uses only the server specified in the certificate, that is the server is
dictated by the certificate itself. It is possible for HTTP CDP extensions and OCSP HTTP requests to proxy
through HTTP proxy server.

The way in which you set the revocation check depends on which of the IBM MQ stack offerings you are
using.
IBM MQ.NET

The revocation check can be set by accessing the MQEnvironment.SSLCertRevocationCheck
property on the MQEnvironment.cs class file.

XMS .NET
The revocation check can be set on the connection factory property context as shown in the following
example.

ConnectionFactory.SetBooleanProperty(XMSC.WMQ_SSL_CERT_REVOCATION_CHECK, true);

WCF
The revocation check can be set on the URI using the following naming convention.

"SslCertRevocationCheck=true"

Developing applications for IBM MQ 583

Configuring TLS for managed IBM MQ .NET
Configuring TLS for managed IBM MQ .NET consists of creating the signer certificates, then configuring
the server side, the client side, and the application program.

About this task
To configure TLS, you must first create the appropriate signer certificates. Signer certificates can be either
self signed or certificates provided by a certificate authority. Although self-signed certificates can be
used on a development, test or pre-production system, do not use them on a production system. On a
production system, use certificates that you have obtained from a trusted external certificate authority
(CA).

Procedure
1. Create the signer certificates.

a) To create self-signed certificates, use the runmqakm or runmqktool
commands.
For more information, see Creating a self-signed personal certificate on AIX, Linux, and Windows.

b) To obtain certificates for the queue manager and clients from a certificate authority (CA), follow the
instructions in Obtaining personal certificates from a certificate authority.

2. Configure the server side.
a) Configure TLS on the queue manager, using IBM Global Security Kit (GSKit), as described in

Connecting a client to a queue manager securely.
b) Set the SVRCONN channel TLS attributes:

• Set SSLCAUTH to REQUIRED or OPTIONAL.
• Set SSLCIPH to an appropriate CipherSpec.

For more information, see “Enabling TLS for the unmanaged .NET client” on page 575.
3. Configure the client side.

a) Import the client certificates into the Windows certificate store (under the User/Computer account).
IBM MQ .NET accesses client certificates from the Windows certificate store, therefore you must
import your certificates into the Windows certificate store to establish a secure socket connection
to IBM MQ . For more information about how to access the Windows keystore and import the client
side certificates, see Import or export certificates and private keys.

b) Supply the CertificateLabel as described in Connecting a client to a queue manager securely.
c) If needed, edit the Windows Group Policy to set the CipherSpec, then, for the Windows Group

Policy updates to take effect, restart the computer.
4. Configure the application program.

a) Set the MQEnvironment or the SSLCipherSpec value to denote the connection as a secured
connection.
The value that you specify is used to identify the protocol being used (TLS). The CipherSpec set
should be one of the CipherSpecs of the supported SSLProtocol version and it can preferably
be the same as the one specified in the Windows Group Policy. (The supported SSLProtocol
version depends on the .NET framework used. The SSLProtocol version can be TLS 1.0, or TLS
1.2, depending on which version of the Microsoft .NET Framework you are using.)

Note: If the CipherSpec value supplied by the application is not a CipherSpec known to IBM MQ,
then the IBM MQ managed .NET client disregards it and negotiates the connection based on the
Windows system's group policy.

b) Set the SSLKeyRepository property to either "*SYSTEM" or "*USER".
c) Optional: Set SSLPEERNAME to the distinguished name (DN) of the server certificate.
d) Supply the CertificateLabel as described in Connecting a client to a queue manager securely.

584 Developing Applications for IBM MQ

https://support.microsoft.com/en-us/search?query=import-export-certificates-private-keys&p=windows

e) Set any further optional parameters that you require such as KeyResetCount,
CertificationRevocationCheck, and enable FIPS.

Examples of how to set the TLS protocol and TLS key repository

For Base .NET, you can set the TLS protocol and TLS key repository through the MQEnvironment class as
shown in the following example:

MQEnvironment.SSLCipherSpec = "TLS_RSA_WITH_AES_128_CBC_SHA256";
MQEnvironment.SSLKeyRepository = "*USER";

MQEnvironment.properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, "TLS_RSA_WITH_AES_128_CBC_SHA256")

Alternatively, you can set the TLS protocol and TLS key repository by supplying a hashtable as part of the
MQQueueManager constructor as shown in the following example.

Hashtable properties = new Hashtable();
properties.Add(MQC.SSL_CERT_STORE_PROPERTY, sslKeyRepository);
properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, "TLS_RSA_WITH_AES_128_CBC_SHA256")

What to do next
For more information about getting started with developing IBM MQ .NET managed TLS applications,
see“Writing a simple application” on page 585.

Related reference
MQEnvironment .NET class
KeyResetCount (MQLONG)
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

Writing a simple application
Tips for writing a simple IBM MQ managed .NET TLS application, including examples for setting the
SSL properties for connection factories, creating a queue manager instance, connection, session and
destination, and sending a test message.

Before you begin
You must first configure TLS for managed IBM MQ.NET as described in “Configuring TLS for managed IBM
MQ .NET” on page 584.

For application program configuration in base .NET, set SSL properties either using the MQEnvironment
class or by supplying a hashtable as part of the MQQueueManager constructor.

For application program configuration in XMS .NET, you set the SSL properties on the property context of
the connection factories.

Procedure
1. Set the SSL properties for the connection factories as shown in the following examples.

Example for IBM MQ.NET

properties = new Hashtable();
properties.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_MANAGED);
properties.Add(MQC.HOST_NAME_PROPERTY, hostName);
properties.Add(MQC.PORT_PROPERTY, port);
properties.Add(MQC.CHANNEL_PROPERTY, channelName);
properties.Add(MQC.SSL_CERT_STORE_PROPERTY, sslKeyRepository);
properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, cipherSpec);
properties.Add(MQC.SSL_PEER_NAME_PROPERTY, sslPeerName);
properties.Add(MQC.SSL_RESET_COUNT_PROPERTY, keyResetCount);

Developing applications for IBM MQ 585

properties.Add("CertificateLabel", "ibmwebspheremq");
MQEnvironment.SSLCertRevocationCheck = sslCertRevocationCheck;

Example for XMS .NET

cf.SetStringProperty(XMSC.WMQ_SSL_KEY_REPOSITORY, "sslKeyRepository");
cf.SetStringProperty(XMSC.WMQ_SSL_CIPHER_SPEC, cipherSpec);
cf.SetStringProperty(XMSC.WMQ_SSL_PEER_NAME, sslPeerName);
cf.SetIntProperty(XMSC.WMQ_SSL_KEY_RESETCOUNT, keyResetCount);
cf.SetBooleanProperty(XMSC.WMQ_SSL_CERT_REVOCATION_CHECK, true);

2. Create the queue manager instance, connections, session and destination as shown in the following
examples.
Example for MQ .NET

queueManager = new MQQueueManager(queueManagerName, properties);
Console.WriteLine("done");

// accessing queue
Console.Write("Accessing queue " + queueName + ".. ");
queue = queueManager.AccessQueue(queueName, MQC.MQOO_OUTPUT +
MQC.MQOO_FAIL_IF_QUIESCING);
Console.WriteLine("done");

Example for XMS .NET

connectionWMQ = cf.CreateConnection();
// Create session
sessionWMQ = connectionWMQ.CreateSession(false, AcknowledgeMode.AutoAcknowledge);

// Create destination
destination = sessionWMQ.CreateQueue(destinationName);

// Create producer
producer = sessionWMQ.CreateProducer(destination);

3. Send a message as shown in the following examples.
Example for MQ .NET

// creating a message object
message = new MQMessage();
message.WriteString(messageString);

// putting messages continuously
for (int i = 1; i <= numberOfMsgs; i++)
{
Console.Write("Message " + i + " <" + messageString + ">.. ");
queue.Put(message);
Console.WriteLine("put");
}

Example for XMS .NET

textMessage = sessionWMQ.CreateTextMessage();
textMessage.Text = simpleMessage;
producer.Send(textMessage);

4. Verify the TLS connection.
Check the channel status to verify that the TLS connection has been established and is working
correctly.

586 Developing Applications for IBM MQ

Configuring trace for SSLStream
To capture tracing events and messages relating to the SSLStream class, you must add a configuration
section for system diagnostics to the application configuration file for your application.

About this task
Note:

This task applies to IBM MQ classes for .NET Framework only. The application configuration file is not
supported in IBM MQ classes for .NET (.NET Standard and .NET 6 libraries).

If you do not add a configuration section for system diagnostics to the application configuration file, the
IBM MQ managed .NET client will not capture any events, traces or debugging points relating to TLS and
the SSLStream class.

Note: Starting IBM MQ tracing using strmqtrc does not capture all the required TLS tracing.

Procedure
1. Create an application configuration (App.Config) file for your application project.
2. Add a system diagnostics configuration section as shown in the following example.

<system.diagnostics>
 <sources>
 <source name="System.Net" tracemode="includehex">
 <listeners>
 <add name="ExternalSourceTrace"/>
 </listeners>
 </source>
 <source name="System.Net.Sockets">
 <listeners>
 <add name="ExternalSourceTrace"/>
 </listeners>
 </source>
 <source name="System.Net.Cache">
 <listeners>
 <add name="ExternalSourceTrace"/>
 </listeners>
 </source>
 <source name="System.Net.Security">
 <listeners>
 <add name="ExternalSourceTrace"/>
 </listeners>
 </source>
 <source name="System.Security">
 <listeners>
 <add name="ExternalSourceTrace"/>
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="System.Net" value="Verbose"/>
 <add name="System.Net.Sockets" value="Verbose"/>
 <add name="System.Net.Cache" value="Verbose"/>
 <add name="System.Security" value="Verbose"/>
 <add name="System.Net.Security" value="Verbose"/>
 </switches>

 <sharedListeners>
 <add name="ExternalSourceTrace" type="IBM.WMQ.ExternalSourceTrace,
amqmdnet, Version=n.n.n.n, Culture=neutral, PublicKeyToken=dd3cb1c9aae9ec97" />
 </sharedListeners>
 <trace autoflush="true"/>
 </system.diagnostics>

Attention: The Version field of the add name entry needs to be whichever version of the .net
amqmdnet.dll file that is being used.

Related tasks
Tracing IBM MQ classes for .NET Framework clients using an application configuration file

Developing applications for IBM MQ 587

Sample applications for implementing TLS in managed .NET
Sample applications are provided to show the implementation of TLS for managed .NET in IBM MQ
classes for .NET, XMS .NET and IBM MQ custom channel for WCF.

The following table shows the location of the sample applications. MQ_INSTALLATION_PATH represents
the high-level directory in which IBM MQ is installed.

Table 79. Location of sample applications for implementing TLS in managed .NET

IBM MQ.NET stack
offering Location of samples

Base .NET MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\base\SimpleP
ut\SimplePut.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\base\SimpleG
et\SimpleGet.cs

XMS .NET MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\xms\simple\w
mq\SimpleProducer\SimpleProducer.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\xms\simple\w
mq\SimpleConsumer\SimpleConsumer.cs

IBM MQ custom channel
for WCF

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\wcf\samples\
WCF\oneway\service\MQMessagingOneWayService.cs

Using the .NET Monitor
The .NET Monitor is an application similar to an IBM MQ trigger monitor.

Important: See Features that can be used only with the primary installation on Windows for important
information.

You can create .NET components which are instantiated whenever a message is received on a
monitored queue, and which then process that message. The .NET Monitor is started by the runmqdnm
command and stopped by the endmqdnm command. For details of these commands, see runmqdnm and
endmqdnm.

To use the .NET Monitor, you write a component that implements the IMQObjectTrigger interface, which is
defined in amqmdnm.dll.

Components can be either transactional or non-transactional. A transactional component must inherit
from System.EnterpriseServices.ServicedComponent and be registered as either RequiresTransaction or
SupportsTransaction. It must not be registered as RequiresNew as the .NET Monitor has already initiated
a transaction.

The component receives MQQueueManager, MQQueue, and MQMessage objects from runmqdnm. It may
also receive a User Parameter string if one was specified, using the -u command-line option, when
runmqdnm was started. Note that your component receives the contents of a message that arrived on
the monitored queue in an MQMessage object. It does not have to connect to the queue manager, open
the queue, or get the message itself. The component must then process the message as appropriate and
return control to the .NET Monitor.

If your component has been written as a transactional component, it registers to commit or roll back the
transaction using the facilities provided by System.EnterpriseServices.ServicedComponent.

As the component receives MQQueueManager and MQQueue objects as well as the message, it has
complete context information for that message and can, for example, open another queue on the same
queue manager without needing to separately connect to IBM MQ.

588 Developing Applications for IBM MQ

Example code fragments
This topic contains two examples of components which obtain a message from the .NET Monitor and print
it, one using transactional processing and the other non-transactional processing. A third example shows
common utility routines, applicable to both the first two examples. All the examples are in C#.

Example 1: Transactional processing

/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005, 2024. */
/***/
using System;
using System.EnterpriseServices;

using IBM.WMQ;
using IBM.WMQMonitor;

[assembly: ApplicationName("dnmsamp")]

// build:
//
// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll TranAssembly.cs
//
// run (with dotnet monitor)
//
// runmqdnm -m QMNAME -q QNAME -a dnmsamp.dll -c Tran

namespace dnmsamp
{
 [TransactionAttribute(TransactionOption.Required)]
 public class Tran : ServicedComponent, IMQObjectTrigger
 {
 Util util = null;

 [AutoComplete(true)]
 public void Execute(MQQueueManager qmgr, MQQueue queue,
 MQMessage message, string param)
 {
 util = new Util("Tran");

 if (param != null)
 util.Print("PARAM: '" +param.ToString() + "'");

 util.PrintMessage(message);

 //System.Console.WriteLine("SETTING ABORT");
 //ContextUtil.MyTransactionVote = TransactionVote.Abort;

 System.Console.WriteLine("SETTING COMMIT");
 ContextUtil.SetComplete();
 //ContextUtil.MyTransactionVote = TransactionVote.Commit;
 }
 }
}

Example 2: Non-transactional processing

/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005, 2024. */
/***/

using System;

using IBM.WMQ;
using IBM.WMQMonitor;

// build:
//
// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll NonTranAssembly.cs
//
// run (with dotnet monitor)

Developing applications for IBM MQ 589

//
// runmqdnm -m QMNAME -q QNAME -a dnmsamp.dll -c NonTran
namespace dnmsamp
{
 public class NonTran : IMQObjectTrigger
 {
 Util util = null;

 public void Execute(MQQueueManager qmgr, MQQueue queue,
 MQMessage message, string param)
 {
 util = new Util("NonTran");

 try
 {
 util.PrintMessage(message);
 }

 catch (Exception ex)
 {
 System.Console.WriteLine(">>> NonTran\n{0}", ex.ToString());
 }
 }
 }
}

Example 3: Common routines

/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005, 2024. */
/***/

using System;

using IBM.WMQ;

namespace dnmsamp
{
 /// <summary>
 /// Summary description for Util.
 /// </summary>
 public class Util
 {
 /* -- */
 /* Default prefix string of the namespace. */
 /* -- */
 private string prefixText = "dnmsamp";

 /* -- */
 /* Constructor that takes the replacement prefix string to use. */
 /* -- */
 public Util(String text)
 {
 prefixText = text;
 }

 /* -- */
 /* Display an arbitrary string to the console. */
 /* -- */
 public void Print(String text)
 {
 System.Console.WriteLine("{0} {1}\n", prefixText, text);
 }

 /* -- */
 /* Display the content of the message passed to the console. */
 /* -- */
 public void PrintMessage(MQMessage message)
 {
 if (message.Format.CompareTo(MQC.MQFMT_STRING) == 0)
 {
 try
 {
 string messageText = message.ReadString(message.MessageLength);

590 Developing Applications for IBM MQ

 Print(messageText);
 }

 catch(Exception ex)
 {
 Print(ex.ToString());
 }
 }
 else
 {
 Print("UNRECOGNISED FORMAT");
 }
 }

 /* -- */
 /* Convert the byte array into a hex string. */
 /* -- */
 static public string ToHexString(byte[] byteArray)
 {
 string hex = "0123456789ABCDEF";

 string retString = "";

 for(int i = 0; i < byteArray.Length; i++)
 {
 int h = (byteArray[i] & 0xF0)>>4;
 int l = (byteArray[i] & 0x0F);

 retString += hex.Substring(h,1) + hex.Substring(l,1);
 }

 return retString;
 }
 }
}

Compiling IBM MQ .NET programs
Specimen commands to compile .NET applications written in various languages.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To build a C# application using IBM MQ classes for .NET, use the following command:

csc /t:exe /r:System.dll /r:amqmdnet.dll /lib: MQ_INSTALLATION_PATH\bin /out:MyProg.exe
MyProg.cs

To build a Visual Basic application using IBM MQ classes for .NET, use the following command:

vbc /r:System.dll /r: MQ_INSTALLATION_PATH\bin\amqmdnet.dll /out:MyProg.exe MyProg.vb

To build a Managed C++ application using IBM MQ classes for .NET, use the following command:

cl /clr MQ_INSTALLATION_PATH\bin Myprog.cpp

For other languages, see the documentation supplied by the language vendor.

Using the stand-alone IBM MQ .NET client
The IBM MQ .NET client offers you the ability to package and deploy an IBM MQ .NET assembly without
needing to use the full IBM MQ client installation on production systems for running your applications.

Before you begin

From IBM MQ 9.4.0, the amqmdnetstd.dll client library installed in the default location is
based on .NET 6.

Developing applications for IBM MQ 591

From IBM MQ 9.4.0, IBM MQ supports .NET 8 applications using IBM
MQ classes for .NET. If you are using a .NET 6 application, you can run this application without
any recompilation being required by making a small edit in the runtimeconfig file to set the
targetframeworkversion to "net8.0".

The IBM MQ .NET client library built using .NET Standard 2.0,
which was deprecated at IBM MQ 9.3.1, has been removed from the product IBM MQ 9.4.0.

The amqmdnet.dll library is still supplied, but this library is stabilized; that
is, no new features will be introduced into it. For any of the latest features you must migrate to the
amqmdnetstd.dll library. However, you can continue to use the amqmdnet.dll library on IBM MQ 9.1
Long Term Support or Continuous Delivery releases.

About this task
You can build your IBM MQ .NET applications on a machine where the full IBM MQ client is installed and
later package the IBM MQ .NET assembly, that is, amqmdnetstd.dll, along with your application and
deploy it on production systems.

The applications that you build and deploy can be the traditional .NET applications, Services, or Microsoft
Azure Web/Worker applications

In such deployments, the IBM MQ .NET client supports only the managed mode of connectivity to a queue
manager. The server bindings and unmanaged client mode connectivity are not available as these two
modes require a full IBM MQ client installation. Any attempt to use these other two modes results in an
application exception.

Procedure
Referencing the IBM MQ .NET client assembly in applications
• Reference the amqmdnetstd.dll assembly in your application in the same way that you did for

earlier releases.
Set the CopyLocal property of the amqmdnetstd.dll assembly to True to ensure that the
amqmdnetstd.dll assembly is copied to the bin directory of the application. Setting this property
also helps the application packaging tool to package the required binary files for deployment on
production systems as well as Microsoft Azure PaaS cloud environments.

Adding global transaction support
• Ensure that your application deploys the monitor application WMQDotnetXAMonitor on the machine

along with the application itself.
If an application uses the IBM MQ .NET managed global transaction feature, then it must also deploy
the WMQDotnetXAMonitor on the machine along with the application itself. This utility is needed for
recovering any in-doubt transactions.

Starting and stopping trace
• For IBM MQ classes for .NET Framework only, to start and stop trace using the application

configuration file and an IBM MQ specific trace configuration file, see Tracing an IBM MQ classes
for .NET Framework client using an application configuration file.

You must use the application configuration file and an IBM MQ specific trace configuration file
because, since there is no full IBM MQ client installation, the standard tools that are used for starting
and stopping trace, strmqtrc and endmqtrc, are not available.

Notes:

– This way of generating trace applies to the .NET redistributable managed client as well as the
stand-alone .NET client. See .NET application runtime - Windows only.

– The application configuration file is not supported in IBM MQ classes for .NET (.NET Standard
and .NET 6 libraries). To enable trace for IBM MQ classes for .NET (.NET Standard and .NET

592 Developing Applications for IBM MQ

6 libraries), you use the MQDOTNET_TRACE_ON environment variable. See Tracing IBM MQ .NET
applications using environment variables.

•
Start and stop trace by using the mqclient.ini file and setting the appropriate properties of the
Trace stanza.
See Tracing IBM MQ .NET applications with mqclient.ini.

From IBM MQ 9.4.0, you can configure trace by using the mqclient.ini file and setting the
appropriate properties of the Trace stanza. You can also enable and disable tracing dynamically with
the mqclient.ini file.

Enabling binding redirection in the application configuration file
• To enable compile time binding reference of the IBM MQ .NET assembly to a later version of the

assembly, add the <dependentAssembly> property to the application configuration file.
The following example snippet in the app.config file redirects an application that was compiled
using the IBM MQ 8.0.0 Fix Pack 2 (8.0.0.2) version of the IBM MQ .NET assembly but later a fix
pack, IBM MQ 8.0.0 Fix Pack 3, was then applied that updated IBM MQ.NET assembly to 8.0.0.3.

<runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <!-- amqmdnet related binding redirect -->
 <dependentAssembly>
 <assemblyIdentity name="amqmdnet"
 publicKeyToken="dd3cb1c9aae9ec97"
 culture="neutral" />
 <codeBase version="8.0.0.2"
 href="file:///amqmdnet.dll"/>
 <bindingRedirect oldVersion="1.0.0.3-8.0.0.2"
 newVersion="8.0.0.3"/>
 <publisherPolicy apply="no" />
 </dependentAssembly>
 </assemblyBinding>
</runtime>

Related concepts
“Installing IBM MQ classes for .NET” on page 537
IBM MQ classes for .NET, including samples, are installed with IBM MQ on Windows and Linux
Redistributable clients
.NET application runtime - Windows only
Related tasks
“Using the WMQDotnetXAMonitor application” on page 556
The IBM MQ .NET client provides an XA Monitor application, WmqDotnetXAMonitor, that you can use
to recover any incomplete distributed transactions. The WmqDotnetXAMonitor application establishes a
connection to the queue manager where the transactions are in-doubt and then resolves the transaction
based on the parameters that you set.
Tracing IBM MQ .NET applications

OutboundSNI property
You can set the OutboundSNI property in an application by using either a property or an environment
variable.

From IBM MQ 9.3.0, you can set the MQC.OUTBOUND_SNI_PROPERTY in the application, using a hash
table when using the MQQueueManager class to connect to the queue manager.

The MQC.OUTBOUND_SNI_PROPERTY takes the following values:

• MQC.OUTBOUND_SNI_CHANNEL, which maps to "CHANNEL"
• MQC.OUTBOUND_SNI_HOSTNAME, which maps to "HOSTNAME"
• MQC.OUTBOUND_SNI_ASTERISK, which maps to "*"

Developing applications for IBM MQ 593

Additionally, you can set the OutboundSNI property using the MQOUTBOUND_SNI environment variable,
which takes the following values:

• CHANNEL
• HOSTNAME
• *

and set the OutboundSNI value in the App.config file, as with any other mqclient.ini property.

Note: The property defaults to MQC.OUTBOUND_SNI_CHANNEL if no specific value is set.

The order of precedence for setting the OutboundSNI property in the managed node is:

1. Application level property
2. Environment variable

For the OutboundSNI property in unmanaged node, mqclient.ini only is supported.

The properties set in the App.config file are applicable for .NET Framework applications only.

If you provide a value that is not valid at the application level or in the App.config file, the return code
MQRC_OUTBOUND_SNI_NOT_VALID is issued.

If you set an environment variable that is not valid, or provide a value that is not valid in the
mqclient.ini file, the default value of CHANNEL is used.

OutboundSNI and multiple certificates
IBM MQ uses the SNI header to provide multiple certificates functionality. If an application is connecting
to an IBM MQ channel that is configured to use a different certificate through the CERTLABL field, then the
application must connect with an OutboundSNI setting of CHANNEL.

If an application with an OutboundSNI setting of anything other than CHANNEL connects
to a channel with a certificate label configured, the application is rejected with an
MQRC_SSL_INITIALIZATION_ERROR, and an AMQ9673 message is printed in the queue manager error
logs.

For more information on how IBM MQ provides multiple certificate functionality, see How IBM MQ
provides multiple certificates capability .

Developing XMS .NET applications
IBM MQ Message Service Client (XMS) for .NET (XMS .NET) provides an application programming interface
(API) called XMS that has the same set of interfaces as the Java Message Service (JMS) API. IBM MQ
Message Service Client (XMS) for .NET contains a fully managed implementation of XMS, which can be
used by any .NET compliant language.

Before you begin

From IBM MQ 9.4.0, in IBM MQ classes for XMS .NET, the
methods WriteObject(), ReadObject(), CreateObjectMessage(), and the classes ObjectMessage and
XmsObjectMessageImpl used for serialization and deserialization of data are deprecated.

The XMS .NET client library built using.NET Standard 2.0, which
was deprecated at IBM MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

About this task
XMS supports:

• Point-to-point messaging
• Publish/subscribe messaging

594 Developing Applications for IBM MQ

• Synchronous message delivery
• Asynchronous message delivery

An XMS application can exchange messages with the following types of application:

• An XMS application
• An IBM MQ classes for JMS application
• A native IBM MQ application
• A JMS application that is using the IBM MQ default messaging provider

An XMS application can connect to, and use the resources of, any of the following messaging servers:
IBM MQ queue manager

The application can connect in either bindings or client mode.
WebSphere Application Server service integration bus

The application can use a direct TCP/IP connection, or it can use HTTP over TCP/IP.
IBM Integration Bus

Messages are transported between the application and the broker using WebSphere MQ Real-Time
Transport. Messages can be delivered to the application using WebSphere MQ Multicast Transport.

By connecting to an IBM MQ queue manager, an XMS application can use WebSphere MQ Enterprise
Transport to communicate with IBM Integration Bus. Alternatively, an XMS application can publish and
subscribe by connecting to IBM MQ.

IBM MQ 9.4.0 provides an XMS .NET client library built against .NET 6 as the target
framework. For more information, see “Installing IBM MQ classes for XMS .NET” on page 599.

From IBM MQ 9.4.0, IBM MQ supports .NET 8 applications using IBM MQ
classes for XMS .NET. For more information, see “Installing IBM MQ classes for XMS .NET” on page 599.

XMS .NET managed applications are able to automatically balance connections across clustered queue
managers. Both the IBM MQ classes for XMS .NET and the IBM MQ classes for XMS .NET Framework
libraries are supported. For more information, see About uniform clusters and Automatic application
balancing.

For more information about the differences between IBM MQ classes for XMS .NET Framework and IBM
MQ classes for XMS .NET, see “Installing IBM MQ classes for XMS .NET” on page 599.

Related tasks
Contacting IBM Support
Troubleshooting XMS .NETproblems problems

Styles of messaging supported by XMS
XMS supports the point-to-point and publish/subscribe styles of messaging.

Styles of messaging are also called messaging domains.

Point-to-point messaging
A common form of point-to-point messaging uses queuing. In the simplest case, an application sends a
message to another application by identifying, implicitly or explicitly, a destination queue. The underlying
messaging and queuing system receives the message from the sending application and routes the
message to its destination queue. The receiving application can then retrieve the message from the
queue.

If the underlying messaging and queuing system contains IBM Integration Bus, IBM Integration Bus might
replicate a message and route copies of the message to different queues. As a result, more than one
application can receive the message. IBM Integration Bus might also transform a message and add data
to it.

Developing applications for IBM MQ 595

A key characteristic of point-to-point messaging is that an application places a message onto a local
queue when it sends a message. The underlying messaging and queuing system determines which
destination queue the message is sent to. The receiving application retrieves the message from the
destination queue.

Publish/subscribe messaging
In publish/subscribe messaging, there are two types of application: publisher and subscriber.

A publisher supplies information in the form of publication messages. When a publisher publishes a
message, it specifies a topic, which identifies the subject of the information inside the message.

A subscriber is a consumer of the information that is published. A subscriber specifies the topics it is
interested in by creating subscriptions.

The publish/subscribe system receives publications from publishers and subscriptions from subscribers.
It routes publications to subscribers. A subscriber receives publications on only those topics to which it
subscribed.

A key characteristic of publish/subscribe messaging is that a publisher identifies a topic when it publishes
a message. It does not identify the subscribers. If a message is published on a topic for which there are
no subscribers, no application receives the message.

An application can be both a publisher and a subscriber.

The XMS object model
The XMS API is an object-oriented interface. The XMS object model is based on the JMS 1.1 object model.

Main XMS classes
The main XMS classes, or types of object are as follows:
ConnectionFactory

A ConnectionFactory object encapsulates a set of parameters for a connection. An application
uses a ConnectionFactory to create a connection. An application can provide the parameters at
run time and create a ConnectionFactory object. Alternatively, the connection parameters can
be stored in a repository of administered objects. An application can retrieve an object from the
repository and create a ConnectionFactory object from it.

Connection
A Connection object encapsulates an active connection from an application to a messaging server.
An application uses a connection to create sessions.

Destination
An application sends messages or receives messages using a Destination object. In the publish/
subscribe domain, a Destination object encapsulates a topic and, in the point-to-point domain, a
Destination object encapsulates a queue. An application can provide the parameters to create a
Destination object at run time. Alternatively, it can create a Destination object from an object
definition that is stored in repository of administered objects.

Session
A Session object is a single threaded context for sending and receiving messages. An application
uses a Session object to create Message, MessageProducer, and MessageConsumer objects.

Message
A Message object encapsulates the Message object that an application sends using a
MessageProducer object, or receives using a MessageConsumer object.

MessageProducer
A MessageProducer object is used by an application to send messages to a destination.

MessageConsumer
An MessageConsumer object is used by an application to receive messages sent to a destination.

596 Developing Applications for IBM MQ

XMS objects and their relationships
Figure 52 on page 597 shows the main types of XMS object: ConnectionFactory, Connection, Session,
MessageProducer, MessageConsumer, Message, and Destination. An application uses a connection
factory to create a connection, and uses a connection to create sessions. The application can then
use a session to create messages, message producers, and message consumers. The application uses a
message producer to send messages to a destination, and uses a message consumer to receive messages
sent to a destination.

Figure 52. XMS objects and their relationships

In XMS .NET, the XMS classes are defined as a set of .NET interfaces. When you are coding XMS .NET
applications, you need only the declared interfaces.

The XMS object model is based on the domain independent interfaces that are described in Java Message
Service Specification, Version 1.1. Domain-specific classes, such as Topic, TopicPublisher, and
TopicSubscriber, are not provided.

Attributes and properties of XMS objects
An XMS object can have attributes and properties, which are characteristics of the object, that are
implemented in different ways:
Attributes

An object characteristic that is always present and occupies storage, even if the attribute does not
have a value. In this respect, an attribute is similar to a field in a fixed-length data structure. A
distinguishing feature of attributes is that each attribute has its own methods for setting and getting
its value.

Properties
A property of an object is present and occupies storage only after its value is set. A property cannot be
deleted or its storage recovered after its value is set. You can change its value. XMS provides a set of
generic methods for setting and getting property values.

Administered objects
Using administered objects, you can administer the connection settings used by client applications
to be administered from a central repository. An application retrieves object definitions from the
central repository and uses them to create ConnectionFactory and Destination objects. Using
administered objects, you can de-couple applications from the resources that they use at run time.

For example, XMS applications can be written and tested with administered objects that reference
a set of connections and destinations in a test environment. When the applications are deployed,

Developing applications for IBM MQ 597

the administered objects can be changed to configure the applications to refer to connections and
destinations in the production environment.

XMS supports two types of administered object:

• A ConnectionFactory object, which is used by applications to make the initial connection to the
server.

• A Destination object, which is used by applications to specify the destination for messages that are
being sent, and the source of messages that are being received. A destination is either a topic or a
queue on the server to which an application connects.

The administration tool JMSAdmin is supplied with IBM MQ. It is used to create and manage administered
objects in a central repository of administered objects.

The administered objects in the repository can be used by IBM MQ classes for JMS and XMS applications.
XMS applications can use the ConnectionFactory and Destination objects to connect to an IBM
MQ queue manager. An administrator can change the object definitions held in the repository without
affecting application code.

The following diagram shows how an XMS application typically uses administered objects. The left-hand
side of the diagram shows a repository containing ConnectionFactory and Destination object definitions
that are administered using an administration console. The right-hand side of the diagram shows an XMS
application that looks up object definitions in the repository, and then uses these object definitions when
connecting to a messaging server.

Figure 53. Typical use of administered objects by an XMS application

The XMS message model
The XMS message model is the same as the IBM MQ classes for JMS message model.

In particular, XMS implements the same message header fields and message properties that IBM MQ
classes for JMS implements:

• JMS header fields. These fields have names that commence with the prefix JMS.
• JMS defined properties. These fields have properties whose names commence with the prefix JMSX.
• IBM defined properties. These fields have properties whose names commence with the prefix

JMS_IBM_.

As a result, XMS applications can exchange messages with IBM MQ classes for JMS applications. In each
message, some of the header fields and properties are set by the application and others are set by XMS
or IBM MQ classes for JMS. Some of the fields set by XMS or IBM MQ classes for JMS are set when
the message is sent, and others when it is received. Header fields and properties are propagated with a

598 Developing Applications for IBM MQ

message through a messaging server where appropriate. They are made available to any application that
receives the message.

Related concepts
IBM MQ classes for JMS

Installing IBM MQ classes for XMS .NET
IBM MQ classes for XMS .NET, including samples, are installed with IBM MQ on Windows and Linux.

Installation

IBM MQ 9.4.0 provides an XMS .NET client library built against .NET 6 as the target
framework. From IBM MQ 9.4.0, Microsoft .NET 6.0 is the minimum required version for running
applications using IBM MQ libraries that are built using .NET 6 as the target framework. The XMS .NET
client library built using .NET 6 as the target framework is available under MQ_INSTALLATION_PATH/bin
on Windows and under MQ_INSTALLATION_PATH/lib64 on Linux.

From IBM MQ 9.4.0, IBM MQ supports .NET 8 applications using IBM MQ
classes for XMS .NET. If you are using a .NET 6 application, you can run this application without
any recompilation being required by making a small edit in the runtimeconfig file to set the
targetframeworkversion to "net8.0".

From IBM MQ 9.4.0, in IBM MQ classes for XMS .NET, the
methods WriteObject(), ReadObject(), CreateObjectMessage(), and the classes ObjectMessage and
XmsObjectMessageImpl used for serialization and deserialization of data are deprecated.

The XMS .NET client library built using.NET Standard 2.0, which
was deprecated at IBM MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

amqmxmsstd.dll library

From IBM MQ 9.4.0, the amqmxmsstd.dll library built using .NET 6 as the target
framework is available at the following locations:

• On Windows: MQ_INSTALLATION_PATH\bin. The sample applications are installed in
MQ_INSTALLATION_PATH/samp/dotnet/samples/cs/core/base.

• On Linux: MQ_INSTALLATION_PATH\lib64. The .NET samples are in
MQ_INSTALLATION_PATH/samp/dotnet/samples/cs/core/base.

The XMS .NET client library built using .NET Standard 2.0, which
was deprecated at IBM MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

Attention: From IBM MQ 9.4.0, XMS .NET client libraries
built using .NET Standard 2.0 as the target framework are removed. These libraries were
deprecated at IBM MQ 9.3.1.

All the IBM.XMS.* libraries are still supplied, but these libraries are stabilized; that
is, no new features will be introduced into them. For any of the latest features, you must migrate to
the amqmxmsstd.dll library. However, you can continue to use the existing libraries on IBM MQ
9.1 Long Term Support or Continuous Delivery releases.

Here are two scenarios that you might encounter following the removal of the
netstandard2.0 libraries:

• If you are using a IBM MQ classes for XMS .NET Framework application that is built using the
netstandard2.0 libraries such as amqmdnetstd.dll, you need to rebuild your application with

Developing applications for IBM MQ 599

the Microsoft.NET Framework 4.7.2 libraries such as amqmdnet.dll, in order for your application to
run successfully. If you do not rebuild your application, you might get an System.IO.Unexceptionable
message:
Exception caught: System.IO.FileLoadException: Could not load file or assembly 'amqmdnetstd,
Version=9.3.5.0, Culture=neutral, PublicKeyToken=23d6cb914eeaac0e' or one of its dependencies.
The located assembly's manifest definition does not match the assembly reference. (Exception
from HRESULT: 0x80131040)
File name: 'amqmdnetstd, Version=9.3.5.0, Culture=neutral, PublicKeyToken=23d6cb914eeaac0e'
 at SimplePut.SimplePut.PutMessages()
 at SimplePut.SimplePut.Main(String[] args) in C:\SampleCode\Program.cs:line 132

• If you are using a .NET 6 application that is built using netstandard2.0 libraries, then you just need
to replace those libraries with the same .NET 6 libraries in the bin folder of the application runtime
directory. No rebuild is required.

Note: The replacement .NET 6 library should always be of the same or higher level than the replaced
netstandard2.0 library.

The IBM MQ classes for XMS .NET Standard are available for downloading from the NuGet repository.
The NuGet package contains both the amqmxmsstd.dll library and the amqmdnetstd.dll library.
amqmxmsstd.dll is dependent on amqmdnetstd.dll and, while packaging the XMS .NET Core
application, both amqmxmsstd.dll and amqmdnetstd.dll should be packaged along with the
XMS .NET Core application. For more information, see “Downloading IBM MQ classes for XMS .NET from
the NuGet repository” on page 602.

dspmqver command
You can use the dspmqver command to display version and build information for the .NET Core
component.

Comparison between IBM MQ classes for XMS .NET Framework and IBM MQ classes
for XMS .NET .NET 6 libraries and .NET 6 libraries)
The following table lists the features for IBM MQ classes for XMS .NET Framework compared with the
features for IBM MQ classes for XMS .NET and .NET 6 libraries).

Table 80. Differences between IBM MQ classes for XMS .NET Framework and IBM MQ classes for
XMS .NET

Feature IBM MQ classes for XMS .NET
Framework

IBM MQ classes for XMS .NET

Class Names (APIs) All classes remain the same in each
network.

All classes remain the same in each
network.

Operating System Windows Windows
Dockerized containers
Linux
macOS

app.config file
(Configuration file to
enable Trace in
redistributable client)

app.config file is used to enable
trace for the redistributable package.

app.config is not supported. Use
environment variables.

600 Developing Applications for IBM MQ

Table 80. Differences between IBM MQ classes for XMS .NET Framework and IBM MQ classes for
XMS .NET (continued)

Feature IBM MQ classes for XMS .NET
Framework

IBM MQ classes for XMS .NET

Trace To trace the XMS .NET client, you
can use the existing environment
variables, such as the environment
variable XMS_TRACE_ON used to
enable trace. For more information,
see Configuring XMS .NET trace using
XMS environment variables.

For redistributable clients, the
app.config file can be used to
enable trace.

From IBM MQ 9.4.0, you
can enable and disable trace by using
the mqclient.ini file and setting
the appropriate properties of the
Trace stanza. You can also enable
and disable tracing dynamically with
the mqclient.ini file. For more
information, see Tracing IBM MQ .NET
applications with mqclient.ini.

To trace the XMS .NET client, you
can use the existing environment
variables, such as the environment
variable XMS_TRACE_ON used to
enable trace. For more information,
see Configuring XMS .NET trace using
XMS environment variables.

From IBM MQ 9.4.0, you
can enable and disable trace by using
the mqclient.ini file and setting
the appropriate properties of the
Trace stanza. You can also enable
and disable tracing dynamically with
the mqclient.ini file. For more
information, see Tracing IBM MQ .NET
applications with mqclient.ini.

Transport Modes Managed, Unmanaged, and Bindings Managed

TLS The Windows keystore is used for
storing the certificates.

On Windows, the keystore must be
used for storing the certificates.
Permitted values are *USER or
*SYSTEM. Based on the input, the
IBM MQ .NET client looks at the
Windows key store of the current
user, or System wide.

On Linux, it is recommended
to use the X509Store class to
install certificates and .NET Core
installs certificates to the following
location: ".dotnet/corefx/
cryptography/x509stores".

CCDT Supported Supported, and the settings of the
CCDT path are the same as for .NET
Framework classes.

Client auto reconnect Supported Supported

Distributed transactions Supported Not supported

Installation of dynamic
linked libraries (dll's)
into the global assembly
cache (GAC)

Dll's are installed into the GAC as part
of the IBM MQ installation.

Dll's are not installed into the GAC as
part of the IBM MQ installation.

Support for WMQ, WPM,
and RTT connection
types

Supports WMQ, WPM, and RTT
connection types

Support for WMQ only

Developing applications for IBM MQ 601

Table 80. Differences between IBM MQ classes for XMS .NET Framework and IBM MQ classes for
XMS .NET (continued)

Feature IBM MQ classes for XMS .NET
Framework

IBM MQ classes for XMS .NET

JNDI administered
objects

Supports LDAP and FileSystem Supports FileSystem only

From IBM MQ 9.3.0, to run IBM MQ classes for XMS .NET Framework you must install Microsoft.NET
Framework V4.7.2 or later.

Related tasks
“Using the XMS sample applications” on page 608
The XMS .NET sample applications provide an overview of the common features of each API. You can use
them to verify your installation and messaging server setup and to help you build your own applications.

Downloading IBM MQ classes for XMS .NET from the
NuGet repository
The IBM MQ classes for XMS .NET are available for downloading from the NuGet repository, so that they
can be easily consumed by .NET Developers.

About this task
NuGet is the package manager for Microsoft development platforms including .NET. The NuGet client
tools provide the ability to produce and consume packages. A NuGet package is a single compressed file
with the .nupkg extension that contains compiled code (DLLs), other files related to that code, and a
descriptive manifest that includes information like the package's version number.

You can download the IBMXMSDotnetClient NuGet package, which contains the both the
amqmdnetstd.dll library and the amqmxmsstd.dll library, from the NuGet Gallery, which is the
central package repository used by all package authors and consumers.

Note: From IBM MQ 9.4.0, the NuGet package contains libraries built
using .NET 6 as the target framework.

The XMS .NET client library built using .NET Standard 2.0, which was deprecated at IBM MQ
9.3.1, has been removed from the product at IBM MQ 9.4.0.

From IBM MQ 9.4.0, IBM MQ supports .NET 8 applications using IBM MQ
classes for XMS .NET. If you are using a .NET 6 application, you can run this application without
any recompilation being required by making a small edit in the runtimeconfig file to set the
targetframeworkversion to "net8.0".

There are three ways of downloading the IBMXMSDotnetClient package:

• By using Microsoft Visual Studio. NuGet is distributed as a Microsoft Visual Studio extension. From
Microsoft Visual Studio 2012, NuGet is pre-installed by default.

• From the command line using either the NuGet Package Manager or the .NET CLI.
• By using a web browser.

As for the redistributable package, you enable trace by using the environment variable XMS_TRACE_ON.

Procedure
• To download the IBMXMSDotnetClient package by using the Package Manager UI in Microsoft Visual

Studio, complete the following steps:
a) Right-click the .NET project and then click Manage Nuget Packages.

602 Developing Applications for IBM MQ

b) Click the Browse tab and search for "IBMXMSDotnetClient".
c) Select the package and click Install.

During installation, the Package Manager provides progress information in the form of console
statements.

• To download the IBMXMSDotnetClient package from the command line, choose one of the following
options:

• Using the NuGet Package Manager, enter the following command:

 Install-Package IBMXMSDotnetClient -Version 9.1.4.0

During installation, the Package Manager provides progress information in the form of console
statements. You can redirect the output to a log file.

• Using the .NET CLI, enter the following command:

dotnet add package IBMXMSDotnetClient --version 9.1.4

• Using a web browser, download the IBMXMSDotnetClient package from https://www.nuget.org/
packages/IBMXMSDotnetClient.

Related concepts
“Installing IBM MQ classes for .NET” on page 537
IBM MQ classes for .NET, including samples, are installed with IBM MQ on Windows and Linux
IBM MQ Client for .NET license information
Related tasks
“Downloading IBM MQ classes for .NET from the NuGet repository” on page 542
The IBM MQ classes for .NET are available for downloading from the NuGet repository, so that they can be
easily consumed by .NET Developers.

Setting up the messaging server environment
The topics in this section describe how to set up the messaging server environment to allow XMS
applications to connect to a server.

About this task
For applications that connect to an IBM MQ queue manager, the IBM MQ client (or queue manager for
bindings mode) is required.

There are currently no prerequisites for applications that use a real-time connection to a broker.

You must set up the messaging server environment before running any XMS applications, including the
sample applications provided with XMS.

This section contains the following topics:

• “Configuring the queue manager and broker for an application that connects to an IBM MQ queue
manager” on page 606

• “Installing IBM MQ classes for XMS .NET” on page 599
• “Configuring a broker for an application that uses a real-time connection to a broker” on page 607
• “Configuring the service integration bus for an application that connects to WebSphere Application

Server” on page 608

Developing applications for IBM MQ 603

https://www.nuget.org/packages/IBMXMSDotnetClient
https://www.nuget.org/packages/IBMXMSDotnetClient

Message listeners in XMS .NET
A message listener is used to receive messages asynchronously. Unlike the
MessageConsumer.receive() call, the message listener does not block the calling thread, instead
it delivers messages to an application specified callback method, typically the onMessage method.

Message delivery starts once the Connection.Start() method is called. Message delivery can be
stopped and resumed anytime using the Connection.Stop() and Connection.Start() methods
respectively.

Once the Connection.Start() method is called after setting a message listener to at least
one consumer in a session, that session becomes an asynchronous session. Once a session
becomes asynchronous, it is not possible to call any XMS .NET synchronous methods., for
example, MessageProducer.Send(). Doing so results in an exception with IBM MQ reason code
MQRC_HCONN_ASYNC_ACTIVE (2500).

Synchronous calls in an asynchronous session
Session.Close is the only synchronous call that is allowed in an asynchronous session. Applications
can also make synchronous calls (except Session.Close) using the message listener callback
method,that is, the onMessage method.

Other than these two options, you must stop the connection using the Connection.Stop() method for
an application to make any synchronous call. After the calls are made, you must resume the connection
again using the Connection.Start() method. which restarts message delivery.

How many asynchronous message consumers can a session have?
A session can have multiple asynchronous message consumers. But at any time message a message is
delivered to only one consumer. What this practically means is, when a second message arrives while
XMS .NET has called the onMessage() method of a consumer to deliver the first message, the second
message will not be delivered to a consumer in the session until the onMessage() method returns.

The second message is delivered to a consumer in the session only after the onMessage() method
returns. This is because a session manages message delivery to consumers using only one thread. This
means that only one message can be delivered at a time, and the consumer could be any one.

If an application requires concurrent message delivery, that is, all the consumers must receive messages
at the same time, then application must create multiple sessions and each must have one asynchronous
message consumer.

The following examples show this feature more clearly.

In the first example, there are multiple asynchronous message consumers in a session. A session S has
three asynchronous message consumers: AMC1, AMC2 and AMC3 which receive messages from three
different destinations Q1, Q2 and Q3.

As there is only one session S, there is only message delivery thread to deliver messages to consumers
AMC1, AMC2, and AMC3. When the session is delivering message to AMC1, the other two consumers AMC2
and AMC3 wait, even if there are messages in Q2 and Q3 ready for delivery.

604 Developing Applications for IBM MQ

Q1

Q2

Q3

QM1

S

AMC1

AMC2

AMC3

Figure 54. One session with three asynchronous message consumers

In the second case there are multiple sessions S1, S2, and S3, each having one asynchronous message
consumer AMC1, AMC2, and AMC3 respectively. As there is one consumer for each session, messages are
delivered to consumers concurrently.

Q1

Q2

Q3

QM1

S1

S2

S3

AMC1

AMC2

AMC3

Figure 55. Multiple sessions, each with one asynchronous message consumer

This shows that if you require concurrent message delivery, you need multiple sessions.

Developing applications for IBM MQ 605

Configuring the queue manager and broker for an application that connects to
an IBM MQ queue manager
This section assumes that you are using IBM WebSphere MQ 7.0.1, or later. Before you can run an
application that connects to an IBM MQ queue manager, you must configure the queue manager. For a
publish/subscribe application, some additional configuration is required if you are using Queued publish/
subscribe interface.

Before you begin
XMS works with IBM Integration Bus or WebSphere Message Broker 6.1 or later

Before starting this task, carry out the following steps:

• Make sure that your application has access to a queue manager that is running.
• If your application is a publish/subscribe application and uses Queued publish/subscribe interface,

make sure that PSMODE attribute is set to ENABLED on the queue manager.
• Make sure that your application uses a connection factory whose properties are set appropriately to

connect to the queue manager. If your application is a publish/subscribe application, make sure that the
appropriate connection factory properties are set for using the broker. For more information about the
properties of a connection factory, see Properties of ConnectionFactory.

About this task
You configure the queue manager and broker to run XMS applications in the same way that you configure
the queue manager and queued publish/subscribe interface to run IBM MQ JMS applications. The
following steps summarize what you need to do.

Procedure
1. On the queue manager, create the queues that your application needs.

For an overview of how you create queues, see Defining queues.

If your application is a publish/subscribe application and uses Queued publish/subscribe interface
that needs access to IBM MQ classes for JMS system queues, wait until Step 4a before creating the
queues.

2. Grant the user ID associated with your application the authority to connect to the queue manager, and
the appropriate authority to access the queues.

For an overview about authorization, see Securing. If your application connects to the queue manager
in client mode, see also Clients and servers.

3. If your application connects to the queue manager in client mode, make sure that a server connection
channel is defined at the queue manager and that a listener is started.

You do not need to perform this step for each application that connects to the queue manager. One
server connection channel definition and one listener can support all the applications that connect in
client mode.

4. If your application is a publish/subscribe application, and uses Queued publish/subscribe interface,
perform the following steps.
a) On the queue manager, create the IBM MQ classes for JMS system queues by running the script of

MQSC commands that are supplied with IBM MQ. Make sure that the user ID associated with the
IBM Integration Bus or WebSphere Message Broker has the authority to access the queues.

For information about where to find the script and how to run it, see Using IBM MQ classes for Java.

Perform this step only once for the queue manager. The same set of IBM MQ classes for JMS
system queues can support all XMS and IBM MQ classes for JMS applications that connect to the
queue manager.

606 Developing Applications for IBM MQ

b) Grant the user ID associated with your application the authority to access the IBM MQ classes for
JMS system queues.

For information about what authorities the user ID needs, see Using IBM MQ classes for JMS.
c) For a broker of IBM Integration Bus or WebSphere Message Broker, create and deploy a message

flow to service the queue where applications send messages that they publish.

The basic message flow comprises an MQInput message processing node to read the published
messages and a Publication message processing node to publish the messages.

For information about how to create and deploy a message flow, see the IBM Integration Bus
or WebSphere Message Broker product documentation available from the IBM Integration Bus
product documentation library web page.

You do not need to perform this step if a suitable message flow is already deployed at the broker.

Results
You can now start your application.

Configuring a broker for an application that uses a real-time connection to a
broker
Before you can run an application that uses a real-time connection to a broker, you must configure that
broker.

Before you begin
Before starting this task, you perform the following steps:

• Make sure that your application has access to a broker that is running.
• Make sure that your application uses a connection factory whose properties are set appropriately for a

real-time connection to a broker. For more information about the properties of a connection factory, see
Properties of ConnectionFactory.

About this task
You configure a broker to run XMS applications in the same way that you configure a broker to run IBM MQ
classes for JMS applications. The following steps summarize what you need to do:

Procedure
1. Create and deploy a message flow to read messages from the TCP/IP port on which a broker is

listening and publish the messages.

You can do this in either of the following ways:

• Create a message flow that contains a Real-timeOptimizedFlow message processing node.
• Create a message flow that contains a Real-timeInput message processing node and a

Publication message processing node.

You must configure the Real-timeOptimizedFlow or Real-timeInput node to listen on the port
used for real-time connections. In XMS, the default port number for real-time connections is 1506.

You do not need to perform this step if a suitable message flow is already deployed at the broker.
2. If you require messages to be delivered to your application using IBM MQ classes for JMS, configure

the broker to enable multicast. Configure the topics that must be multicast enabled, specifying a
reliable quality of service for those topics requiring reliable multicast.

3. If your application supplies a user ID and a password when it connects to the broker, and you want the
broker to authenticate your application using this information, configure the user name server and the
broker for simple telnet-like password authentication.

Developing applications for IBM MQ 607

https://www.ibm.com/software/integration/ibm-integration-bus/library/
https://www.ibm.com/software/integration/ibm-integration-bus/library/

Results
You can now start your application.

Configuring the service integration bus for an application that connects to
WebSphere Application Server
Before you can run an application that connects to a WebSphere Application Server service integration
technologies service integration bus, you must configure the service integration in the same way that you
configure the service integration bus to run JMS applications that use the default messaging provider.

Before you begin
Before starting this task, you must do the following steps:

• Make sure that a messaging bus is created and that your server is added to the bus as a bus member.
• Make sure that your application has access to a service integration bus that contains at least one

messaging engine that is running.
• If HTTP operation, is required then an HTTP messaging engine inbound transport channel must be
defined. By default, channels for SSL and TCP are defined during the server installation.

• Make sure that your application uses a connection factory whose properties are set appropriately to
connect to the service integration bus using a bootstrap server. The minimum information required is:

– The provider endpoint, which describes the location and protocol to use when negotiating a
connection to the messaging server (that is, via the bootstrap server). In its simplest form, for a
server installed with default settings, the provide endpoint can be set to the host name of the server.

– The name of the bus through which messages are sent.

For more information about the properties of a connection factory, see Properties of ConnectionFactory.

About this task
Any queue or topic spaces that you require must be defined. By default a topic space called
Default.Topic.Space is defined during the server installation but, if you require further topic spaces, you
must create these topic spaces yourself. You do not need to predefine individual topics within a topic
space, since the server instantiates these individual topics dynamically as required.

The following steps summarize what you need to do.

Procedure
1. Create the queues that your application needs for point-to-point messaging.
2. Create any additional topic spaces that your application needs for publish/subscribe messaging.

Results
You can now start your application.

Using the XMS sample applications
The XMS .NET sample applications provide an overview of the common features of each API. You can use
them to verify your installation and messaging server setup and to help you build your own applications.

About this task
If you need help to create your own applications, you can use the sample applications as a starting point.
Both the source and a compiled version are provided for each application. Review the sample source
code and identify the key steps to create each required object for your application (ConnectionFactory,
Connection, Session, Destination, and a Producer, or a Consumer, or both), and to set any specific
properties that are needed to specify how you want your application to work. For more information,

608 Developing Applications for IBM MQ

see “Writing XMS .NET applications” on page 611. The samples are subject to change in future releases
of XMS.

The following table shows the sets of sample applications (one for each API) that are supplied with XMS.

Table 81. Sample applications for XMS .NET

Name of sample Description

SampleConsumerCS A message consumer application that takes messages from a queue or
subscribes to a topic.

SampleProducerCS A message producer application that produces messages to a queue or on
a topic.

SampleConfigCS A configuration application that you can use to create an administered
object repository that is file-based. The application contains a connection
factory and destination for your particular connection settings. This
administered object repository can then be used with each of the sample
consumer and producer applications.

The samples that support the same functions in the various APIs have syntactical differences.

• The sample message consumer and producer applications both support the following functions:

– Connections to IBM MQ, IBM Integration Bus (by using a real-time connection to a broker), and a
WebSphere Application Server service integration bus

– Administered object repository lookups by using the initial context interface
– Connections to queues (IBM MQ and WebSphere Application Server service integration bus) and

topics (IBM MQ, real-time connection to a broker, and WebSphere Application Server service
integration bus)

– Base, byte, map, object, stream, and text messages
• The sample message consumer application supports synchronous and asynchronous receive modes,

and SQL Selector statements.
• The sample message producer application supports persistent and non-persistent delivery modes.

The samples can operate in one of two modes:

Simple mode
You can run the samples with the minimum user input.

Advanced mode
You can customize more finely the way in which the samples operate.

All the samples are compatible and can therefore operate across languages.

IBM MQ supports .NET Core for XMS .NET applications in Windows environments. IBM MQ
classes for .NET Standard, including samples, are installed by default as part of the standard IBM MQ
installation.

 IBM MQ also supports .NET Core for applications in Linux environments.

The sample applications for XMS .NET are installed in &MQINSTALL_PATH&/samp/dotnet/
samples/cs/core/xms.

For more information, see “Installing IBM MQ classes for XMS .NET” on page 599.

Developing applications for IBM MQ 609

Running the .NET sample applications
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.

Before you begin
Before running any of the supplied sample applications, you must first set up the messaging server
environment so that the applications can connect to a server. See “Setting up the messaging server
environment” on page 603.

Procedure
To run a .NET sample application, complete the following steps:

Tip: When you are running a sample application, type ? at any time to get help about what to do next.
1. Select the mode in which you want to run the sample application.

Type either Advanced or Simple.
2. Answer the questions.

To select the default value, which is shown in the brackets at the end of the question, press Enter. To
select a different value, type the appropriate value, and press Enter.

Here is an example question:

Enter connection type [wpm]:

In this case, the default value is wpm (connection to a WebSphere Application Server service
integration bus).

Results
When you run the sample applications, response files are generated automatically in the current
working directory. Response file names are in the format connection_type-sample_type.rsp; for
example, wpm-producer.rsp. If required, you can use the generated response file to rerun the sample
application with the same options, so that you do not have to enter the options again.

Related tasks
Building the .NET sample applications
When you build a sample .NET application, an executable version of your chosen sample is created.
Building your own applications
You build your own applications like you build the sample applications.

Building the .NET sample applications
When you build a sample .NET application, an executable version of your chosen sample is created.

Before you begin
Install the appropriate compiler. This task assumes that you have Microsoft Visual Studio 2012 installed,
and that you are familiar with using it.

Procedure
To build a .NET sample application, complete the following steps:
1. Click the Samples.sln solution file provided with the .NET samples.
2. Right-click the solution Samples in the Solution Explorer window and select Build Solution.

610 Developing Applications for IBM MQ

Results
An executable program is created in the appropriate subfolder of the sample, either bin/Debug or bin/
Release, depending on the configuration that you have chosen. This program has the same name as the
folder, with a suffix of CS. For example, if you are building the C# version of the message producer sample
application, SampleProducerCS.exe is created in the SampleProducer folder.
Related tasks
Running the .NET sample applications
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.
Building your own applications
You build your own applications like you build the sample applications.
“Building your own applications” on page 611
You build your own applications like you build the sample applications.

Building your own applications
You build your own applications like you build the sample applications.

Before you begin
Install the appropriate compiler. This task assumes that you have Microsoft Visual Studio 2012 installed,
and that you are familiar with using it.

Procedure
• Build your .NET application, as described in “Building the .NET sample applications” on page 610.

For additional guidance on how to build your own applications, use the makefiles provided for each
sample application.

Tip: To assist with problem diagnosis in the event of a failure, you might find it helpful to compile
applications with symbols included.

Related tasks
Running the .NET sample applications
You can run the .NET sample applications interactively in either simple or advanced mode, or
noninteractively by using auto-generated or customized response files.
Building the .NET sample applications
When you build a sample .NET application, an executable version of your chosen sample is created.

Writing XMS .NET applications
This section provides information to help you when writing XMS .NET applications, including information
about properties, data types, and error handling.

Before you begin

From IBM MQ 9.4.0, in IBM MQ classes for XMS .NET, the
methods WriteObject(), ReadObject(), CreateObjectMessage(), and the classes ObjectMessage and
XmsObjectMessageImpl used for serialization and deserialization of data are deprecated.

The XMS .NET client library built using.NET Standard 2.0, which
was deprecated at IBM MQ 9.3.1, has been removed from the product at IBM MQ 9.4.0.

From IBM MQ 9.2.0, the number of XMS .NET dynamic link libraries has been significantly reduced, to a
total of five. The five dynamic link libraries are:

• IBM.XMS.dll - includes all the national language messages
• IBM.XMS.Comms.RMM.dll

Developing applications for IBM MQ 611

• Three policy dynamic link libraries:

– policy.8.0.IBM.XMS.dll
– policy.9.0.IBM.XMS.dll
– policy.9.1.IBM.XMS.dll

In XMS .NET, all strings are passed using the native .NET string. Because this has a fixed encoding, no
further information is required to interpret it. Therefore the XMSC_CLIENT_CCSID property is not required
for XMS .NET applications.

About this task
This section contains the following topics:

• “Managed and unmanaged operations in .NET” on page 612
• “The threading model” on page 614
• “Properties in XMS .NET” on page 614
• “ConnectionFactories and Connection objects” on page 615
• “Sessions” on page 617
• “Destinations” on page 621
• “Message producers” on page 624
• “Message consumers” on page 624
• “Queue browsers” on page 627
• “Requestors” on page 628
• “Object deletion” on page 628
• “Data types for XMS .NET” on page 629
• “XMS primitive types” on page 630
• “Implicit conversion of a property value from one data type to another” on page 630
• “Iterators” on page 632
• “Error handling in XMS .NET” on page 633
• “Using message and exception listeners in .NET” on page 633
• “Automatic IBM MQ Client reconnection through XMS” on page 634

Managed and unmanaged operations in .NET
Managed code is executed exclusively within the .NET common language runtime environment and is
wholly dependent on the services provided by that runtime. An application is classed as unmanaged if any
part of the application runs or calls services outside of the .NET common language runtime environment.

Certain advanced functionality cannot currently be supported within the managed .NET environment.

If your application requires some functionality that is not currently supported in the fully managed
environment, then you can change your application to use the unmanaged environment without requiring
substantial change to your application. However, you should note that the XMS stack makes use of
unmanaged code when this selection is made.

Connections to an IBM MQ queue manager
Managed connections to WMQ_CM_CLIENT will not support non-TCP communications, and channel
compression. However, these connections might be supported by using an unmanaged connection
(WMQ_CM_CLIENT_UNMANAGED). For more information, see “Developing .NET applications” on page
535.

If you create a connection factory from an administered object in an unmanaged environment, you must
manually change the value for the connection mode to XMSC_WMQ_CM_CLIENT_UNMANAGED.

612 Developing Applications for IBM MQ

Connections to a WebSphere Application Server service integration bus messaging
engine
Connections to a WebSphere Application Server service integration bus messaging engine that require the
use of the SSL protocol (including HTTPS) are not currently supported as managed code.

Using the IBM MQ XMS .NET project template
The IBM MQ XMS .NET client offers you the ability to use a project template to assist you in developing
your XMS .NET Core applications.

Before you begin
You must have Microsoft Visual Studio 2017, or later, and .NET Core 2.1 on your system.

You must copy the XMS .NET template from the

&MQ_INSTALL_ROOT&\tools\dotnet\samples\cs\core\xms\ProjectTemplates\IBMXMS.NETC
lientApp.zip

directory to the

&USER_HOME_DIRECTORY&\Documents\&Visual_Studio_Version&\Templates\ProjectTempla
tes

directory, where:

• &MQ_INSTALL_ROOT is the root directory of your installation
• &USER_HOME_DIRECTORY is your home directory.

You must stop and restart Microsoft Visual Studio to pick up the template.

About this task
The XMS .NET project template includes some common code that you can use to help develop your
applications. With the in-built code, you can connect to the IBM MQ queue manager, and perform a put or
a get operation by simply modifying the properties in the in-built code.

Procedure
1. Open Microsoft Visual Studio.
2. Click on File, followed by New and then Project.
3. In the Create a new project window, select IBM XMS .NET Client App (.NET Core) and click

Next.
4. In the Configure your new project window, change the Project name of your project if you want to, and

click Create to create the XMS .NET project.
XMSDotnetApp.cs is the file that is created along with the project file. This file contains the code
which connects to the queue manager, and performs a send and receive operation.
The connection properties are set to default values:

• WMQ_CONNECTION_NAME_LIST is set to localhost(1414)
• XMSC.WMQ_CHANNEL is set to DOTNET.SVRCONN

The queue is set to Q1, and you can modify these properties accordingly.
5. Compile and run the application.

Related concepts
IBM MQ components and features
.NET application runtime - Windows only

Developing applications for IBM MQ 613

The threading model
General rules govern how a multithreaded application can use XMS objects.

• Only objects of the following types can be used concurrently on different threads:

– ConnectionFactory
– Connection
– ConnectionMetaData
– Destination

• A Session object can be used on only a single thread at any one time.

Exceptions to these rules are indicated by entries labeled "Thread context" in the interface definitions of
the methods in IBM Message Service Client for .NET reference.

Properties in XMS .NET
A .NET application uses the methods in the PropertyContext interface to get and set the properties of
objects. The handling of non-existent properties in the XMS .NET is broadly consistent with the JMS
specification, and also with the C and C++ implementations of XMS.

XMS .NET properties and their values
The PropertyContext interface encapsulates methods that get and set properties. These methods are
inherited, directly or indirectly, by the following classes:

• BytesMessage
• Connection
• ConnectionFactory
• ConnectionMetaData
• Destination
• MapMessage
• Message
• MessageConsumer
• MessageProducer
• ObjectMessage
• QueueBrowser
• Session
• StreamMessage
• TextMessage

If an application sets the value of a property, the new value replaces any previous value the property had.
For more information about XMS properties, see Properties of XMS objects.

For ease of use, XMS property names and values in XMS are predefined as public constants in a struct
called XMSC. The names of these constants are in the form XMSC.constant; for example, XMSC.USERID (a
property name constant) and XMSC.DELIVERY_AS_APP (a value constant).

Additionally, you can access IBM MQ constants by using the IBM.XMS.MQC struct. If the IBM.XMS
namespace is already imported, you can access the values for these properties in the form MQC.constant.
For example, MQC.MQRO_COA_WITH_FULL_DATA.

If you have a hybrid application that uses both XMS .NET and IBM MQ classes for .NET and that imports
both IBM.XMS and IBM.WMQ namespaces, then you must fully qualify the MQC struct namespace to
ensure that each occurrence is unique.

614 Developing Applications for IBM MQ

Note: Some advanced functionality is not currently supported within the managed .NET environment. For
more information, see “Managed and unmanaged operations in .NET” on page 612.

Handling of non-existent properties in XMS .NET
In JMS, accessing a non-existent property can result in a Java system exception when a method tries
to convert the non-existent (null) value to the required type. If a property does not exist the following
exceptions occur:

• getStringProperty and getObjectProperty return null
• getBooleanProperty returns false because Boolean.valueOf(null) returns false
• getIntProperty etc.throw java.lang.NumberFormatException because Integer.valueOf(null) throws the

exception

If a property does not exist in XMS .NET, the following exceptions occur:

• GetStringProperty and GetObjectProperty (and GetBytesProperty) return null (which is the same as
Java)

• GetBooleanProperty throws System.NullReferenceException
• GetIntProperty etc. throws System.NullReferenceException

This implementation is different from Java, but it is broadly consistent with the JMS specification,
and with the XMS C and C++ interfaces. Like the Java implementation, XMS .NET propagates any
exceptions from the System.Convert call to the caller. Unlike Java however, XMS explicitly throws
NullReferenceExceptions rather than just using the native behavior of the .NET framework through
passing null to system conversion routines. If your application sets a property to a String like "abc"
and calls GetIntProperty, the System.FormatException thrown by Convert.ToInt32("abc") is propagated to
the caller, which is consistent with Java. MessageFormatException is thrown only if the types used for
setProperty and getProperty are incompatible. This behavior is also consistent with Java.

ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a Connection object.
The application uses the Connection object to create a Session object.

For .NET, XMS application first uses an XMSFactoryFactory object to get a reference to a
ConnectionFactory object that is appropriate to the required type of protocol. This ConnectionFactory
object can then produce connections only for that protocol type.

An XMS application can create multiple connections, and a multithreaded application can use a single
Connection object concurrently on multiple threads. A Connection object encapsulates a communications
connection between an application and a messaging server.

A connection serves several purposes:

• When an application creates a connection, the application can be authenticated.
• An application can associate a unique client identifier with a connection. The client identifier is used to

support durable subscriptions in the publish/subscribe domain. The client identifier can be set in two
ways:

The preferred way of assigning a connections client identifier, is to configure in a client-specific
ConnectionFactory object using properties and transparently assign it to the connection it creates.

An alternative way of assigning a client identifier is to use a provider-specific value that is set on the
Connection object. This value does not override the identifier that has been administratively configured.
It is provided for the case where no administratively specified identifier exists. If an administratively
specified identifier does exist, an attempt to override it with a provider-specific value causes an
exception to be thrown. If an application explicitly sets an identifier, it must do it immediately after
creating the connection and before any other action on the connection is taken; otherwise, an exception
is thrown.

Developing applications for IBM MQ 615

An XMS application typically creates a connection, one or more sessions, and a number of message
producers and message consumers.

Creating a connection is relatively expensive in terms of system resources because it involves establishing
a communications connection, and it might also involve authenticating the application.

Connection started and stopped mode
A connection can operate in either started or stopped mode.

When an application creates a connection, the connection is in stopped mode. When the connection is in
stopped mode, the application can initialize sessions, and it can send messages but cannot receive them,
either synchronously or asynchronously.

An application can start a connection by calling the Start Connection method. When the connection
is in started mode, the application can send and receive messages. The application can then stop and
restart the connection by calling the Stop Connection and Start Connection methods.

Connection closure
An application closes a connection by calling the Close Connection method. When an application closes a
connection, XMS performs the following actions:

• It closes all the sessions associated with the connection and deletes certain objects associated with
these sessions. For more information about which objects are deleted, see “Object deletion” on page
628. At the same time, XMS rolls back any transactions currently in progress within the sessions.

• It ends the communications connection with the messaging server.
• It releases the memory and other internal resources used by the connection.

XMS does not acknowledge the receipt of any messages that it has failed to acknowledge during
a session, prior to closing the connection. For more information about acknowledging the receipt of
messages, see “Message acknowledgment” on page 618.

Exception handling
XMS .NET exceptions are all derived from System.Exception. For more information, see “Error handling in
XMS .NET” on page 633.

Connection to a service integration bus
An XMS application can connect to a WebSphere Application Server service integration bus either by using
a direct TCP/IP connection or by using HTTP over TCP/IP.

The HTTP protocol can be used in situations where a direct TCP/IP connection is not possible. One
common situation is when communicating through a firewall, such as when two enterprises exchange
messages. Using HTTP to communicate through a firewall is often referred to as HTTP tunneling. HTTP
tunneling, however, is inherently slower than using a direct TCP/IP connection because HTTP headers
add significantly to the amount of data that is transferred, and because the HTTP protocol requires more
communication flows than TCP/IP.

To create a TCP/IP connection, an application can use a connection
factory whose XMSC_WPM_TARGET_TRANSPORT_CHAIN property is set to
XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC. This is the default value of the property. If the
connection is created successfully, the XMSC_WPM_CONNECTION_PROTOCOL property of the connection
is set to XMSC_WPM_CP_TCP.

To create a connection that uses HTTP, an application must use a connection factory whose
XMSC_WPM_TARGET_TRANSPORT_CHAIN property is set to the name of an inbound transport chain,
that is configured to use an HTTP transport channel. If the connection is created successfully, the
XMSC_WPM_CONNECTION_PROTOCOL property of the connection is set to XMSC_WPM_CP_HTTP. For

616 Developing Applications for IBM MQ

information about how to configure transport chains, see Configuring transport chains in the WebSphere
Application Server product documentation.

An application has a similar choice of communication protocols when connecting to a bootstrap server.
The XMSC_WPM_PROVIDER_ENDPOINTS property of a connection factory is a sequence of one or more
endpoint addresses of bootstrap servers. The bootstrap transport chain component of each endpoint
address can be either XMSC_WPM_BOOTSTRAP_TCP, for a TCP/IP connection to a bootstrap server or
XMSC_WPM_BOOTSTRAP_HTTP, for a connection that uses HTTP.

Sessions
A session is a single threaded context for sending and receiving messages.

An application can use a session to create messages, message producers, message consumers, queue
browsers, and temporary destinations. An application can also use a session to run local transactions.

An application can create multiple sessions, where each session produces and consumes messages
independently of the other sessions. If two message consumers in separate sessions (or even in the same
session) subscribe to the same topic, each receives a copy of any message published on that topic.

Unlike a Connection object, a Session object cannot be used concurrently on different threads. Only the
Close Session method of a Session object can be called from a thread other than the one that the Session
object is using at the time. The Close Session method ends a session and releases any system resources
allocated to the session.

If an application must process messages concurrently on more than one thread, the application must
create a session on each thread, and then use that session for any send or receive operation within that
thread.

Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.

The information in this topic is relevant only if an application connects to an IBM MQ queue manager or
a WebSphere Application Server service integration bus. The information is not relevant for a real-time
connection to a broker.

To run local transactions, an application must first create a transacted session by calling the Create
Session method of a Connection object, specifying as a parameter that the session is transacted.
Subsequently, all messages sent and received within the session are grouped into a sequence of
transactions. A transaction ends when the application commits or rolls back the messages it has sent
and received since the transaction began.

To commit a transaction, an application calls the Commit method of the Session object. When a
transaction is committed, all messages sent within the transaction become available for delivery to other
applications, and all messages received within the transaction are acknowledged so that the messaging
server does not attempt to deliver them to the application again. In the point-to-point domain, the
messaging server also removes the received messages from their queues.

To roll back a transaction, an application calls the Rollback method of the Session object. When a
transaction is rolled back, all messages sent within the transaction are discarded by the messaging
server, and all messages received within the transaction become available for delivery again. In the
point-to-point domain, the messages that were received are put back on their queues and become visible
to other applications again.

A new transaction starts automatically when an application creates a transacted session or calls the
Commit or Rollback method. Therefore, a transacted session always has an active transaction.

When an application closes a transacted session, an implicit rollback occurs. When an application closes a
connection, an implicit rollback occurs for all the connection's transacted sessions.

A transaction is wholly contained within a transacted session. A transaction cannot span sessions. This
means that it is not possible for an application to send and receive messages in two or more transacted
sessions and then commit or roll back all these actions as a single transaction.

Developing applications for IBM MQ 617

Related concepts
Message acknowledgment
Every session that is not transacted has an acknowledgment mode that determines how messages
received by the application are acknowledged. Three acknowledgment modes are available, and the
choice of acknowledgment mode affects the design of the application.
Message delivery
XMS supports persistent and nonpersistent modes of message delivery, and asynchronous and
synchronous delivery of messages.
Managed IBM MQ XA transactions through XMS
Managed IBM MQ XA transactions can be used through XMS.

Message acknowledgment
Every session that is not transacted has an acknowledgment mode that determines how messages
received by the application are acknowledged. Three acknowledgment modes are available, and the
choice of acknowledgment mode affects the design of the application.

Note: This topic is relevant only if an application connects to an IBM MQ queue manager or a WebSphere
Application Server service integration bus. The information is not relevant for a real-time connection to a
broker.

XMS uses the same mechanism for acknowledging the receipt of messages that JMS uses.

If a session is not transacted, the way that messages received by the application are acknowledged is
determined by the acknowledgment mode of the session. There are three acknowledgment modes:
XMSC_AUTO_ACKNOWLEDGE

The session automatically acknowledges each message received by the application.
If messages are delivered synchronously to the application, the session acknowledges receipt of a
message every time a Receive call completes successfully. If the application receives a message
successfully, but a failure prevents acknowledgment from occurring, the message becomes available
for delivery again. The application must therefore be able to handle a message that is redelivered.

XMSC_DUPS_OK_ACKNOWLEDGE
The session acknowledges the messages received by the application at times it selects.
Using this acknowledgment mode reduces the amount of work the session must do, but a failure that
prevents message acknowledgment might result in more than one message becoming available for
delivery again. The application must therefore be able to handle messages that are redelivered.

XMSC_CLIENT_ACKNOWLEDGE
The application acknowledges the messages it receives by calling the Acknowledge method of the
Message class.
The application can acknowledge the receipt of each message individually, or it can receive a batch
of messages and call the Acknowledge method only for the last message it receives. When the
Acknowledge method is called all messages received since the last time the method was called are
acknowledged.

In conjunction with any of these acknowledgment modes, an application can stop and restart the delivery
of messages in a session by calling the Recover method of the Session class. Messages whose receipt was
previously unacknowledged are redelivered. However, they might not be delivered in the same sequence
in which they were previously delivered. In the meantime, higher priority messages might have arrived,
and some of the original messages might have expired. In the point-to-point domain, some of the original
messages might have been consumed by another application.

An application can determine whether a message is being re-delivered by examining the contents of the
JMSRedelivered header field of the message. The application does this by calling the Get JMSRedelivered
method of the Message class.

Related concepts
Transacted sessions

618 Developing Applications for IBM MQ

XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.
Message delivery
XMS supports persistent and nonpersistent modes of message delivery, and asynchronous and
synchronous delivery of messages.
Managed IBM MQ XA transactions through XMS
Managed IBM MQ XA transactions can be used through XMS.

Message delivery
XMS supports persistent and nonpersistent modes of message delivery, and asynchronous and
synchronous delivery of messages.

Message delivery modes
XMS supports two modes of message delivery:

• Persistent

Persistent messages are delivered once. A messaging server takes special precautions, such as logging
the messages, to ensure that persistent messages are not lost in transit, even in the event of a failure.

• Nonpersistent

Nonpersistent messages are delivered no more than once. Nonpersistent messages are less reliable
than persistent messages because they can be lost in transit in the event of a failure.

The choice of delivery mode is a trade-off between reliability and performance. Nonpersistent messages
are typically transported more quickly than persistent messages.

Asynchronous message delivery
XMS uses one thread to handle all asynchronous message deliveries for a session. This means that only
one message listener function or one onMessage() method can run at a time.

If more than one message consumer in a session is receiving messages asynchronously, and a message
listener function or onMessage() method is delivering a message to a message consumer, then any
other message consumers that are waiting for the same message must continue to wait. Other messages
that are waiting to be delivered to the session must also continue to wait.

If an application requires concurrent delivery of messages, create more than one session so that XMS
uses more than one thread to handle asynchronous message delivery. In this way, more than one
message listener function or onMessage() method can run concurrently.

A session is not made asynchronous by assigning a message listener to a consumer. A session
becomes asynchronous only when the Connection.Start method is called. All synchronous calls are
permitted until the Connection.Start method is called. Message delivery to consumers start when the
Connection.Start is called.

If synchronous calls, such as creation of a consumer or producer, must be made on an asynchronous
session, the Connection.Stop must be called. A session can be resumed by calling the
Connection.Start method to start delivery of messages. The only exception to this is the Session
message delivery thread, which is the thread that delivers messages to the callback function. This thread
can to make any call on session (except a Close call) in the message callback function.

Note: In Unmanaged mode, the MQDISC call within a call-back function is not supported by
the IBM MQ .NET client. So, the client application cannot Create or Close sessions within the
MessageListener callback in Asynchronous receive mode. Create and dispose the session outside of the
MessageListener method.

Developing applications for IBM MQ 619

Synchronous message delivery
Messages are delivered synchronously to an application if the application uses the Receive methods of
MessageConsumer objects.

Using the Receive methods, an application can wait a specified period of time for a message, or it can wait
indefinitely. Alternatively, if an application does not want to wait for a message, it can use the Receive
with No Wait method.

Related concepts
Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.
Message acknowledgment
Every session that is not transacted has an acknowledgment mode that determines how messages
received by the application are acknowledged. Three acknowledgment modes are available, and the
choice of acknowledgment mode affects the design of the application.
Managed IBM MQ XA transactions through XMS
Managed IBM MQ XA transactions can be used through XMS.

Managed IBM MQ XA transactions through XMS
Managed IBM MQ XA transactions can be used through XMS.

To use XA transactions through XMS, a transacted session has to be created. When XA transaction
is in use, the transaction control is through Distributed Transaction Coordinator (DTC) global
transactions and it is not though XMS sessions. When using XA transactions, Session.commit or
Session.rollback cannot be issued on the XMS session. Instead, use the Transscope.Commit or
Transscope.Rollback DTC methods commit or roll back the transactions. If a session is used for
XA transaction, the producer or consumer that are created using the session must be a part of the XA
transaction. They cannot be used for any operations outside the XA transaction scope. They cannot be
used for operations like Producer.send or Consumer.receive outside the XA transaction.

An IllegalStateException exception object is thrown if:

• XA transacted session is used for Session.commit or Session.rollback.
• Producer or consumer objects which are once used in XA transacted session are used out side the XA

transaction scope.

The XA transactions are not supported in asynchronous consumers.

Note:

1. A close might be issued on the Producer, Consumer, Session, or Connection object before the XA
transaction commit. In which cases the messages in the transaction are rolled back. Similarly, if the
connection is broken before the XA transaction commit, all the messages in the transaction are rolled
back. For a Producer object, a rollback means that the messages are not put on the queue. For a
Consumer object, a rollback means that the messages remain on the queue.

2. If a Producer object puts a message with TimeToLive in the TransactionScope and a commit is
issued after the time is elapsed, the message can expire before the commit is issued. In this case, the
message is not made available to Consumer objects.

3. Session objects are not supported across threads. The use of transactions with Session objects that
are shared across threads is not supported.

Related concepts
Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager or service integration bus to which the application is connected.
Message acknowledgment

620 Developing Applications for IBM MQ

Every session that is not transacted has an acknowledgment mode that determines how messages
received by the application are acknowledged. Three acknowledgment modes are available, and the
choice of acknowledgment mode affects the design of the application.
Message delivery
XMS supports persistent and nonpersistent modes of message delivery, and asynchronous and
synchronous delivery of messages.

Destinations
An XMS application uses a Destination object to specify the destination of messages that are being sent,
and the source of messages that are being received.

An XMS application can either create a Destination object at run time, or obtain a predefined destination
from the repository of administered objects.

As with a ConnectionFactory, the most flexible way for an XMS application to specify a destination is
to define it as an administered object. Using this approach, applications written in C, C++, and .NET
languages, and Java, can share definitions of the destination. The properties of administered Destination
objects can be changed without changing any code.

Destinations in .NET
In .NET, destinations are created according to protocol type and can be used only on the protocol type for
which they are created. Two methods are provided for creating destinations, one for topics and one for
queues:

• IDestination CreateTopic(String topic);
• IDestination CreateQueue(String queue);

These methods are available on the following two objects in the .NET API:

• ISession
• XMSFactoryFactory

In both cases, these methods can accept a URI style string, which can include parameters, in the
following format:

"topic://some/topic/name?priority=5"

Alternatively, these methods can accept a destination name only, that is, a name without a topic:// or
queue:// prefix and without parameters. This means that the following URI style string:

CreateTopic("topic://some/topic/name");

would produce the same result as the following destination name:

CreateTopic("some/topic/name");

For more information, see IDestination.

As for WebSphere Application Server service integration bus JMS, topics can also be specified in a
shorthand form, which includes both the topicname and topicspace but cannot include parameters:

CreateTopic("topicspace:topicname");

Developing applications for IBM MQ 621

Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.

The URI for a topic begins with the sequence topic://, followed by the name of the topic and (optional) a
list of name-value pairs that set the remaining topic properties. A topic name cannot be empty.

Here is an example in a fragment of .NET code:

topic = session.CreateTopic("topic://Sport/Football/Results?multicast=7");

For more information about the properties of a topic, including the name and valid values that you can use
in a URI, see Properties of Destination.

When specifying a topic URI for use in a subscription, wildcards can be used. The syntax for these
wildcards depends on the connection type and broker version; the following option is available:

• WebSphere Application Server service integration bus

WebSphere Application Server service integration bus
WebSphere Application Server service integration bus uses the following wildcard characters:

* to match any characters at one level in the hierarchy
// to match 0 or more levels
//. to match 0 or more levels (at the end of a Topic expression)

Table 82 on page 622 gives some examples of how to use this wildcard scheme.

Table 82. Example URIs using wildcard scheme for WebSphere Application Server service integration bus

Uniform Resource
Identifier Matches Examples

"topic://Sport/*ball/
Results"

All topics with a single hierarchical level
name ending in "ball" between Sport
and Results

"topic://Sport/Football/Results" and
"topic://Sport/Netball/Results"

"topic://Sport//
Results"

All topics starting with "Sport/" and
ending in "/Results"

"topic://Sport/Football/Results"
and "topic://Sport/Hockey/National/Div3/
Results"

"topic://Sport/
Football//."

All topics starting with "Sport/Football/" "topic://Sport/Football/Results"
and "topic://Sport/Football/TeamNews/
Signings/Managerial"

"topic://Sport/*ball//
Results//."

Topics "topic://Sport/Football/Results"
and "topic://Sport/Netball/National/Div3/
Results/2002/November"

Related concepts
Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.
Temporary destinations

622 Developing Applications for IBM MQ

XMS applications can create and use temporary destinations.

Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.

The URI for a queue begins with the sequence queue://, followed by the name of the queue; it might
also include a list of name-value pairs that set the remaining queue properties.

For IBM MQ queues (but not for WebSphere Application Server default messaging provider queues), the
queue manager on which the queue resides may be specified before the queue, with a / separating the
queue manager name from the queue name.

If a queue manager is specified, then it must be the one to which XMS is directly connected for the
connection using this queue, or it must be accessible from this queue. Remote queue managers are only
supported for retrieving messages from queues, not for putting messages onto queues. For full details,
refer to the IBM MQ queue manager documentation.

If no queue manager is specified, then the extra / separator is optional, and its presence or absence
makes no difference to the definition of the queue.

The following queue definitions are all equivalent for an IBM MQ queue called QB on a queue manager
called QM_A, to which XMS is directly connected:

queue://QB
queue:///QB
queue://QM_A/QB

Related concepts
Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.
Temporary destinations
XMS applications can create and use temporary destinations.

Temporary destinations
XMS applications can create and use temporary destinations.

An application typically uses a temporary destination to receive replies to request messages. To specify
the destination where a reply to a request message is to be sent, an application calls the Set JMSReplyTo
method of the Message object representing the request message. The destination specified on the call
can be a temporary destination.

Although a session is used to create a temporary destination, the scope of a temporary destination is
actually the connection that was used to create the session. Any of the connection's sessions can create
message producers and message consumers for the temporary destination. The temporary destination
remains until it is explicitly deleted, or the connection ends, whichever happens first.

When an application creates a temporary queue, a queue is created in the messaging server to which
the application is connected. If the application is connected to a queue manager, a dynamic queue
is created from the model queue whose name is specified by the XMSC_WMQ_TEMPORARY_MODEL
property, and the prefix that is used to form the name of the dynamic queue is specified by the
XMSC_WMQ_TEMP_Q_PREFIX property. If the application is connected to a service integration bus, a
temporary queue is created in the bus, and the prefix that is used to form the name of the temporary
queue is specified by the XMSC_WPM_TEMP_Q_PREFIX property.

When an application that is connected to a service integration bus creates a temporary
topic, the prefix that is used to form the name of the temporary topic is specified by the
XMSC_WPM_TEMP_TOPIC_PREFIX property.

Related concepts
Topic uniform resource identifiers

Developing applications for IBM MQ 623

The topic uniform resource identifier (URI) specifies the name of the topic; it can also specify one or more
properties for it.
Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or more properties of the
queue.

Message producers
In XMS, a message producer can be created either with a valid destination or with no associated
destination. When creating a message producer with a null destination, a valid destination needs to be
specified when sending a message.

Message producers with associated destination
In this scenario, the message producer is created using a valid destination. During the send operation, the
destination need not be specified.

Message producers with no associated destination
In XMS .NET, a message producer can be created with a null destination.

To create a message producer with no associated destination when using the .NET API, NULL must
be passed as a parameter into the CreateProducer() method of the ISession object (for example,
session.CreateProducer(null)). However a valid destination must be specified when the message
is sent.

Message consumers
Message consumers can be classified as durable and non-durable subscribers and synchronous and
asynchronous message consumers.

Durable subscribers
A durable subscriber is a message consumer that receives all messages published on a topic, including
messages published while the subscriber is inactive.

Attention: This information is relevant only if an application connects to an IBM MQ queue
manager or a WebSphere Application Server service integration bus. The information is not
relevant for a real-time connection to a broker.

To create a durable subscriber for a topic, an application calls the Create Durable Subscriber method
of a Session object, specifying as parameters a name that identifies the durable subscription and a
Destination object representing the topic. The application can create a durable subscriber with or without
a message selector, and it can specify whether the durable subscriber is to receive messages published
by its own connection.

The session used to create a durable subscriber must have an associated client identifier. The client
identifier is the same as that associated with the connection that is used to create the session; it is
specified as described in “ConnectionFactories and Connection objects” on page 615.

The name that identifies the durable subscription must be unique within the client identifier, and
therefore the client identifier forms part of the full, unique identifier of the durable subscription. The
messaging server maintains a record of the durable subscription and ensures that all messages published
on the topic are retained until they are acknowledged by the durable subscriber or they expire.

The messaging server continues to maintain the record of the durable subscription even after the durable
subscriber closes. To reuse a durable subscription that was created previously, an application must create
a durable subscriber specifying the same subscription name, and using a session with the same client
identifier, as those associated with the durable subscription. Only one session at a time can have a
durable subscriber for a particular durable subscription.

624 Developing Applications for IBM MQ

The scope of a durable subscription is the messaging server that is maintaining a record of the
subscription. If two applications connected to different messaging servers each create a durable
subscriber using the same subscription name and client identifier, two completely independent durable
subscriptions are created.

To delete a durable subscription, an application calls the Unsubscribe method of a Session object,
specifying as a parameter the name that identifies the durable subscription. The client identifier
associated with the session must be the same as that associated with the durable subscription. The
messaging server deletes the record of the durable subscription that it is maintaining and does not send
any more messages to the durable subscriber.

To change an existing subscription, an application can create a durable subscriber using the same
subscription name and client identifier, but specifying a different topic, or message selector (or both).
Changing a durable subscription is equivalent to deleting the subscription and creating a new one.

For an application that connects to an IBM MQ queue manager, XMS manages the subscriber queues.
Hence the application is not required to specify a subscriber queue. XMS will ignore the subscriber queue
if specified.

Note that you cannot change the subscriber queue for a durable subscription. The only way to change the
subscriber queue is to delete the subscription and create a new one.

For an application that connects to a service integration bus, each durable subscriber must have
a designated durable subscription home. To specify the durable subscription home for all durable
subscribers that use the same connection, set the XMSC_WPM_DUR_SUB_HOME property of the
ConnectionFactory object that is used to create the connection. To specify the durable subscription
home for an individual topic, set the XMSC_WPM_DUR_SUB_HOME property of the Destination object
representing the topic. A durable subscription home must be specified for a connection before an
application can create a durable subscriber that uses the connection. Any value specified for a destination
overrides the value specified for the connection.

Synchronous message consumers
The synchronous message consumer receives the messages from a queue synchronously and receives
one message at a time. When the Receive(wait interval) method is used; the call waits only a
specified period of time in milliseconds for a message, or until the message consumer is closed.

If the ReceiveNoWait() method is used, the synchronous message consumer receives messages without
any delay; if the next message is available, it is received immediately, otherwise a pointer to a null
Message object is returned.

Asynchronous message consumers
The asynchronous message consumer receives message from a queue asynchronously. The message
listener registered by the application is invoked whenever a new message is available on the queue.

Poison messages in XMS
A poison message is a message that cannot be processed by a receiving MDB application. If a poison
message is encountered, the XMS MessageConsumer object can requeue it according to two queue
properties, BOQUEUE, and BOTHRESH.

In some circumstances, a message delivered to an MDB might be rolled back onto an IBM MQ queue.
This can happen, for example, if a message is delivered within a unit of work that is subsequently rolled
back. A message that is rolled back is generally delivered again, but a badly formatted message might
repeatedly cause an MDB to fail and therefore cannot be delivered. Such a message is called a poison
message. You can configure IBM MQ so that the poison message is automatically transferred to another
queue for further investigation or is discarded. For information about how to configure IBM MQ in this way,
see “Handling poison messages in ASF” on page 627.

Sometimes, a badly formatted message arrives on a queue. In this context, badly formatted means that
the receiving application cannot process the message correctly. Such a message can cause the receiving
application to fail and to back out this badly formatted message. The message can then be repeatedly

Developing applications for IBM MQ 625

delivered to the input queue and repeatedly backed out by the application. These messages are known as
poison messages. The XMS MessageConsumer object detects poison messages and reroutes them to an
alternative destination.

The IBM MQ queue manager keeps a record of the number of times that each message has backed out.
When this number reaches a configurable threshold value, the message consumer requeues the message
to a named backout queue. If this requeuing fails for any reason, the message is removed from the input
queue and either requeued to the dead-letter queue, or discarded.

XMS ConnectionConsumer objects handle poison messages in the same way and using the same queue
properties. If multiple connection consumers are monitoring the same queue, it is possible that the
poison message may be delivered to an application more times than the threshold value before the
requeue occurs. This behavior is due to the way individual connection consumers monitor queues and
requeue poison messages.

The threshold value and the name of the back out queue are attributes of an IBM MQ queue. The names
of the attributes are BackoutThreshold and BackoutRequeueQName. The queue they apply to is as
follows:

• For point-to-point messaging, this is the underlying local queue. This is important when message
consumers and connection consumers use queue aliases.

• For publish/subscribe messaging in IBM MQ messaging provider normal mode, it is the model queue
from which the Topic's managed queue is created.

• For publish/subscribe messaging in IBM MQ messaging provider migration mode, it is the CCSUB queue
defined on the TopicConnectionFactory object, or the CCDSUB queue defined on the Topic object.

To set the BackoutThreshold and BackoutRequeueQName attributes, issue the following MQSC
command:

ALTER QLOCAL(your.queue.name) BOTHRESH(threshold value)
BOQUEUE(your.backout.queue.name)

For publish/subscribe messaging, if your system creates a dynamic queue for each subscription,
these attribute values are obtained from the IBM MQ classes for JMS model queue,
SYSTEM.JMS.MODEL.QUEUE. To alter these settings, use:

ALTER QMODEL(SYSTEM.JMS.MODEL.QUEUE) BOTHRESH(threshold value)
BOQUEUE(your.backout.queue.name)

If the backout threshold value is zero, poison message handling is disabled, and poison messages remain
on the input queue. Otherwise, when the backout count reaches the threshold value, the message is sent
to the named backout queue.

If the backout count reaches the threshold value, but the message cannot go to the backout queue, the
message is sent to the dead-letter queue or, if the message is nonpersistent, it is discarded.

This situation occurs if the backout queue is not defined, or if the MessageConsumer object cannot send
the message to the backout queue.

Configuring your system to perform poison message handling
The queue that XMS .NET uses when inquiring the BOTHRESH and BOQNAME attributes depends on the
style of messaging being performed:

• For point-to-point messaging, this is the underlying local queue. This is important when an XMS .NET
application is consuming messages from either alias queues or cluster queues.

• For publish/subscribe messaging, a managed queue is created to hold the messages for an application.
XMS .NET queries the managed queue to determine the values for the BOTHRESH and BOQNAME
attributes.

626 Developing Applications for IBM MQ

The managed queue is created from a model queue associated with the Topic object that the
application has subscribed to, and inherits the values of the BOTHRESH and BOQNAME attributes from
the model queue. The model queue that is used depends on whether the receiving application has taken
out a durable or non-durable subscription:

– The model queue used for durable subscriptions is specified by the MDURMDL attribute of the Topic.
The default value of this attribute is SYSTEM.DURABLE.MODEL.QUEUE.

– For non-durable subscriptions, the model queue that is used is specified by the MNDURMDL attribute.
The default value of the MNDURMDL attribute is SYSTEM.NDURABLE.MODEL.QUEUE.

When inquiring the BOTHRESH and BOQNAME attributes, XMS .NET:

• Opens the local queue, or the target queue for an alias queue.
• Inquires the BOTHRESH and BOQNAME attributes.
• Closes the local queue, or the target queue for an alias queue.

The open options that are used when opening a local queue, or the target queue for an alias queue,
depend on the version of IBM MQ being used:

• For IBM MQ 9.1.0 Fix Pack 4 Long Term Support and earlier, and IBM MQ 9.1.4 Continuous Delivery
and earlier: If the local queue, or the target queue for an alias queue, is a cluster queue, then XMS .NET
opens the queue with the MQOO_INPUT_AS_Q_DEF, MQOO_INQUIRE and MQOO_FAIL_IF_QUIESCING
options. This means that the user running the receiving application must have inquire and get access to
the local instance of the cluster queue.

XMS .NET opens all other types of local queue with the open options MQOO_INQUIRE and
MQOO_FAIL_IF_QUIESCING. In order for XMS .NET to query the values of the attributes, the user
running the receiving application must have inquire access on the local queue.

To move poison messages to either a backout requeue queue or the queue manager's dead letter queue,
you must grant the user running the application put and passall authorities.

Handling poison messages in ASF
When you use Application Server Facilities (ASF), the ConnectionConsumer, rather than the
MessageConsumer, processes poison messages. The ConnectionConsumer re-queues messages
according to the BackoutThreshold and BackoutRequeueQName properties of the queue.

When an application uses ConnectionConsumers, the circumstances in which a message is backed out
depend on the session that the application server provides:

• When the session is non-transacted, with AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE, a
message is backed out only after a system error, or if the application terminates unexpectedly.

• When the session is non-transacted with CLIENT_ACKNOWLEDGE, unacknowledged messages can be
backed out by the application server calling Session.recover().

Typically, the client implementation of MessageListener or the application server calls
Message.acknowledge(). Message.acknowledge() acknowledges all messages delivered on the
session so far.

• When the session is transacted, unacknowledged messages can be backed out by the application server
calling Session.rollback().

Queue browsers
An application uses a queue browser to browse messages on a queue without removing them.

To create a queue browser, an application calls the Create Queue Browser method of an ISession object,
specifying as a parameter a Destination object that identifies the queue to be browsed. The application
can create a queue browser with or without a message selector.

After creating a queue browser, the application can call the GetEnumerator method of the IQueueBrowser
object to get a list of the messages on the queue. The method returns an enumerator that encapsulates

Developing applications for IBM MQ 627

a list of Message objects. The order of the Message objects in the list is the same as the order in which
the messages would be retrieved from the queue. The application can then use the enumerator to browse
each message in turn.

The enumerator is updated dynamically as messages are put on the queue and removed from the queue.
Each time the application calls IEnumerator.MoveNext() to browse the next message on the queue, the
message reflects the current contents of the queue.

An application can call the GetEnumerator method more than once for a given queue browser. Each call
returns a new enumerator. The application can therefore use more than one enumerator to browse the
messages on a queue and maintain multiple positions within the queue.

An application can use a queue browser to search for a suitable message to remove from a queue, and
then use a message consumer with a message selector to remove the message. The message selector
can select the message according to the value of the JMSMessageID header field. For information about
this and other JMS message header fields, see “Header fields in an XMS message” on page 646.

Requestors
An application uses a requestor to send a request message and then to wait for and to receive the reply.

Many messaging applications are based on algorithms that send a request message and then wait for a
reply. XMS provides a class called Requestor to help with the development of this style of application.

To create a requestor, an application calls the Create Requestor constructor of the Requestor class,
specifying as parameters a Session object and a Destination object that identifies where request
messages are to be sent. The session must not be transacted nor have an acknowledgment mode of
XMSC_CLIENT_ACKNOWLEDGE. The constructor automatically creates a temporary queue or topic where
reply messages are to be sent.

After creating a requestor, the application can call the Request method of the Requestor object to send
a request message and then wait for, and receive, a reply from the application that receives the request
message. The call waits until the reply is received or until the session ends, whichever occurs first. Only
one reply is required by the requestor for each request message.

When the application closes the requestor, the temporary queue or topic is deleted. The associated
session, however, does not close.

Object deletion
When an application deletes an XMS object that it created, XMS releases the internal resources that have
been allocated to the object.

When an application creates an XMS object, XMS allocates memory and other internal resources to the
object. XMS retains these internal resources until the application explicitly deletes the object by calling
the object's close or delete method, at which point XMS releases the internal resources. If an application
tries to delete an object that is already deleted, the call is ignored.

When an application deletes a Connection or Session object, XMS deletes certain associated objects
automatically and releases their internal resources. These are objects that were created by the
Connection or Session object and have no function independent from the object. These objects are shown
in Table 83 on page 628.

Note: if an application closes a connection with dependent sessions, all objects dependent on those
sessions are also deleted. Only a Connection or Session object can have dependent objects.

Table 83. Objects that are deleted automatically

Deleted object Method Dependent objects that are deleted automatically

Connection Close Connection ConnectionMetaData and Session objects

Session Close Session MessageConsumer, MessageProducer, QueueBrowser, and
Requestor objects

628 Developing Applications for IBM MQ

Data types for XMS .NET
XMS .NET supports System.Boolean, System.Byte, System.SByte, System.Char, System.String,
System.Single, System.Double, System.Decimal, System.Int16, System.Int32, System.Int64,
System.UInt16, System.UInt32, System.UInt64, and System.Object. Data types for XMS .NET are
different from data types for XMS C/C++. You can use this topic to identify the corresponding data types.

The following table shows the corresponding XMS .NET and XMS C/C++ data types and briefly describes
them.

Table 84. Data types for XMS .NET and XMS C/C++

XMS .NET type XMS C/C++ type Description

System.SByte xmsSBYTE
xmsINT8

Signed 8-bit value

System.Byte xmsBYTE
xmsUINT8

Unsigned 8-bit value

System.Int16 xmsINT16
xmsSHORT

Signed 16-bit value

System.UInt16 xmsUINT16
xmsUSHORT

Unsigned 16-bit value

System.Int32 xmsINT32
xmsINT

Signed 32-bit value

System.UInt32 xmsUINT32
xmsUINT

Unsigned 32-bit value

System.Int64 xmsLONG
xmsINT64

Signed 64-bit value

System.UInt64 xmsULONG
xmsUINT64

Unsigned 64-bit value

System.Char xmsCHAR16 Unsigned 16-bit character (Unicode
for .NET)

System.Single xmsFLOAT IEEE 32-bit float

System.Double xmsDOUBLE IEEE 64-bit float

System.Boolean xmsBOOL A True/False value

Not applicable xmsCHAR Signed or Unsigned 8-bit value
(signed or unsigned depends on
platform)

System.Decimal Not applicable 96-bit signed integer times 100

through 1028

System.Object Not applicable Base of all types

System.String Not applicable String type

Developing applications for IBM MQ 629

XMS primitive types
XMS provides equivalents of the eight Java primitive types (byte, short, int, long, float, double, char, and
boolean). This allows the interchange of messages between XMS and JMS without data becoming lost or
corrupted.

Table 85 on page 630 lists the Java equivalent data type, size, and minimum and maximum value of
each XMS primitive type.

Table 85. XMS data types and their Java equivalents

XMS data type Compatible
Java data
type

Size Minimum value Maximum value

System.Boolean boolean 32 bits false true

System.SBYTE byte 8 bits -27 (-128) 27-1 (127)

System.BYTE byte 8 bits -27 (-128) 27-1 (127)

System.CHAR byte 8 bits -27 (-128) 27-1 (127)

System.Int16 short 16 bits -215 (-32768) 215-1 (32767)

System.Int32 int 32 bits -231 (-2147483648) 231-1 (2147483647)

System.Int64 long 64 bits -263

(-9223372036854775808)
263-1
(9223372036854775807)

System.Single float 32 bits -3.402823E-38 (to 7-digits
precision)

3.402823E+38 (to 7-digits
precision)

System.Double double 64 bits -1.79769313486231E-308 (to
15-digits precision)

1.79769313486231E+308 (to
15-digits precision)

Implicit conversion of a property value from one data type to another
When an application gets the value of a property, the value can be converted by XMS into another data
type. Many rules govern which conversions are supported and how XMS performs the conversions.

A property of an object has a name and a value; the value has an associated data type, where the value of
a property is also referred to as the property type.

An application uses the methods of the PropertyContext class to get and set the properties of objects. In
order to get the value of a property, an application calls the method that is appropriate for the property
type. For example, to get the value of an integer property, an application typically calls the GetIntProperty
method.

However, when an application gets the value of a property, the value can be converted by XMS into
another data type. For example, to get the value of an integer property, an application can call the
GetStringProperty method, which returns the value of the property as a string. The conversions supported
by XMS are shown in Table 86 on page 630.

Table 86. Supported conversions from a property type to other data types

Property type Supported target data types

System.String System.Boolean, System.Double, System.Float, System.Int32, System.Int64,
System.SByte, System.Int16

System.Boolean System.String, System.SByte, System.Int32, System.Int64, System.Int16

System.Char System.String

System.Double System.String

630 Developing Applications for IBM MQ

Table 86. Supported conversions from a property type to other data types (continued)

Property type Supported target data types

System.Float System.String, System.Double

System.Int32 System.String, System.Int64

System.Int64 System.String

System.SByte System.String, System.Int32, System.Int64, System.Int16

System.SByte array System.String

System.Int16 System.String, System.Int32, System.Int64

The following general rules govern the supported conversions:

• Numeric property values can be converted from one data type to another provided no data is lost during
the conversion. For example, the value of a property with data type System.Int32 can be converted
into a value with data type System.Int64, but it cannot be converted into a value with data type
System.Int16.

• A property value of any data type can be converted into a string.
• A string property value can be converted to any other data type provided the string is formatted

correctly for the conversion. If an application attempts to convert a string property value that is not
formatted correctly, XMS may return errors.

• If an application attempts a conversion that is not supported, XMS may return an error.

The following rules apply when a property value is converted from one data type to another:

• When converting a boolean property value to a string, the value true is converted to the string "true",
and the value false is converted to the string "false".

• When converting a boolean property value to a numeric data type, including System.SByte, the value
true is converted to 1, and the value false is converted to 0.

• When converting a string property value to a boolean value, the string "true" (not case-sensitive) or "1"
is converted to true, and the string "false" (not case-sensitive) or "0" is converted to false. All other
strings cannot be converted.

• When converting a string property value to a value with data type System.Int32, System.Int64,
System.SByte, or System.Int16, the string must have the following format:

[blanks][sign]digits

The string components are defined as follows:
blanks

Optional leading blank characters.
sign

An optional plus sign (+) or minus sign (-) character.
digits

A contiguous sequence of digit characters (0-9). At least one digit character must be present.

After the sequence of digit characters, the string can contain other characters that are not digit
characters, but the conversion stops as soon as the first of these characters is reached. The string
is assumed to represent a decimal integer.

XMS may return an error if the string is not formatted correctly.
• When converting a string property value to a value with data type System.Double or System.Float, the

string must have the following format:

[blanks][sign][digits][point[d_digits]][e_char[e_sign]e_digits]

The string components are defined as follows:

Developing applications for IBM MQ 631

blanks
(Optional) Leading blank characters.

sign
(Optional) Plus sign (+) or minus sign (-) character.

digits
A contiguous sequence of digit characters (0-9). At least one digit character must be present in
either digits or d_digits.

point
(Optional) Decimal point (.).

d_digits
A contiguous sequence of digit characters (0-9). At least one digit character must be present in
either digits or d_digits.

e_char
An exponent character, which is either E or e.

e_sign
(Optional) Plus sign (+) or minus sign (-) character for the exponent.

e_digits
A contiguous sequence of digit characters (0-9) for the exponent. At least one digit character must
be present if the string contains an exponent character.

After the sequence of digit characters, or the optional characters representing an exponent, the string
can contain other characters that are not digit characters, but the conversion stops as soon as the first
of these characters is reached. The string is assumed to represent a decimal floating point number with
an exponent that is a power of 10.

XMS may return an error if the string is not formatted correctly.
• When converting a numeric property value to a string, including a property value with data type

System.SByte, the value is converted to the string representation of the value as a decimal number,
not the string containing the ASCII character for that value. For example, the integer 65 is converted to
the string "65", not the string "A".

• When converting a byte array property value to a string, each byte is converted to the 2 hexadecimal
characters that represent the byte. For example, the byte array {0xF1, 0x12, 0x00, 0xFF} is converted to
the string "F11200FF".

Conversions from a property type to other data types are supported by the methods of both the Property
and the PropertyContext classes.

Iterators
An iterator encapsulates a list of objects and a cursor that maintains the current position in the list. The
concept of an Iterator, as available in IBM MQ Message Service Client (XMS) for C/C++, is implemented by
using IEnumerator interface in IBM MQ Message Service Client (XMS) for .NET.

When an iterator is created, the position of the cursor is before the first object. An application uses an
iterator to retrieve each object in turn.

The Iterator class of IBM MQ Message Service Client (XMS) for C/C++ is equivalent to the Enumerator
class in Java. IBM MQ Message Service Client (XMS) for .NET is similar to Java and uses an IEnumerator
interface.

An application can use an IEnumerator to perform the following tasks:

• To get the properties of a message
• To get the name-value pairs in the body of a map message
• To browse the messages on a queue
• To get the names of the JMS defined message properties supported by a connection

632 Developing Applications for IBM MQ

Error handling in XMS .NET
XMS .NET exceptions are all derived from System.Exception.

XMS .NET exceptions
XMS method calls can throw specific XMS exceptions such as MessageFormatException, general
XMSExceptions, or system exceptions such as NullReferenceException.

Write applications to catch any of these errors, either in specific catch blocks or in general
System.Exception catch blocks, as appropriate to the your application's requirements.

XMS error and exception codes
XMS uses a range of error codes to indicate failures. These error codes are not explicitly listed in this
documentation because they may vary from release to release. Only XMS exception codes (in the format
XMS_X_...) are documented because they remain the same across releases of XMS.

Related information
MQException.NET class
Common SSL error codes thrown by XMS .NET client libraries
FFDC configuration for XMS .NET applications
Tracing XMS .NET applications

Using message and exception listeners in .NET
A .NET application uses a message listener to receive messages asynchronously, and it uses an exception
listener to be notified asynchronously of a problem with a connection.

About this task
The functionality of both the message and exception listeners is the same for .NET and for C++. However,
there are some small implementation differences.

Procedure
• To set up a message listener in order to receive messages asynchronously, complete the following

steps:
a) Define a method that matches the signature of the message listener delegate.

The method that you define can be either a static or an instance method and can be defined in any
accessible class. The delegate signature is as follows:

public delegate void MessageListener(IMessage msg);

and so you could define the method as:

void SomeMethodName(IMessage msg);

b) Instantiate this method as a delegate using something similar to the following example:

MessageListener OnMsgMethod = new MessageListener(SomeMethodName)

c) Register the delegate with one or more consumers by setting it to the MessageListener property of
the consumer:

consumer.MessageListener = OnMsgMethod;

Developing applications for IBM MQ 633

You can remove the delegate by setting the MessageListener back to null:

consumer.MessageListener = null;

• To set up an exception listener, complete the following steps.
The exception listener works in much the same way as the message listener, but has a different
delegate definition and is assigned to the connection rather then the message consumer. This is the
same as for C++.
a) Define the method.

The delegate signature is as follows:

public delegate void ExceptionListener(Exception ex);

and so the method defined could be:

void SomeMethodName(Exception ex);

b) Instantiate this method as a delegate using something similar to the following example:

ExceptionListener OnExMethod = new ExceptionListener(SomeMethodName)

c) Register the delegate with the connection by setting its ExceptionListener property:

connection.ExceptionListener = OnExMethod ;

You can remove the delegate by resetting the ExceptionListener to:

null: connection.ExceptionListener = null;

Automatic IBM MQ Client reconnection through XMS
Configure your XMS client to reconnect automatically following a network, queue manager, or server
failure while using IBM WebSphere MQ 7.1 client and later, as the message provider.

Use the WMQ_CONNECTION_NAME_LIST and WMQ_CLIENT_RECONNECT_OPTIONS properties of the
MQConnectionFactory class to configure a client connection to automatically reconnect. Automatic
client reconnection reconnects a client after a connection failure, or as an option after stopping the queue
manager. The design of some client applications makes them unsuitable for automatic reconnection.

Automatically reconnectable client connections become reconnectable once the connection is
established.

Note: The properties Client Reconnect Options, Client Reconnect Timeout, and Connection
Namelist can also be set via Client Channel Definitions Table (CCDT) or by enabling the client
reconnection via the mqclient.ini file.

Note: If reconnection properties are set on the ConnectionFactory object and as well as in the CCDT,
the precedence rule is as follows. If the default value of the connection name list property is set in the
ConnectionFactory object, then the CCDT takes precedence. If the connection name list is not set
to its default value, the property values set in the ConnectionFactory object take precedence. The
default value of the connection namelist is localhost(1414).

634 Developing Applications for IBM MQ

Working with XMS .NET administered objects
The topics in this section provide information about administered objects. XMS applications can retrieve
object definitions from a central administered objects repository, and use them to create connection
factories and destinations.

About this task
This section provides information to help with creating and managing administered objects, describing
the types of administered object repository that XMS supports. The section also explains how an
XMS application makes a connection to an administered objects repository to retrieve the required
administered objects.

This section contains the following topics:

• “XMS .NET supported types of administered object repository” on page 635
• “XMS .NET property mapping for administered objects” on page 635
• “XMS .NET required properties for administered ConnectionFactory objects” on page 638
• “XMS .NET required properties for administered Destination objects” on page 639
• “XMS .NET creating administered objects” on page 639
• “XMS .NET creating InitialContext objects” on page 640
• “XMS .NET InitialContext properties” on page 640
• “URI format for XMS initial contexts” on page 640
• “JNDI Lookup web service for XMS .NET” on page 641
• “XMS .NET retrieval of administered objects” on page 642

XMS .NET supported types of administered object repository
File System and LDAP administered objects can be used to connect to IBM MQ and WebSphere
Application Server, whereas COS Naming can be used to connect only to the WebSphere Application
Server.

File System object directories take the form of serialized Java Naming Directory Interface (JNDI) objects.
LDAP object directories are directories that contain JNDI objects. File System and LDAP object directories
can be administered by the IBM MQ Explorer, which is provided with IBM MQ and later. Both the File
system and the LDAP object directories can be used to administer client connections by centralizing IBM
MQ connection factories and destinations. The network administrator can deploy multiple applications
that refer to the same central repository, and that are automatically updated to reflect changes to
connection settings made in the central repository.

A COS naming directory contains WebSphere Application Server service integration bus connection
factories and destinations and can be administered by using the WebSphere Application Server
administrative console. For an XMS application to retrieve objects from the COS naming directory, a JNDI
lookup web service must be deployed. This web service is not available on all WebSphere Application
Server service integration technologies. Refer to the product documentation for details.

Note: Restart application connections for changes to the object directory to take effect.

XMS .NET property mapping for administered objects
To enable XMS .NET applications to use IBM MQ JMS and WebSphere Application Server connection
factory and destination object definitions, the properties that are retrieved from these definitions must
be mapped on to the corresponding XMS properties that can be set on XMS connection factories and
destinations.

To create, for example, an XMS connection factory with properties that are retrieved from an IBM MQ JMS
connection factory, the properties must be mapped between the two.

All property mappings are performed automatically.

Developing applications for IBM MQ 635

Table 87 on page 636 demonstrates the mappings between some of the most common properties of
connection factories and destinations. The properties that are shown in this table are just a small set of
examples, and not all properties that are shown are relevant to all connection types and servers.

Table 87. Examples of name mapping for connection factory and destination properties

IBM MQ JMS property name XMS property name

WebSphere Application Server
service integration bus property
name

PERSISTENCE (PER) XMSC_DELIVERY_MODE

EXPIRY (EXP) XMSC_TIME_TO_LIVE

PRIORITY (PRI) XMSC_PRIORITY

XMSC_WPM_HOST_NAME serverName

XMSC_WPM_BUS_NAME busName

XMSC_WPM_TOPIC_SPACE topicName

Note: The properties shown in Table 88 on page 636 are applicable for JMS as well as XMS .NET.

Table 88. XMS .NET properties

Property Object type

CF QCF TCF Queue Topic

APPLICATIONN
AME

Y Y Y N/A N/A

ASYNCEXCEPTI
ON

Y Y Y N/A N/A

CCDTURL Y Y Y N/A N/A

CHANNEL Y Y Y N/A N/A

CONNECTIONN
AMELIST

Y Y Y N/A N/A

CLIENTRECON
NECTOPTIONS

Y Y Y N/A N/A

CLIENTRECON
NECTTIMEOUT

Y Y Y N/A N/A

CLIENTID N/A Y N/A N/A N/A

COMPHDR “1” on
page 637

Y N/A Y N/A N/A

COMPMSG “1”
on page 637

Y Y Y N/A N/A

CONNOPT “1” on
page 637

Y Y Y N/A N/A

CONNTAG “1” on
page 637

Y Y Y N/A N/A

DESCRIPTION
“1” on page 637

N/A Y N/A Y Y

636 Developing Applications for IBM MQ

Table 88. XMS .NET properties (continued)

Property Object type

CF QCF TCF Queue Topic

EXPIRY “1” on
page 637

N/A N/A N/A Y Y

FAILIFQUIESCE Y Y Y Y Y

HOSTNAME N/A Y N/A N/A N/A

LOCALADDRES
S

N/A Y N/A N/A N/A

PERSISTENCE N/A N/A N/A Y Y

PORT N/A Y N/A N/A N/A

PRIORITY “1” on
page 637

N/A N/A N/A Y Y

PROVIDERVER
SION “1” on page
637

N/A Y N/A N/A N/A

QMANAGER Y Y Y Y N/A

QUEUE “1” on
page 637

N/A N/A N/A Y N/A

SHARECONVAL
LOWED

Y Y Y N/A N/A

TOPIC “1” on page
637

N/A N/A N/A N/A Y

TRANSPORT “1”
on page 637

N/A Y N/A N/A N/A

Note:

1. These properties do not have application level properties but they can optionally be set using
administered properties.

OutboundSNI property
From IBM MQ 9.3.0, you can set the XMSC_WMQ_OUTBOUND_SNI property, which sets the
OutboundSNI property in an application.

The XMSC_WMQ_OUTBOUND_SNI_PROPERTY takes the following values:

• XMSC_WMQ_OUTBOUND_SNI_CHANNEL, which maps to "CHANNEL"
• XMSC_WMQ_OUTBOUND_SNI_HOSTNAME, which maps to "HOSTNAME"
• XMSC_WMQ_OUTBOUND_SNI_ASTERISK, which maps to "*"

Additionally, you can set the OutboundSNI property using the MQOUTBOUND_SNI environment variable,
which takes the following values:

• CHANNEL
• HOSTNAME
• *

Note: The property defaults to XMSC_WMQ_OUTBOUND_SNI_CHANNEL if no specific value is set.

Developing applications for IBM MQ 637

The order of precedence for setting the OutboundSNI property in the managed node is:

1. Application level property
2. Environment variable

For the OutboundSNI property in unmanaged node, mqclient.ini only is supported.

XMS .NET required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be defined to create a
connection to a messaging server.

The properties listed in the following tables are the minimum required for an application to set to create
a connection to a messaging server. If you want to customize the way that a connection is created, then
your application can set any additional properties of the ConnectionFactory object as necessary. For more
information, see Properties of ConnectionFactory. A complete list of available properties is included.

Connection to an IBM MQ queue manager
Table 89. Property settings for administered ConnectionFactory objects for connections to an IBM MQ
queue manager

Required XMS property Equivalent IBM MQ JMS property required

XMSC_CONNECTION_TYPE XMS works this out from the connection factory class name
and TRANSPORT (TRAN) property.

XMSC_WMQ_HOST_NAME HOSTNAME (HOST)

XMSC_WMQ_PORT PORT

XMSC_WMQ_QUEUE_MANAGER Name of the Queue Manager

Real-time connection to a broker
Table 90. Property settings for administered ConnectionFactory objects for real-time connections to a
broker

Required XMS Equivalent IBM MQ JMS property required

XMSC_CONNECTION_TYPE XMS works this out from the connection factory class name
and TRANSPORT (TRAN) property.

XMSC_RTT_HOST_NAME HOSTNAME (HOST)

XMSC_RTT_PORT PORT

Connection to a WebSphere Application Server service integration bus
Table 91. Property settings for administered ConnectionFactory objects for connections to a WebSphere
Application Server service integration bus

XMS property Description

XMSC_CONNECTION_TYPE The type of messaging server to which an application
connects.. This is determined from the connection factory
class name.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service integration
bus that the application connects to or, for a destination, the
name of the service integration bus in which the destination
exists.

638 Developing Applications for IBM MQ

XMS .NET required properties for administered Destination objects
An application that is creating a destination must set several properties that the application on an
administered Destination object.

Table 92. Property settings for administered Destination objects

Type of connection Property Description

IBM MQ queue manager QUEUE (QU)

TOPIC (TOP)

The queue that you want to connect to

The topic that the application uses as a destination

Real-time connection to a broker TOPIC (TOP) The topic that the application uses as a destination

WebSphere Application Server
service integration bus

topicName

queueName

If your application is connecting to a topic

If your application is connecting to a queue

XMS .NET creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications require to make a
connection to a messaging server must be created using the appropriate administrative tools.

Before you begin
For further details about the different types of administered object repository that XMS supports, see
“XMS .NET supported types of administered object repository” on page 635.

About this task
To create the administered objects for IBM MQ use the IBM MQ Explorer or IBM MQ JMS administration
(JMSAdmin) tool.

To create the administered objects for IBM MQ or IBM Integration Bus, use the IBM MQ JMS
administration (JMSAdmin) tool.

To create administered objects for WebSphere Application Server service integration bus, use the
WebSphere Application Server administrative console.

In the administrative tooling the property is known as APPLICATIONNAME or APPNAME for short.

Note: You cannot use JMSAdmin to set TRANSPORT(UNMANAGED). Therefore, in order to get an
unmanaged XMS client using an administratively chosen application name, you need to enter the
following command:

cf.SetIntProperty(XMSC.WMQ_CONNECTION_MODE, XMSC.WMQ_CM_CLIENT_UNMANAGED);

The following steps summarize what you do to create administered objects.

Procedure
1. Create a connection factory and define the necessary properties to create a connection from your

application to your chosen server.
The minimum properties that XMS requires to make a connection are defined in “XMS .NET required
properties for administered ConnectionFactory objects” on page 638.

2. Create the required destination on the messaging server, which your application connects to:

• For a connection to an IBM MQ queue manager, create a queue or topic.
• For a real-time connection to a broker, create a topic.
• For a connection to a WebSphere Application Server service integration bus, create a queue or a

topic.

Developing applications for IBM MQ 639

The minimum properties that XMS requires to make a connection are defined in “XMS .NET required
properties for administered Destination objects” on page 639.

XMS .NET creating InitialContext objects
An application must create an initial context to be used to make a connection to the administered objects
repository to retrieve the required administered objects.

About this task
An InitialContext object encapsulates a connection to the repository. The XMS API provides methods to
perform the following tasks:

• Create an InitialContext object
• Look up an administered object in the administered object repository.

Procedure
• For further details about creating an InitialContext object, see InitialContext for .NET and Properties of

InitialContext.

XMS .NET InitialContext properties
The parameters of the InitialContext constructor include the location of the repository of administered
objects, given as a uniform resource indicator (URI). In order for an application to establish a connection
to the repository, it may be necessary to provide more information than the information contained in the
URI.

In JNDI and in the .NET implementation of XMS, the additional information is provided in an environment
Hashtable to the constructor.

The location of the administered object repository is defined in the XMSC_IC_URL property. This property
is typically passed on the Create call, but can be modified to connect to a different naming directory
before the lookup. For FileSystem or LDAP contexts, this property defines the address of the directory.
For COS naming, this is the address of the web service that uses these properties to connect to the JNDI
directory.

The following properties are passed unmodified to the web service which will use them to use to connect
to the JNDI directory.

• XMSC_IC_PROVIDER_URL
• XMSC_IC_SECURITY_CREDENTIALS
• XMSC_IC_SECURITY_AUTHENTICATION
• XMSC_IC_SECURITY_PRINCIPAL
• XMSC_IC_SECURITY_PROTOCOL

URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform resource indicator (URI).
The format of the URI depends on the context type.

FileSystem context
For the FileSystem context, the URL gives the location of the file system based directory. The structure of
the URL is as defined by RFC 1738, Uniform Resource Locators (URL): the URL has the prefix file://, and
the syntax following this prefix is a valid definition of a file that can be opened on the system on which
XMS is running.

640 Developing Applications for IBM MQ

This syntax can be platform-specific, and can use either '/ separators or '\' separators. If you use '\', then
each separator needs to be escaped by using an additional '\'. This prevents the .NET framework from
trying to interpret the separator as an escape character for what follows.

These examples illustrate this syntax:

file://myBindings
file:///admin/.bindings
file://\\admin\\.bindings
file://c:/admin/.bindings
file://c:\\admin\\.bindings
file://\\\\madison\\shared\\admin\\.bindings
file:///usr/admin/.bindings

LDAP context
For the LDAP context, the basic structure of the URL is as defined by RFC 2255, The LDAP URL Format,
with the case-insensitive prefix ldap://

The precise syntax is illustrated in the following example:

LDAP://[Hostname][:Port]["/"[DistinguishedName]]

This syntax is as defined in the RFC but without support for any attributes, scope, filters, or extensions.

Examples of this syntax include:

ldap://madison:389/cn=JMSData,dc=IBM,dc=UK
ldap://madison/cn=JMSData,dc=IBM,dc=UK
LDAP:///cn=JMSData,dc=IBM,dc=UK

WSS context
For the WSS context, the URL is in the form of a web services endpoint, with the prefix http://.

Alternatively, you can use the prefix cosnaming:// or wsvc://,

These two prefixes are interpreted as meaning that you are using a WSS context with the URL accessed
over http, which enables the initial context type to be derived easily directly from the URL.

Examples of this syntax include the following:

http://madison.ibm.com:9080/xmsjndi/services/JndiLookup
cosnaming://madison/jndilookup

JNDI Lookup web service for XMS .NET
To access a COS naming directory from XMS, a JNDI Lookup web service must be deployed on a
WebSphere Application Server service integration bus server. This web service translates the Java
information from the COS naming service into a form that XMS applications can read.

The web service is provided in the enterprise archive file SIBXJndiLookupEAR.ear, located within
the installation directory. For the current release of IBM MQ Message Service Client (XMS) for .NET,
SIBXJndiLookupEAR.ear can be found in the install_dir\java\lib directory. This can be installed
within a WebSphere Application Server service integration bus server by using either the administrative
console or the wsaadmin scripting tool. Refer to the product documentation for further information on
deploying web service applications.

Developing applications for IBM MQ 641

To define the web service within XMS applications, you simply need to set the XMSC_IC_URL property of
the InitialContext object to the web service endpoint URL. For example, if the web service is deployed on
a server host called MyServer, an example of a web service endpoint URL:

wsvc://MyHost:9080/SIBXJndiLookup/services/JndiLookup

Setting the XMSC_IC_URL property allows InitialContext Lookup calls to invoke the web service at the
defined endpoint, which in turn looks up the required administered object from the COS naming service.

.NET applications can use the web service. The server-side deployment is the same for XMS C, /C++ and,
XMS .NET. XMS .NET invokes the web service directly through the Microsoft .NET Framework.

XMS .NET retrieval of administered objects
XMS retrieves an administered object from the repository using the address provided when the
InitialContext object is created, or in the InitialContext properties.

Objects to be retrieved can have the following types of names:

• A simple name describing the Destination object, for example, a queue destination called SalesOrders
• A composite name, which can be made up of SubContexts, separated by '/', and it must end with

the object name. An example of a composite name is "Warehouse/PickLists/DispatchQueue2" where
Warehouse and Picklists are SubContexts in the naming directory, and DispatchQueue2 is the name of a
Destination object.

Preventing applications from using a newer XMS version
By default, when a newer XMS version is installed, the applications using the previous version
automatically switch to the newer version without having to recompile.However, you can prevent
applications from using the newer version by setting an attribute in the application configuration file.

About this task
The multiple versions coexistence feature ensures that installation of a newer XMS version does not
overwrite the previous XMS version. Instead, multiple instances of similar XMS .NET assemblies coexist
in the Global Assembly Cache (GAC), but have different version numbers. Internally, the GAC uses a
policy file to route the application calls to the latest version of XMS. Applications run without a need for
recompilation and can use new features available in the newer XMS .NET version.

Procedure
• If an application is required to use the older XMS .NET version, set the publisherpolicy attribute to

no in the application configuration file.

Note: An application configuration file is a file with a name that consists of the name of the executable
program to which the file relates, with the suffix .config. For example, the application configuration file
for text.exe would have the name text.exe.config.

At any time, however, all the applications of a system use the same version of XMS .NET.

Securing communications for XMS applications
This section provides information about setting up secure communications to enable XMS applications
to connect via Secure Sockets Layer (SSL) to a WebSphere Application Server service integration bus
messaging engine or IBM MQ queue manager.

About this task
The section contains the following topics:

• “Secure connections to an IBM MQ queue manager” on page 643

642 Developing Applications for IBM MQ

• “CipherSuite and CipherSpec name mappings for XMS connections to an IBM MQ queue manager” on
page 643

• “Secure connections to a WebSphere Application Server service integration bus messaging engine” on
page 644

• “CipherSuite and CipherSpec name mappings for connections to a WebSphere Application Server
service integration bus” on page 645

Secure connections to an IBM MQ queue manager
To enable an XMS .NET application to make secure connections to an IBM MQ queue manager, the
relevant properties must be defined in the ConnectionFactory object.

The protocol used in the encryption negotiation can be either Secure Sockets Layer (SSL) or Transport
Layer Security (TLS), depending on which CipherSuite you specify in the ConnectionFactory object.

ConnectionFactory properties for connections using SSL to an IBM MQ queue manager, with a brief
description, are shown in the following table:

Table 93. Properties of ConnectionFactory for connections to an IBM MQ queue manager via SSL

Name of property Description

XMSC_WMQ_SSL_CERT_STORES The locations of the servers that hold the certificate
revocation lists (CRLs) to be used on an SSL connection
to a queue manager.

XMSC_WMQ_SSL_CIPHER_SPEC The name of the CipherSpec to be used on a secure
connection to a queue manager.

XMSC_WMQ_SSL_CIPHER_SUITE The name of the CipherSuite to be used on a TLS
connection to a queue manager. The protocol used
in negotiating the secure connection depends on the
specified CipherSuite.

XMSC_WMQ_SSL_CRYPTO_HW Configuration details for the cryptographic hardware
connected to the client system.

XMSC_WMQ_SSL_FIPS_REQUIRED The value of this property determines whether an
application can or cannot use non-FIPS compliant cipher
suites. If this property is set to true, only FIPS algorithms
are used for the client-server connection.

XMSC_WMQ_SSL_KEY_REPOSITORY The location of the key database file in which keys and
certificates are stored.

XMSC_WMQ_SSL_KEY_RESETCOUNT The KeyResetCount represents the total number of
unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated.

XMSC_WMQ_SSL_PEER_NAME The peer name to be used on an SSL connection to a queue
manager.

CipherSuite and CipherSpec name mappings for XMS connections to an IBM MQ queue
manager
The InitialContext translates between the JMSAdmin Connection Factory property SSLCIPHERSUITE and
the XMS near-equivalent XMSC_WMQ_SSL_CIPHER_SPEC. A similar translation is necessary if you specify
a value for XMSC_WMQ_SSL_CIPHER_SUITE but omit value for XMSC_WMQ_SSL_CIPHER_SPEC.

Table 94 on page 644 lists the available CipherSpecs and their JSSE CipherSuite equivalents.

Developing applications for IBM MQ 643

Table 94. Available CipherSpecs and their JSSE CipherSuite equivalents

CipherSpec Equivalent JSSE CipherSuite

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA

Note: TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used to
transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this error,
you need to either avoid using triple DES, or enable secret key reset when using this CipherSpec.

Secure connections to a WebSphere Application Server service integration
bus messaging engine
To enable an XMS .NET application to make secure connections to a WebSphere Application
Server service integration bus messaging engine, the relevant properties must be defined in the
ConnectionFactory object.

XMS provides SSL and HTTPS support for connections to a WebSphere Application Server service
integration bus. SSL and HTTPS provide secure connections for authentication and confidentiality.

Like WebSphere security, XMS security is configured with respect to JSSE security standards and naming
conventions, which include the use of CipherSuites to specify the algorithms that are used when
negotiating a secure connection. The protocol used in the encryption negotiation can be either SSL or
TLS, depending on which CipherSuite you specify in the ConnectionFactory object.

Table 95 on page 644 lists the properties that must be defined in the ConnectionFactory object.

Table 95. Properties of ConnectionFactory for secure connections to a WebSphere Application Server service
integration bus messaging engine

Name of property Description

XMSC_WPM_SSL_CIPHER_SUITE The name of the CipherSuite to be used on a TLS
connection to a WebSphere Application Server service
integration bus messaging engine. The protocol used
in negotiating the secure connection depends on the
specified CipherSuite.

XMSC_WPM_SSL_KEYRING_LABEL The certificate to be used when authenticating with the
server.

The following is an example of ConnectionFactory properties for secure connections to a WebSphere
Application Server service integration bus messaging engine:

cf.setStringProperty(XMSC_WPM_PROVIDER_ENDPOINTS, host_name:port_number:chain_name);
cf.setStringProperty(XMSC_WPM_SSL_KEY_REPOSITORY, key_repository_pathname);
cf.setStringProperty(XMSC_WPM_TARGET_TRANSPORT_CHAIN, transport_chain);
cf.setStringProperty(XMSC_WPM_SSL_CIPHER_SUITE, cipher_suite);
cf.setStringProperty(XMSC_WPM_SSL_KEYRING_STASH_FILE, stash_file_pathname);

Where chain_name should be set to either BootstrapTunneledSecureMessaging or
BootstrapSecureMessaging, and port_number is the number of the port on which the bootstrap server
listens for incoming requests.

644 Developing Applications for IBM MQ

The following is an example of ConnectionFactory properties for secure connections to a WebSphere
Application Server service integration bus messaging engine with sample values inserted:

 /* CF properties needed for an SSL connection */
 cf.setStringProperty(XMSC_WPM_PROVIDER_ENDPOINTS,"localhost:7286:BootstrapSecureMessaging");
 cf.setStringProperty(XMSC_WPM_TARGET_TRANSPORT_CHAIN,"InboundSecureMessaging");
 cf.setStringProperty(XMSC_WPM_SSL_KEY_REPOSITORY,"C:\\Program Files\\IBM\\gsk7\\bin\
\XMSkey.kdb");
 cf.setStringProperty(XMSC_WPM_SSL_KEYRING_STASH_FILE,"C:\\Program Files\\IBM\\gsk7\\bin\
\XMSkey.sth");
 cf.setStringProperty(XMSC_WPM_SSL_CIPHER_SUITE,"SSL_RSA_EXPORT_WITH_RC4_40_MD5");

CipherSuite and CipherSpec name mappings for connections to a WebSphere
Application Server service integration bus
Because IBM Global Security Kit (GSKit) uses CipherSpecs rather than CipherSuites, the JSSE-style
CipherSuite names specified in the XMSC_WPM_SSL_CIPHER_SUITE property must be mapped to the
GSKit-style CipherSpec names.

Table 96 on page 645 lists the equivalent CipherSpec for each recognized CipherSuite.

Table 96. Available CipherSuites and their equivalent CipherSpecs

CipherSuite CipherSpec equivalent

TLS_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA

Note: TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used to
transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this error,
you need to either avoid using triple DES, or enable secret key reset when using this CipherSpec.

XMS messages
This section describes the structure and content of XMS messages and explains how applications process
XMS messages.

This section contains the following topics:

• “Parts of an XMS message” on page 645
• “Header fields in an XMS message” on page 646
• “Properties of an XMS message” on page 646
• “The body of an XMS message” on page 649
• “Message selectors” on page 652
• “Mapping XMS messages onto IBM MQ messages” on page 653

Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.

Header
The header of a message contains fields, and all messages contain the same set of header fields.
XMS and applications use the values of the header fields to identify and route messages. For more
information about header fields, see “Header fields in an XMS message” on page 646.

Developing applications for IBM MQ 645

Set of properties
The properties of a message specify additional information about the message. Although all messages
have the same set of header fields, every message can have a different set of properties. For more
information, see “Properties of an XMS message” on page 646.

Body
The body of a message contains application data. For more information, see “The body of an XMS
message” on page 649.

An application can select which messages it wants to receive. By using message selectors, which specify
the selection criteria. The criteria can be based on the values of certain header fields and the values of any
of the properties of a message. For more information about message selectors, see “Message selectors”
on page 652.

Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS application, the header of an
XMS message contains the JMS message header fields.

The names of these header fields commence with the prefix JMS. For a description of the JMS message
header fields, see the Java Message Service Specification.

XMS implements the JMS message header fields as attributes of a Message object. Each header field has
its own methods for setting and getting its value. For a description of these methods, see IMessage. A
header field is always readable and writable.

Table 97 on page 646 lists the JMS message header fields and indicates how the value of each field is
set for a transmitted message. Some of the fields are set automatically by XMS when an application sends
a message or, in the case of JMSRedelivered, when an application receives a message.

Table 97. JMS message header fields.]

Name of the JMS message
header field

How the value is set for a transmitted message (in the format
method [class])

JMSCorrelationID Set JMSCorrelationID [Message]

JMSDeliveryMode Send [MessageProducer]

JMSDestination Send [MessageProducer]

JMSExpiration Send [MessageProducer]

JMSMessageID Send [MessageProducer]

JMSPriority Send [MessageProducer]

JMSRedelivered Receive [MessageConsumer]

JMSReplyTo Set JMSReplyTo [Message]

JMSTimestamp Send [MessageProducer]

JMSType Set JMSType [Message]

Properties of an XMS message
XMS supports three kinds of message property: JMS defined properties, IBM defined properties, and
application-defined properties.

An XMS application can exchange messages with a WebSphere JMS application because XMS supports
the following predefined properties of a Message object:

• The same JMS-defined properties that WebSphere JMS supports. The names of these properties begin
with the prefix JMSX.

646 Developing Applications for IBM MQ

• The same IBM-defined properties that WebSphere JMS supports. The names of these properties begin
with the prefix JMS_IBM_.

Each predefined property has two names:

• A JMS name, for a JMS-defined property, or a WebSphere JMS name, for an IBM-defined property.

This is the name by which the property is known in JMS or WebSphere JMS, and it is also the name that
is transmitted with a message that has this property. An XMS application uses this name to identify the
property in a message selector expression.

• An XMS name to identify the property in all situations except in a message selector expression. Each
XMS name is defined as a named constant in IBM.XMS.XMSC class. The value of the named constant is
the corresponding JMS or WebSphere JMS name.

In addition to the predefined properties, an XMS application can create and use its own set of message
properties. These properties are called application defined properties.

After an application creates a message, the properties of the message are readable and writable. The
properties remain readable and writable after the application sends the message. When an application
receives a message, the properties of the message are read-only. If an application calls the Clear
Properties method of the Message class when the properties of a message are read-only, the
properties become readable and writable. The method also clears the properties.

The received message, when forwarded after clearing up the message properties, will behave in a manner
consistent with the behavior of forwarding a standard WMQ XMS for .NET BytesMessage with message
properties cleared up.

This is, however, not recommended since the following properties will be lost:

• JMS_IBM_Encoding property value, implying that the message data cannot be decoded meaningfully.
• JMS_IBM_Format property value, implying that the header chaining between the (MQMD or the new

MQRFH2) message header and existing headers would be broken.

To determine the values of all the properties of a message, an application can call the Get Properties
method of the Message class. The method creates an iterator that encapsulates a list of Property objects,
where each Property object represents a property of the message. The application can then use the
methods of the Iterator class to retrieve each Property object in turn, and it can use the methods of the
Property class to retrieve the name, data type, and value of each property.

JMS-defined properties of a message
Several JMS-defined properties of a message are supported by both XMS and WebSphere JMS.

Table 98 on page 647 lists the JMS-defined properties of a message that are supported by both XMS and
WebSphere JMS. For a description of the JMS-defined properties, see Java Message Service Specification.
The JMS-defined properties are not valid for a real-time connection to a broker.

The table specifies the data type of each property and indicates how the value of the property is set for a
transmitted message. Some of the properties are set automatically by XMS when an application sends a
message or, in the case of JMSXDeliveryCount, when an application receives a message.

Table 98. JMS-defined properties of a message

XMS name of the JMS
defined property JMS name Data type

How the value is set for
a transmitted message
(in the format method
[class])

JMSX_APPID JMSXAppID System.String Send [MessageProducer]

JMSX_DELIVERY_COUNT JMSXDeliveryCount System.Int32 Receive
[MessageConsumer]

JMSX_GROUPID JMSXGroupID System.String Set String Property
[PropertyContext]

Developing applications for IBM MQ 647

Table 98. JMS-defined properties of a message (continued)

XMS name of the JMS
defined property JMS name Data type

How the value is set for
a transmitted message
(in the format method
[class])

JMSX_GROUPSEQ JMSXGroupSeq System.Int32 Set Integer Property
[PropertyContext]

JMSX_USERID JMSXUserID System.String Send [MessageProducer]

IBM-defined properties of a message
Several IBM-defined properties of a message are supported by XMS and WebSphere JMS.

Table 99 on page 648 lists the IBM defined properties of a message that are supported by both XMS
and WebSphere JMS. For more information about the IBM-defined properties, see the IBM MQ or the
WebSphere Application Server product documentation.

The table specifies the data type of each property and indicates how the value of the property is set for a
transmitted message. Some of the properties are set automatically by XMS when an application sends a
message.

Table 99. IBM-defined properties of a message

XMS name of the IBM
defined property WebSphere JMS name Data type

How the value is set for
a transmitted message
(in the format method
[class])

JMS_IBM_CHARACTER_S
ET

JMS_IBM_Character_Set System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_ENCODING JMS_IBM_Encoding System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_EXCEPTIONME
SSAGE

JMS_IBM_ExceptionMess
age

System.String Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONRE
ASON

JMS_IBM_ExceptionReas
on

System.Int32 Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONTI
MESTAMP

JMS_IBM_ExceptionTime
stamp

System.Int64 Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONPR
OBLEM
 DESTINATION

JMS_IBM_ExceptionProbl
emDestination

System.String Receive
[MessageConsumer]

JMS_IBM_FEEDBACK JMS_IBM_Feedback System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_FORMAT JMS_IBM_Format System.String Set String Property
[PropertyContext]

JMS_IBM_LAST_MSG_IN
_GROUP

JMS_IBM_Last_Msg_In_G
roup

System.Boolean Set Integer Property
[PropertyContext]

JMS_IBM_MSGTYPE JMS_IBM_MsgType System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_PUTAPPLTYPE JMS_IBM_PutApplType System.Int32 Send [MessageProducer]

JMS_IBM_PUTDATE JMS_IBM_PutDate System.String Send [MessageProducer]

648 Developing Applications for IBM MQ

Table 99. IBM-defined properties of a message (continued)

XMS name of the IBM
defined property WebSphere JMS name Data type

How the value is set for
a transmitted message
(in the format method
[class])

JMS_IBM_PUTTIME JMS_IBM_PutTime System.String Send [MessageProducer]

JMS_IBM_REPORT_COA JMS_IBM_Report_COA System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_COD JMS_IBM_Report_COD System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_DISC
ARD_MSG

JMS_IBM_Report_Discard
_Msg

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_EXCE
PTION

JMS_IBM_Report_Excepti
on

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_EXPI
RATION

JMS_IBM_Report_Expirati
on

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_NAN JMS_IBM_Report_NAN System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PAN JMS_IBM_Report_PAN System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PASS
CORREL
 ID

JMS_IBM_Report_Pass_C
orrel_ID

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PASS
_MSG_ID

JMS_IBM_Report_Pass_
Msg_ID

System.Int32 Set Integer Property
[PropertyContext]

JMS_IBM_SYSTEM_MESS
AGEID

JMS_IBM_System_Messa
geID

System.String Send [MessageProducer]

Application-defined properties of a message
An XMS application can create and use its own set of message properties. When an application sends a
message, these properties are also transmitted with the message. A receiving application, using message
selectors, can then select which messages it wants to receive based on the values of these properties.

To allow a WebSphere JMS application to select and process messages sent by an XMS application, the
name of an application-defined property must conform to the rules for forming identifiers in message
selector expressions. for more information, see “Message selectors in JMS” on page 139. The value of an
application-defined property must have one of the following data types: System.Boolean, System.SByte,
System.Int16, System.Int32, System.Int64, System.Float, System.Double, or System.String.

The body of an XMS message
The body of a message contains application data. However, a message can have no body, and comprise
only the header fields and properties.

XMS supports five types of message body:
Bytes

The body contains a stream of bytes. A message with this type of body is called a bytes message. The
IBytesMessage interface contains the methods to process the body of a bytes message.

Developing applications for IBM MQ 649

Map
The body contains a set of name-value pairs, where each value has an associated data type. A
message with this type of body is called a map message. The IMapMessage interface contains the
methods to process the body of a map message.

Object
The body contains a serialized Java or .NET object. A message with this type of body is called an
object message. The IObjectMessage interface contains the methods to process the body of an object
message.

Stream
The body contains a stream of values, where each value has an associated data type. A message with
this type of body is called a stream message. The IStreamMessage interface contains the methods to
process the body of a stream message.

Text
The body contains a string. A message with this type of body is called a text message. The
ITextMessage interface contains the methods to process the body of a text message.

The IMessage interface is the parent of all message objects and can be used in messaging functions to
represent any of the XMS message types.

For information about the size and maximum and minimum values of each of these data types, see Table
85 on page 630.

Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only the actual data, and it is
the responsibility of the sending and receiving applications to interpret this data.

Bytes messages are useful if an XMS application needs to exchange messages with applications that are
not using the XMS or JMS application programming interface.

After an application creates a bytes message, the body of the message is write-only. The application
assembles the application data into the body by calling the appropriate write methods of the
IBytesMessage interface for .NET. Each time the application writes a value to the bytes message stream,
the value is assembled immediately after the previous value written by the application. XMS maintains an
internal cursor to remember the position of the last byte that was assembled.

When the application sends the message, the body of the message becomes read-only. In this mode, the
application can send the message repeatedly.

When an application receives a bytes message, the body of the message is read-only. The application
can use the appropriate read methods of the IBytesMessage interface to read the contents of the bytes
message stream. The application reads the bytes in sequence, and XMS maintains an internal cursor to
remember the position of the last byte that was read.

If an application calls the Reset method of the IBytesMessage interface when the body of a bytes
message is writeable, the body becomes read-only. The method also repositions the cursor at the
beginning of the bytes message stream.

If an application calls the Clear Body method of the IMessage interface for .NET when the body of a
bytes message is read-only, the body becomes writeable. The method also clears the body.

Map messages
The body of a map message contains a set of name-value pairs, where each value has an associated data
type.

In each name-value pair, the name is a string that identifies the value, and the value is an element of
application data that has one of the XMS data types listed in Table 100 on page 652. The order of the
name-value pairs is not defined. The MapMessage class contains the methods to set and get name-value
pairs.

An application can access a name-value pair randomly by specifying its name.

650 Developing Applications for IBM MQ

A .NET application can use the MapNames property to get an enumeration of the names in the body of the
map message.

When an application gets the value of a name-value pair, the value can be converted by XMS into another
data type. For example, to get an integer from the body of a map message, an application can call
the GetString method of the MapMessage class, which returns the integer as a string. The supported
conversions are the same as those that are supported when XMS converts a property value from one
data type to another. For more information about the supported conversions, see “Implicit conversion of a
property value from one data type to another” on page 630.

After an application creates a map message, the body of the message is readable and writable. The body
remains readable and writable after the application sends the message. When an application receives a
map message, the body of the message is read-only. If an application calls the Clear Body method of the
Message class when the body of a map message is read-only, the body becomes readable and writable.
The method also clears the body.

Object messages
The body of an object message contains a serializedJava or .NET object.

An XMS application can receive an object message, change its header fields and properties, and then send
it to another destination. An application can also copy the body of an object message and use it to form
another object message. XMS treats the body of an object message as an array of bytes.

After an application creates an object message, the body of the message is readable and writable.
The body remains readable and writable after the application sends the message. When an application
receives an object message, the body of the message is read-only. If an application calls the Clear Body
method of the IMessage interface for .NET when the body of an object message is read-only, the body
becomes readable and writable. The method also clears the body.

Stream messages
The body of a stream message contains a stream of values, where each value has an associated data type.

The data type of a value is one of the XMS data types listed in Table 100 on page 652.

After an application creates a stream message, the body of the message is writable. The application
assembles the application data into the body by calling the appropriate write methods of the
IStreamMessage interface for .NET. Each time the application writes a value to the message stream,
the value, and its data type are assembled immediately after the previous value written by the application.
XMS maintains an internal cursor to remember the position of the last value that was assembled.

When the application sends the message, the body of the message becomes read-only. In this mode, the
application can send the message multiple times.

When an application receives a stream message, the body of the message is read-only. The application
can use the appropriate read methods of the IStreamMessage interface for .NET to read the contents of
the message stream. The application reads the values in sequence, and XMS maintains an internal cursor
to remember the position of the last value that was read.

When an application reads a value from the message stream, the value can be converted by XMS into
another data type. For example, to read an integer from the message stream, an application can call the
ReadString method, which returns the integer as a string. The supported conversions are the same as
those that are supported when XMS converts a property value from one data type to another. For more
information about the supported conversions, see “Implicit conversion of a property value from one data
type to another” on page 630.

If an error occurs while an application is attempting to read a value from the message stream, the cursor
is not advanced. The application can recover from the error by attempting to read the value as another
data type.

Developing applications for IBM MQ 651

If an application calls the Reset method of the IStreamMessage interface for XMS when the body of a
stream message is write-only, the body becomes read-only. The method also repositions the cursor at the
beginning of the message stream.

If an application calls the Clear Body method of the IMessage interface for XMS when the body of a
stream message is read-only, the body becomes write-only. The method also clears the body.

Text messages
The body of a text message contains a string.

After an application creates an text message, the body of the message is readable and writable. The body
remains readable and writable after the application sends the message. When an application receives an
text message, the body of the message is read-only. If an application calls the Clear Body method of the
IMessage interface for .NET when the body of an text message is read-only, the body becomes readable
and writable. The method also clears the body.

Data types for elements of application data
To ensure that an XMS application can exchange messages with an IBM MQ classes for JMS application,
both the applications must be able to interpret the application data in the body of a message in the same
way.

For this reason, each element of application data written in the body of a message by an XMS application
must have one of the data types listed in Table 100 on page 652. For each data type, the table shows
the compatible Java data type. XMS provides the methods to write elements of application data only with
these data types.

Table 100. XMS data types that are compatible with Java data types

XMS Data type Represents Compatible Java
data type

System.Boolean The boolean value true or false boolean

System.Char16 Double byte character char

System.SByte Signed 8-bit integer byte

System.Int16 Signed 16-bit integer short

System.Int32 Signed 32-bit integer int

System.Int64 Signed 64-bit integer long

System.Float Signed floating point number float

System.Double Signed double precision floating point number double

System.String String of characters String

For information about the size, maximum value and minimum value of each of these data types, see “XMS
primitive types” on page 630.

Message selectors
An XMS application uses messages selectors to select the messages it wants to receive.

When an application creates a message consumer, it can associate a message selector expression with
the consumer. The message selector expression specifies the selection criteria.

When an application is connecting to IBM WebSphere MQ 7.0 queue manager the message selection
is done at the queue manager side. XMS does not do any selection and simply delivers the message it
received from the queue manager thus providing better performance.

652 Developing Applications for IBM MQ

An application can create more than one message consumer, each with its own message selector
expression. If an incoming message meets the selection criteria of more than one message consumer,
XMS delivers the message to each of these consumers.

A message selector expression can reference the following properties of a message:

• JMS-defined properties
• IBM-defined properties
• Application-defined properties

It can also reference the following message header fields:

• JMSCorrelationID
• JMSDeliveryMode
• JMSMessageID
• JMSPriority
• JMSTimestamp
• JMSType

A message selector expression, however, cannot reference data in the body of a message.

Here is an example of a message selector expression:

JMSPriority > 3 AND manufacturer = 'Jaguar' AND model in ('xj6','xj12')

XMS delivers a message to a message consumer with this message selector expression only if the
message has a priority greater than 3; an application-defined property, manufacturer, with a value of
Jaguar; and another application defined-property, model, with a value of xj6 or xj12.

The syntax rules for forming a message selector expression in XMS are the same as those in IBM MQ
classes for JMS. For information about how to construct a message selector expression, see the IBM
MQ product documentation Note that, in a message selector expression, the names of JMS-defined
properties must be the JMS names, and the names of IBM-defined properties must be the IBM MQ
classes for JMS names. You cannot use the XMS names in a message selector expression.

Mapping XMS messages onto IBM MQ messages
The JMS header fields and properties of an XMS message are mapped onto fields in the header structures
of an IBM MQ message.

When an XMS application is connected to an IBM MQ queue manager, messages sent to the queue
manager are mapped onto IBM MQ messages in the same way that IBM MQ classes for JMS messages are
mapped onto IBM MQ messages in similar circumstances.

If the XMSC_WMQ_TARGET_CLIENT property of a Destination object is set to
XMSC_WMQ_TARGET_DEST_JMS, the JMS header fields and properties of a message sent to the
destination are mapped onto fields in the MQMD and MQRFH2 header structures of the IBM MQ message.
Setting the XMSC_WMQ_TARGET_CLIENT property in this way assumes that the application that receives
the message can handle an MQRFH2 header. The receiving application might therefore be another XMS
application, an IBM MQ classes for JMS application, or a native IBM MQ application that has been
designed to handle an MQRFH2 header.

If the XMSC_WMQ_TARGET_CLIENT property of a Destination object is set to
XMSC_WMQ_TARGET_DEST_MQ instead, the JMS header fields and properties of a message sent to the
destination are mapped onto fields in the MQMD header structure of the IBM MQ message. The message
does not contain an MQRFH2 header, and any JMS header fields and properties that cannot be mapped
onto fields in the MQMD header structure are ignored. The application that receives the message can
therefore be a native IBM MQ that's not designed to handle an MQRFH2 header.

IBM MQ messages received from a queue manager are mapped onto XMS messages in the same way that
IBM MQ messages are mapped onto IBM MQ classes for JMS messages in similar circumstances.

Developing applications for IBM MQ 653

If an incoming IBM MQ message has an MQRFH2 header, the resulting XMS message has a body whose
type is determined by the value of the Msd property contained in the mcd folder of the MQRFH2 header.
If the Msd property is not present in the MQRFH2 header, or if the IBM MQ message has no MQRFH2
header, the resulting XMS message has a body whose type is determined by the value of the Format field
in the MQMD header. If the Format field is set to MQFMT_STRING, the XMS message is a text message.
Otherwise, the XMS message is a bytes message. If the IBM MQ message has no MQRFH2 header, only
those JMS header fields and properties that can be derived from fields in the MQMD header are set.

For more information about mapping IBM MQ classes for JMS messages onto IBM MQ messages, see
“Mapping JMS messages onto IBM MQ messages” on page 142.

Reading and writing the message descriptor from a IBM MQ Message Service Client
(XMS) for .NET application
You can access all the message descriptor (MQMD) fields of an IBM MQ message except StrucId and
Version; BackoutCount can be read but not written to.

The message attributes provided by the IBM MQ Message Service Client (XMS) for .NET facilitates XMS
applications to set MQMD fields and also to drive IBM WebSphere MQ applications.

Some restrictions apply when using publish/subscribe messaging. For example, MQMD fields like MsgID
and CorrelId, if set, are ignored.

The function is also unavailable when the PROVIDERVERSION property is set to 6.

Accessing IBM MQ Message data from a IBM MQ Message Service Client (XMS) for .NET
application
You can access the complete IBM MQ message data including the MQRFH2 header (if present) and any
other IBM MQ headers (if present) within a IBM MQ Message Service Client (XMS) for .NET application as
the body of a JMSBytesMessage.

The function described in this topic is available only when connecting to an IBM WebSphere MQ 7.0 or
later queue manager and the IBM MQ messaging provider is in normal mode.

Destination object properties determine how the XMS application accesses the whole of an IBM MQ
message (including the MQRFH2 header, if present) as the body of a JMSBytesMessage.

Developing AMQP client applications
The IBM MQ support for AMQP APIs, allows an IBM MQ administrator to create an AMQP channel. When it
is started, this channel defines a port number that accepts connections from AMQP client applications.

You can install an AMQP channel on AIX, Linux, and Windows systems; it is not available on IBM i or z/OS.

An AMQP 1.0 client application can connect to queue manager with an AMQP channel.

Developing applications using the Apache Qpid JMS library
Introduction

The Apache Qpid JMS library uses the AMQP 1.0 protocol to provide an implementation of the JMS 2
specification.

Apache Qpid JMS uses some aspects of the AMQP 1.0 protocol in a different way from the MQ Light
messaging APIs. IBM MQ 9.2 added support to IBM MQ AMQP channels, so that Apache Qpid JMS
applications are able to connect to IBM MQ and do publish/subscribe messaging, including the use of
shared subscriptions.

IBM MQ 9.3 added further support to IBM MQ AMQP channels, so that Apache Qpid JMS applications are
able to connect to IBM MQ and perform point to point messaging. See “Point-to-point support on AMQP
channels” on page 659 for more information.

654 Developing Applications for IBM MQ

IBM MQ 9.3.0 added further queue browse support for IBM MQ AMQP channels, so that Apache Qpid
JMS applications can connect to IBM MQ and perform browsing of messages from a queue. See “Point-to-
point support on AMQP channels” on page 659 for more information.

IBM MQ 9.3.0 added two additional channel attributes for AMQP channels, TMPMODEL and TMPQPRFX.
These attributes are for the model queue, and temporary queue prefix to be used while creating a
temporary queue.

Intercommunication with other IBM MQ applications

It is possible to send messages between Apache Qpid JMS applications and other IBM MQ applications.
For example, an Apache Qpid application can publish messages on a topic, and MQ Light applications can
receive them by creating a subscription.

An Apache Qpid JMS application can also publish messages that are consumed by traditional IBM MQ
applications, for example using the MQSUB API call to subscribe to the same topic.

Similarly, Apache Qpid JMS applications can subscribe to IBM MQ topics that traditional IBM MQ
applications publish messages on.

It is also possible for an Apache Qpid JMS application to share a subscription with an MQ Light
application, as long as both clients specify the same share name and topic pattern.

Note that, in order to do this, the Apache Qpid JMS application must not connect with a client ID. This
ensures that the IBM MQ subscription name used by both of the applications is the same.

Attention: It is not possible for an Apache Qpid JMS application to share a subscription with an
IBM MQ JMS application.

Apache Qpid JMS restrictions

The following JMS capabilities are supported:

• Client acknowledge , auto-acknowledge, and dups ok acknowledge mode (DUPS_OK_ACKNOWLEDGE)

– Connecting with or without credentials
– Creating a consumer on a topic destination
– Creating a durable consumer on a topic destination
– Creating a shared consumer on a topic destination
– Creating a shared durable consumer on a topic destination
– Client acknowledge and auto-acknowledge modes
– Message acknowledgment and session acknowledgment
– Unsubscribing from a durable subscription
– Creating a temporary queue
– Creating a consumer on a queue or temporary queue destination
– JMS MessageListeners
– JMS Consumer to receive body; the JMS 2.0 method called Consumer.receiveBody()
– The following JMS message types are supported:

- BytesMessage
- MapMessage
- ObjectMessage
- StreamMessage
- TextMessage

– Browsing messages from a queue

The following JMS capabilities are not supported by AMQP clients:

Developing applications for IBM MQ 655

• The use of transacted sessions and transacted JMSContexts

– The use of message selectors
– The use of the nolocal attribute
– The use of transacted sessions
– The use of delivery delay
– At IBM MQ 9.3.0, browsing messages from a queue.
– Creating multiple durable subscriptions or consumers with the same client ID and topic
– JMS Temporary Topics
– AMQP filters are not supported.

Downloading sample AMQP clients
IBM MQ does not ship AMQP clients, but you can download MQ Light clients or download open-source
AMQP clients based on Apache Qpid libraries. For more information, see IBM MQ Light and Apache Qpid.

You can also download other open-source AMQP clients based on Apache Qpid libraries. For more
information, see https://qpid.apache.org/index.html.

Attention: IBM Support is unable to provide configuration or defect support for these client
packages, and any usage questions or code defect reports should be directed to the respective
projects.

Deploying AMQP clients to IBM MQ
When an application is ready to deploy, it requires all of the monitoring, reliability, and security
capabilities of other enterprise applications. It can also exchange data with other enterprise applications.

When you have deployed an AMQP client, you can exchange messages with IBM MQ applications. For
example, if you use the AMQP client to send a JavaScript string message, the IBM MQ application receives
an MQ message, where the format field of the MQMD is set to MQSTR.

Managing the AMQP channel
The AMQP channel can be managed in the same way as other MQ channels. You can use MQSC
commands, PCF command messages, or IBM MQ Explorer to define, start, stop, and manage the
channels. In Creating and using AMQP channels, example commands are provided to define and start
connecting clients to a queue manager.

When an AMQP channel is started, you can test it by connecting an AMQP 1.0 client. For example, MQ
Light, Apache Qpid Proton, or Apache Qpid JMS.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

MQ Light, Apache Qpid JMS, and AMQP (Advanced Message
Queuing Protocol)

The MQ Light client, Apache Qpid clients like Apache Proton, and Apache Qpid JMS APIs are based on the
OASIS Standard AMQP 1.0 wire protocol. AMQP specifies how messages are sent between senders and
receivers. An application acts as a sender when the application sends a message to message broker, such
as IBM MQ. IBM MQ acts as a sender when it sends a message to an AMQP application.

Some of the benefits of AMQP are as follows:

• An open standardized protocol
• Compatibility with other open source AMQP 1.0 clients

656 Developing Applications for IBM MQ

https://github.com/mqlight
https://qpid.apache.org/index.html
https://qpid.apache.org/index.html

• Many open source client implementations available

Although any AMQP 1.0 client can connect to an AMQP channel, some AMQP features are not supported,
for example transactions or multiple sessions.

For more information, see AMQP.org website and OASIS Standard AMQP 1.0 PDF.

The MQ Light and Apache Qpid JMS APIs have the following messaging features:

• At-most-once message delivery
• At-least-once message delivery
• Topic string destination addressing
• Message and destination durability
• Shared destinations to allow multiple subscribers to share workload
• Client takeover for easy resolution of hung clients
• Configurable read ahead of messages
• Configurable acknowledgment of messages

For complete documentation of the Apache Qpid JMS API, see Qpid JMS.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

AMQP 1.0 support
AMQP channels provide a level of support for AMQP 1.0-compliant applications.

AMQP channels support a subset of the AMQP 1.0 protocol. You can connect AMQP 1.0 compatible clients
to an IBM MQ AMQP channel. To use all of the messaging features supported by AMQP channels, you
must correctly set the value of certain AMQP 1.0 fields.

This information outlines the way AMQP fields must be formatted and lists the features of the AMQP 1.0
specification that are not supported by AMQP channels.

The following features of the AMQP 1.0 specification are either not supported or are limited in their use:

ATTACH frame
AMQP channels expect the capabilities in ATTACH frame to contain one of the following:

topic
temporary queue
queue
shared

Capabilities imply the type of object, and in the case of multi-capabilities, the order of priority of selecting
the capability is topic, temporary-queue, queue.

If a capability does not contain an expected value, the default capability is topic. Any other capabilities
are ignored.

Note: Some AMQP clients do not set these capabilities and will get the IBM MQ default behavior
of publish/subscribe. For example, the Quarkus Reactive Messaging AMQP 1.0 Connector only sets
capabilities from version 2.8.0CR1 onwards.

AMQP channels expect the distribution-Mode on the ATTACH frame to contain one of the following,
for a source or target:

• move
• copy

Developing applications for IBM MQ 657

https://www.amqp.org/
https://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://qpid.apache.org/components/jms/index.html

where move implies a destructive get, and copy implies browser.

Note: If the distribution-Mode is not set, or set to anything other than copy, move is assumed.

Link names
AMQP channels expect the name of an AMQP link to follow one of these formats:

• A plain topic (for publishing and subscribing)

– Publishing messages: a plain topic string (for example, a link name of "/sports/football")
causes a message to be published on the /sports/football topic.

– Subscribing to a topic to receive messages: a plain topic string (for example, a link name of "/
sports/football" causes a subscription to be defined on the /sports/football topic.

• A private verbose topic (for subscribing)

– A verbose topic string that describes a private subscription in the form: "private:topic string"
(for example: "private:/sports/football"). The behavior is identical to a plain topic string.
The private declaration differentiates a subscription specific to a particular AMQP client from a
subscription shared between clients.

• A shared verbose topic (for subscribing)

– A verbose topic string that describes a shared subscription in the form: "share:share
name:topic string" (for example: "share:bbc:/sports/football").

• A queue (for point to point messaging for producer and consumer)

– Producer to send messages; a queue name string causes a producer to send a message on a queue.
– Consumer to receive messages; a queue name string causes a consumer to receive messages from a

queue.
• Blank (for point to point messaging on a temporary queue)

– Producer to send messages on a temporary queue; Blank causes a producer to send a message on a
temporary queue.

– Consumer to receive messages on a temporary queue; Blank causes a consumer to receive messages
from a temporary queue.

For more information about the way AMQP messages are mapped to and from IBM MQ messages see
“Mapping AMQP fields onto IBM MQ fields (incoming messages)” on page 663.

Maximum lengths for topic strings, share names, and client IDs
The topic string, share name, and client ID must be contained within 10237 bytes. In addition, the
maximum length of a client ID is 256 characters.

These maximum lengths mean that you can have one of the following:

• a very long topic string, provided that the share name is short
• a long share name, but a short topic string

Container IDs
AMQP channels expect the container-id of an AMQP Open performative to contain a unique AMQP client
ID. The maximum length of an AMQP client ID is 256 characters and the ID can contain alphanumeric
characters, percent sign (%), slash (/), period (.) and underscore (_).

Sessions
AMQP channels support only a single AMQP session. An AMQP client that attempts to create more than
one AMQP session receives an error message and is disconnected from the channel.

658 Developing Applications for IBM MQ

Transactions
AMQP channels do not support AMQP transactions. An AMQP attach frame that attempts to coordinate a
new transaction or an AMQP transfer frame that attempts to declare a new transaction is rejected with an
error message.

Delivery state
AMQP channels only support a delivery state for disposition frames of Accepted, Released, or Modified.
Note that, where a state of Modified is used, AMQP channels do not support the undeliverable-here
option.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Point-to-point support on AMQP channels
The IBM MQ AMQP channel provides support for sending messages to queues and receiving messages
from queues.

AMQP clients like an Apache Qpid™ JMS library request a queue or temporary-queue capability when
sending the AMQP attach frame. Capabilities allow the AMQP channel to identify the object as a queue,
temporary-queue or topic. In the absence of either a queue or temporary-queue capability, or even any of
the capabilities, the request is assumed to be for a topic.

IBM MQ AMQP channels provide queue type support for the following:
Queue receive and send

Messages can be sent to a queue and consumed from a queue. For consuming messages, both
synchronous and asynchronous modes are supported.

Queue browse message
As well as putting messages to a queue and getting messages from a queue, messages can also be
browsed from a queue.

Temporary queue support
Messages can be sent to a temporary queue and consumed from a temporary queue. Note that
temporary queue deletion is supported, if the same temporary queue object used to create the
temporary queue is also used to delete the temporary queue.
The SYSTEM.DEFAULT.MODEL.QUEUE is used when creating a temporary queue, and the prefix for the
temporary queue will be AMQP.*.
The SYSTEM.DEFAULT.MODEL.QUEUE is by default a temporary dynamic queue, but you can use the
Definition type property on the SYSTEM.DEFAULT.MODEL.QUEUE queue to change the queue to
be a permanent dynamic queue.

Permanent dynamic queue
A permanent dynamic queue is deleted when an AMQP client, such as an Apache Qpid JMS library,
sends a request with a detach frame with the closed attribute set to true.

Important:
Qpid JMS behavior:

You must call a Qpid JMS API command, for example, the
javax.jms.TemporaryQueue.delete() method to destroy the queue after use and this
process also clears the messages present on the queue.
If you do not issue such a command, the queue remains with any messages still present, when the
connection is closed.

-

Temporary dynamic queue
A temporary dynamic queue is deleted when AMQP client closes the connection.

Developing applications for IBM MQ 659

Important:
Qpid JMS behavior:

If you call a Qpid JMS API command, for example, the
javax.jms.TemporaryQueue.delete() method, close the JMS connection, or the connection
breaks, the queue is deleted and any messages are lost.
Closing a JMS session in itself does not cause the temporary queue to be
deleted, even though the temporary queue could have been created using the
javax.jms.Session.createTemporaryQueue() method.

-

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Mapping AMQP and IBM MQ message fields
AMQP messages are composed of a header, delivery annotations, message annotations, properties,
application properties, body, and footer.

AMQP messages are composed of the following parts:
Header

The optional header contains five fixed attributes of the message:

• durable - specifies durability requirements
• priority - relative message priority
• ttl - time to live in milliseconds
• first-acquirer - if this is true, the message has not been acquired by any other link
• delivery-count - the number of previous, unsuccessful delivery attempts.

Delivery-annotations
Optional. Specifies non-standard header attributes of the message for different intended audiences.
Delivery annotations convey information from the sending peer to the receiving peer.

Message-annotations
Optional. Specifies non-standard header attributes of the message for different intended audiences.
The message-annotations section is used for properties of the message which are aimed at the
infrastructure and should be propagated across every delivery step.

Properties
Optional. This part is equivalent the MQ message descriptor. It contains the following fixed fields:

• message-id - application message identifier
• user-id - ID of creating user
• to - address of node that the message is destined for
• subject - the subject of the message
• reply-to - the node that the send replies to
• correlation-id - application correlation identifier
• content-type - MIME content type
• content-encoding - MIME content type. Used as a modifier to the content-type.
• absolute-expiry-time - the time when this message is considered expired
• creation-time - the time when this message was created
• group-id - the group that this message belongs to
• group-sequence - the sequence number of this message within its group
• reply-to-group-id - the group that the reply message belongs to

660 Developing Applications for IBM MQ

Applications-properties
Equivalent to MQ message properties.

Body
Equivalent to the MQ user payload.

Footer
Optional. The footer is used for details about the message or delivery that can only be calculated or
evaluated after the whole bare message has been constructed or seen (for example, message hashes,
HMACs, signatures and encryption details).

The AMQP message format is illustrated in the following figure:

The properties, application-properties, and application-data part are known as the "bare message". This
is the message as sent by the sender, and is immutable. The receiver sees the entire message, including
the header, footer, delivery-annotations and message-annotations.

For a full description of the AMQP 1.0 message format, see the OASIS Standard at https://docs.oasis-
open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Mapping IBM MQ fields onto AMQP fields (outgoing messages)
When an IBM MQ message is published and IBM MQ sends it to an AMQP consumer, it will propagate
some of the attributes of the IBM MQ message into equivalent AMQP message attributes.

header
A header is only included if one of the five fields in the header contains a non-default value. Only the fields
with a non-default value are included in the header. The five header fields are initially derived from the
equivalent mq_amqp.Hdr property, if it is set, and then modified as shown in the following table:

Table 101. Header field mappings

Field Default value Value

durable false True if MQMD.Persistence is set to
MQPER_PERSISTENT, false otherwise.

priority 4 From mq_amqp.Hdr.Pri, if set, or otherwise
from MQMD.Priority, if set. If neither set, set
to 4.

ttl n/a MQMD.Expiry in milliseconds. If the value of
MQMD.Expiry is MQEI_UNLIMITED, then set to
the maximum value for the AMQP ttl field

first-acquirer false From mq_amqp.Hdr.Fac, if set, or false
otherwise.

Developing applications for IBM MQ 661

https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
https://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf

Table 101. Header field mappings (continued)

Field Default value Value

delivery-count 0 From mq_amqp.Hdr.Dct, if set, or 0 otherwise.

delivery-annotation
Set as necessary by the AMQP channel.

message-annotation
Not included.

properties
The properties will come unmodified from the equivalent mq_amqp.Prp properties if these are set. If
the message was not originally an AMQP message (that is, PutApplType is not MQAT_AMQP), then a
properties section is generated as described in the following table:

Table 102. Properties field mappings

Name Value

message-id The MQMD.MsgId is set as binary.

user-id The UTF-8 form of the MQMD.UserIdentifier is set as binary in network
byte-order.

to The queue that the message was got from, or, for a publication, the topic
string.

subject Not set.

reply-to The MQMD.ReplyToQ if non-blank, otherwise not set.

correlation-id The MQMD.CorrelId is set as binary if non-blank, otherwise not set.

content-type Not set.

content-encoding Not set.

absolute-expiry-time Not set.

creation-time The MQMD.PutDate and MQMD.PutTime fields are used to generate a
timestamp.

group-id Not set.

group-sequence Not set.

reply-to-group-id Not set.

application-properties
All IBM MQ properties in the "usr" group are added as the application-properties.

body
The AMQP channel performs a get with convert, to convert the IBM MQ payload into UTF-8.

If the IBM MQ payload does not contain an AMQP message, then the IBM MQ payload is set in the body as
a single string data section for Format MQFMT_STRING (provided conversion to UTF-8 was successful), or
as a single binary data section otherwise.

662 Developing Applications for IBM MQ

If an AMQP format message is included, then this is set as the body. Any IBM MQ headers (not including
the messages properties which are returned in a message handle) that precede the AMQP message are
prepended as a binary value if the body is an AMQP Sequence. Otherwise the IBM MQ headers are
discarded.

footer
No footer is included.

Related tasks
Creating and using AMQP channels
Securing AMQP clients
Related reference
MQMD - Message descriptor

Mapping AMQP fields onto IBM MQ fields (incoming messages)
When the AMQP channel receives a message and puts it to IBM MQ, it propagates some of the attributes
of the AMQP message into equivalent IBM MQ message attributes.

The following restrictions apply when mapping an incoming AMQP message:

• If the message-id or correlation-id field in the properties part is a uuid or a ulong, then the
message is rejected.

• Any message-annotations cause the message to be rejected.
• delivery-annotations and footer sections are allowed, but are not propagated into the IBM MQ

message.

The following sub-sections show the IBM MQ expression of an AMQP message.

Message descriptor
Table 103. Message descriptor for AMQP message

Field Value

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_1

Report MQRO_NONE

MsgType MQMT_DATAGRAM

Expiry Value taken from the ttl field in the AMQP message header

Feedback MQFB_NONE

Encoding MQENC_NORMAL

CodedCharSetId 1208 (UTF-8)

Format See Payload

Priority Value taken from the priority field in the AMQP message header. If set,
limited to a maximum of 9. If not set, takes the default value of 4.

Persistence If the durable field in the AMQP message header is set true, set to
MQPER_PERSISTENT. Otherwise, set to MQPER_NOT_PERSISTENT.

MagId The queue manager allocates a unique 24-byte MsgId.

Correlld Value taken from the correlation-id field in the AMQP properties, if
set. Set to a 24-byte binary value. Otherwise, set to MQCI_NONE/.

Developing applications for IBM MQ 663

Table 103. Message descriptor for AMQP message (continued)

Field Value

BackoutCount 0

ReplyToQ Value taken from the reply-to field in the AMQP properties, if set.
Otherwise set to "".

ReplyToQMgr ""

Report Value derived from any JMS IBM Report properties set in the AMQP
application properties.

UserIdentifier Set to the identifier of the authenticated user that connected to the AMQP
channel

AccountingToken MQACT_NONE

ApplIdentityData Hexadecimal string. Set to the last 8 bytes of the MQ connection identifier
of the AMQP channel.

PutApplType MQAT_AMQP

PutApplName

PutDate Value taken from the creation-time field of the AMQP properties, if set.
Otherwise set to the current date.

PutTime Value taken from the creation-time field of the AMQP properties, if set.
Otherwise set to the current time.

ApplOriginData ""

Message properties
There are two reasons for setting message properties:

• To allow parts of the AMQP message to flow through the queue manager without affecting the payload
of the message.

• To allow selection of the application-properties.

The following table shows the properties that are set from the AMQP message:

Table 104. AMQP message properties

Property name MQRFH2 name Type Description

AMQPListener mq_amqp.Lis MQTYPE_STRING An identifying string for the AMQP
channel. It is used to generate the
message, so that interested parties
can tell which version put the
message (for example, the service
team when diagnosing problems).
The value is not validated by the
queue manager, and must not be
documented externally.

AMQPVersion mq_amqp.Ver MQTYPE_STRING The version of the AMQP message.
If not present, "1.0" is assumed.
The value is not validated by the
queue manager.

664 Developing Applications for IBM MQ

Table 104. AMQP message properties (continued)

Property name MQRFH2 name Type Description

AMQPClient mq_amqp.Cli MQTYPE_STRING An identifying string for the API.
It is used to send the AMQP
message to the channel, so that
interested parties can tell which
version put the message (for
example, the service team when
diagnosing problems). The value is
not validated by the queue manager
and must not be documented
externally.

AMQPDurable mq_amqp.Hdr.Dur MQTYPE_BOOLEAN The value of the durable field in
the AMQP message header, if set.

AMQPPriority mq_amqp.Hdr.Pri MQTYPE_INT32 The value of the priority field in
the AMQP message header, if set.

AMQPTtl mq_amqp.Hdr.Ttl MQTYPE_INT64 The value of the ttl field in the
AMQP message header, if set.

AMQPFirstAcquirer mq_amqp.Hdr.Fac MQTYPE_BOOLEAN The value of the first-acquirer
field in the AMQP message header, if
set.

AMQPDeliveryCount mq_amqp.Hdr.Dct MQTYPE_INT64 The value of the delivery-count
field in the AMQP message header, if
set.

AMQPMsgId mq_amqp.Prp.Mid MQTYPE_STRING The value of the message-id field
in the AMQP properties, if set as a
string.

MQTYPE_BYTE_STRI
NG

The value of the message-id field
in the AMQP properties, if set as a
byte string.

AMQPUserId mq_amqp.Prp.Uid MQTYPE_BYTE_STRI
NG

The value of the user-id field in
the AMQP properties, if set.

AMQPTo mq_amqp.Prp.To MQTYPE_STRING The value of the to field in the
AMQP properties, if set.

AMQPSubject mq_amqp.Prp.Sub MQTYPE_STRING The value of the subject field in
the AMQP properties, if set.

AMQPReplyTo mq_amqp.Prp.Rto MQTYPE_STRING The value of the reply-to field in
the AMQP properties, if set.

AMQPCorrelationId mq_amqp.Prp.Cid MQTYPE_STRING The value of the correlation-id
field in the AMQP properties, if set
as a string..

MQTYPE_BYTE_STRI
NG

The value of the correlation-id
field in the AMQP properties, if set
as a byte string.

AMQPContentType mq_amqp.Prp.Cnt MQTYPE_STRING The value of the content-type
field in the AMQP properties, if set.

Developing applications for IBM MQ 665

Table 104. AMQP message properties (continued)

Property name MQRFH2 name Type Description

AMQPContentEncod
ing

mq_amqp.Prp.Cne MQTYPE_STRING The value of the content-
encoding field in the AMQP
properties, if set.

AMQPAbsoluteExpir
yTime

mq_amqp.Prp.Aet MQTYPE_STRING The value of the absolute-
expiry-time field in the AMQP
properties, if set.

AMQPCreationTime mq_amqp.Prp.Crt MQTYPE_STRING The value of the creation-time
field in the AMQP properties, if set.

AMQPGroupId mq_amqp.Prp.Gid MQTYPE_STRING The value of the group-id field in
the AMQP properties, if set.

AMQPGroupSequen
ce

mq_amqp.Prp.Gsq MQTYPE_INT64 The value of the group-sequence
field in the AMQP properties, if set.

AMQPReplyToGroup
Id

mq_amqp.Prp.Rtg MQTYPE_STRING The value of the reply-to-
group-id field in the AMQP
properties, if set.

Each of the application-properties from the AMQP message is set as an IBM MQ message property. The
application-properties section must be reconstituted identically byte-for-byte, and so the following
restrictions apply:

• If an application property is rejected by the MQSETMP validation code, the message to be rejected. For
example:

– The property name is limited in length to MQ_MAX_PROPERTY_NAME_LENGTH.
– The property name must follow the rules defined by the Java Language Specification for Java

Identifiers.
– The property name must not begin JMS or usr.JMS except for the documented JMS properties that

can be set.
– The property name must not be a SQL keyword.

• An application property containing Unicode character U+002E (".") causes the message to be rejected.
The property must be expressible in the "usr" group of properties used by JMS.

• Only null, boolean, byte, short, int, long, float, double, binary and string properties are supported. An
application property with any other type will cause the message to be rejected.

You can set the following JMS properties using application-properties:

• JMS_IBM_REPORT_EXCEPTION
• JMS_IBM_REPORT_EXPIRATION
• JMS_IBM_REPORT_COA
• JMS_IBM_REPORT_COD
• JMS_IBM_REPORT_PAN
• JMS_IBM_REPORT_NAN
• JMS_IBM_REPORT_PASS_MSG_ID
• JMS_IBM_REPORT_PASS_CORREL_ID
• JMS_IBM_REPORT_DISCARD_MSG

Note that property names and values are consistent with the equivalent “Mapping JMS provider-specific
fields” on page 153 details, and that values that are not valid are ignored.

666 Developing Applications for IBM MQ

payload
• For an AMQP body with a single binary data section, the binary data (excluding the AMQP bits) is put as

the IBM MQ payload, with a Format of MQFMT_NONE.
• For an AMQP body with a single string data section, the string data (excluding the AMQP bits) is put as

the IBM MQ payload, with a Format of MQFMT_STRING.
• Otherwise, the AMQP body forms the payload as-is, with a Format of MQFMT_AMQP.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Message delivery reliability
This section compares the reliability features for MQ Light API and Apache Qpid JMS.
Related tasks
Creating and using AMQP channels
Securing AMQP clients

MQ Light message reliability
There are four features of the MQ Light API that allow you to control the reliability of message delivery to,
and from, AMQP applications.

These are:

• “Message quality of service (QOS)” on page 667
• “Subscriber auto-confirm” on page 668
• “Subscription time to live” on page 668
• “Message persistence” on page 668

Message quality of service (QOS)
The MQ Light API offers two qualities of service:

• At most once
• At least once

You can choose which quality of service you want publishers and subscribers to use.

If you are using an MQ Light client, set the client or subscribe qos option to QOS_AT_MOST_ONCE or
QOS_AT_LEAST_ONCE.

If you are using a different AMQP client, set the settled attribute of the transfer frame (for publishers),
or the disposition frame (for subscribers) to true or false, depending on the quality of service you want to
achieve.

The quality of service determines when a message is discarded from the sending side of a conversation:
Publishing

• If a publisher chooses QOS 0 (at most once) the publisher does not wait for an acknowledgment
from the queue manager, before it discards its copy of the message. If the connection to the queue
manager fails before the send has completed, the message might not be received by subscribers.

• If a publisher chooses QOS 1 (at least once) the publisher waits for the queue manager to
acknowledge that the message has been written to subscriber queues before discarding its copy of
the message. If the connection to the queue manager fails during the send, the publisher re-sends
the message once it has reconnected to the queue manager.

Developing applications for IBM MQ 667

Subscribing

• If a subscriber chooses QOS 0 the queue manager does not wait for an acknowledgment from the
subscriber before discarding its copy of the message. If the connection to the subscriber fails before
the subscriber has received the message, that message might be lost.

• If a subscriber chooses QOS 1 the queue manager waits for an acknowledgment from the subscriber

before discarding its copy of the message. From IBM MQ 9.3.3, acknowledged
messages are removed in batches to improve the performance. For more information, see
“Removing acknowledged AMQP messages from the queue in batches” on page 670.

If the connection to the subscriber fails before the subscriber has received the message, the
message is kept by the queue manager. The queue manager re-sends the message to the subscriber
when the queue manager reconnects, or to another subscriber if the subscription is shared.

Subscriber auto-confirm
If a subscriber chooses QOS 1 (at least once) it must acknowledge receipt of each message before the
queue manager discards its copy. The subscriber can decide when it acknowledges messages.

With auto-confirm set to true, the MQ Light client automatically acknowledges delivery of each
message, once the client has successfully received the message over the network.

This ensures that if there is a network failure, the message is redelivered to the application. However, it is
still possible for the application to lose the message, if the application fails in between the MQ Light client
acknowledging the message, and the application processing it.

With auto-confirm set to false, the MQ Light client does not automatically acknowledge delivery of the
message, but leaves it to the application to decide when it should be acknowledged.

This allows an application to make an update to an external resource, such as a database or a file, before
acknowledging to the queue manager that the message has now been processed and can be discarded.

Subscription time to live
When an application subscribes, it chooses whether the subscription, and the destination where
messages are stored for that subscription, continue to exist after the application disconnects.

The MQ Light subscribe option ttl is used to specify the time (in milliseconds) that a subscription
continues to exist after the application disconnects. If the application reconnects before this time, the
subscription is resumed and the application can continue to consume messages from that subscription.

If the time-to-live period passes without the application reconnecting, the subscription is removed and
any messages stored on its destination are lost, even if they are persistent messages.

If it is important not to lose messages, you must specify a time-to-live value to the application, that is
high enough to ensure messages are not lost during an outage.

Message persistence
The persistence of messages is controlled by the publishing and subscribing applications, and the
configuration of IBM MQ topic objects.

If the AMQP subscriber uses QOS 0 (at most once) and creates a non-durable subscription, the AMQP
channel always puts non-persistent messages to the subscriber queue, regardless of the other options
described in the following text.

Note that, if the queue manager is stopped both the subscription and the messages will be lost.

If an AMQP publisher sets the AMQP durable header to true, the AMQP channel puts persistent
messages to subscriber queues.

If the queue manager is stopped for any reason, the messages are still available to subscribers when the
queue manager is restarted.

668 Developing Applications for IBM MQ

If the durable header is not set, the AMQP channel chooses the persistence of published messages
based on the DEFPSIST attribute of the relevant IBM MQ topic object.

By default, this is the SYSTEM.BASE.TOPIC, which uses a DEFPSIST attribute of NO (non-persistent).

Attention: Later versions of the MQ Light client do not support setting the AMQP durable header.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Apache Qpid JMS message reliability
There are four features of the Apache Qpid™ JMS library that allow you to control the reliability of message
delivery to, and from, AMQP applications.

These are for:

• “Publishing” on page 669/Producer for point to point messaging

– Message expiration
– Message persistence

• “Subscribing” on page 669

– Subscription durability
– Session acknowledgment mode (Applicable also for consumer point to point messaging)

Publishing

Message expiration

Setting the time-to-live value of the JMS producer affects the expiry time given to messages published by
that message producer.

Ensure that the time-to-live value for a JMS producer is sufficiently large that messages are consumed
before they expire.

Alternatively, leaving the time-to-live value unset prevents the message from expiring from the
subscription queue.

Message persistence

Setting the delivery mode of the JMS message producer sets the persistence of the IBM MQ message
published to the specified topic.

Ensure that you use DeliveryMode.PERSISTENT for messages that must be retained when a queue
manager is ended, or has an outage.

Subscribing

Subscription durability

AMQP channels support the creation of durable subscriptions by using the durable versions of the JMS
create consumer methods:

• createDurableConsumer()
• createSharedDurableConsumer()

Session acknowledgment mode

Developing applications for IBM MQ 669

To guarantee that a consumed message has been fully processed before it is removed from the IBM MQ
subscription queue, create a JMS session using the Session.CLIENT_ACKNOWLEDGE mode and use the
message.acknowledge() method to acknowledge this message and any others previously received on
this session.

Related concepts
Developing AMQP client applications
The IBM MQ support for AMQP APIs, allows an IBM MQ administrator to create an AMQP channel. When it
is started, this channel defines a port number that accepts connections from AMQP client applications.

Removing acknowledged AMQP messages from the queue in
batches
If an AMQP application is using QOS_AT_LEAST_ONCE(1) message delivery, the AMQP service waits for
an acknowledgment from the application before it discards the copy of a message that it keeps after it
sends that message to the application. From IBM MQ 9.3.3, messages that have been acknowledged are
removed from the queue in batches, instead of individually, resulting in improved performance.

About this task
Before IBM MQ 9.4.0, each message is removed from the queue individually.

From IBM MQ 9.4.0, you can use the two system properties com.ibm.mq.AMQP.BATCHSZ and
com.ibm.mq.AMQP.BATCHINT to fine tune the processing of acknowledgments in batches for improved
performance:
com.ibm.mq.AMQP.BATCHSZ

This attribute defines the maximum number of acknowledgments to be received before the AMQP
service removes messages. The number can be in the range 1 through 9999. If an invalid number is
set, or if the specified number is out of range, the default value of 50 is used.
The batch size does not affect the way that the messages are transferred. Messages are
always transferred individually, but are then removed in a batch after the AMQP service
receives the acknowledgments. The actual size of a batch can be less than the value specified
by com.ibm.mq.AMQP.BATCHINT. For example, a batch completes if the period set by the
com.ibm.mq.AMQP.BATCHINT attribute expires.

com.ibm.mq.AMQP.BATCHINT
This attribute defines the amount of time, in milliseconds, for which the AMQP service keeps
acknowledged messages on the queue. If the batch is not full, then the batch is cleared after this
duration. You can specify any number of milliseconds, from 1 through 999 999 999. The default value
is 50. If you do not specify a value for this attribute, the default value of 50 is used.

Notes:

1. Whether the AMQP service waits for an acknowledgment before it discards a message depends on
which of the following two qualities of service an application is using for message delivery:

• QOS for QOS_AT_MOST_ONCE(0)

If an AMQP application is using this quality of service, it does not acknowledge messages, so the
AMQP service discards messages after it sends them to the application without waiting for an
acknowledgment.

• QOS_AT_LEAST_ONCE(1)

If an AMQP application is using this quality of service, it does acknowledge messages, so the
AMQP service keeps a copy of each message after it sends it to the application until it receives an
acknowledgment from the application. If the application disconnects from or loses the connection
before acknowledging the message, the message is made available to other applications. The AMQP
service does not remove a message from the queue until it has been acknowledged.

670 Developing Applications for IBM MQ

2. The com.ibm.mq.AMQP.BATCHSZ and com.ibm.mq.AMQP.BATCHINT system
properties are not applicable on IBM MQ Appliance. A default value of 50 is used on IBM MQ
Appliance.

.

Procedure
Use the com.ibm.mq.AMQP.BATCHSZ and com.ibm.mq.AMQP.BATCHINT system properties to fine
tune the processing of acknowledgments in batches.
From IBM MQ 9.3.3, when the queue manager is created, the amqp_java.properties file contains the
following default values for the system properties:

-Dcom.ibm.mq.AMQP.BATCHSIZE=50
-Dcom.ibm.mq.AMQP.BATCHINT=50

Depending on the message rate consumed, you can fine tune processing of acknowledgments in
batches for improved performance. A migrated queue manager does not have these properties in the
amqp_java.properties file. So, for a migrated queue manager, or if the properties are not set, the
default values are used. You can add these properties to fine tune the values for optimized performance.

Acknowledged messages are removed in batches when one of the following conditions is met:

• The number of acknowledged messages reaches com.ibm.mq.AMQP.BATCHSZ.
• com.ibm.mq.AMQP.BATCHINT is exceeded after the start of the batch.
• The application disconnects or closes the queue or topic before the two previous conditions are
satisfied.

Topologies for AMQP clients with IBM MQ
Example topologies to help you develop your AMQP clients to work with IBM MQ.
Related tasks
Creating and using AMQP channels
Securing AMQP clients

AMQP clients communicating over IBM MQ
You can use IBM MQ as the messaging provider for any application that complies with AMQP 1.0.
Although any AMQP 1.0 client can connect to an AMQP channel, some AMQP features are not supported,
for example transactions or multiple sessions.

By defining one or more AMQP channels, AMQP 1.0 clients can connect to the queue manager and send
messages to a topic string. Clients can also subscribe to a topic pattern to receive messages that match
the pattern.

In the following scenario, the only applications sending and receiving messages are AMQP 1.0
applications.

Applications can choose whether the destinations created by subscribing to a topic string are persistent
so that messages are not lost if the application temporarily loses its connection to the queue manager.

Applications can also choose how long messages are kept before being purged from the destination.

Developing applications for IBM MQ 671

Related tasks
Creating and using AMQP channels
Securing AMQP clients

AMQP clients exchanging messages with IBM MQ applications
By defining and starting an AMQP channel, AMQP 1.0 applications can publish messages that are received
by existing MQ applications. Messages published through an AMQP channel are all sent to MQ topics,
not MQ queues. An MQ application that has created a subscription using the MQSUB API call receives
messages published by AMQP 1.0 applications, provided that the topic string or topic object used by the
MQ application matches the topic string published by the AMQP client.

AMQP message data, attributes, and properties are set on the MQ message received by the MQ
application. For more information about AMQP to MQ message mappings, see “Mapping AMQP fields
onto IBM MQ fields (incoming messages)” on page 663.

If the MQ application has created a subscription that is durable, messages published by the AMQP
application are stored on the queue that backs the subscription. The messages are then received by
the MQ application when the application resumes its subscription. If the AMQP application specifies a
message time to live and the MQ application does not reconnect within the time to live, the message is
expired from the queue.

AMQP 1.0 applications can also consume messages that are published by existing MQ applications.
Messages published by MQ applications to an MQ topic or topic string are received by an AMQP 1.0
application provided that the application has subscribed with a topic pattern that matches the published
topic string.

If the AMQP 1.0 application specifies a time-to-live value for the subscription, and the AMQP application
disconnects for greater than the time to live, the subscription is expired from the queue manager and any
messages stored on the subscription queue are lost.

MQMD fields, message properties, and application data are set on the AMQP message received by the
AMQP application. For more information about the MQ to AMQP message mappings, see “Mapping IBM
MQ fields onto AMQP fields (outgoing messages)” on page 661.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

672 Developing Applications for IBM MQ

Configuring AMQP clients to interact directly with applications on
IBM MQ queues
The IBM MQ AMQP implementation supports publish/subscribe and point to point. For any AMQP client
that does not support point to point use the following steps to send messages to a queue, or receive
messages from a queue.

Overview
For example, assume there is an application getting messages from an input queue IN_QUEUE and
putting those messages to an output queue OUT_QUEUE. It is possible for AMQP clients to put messages
to IN_QUEUE, and get messages from OUT_QUEUE

Note: There are no changes required to the application itself.

For an AMQP publisher to put a message to a queue, you need to create an administrative subscription for
the topic string the AMQP client is publishing to, with a destination of the intended queue; see “Sending
messages to the application:” on page 673.

For an AMQP subscriber to get messages from a queue, you need to replace the queue with an alias
queue of the same name, with a target of a topic object representing the topic string the AMQP client is
subscribed to; see “Getting messages from the application:” on page 673

Sending messages to the application:
The application is already picking up messages from IN_QUEUE and you want an AMQP client to be able
to publish messages, so that they go to this queue to be processed by the application.

To do this, you create a new administrative subscription, where the topic string this subscription receives
messages from, is the topic string that the AMQP client publishes to. The destination queue of this
subscription is the input queue for the application, IN_QUEUE.

Any messages that are published to the defined topic string for that administrative subscription are routed
to the defined destination, in this case IN_QUEUE.

Assuming the AMQP client publishes to a topic string /application/in, you can create an
administrative subscription APP_IN, using the following MQSC command:

DEF SUB(APP_IN) TOPICSTR('/application/in') DEST('IN_QUEUE')

When you have defined this object, all messages published to /application/in are routed to the
destination IN_QUEUE, where they are picked up by the application in the same way as any other
messages put to this queue by other applications.

Getting messages from the application:
The application is putting messages to OUT_QUEUE, where they can be picked up and processed by other
clients.

However, in this case, you want the messages to be delivered to an AMQP client instead, but AMQP clients
only use publish/subscribe, and cannot pick messages up directly from a queue.

Developing applications for IBM MQ 673

To replace the clients previously receiving message with the subscribing AMQP client, you need to create
a topic object, for the topic string that the AMQP client is subscribed to, and an alias queue.

Attention: If you define the alias queue, and then start the producing application before any AMQP
clients have had a chance to subscribe, messages the producing application sends to the "queue"
(now a topic) will be lost because there are no subscribers.

The changes described in this text, replace the clients previously receiving messages with the
subscribing AMQP client only. To use a combination of AMQP and other clients to get messages,
more extensive changes are required.

Assuming the AMQP client subscribes to a topic string /application/out, you can define the topic
object APP_OUT using the following MQSC command:

DEF TOPIC(APP_OUT) TOPICSTR('/application/out')

Any messages delivered to this topic object are delivered to the AMQP client subscribing to the same
topic string.

You then need to ensure that messages put to OUT_QUEUE by the application are delivered to this new
topic object, so that they are sent to the subscribing client.

To do this, replace the existing queue OUT_QUEUE with an alias queue of the same name, with a target
type of the topic object just created, using the following MQSC command:

DEF QALIAS(OUT_QUEUE) TARGTYPE(TOPIC) TARGET(APP_OUT)

Now, messages put by the application to OUT_QUEUE do not wait on the queue to be picked up; instead
they are delivered to the target of this alias queue, that is, the new topic object APP_OUT.

The AMQP client, which is subscribed to the topic string represented by this topic object /application/
out, then receives any messages sent to this topic object from the alias queue.

Related tasks
Creating and using AMQP channels

674 Developing Applications for IBM MQ

Securing AMQP clients

Configuring an AMQP client for high availability
You can configure AMQP 1.0 applications to connect to the active instance of an IBM MQ multi-instance
queue manager and fail over to the standby instance of the multi-instance queue manager in a high
availability (HA) pair. To do this, you configure the AMQP application with two IP addresses and port pairs.

You can configure the AMQP client API with a custom function, which is called if the client loses its
connection to the server. The function can connect to an alternative IP address, for example a standby
IBM MQ queue manager or to the original IP address. For other AMQP clients, if the client supports
configuration of multiple connection endpoints, configure the application with two host-port pairs and use
the reconnect features provided by the AMQP library to switch to the standby queue manager.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Configuring publish/subscribe for AMQP clients
AMQP clients can publish to a topic with an IBM MQ subscription that routes messages to an IBM MQ
queue read by an existing application. If you want an AMQP 1.0 application to send messages to an
existing IBM MQ application that is configured to read from a queue, you must define an administered
IBM MQ subscription on the queue manager.

Configure the subscription to use a topic pattern that matches the topic string used by the AMQP
application. Set the subscription destination to the name of the queue that the IBM MQ application gets or
browses messages from.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Developing applications for IBM MQ 675

AMQP client using a queue alias to receive messages from an IBM
MQ application
An AMQP client can subscribe to a topic and receive messages put to an alias queue by an IBM
MQ application. If you want an AMQP 1.0 application to receive messages from an existing IBM MQ
application that is configured to put messages on a queue, you must define a queue alias (QALIAS) on the
queue manager.

The queue alias must have the same name as the queue that the IBM MQ application opens for putting.
The queue alias must specify a base type of TOPIC and a base object of an IBM MQ topic object that has a
topic string that matches the topic pattern subscribed to by the AMQP application.

Related tasks
Creating and using AMQP channels
Securing AMQP clients

AMQP client submitting requests to and consuming responses from
an application server
An AMQP client can submit requests to a message-driven bean running in an application server and
consume responses from a reply topic. IBM MQ supports AMQP 1.0 applications setting a reply-to topic
in the messages that IBM MQ publishes. When an AMQP message is published with the reply-to attribute
set, the value of the reply-to field is set as a JMS property for JMS consumers to receive. This setting
allows JMS consumers to read the reply-to topic from the message and send a response message back to
the AMQP client.

The JMS property is JMSReplyTo. The AMQP reply-to string must be one of the following types:

• A topic string. For example, 'reply/topic'
• An AMQP address URL in the form amqp://host:port/[topic-string]. For example, amqp://
localhost:5672/reply/topic

If you specify an AMQP address URL as the reply-to field, everything except the topic-string at the end of
the URL is removed before setting the JMSReplyTo property.

For more information about the mappings from an AMQP reply-to address to a JMSReplyTo property, see
“Mapping AMQP fields onto IBM MQ fields (incoming messages)” on page 663

676 Developing Applications for IBM MQ

Related tasks
Creating and using AMQP channels
Securing AMQP clients

Interoperability between MQ Light and Apache Qpid JMS
applications
MQ Light and Apache Qpid JMS applications work in similar ways, and when subscribing to a topic, create
IBM MQ subscriptions that follow the same naming convention.

Private, non-shared subscription
The name of the IBM MQ subscription created by the application
is :private:<clientid>:<topicstring>.

An application using a different client ID is not able to access the subscriptions created by a other
applications, because the subscription name is automatically generated and includes the AMQP client ID.

Both Apache Qpid JMS and MQ Light applications use this naming convention for private subscriptions.

Globally shared subscriptions
The name of a globally shared IBM MQ subscription created by an AMQP client
is :share:<sharename>:<topicstring>.

If several applications with different AMQP client IDs specify the same share name and topic string, they
share a single subscription, and can work together to process the messages for that subscription. You
can use this pattern if you want to scale the number of worker applications draining messages from a
subscription.

Both Apache Qpid JMS and MQ Light applications use this naming convention for globally shared
subscriptions. In the case of Apache Qpid JMS, this requires that the JMS connection does not have
a client ID specified on it.

The Apache Qpid JMS library generates an AMQP client ID automatically, but this client ID is not used for
the purposes of IBM MQ subscription naming.

Note: Globally shared subscriptions are still scoped to an individual queue manager.

Private shared subscriptions
The name of a privately shared IBM MQ subscription created by an AMQP client
is :privateshare:<clientid>:<sharename>:<topicstring>.

If several threads from a single Apache Qpid JMS application use the same share name and topic string,
and a client ID has been configured on the JMS connection, those threads share the same IBM MQ
subscription object.

However, other Apache Qpid JMS connections are not able to share the subscription because they must
use a different client ID.

Developing applications for IBM MQ 677

MQ Light clients do not support the concept of private shared subscriptions, and cannot consume
messages from a private shared subscription created by an Apache Qpid JMS application.

IBM MQ JMS subscriptions
IBM MQ JMS subscriptions use a different naming scheme from AMQP channels. It is not possible for MQ
Light or Apache Qpid JMS applications to share subscriptions with IBM MQ JMS applications.

Related concepts
Developing AMQP client applications
The IBM MQ support for AMQP APIs, allows an IBM MQ administrator to create an AMQP channel. When it
is started, this channel defines a port number that accepts connections from AMQP client applications.

IBM MQ AMQP listener control properties
For better performance in a multi-threaded application, you can tune the number of worker threads that
the AMQP service should use by configuring a property in the AMQP properties file.

You can configure AMQP listener service properties in the following properties files:

• On Windows systems: amqp_win.properties .

• On AIX and Linux systems: amqp_unix.properties .

The properties that you can configure are as follows:

Table 105. AMQP listener service properties

Property Description

com.ibm.mq.MQXR.Workers The number of server worker threads that the
AMQP listener service creates. If this value is not
specified, it is defaulted to be equal to the number
of logical processors on the system.

MQIBindType The binding type for the AMQP service, either:
FASTPATH, SHARED, or ISOLATED. The default is
FASTPATH.

The AMQP listener service balances the client connection workload across a number of worker
threads. The number of worker threads that the AMQP service should use can be specified using the
com.ibm.mq.MQXR.Workers property.

The IBM MQ queue manager administrator can tune the number of worker threads for better performance
in a multi-threaded application. Typically, best performance is achieved when the number of worker
threads matches the number of logical processors on the system. However, this might not always be the
case for certain machine configurations and client load characteristics, so an element of tuning might be
required to find the optimal value for the number of worker threads.

Before tuning, make sure that you thoroughly understand the nature of your client applications and their
workloads. Measuring the performance of your application with different thread counts and benchmarking
should help to determine the optimal value for the number of worker threads.

Note: These properties are not applicable on IBM MQ Appliance. Default values are used on
IBM MQ Appliance.

678 Developing Applications for IBM MQ

Developing REST applications with IBM MQ
You can develop REST applications to send and receive messages. IBM MQ supports different REST APIs
depending upon platform and capability.

The following options are the IBM MQ supported options you can choose from to send messages to, and
receive messages from, IBM MQ:

• IBM MQ messaging REST API
• IBM z/OS Connect EE
• IBM Integration Bus
• DataPower

IBM MQ messaging REST API
You can use the messaging REST API to send, receive, and browse IBM MQ messages in plain text format.
The messaging REST API is enabled by default.

Support is provided for a number of different HTTP headers which can be used to set common message
properties.

The messaging REST API is fully integrated with IBM MQ security. To use the messaging REST API, users
must be authenticated to the mqweb server and must be a member of the MQWebUser role.

For further information, see “Messaging using the REST API” on page 680. See also Tutorial: Get started
with the IBM MQ messaging REST API on IBM Developer, which includes Go and Node.js examples for
using the messaging REST API.

IBM z/OS Connect EE
IBM z/OS Connect EE is a z/OS product that allows you to build REST APIs on top of existing z/OS assets,
such as CICS or IMS transactions, and IBM MQ queues and topics. The existing z/OS asset is hidden
from the user. This allows you to REST enable your assets without changing them or any of the existing
applications that use them.

IBM z/OS Connect EE provides automatic data transformation to translate between the JSON data used
by the REST APIs and the more traditional language structures, for example COBOL, expected by many
mainframe applications.

The Eclipse based IBM z/OS Connect EE API toolkit can be used to build up a comprehensive RESTful
API making use of query parameters and URL path segments, manipulating the JSON format as it flows
through the IBM z/OS Connect EE runtime.

IBM z/OS Connect EE can be used to expose IBM MQ queues and topics as RESTful APIs through the IBM
MQ service provider. Two different service types are supported:

• One-way services: these provide a REST API that allows a single IBM MQ operation to be performed on
a queue or topic. Depending on the exact configuration an HTTP request can result in a message being
sent to a queue or published to a topic; or an HTTP request can result in a message being destructively
received from a queue

• Two-way services: these provide a REST API on top of a pair of queues used by a back-end request-
response style application. Callers issue an HTTP request to the two-way service. The HTTP request
payload is transformed from JSON to a traditional language structure and put onto a request queue
where it is processed by the back-end application and a response placed on the response queue. This
response is retrieved by the service, converted from the traditional language structure to JSON and sent
back to the caller as the POST response body.

For more information on IBM z/OS Connect EE, see z/OS Connect EE.

For more information on the IBM MQ service provider, see Using the IBM MQ service provider.

Developing applications for IBM MQ 679

https://developer.ibm.com/tutorials/mq-develop-mq-rest-api/
https://developer.ibm.com/tutorials/mq-develop-mq-rest-api/

IBM Integration Bus
IBM Integration Bus is IBM's leading integration technology which can be used to connect applications
and systems together regardless of the message formats and protocols that they support.

IBM Integration Bus has always supported IBM MQ and provides HTTPInput and HTTPRequest nodes
which can be used to construct a RESTful interface on top of IBM MQ, and many other systems such as
databases.

IBM Integration Bus can be used to do much more than provide a simple REST interface on top of IBM
MQ. Its capabilities can be used to provide advanced payload manipulation, payload enrichment, and
many other enhancements as part of a REST API.

For further information, see the technology sample which exposes a JSON over REST interface on top of
an IBM MQ application that expects an XML payload.

DataPower
The DataPower gateway is a single multi-channel gateway which helps provide security, control,
integration and optimized access to a range of systems, including IBM MQ. It comes in both hardware
and virtual form factors.

One of the services that DataPower provides is a multi-protocol gateway which can take input in one
protocol and generate output in a different protocol. In particular DataPower can be configured to accept
HTTP(S) data and route it to IBM MQ over a client connection, which can be used to build a REST interface
on top of IBM MQ. Other DataPower services such as transformation can also be used to enhance the
REST interface.

For further information, see Multi-Protocol Gateway.

Messaging using the REST API
You can use the messaging REST API to perform simple point-to-point and publish messaging. You can
publish messages to a topic, send messages to a queue, browse messages on a queue, and destructively
get messages from a queue. Information is sent to, and received from, the messaging REST API in plain
text format.

Before you begin
Note:

• The messaging REST API is enabled by default. You can disable the messaging REST API to prevent all
messaging. For more information about enabling or disabling the messaging REST API, see Configuring
the messaging REST API.

• The messaging REST API is integrated with IBM MQ security. To use the messaging REST API, users
must be authenticated to the mqweb server and must be a member of the MQWebUser role. The user
must also be authorized to access the specified queue or topic. For more information about security for
the REST API, see IBM MQ Console and REST API security.

• If you use Advanced Message Security (AMS) with the messaging REST API, note that all messages are
encrypted by using the context of the mqweb server, not the context of the user that posts the message.

• When receiving or browsing a message, only IBM MQ MQSTR or JMS TextMessage formatted
messages are supported. Subsequently, all messages are destructively received under sync-point and
any unhandled messages are left on the queue. The IBM MQ queue can be configured to move these
poison messages to an alternate destination. For further information, see “Handling poison messages in
IBM MQ classes for JMS” on page 225.

• The messaging REST API does not give you once-and-once only delivery of messages with transactional
support. If an HTTP POST is issued and the connection fails before an HTTP response is received by the
client, the client can not immediately tell if the message was sent to the specified queue, or published
to the specified topic. If an HTTP DELETE is issued and the connection fails before an HTTP response

680 Developing Applications for IBM MQ

is received by the client, then a message might have been destructively got from the queue and lost, as
there is no way of rolling the destructive get back.

• From IBM MQ 9.3.0, newlines in incoming strings are no longer removed by the HTTP POST operation.
REST applications that use earlier versions should not use newlines in messages that are sent or
published using the REST API, as they will be lost.

Procedure
• “Getting started with the messaging REST API” on page 681
• “Using the messaging REST API” on page 683
• REST API error handling
• REST API discovery
• REST API national language support

Related reference
Messaging REST API reference
Related information
Tutorial: Get started with the IBM MQ messaging REST API

Getting started with the messaging REST API
Get started quickly with the messaging REST API and try out a few example commands by using cURL.

Before you begin
To get you started with using the messaging REST API, the examples in this task have the following
requirements:

• The examples use cURL to send REST requests to put and get messages from a queue. Therefore, to
complete this task you need cURL installed on your system.

• The examples use a queue manager QM1. Either create a queue manager with the same name, or
substitute an existing queue manager on your system. The queue manager must be on the same
machine as the mqweb server.

• To complete this task, you must be a user with certain privileges so that you can use the dspmqweb
command:

– On z/OS, you must have authority to run the dspmqweb command, and write access to
the mqwebuser.xml file.

– On all other operating systems, you must be a privileged user.

On IBM i, the commands should be running in QSHELL.

Procedure
1. Ensure that the mqweb server is configured for the messaging REST API:

• Ensure that you configured the mqweb server for use by the administrative REST API, the
administrative REST API for MFT, the messaging REST API, or IBM MQ Console.For more
information about configuring the mqweb server with a basic registry, see Basic configuration for
the mqweb server.

• If the mqweb server is already configured, ensure that you added the appropriate users to enable
messaging in step 5 of Basic configuration for the mqweb server.

– If mqRestMessagingAdoptWebUserContext is set to true in the mqweb server
configuration, users of the messaging REST API must be a member of the MQWebUser role.
The MQWebAdmin and MQWebAdminRO roles are not applicable for the messaging REST API. The

Developing applications for IBM MQ 681

https://developer.ibm.com/components/ibm-mq/tutorials/mq-develop-mq-rest-api

users must also be authorized to access queues and topics that are used for messaging through
OAM or RACF®.

– If mqRestMessagingAdoptWebUserContext is set to false in the mqweb server
configuration, the user ID that is used to start the mqweb server must be authorized to access
queues used for messaging through OAM or RACF.

2.
On z/OS, set the WLP_USER_DIR environment variable so that you can use the dspmqweb command.
Set the variable to point to your mqweb server configuration by entering the following command:

export WLP_USER_DIR=WLP_user_directory

where WLP_user_directory is the name of the directory that is passed to crtmqweb. For example:

export WLP_USER_DIR=/var/mqm/web/installation1

For more information, see Creating the mqweb server.
3. Determine the REST API URL by entering the following command:

dspmqweb status

The examples in the following steps assume that your REST API URL is the default URL https://
localhost:9443/ibmmq/rest/v2/. If your URL is different than the default, substitute your URL in
the following steps.

4. Create a queue, MSGQ, on queue manager QM1. This queue is used for messaging. Use one of the
following methods:

• Use a POST request on the mqsc resource of the administrative REST API, authenticating as the
mqadmin user:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/action/qmgr/QM1/mqsc -X POST -u
mqadmin:mqadmin -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/
json" --data "{\"type\": \"runCommandJSON\",\"command\": \"define\", \"qualifier\":
\"qlocal\",\"name\": \"MSGQ\"}"

• Use MQSC commands:

On z/OS, use a 2CR source instead of the runmqsc command. For more information,
see Sources from which you can issue MQSC and PCF commands on IBM MQ for z/OS.

a. Start runmqsc for the queue manager by entering the following command:

runmqsc QM1

b. Use the DEFINE QLOCAL MQSC command to create the queue:

DEFINE QLOCAL(MSGQ)

c. Exit runmqsc by entering the following command:

end

5. Grant authority for the user that you added to the mqwebuser.xml in step 5 of Basic configuration for
the mqweb server to access the queue MSGQ. Substitute your user where myuser is used:

• On z/OS:

a. Grant your user access to the queue:

RDEFINE MQQUEUE hlq.MSGQ UACC(NONE)
PERMIT hlq.MSGQ CLASS(MQQUEUE) ID(MYUSER) ACCESS(UPDATE)

b. Grant the mqweb started task user ID access to set all context on the queue:

682 Developing Applications for IBM MQ

RDEFINE MQADMIN hlq.CONTEXT.MSGQ UACC(NONE)
PERMIT hlq.CONTEXT.MSGQ CLASS(MQADMIN) ID(mqwebStartedTaskID) ACCESS(CONTROL)

• On all other operating systems, if your user is in the mqm group, authority is already
granted. Otherwise, enter the following commands:

a. Start runmqsc for the queue manager by entering the following command:

runmqsc QM1

b. Use the SET AUTHREC MQSC command to give your user browse, inquire, get and put
authorities on the queue:

SET AUTHREC PROFILE(MSGQ) OBJTYPE(QUEUE) +
PRINCIPAL(myuser) AUTHADD(BROWSE, INQ, GET, PUT)

c. Exit runmqsc by entering the following command:

end

6. Put a message with the content Hello World! on the queue MSGQ on queue manager QM1, by
using a POST request on the message resource. Substitute your user ID and password from the
mqwebuser.xml for myuser and mypassword:

Basic authentication is used, and an ibm-mq-rest-csrf-token HTTP header with an arbitrary value
is set in the cURL REST request. This additional header is required for POST, PATCH, and DELETE
requests.

curl -k https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/MSGQ/message -X
POST -u myuser:mypassword -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: text/
plain;charset=utf-8" --data "Hello World!"

7. Destructively get the message from queue Hello World! on the queue MSGQ on queue manager QM1,
by using a DELETE request on the message resource. Substitute your user ID and password from the
mqwebuser.xml for myuser and mypassword:

curl -k https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/MSGQ/message -X DELETE
-u myuser:mypassword -H "ibm-mq-rest-csrf-token: value"

The message Hello World! is returned.

What to do next
• The examples use basic authentication to secure the request. You can use token-based authentication

or client-based authentication instead. For more information, see Using client certificate authentication
with the REST API and IBM MQ Console, and Using token-based authentication with the REST API.

• Learn more about using the messaging REST API and constructing URLs with query parameters: “Using
the messaging REST API” on page 683.

• When you use the messaging REST API, connections to the queue manager are pooled to optimize
performance. You can configure the maximum pool size, and what action is taken when all the
connections in the pool are in use: Configuring the messaging REST API.

• Browse the reference information for the available messaging REST API resources and all the available
query parameters: messaging REST API reference.

• Discover the administrative REST API, a RESTful interface for IBM MQ administration: Administration
using the REST API.

• Discover the IBM MQ Console, a browser-based GUI: Administration using the IBM MQ Console.

Using the messaging REST API
When you use the messaging REST API, you invoke HTTP methods on URLs to send and receive IBM MQ
messages. The HTTP method, for example POST, represents the type of action to be performed on the

Developing applications for IBM MQ 683

object that is represented by the URL. Further information about the action might be encoded in query
parameters. Information about the result of performing the action might be returned as the body of the
HTTP response.

Before you begin
Consider these things before you use the messaging REST API:

• You must authenticate with the mqweb server in order to use the messaging REST API. You can
authenticate by using HTTP basic authentication, client certificate authentication, or token based
authentication. For more information about how to use these authentication methods, see IBM MQ
Console and REST API security.

• The REST API is case-sensitive. For example, an HTTP POST on the following URL results in an error if
the queue manager is called qmgr1.

/ibmmq/rest/v2/messaging/qmgr/QMGR1/queue/Q1/message

• If you are connecting to a remote queue manager with the messaging REST API, you must
use the unique name for the queue manager connection instead of the queue manager name.

• Not all of the characters that can be used in IBM MQ object names can be directly encoded in a URL. To
encode these characters correctly, you must use the appropriate URL encoding:

– A forward slash must be encoded as %2F.
– A percent sign must be encoded as %25.
– A period must be encoded as %2E.
– A question mark must be encoded as %3F.

• When receiving or browsing a message, only IBM MQ MQSTR and JMS TextMessage formatted
messages are supported. Subsequently, all messages are destructively received under sync-point and
any unhandled messages are left on the queue. The IBM MQ queue can be configured to move these
poison messages to an alternate destination. For further information, see “Handling poison messages in
IBM MQ classes for JMS” on page 225.

About this task
When you use the REST API to perform a messaging action on an IBM MQ queue object, you first need to
construct a URL to represent that object. Each URL starts with a prefix, which describes which host name
and port to send the request to. The rest of the URL describes a particular object, or route to that object,
known as a resource.

The messaging action that is to be performed on the resource defines whether the URL needs query
parameters or not. It also defines the HTTP method that is used, and whether additional information is
sent to the URL, or returned from it. The additional information might form part of the HTTP request, or be
returned as part of the HTTP response.

After you construct the URL, you can send the HTTP request to IBM MQ. You can send the request by
using the HTTP implementation that is built into the programming language of your choice. You can also
send the request by using command line tools such as cURL, or a web browser, or web browser add-on.

Important: You must, as a minimum, carry out steps “1.a” on page 684 and “1.b” on page 684.

Procedure
1. Construct the URL:

a) Determine the prefix URL by entering the following command:

dspmqweb status

The URL that you want to use includes the /ibmmq/rest/ phrase.
b) Add the queue and associated queue manager resources to use for messaging to the URL path.

684 Developing Applications for IBM MQ

In the messaging reference, the variable segments can be identified in the URL by the braces that
surround it { }. For further information, see /messaging/qmgr/{qmgrName}/queue/{queueName}/
message.

For example, to interact with queue Q1 associated with queue manager QM1, add /qmgr and /
queue to the prefix URL to create the following URL:

https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message

Tip: If the queue manager is a remote queue manager, you must use the unique name
for the queue manager in place of the queue manager name. The remote queue manager must be
configured before it can be used with the messaging REST API. For more information, see “Setting
up a remote queue manager to use with the messaging REST API” on page 685.

c) Optional: Add an optional query parameter to the URL.

Add a question mark, ?, query parameter, equal sign =, and a value to the URL.

For example, to wait for a maximum of 30 seconds for the next message to become available,
create the following URL:

https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message?wait=30000

d) Optional: Add further optional query parameters to the URL.

Add an ampersand, &, to the URL, and then repeat step 1c.
2. Invoke the relevant HTTP method on the URL. Specify any optional message payload, and provide the

appropriate security credentials to authenticate. For example:

• Use the HTTP/REST implementation of your chosen programming language.
• Use a tool such as a REST client browser add-on or cURL.

Setting up a remote queue manager to use with the messaging
REST API
You can use the messaging REST API to connect to remote queue managers for messaging. Before you
can connect to a remote queue manager, you must set up the remote queue manager configuration.
Then, you can connect to the remote queue manager by using the unique name that is defined in the
configuration information.

Before you begin
• Ensure that you configured the mqweb server for use by the administrative REST API, the administrative

REST API for MFT, the messaging REST API, or IBM MQ Console.For more information about configuring
the mqweb server with a basic registry, see Basic configuration for the mqweb server.

• If the mqweb server is already configured, ensure that you added the appropriate users to enable
messaging in step 5 of Basic configuration for the mqweb server. Users of the messaging REST API must
be a member of the MQWebUser role. The MQWebAdmin and MQWebAdminRO roles are not applicable for
the messaging REST API.

– If mqRestMessagingAdoptWebUserContext is set to true in the mqweb server configuration,
the users in the MQWebUser role must be authorized to access queues and topics that are used for
messaging through OAM or RACF.

– If mqRestMessagingAdoptWebUserContext is set to false in the mqweb server configuration,
the user ID that is used to start the mqweb server must be authorized to access queues and topics
that are used for messaging through OAM or RACF.

• Ensure that the messaging REST API is configured to connect to remote queue managers. For more
information, see Configuring the connection mode for the messaging REST API.

Developing applications for IBM MQ 685

About this task
You can connect to remote queue managers by using the messaging REST API. A remote queue manager
can be a queue manager on another system, a queue manager in another installation, or a queue manager
in the same installation as the mqweb server.

To connect to a remote queue manager, you must complete the following configuration steps:

• Configure a server-connection channel and a listener.
• Give authority to an appropriate user to access the queue manager.
• Create a CCDT file that contains the connection information for the queue manager.
• Add the connection information to the messaging REST API by using the setmqweb remote command.

Then, you can use the remote queue manager by providing the unique name in the resource URL in place
of the queue manager name.

You can also configure your remote queue managers as part of a queue manager group. For more
information, see “Setting up a queue manager group to use with the messaging REST API” on page 688.

Procedure
1. On the remote queue manager, create a server-connection channel to allow remote connections to

the queue manager. You can create server-connection channels by using the DEFINE CHANNEL MQSC
command on the command line.
For example, to create a server-connection channel QM1.SVRCONN for queue manager QM1, enter the
following command:

DEFINE CHANNEL(QM1.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)

For more information about DEFINE CHANNEL and the options available, see DEFINE CHANNEL.
2. Ensure that an appropriate user is authorized to access the queue manager. This user must also be

authorized to access any queues or topics that you use for messaging. The user needs connect,
inquire, alternate user, and set context authority on the queue manager. On UNIX, Linux,
and Windows use the setmqaut control command on the command line. On z/OS, define RACF
profiles to give the authorized user access to the queue manager.
For example, on UNIX, Linux, and Windows, to authorize a user, exampleUser, to access the queue
manager QM1, enter the following command:

setmqaut -m QM1 -t qmgr -p exampleUser +connect +inq +altusr +setall

For more information about which user needs to be authorized, see “Determining the security principal
used by the messaging REST API” on page 691.

3.
If no listener exists on the remote queue manager, create a listener to accept incoming network
connections by using the DEFINE LISTENER MQSC command on the command line.
For example, to create a listener REMOTE.LISTENER on port 1414 for remote queue manager QM1,
enter the following command:

runmqsc QM1
DEFINE LISTENER(REMOTE.LISTENER) TRPTYPE(TCP) PORT(1414)
end

4. Ensure that the listener is running by using the START LISTENER MQSC command on the command
line:

For example, on AIX, Linux, and Windows to start the listener REMOTE.LISTENER for
queue manager QM1, enter the following command:

runmqsc QM1
START LISTENER(REMOTE.LISTENER)
end

686 Developing Applications for IBM MQ

For example, on z/OS, to start the listener, enter the following command:

runmqsc QM1
START LISTENER TRPTYPE(TCP) PORT(1414)
end

The channel initiator address space must be started before you can start a listener on z/OS.
5. On the system where the mqweb server that hosts the messaging REST API is running, create or

update a JSON CCDT file that contains the queue manager connection information.

The CCDT file must include the name, clientConnection, and type information. You can optionally
include additional information such as transmissionSecurity information. For more information
about all the CCDT channel attribute definitions, see Complete list of CCDT channel attribute
definitions.

The following example shows a basic JSON CCDT file for a remote queue manager connection. It sets
the name of the channel to the same name as the example server-connection channel created in step
“1” on page 686. The connection port is set to the same value as the port that is used by the listener.
The connection host is set to the hostname of the system on which the remote queue manager, QM1, is
running.

{
 "channel": [{
 "name": "QM1.SVRCONN",
 "clientConnection": {
 "connection": [{
 "host": "example.com",
 "port": 1414
 }],
 "queueManager": "QM1"
 },
 "type": "clientConnection"
 }]
}

6. From the installation that is running the mqweb server that hosts the messaging REST API, use the
setmqweb remote command to add the remote queue manager information to the mqweb server
configuration.

As a minimum, you must specify the following parameters:

• -qmgrName, where you specify the name of the queue manager.
• -ccdtURL, where you specify the CCDT URL for the queue manager.
• -uniqueName, where you specify a unique name for the queue manager. The unique name is used

to differentiate remote queue managers that might have the same name, and therefore must not
exist to identify another queue manager.

You can specify several other options, such as the username and password to use for the remote
queue manager connection, or details of the truststore and keystore. For a full list of parameters that
can be specified with the setmqweb remote command, see setmqweb remote.

For example, to add the remote queue manager QM1, with the example CCDT file, enter the following
command:

setmqweb remote add -uniqueName "RemoteQM1" -qmgrName "QM1" -ccdtURL "c:\myccdts\ccdt.json"

Results
The remote queue manager can be used with the messaging REST API by using the unique name in the
resource URL in place of the queue manager name.

Example
The following example sets up the remote queue manager connection for a queue manager QM1. The IBM
MQ Console authorized to administer the queue manager based on the authorization that is given to the

Developing applications for IBM MQ 687

user exampleUser. The credentials of this user are provided to the IBM MQ Console when the setmqweb
remote is used to configure the queue manager connection.

1. On the system where the remote queue manager QM1 is, a server-connection channel and a listener
are created. The listener is started, and authorization is given for user exampleUser to connect to the
queue manager and access a queue that is used for messaging:

runmqsc QM1
#Define the server connection channel that will accept connections from the Console
DEFINE CHANNEL(QM1.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)
Define the listener to use for the connection from the Console
DEFINE LISTENER(REMOTE.LISTENER) TRPTYPE(TCP) PORT(1414)
Start the listener
START LISTENER(REMOTE.LISTENER)
end

#Set mq authorization for exampleUser to access the queue manager and a queue for messaging
setmqaut -m QM1 -t qmgr -p exampleUser +connect +inq +setall +dsp
setmqaut -m QM1 -t queue -p exampleUser -n EXAMPLEQ +put +get +browse +inq

2. On the system where the mqweb server is running, a QM1_ccdt.json file is created with the following
connection information:

{
 "channel": [{
 "name": "QM1.SVRCONN",
 "clientConnection": {
 "connection": [{
 "host": "example.com",
 "port": 1414
 }],
 "queueManager": "QM1"
 },
 "type": "clientConnection"
 }]
}

3. On the system where the mqweb server is running, the connection information for queue manager
QM1 is added to the mqweb server. The credentials for exampleUser are included in the connection
information:

setmqweb remote add -uniqueName "MACHINEAQM1" -qmgrName "QM1" -ccdtURL
"c:\myccdts\QM1_ccdt.json" -username "exampleUser" -password "password"

4. The messaging REST API can connect to the remote queue manager QM1 by using the unique name
for the queue manager connection in place of the queue manager name in the resource URL:

curl -k https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/MACHINEAQM1/queue/EXAMPLEQ/
message -X POST -u myuser:mypassword -H "ibm-mq-rest-csrf-token: value" -H "Content-Type:
text/plain;charset=utf-8" --data "Hello World!"

Setting up a queue manager group to use with the messaging REST
API
You can use the messaging REST API to connect to queue manager groups for messaging. Before you
can connect to a queue manager group, you must set up the remote queue manager configuration for the
group. Then, you can connect to the queue manager group by using the unique name that is defined in the
configuration information.

Before you begin
• Ensure that you configured the mqweb server for use by the administrative REST API, the administrative

REST API for MFT, the messaging REST API, or IBM MQ Console.For more information about configuring
the mqweb server with a basic registry, see Basic configuration for the mqweb server.

• If the mqweb server is already configured, ensure that you added the appropriate users to enable
messaging in step 5 of Basic configuration for the mqweb server. Users of the messaging REST API must

688 Developing Applications for IBM MQ

be a member of the MQWebUser role. The MQWebAdmin and MQWebAdminRO roles are not applicable for
the messaging REST API.

– If mqRestMessagingAdoptWebUserContext is set to true in the mqweb server configuration,
the users in the MQWebUser role must be authorized to access queues and topics that are used for
messaging. You can authorize these users through OAM or RACF.

– If mqRestMessagingAdoptWebUserContext is set to false in the mqweb server configuration,
the user ID that starts the mqweb server must be authorized to access queues and topics that are
used for messaging. You can authorize this user through OAM or RACF.

• Ensure that the messaging REST API is configured to connect to remote queue managers. For more
information, see Configuring the connection mode for the messaging REST API

About this task
A queue manager group enables you to connect applications to any queue manager within the group.
The group is defined as a set of connections in a client channel definition table (CCDT). When you use an
MQCONN or an MQCONNX call, you reference the group by prefixing an asterisk to the queue manager
name. With the messaging REST API, you reference the group by using the unique name that is associated
with the queue manager group. The unique name is included in the resource URL in place of the queue
manager name. For more information about queue manager groups, see “Queue manager groups in the
CCDT” on page 890.

You can also configure your remote queue managers individually. For more information, see “Setting up a
remote queue manager to use with the messaging REST API” on page 685.

Procedure
1. On each of the remote queue managers in the group, create a server-connection channel to allow

remote connections to the queue manager. You can use the DEFINE CHANNEL MQSC command on the
command line to create server-connection channels.
For example, to create a server-connection channel QM1.SVRCONN for queue manager QM1, enter the
following command:

DEFINE CHANNEL(QM1.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)

For more information about DEFINE CHANNEL and the options available, see DEFINE CHANNEL.
2. On each of the remote queue managers in the group, ensure that an appropriate user is authorized

to access the queue manager. This user must also be authorized to access any queues or topics that
you use for messaging. The user needs connect, inquire, alternate user, and set context
authority on the queue manager. On UNIX, Linux, and Windows use the setmqaut control command
on the command line. On z/OS, define RACF profiles to give the authorized user access to the queue
manager.
For example, on UNIX, Linux, and Windows, enter the following command to authorize a user,
exampleUser, to access the queue manager QM1:

setmqaut -m QM1 -t qmgr -p exampleUser +connect +inq +altusr +setall

For more information about which user needs to be authorized, see “Determining the security principal
used by the messaging REST API” on page 691.

3.
If no listener exists on each of the remote queue managers in the group, create listeners to accept
incoming network connections. You can use the DEFINE LISTENER MQSC command on the command
line to create listeners.

Developing applications for IBM MQ 689

For example, to create a listener REMOTE.LISTENER on port 1414 for remote queue manager QM1,
enter the following command:

runmqsc QM1
DEFINE LISTENER(REMOTE.LISTENER) TRPTYPE(TCP) PORT(1414)
end

4. On each of the remote queue managers in the group, ensure that the listener is running by using the
START LISTENER MQSC command on the command line.

For example, on AIX, Linux, and Windows to start the listener REMOTE.LISTENER for
queue manager QM1, enter the following command:

runmqsc QM1
START LISTENER(REMOTE.LISTENER)
end

For example, on z/OS, to start the listener, enter the following command:

runmqsc QM1
START LISTENER TRPTYPE(TCP) PORT(1414)
end

The channel initiator address space must be started before you can start a listener on z/OS.
5. On the system where the mqweb server that hosts the messaging REST API is running, create a JSON

CCDT file. This JSON file contains connection information for each queue manager in the group.

The CCDT file must include the name, clientConnection, and type information for
each queue manager connection. You can optionally include additional information such as
transmissionSecurity information. For more information about all the CCDT channel attribute
definitions, see Complete list of CCDT channel attribute definitions.

The following example shows a basic JSON CCDT file for two queue manager connections. The first
connection is for queue manager QM1. It has a server connection channel of QM1.SVRCONN, a listener
on port 1414, and runs on host QM1.example.com. The second connection is for queue manager
QM2. It has a server connection channel of QM2.SVRCONN, a listener on port 1415, and runs on
host QM2.example.com. However, as the connections are part of queue manager group QMGRP, the
queueManager field for both connections is set to the name of the queue manager group.

{
 "channel": [{
 "name": "QM1.SVRCONN",
 "clientConnection": {
 "connection": [{
 "host": "QM1.example.com",
 "port": 1414
 }],
 "queueManager": "QMGRP"
 },
 "type": "clientConnection"
 }],
 "channel": [{
 "name": "QM2.SVRCONN",
 "clientConnection": {
 "connection": [{
 "host": "QM2.example.com",
 "port": 1415
 }],
 "queueManager": "QMGRP"
 },
 "type": "clientConnection"
 }]
}

6. From the installation that is running the mqweb server that hosts the messaging REST API, use the
setmqweb remote command to add the queue manager group to the mqweb server configuration.

As a minimum, you must specify the following parameters:

• -qmgrName, where you specify the group name for the queue manager group.

690 Developing Applications for IBM MQ

• -ccdtURL, where you specify the CCDT URL for the queue managers.
• -uniqueName, where you specify a unique name to identify the queue manager group.
• -group, to set the queue manager information as being for a group.

You can specify several other options, such as the username and password to use for the connection,
or details of the truststore and keystore. For a full list of parameters that can be specified with the
setmqweb remote command, see setmqweb remote.

For example, to add the queue manager group QMGRP, with the example CCDT file, enter the following
command:

setmqweb remote add -uniqueName "MyQMGRP" -qmgrName "QMGRP" -ccdtURL
"c:\myccdts\group_ccdt.json" -group

Results
The remote queue manager group can be used with the messaging REST API by using the unique
name in the resource URL. A queue manager from the group is selected to complete the request, and
information about which queue manager completed the request is returned in the response header
ibm-mq-resolved-qmgr.

Determining the security principal used by the messaging REST API
When you use the messaging REST API, an appropriate user must be authorized to access the queue
managers, queues, and topics that you want to connect to for messaging. The user that needs to be
authorized depends on how your mqweb server is configured, and whether you are using remote queue
managers with the messaging REST API.

By default, the security principal that is used to authorize access to the queue manager is the user
that starts the mqweb server that runs the messaging REST API. The security principal that is used
to authorize access to the queues and topics is the user that is logged in to the messaging REST API.
However, your mqweb server or remote queue manager connection might be configured such that a
different security principal is used.

Determining the security principal that is used to connect to the queue manager
For local queue manager connections, the security principal that is used to connect to the queue manager
is the user that starts the mqweb server that runs the messaging REST API. For remote queue manager
connections, the following security principals are used by the messaging REST API to authorize access to
the queue manager, in order of priority. That is, if users are specified in multiple ways within the remote
queue manager configuration, the first in the list is used for authorization.

1. The security principal is an adopted user context from a security exit.
2. The security principal is an adopted user context in a CHLAUTH rule on the server-connection channel

that is used to connect to the remote queue manager.
3. The security principal is the user ID that is included in the remote queue manager configuration for the

messaging REST API. This user ID is optionally included in the queue manager connection information
when you add the queue manager with the setmqweb remote command.

4. The security principal is the user that starts the mqweb server that runs the messaging REST API.

For more information about setting up remote queue managers to use with the messaging REST API, see
“Setting up a remote queue manager to use with the messaging REST API” on page 685.

Determining the security principal that is used to connect to queues and topics
You can set a property in the mqweb server configuration to determine what security principal is used to
authorize connections to queues and topics when you use the messaging REST API. This property is the
mqRestMessagingAdoptWebUserContext property. You can view what this property is set to by using
the dspmqweb properties command.

Developing applications for IBM MQ 691

• If mqRestMessagingAdoptWebUserContext is set to true, then the messaging REST API uses the
user ID of the user that is logged in to the messaging REST API for authorization. Therefore, the user ID
or user IDs that exist in the mqweb server configuration for use with the messaging REST API are the
security principals that must be authorized to access the queues and topics.

• If mqRestMessagingAdoptWebUserContext is set to false, then the messaging REST API uses the
user ID of the user that started the mqweb server that hosts the messaging REST API for authorization.
Therefore, a user ID that is the same as the user ID that starts the mqweb server that hosts the
messaging REST API must be authorized to access the queues and topics.

If your queues and topics are on a remote queue manager, the security principal that is used for
authorization might be determined by settings in the queue manager configuration. The following
security principals might used, in order of priority:

1. The security principal is an adopted user context from a security exit.
2. The security principal is an adopted user context in a CHLAUTH rule on the server-connection

channel that is used to connect to the remote queue manager. For example, you can configure
a CHLAUTH rule on the server-connection channel to use the MCAUSER parameter. Then, all
connections are mapped to a user ID that is authorized to use the queue manager.

3. The security principal is an adopted user context from the AUTHINFO of the queue manager. If
AUTHINFO object that is referred to by the CONNAUTH attribute of the queue manager is configured
to use ADOPTCTX(yes), then the security principal that is used to authorize connections to the
queue manager is also used to authorize the queues and topics. For example, this security principal
might be the user ID that is included in the remote queue manager connection information as part of
the setmqweb remote command.

Related information
CHLAUTH
CONNAUTH
dspmqweb properties

Developing MQI applications with IBM MQ
IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These procedural
languages use the message queue interface (MQI) to access message queuing services.

For detailed information about how to write your applications in your chosen language, see the subtopics.

For an overview of the call interface for procedural languages, see Call descriptions. This topic contains a
list of the MQI calls, and each call shows you how to code the calls in each of these languages.

IBM MQ provides data definition files to help you to write your applications. For a full description, see
“IBM MQ data definition files” on page 693.

To help you choose which procedural language to code your programs in, consider the maximum length
of the messages that your programs will process. If your programs will process only messages of a known
maximum length, you can code them in any of the supported languages. If you do not know the maximum
length of the messages that the programs will have to process, the language you choose will depend on
whether you are writing a CICS, IMS, or batch application:
IMS and batch

Code the programs in C, PL/I, or assembler language to use the facilities these languages offer for
obtaining and releasing arbitrary amounts of memory. Alternatively, you could code your programs in
COBOL, but use assembler language, PL/I, or C subroutines to get and release storage.

CICS
Code the programs in any language supported by CICS. The EXEC CICS interface provides the calls for
managing memory, if necessary.

Related concepts
“Object-oriented applications” on page 15

692 Developing Applications for IBM MQ

IBM MQ provides support for JMS, Java, C++, and .NET. These languages and frameworks use the IBM
MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls and
structures.
Technical overview
“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
Related reference
Developing applications reference

IBM MQ data definition files
IBM MQ provides data definition files to help you to write your applications.

Data definition files are also known as:

Language Data definitions

C Include files or header files

Visual Basic Module files (32-bit versions only)

COBOL Copy files

Assembler Macros

PL/I Include files

The data definition files to help you to write channel exits are described in IBM MQ COPY, header, include,
and module files.

The data definition files to help you to write installable services exits are described in “User exits, API
exits, and IBM MQ installable services” on page 902.

For data definition files supported on C++, see Using C++.

For data definition files supported on RPG, see the IBM i Application Programming Reference (ILE/RPG).

The names of the data definition files have the prefix CMQ, and a suffix that is determined by the
programming language:

Suffix Language

a Assembler language

b Visual Basic

c C

l COBOL (without initialized values)

p PL/I

v COBOL (with default values set)

Installation library

The name thlqual is the high-level qualifier of the installation library on z/OS.

This topic introduces IBM MQ data definition files, under these headings:

• “C language include files” on page 694
• “Visual Basic module files” on page 694

Developing applications for IBM MQ 693

• “COBOL copy files” on page 694

• “System/390 assembler-language macros” on page 695

• “PL/I include files” on page 696

C language include files
The IBM MQ C include files are listed in C header files. They are installed in the following directories or
libraries:

Platform Installation directory or library

IBM i QMQM/H

AIX and
Linux

MQ_INSTALLATION_PATH/inc/

Windows MQ_INSTALLATION_PATH\Tools\c\include

z/OS thlqual.SCSQC370

where MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note: For AIX and Linux, the include files are symbolically linked into /usr/include.

For more information about the structure of directories, see Planning file system support.

Visual Basic module files
IBM MQ for Windows provides four Visual Basic module files.

They are listed in Visual Basic module files and installed in

MQ_INSTALLATION_PATH\Tools\Samples\VB\Include

COBOL copy files
For COBOL, IBM MQ provides separate copy files containing the named constants, and two copy files for
each of the structures.

There are two copy files for each structure because each is provided both with and without initial values:

• In the WORKING-STORAGE SECTION of a COBOL program, use the files that initialize the structure
fields to default values. These structures are defined in the copy files that have names suffixed with the
letter V (values).

• In the LINKAGE SECTION of a COBOL program, use the structures without initial values. These
structures are defined in copy files that have names suffixed with the letter L (linkage).

Copy files containing data and interface definitions for IBM i are provided for ILE COBOL
programs using prototyped calls to the MQI. The files exist in QMQM/QCBLLESRC with member names
that have a suffix of L (for structures without initial values) or a suffix of V (for structures with initial
values).

The IBM MQ COBOL copy files are listed in COBOL COPY files. They are installed in the following
directories:

694 Developing Applications for IBM MQ

Platform Installation directory or library

AIX
and Linux

MQ_INSTALLATION_PATH/inc/

IBM i QMQM/QCBLLESRC

Windows MQ_INSTALLATION_PATH\Tools\cobol\copybook (for Micro Focus
COBOL) MQ_INSTALLATION_PATH\Tools\cobol\copybook\VAcobol
(for IBM VisualAge® COBOL)

z/OS thlqual.SCSQCOBC

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Include in your program only those files that you need. Do this with one or more COPY statements after
a level-01 declaration. This means that you can include multiple versions of the structures in a program if
necessary. Note that CMQV is a large file.

Here is an example of COBOL code to include the CMQMDV copy file:

01 MQM-MESSAGE-DESCRIPTOR.
COPY CMQMDV.

Each structure declaration begins with a level-01 item; you can declare several instances of the structure
by coding the level-01 declaration followed by a COPY statement to copy in the remainder of the structure
declaration. To refer to the appropriate instance, use the IN keyword.

Here is an example of COBOL code to include two instances of CMQMDV:

* Declare two instances of MQMD
01 MY-CMQMD.
COPY CMQMDV.
01 MY-OTHER-CMQMD.
COPY CMQMDV.
*
* Set MSGTYPE field in MY-OTHER-CMQMD
MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-CMQMD.

Align the structures on 4-byte boundaries. If you use the COPY statement to include a structure following
an item that is not the level-01 item, ensure that the structure is a multiple of 4-bytes from the start of the
level-01 item. If you do not do this, you might reduce the performance of your application.

The structures are described in Data types used in the MQI. The descriptions of the fields in the structures
show the names of fields without a prefix. In COBOL programs, prefix the field names with the name of
the structure followed by a hyphen, as shown in the COBOL declarations. The fields in the structure copy
files are prefixed in this way.

The field names in the declarations in the structure copy files are in uppercase. You can use mixed
case or lowercase instead. For example, the field StrucId of the MQGMO structure is shown as MQGMO-
STRUCID in the COBOL declaration and in the copy file.

The V-suffix structures are declared with initial values for all the fields, so you need to set only those
fields where the value required is different from the initial value.

System/390 assembler-language macros

IBM MQ for z/OS provides two assembler-language macros containing the named constants, and one
macro to generate each structure.

They are listed in z/OS Assembler COPY files and installed in thlqual.SCSQMACS.

Developing applications for IBM MQ 695

These macros are called using code like this:

MY_MQMD CMQMDA EXPIRY=0,MSGTYPE=MQMT_DATAGRAM

PL/I include files

IBM MQ for z/OS provides include files that contain all the definitions that you need when you write IBM
MQ applications in PL/I.

The files are listed in PL/I include files and installed in the thlqual.SCSQPLIC directory:

Include these files in your program if you are going to link the IBM MQ stub to your program (see
“Preparing your program to run” on page 984). Include only CMQP if you intend to link the IBM MQ
calls dynamically (see “Dynamically calling the IBM MQ stub” on page 990). Dynamic linking can be
performed for batch and IMS programs only.

Writing a procedural application for queuing
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.

Use the following links to find out more about writing applications:

• “The Message Queue Interface overview” on page 697
• “Connecting to and disconnecting from a queue manager” on page 709
• “Opening and closing objects” on page 716
• “Putting messages on a queue” on page 727
• “Getting messages from a queue” on page 741
• “Writing publish/subscribe applications” on page 780
• “Inquiring about and setting object attributes” on page 820
• “Committing and backing out units of work” on page 823
• “Starting IBM MQ applications using triggers” on page 834
• “Working with the MQI and clusters” on page 852

• “Using and writing applications on IBM MQ for z/OS” on page 857

• “IMS and IMS bridge applications on IBM MQ for z/OS” on page 66

Related concepts
“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.
“Design considerations for IBM MQ applications” on page 47
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Writing client procedural applications” on page 879
What you need to know to write client applications on IBM MQ using a procedural language.
“Building a procedural application” on page 962

696 Developing Applications for IBM MQ

You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 999
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.
Related tasks
“Using the IBM MQ sample procedural programs” on page 1018
These sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

The Message Queue Interface overview
Learn about the Message Queue Interface (MQI) components.

The Message Queue Interface consists of the following:

• Calls through which programs can access the queue manager and its facilities
• Structures that programs use to pass data to, and get data from, the queue manager
• Elementary data types for passing data to, and getting data from, the queue manager

 IBM MQ for z/OS also supplies:

• Two extra calls through which z/OS batch programs can commit and back out changes.
• Data definition files (sometimes known as copy files, macros, include files, and header files) that define

the values of constants supplied with IBM MQ for z/OS.
• Stub programs to link-edit to your applications.
• A suite of sample programs that demonstrate how to use the MQI on the z/OS platform. For further

information about these samples, see “Using the sample programs for z/OS” on page 1118.

 IBM MQ for IBM i also supplies:

• Data definition files (sometimes known as copy files, macros, include files, and header files) that define
the values of constants supplied with IBM MQ for IBM i.

• Three stub programs to link-edit to your ILE C, ILE COBOL, and ILE RPG applications.
• A suite of sample programs that demonstrate how to use the MQI on the IBM i platform.

AIX, Linux, and Windows systems also supply:

• Calls through which IBM MQ for AIX, Linux, and Windows systems programs can commit and back out
changes.

• Include files that define the values of constants supplied on these platforms.
• Library files to link your applications.
• A suite of sample programs that demonstrate how to use the MQI on these platforms. For further

information about these samples, see “Using the sample programs on Multiplatforms” on page 1018.
• Sample source and executable code for bindings to external transaction managers.

Use the following links to find out more about the MQI:

• “MQI calls” on page 698
• “Sync point calls” on page 699
• “Data conversion, data types, data definitions, and structures” on page 700
• “IBM MQ stub programs and library files” on page 700
• “Parameters common to all the calls” on page 705
• “Specifying buffers” on page 706

• “z/OS batch considerations” on page 706

Developing applications for IBM MQ 697

• “AIX and Linux signal handling” on page 707

Related concepts
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

MQI calls
Use this information to learn about calls in the Message Queue Interface (MQI).

The calls in the MQI can be grouped as follows:
MQCONN, MQCONNX, and MQDISC

Use these calls to connect a program to (with or without options), and disconnect a program from, a
queue manager.

If you write CICS programs for z/OS, you do not need to use these calls. However, you
are recommended to use them if you want to port your application to other platforms.

MQOPEN and MQCLOSE
Use these calls to open and close an object, such as a queue.

MQPUT and MQPUT1
Use these calls to put a message on a queue.

MQGET
Use this call to browse messages on a queue, or to remove messages from a queue.

MQSUB, MQSUBRQ
Use these calls to register a subscription to a topic, and to request publications matching the
subscription.

MQINQ
Use this call to inquire about the attributes of an object.

MQSET
Use this call to set some of the attributes of a queue. You cannot set the attributes of other types of
object.

698 Developing Applications for IBM MQ

MQBEGIN, MQCMIT, and MQBACK
Use these calls when IBM MQ is the coordinator of a unit of work. MQBEGIN starts the unit of work.
MQCMIT and MQBACK end the unit of work, either committing or rolling back the updates made

during the unit of work. IBM i commitment controller is used to coordinate global units
of work on IBM MQ for IBM i. Native start commitment control, commit, and rollback commands are
used.

MQCRTMH, MQBUFMH, MQMHBUF, MQDLTMH
Use these calls to create a message handle, to convert a message handle to a buffer or a buffer to a
message handle, and to delete a message handle.

MQSETMP, MQINQMP, MQDLTMP
Use these calls to set a message property on a message handle, inquire on a message property, and
delete a property from a message handle.

MQCB, MQCB_FUNCTION, MQCTL
Use these calls to register and control a callback function.

MQSTAT
Use this call to retrieve status information about previous asynchronous put operations.

See Call descriptions for a description of the MQI calls.

Sync point calls
Use this information to find out about sync point calls on different platforms.

Sync point calls are available as follows:

IBM MQ for z/OS calls

IBM MQ for z/OS provides the MQCMIT and MQBACK calls.

Use these calls in z/OS batch programs to tell the queue manager that all the MQGET and MQPUT
operations since the last sync point are to be made permanent (committed) or are to be backed out. To
commit and back out changes in other environments:
CICS

Use commands such as EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK.
IMS

Use the IMS sync point facilities, such as the GU (get unique) to the IOPCB, CHKP (checkpoint), and
ROLB (rollback) calls.

RRS
Use MQCMIT and MQBACK or SRRCMIT and SRRBACK as appropriate. (See “Transaction management
and recoverable resource manager services” on page 827.)

Note: SRRCMIT and SRRBACK are native RRS commands, they are not MQI calls.

IBM i calls

IBM MQ for IBM i provides the MQCMIT and MQBACK commands. You can also use the IBM i COMMIT
and ROLLBACK commands, or any other commands or calls that initiate the IBM i commitment control
facilities (for example, EXEC CICS SYNCPOINT).

IBM MQ calls on AIX, Linux, and Windows platforms

IBM MQ for AIX, Linux, and Windows provide the MQCMIT and MQBACK calls.

Developing applications for IBM MQ 699

Use sync point calls in programs to tell the queue manager that all the MQGET and MQPUT operations
since the last sync point are to be made permanent (committed) or are to be backed out. To commit and
back out changes in the CICS environment, use commands such as EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK.

Data conversion, data types, data definitions, and structures
Use this information to learn about data conversions, elementary data types, IBM MQ data definitions,
and structures when using the Message Queue Interface.

Data conversion

The MQXCNVC (convert characters) call converts message character data from one character set to
another. This call is used only from a data-conversion exit, except on IBM MQ for z/OS.

See MQXCNVC - Convert characters for the syntax used with the MQXCNVC call, and “Writing data-
conversion exits” on page 947 for guidance on writing and invoking data conversion exits.

Elementary data types

For the supported programming languages, the MQI provides elementary data types or unstructured
fields.

These data types are described fully in Elementary data types.

IBM MQ data definitions
IBM MQ for z/OS supplies data definitions in the form of COBOL copy files, assembly

language macros, a single PL/I include file, a single C language include file, and C++ language include
files.

IBM MQ for IBM i supplies data definitions in the form of COBOL copy files, RPG copy
files, C language include files, and C++ language include files.
The data definition files supplied with IBM MQ contain:

• Definitions of all the IBM MQ constants and return codes
• Definitions of the IBM MQ structures and data types
• Constant definitions for initializing the structures
• Function prototypes for each of the calls (for PL/I and the C language only)

For a full description of IBM MQ data definition files, see “IBM MQ data definition files” on page 693.
Structures

Structures, used with the MQI calls listed in “MQI calls” on page 698, are supplied in data definition
files for each of the supported programming languages.
See Structure data types for a summary of the structures.

IBM MQ for z/OS and IBM MQ for IBM i supply files that contain constants
for you to use when completing some of the fields of these structures. For more information about
these, see IBM MQ data definitions.

IBM MQ stub programs and library files
The stub programs and library files provided are listed here, for each platform.

For more information about how to use stub programs and library files when you build an executable
application, see “Building a procedural application” on page 962. For information about linking to C++
library files, see Using C++ IBM MQ Using C++.

700 Developing Applications for IBM MQ

IBM MQ for AIX library files
On IBM MQ for AIX, you must link your program to the MQI library files supplied for the environment in
which you are running your application, in addition to those provided by the operating system.

In a non-threaded application, link to one of the following libraries:

Table 106. Library files for non-threaded AIX applications

Library file Environment

libmqm.a Server for C

libmqic.a and libmqm.a Client for C

libmqmzf.a Installable service exits for C

libmqmxa.a Server XA interface

libmqmxa64.a Server alternative XA interface

libmqcxa.a Client XA interface

libmqcxa64.a Client alternative XA interface

libmqmcbrt.o IBM MQ runtime library for Micro Focus COBOL
support

libmqmcb.a Server for COBOL

libmqicb.a Client for COBOL

libimqc23ia.a Client for C++ (XLC 16)

libimqs23ia.a Server for C++ (XLC 16)

libimqc23ca.a Client for C++ (XLC 17)

libimqs23ca.a Server for C++ (XLC 17)

 Libraries containing "ia" have been built with the XLC 16 compiler, whilst libraries with "ca"
in the name have been built with the XLC 17 compiler.

In a threaded application, link to one of the following libraries:

Table 107. Library files for threaded AIX applications.

A two column table listing the library files and the environment for each library file.

Library file Environment

libmqm_r.a Server for C

libmqic_r.a and libmqm_r.a Client for C

libmqmzf_r.a Installable service exits for C

libmqmxa_r.a Server XA interface

libmqmxa64_r.a Server alternative XA interface

libmqcxa_r.a Client XA interface

libmqcxa64_r.a Client alternative XA interface

libimqc23ia_r.a Client for C++ (XLC 16)

libimqs23ia_r.a Server for C++ (XLC 16)

Developing applications for IBM MQ 701

Table 107. Library files for threaded AIX applications.

A two column table listing the library files and the environment for each library file.

(continued)

Library file Environment

libimqc23ca_r.a Client for C++ (XLC 17)

libimqs23ca_r.a Server for C++ (XLC 17)

 Libraries with names that include ia have been built with the XLC 16 compiler, whilst
libraries with names that include ca have been built with the XLC 17 compiler.

Note: You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

IBM MQ for IBM i library files
In IBM MQ for IBM i, link your program to the MQI library files supplied for the environment in which you
are running your application, in addition to those provided by the operating system.

For non-threaded applications:

Table 108. Library files for non-threaded IBM i applications

Library file Environment

LIBMQM Server and Client service program

LIBMQIC Client service program

IMQB23I4 C++ base service program

IMQS23I4 C++ server service program

LIBMQMZF Installable exits for C

In a threaded application:

Table 109. Library files for threaded IBM i applications

Library file Environment

LIBMQM_R Server & client service program

IMQB23I4_R C++ base service program

IMQS23I4_R C++ server service program

LIBMQMZF_R Installable exits for C

LIBMQIC_R Client service program

On IBM MQ for IBM i, you can write your applications in C++. To see how to link your C++ applications,
and for full details of all aspects of using C++, see Using C++.

IBM MQ for Linux library files
On IBM MQ for Linux, you must link your program to the MQI library files supplied for the environment in
which you are running your application, in addition to those provided by the operating system.

In a non-threaded application, link to one of the following libraries:

702 Developing Applications for IBM MQ

Table 110. Library files for non-threaded Linux applications

Library file Environment

libmqm.so Server for C

libmqic.so and libmqm.so Client for C

libmqmzf.so Installable service exits for C

libmqmxa.so Server XA interface

libmqmxa64.so Server alternative XA interface

libmqcxa.so Client XA interface

libmqcxa64.so Client alternative XA interface

libimqc23gl.so Client for C++

libimqs23gl.so Server for C++

In a threaded application, link to one of the following libraries:

Table 111. Library files for threaded Linux applications

Library file Environment

libmqm_r.so Server for C

libmqic_r.so and libmqm_r.so Client for C

libmqmzf_r.so Installable service exits for C

libmqmxa_r.so Server XA interface

libmqmxa64_r.so Server alternative XA interface

libmqcxa_r.so Client XA interface

libmqcxa64_r.so Client alternative XA interface

libimqc23gl_r.so Client for C++

libimqs23gl_r.so Server for C++

Note: You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

IBM MQ for Windows library files
On IBM MQ for Windows, you must link your program to the MQI library files supplied for the environment
in which you are running your application, in addition to those provided by the operating system:

Table 112. Library files for Windows applications

Library File Environment

MQ_INSTALLATION_PATH\Tools\Lib\mqm.lib Server for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqic.lib Client for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmxa.lib Server XA interface for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqcxa.lib Client XA interface for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqicxa.lib Client MTS for C (32-bit)

Developing applications for IBM MQ 703

Table 112. Library files for Windows applications (continued)

Library File Environment

MQ_INSTALLATION_PATH\Tools\Lib\mqmcics4.lib3
2

Server TXSeries CICS support for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqccics4.lib3
2

Client TXSeries CICS support for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmzf.lib Installable services exits for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmcbb.lib Server for IBM COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmcb.lib Server for Micro Focus COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqiccbb.lib Client for IBM COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqiccb.lib Client for Micro Focus COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqs23vn.lib Server for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqc23vn.lib Client for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqb23vn.lib Base for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqx23vn.lib Client MTS for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqm.lib Server for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqic.lib Client for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqmxa.lib Server XA interface for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqcxa.lib Client XA interface for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqicxa.lib Client MTS for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqmcbb.lib Server for IBM COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqmcb.lib Server for Micro Focus COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqiccbb.lib Client for IBM COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqiccb.lib Client for Micro Focus COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqs23vn.li
b

Server for C++ (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqc23vn.li
b

Client for C++ (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqb23vn.li
b

Base for C++ (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqx23vn.li
b

Client MTS for C++ (64-bit)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Use amqmdnet.dll for compiling .NET programs. See “Compiling IBM MQ .NET programs” on page 591
within the section “Developing .NET applications” on page 535 for more information.

These files are shipped for compatibility with previous releases:

mqic32.lib
mqic32xa.lib

704 Developing Applications for IBM MQ

IBM MQ for z/OS stub programs
Before you can run a program written with IBM MQ for z/OS, you must link-edit it to the stub program
supplied with IBM MQ for z/OS for the environment in which you are running the application.

The stub program provides the first stage of the processing of your calls into requests that IBM MQ for
z/OS can process.

IBM MQ for z/OS supplies the following stub programs:
CSQBSTUB

Stub program for z/OS batch programs
CSQBRRSI

Stub program for z/OS batch programs using RRS by way of the MQI
CSQBRSTB

Stub program for z/OS batch programs using RRS directly
CSQCSTUB

Stub program for CICS programs
CSQQSTUB

Stub program for IMS programs
CSQXSTUB

Stub program for distributed queuing non-CICS exits
CSQASTUB

Stub program for data-conversion exits

Attention: If you use a stub program other than one listed for a specific environment, it might have
unpredictable results.

Note: If you use the CSQBRSTB stub program, link-edit with ATRSCSS from SYS1.CSSLIB. (SYS1.CSSLIB
is also known as the Callable Services Library). For more information about RRS see “Transaction
management and recoverable resource manager services” on page 827.

Alternatively, you can dynamically call the stub from within your program. This technique is described in
“Dynamically calling the IBM MQ stub” on page 990.

In IMS, you might also need to use a special language interface module that is supplied by IBM MQ.

Do not run applications that are link-edited with CSQBSTUB and CSQQSTUB in the same IMS MPP region.
This can cause problems such as DFS3607I or CSQQ005E messages. The first MQCONN call in an address
space determines which interface is used, therefore CSQQSTUB and CSQBSTUB transactions must run in
different IMS message regions.

Parameters common to all the calls
There are two types of parameter common to all the calls: handles and return codes.

Using handles
All MQI calls use one or more handles. These identify the queue manager, queue or other object,
message, or subscription, as appropriate to the call.

For a program to communicate with a queue manager, the program must have a unique identifier by
which it knows that queue manager. This identifier is called a connection handle, sometimes referred to
as a Hconn. For CICS programs, the connection handle is always zero. For all other platforms or styles
of programs, the connection handle is returned by the MQCONN or MQCONNX call when the program
connects to the queue manager. Programs pass the connection handle as an input parameter when they
use the other calls.

For a program to work with an IBM MQ object, the program must have a unique identifier by which it
knows that object. This identifier is called an object handle, sometimes referred to as an Hobj. The handle
is returned by the MQOPEN call when the program opens the object to work with it. Programs pass the

Developing applications for IBM MQ 705

object handle as an input parameter when they use subsequent MQPUT, MQGET, MQINQ, MQSET, or
MQCLOSE calls.

Similarly, the MQSUB call returns a subscription handle or Hsub, which is used to identify the subscription
in subsequent MQGET, MQCB or MQSUBRQ calls, and certain calls processing message properties use a
message handle or Hmsg.

Understanding return codes
A completion code and a reason code are returned as output parameters by each call. These are known
collectively as return codes.

To show whether a call is successful, each call returns a completion code when the call is complete.
The completion code is typically either MQCC_OK indicating success, or MQCC_FAILED indicating failure.
Some calls can return an intermediate state, MQCC_WARNING, indicating partial success.

Each call also returns a reason code that shows the reason for the failure, or partial success, of the call.
There are many reason codes, covering such circumstances as a queue being full, get operations not
being allowed for a queue, and a particular queue not being defined for the queue manager. Programs can
use the reason code to decide how to proceed. For example, they can prompt users to change their input
data, then make the call again, or they can return an error message to the user.

When the completion code is MQCC_OK, the reason code is always MQRC_NONE.

The completion and reason codes for each call are listed with the description of that call. See Call
descriptions and select the appropriate call from the list.

For more detailed information, including ideas for corrective action, see:

• IBM MQ for z/OS messages, completion, and reason codes for IBM MQ for z/OS
• Messages and reason codes for all other IBM MQ platforms

Specifying buffers
The queue manager refers to buffers only if they are required. If you do not require a buffer on a call or the
buffer is zero in length, you can use a null pointer to a buffer.

Always use datalength when specifying the size of the buffer that you require.

When you use a buffer to hold the output from a call (for example, to hold the message data for an MQGET
call, or the values of attributes queried by the MQINQ call), the queue manager attempts to return a
reason code if the buffer you specify is not valid or is in read-only storage. However, it might not always be
able to return a reason code.

z/OS batch considerations
z/OS batch programs that call the MQI can be in either supervisor or problem state.

However, they must meet the following conditions:

• They must be in task mode, not service request block (SRB) mode.
• They must be in Primary address space control (ASC) mode (not Access Register ASC mode).
• They must not be in cross-memory mode. The primary address space number (ASN) must be equal to

the secondary ASN and the home ASN.
• They must not be used as MPF exit programs.
• No z/OS locks can be held.
• There can be no function recovery routines (FRRs) on the FRR stack.
• Any program status word (PSW) key can be in force for the MQCONN or MQCONNX call (provided

the key is compatible with using storage that is in the TCB key), but subsequent calls that use the
connection handle returned by MQCONN or MQCONNX:

– Must have the same PSW key that was used on the MQCONN or MQCONNX call

706 Developing Applications for IBM MQ

– Must have parameters accessible (for write, where appropriate) under the same PSW key
– Must be issued under the same task (TCB), but not in any subtask of the task

• They can be in either 24-bit or 31-bit addressing mode. However, if 24-bit addressing mode is in force,
parameter addresses must be interpreted as valid 31-bit addresses.

If any of these conditions is not met, a program check might occur. In some cases the call will fail and a
reason code will be returned.

AIX and Linux considerations
Considerations that you need to be aware of when developing AIX and Linux applications.

The fork system call in AIX and Linux systems
Note these considerations when using a fork system call in IBM MQ applications.

If your application wants to use fork, the parent process of that application should call fork before
making any IBM MQ calls, for example, MQCONN, or creating an IBM MQ object using ImqQueueManager.

If your application wants to create a child process after making any IBM MQ calls, the application code
must use a fork() with exec() to ensure that the child is a new instance, and not an exact copy of the
parent.

If your application does not use exec(), the IBM MQ API call made within the child process returns
MQRC_ENVIRONMENT_ERROR.

AIX and Linux signal handling
In general, AIX and Linux systems have moved from a nonthreaded (process) environment to a
multithreaded environment. In many instances, signals and signal handling, although supported, do not fit
well into the multithreaded environment and various restrictions exist.

In general, AIX and Linux systems have moved from a nonthreaded (process) environment to a
multithreaded environment. In the nonthreaded environment, some functions could be implemented only
by using signals, though most applications did not need to be aware of signals and signal handling. In
the multithreaded environment, thread-based primitives support some of the functions that used to be
implemented in the nonthreaded environments using signals.

In many instances, signals and signal handling, although supported, do not fit well into the multithreaded
environment and various restrictions exist. This can be problematic when you are integrating application
code with different middleware libraries (running as part of the application) in a multithreaded
environment where each is trying to handle signals. The traditional approach of saving and restoring
signal handlers (defined per process), which worked when there was only one thread of execution within a
process, does not work in a multithreaded environment. This is because many threads of execution could
be trying to save and restore a process-wide resource, with unpredictable results.

Unthreaded applications
Each MQI function sets up its own signal handler for the signals. Users' handlers for these are replaced
for the duration of the MQI function call. Other signals can be caught in the normal way by user-written
handlers.

Each MQI function sets up its own signal handler for the signals:

SIGALRM
SIGBUS
SIGFPE
SIGSEGV
SIGILL

Users' handlers for these are replaced for the duration of the MQI function call. Other signals can be
caught in the normal way by user-written handlers. If you do not install a handler, the default actions (for
example, ignore, core dump, or exit) are left in place.

Developing applications for IBM MQ 707

After IBM MQ handles a synchronous signal (SIGSEGV, SIGBUS, SIGFPE, SIGILL), it attempts to pass the
signal to any registered signal handler before making the MQI function call.

Threaded applications
A thread is considered to be connected to IBM MQ from MQCONN (or MQCONNX) until MQDISC.

Synchronous signals
Synchronous signals arise in a specific thread.

AIX and Linux systems safely allow the setting up of a signal handler for such signals for the whole
process. However, IBM MQ sets up its own handler for the following signals, in the application process,
while any thread is connected to IBM MQ:

SIGBUS
SIGFPE
SIGSEGV
SIGILL

If you are writing multithreaded applications, there is only one process-wide signal handler for each
signal. When IBM MQ sets up its own synchronous signal handlers it saves any previously registered
handlers for each signal. After IBM MQ handles one of the signals listed, IBM MQ attempts to call the
signal handler that was in effect at the time of the first IBM MQ connection within the process. The
previously registered handlers are restored when all application threads have disconnected from IBM MQ.

Because signal handlers are saved and restored by IBM MQ, application threads must not establish signal
handlers for these signals while there is any possibility that another thread of the same process is also
connected to IBM MQ.

Note: When an application, or a middleware library (running as part of an application), establishes a
signal handler while a thread is connected to IBM MQ, the application's signal handler must call the
corresponding IBM MQ handler during the processing of that signal.

When establishing and restoring signal handlers, the general principle is that the last signal handler to be
saved must be the first to be restored:

• When an application establishes a signal handler after connecting to IBM MQ, the previous signal
handler must be restored before the application disconnects from IBM MQ.

• When an application establishes a signal handler before connecting to IBM MQ, the application must
disconnect from IBM MQ before restoring its signal handler.

Note: Failure to observe the general principle that the last signal handler to be saved must be the first to
be restored can result in unexpected signal handling in the application and, potentially, the loss of signals
by the application.

Asynchronous signals
IBM MQ does not use any asynchronous signals in threaded applications unless they are client
applications.

Additional considerations for threaded client applications
IBM MQ handles the following signals during I/O to a server. These signals are defined by the
communications stack. The application must not establish a signal handler for these signals while a
thread is connected to a queue manager:

SIGPIPE (for TCP/IP)

708 Developing Applications for IBM MQ

Additional considerations when using AIX and Linux signal handling in MQI
When using MQI for signal handling on AIX and Linux, there are additional considerations for fastpath
applications, MQI function calls within signal handlers, signals during MQI calls, user exits and installable
services, and VMS exit handlers.

Fastpath (trusted) applications
Fastpath applications run in the same process as IBM MQ and so are running in the multithreaded
environment.

In this environment IBM MQ handles the synchronous signals SIGSEGV, SIGBUS, SIGFPE, and SIGILL. All
other signals must not be delivered to the Fastpath application while it is connected to IBM MQ. Instead
they must be blocked or handled by the application. If a Fastpath application intercepts such an event,
the queue manager must be stopped and restarted, or it may be left in an undefined state. For a full list
of the restrictions for Fastpath applications under MQCONNX, see “Connecting to a queue manager using
the MQCONNX call” on page 712.

MQI function calls within signal handlers
While you are in a signal handler, do not call an MQI function.

If you try to call an MQI function from a signal handler while another MQI function is active,
MQRC_CALL_IN_PROGRESS is returned. If you try to call an MQI function from a signal handler while
no other MQI function is active, it is likely to fail sometime during the operation because of the operating
system restrictions where only selective calls can be issued from, or within, a handler.

For C++ destructor methods, which might be called automatically during program exit, you might not be
able to stop the MQI functions from being called. Ignore any errors about MQRC_CALL_IN_PROGRESS. If
a signal handler calls exit(), IBM MQ backs out uncommitted messages in sync point as usual and closes
any open queues.

Signals during MQI calls
MQI functions do not return the code EINTR or any equivalent to application programs.

If a signal occurs during an MQI call, and the handler calls return, the call continues to run as if the signal
had not happened. In particular, MQGET cannot be interrupted by a signal to return control immediately
to the application. If you want to break out of an MQGET, set the queue to GET_DISABLED; alternatively,
use a loop around a call to MQGET with a finite time expiry (MQGMO_WAIT with gmo.WaitInterval
set), and use your signal handler (in a nonthreaded environment) or equivalent function in a threaded
environment to set a flag which breaks the loop.

In the AIX environment, IBM MQ requires that system calls interrupted by signals are
restarted. When establishing your own signal handler with sigaction(2), set the SA_RESTART flag in
the sa_flags field of the new action structure otherwise IBM MQ might be unable to complete any call
interrupted by a signal.

User exits and installable services
User exits and installable services that run as part of an IBM MQ process in a multithreaded environment
have the same restrictions as for fastpath applications. Consider these to be permanently connected to
IBM MQ and so not using signals or non-threadsafe operating system calls.

Connecting to and disconnecting from a queue manager
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.

The way that this connection is made depends on the platform and the environment in which the program
is operating:

Developing applications for IBM MQ 709

IBM MQ for Multiplatforms
Programs that run in these environments can use the MQCONN MQI call to connect to, and the
MQDISC call to disconnect from, a queue manager. Alternatively, programs can use the MQCONNX
call.

IBM MQ for z/OS batch
Programs that run in this environment can use the MQCONN MQI call to connect to, and the MQDISC
call to disconnect from, a queue manager. Alternatively, programs can use the MQCONNX call.
z/OS batch programs can connect, consecutively or concurrently, to multiple queue managers on the
same TCB.

 IMS
The IMS control region is connected to one or more queue managers when it starts. This connection
is controlled by IMS commands. For information about how to control the IMS adapter on z/OS, see
Administering IBM MQ for z/OS. However, writers of message queuing IMS programs must use the
MQCONN MQI call to specify the queue manager to which they want to connect. They can use the
MQDISC call to disconnect from that queue manager.
Following an IMS call that establishes a syncpoint, and before processing a message for another
user, the IMS adapter ensures that the application closes handles and disconnects from the queue
manager. See “Syncpoints in IMS applications” on page 826.
IMS programs can connect, consecutively or concurrently, to multiple queue managers on the same
TCB.

 CICS Transaction Server for z/OS
CICS programs do not need to do any work to connect to a queue manager because the CICS system
itself is connected. This connection is typically made automatically at initialization, but you can also
use the CKQC transaction that is supplied with IBM MQ for z/OS. For more information about CKQC,
see Administering IBM MQ for z/OS.
CICS tasks can connect only to the queue manager that the CICS region is connected to.
CICS programs can also use the MQI connect and disconnect calls (MQCONN and MQDISC). You might
want to do this so that you can port these applications to non-CICS environments with a minimum of
recoding. However, these calls always complete successfully in a CICS environment. This means that
the return code might not reflect the true state of the connection to the queue manager.

TXSeries for Windows and Open Systems
These programs do not need to do any work to connect to a queue manager because the CICS system
itself is connected. Therefore, only one connection at a time is supported. CICS applications must
issue an MQCONN call to obtain a connection handle, and an MQDISC call before they exit.

Use the following links to find out more about connecting and disconnecting from a queue manager:

• “Connecting to a queue manager using the MQCONN call” on page 711
• “Connecting to a queue manager using the MQCONNX call” on page 712
• “Disconnecting programs from a queue manager using MQDISC” on page 716

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820

710 Developing Applications for IBM MQ

Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

Connecting to a queue manager using the MQCONN call
Use this information to learn how to connect to a queue manager using the MQCONN call.

In general, you can connect either to a specific queue manager, or to the default queue manager:

• For IBM MQ for z/OS, in the batch environment, the default queue manager is specified in
the CSQBDEFV module.

• For IBM MQ for Multiplatforms, the default queue manager is specified in the mqs.ini file.

Alternatively, in the z/OS MVS batch, TSO, and RRS environments you can connect to any
one queue manager within a queue sharing group. The MQCONN or MQCONNX request selects any one of
the active members of the group.

When you connect to a queue manager it must be local to the task. It must belong to the same system as
the IBM MQ application.

In the IMS environment, the queue manager must be connected to the IMS control region
and to the dependent region that the program uses. The default queue manager is specified in the
CSQQDEFV module when IBM MQ for z/OS is installed.

With the TXSeries CICS environment, and TXSeries for Windows and AIX, the queue manager must be
defined as an XA resource to CICS.

To connect to the default queue manager, call MQCONN, specifying a name consisting entirely of blanks or
starting with a null (X'00') character.

An application must be authorized for it to successfully connect to a queue manager. For more
information, see Securing.

The output from MQCONN is:

• A connection handle (Hconn)
• A completion code
• A reason code

Use the connection handle on subsequent MQI calls.

If the reason code indicates that the application is already connected to that queue manager, the
connection handle that is returned is the same as the one that was returned when the application
first connected. The application must not issue the MQDISC call in this situation because the calling
application expects to remain connected.

The scope of the connection handle is the same as the scope of the object handle (see “Opening objects
using the MQOPEN call” on page 718).

Descriptions of the parameters are given in the description of the MQCONN call in MQCONN.

Developing applications for IBM MQ 711

The MQCONN call fails if the queue manager is in a quiescing state when you issue the call, or if the queue
manager is shutting down.

Scope of MQCONN or MQCONNX
The scope of an MQCONN or MQCONNX call is typically the thread that issued it. That is, the connection
handle returned from the call is valid only within the thread that issued the call. Only one call can be made
at any one time using the handle. If it is used from a different thread, it is rejected as invalid. If you have
multiple threads in your application and each wants to use IBM MQ calls, each one must issue MQCONN
or MQCONNX.

It is not necessary for each call to be made to the same queue manager when a process makes multiple
MQCONN calls. However, only one IBM MQ connection can be made from a thread at a time. Alternatively,
consider “Shared (thread independent) connections with MQCONNX” on page 713 to allow multiple IBM
MQ connections from a single thread and an IBM MQ connection to be used from any thread. 7

If your application is running as a client, it can connect to more than one queue manager within a thread.

Connecting to a queue manager using the MQCONNX call
The MQCONNX call is similar to the MQCONN call, but includes options to control the way that the call
works.

As input to MQCONNX, you can supply a queue manager name , or a queue sharing group
name on z/OS shared queue systems. The options to control how the connection is made to the queue
manager are supplied in a structure called the MQCNO.

The output from MQCONNX is:

• A connection handle (Hconn)
• A completion code
• A reason code

You use the connection handle on subsequent MQI calls.

The connect options, set in the Options field of the MQCNO structure, allows several attributes of the
connection to be controlled. Of particular note are the following groups of options:

• The binding options allow trusted applications to be created. Trusted applications imply that the
IBM MQ application and the local queue manager agent become the same process. Because
the agent process no longer needs to use an interface to access the queue manager, these
applications become an extension of the queue manager. This behavior is requested by specifying the
MQCNO_FASTPATH_BINDING option. For more information about the restrictions that apply to trusted
applications, see “Restrictions for trusted applications” on page 713.

• The handle-sharing options allow shared connections to be created. Shared connections can share
handles between different threads within the same process. For more information about shared
connections, see “Shared (thread independent) connections with MQCONNX” on page 713.

The MQCNO also allows the application to control how the connection to the queue manager is
authenticated. Authentication credentials can be specified in an MQCSP structure that is referenced from
the MQCNO structure.

For a full description of the parameters to the MQCONNX call, and the connection attributes that can be
controlled, see MQCONNX - Connect queue manager (extended).

7 When using multithreaded applications with IBM MQ for AIX or Linux systems you need to ensure that the
applications have a sufficient stack size for the threads. Consider using a stack size of 256 KB, or larger,
when multithreaded applications are making MQI calls, either by themselves or, with other signal handlers
(for example, CICS).

712 Developing Applications for IBM MQ

Restrictions for trusted applications
Restrictions that apply to trusted applications. Some restrictions apply to all platforms and others are
platform specific.

T

• You must explicitly disconnect trusted applications from the queue manager.
• You must stop trusted applications before ending the queue manager with the endmqm command.
• You must not use asynchronous signals and timer interrupts (such as sigkill) with

MQCNO_FASTPATH_BINDING.
• On all platforms, a thread within a trusted application cannot connect to a queue manager while another

thread in the same process is connected to a different queue manager.

• On AIX and Linux systems you must use mqm as the effective userID
and groupID for all MQI calls. You can change these IDs before making a non-MQI call requiring
authentication (for example, opening a file), but you must change it back to mqm before making the
next MQI call.

• On IBM i:

1. Trusted applications must run under the QMQM user profile. It is not sufficient that the user profile
be a member of the QMQM group or that the program adopt QMQM authority. It might not be
possible for the QMQM user profile to be used to sign on to interactive jobs, or to be specified in
the job description for jobs running trusted applications. In this case one approach is to use the
IBM i profile swapping API functions, QSYGETPH, QWTSETP, and QSYRLSPH to temporarily change
the current user of the job to QMQM while the IBM MQ programs run. Details of these functions,
together with an example of their use, is provided in the Security APIs section of the IBM iApplication
programming interfaces documentation.

2. Do not cancel trusted applications using System-Request Option 2, or by ending the jobs in which
they are running using ENDJOB.

• On AIX, Linux, and Windows systems trusted 32-bit applications are not supported. If you
try to run a trusted 32-bit application, it will be downgraded to a standard bound connection.

Shared (thread independent) connections with MQCONNX
Use this information to learn about Shared connections with MQCONNX, and some usage notes to
consider.

Note: Not supported on IBM MQ for z/OS.

On Multiplatforms, a connection made with MQCONN is available only to the thread that made the
connection. Options on the MQCONNX call allow you to create a connection that can be shared by all
the threads in a process. If your application is running in a transactional environment that requires MQI
calls to be issued on the same thread, you must use the following default option:
MQCNO_HANDLE_SHARE_NONE

Creates a non-shared connection.

In most other environments, you can use one of the following thread independent, shared connection
options:

MQCNO_HANDLE_SHARE_BLOCK
Creates a shared connection. On a MQCNO_HANDLE_SHARE_BLOCK connection, if the connection is
currently in use by an MQI call on another thread, the MQI call waits until the current MQI call has
completed.

MQCNO_HANDLE_SHARE_NO_BLOCK
Creates a shared connection. On a MQCNO_HANDLE_SHARE_NO_BLOCK connection, if the connection
is currently in use by an MQI call on another thread, the MQI call fails immediately with a reason of
MQRC_CALL_IN_PROGRESS.

Developing applications for IBM MQ 713

https://www.ibm.com/docs/en/ssw_ibm_i_latest/apis/sec.htm

Except for the MTS (Microsoft Transaction Server) environment, the default value
is MQCNO_HANDLE_SHARE_NONE. In the MTS environment, the default value is
MQCNO_HANDLE_SHARE_BLOCK.

A connection handle is returned from the MQCONNX call. The handle can be used by subsequent MQI calls
from any thread in the process, associating those calls with the handle returned from the MQCONNX. MQI
calls using a single shared handle are serialized across threads.

For example, the following sequence of activity is possible with a shared handle:

1. Thread 1 issues MQCONNX and gets a shared handle h1
2. Thread 1 opens a queue and issues a get request using h1
3. Thread 2 issues a put request using h1
4. Thread 3 issues a put request using h1
5. Thread 2 issues MQDISC using h1

While the handle is in use by any thread, access to the connection is unavailable to other threads. In
circumstances where it is acceptable that a thread waits for any previous call from another thread to
complete, use MQCONNX with the option MQCNO_HANDLE_SHARE_BLOCK.

However blocking can cause difficulties. Suppose that in step “2” on page 714, thread 1 issues a get
request that waits for messages that might not have yet arrived (a get with wait). In this case, threads 2
and 3 are also left waiting (blocked) for as long as the get request on thread 1 takes. If you prefer that an
MQI call returns with an error if another MQI call is already running on the handle, use MQCONNX with the
option MQCNO_HANDLE_SHARE_NO_BLOCK.

Shared connection usage notes
1. Any object handles (Hobj) created by opening an object are associated with an Hconn; so for a shared

Hconn, the Hobjs are also shared and usable by any thread using the Hconn. Similarly, any unit of work
started under an Hconn is associated with that Hconn; so this too is shared across threads with the
shared Hconn.

2. Any thread can call MQDISC to disconnect a shared Hconn, not just the thread that called the
corresponding MQCONNX. The MQDISC terminates the Hconn making it unavailable to all threads.

3. A single thread can use multiple shared Hconns serially, for example use MQPUT to put one message
under one shared Hconn then put another message using another shared Hconn, with each operation
being under a different local unit of work.

4. Shared Hconns cannot be used within a global unit of work.

Use of MQCONNX call options with MQ_CONNECT_TYPE
Use this information to understand the different MQCONNX call options and how they are used with the
MQ_CONNECT_TYPE environment variable.

Note: MQ_CONNECT_TYPE only has any effect for STANDARD bindings. For other bindings,
MQ_CONNECT_TYPE is ignored.

On IBM MQ for Multiplatforms, you can use the environment variable, MQ_CONNECT_TYPE in combination
with the type of binding specified in the Options field of the MQCNO structure used on an MQCONNX
call.

Table 113. How MQCONNX call options are used with the MQ_CONNECT_TYPE environment variable

MQCONNX call option MQ_CONNECT_TYPE
environment variable

Result

STANDARD UNDEFINED STANDARD

STANDARD STANDARD STANDARD

STANDARD FASTPATH STANDARD

714 Developing Applications for IBM MQ

Table 113. How MQCONNX call options are used with the MQ_CONNECT_TYPE environment variable
(continued)

MQCONNX call option MQ_CONNECT_TYPE
environment variable

Result

STANDARD CLIENT CLIENT

STANDARD LOCAL STANDARD

If MQCNO_STANDARD_BINDING is not specified, you can use MQCNO_NONE, which defaults to
MQCNO_STANDARD_BINDING.

Authentication and Identity for MQCONN and MQCONNX
Use this task to learn how applications can supply credentials that are used for authentication when they
connect to IBM MQ.

The default user identity
When an application uses the message queue interface (MQI) to connect to IBM MQ with either MQCONN
or MQCONNX, a user identity is always established and associated with the connection.

By default, the initial user identity is always that of the operating system process the application is
running under. This initial identity might be sufficient for locally bound or trusted application connections.

When an application connects to a queue manager with an MQCONN call, the application cannot modify
the default user ID. However, the following mechanisms can change the user ID that is associated with
the connection:

• A client-side or server-side security exit.
• Channel authentication rules on the queue manager.
• A client user ID established during TLS mutual authentication.

Using MQCONNX to supply credentials
MQCONNX gives an application more control over the identity that is associated with the connection.
An application can supply an MQCSP structure as part of the connect options that are specified in the
ConnectOpts parameter to MQCONNX. The MQCSP structure can contain credentials that are used to
establish a user identity. IBM MQ supports the following credentials in the MQCSP structure:

• A user ID and password.

• From IBM MQ 9.3.4, an authentication token, if the application connects to a queue
manager that runs on AIX or Linux systems.

The queue manager's connection authentication and channel authentication configuration controls how
the credentials that are supplied by an application are processed. For example, this configuration affects
the following aspects:

• Whether the credentials in the MQCSP structure are validated, and how they are validated.
• Whether the user ID in the credentials in the MQCSP structure is mapped to another user ID.
• Whether the authenticated user is then adopted as the context for the application.

For more information about connection authentication, see Connection authentication. For more
information about channel authentication, see Channel authentication records.

Several of the sample programs written in C that use the MQI demonstrate how the MQCSP structure is
used to provide authentication credentials. For more information, see the following sample programs:

• “The Get sample programs” on page 1051
• “The Put sample programs” on page 1063

Developing applications for IBM MQ 715

• “The Browser sample program” on page 1039
• “The TLS sample program” on page 1078

Related information
Identifying and authenticating users using the MQCSP structure
MQCSP - Security parameters
Identifying and authenticating users

Disconnecting programs from a queue manager using MQDISC
Use this information to learn about disconnecting programs from a queue manager using MQDISC.

When a program that has connected to a queue manager using the MQCONN or MQCONNX call has
finished all interaction with the queue manager, it breaks the connection using the MQDISC call, except:

• On CICS Transaction Server for z/OS applications, where the call is optional unless
MQCONNX was used and you want to drop the connection tag before the application ends.

• On IBM MQ for IBM i where, when you sign off from the operating system, an implicit
MQDISC call is made.

As input to the MQDISC call, you must supply the connection handle (Hconn) that was returned by
MQCONN or MQCONNX when you connected to the queue manager.

On CICS running on Multiplatforms, after MQDISC is called the connection handle (Hconn) is no longer
valid, and you cannot issue any further MQI calls until you call MQCONN or MQCONNX again. MQDISC
does an implicit MQCLOSE for any objects that are still open using this handle.

For a client connected to z/OS, when an MQDISC call is issued an implicit commit takes
place, but any queue handles that are still open are not closed until the channel actually ends.

If you use MQCONNX to connect on IBM MQ for z/OS, MQDISC also ends the scope of the
connection tag established by the MQCONNX. However, in a CICS, IMS, or RRS application, if there is an
active unit of recovery associated with a connection tag, the MQDISC is rejected with a reason code of
MQRC_CONN_TAG_NOT_RELEASED.

Descriptions of the parameters are given in the description of the MQDISC call in MQDISC.

When no MQDISC is issued
A standard, non-shared connection (Hconn) is cleaned up when the creating thread terminates. A shared
connection is only implicitly backed out and disconnected when the whole process terminates. If the
thread that created the shared Hconn terminates while the Hconn still exists the Hconn is still usable.

Authority checking
The MQCLOSE and MQDISC calls usually perform no authority checking.

In the normal course of events a job that has the authority to open or connect to an IBM MQ object closes
or disconnect from that object. Even if the authority of a job that has connected to or opened an IBM MQ
object is revoked, the MQCLOSE and MQDISC calls are accepted.

Opening and closing objects
This information provides an insight into opening and closing IBM MQ objects.

To perform any of the following operations, you must first open the relevant IBM MQ object:

• Put messages on a queue
• Get (browse or retrieve) messages from a queue
• Set the attributes of an object

716 Developing Applications for IBM MQ

• Inquire about the attributes of any object

Use the MQOPEN call to open the object, using the options of the call to specify what you want to do with
the object. The only exception is if you want to put a single message on a queue, then close the queue
immediately. In this case, you can bypass the opening stage by using the MQPUT1 call (see “Putting one
message on a queue using the MQPUT1 call” on page 735).

Before you open an object using the MQOPEN call, you must connect your program to a queue manager.
This is explained in detail, for all environments, in “Connecting to and disconnecting from a queue
manager” on page 709.

There are four types of IBM MQ object that you can open:

• Queue
• Namelist
• Process definition
• Queue manager

You open all these objects in a similar way using the MQOPEN call. For more information about IBM MQ
objects, see Object types.

You can open the same object more than once, and each time you get a new object handle. You might
want to browse messages on a queue using one handle, and remove messages from the same queue
using another handle. This saves using up resources to close and reopen the same object. You can also
open a queue for browsing and removing messages at the same time.

Moreover, you can open multiple objects with a single MQOPEN and close them using MQCLOSE. See
“Distribution lists” on page 736 for information about how to do this.

When you attempt to open an object, the queue manager checks that you are authorized to open that
object for the options that you specify in the MQOPEN call.

Objects are closed automatically when a program disconnects from the queue manager. In the IMS
environment, disconnection is forced when a program starts processing for a new user following a GU (get
unique) IMS call. On the IBM i platform, objects are closed automatically when a job ends.

It is good programming practice to close objects you have opened. Use the MQCLOSE call to do this.

Use the following links to find out more about opening and closing objects:

• “Opening objects using the MQOPEN call” on page 718
• “Creating dynamic queues” on page 725
• “Opening remote queues” on page 726
• “Closing objects using the MQCLOSE call” on page 726

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823

Developing applications for IBM MQ 717

This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

Opening objects using the MQOPEN call
Use this information to learn about opening objects using the MQOPEN call.

As input to the MQOPEN call, you must supply:

• A connection handle. For CICS applications on z/OS, you can specify the constant MQHC_DEF_HCONN
(which has the value zero), or use the connection handle returned by the MQCONN or MQCONNX call.
For Multiplatforms, always use the connection handle returned by the MQCONN or MQCONNX call.

• A description of the object that you want to open, using the object descriptor structure (MQOD).
• One or more options that control the action of the call.

The output from MQOPEN is:

• An object handle that represents your access to the object. Use this on input to any subsequent MQI
calls.

• A modified object-descriptor structure, if you are creating a dynamic queue (and it is supported on your
platform).

• A completion code.
• A reason code.

Scope of an object handle
The scope of an object handle (Hobj) is the same as the scope of a connection handle (Hconn).

This is covered in “Scope of MQCONN or MQCONNX” on page 712 and “Shared (thread independent)
connections with MQCONNX” on page 713. However, there are additional considerations in some
environments:
CICS

In a CICS program, you can use the handle only within the same CICS task from which you made the
MQOPEN call.

IMS and z/OS batch
In the IMS and z/OS batch environment, you can use the handle within the same task, but not within
any subtasks.

Descriptions of the parameters of the MQOPEN call are given in MQOPEN.

The following sections describe the information that you must supply as input to MQOPEN.

Identifying objects (the MQOD structure)
Use the MQOD structure to identify the object that you want to open. This structure is an input parameter
for the MQOPEN call. (The structure is modified by the queue manager when you use the MQOPEN call to
create a dynamic queue.)

For full details of the MQOD structure, see MQOD.

718 Developing Applications for IBM MQ

For information about using the MQOD structure for distribution lists, see “Using the MQOD structure” on
page 738 under “Distribution lists” on page 736.

Name resolution
How the MQOPEN call resolves queue and queue manager names.

Note: A Queue manager alias is a remote queue definition without an RNAME field.

When you open an IBM MQ queue, the MQOPEN call performs a name resolution function on the queue
name that you specify. This determines on which queue the queue manager performs subsequent
operations. This means that when you specify the name of an alias queue or a remote queue in your
object descriptor (MQOD), the call resolves the name either to a local queue or to a transmission queue.
If a queue is opened for any type of input, browse, or set, it resolves to a local queue if there is one, and
fails if there is not one. It resolves to a nonlocal queue only if it is opened for output only, inquire only, or
output and inquire only. See Table 114 on page 719 for an overview of the name resolution process. The
name that you supply in ObjectQMgrName is resolved before that in ObjectName.

Table 114 on page 719 also shows how you can use a local definition of a remote queue to define an
alias for the name of a queue manager. This allows you to select which transmission queue is used when
you put messages on a remote queue, so you could, for example, use a single transmission queue for
messages destined for many remote queue managers.

To use the following table, first read down the two left-hand columns, under the heading Input to MQOD,
and select the appropriate case. Then read across the corresponding row, following any instructions.
Following the instructions in the Resolved names columns, you can either return to the Input to MQOD
columns and insert values as directed, or you can exit the table with the results supplied. For example,
you might be required to input ObjectName.

Table 114. Resolving queue names when using MQOPEN

Input to MQOD Input to MQOD Resolved names Resolved
names

Resolved names

ObjectQMgrName ObjectName ObjectQMgrName ObjectName Transmission queue

Blank or local queue
manager

Local queue
with no
CLUSTER
attribute

Local queue manager Input
ObjectName

Not applicable (local
queue used)

Blank queue manager Local queue
with CLUSTER
attribute

Workload management
selected cluster queue
manager or specific
cluster queue manager
selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.TRAN
SMIT.QUEUE and local
queue used

SYSTEM.QSG.TRANSMI
T.QUEUE (see note)

Local queue manager Local queue
with CLUSTER
attribute

Local queue manager Input
ObjectName

Not applicable (local
queue used)

Blank or local queue
manager

Model queue Local queue manager Generated
name

Not applicable (local
queue used)

Developing applications for IBM MQ 719

Table 114. Resolving queue names when using MQOPEN (continued)

Input to MQOD Input to MQOD Resolved names Resolved
names

Resolved names

Blank or local queue
manager

Alias queue
with or without
CLUSTER
attribute

Perform name
resolution again
with ObjectQMgrName
unchanged, and input
ObjectName set to the
BaseQName in the alias
queue definition object.

Must not resolve
to an alias locally
defined where the
ObjectQMgrName is
specified, but can
resolve to a clustered
alias (hosted on other
queue managers) where
the ObjectQMgrName is
blank.

Local queue manager Alias queue
with CLUSTER
attribute

The alias must not
resolve to a cluster
queue that is not locally
defined, or a cluster
queue that has the
same ObjectName as
the alias.

Blank queue manager Alias queue
with CLUSTER
attribute

The alias can resolve
to a cluster queue with
same ObjectName as
the alias.

Blank or local queue
manager

Local definition
of a remote
queue

Perform name
resolution again with
ObjectQMgrName set
to RemoteQMgrName,
and ObjectName set
to RemoteQName. Must
not resolve remote
queues

Name of XmitQName
attribute, if non-
blank; otherwise
RemoteQMgrName in
the remote queue
definition object.

SYSTEM.QSG.TRANSMI
T.QUEUE (see note)

Blank queue manager No matching
local object;
cluster queue
found

Workload management
selected cluster queue
manager or specific
cluster queue manager
selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.TRAN
SMIT.QUEUE

SYSTEM.QSG.TRANSMI
T.QUEUE (see note)

Blank or local queue
manager

No matching
local object;
cluster queue
not found

Error, queue
not found

Not applicable

720 Developing Applications for IBM MQ

Table 114. Resolving queue names when using MQOPEN (continued)

Input to MQOD Input to MQOD Resolved names Resolved
names

Resolved names

Name of queue
manager in same queue
sharing group as local
queue manager

Local shared
queue

Local queue manager Input
ObjectName

Not applicable

Name of a local
transmission queue

(Not resolved) Input ObjectQMgrName Input
ObjectName

Input ObjectQMgrName

SYSTEM.QSG.TRANSMI
T.QUEUE (see note)

Queue manager
alias definition
(RemoteQMgrName may
be the local queue
manager)

(Not resolved,
remote queue)

Perform name
resolution again with
ObjectQMgrName set
to RemoteQMgrName.
Must not resolve to
remote queues

Input
ObjectName

Name of XmitQName
attribute, if non-
blank; otherwise
RemoteQMgrName in
the remote queue
definition object.

SYSTEM.QSG.TRANSMI
T.QUEUE (see note)

Queue manager is not
the name of any local
object; cluster queue
managers or queue
manager alias found

(Not resolved) ObjectQMgrName or
specific cluster queue
manager selected on
PUT

Input
ObjectName

SYSTEM.CLUSTER.TRAN
SMIT.QUEUE

SYSTEM.QSG.TRANSMI
T.QUEUE (see note)

Queue manager is not
the name of any
local object; no cluster
objects found

(Not resolved) Input ObjectQMgrName Input
ObjectName

DefXmitQName
attribute of the
queue manager where
DefXmitQName is
supported.

SYSTEM.QSG.TRANSMI
T.QUEUE (see note)

Notes:

1. BaseQName is the name of the base queue from the definition of the alias queue.
2. RemoteQName is the name of the remote queue from the local definition of the remote queue.
3. RemoteQMgrName is the name of the remote queue manager from the local definition of the remote

queue.
4. XmitQName is the name of the transmission queue from the local definition of the remote queue.

5. For IBM MQ for z/OS queue managers that are part of a queue sharing group (QSG), the
name of the queue sharing group can be used instead of the local queue manager name in Table 114
on page 719. If the local queue manager cannot open the target queue, or put a message to the queue,
the message is transferred to the specified ObjectQMgrName through, either intra-group queuing, or
an IBM MQ channel.

6. In the ObjectName column of the table, CLUSTER refers to both the CLUSTER and CLUSNL attributes
of the queue.

7. The SYSTEM.QSG.TRANSMIT.QUEUE is used if local and remote queue managers are in the same
queue sharing group; intra-group queuing is enabled.

8. If you have assigned a different cluster transmission queue to each cluster-sender channel,
SYSTEM.CLUSTER.TRANSMIT.QUEUE might not be the name of the cluster transmission queue.

Developing applications for IBM MQ 721

For more information about multiple cluster transmission queues, see Clustering: Planning how to
configure cluster transmission queues.

9. In the situation where the queue manager is not the name of any local object; cluster queue managers,
or queue manager alias found.

When you have supplied a queue manager name using ObjectQMgrName, and there are multiple
cluster channels with different cluster names known by the local queue manager that would reach that
destination, then any of these channels might be used to move the message, regardless of the cluster
name of the destination queue.

This might be unexpected, if you were anticipating messages for that queue only to be sent through a
channel that has the same cluster name as the queue.

However, the ObjectQMgrName takes precedence in this case, and cluster workload balancing takes
into consideration all channels that might reach that queue manager, regardless of the cluster name
they are in.

Opening an alias queue also opens the base queue to which the alias resolves, and opening a remote
queue also opens the transmission queue. Therefore you cannot delete either the queue that you specify
or the queue to which it resolves while the other one is open.

While an alias queue is unable to resolve to another locally defined alias queue (shared in a cluster or
not), resolving to a remotely defined cluster alias queue is permitted and can therefore be specified as the
base queue.

The resolved queue name and the resolved queue manager name are stored in the ResolvedQName and
ResolvedQMgrName fields in the MQOD.

For more information about name resolution in a distributed queuing environment see What is queue
name resolution?.

Using the options of the MQOPEN call

In the Options parameter of the MQOPEN call, you must choose one or more options to control the
access that you are given to the object that you are opening. With these options you can:

• Open a queue and specify that all messages put to that queue must be directed to the same instance of
it

• Open a queue to allow you to put messages on it
• Open a queue to allow you to browse messages on it
• Open a queue to allow you to remove messages from it
• Open an object to allow you to inquire about and set its attributes (but you can set the attributes of

queues only)
• Open a topic or topic string to publish messages to it
• Associate context information with a message
• Nominate an alternative user identifier to be used for security checks
• Control the call if the queue manager is in a quiescing state

MQOPEN option for cluster queue
The binding used for the queue handle is taken from the DefBind queue attribute, which can take the
value MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP.

To route all messages put to a queue using MQPUT to the same queue manager by the same route, use the
MQOO_BIND_ON_OPEN option on the MQOPEN call.

To specify that a destination is to be selected at MQPUT time, that is, on a message-by-message basis,
use the MQOO_BIND_NOT_FIXED option on the MQOPEN call.

To specify that all messages in a message groups put to a queue using MQPUT are allocated to the same
destination instance, use the MQOO_BIND_ON_GROUP option on the MQOPEN call.

722 Developing Applications for IBM MQ

Either MQOO_BIND_ON_OPEN or MQOO_BIND_ON_GROUP must be specified when using message groups
with clusters to ensure that all messages in the group are processed at the same destination.

If you do not specify any of these options the default, MQOO_BIND_AS_Q_DEF, is used.

If you specify the name of a queue manager in the MQOD, the queue at that queue manager is selected.
If the queue manager name is blank, any instance can be selected. See “MQOPEN and clusters” on page
853 for more information.

If you open a cluster queue using a QALIAS definition, some queue attributes are defined by the alias
queue, and not the base queue. Cluster attributes are among the attributes of the base queue definition
that are overridden by the alias queue. For example, in the following snippet, the cluster queue is opened
with MQOO_BIND_NOT FIXED and not MQOO_BIND_ON_OPEN. The cluster queue definition is advertised
throughout the cluster, the alias queue definition is local to the queue manager.

DEFINE QLOCAL(CLQ1) CLUSTER(MYCLUSTER) DEFBIND(OPEN) REPLACE
DEFINE QALIAS(ACLQ1) TARGET(CLQ1) DEFBIND(NOTFIXED) REPLACE

MQOPEN option for putting messages
To open a queue or topic to put messages on it, use the MQOO_OUTPUT option.

MQOPEN option for browsing messages
To open a queue so that you can browse the messages on it, use the MQOPEN call with the
MQOO_BROWSE option.

This creates a browse cursor that the queue manager uses to identify the next message on the queue. For
more information, see “Browsing messages on a queue” on page 774.

Note:

1. You cannot browse messages on a remote queue; do not open a remote queue using the
MQOO_BROWSE option.

2. You cannot specify this option when opening a distribution list. For further information about
distribution lists, see “Distribution lists” on page 736.

3. Use the MQOO_CO_OP in conjunction with MQOO_BROWSE if you are using cooperative browsing; see
Options

MQOPEN options for removing messages
Three options control the opening of a queue to remove messages from it.

You can use only one of them in any MQOPEN call. These options define whether your program has
exclusive or shared access to the queue. Exclusive access means that, until you close the queue, only you
can remove messages from it. If another program attempts to open the queue to remove messages, its
MQOPEN call fails. Shared access means that more than one program can remove messages from the
queue.

The most advisable approach is to accept the type of access that was intended for the queue when
the queue was defined. The queue definition involved the setting of the Shareability and the
DefInputOpenOption attributes. To accept this access, use the MQOO_INPUT_AS_Q_DEF option. Refer
to Table 115 on page 723 to see how the setting of these attributes affects the type of access that you
will be given when you use this option.

Table 115. How queue attributes and options of the MQOPEN call affect access to queues

Queue attributes Type of access with MQOPEN options

Shareability DefInputOpenOption AS_Q_DEF SHARED EXCLUSIVE

SHAREABLE SHARED shared shared exclusive

SHAREABLE EXCLUSIVE exclusive shared exclusive

NOT_SHAREABLE* SHARED* exclusive exclusive exclusive

Developing applications for IBM MQ 723

Table 115. How queue attributes and options of the MQOPEN call affect access to queues (continued)

Queue attributes Type of access with MQOPEN options

NOT_SHAREABLE EXCLUSIVE exclusive exclusive exclusive

Note: * Although you can define a queue to have this combination of attributes, the default input open
option is overridden by the shareability attribute.

Alternatively:

• If you know that your application can work successfully even if other programs can remove messages
from the queue at the same time, use the MQOO_INPUT_SHARED option. Table 115 on page 723 shows
how, in some cases you will be given exclusive access to the queue, even with this option.

• If you know that your application can work successfully only if other programs are prevented from
removing messages from the queue at the same time, use the MQOO_INPUT_EXCLUSIVE option.

Note:

1. You cannot remove messages from a remote queue. Therefore you cannot open a remote queue using
any of the MQOO_INPUT_* options.

2. You cannot specify this option when opening a distribution list. For further information, see
“Distribution lists” on page 736.

MQOPEN options for setting and inquiring about attributes
To open a queue so that you can set its attributes, use the MQOO_SET option.

You cannot set the attributes of any other type of object (see “Inquiring about and setting object
attributes” on page 820).

To open an object so that you can inquire about its attributes, use the MQOO_INQUIRE option.

Note: You cannot specify this option when opening a distribution list.

MQOPEN options relating to message context
If you want to be able to associate context information with a message when you put it on a queue, you
must use one of the message context options when you open the queue.

The options allow you to differentiate between context information that relates to the user who originated
the message, and that which relates to the application that originated the message. Also, you can opt to
set the context information when you put the message on the queue, or you can opt to have the context
taken automatically from another queue handle.

Related concepts
“Message context” on page 45
Message context information allows the application that retrieves the message to find out about the
originator of the message.
“Controlling message context information” on page 733
When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have
the appropriate level of authority can add extra context information. You can use the options field in the
MQPMO structure to control context information.

MQOPEN option for alternative user authority
When you attempt to open an object using the MQOPEN call, the queue manager checks that you have the
authority to open that object. If you are not authorized, the call fails.

However, server programs might want the queue manager to check the authorization of the user
they are working for, rather than the server's own authorization. To do this, they must use the
MQOO_ALTERNATE_USER_AUTHORITY option of the MQOPEN call, and specify the alternative user ID
in the AlternateUserId field of the MQOD structure. Typically, the server would get the user ID from
the context information in the message it is processing.

724 Developing Applications for IBM MQ

MQOPEN option for queue manager quiescing
If you use the MQOPEN call when the queue manager is in a quiescing state, the call might fail, depending
on which environment you are using.

In the CICS environment on z/OS, if you use the MQOPEN call when the queue manager is in a quiescing
state, the call always fails.

In other z/OS and Multiplatforms environments, the call fails when the queue manager is quiescing only if
you use the MQOO_FAIL_IF_QUIESCING option of the MQOPEN call.

MQOPEN option for resolving local queue names
When you open a local, alias or model queue, the local queue is returned.

However, when you open a remote queue or cluster queue, the ResolvedQName and
ResolvedQMgrName fields of the MQOD structure are filled with the names of the remote queue and
remote queue manager found in the remote queue definition, or with the chosen remote cluster queue.

Use the MQOO_RESOLVE_LOCAL_Q option of the MQOPEN call to fill the ResolvedQName in the MQOD
structure with the name of the local queue that was opened. The ResolvedQMgrName is similarly filled
with the name of the local queue manager hosting the local queue. This field is available only with Version
3 of the MQOD structure; if the structure is less than Version 3, MQOO_RESOLVE_LOCAL_Q is ignored
without an error being returned.

If you specify MQOO_RESOLVE_LOCAL_Q when opening, for example, a remote queue, ResolvedQName
is the name of the transmission queue to which messages will be put. ResolvedQMgrName is the name of
the local queue manager hosting the transmission queue.

Creating dynamic queues
Use a dynamic queue when you do not need the queue after your application ends.

For example, you could use a dynamic queue for your reply-to queue. You specify the name of the reply-to
queue in the ReplyToQ field of the MQMD structure when you put a message on a queue (see “Defining
messages using the MQMD structure” on page 728).

To create a dynamic queue, you use a template known as a model queue, together with the MQOPEN
call. You create a model queue using the IBM MQ commands or the operations and control panels. The
dynamic queue that you create takes the attributes of the model queue.

When you call MQOPEN, specify the name of the model queue in the ObjectName field of the MQOD
structure. When the call completes, the ObjectName field is set to the name of the dynamic queue that is
created. Also, the ObjectQMgrName field is set to the name of the local queue manager.

You can specify the name of the dynamic queue that you create in three ways:

• Give the full name that you want in the DynamicQName field of the MQOD structure.
• Specify a prefix (fewer than 33 characters) for the name, and allow the queue manager to generate

the rest of the name. This means that the queue manager generates a unique name, but you still have
some control (for example, you might want each user to use a certain prefix, or you might want to give a
special security classification to queues with a certain prefix in their name). To use this method, specify
an asterisk (*) for the last non-blank character of the DynamicQName field. Do not specify a single
asterisk (*) for the dynamic queue name.

• Allow the queue manager to generate the full name. To use this method, specify an asterisk (*) in the
first character position of the DynamicQName field.

For more information about these methods, see the description of the DynamicQName field.

There is more information on dynamic queues in Dynamic and Model queues.

Developing applications for IBM MQ 725

Opening remote queues
A remote queue is a queue that is owned by a queue manager other than the one to which the application
is connected.

To open a remote queue, use the MQOPEN call as for a local queue. You can specify the name of the
queue as follows:

1. In the ObjectName field of the MQOD structure, specify the name of the remote queue as known to
the local queue manager.

Note: Leave the ObjectQMgrName field blank in this case.
2. In the ObjectName field of the MQOD structure, specify the name of the remote queue, as known to

the remote queue manager. In the ObjectQMgrName field, specify either:

• The name of the transmission queue that has the same name as the remote queue manager. The
name and case (uppercase, lowercase or a mixture) must match exactly.

• The name of a queue manager alias object that resolves to the destination queue manager or the
transmission queue.

This tells the queue manager the destination of the message as well as the transmission queue that it
needs to be put on to get there.

3. If DefXmitQname is supported, in the ObjectName field of the MQOD structure, specify the name of
the remote queue as known by the remote queue manager.

Note: Set the ObjectQMgrName field to the name of the remote queue manager (it cannot be left
blank in this case).

Only local names are validated when you call MQOPEN; the last check is for the existence of the
transmission queue to be used.

These methods are summarized inTable 114 on page 719.

Closing objects using the MQCLOSE call
To close an object, use the MQCLOSE call.

If the object is a queue, note the following:

• You do not need to empty a temporary dynamic queue before you close it.

When you close a temporary dynamic queue, the queue is deleted, along with any messages that might
still be on it. This is true even if there are uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding
against the queue.

• On IBM MQ for z/OS, if you have any MQGET requests with an MQGMO_SET_SIGNAL
option outstanding for that queue, they are canceled.

• If you opened the queue using the MQOO_BROWSE option, your browse cursor is destroyed.

Closure is unrelated to sync point, so you can close queues before or after sync point.

As input to the MQCLOSE call, you must supply:

• A connection handle. Use the same connection handle used to open it. For CICS applications on z/OS,
you can alternatively specify the constant MQHC_DEF_HCONN (which has the value zero).

• The handle of the object that you want to close. Get this from the output of the MQOPEN call.
• MQCO_NONE in the Options field (unless you are closing a permanent dynamic queue).
• The control option to determine whether the queue manager should delete the queue even if there are

still messages on it (when closing a permanent dynamic queue).

The output from MQCLOSE is:

• A completion code
• A reason code
• The object handle, reset to the value MQHO_UNUSABLE_HOBJ

726 Developing Applications for IBM MQ

Descriptions of the parameters of the MQCLOSE call are given in MQCLOSE.

Putting messages on a queue
Use this information to learn how to put messages on a queue.

Use the MQPUT call to put messages on the queue. You can use MQPUT repeatedly to put many messages
on the same queue, following the initial MQOPEN call. Call MQCLOSE when you have finished putting all
your messages on the queue.

If you want to put a single message on a queue and close the queue immediately afterward, you can use
the MQPUT1 call. MQPUT1 performs the same functions as the following sequence of calls:

• MQOPEN
• MQPUT
• MQCLOSE

Generally however, if you have more than one message to put on the queue, it is more efficient to use the
MQPUT call. This depends on the size of the message and the platform that you are working on.

Use the following links to find out more about putting messages on a queue:

• “Putting messages on a local queue using the MQPUT call” on page 728
• “Putting messages on a remote queue” on page 732
• “Setting properties of a message” on page 733
• “Controlling message context information” on page 733
• “Putting one message on a queue using the MQPUT1 call” on page 735
• “Distribution lists” on page 736
• “Some cases where the put calls fail” on page 741

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66

Developing applications for IBM MQ 727

This information helps you to write IMS applications using IBM MQ.

Putting messages on a local queue using the MQPUT call
Use this information to learn about putting messages on a local queue using the MQPUT call.

As input to the MQPUT call, you must supply:

• A connection handle (Hconn).
• A queue handle (Hobj).
• A description of the message that you want to put on the queue. This is in the form of a message

descriptor structure (MQMD).
• Control information, in the form of a put-message options structure (MQPMO).
• The length of the data contained within the message (MQLONG).
• The message data itself.

The output from the MQPUT call is as follows:

• A reason code (MQLONG)
• A completion code (MQLONG)

If the call completes successfully, it also returns your options structure and your message descriptor
structure. The call modifies your options structure to show the name of the queue and the queue manager
to which the message was sent. If you request that the queue manager generates a unique value for
the identifier of the message you are putting (by specifying binary zero in the MsgId field of the MQMD
structure), the call inserts the value in the MsgId field before returning this structure to you. Reset this
value before you issue another MQPUT.

There is a description of the MQPUT call in MQPUT.

For more description on the information needed as input to the MQPUT call, see the following links:

• “Specifying handles” on page 728
• “Defining messages using the MQMD structure” on page 728
• “Specifying options using the MQPMO structure” on page 729
• “The data in your message” on page 731
• “Putting messages: Using message handles” on page 732

Specifying handles
For the connection handle (Hconn) in CICS on z/OS applications, you can specify the constant
MQHC_DEF_HCONN (which has the value zero), or you can use the connection handle returned by the
MQCONN or MQCONNX call. For other applications, always use the connection handle returned by the
MQCONN or MQCONNX call.

Whatever environment you are working in, use the same queue handle (Hobj) that is returned by the
MQOPEN call.

Defining messages using the MQMD structure
The message descriptor structure (MQMD) is an input/output parameter for the MQPUT and MQPUT1
calls. Use it to define the message you are putting on a queue.

If MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF is specified for the message and
the queue is a cluster queue, the values used are those of the queue to which the MQPUT resolves. If
that queue is disabled for MQPUT, the call will fail. See Configuring a queue manager cluster for more
information.

Note: Use MQPMO_NEW_MSG_ID and MQPMO_NEW_CORREL_ID before putting a new message to
ensure that the MsgId and CorrelId are unique. The values in these fields are returned on a successful
MQPUT.

728 Developing Applications for IBM MQ

There is an introduction to the message properties that MQMD describes in “IBM MQ messages” on page
17, and there is a description of the structure itself in MQMD.

Specifying options using the MQPMO structure
Use the MQPMO (Put Message Option) structure to pass options to the MQPUT and MQPUT1 calls.

The following sections give you help on filling in the fields of this structure. There is a description of the
structure in MQPMO.

The structure includes the following fields:

• StrucId
• Version
• Options
• Context
• ResolvedQName
• ResolvedQMgrName
• RecsPresent
• PutMsgRecsFields
• ResponseRecOffset and ResponseRecPtr
• OriginalMsgHandle
• NewMsgHandle
• Action
• PubLevel

The contents of these fields is as follows:
StrucId

This identifies the structure as a put-message options structure. This is a 4-character field. Always
specify MQPMO_STRUC_ID.

Version
This describes the version number of the structure. The default is MQPMO_VERSION_1. If you enter
MQPMO_VERSION_2, you can use distribution lists (see “Distribution lists” on page 736). If you
enter MQPMO_VERSION_3, you can use message handles and message properties. If you enter
MQPMO_CURRENT_VERSION, your application is set always to use the most recent level.

Options
This controls the following:

• Whether the put operation is included in a unit of work
• How much context information is associated with a message
• Where the context information is taken from
• Whether the call fails if the queue manager is in a quiescing state
• Whether grouping or segmentation is allowed
• Generation of a new message identifier and correlation identifier
• The order in which messages and segments are put on a queue
• Whether to resolve local queue names

If you leave the Options field set to the default value (MQPMO_NONE), the message you put has
default context information associated with it.

The way that the call operates with sync points is determined by the platform. The sync point control
default is yes for z/OS and no for Multiplatforms.

Developing applications for IBM MQ 729

Context
This states the name of the queue handle that you want context information to be copied from (if
requested in the Options field).

For an introduction to message context, see “Message context” on page 45. For information about
using the MQPMO structure to control the context information in a message, see “Controlling message
context information” on page 733.

ResolvedQName
This contains the name (after resolution of any alias name) of the queue that was opened to receive
the message. This is an output field.

ResolvedQMgrName
This contains the name (after resolution of any alias name) of the queue manager that owns the queue
in ResolvedQName. This is an output field.

The MQPMO can also accommodate fields required for distribution lists (see “Distribution lists” on page
736). If you want to use this facility, Version 2 of the MQPMO structure is used. This includes the
following fields:
RecsPresent

This field contains the number of queues in the distribution list; that is, the number of Put Message
Records (MQPMR) and corresponding Response Records (MQRR) present.

The value that you enter can be the same as the number of Object Records provided at MQOPEN.
However, if the value is less than the number of Object Records provided on the MQOPEN call, or if
you provide no Put Message Records, the values of the queues that are not defined are taken from
the default values provided by the message descriptor. Also, if the value is greater than the number of
Object Records provided, the excess Put Message Records are ignored.

You are recommended to do one of the following:

• If you want to receive a report or reply from each destination, enter the same value as appears in
the MQOR structure and use MQPMRs containing MsgId fields. Either initialize these MsgId fields to
zeros or specify MQPMO_NEW_MSG_ID.

When you have put the message to the queue, MsgId values that the queue manager has created
become available in the MQPMRs; you can use these to identify which destination is associated with
each report or reply.

• If you do not want to receive reports or replies, choose one of the following:

1. If you want to identify destinations that fail immediately, you might still want to enter the same
value in the RecsPresent field as appears in the MQOR structure and provide MQRRs to identify
these destinations. Do not specify any MQPMRs.

2. If you do not want to identify failed destinations, enter zero in the RecsPresent field and do not
provide MQPMRs nor MQRRs.

Note: If you are using MQPUT1, the number of Response Record Pointers and Response Record
Offsets must be zero.

For a full description of Put Message Records (MQPMR) and Response Records (MQRR), see MQPMR
and MQRR.

PutMsgRecFields
This indicates which fields are present in each Put Message Record (MQPMR). For a list of these fields,
see “Using the MQPMR structure” on page 740.

PutMsgRecOffset and PutMsgRecPtr
Pointers (typically in C) and offsets (typically in COBOL) are used to address the Put Message Records
(see “Using the MQPMR structure” on page 740 for an overview of the MQPMR structure).

Use the PutMsgRecPtr field to specify a pointer to the first Put Message Record, or the
PutMsgRecOffset field to specify the offset of the first Put Message Record. This is the offset from
the start of the MQPMO. Depending on the PutMsgRecFields field, enter a nonnull value for either
PutMsgRecOffset or PutMsgRecPtr.

730 Developing Applications for IBM MQ

ResponseRecOffset and ResponseRecPtr
You also use pointers and offsets to address the Response Records (see “Using the MQRR structure”
on page 739 for further information about Response Records).

Use the ResponseRecPtr field to specify a pointer to the first Response Record, or the
ResponseRecOffset field to specify the offset of the first Response Record. This is the offset
from the start of the MQPMO structure. Enter a nonnull value for either ResponseRecOffset or
ResponseRecPtr.

Note: If you are using MQPUT1 to put messages to a distribution list, ResponseRecPtr must be null
or zero and ResponseRecOffset must be zero.

Version 3 of the MQPMO structure additionally includes the following fields:
OriginalMsgHandle

The use you can make of this field depends on the value of the Action field. If you are putting a new
message with associated message properties, set this field to the message handle you previously
created and set properties on. If you are forwarding, replying to, or generating a report in response to
a previously retrieved message, this field contains the message handle of that message.

NewMsgHandle
If you specify a NewMsgHandle, any properties associated with the handle override properties
associated with the OriginalMsgHandle. For more information, see Action (MQLONG).

Action
Use this field to specify the type of put being performed. Possible values and their meanings are as
follows:
MQACTP_NEW

This is a new message unrelated to any other.
MQACTP_FORWARD

This message was retrieved previously and is now being forwarded.
MQACTP_REPLY

This message is a reply to a previously retrieved message.
MQACTP_REPORT

This message is a report generated as a result of a previously retrieved message.
For more information, see Action (MQLONG).

PubLevel
If this message is a publication, you can set this field to determine which subscriptions receive it. Only
subscriptions with a SubLevel less than or equal to this value will receive this publication. The default
value is 9 which is the highest level and means that subscriptions with any SubLevel can receive this
publication.

The data in your message
Give the address of the buffer that contains your data in the Buffer parameter of the MQPUT call. You
can include anything in the data in your messages. The amount of data in the messages, however, affects
the performance of the application that is processing them.

The maximum size of the data is determined by:

• The MaxMsgLength attribute of the queue manager
• The MaxMsgLength attribute of the queue on which you are putting the message
• The size of any message header added by IBM MQ (including the dead-letter header, MQDLH and the

distribution list header, MQDH)

The MaxMsgLength attribute of the queue manager holds the size of message that the queue manager
can process. This has a default of 100 MB for all IBM MQ products at V6 or higher.

To determine the value of this attribute, use the MQINQ call on the queue manager object. For large
messages, you can change this value.

Developing applications for IBM MQ 731

The MaxMsgLength attribute of a queue determines the maximum size of message that you can put on
the queue. If you attempt to put a message with a size larger than the value of this attribute, your MQPUT
call fails. If you are putting a message on a remote queue, the maximum size of message that you can
successfully put is determined by the MaxMsgLength attribute of the remote queue, of any intermediate
transmission queues that the message is put on along the route to its destination, and of the channels
used.

For an MQPUT operation, the size of the message must be smaller than or equal to the MaxMsgLength
attribute of both the queue and the queue manager. The values of these attributes are independent, but
you are recommended to set the MaxMsgLength of the queue to a value less than or equal to that of the
queue manager.

IBM MQ adds header information to messages in the following circumstances:

• When you put a message on a remote queue, IBM MQ adds a transmission header structure (MQXQH) to
the message. This structure includes the name of the destination queue and its owning queue manager.

• If IBM MQ cannot deliver a message to a remote queue, it attempts to put the message on the
dead-letter (undelivered-message) queue. It adds an MQDLH structure to the message. This structure
includes the name of the destination queue and the reason that the message was put on the dead-letter
queue.

• If you want to send a message to multiple destination queues, IBM MQ adds an MQDH header to the
message. This describes the data that is present in a message, belonging to a distribution list, on a
transmission queue. Consider this when choosing an optimum value for the maximum message length.

• If the message is a segment or a message in a group, IBM MQ might add an MQMDE.

These structures are described in MQDH and MQMDE.

If your messages are of the maximum size allowed for these queues, the addition of these headers means
that the put operations fail because the messages are now too big. To reduce the possibility of the put
operations failing:

• Make the size of your messages smaller than the MaxMsgLength attribute of the transmission and
dead-letter queues. Allow at least the value of the MQ_MSG_HEADER_LENGTH constant (more for large
distribution lists).

• Make sure that the MaxMsgLength attribute of the dead-letter queue is set to the same as the
MaxMsgLength of the queue manager that owns the dead-letter queue.

The attributes for the queue manager and the message queuing constants are described in Attributes for
the queue manager.

For information on how undelivered messages are handled in a distributed queuing
environment, see Undelivered/unprocessed messages.

Putting messages: Using message handles
Two message handles are available in the MQPMO structure, OriginalMsgHandle and NewMsgHandle. The
relationship between these message handles is defined by the value of the MQPMO Action field.

For full details see Action (MQLONG). A message handle is not necessarily required in order to put a
message. Its purpose is to associate properties with a message, so it is required only if you are using
message properties.

Putting messages on a remote queue
When you want to put a message on a remote queue (that is, a queue owned by a queue manager
other than the one to which your application is connected) rather than a local queue, the only extra
consideration is how you specify the name of the queue when you open it. This is described in “Opening
remote queues” on page 726. There is no change to how you use the MQPUT or MQPUT1 call for a local
queue.

For more information on using remote and transmission queues, see IBM MQ distributed queuing
techniques.

732 Developing Applications for IBM MQ

Setting properties of a message
Call MQSETMP for each property you want to set. When you put the message set the message handle and
action fields of the MQPMO structure.

To associate properties with a message, the message must have a message handle. Create a message
handle using the MQCRTMH function call. Call MQSETMP specifying this message handle for each
property you want to set. A sample program, amqsstma.c, is provided to illustrate the use of MQSETMP.

If this is a new message, when you put it to a queue, using MQPUT or MQPUT1, set the OriginalMsgHandle
field in the MQPMO to the value of this message handle, and set the MQPMO Action field to MQACTP_NEW
(this is the default value).

If this is a message you have previously retrieved, and you are now forwarding or replying to it or sending
a report in response to it, put the original message handle in the OriginalMsgHandle field of the MQPMO
and the new message handle in the NewMsgHandle field. Set the Action field to MQACTP_FORWARD,
MQACTP_REPLY, or MQACTP_REPORT, as appropriate.

If you have properties in an MQRFH2 header from a message you have previously retrieved, you can
convert them to message handle properties using the MQBUFMH call.

If you are putting your message to a queue on a queue manager at a level earlier than IBM WebSphere MQ
7.0, which cannot process message properties, you can set the PropertyControl parameter in the channel
definition to specify how the properties are to be treated.

Controlling message context information
When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have
the appropriate level of authority can add extra context information. You can use the options field in the
MQPMO structure to control context information.

Message context information allows the application that retrieves the message to find out about the
originator of the message. All context information is stored in the context fields of the message descriptor.
The type of information falls into identity, origin, and user context information.

To control context information, use the Options field in the MQPMO structure.

If you do not specify any options for context information, the queue manager overwrites context
information that might already be in the message descriptor with the identity and context information
that it has generated for your message. This is the same as specifying the MQPMO_DEFAULT_CONTEXT
option. You might want this default context information when you create a new message (for example,
when processing user input from an inquiry screen).

If you want no context information associated with your message, use the MQPMO_NO_CONTEXT option.
When putting a message with no context, any authority checks made by IBM MQ are made using a blank
user ID. A blank user ID cannot be assigned explicit authority to IBM MQ resources but is treated as a
member of the special group 'nobody'. For more details on the special group nobody, see Installable
services interface reference information.

You can do context setting using MQOPEN followed by MQPUT using the MQOO_ option and MQPMO_
option indicated in the following sections. You can also do context setting using just an MQPUT1, in which
case you just need to select the MQPMO_ option indicated in the sections below.

The following sections of this topic explain the use of identity context, user context, and all context.

• “Passing identity context” on page 734
• “Passing user context” on page 734
• “Passing all context” on page 734
• “Setting identity context” on page 734
• “Setting user context” on page 735
• “Setting all context” on page 735

Developing applications for IBM MQ 733

Passing identity context
In general, programs should pass identity context information from message to message around an
application until the data reaches its final destination.

Programs should change the origin context information each time that they change the data. However,
applications that want to change or set any context information must have the appropriate level of
authority. The queue manager checks this authority when the applications open the queues; they must
have authority to use the appropriate context options for the MQOPEN call.

If your application gets a message, processes the data from the message, then puts the changed data into
another message (possibly for processing by another application), the application must pass the identity
context information from the original message to the new message. You can allow the queue manager to
create the origin context information.

To save the context information from the original message, use the MQOO_SAVE_ALL_CONTEXT option
when you open the queue for getting the message. This is in addition to any other options you use with the
MQOPEN call. Note, however, that you cannot save context information if you only browse the message.

When you create the second message:

• Open the queue using the MQOO_PASS_IDENTITY_CONTEXT option (in addition to the MQOO_OUTPUT
option).

• In the Context field of the put-message options structure, give the handle of the queue from which you
saved the context information.

• In the Options field of the put-message options structure, specify the
MQPMO_PASS_IDENTITY_CONTEXT option.

Passing user context
You cannot choose to pass only user context. To pass user context when putting a message, specify
MQPMO_PASS_ALL_CONTEXT. Any properties in the user context are passed in the same way as the
origin context.

When an MQPUT or MQPUT1 takes place and the context is being passed, all properties in the user
context are passed from the retrieved message to the put message. Any user context properties that the
putting application has altered are put with their original values. Any user context properties that the
putting application has deleted are restored in the put message. Any user context properties that the
putting application has added to the message are retained.

Passing all context
If your application gets a message, and puts the message data (unchanged) into another message, the
application must pass all (identity, origin, and user) context information from the original message to
the new message. An example of an application that might do this is a message mover, which moves
messages from one queue to another.

Follow the same procedure as for passing identity context, except that you use the MQOPEN option
MQOO_PASS_ALL_CONTEXT and the put-message option MQPMO_PASS_ALL_CONTEXT.

Setting identity context
If you want to set the identity context information for a message:

• Open the queue using the MQOO_SET_IDENTITY_CONTEXT option.
• Put the message on the queue, specifying the MQPMO_SET_IDENTITY_CONTEXT option. In the

message descriptor, specify whatever identity context information you require.

Note: When you set some (but not all) of the identity context fields using the
MQOO_SET_IDENTITY_CONTEXT and MQPMO_SET_IDENTITY_CONTEXT options, it is important to realize
that the queue manager does not set any of the other fields.

734 Developing Applications for IBM MQ

In order to modify any of the message context options, you must have the appropriate
authorizations to issue the call. For example, in order to use MQOO_SET_IDENTITY_CONTEXT or
MQPMO_SET_IDENTITY_CONTEXT, you must have +setid permission.

Setting user context
To set a property in the user context, set the Context field of the message property descriptor (MQPD) to
MQPD_USER_CONTEXT when you make the MQSETMP call.

You do not need any special authority to set a property in the user context. User context has no
MQOO_SET_* or MQPMO_SET_* context options.

Setting all context
If you want to set both the identity and the origin context information for a message:

1. Open the queue using the MQOO_SET_ALL_CONTEXT option.
2. Put the message on the queue, specifying the MQPMO_SET_ALL_CONTEXT option. In the message

descriptor, specify whatever identity and origin context information you require.

Appropriate authority is needed for each type of context setting.

Related concepts
“Message context” on page 45
Message context information allows the application that retrieves the message to find out about the
originator of the message.
Related reference
“MQOPEN options relating to message context” on page 724
If you want to be able to associate context information with a message when you put it on a queue, you
must use one of the message context options when you open the queue.

Putting one message on a queue using the MQPUT1 call
Use the MQPUT1 call when you want to close the queue immediately after you have put a single message
on it. For example, a server application is likely to use the MQPUT1 call when it is sending a reply to each
of the different queues.

MQPUT1 is functionally equivalent to calling MQOPEN followed by MQPUT, followed by MQCLOSE. The
only difference in the syntax for the MQPUT and MQPUT1 calls is that for MQPUT you specify an
object handle, whereas for MQPUT1 you specify an object descriptor structure (MQOD) as defined in
MQOPEN (see “Identifying objects (the MQOD structure)” on page 718). This is because you need to give
information to the MQPUT1 call about the queue that it has to open, whereas when you call MQPUT, the
queue must already be open.

As input to the MQPUT1 call, you must supply:

• A connection handle.
• A description of the object that you want to open. This is in the form of an object descriptor structure

(MQOD).
• A description of the message that you want to put on the queue. This is in the form of a message

descriptor structure (MQMD).
• Control information in the form of a put-message options structure (MQPMO).
• The length of the data contained within the message (MQLONG).
• The address of the message data.

The output from MQPUT1 is:

• A completion code
• A reason code

Developing applications for IBM MQ 735

If the call completes successfully, it also returns your options structure and your message descriptor
structure. The call modifies your options structure to show the name of the queue and the queue manager
to which the message was sent. If you request that the queue manager generate a unique value for the
identifier of the message that you are putting (by specifying binary zero in the MsgId field of the MQMD
structure), the call inserts the value in the MsgId field before returning this structure to you.

Note: You cannot use MQPUT1 with a model queue name; however, once a model queue has been
opened, you can issue an MQPUT1 to the dynamic queue.

The six input parameters for MQPUT1 are:
Hconn

This is a connection handle. For CICS applications, you can specify the constant MQHC_DEF_HCONN
(which has the value zero), or use the connection handle returned by the MQCONN or MQCONNX call.
For other programs, always use the connection handle returned by the MQCONN or MQCONNX call.

ObjDesc
This is an object descriptor structure (MQOD).

In the ObjectName and ObjectQMgrName fields, give the name of the queue on which you want to
put a message, and the name of the queue manager that owns this queue.

The DynamicQName field is ignored for the MQPUT1 call because it cannot use model queues.

Use the AlternateUserId field if you want to nominate an alternate user identifier that is to be used
to test authority to open the queue.

MsgDesc
This is a message descriptor structure (MQMD). As with the MQPUT call, use this structure to define
the message that you are putting on the queue.

PutMsgOpts
This is a put-message options structure (MQPMO). Use it as you would for the MQPUT call (see
“Specifying options using the MQPMO structure” on page 729).

When the Options field is set to zero, the queue manager uses your own user ID when it performs
tests for authority to access the queue. Also, the queue manager ignores any alternate user identifier
given in the AlternateUserId field of the MQOD structure.

BufferLength
This is the length of your message.

Buffer
This is the buffer area that contains the text of your message.

When you use clusters, MQPUT1 operates as though MQOO_BIND_NOT_FIXED is in effect. Applications
must use the resolved fields in the MQPMO structure rather than the MQOD structure to determine where
the message was sent. See Configuring a queue manager cluster for more information.

There is a description of the MQPUT1 call in MQPUT1.

Distribution lists
On IBM MQ for Multiplatforms, distribution lists allow you to put a message to multiple destinations in a
single MQPUT or MQPUT1 call. A single MQOPEN call can open multiple queues and a single MQPUT call
can then put a message to each of those queues. Some generic information from the MQI structures used
for this process can be superseded by specific information relating to the individual destinations included
in the distribution list.

Attention: Distribution lists do not support the use of alias queues that point to topic
objects. If an alias queue points to a topic object in a distribution list, IBM MQ returns
MQRC_ALIAS_BASE_Q_TYPE_ERROR.

When an MQOPEN call is issued, generic information is taken from the Object Descriptor (MQOD). If you
specify MQOD_VERSION_2 in the Version field and a value greater than zero in the RecsPresent field,
the Hobj can be defined as a handle of a list (of one or more queues) rather than of a queue. In this case,

736 Developing Applications for IBM MQ

specific information is given through the object records (MQORs), which give details of destination (that is,
ObjectName and ObjectQMgrName).

The object handle (Hobj) is passed to the MQPUT call, allowing you to put to a list rather than to a single
queue.

When a message is put on the queues (MQPUT), generic information is taken from the Put Message Option
structure (MQPMO) and the Message Descriptor (MQMD). Specific information is given in the form of Put
Message Records (MQPMRs).

Response Records (MQRR) can receive a completion code and reason code specific to each destination
queue.

Figure 56 on page 737 shows how distribution lists work.

Figure 56. How distribution lists work

Opening distribution lists
Use the MQOPEN call to open a distribution list, and use the options of the call to specify what you want
to do with the list.

As input to MQOPEN, you must supply:

• A connection handle (see “Putting messages on a queue” on page 727 for a description)
• Generic information in the Object Descriptor structure (MQOD)
• The name of each queue that you want to open, using the Object Record structure (MQOR)

The output from MQOPEN is:

• An object handle that represents your access to the distribution list
• A generic completion code
• A generic reason code

Developing applications for IBM MQ 737

• Response Records (optional), containing a completion code and reason for each destination

Using the MQOD structure
Use the MQOD structure to identify the queues that you want to open.

To define a distribution list, you must specify MQOD_VERSION_2 in the Version field, a value greater
than zero in the RecsPresent field, and MQOT_Q in the ObjectType field. See MQOD for a description
of all the fields of the MQOD structure.

Using the MQOR structure
Provide an MQOR structure for each destination.

The structure contains the destination queue and queue manager names. The ObjectName and
ObjectQMgrName fields in the MQOD are not used for distribution lists. There must be one or more
object records. If the ObjectQMgrName is left blank, the local queue manager is used. See ObjectName
and ObjectQMgrName for further information about these fields.

You can specify the destination queues in two ways:

• By using the offset field ObjectRecOffset.

In this case, the application must declare its own structure containing an MQOD structure, followed by
the array of MQOR records (with as many array elements as are needed), and set ObjectRecOffset to
the offset of the first element in the array from the start of the MQOD. Ensure that this offset is correct.

Use of built-in facilities provided by the programming language is recommended, if these are available
in all the environments in which the application runs. The following code illustrates this technique for
the COBOL programming language:

 01 MY-OPEN-DATA.
 02 MY-MQOD.
 COPY CMQODV.
 02 MY-MQOR-TABLE OCCURS 100 TIMES.
 COPY CMQORV.
 MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

Alternatively, use the constant MQOD_CURRENT_LENGTH if the programming language does not
support the necessary built-in facilities in all the environments concerned. The following code illustrates
this technique:

 01 MY-MQ-CONSTANTS.
 COPY CMQV.
 01 MY-OPEN-DATA.
 02 MY-MQOD.
 COPY CMQODV.
 02 MY-MQOR-TABLE OCCURS 100 TIMES.
 COPY CMQORV.
 MOVE MQOD-CURRENT-LENGTH TO MQOD-OBJECTRECOFFSET.

However, this works correctly only if the MQOD structure and the array of MQOR records are contiguous;
if the compiler inserts skip bytes between the MQOD and the MQOR array, these must be added to the
value stored in ObjectRecOffset.

Using ObjectRecOffset is recommended for programming languages that do not support the
pointer data type, or that implement the pointer data type in a way that is not portable to different
environments (for example, the COBOL programming language).

• By using the pointer field ObjectRecPtr.

738 Developing Applications for IBM MQ

In this case, the application can declare the array of MQOR structures separately from the MQOD
structure, and set ObjectRecPtr to the address of the array. The following code illustrates this
technique for the C programming language:

MQOD MyMqod;
MQOR MyMqor[100];
MyMqod.ObjectRecPtr = MyMqor;

Using ObjectRecPtr is recommended for programming languages that support the pointer data type
in a way that is portable to different environments (for example, the C programming language).

Whichever technique you choose, you must use one of ObjectRecOffset and ObjectRecPtr ; the call
fails with reason code MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are nonzero.

Using the MQRR structure
These structures are destination-specific; each Response Record contains a CompCode and Reason field
for each queue of a distribution list. You must use this structure to enable you to distinguish where any
problems lie.

For example, if you receive a reason code of MQRC_MULTIPLE_REASONS and your distribution list
contains five destination queues, you will not know which queues the problems apply to if you do not
use this structure. However, if you have a completion code and reason code for each destination, you can
locate the errors more easily.

See MQRR for further information about the MQRR structure.

Figure 57 on page 739 shows how you can open a distribution list in C.

Figure 57. Opening a distribution list in C

Figure 58 on page 739 shows how you can open a distribution list in COBOL.

Figure 58. Opening a distribution list in COBOL

Using the MQOPEN options
You can specify the following options when opening a distribution list:

• MQOO_OUTPUT
• MQOO_FAIL_IF_QUIESCING (optional)
• MQOO_ALTERNATE_USER_AUTHORITY (optional)
• MQOO_*_CONTEXT (optional)

See “Opening and closing objects” on page 716 for a description of these options.

Developing applications for IBM MQ 739

Putting messages to a distribution list
To put messages to a distribution list, you can use MQPUT or MQPUT1.

As input, you must supply:

• A connection handle (see “Putting messages on a queue” on page 727 for a description).
• An object handle. If a distribution list is opened using MQOPEN, the Hobj allows you only to put to the

list.
• A message descriptor structure (MQMD). See MQMD for a description of this structure.
• Control information in the form of a put-message option structure (MQPMO). See “Specifying options

using the MQPMO structure” on page 729 for information about completing the fields of the MQPMO
structure.

• Control information in the form of Put Message Records (MQPMR).
• The length of the data contained within the message (MQLONG).
• The message data itself.

The output is:

• A completion code
• A reason code
• Response Records (optional)

Using the MQPMR structure
This structure is optional and gives destination-specific information for some fields that you might want to
identify differently from those already identified in the MQMD.

For a description of these fields, see MQPMR.

The content of each record depends on the information given in the PutMsgRecFields field of the
MQPMO. For example, in the sample program AMQSPTL0.C (see “The Distribution List sample program”
on page 1049 for a description) showing the use of distribution lists, the sample chooses to provide
values for MsgId and CorrelId in the MQPMR. This section of the sample program looks like this:

 typedef struct
 {
 MQBYTE24 MsgId;
 MQBYTE24 CorrelId;
 } PutMsgRec;
 ...
 /**********************
 MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID;

This implies that MsgId and CorrelId are provided for each destination of a distribution list. The Put
Message Records are provided as an array.

Figure 59 on page 740 shows how you can put a message to a distribution list in C.

Figure 59. Putting a message to a distribution list in C

Figure 60 on page 741 shows how you can put a message to a distribution list in COBOL.

740 Developing Applications for IBM MQ

Figure 60. Putting a message to a distribution list in COBOL

Using MQPUT1
If you are using MQPUT1, consider the following points:

1. The values of the ResponseRecOffset and ResponseRecPtr fields must be null or zero.
2. The Response Records, if required, must be addressed from the MQOD.

Some cases where the put calls fail
If certain attributes of a queue are changed using the FORCE option on a command during the
interval between you issuing an MQOPEN and an MQPUT call, the MQPUT call fails and returns the
MQRC_OBJECT_CHANGED reason code.

The queue manager marks the object handle as being no longer valid. This also happens if the changes
are made while an MQPUT1 call is being processed, or if the changes apply to any queue to which the
queue name resolves. The attributes that affect the handle in this way are listed in the description of
the MQOPEN call in MQOPEN. If your call returns the MQRC_OBJECT_CHANGED reason code, close the
queue, reopen it, then try to put a message again.

If put operations are inhibited for a queue on which you are attempting to put messages (or
any queue to which the queue name resolves), the MQPUT or MQPUT1 call fails and returns the
MQRC_PUT_INHIBITED reason code. You might be able to put a message successfully if you attempt
the call at a later time, if the design of the application is such that other programs change the attributes of
queues regularly.

Furthemore, if the queue that you are trying to put your message on is full, the MQPUT or MQPUT1 call
fails and returns MQRC_Q_FULL.

If a dynamic queue (either temporary or permanent) has been deleted, MQPUT calls using a previously-
acquired object handle fail and return the MQRC_Q_DELETED reason code. In this situation, it is good
practice to close the object handle as it is no longer of any use to you.

In the case of distribution lists, multiple completion codes and reason codes can occur in a single request.
These cannot be handled using only the CompCode and Reason output fields on MQOPEN and MQPUT.

When you use distribution lists to put messages to multiple destinations, the Response Records
contain the specific CompCode and Reason for each destination. If you receive a completion code of
MQCC_FAILED, no message is put on any destination queue successfully. If the completion code is
MQCC_WARNING, the message is successfully put on one or more of the destination queues. If you
receive a return code of MQRC_MULTIPLE_REASONS, the reason codes are not all the same for every
destination. Therefore, it is recommended to use the MQRR structure so that you can determine which
queue or queues caused an error and the reasons for each.

Getting messages from a queue
Use this information to learn about getting messages from a queue.

You can get messages from a queue in two ways:

1. You can remove a message from the queue so that other programs can no longer see it.
2. You can copy a message, leaving the original message on the queue. This is known as browsing. You

can remove the message once you have browsed it.

In both cases, you use the MQGET call, but first your application must be connected to the queue
manager, and you must use the MQOPEN call to open the queue (for input, browse, or both). These
operations are described in “Connecting to and disconnecting from a queue manager” on page 709 and
“Opening and closing objects” on page 716.

Developing applications for IBM MQ 741

When you have opened the queue, you can use the MQGET call repeatedly to browse or remove messages
on the same queue. Call MQCLOSE when you have finished getting all the messages that you want from
the queue.

Use the following links to find out more about getting messages from a queue:

• “Getting messages from a queue using the MQGET call” on page 742
• “The order in which messages are retrieved from a queue” on page 746
• “Getting a particular message” on page 758
• “Improving performance of non-persistent messages” on page 759

• “Type of index” on page 763
• “Handling messages greater than 4 MB long” on page 764
• “Waiting for messages” on page 769

• “Signaling” on page 770

• “Skipping backout” on page 771
• “Application data conversion” on page 773
• “Browsing messages on a queue” on page 774
• “Some cases where the MQGET call fails” on page 780

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

Getting messages from a queue using the MQGET call
The MQGET call gets a message from an open local queue. It cannot get a message from a queue on
another system.

As input to the MQGET call, you must supply:

• A connection handle.

742 Developing Applications for IBM MQ

• A queue handle.
• A description of the message that you want to get from the queue. This is in the form of a message

descriptor (MQMD) structure.
• Control information in the form of a Get Message Options (MQGMO) structure.
• The size of the buffer that you have assigned to hold the message (MQLONG).
• The address of the storage in which to put the message.

The output from MQGET is:

• A reason code
• A completion code
• The message in the buffer area that you specified, if the call completes successfully
• Your options structure, modified to show the name of the queue from which the message was retrieved
• Your message descriptor structure, with the contents of the fields modified to describe the message

that was retrieved
• The length of the message (MQLONG)

There is a description of the MQGET call in MQGET.

The following sections describe the information you must supply as input to the MQGET call.

• “Specifying connection handles” on page 743
• “Describing messages using the MQMD structure and the MQGET call” on page 743
• “Specifying MQGET options using the MQGMO structure” on page 744
• “Specifying the size of the buffer area” on page 746

Specifying connection handles

For CICS on z/OS applications, you can specify the constant MQHC_DEF_HCONN (which has
the value zero), or use the connection handle returned by the MQCONN or MQCONNX call. For other
applications, always use the connection handle returned by the MQCONN or MQCONNX call.

Use the queue handle (Hobj) that is returned when you call MQOPEN.

Describing messages using the MQMD structure and the MQGET call
To identify the message that you want to get from a queue, use the message descriptor structure (MQMD).

This is an input/output parameter for the MQGET call. There is an introduction to the message properties
that MQMD describes in “IBM MQ messages” on page 17, and there is a description of the structure itself
in MQMD.

If you know which message you want to get from the queue, see “Getting a particular message” on page
758.

If you do not specify a particular message, MQGET retrieves the first message in the queue. “The order in
which messages are retrieved from a queue” on page 746 describes how the priority of a message, the
MsgDeliverySequence attribute of the queue, and the MQGMO_LOGICAL_ORDER option determine the
order of the messages in the queue.

Note: If you want to use MQGET more than once (for example, to step through the messages in the
queue), you must set the MsgId and CorrelId fields of this structure to null after each call. This clears
these fields of the identifiers of the message that was retrieved.

However, if you want to group your messages, the GroupId must be the same for messages in the same
group, so that the call looks for a message having the same identifiers as the previous message in order to
make up the whole group.

Developing applications for IBM MQ 743

Specifying MQGET options using the MQGMO structure
The MQGMO structure is an input/output variable for passing options to the MQGET call. The following
sections help you to complete some of the fields of this structure.

There is a description of the MQGMO structure in MQGMO.
StrucId

StrucId is a 4-character field used to identify the structure as a get-message options structure.
Always specify MQGMO_STRUC_ID.

Version
Version describes the version number of the structure. MQGMO_VERSION_1 is the default. If you
want to use the Version 2 fields or retrieve messages in logical order, specify MQGMO_VERSION_2.
If you want to use the Version 3 fields or retrieve messages in logical order, specify
MQGMO_VERSION_3. MQGMO_CURRENT_VERSION sets your application to use the most recent
level.

Options
Within your code, you can select the options in any order; each option is represented by a bit in the
Options field.

The Options field controls:

• Whether the MQGET call waits for a message to arrive on the queue before it completes (see
“Waiting for messages” on page 769)

• Whether the get operation is included in a unit of work.
• Whether a nonpersistent message is retrieved outside sync point, allowing fast messaging

• On IBM MQ for z/OS, whether the message retrieved is marked as skipping backout
(see “Skipping backout” on page 771)

• Whether the message is removed from the queue, or merely browsed
• Whether to select a message by using a browse cursor or by other selection criteria
• Whether the call succeeds even if the message is longer than your buffer

• On IBM MQ for z/OS, whether to allow the call to complete. This option also sets a
signal to indicate that you want to be notified when a message arrives

• Whether the call fails if the queue manager is in a quiescing state

• On IBM MQ for z/OS, whether the call fails if the connection is in a quiescing state
• Whether application message data conversion is required (see “Application data conversion” on

page 773)

• The order in which messages and segments are retrieved from a queue (except for
IBM MQ for z/OS)

• Whether complete, logical messages only are retrievable (except for IBM MQ for z/OS)
• Whether messages in a group can be retrieved only when all messages in the group are available
• Whether segments in a logical message can be retrieved only when all segments in the logical

message are available (except for IBM MQ for z/OS)

If you leave the Options field set to the default value (MQGMO_NO_WAIT), the MQGET call operates
this way:

• If there is no message matching your selection criteria on the queue, the call does not wait for a

message to arrive, but completes immediately. Also, in IBM MQ for z/OS, the call does
not set a signal requesting notification when such a message arrives.

• The way that the call operates with sync points is determined by the platform:

744 Developing Applications for IBM MQ

Platform Under sync point control

IBM i No

AIX and Linux systems No

z/OS Yes

Windows systems No

• On IBM MQ for z/OS, the message retrieved is not marked as skipping backout.
• The selected message is removed from the queue (not browsed).
• No application message data conversion is required.
• The call fails if the message is longer than your buffer.

WaitInterval
The WaitInterval field specifies the maximum time (in milliseconds) that the MQGET call waits
for a message to arrive on the queue when you use the MQGMO_WAIT option. If no message arrives
within the time specified in WaitInterval, the call completes and returns a reason code showing
that there was no message that matched your selection criteria on the queue.

On IBM MQ for z/OS, if you use the MQGMO_SET_SIGNAL option, the WaitInterval
field specifies the time for which the signal is set.

For more information about these options, see “Waiting for messages” on page 769
and “Signaling” on page 770 .

Signal1
Signal1 is supported only on IBM MQ for z/OS.

If you use the MQGMO_SET_SIGNAL option to request that your application is notified when a suitable
message arrives, you specify the type of signal in the Signal1 field. In IBM MQ on all other platforms,
the Signal1 field is reserved and its value is not significant.

For more information, see “Signaling” on page 770.

Signal2
The Signal2 field is reserved on all platforms and its value is not significant.

For more information, see “Signaling” on page 770.

ResolvedQName
ResolvedQName is an output field in which the queue manager returns the name of the queue (after
resolution of any alias) from which the message was retrieved.

MatchOptions
MatchOptions controls the selection criteria for MQGET.

GroupStatus
GroupStatus indicates whether the message that you have retrieved is in a group.

SegmentStatus
SegmentStatus indicates whether the item that you have retrieved is a segment of a logical
message.

Segmentation
Segmentation indicates whether segmentation is allowed for the message retrieved.

MsgToken

MsgToken uniquely identifies a message.

Developing applications for IBM MQ 745

ReturnedLength
ReturnedLength is an output field in which the queue manager returns the length of message data
returned (in bytes).

MsgHandle
The handle to a message that is to be populated with the properties of the message being retrieved
from the queue. The handle has previously been created by an MQCRTMH call. Any properties already
associated with the handle are cleared before retrieving a message.

Specifying the size of the buffer area
In the BufferLength parameter of the MQGET call, specify the size of the buffer area to hold the
message data that you retrieve. You decide how large this should be in three ways:

1. You might already know what length of messages to expect from this program. If so, specify a buffer of
this size.

However, you can use the MQGMO_ACCEPT_TRUNCATED_MSG option in the MQGMO structure if you
want the MQGET call to complete even if the message is too large for the buffer. In this case:

• The buffer is filled with as much of the message as it can hold
• The call returns a warning completion code
• The message is removed from the queue (discarding the remainder of the message), or the browse

cursor is advanced (if you are browsing the queue)
• The real length of the message is returned in DataLength

Without this option, the call still completes with a warning, but it does not remove the message from
the queue (or advance the browse cursor).

2. Estimate a size for the buffer (or even specify a size of zero bytes) and do not use the
MQGMO_ACCEPT_TRUNCATED_MSG option. If the MQGET call fails (for example, because the buffer
is too small), the length of the message is returned in the DataLength parameter of the call. (The
buffer is still filled with as much of the message as it can hold, but the processing of the call is not
completed.) Store the MsgId of this message, then repeat the MQGET call, specifying a buffer area of
the correct size, and the MsgId that you noted from the first call.

If your program is serving a queue that is also being served by other programs, one of those other
programs might remove the message that you want before your program can issue another MQGET
call. Your program could waste time searching for a message that no longer exists. To avoid this,
first browse the queue until you find the message that you want, specifying a BufferLength of
zero and using the MQGMO_ACCEPT_TRUNCATED_MSG option. This positions the browse cursor under
the message that you want. You can then retrieve the message by calling MQGET again, specifying
the MQGMO_MSG_UNDER_CURSOR option. If another program removes the message between your
browse and removal calls, your second MQGET fails immediately (without searching the whole queue),
because there is no message under your browse cursor.

3. The MaxMsgLength queue attribute determines the maximum length of messages accepted for that
queue; the MaxMsgLength queue manager attribute determines the maximum length of messages
accepted for that queue manager. If you do not know what length of message to expect, you can
inquire about the MaxMsgLength attribute (using the MQINQ call), then specify a buffer of this size.

Try to make the buffer size as close as possible to the actual message size to avoid reduced
performance.

For further information about the MaxMsgLength attribute, see “Increasing the maximum message
length” on page 764.

The order in which messages are retrieved from a queue
You can control the order in which you retrieve messages from a queue. This section looks at the options.

746 Developing Applications for IBM MQ

Priority

A program can assign a priority to a message when it puts the message on a queue (see “Message
priorities” on page 25). Messages of equal priority are stored in a queue in order of arrival, not the order
in which they are committed.

The queue manager maintains queues either in strict FIFO (first in, first out) sequence, or in FIFO within
priority sequence. This depends on the setting of the MsgDeliverySequence attribute of the queue.
When a message arrives on a queue, it is inserted immediately following the last message that has the
same priority.

Programs can either get the first message from a queue, or they can get a particular message from a
queue, ignoring the priority of those messages. For example, a program might want to process the reply to
a particular message that it sent earlier. For more information, see “Getting a particular message” on page
758.

If an application puts a sequence of messages on a queue, another application can retrieve those
messages in the same order that they were put, provided:

• The messages all have the same priority
• The messages were all put within the same unit of work, or all put outside a unit of work
• The queue is local to the putting application

If these conditions are not met, and the applications depend on the messages being retrieved in a certain
order, the applications must either include sequencing information in the message data, or establish a
means of acknowledging receipt of a message before the next one is sent.

On IBM MQ for z/OS, you can use the queue attribute, IndexType, to increase the speed of
MQGET operations on the queue. For more information, see “Type of index” on page 763.

Logical and physical ordering
Within each priority level, messages on queues can occur in physical or logical order.

Physical order is the order in which messages arrive on a queue. Logical order is when all of the messages
and segments within a group are in their logical sequence, next to each other, in the position determined
by the physical position of the first item belonging to the group.

For a description of groups, messages, and segments, see “Message groups” on page 42. These physical
and logical orders can differ because:

• Groups can arrive at a destination at similar times from different applications, therefore losing any
distinct physical order.

• Even within a single group, messages can get out of order because of rerouting or delay of some of the
messages in the group.

For example, the logical order might look like Figure Figure 61 on page 748:

Developing applications for IBM MQ 747

Figure 61. Logical order on a queue

These messages would occur in the following logical order on a queue:

1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Y
4. Segment 1 of (last) logical message 3 of group Y
5. (Last) segment 2 of (last) logical message 3 of group Y
6. Logical message 1 of group Z
7. (Last) logical message 2 of group Z
8. Message B (not in a group)

The physical order, however, might be entirely different. The physical position of the first item within each
group determines the logical position of the whole group. For example, if groups Y and Z arrived at similar
times, and message 2 of group Z overtook message 1 of the same group, the physical order would look
like Figure Figure 62 on page 749:

748 Developing Applications for IBM MQ

Figure 62. Physical order on a queue

These messages occur in the following physical order on the queue:

1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Z
4. Logical message 2 of group Y
5. Segment 1 of (last) logical message 3 of group Y
6. (Last) segment 2 of (last) logical message 3 of group Y
7. Logical message 1 of group Z
8. Message B (not in a group)

Note: On IBM MQ for z/OS, the physical order of messages on the queue is not guaranteed if
the queue is indexed by GROUPID.

When getting messages, you can specify MQGMO_LOGICAL_ORDER to retrieve messages in logical order
rather than physical order.

Developing applications for IBM MQ 749

If you issue an MQGET call with MQGMO_BROWSE_FIRST and MQGMO_LOGICAL_ORDER, subsequent
MQGET calls with MQGMO_BROWSE_NEXT must also specify MQGMO_LOGICAL_ORDER. Conversely, if
the MQGET with MQGMO_BROWSE_FIRST does not specify MQGMO_LOGICAL_ORDER, neither must the
following MQGETs with MQGMO_BROWSE_NEXT.

The group and segment information that the queue manager retains for MQGET calls that browse
messages on the queue is separate from the group and segment information that the queue
manager retains for MQGET calls that remove messages from the queue. When you specify
MQGMO_BROWSE_FIRST, the queue manager ignores the group and segment information for browsing,
and scans the queue as though there were no current group and no current logical message.

Note: Do not use an MQGET call to browse beyond the end of a message group (or logical message not
in a group) without specifying MQGMO_LOGICAL_ORDER. For example, if the last message in the group
precedes the first message in the group on the queue, using MQGMO_BROWSE_NEXT to browse beyond
the end of the group, specifying MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber set to 1 (to find
the first message of the next group) returns again the first message in the group already browsed. This
could happen immediately, or a number of MQGET calls later (if there are intervening groups).

Avoid the possibility of an infinite loop by opening the queue twice for browse:

• Use the first handle to browse only the first message in each group.
• Use the second handle to browse only the messages within a specific group.
• Use the MQMO_* options to move the second browse cursor to the position of the first browse cursor,

before browsing the messages in the group.
• Do not use the MQGMO_BROWSE_NEXT browse beyond the end of a group.

For further information about this, see MQGET, MQMD, and Rules for validating MQI options.

For most applications you will probably choose either logical or physical ordering when browsing.
However, if you want to switch between these modes, remember that when you first issue a browse
with MQGMO_LOGICAL_ORDER, your position within the logical sequence is established.

If the first item within the group is not present at this time, the group that you are in is not considered to
be part of the logical sequence.

Once the browse cursor is within a group, it can continue within the same group, even if the first message
is removed. Initially though, you can never move into a group using MQGMO_LOGICAL_ORDER where the
first item is not present.

MQPMO_LOGICAL_ORDER
The MQPMO option tells the queue manager how the application puts messages in groups and
segments of logical messages. It can be specified only on the MQPUT call; it is not valid on the
MQPUT1 call.

If MQPMO_LOGICAL_ORDER is specified, it indicates that the application uses successive MQPUT
calls to:

1. Put the segments in each logical message in the order of increasing segment offset, starting from
0, with no gaps.

2. Put all the segments in one logical message before putting the segments in the next logical
message.

3. Put the logical messages in each message group in the order of increasing message sequence
number, starting from 1, with no gaps. IBM MQ increments the message sequence number
automatically.

4. Put all the logical messages in one message group before putting logical messages in the next
message group.

Because the application has told the queue manager how it puts messages in groups and
segments of logical messages, the application does not have to maintain and update the group and
segment information about each MQPUT call, because the queue manager maintains and updates
this information. Specifically, it means that the application does not need to set the GroupId,
MsgSeqNumber, and Offset fields in MQMD, because the queue manager sets these fields to the

750 Developing Applications for IBM MQ

appropriate values. The application must only set the MsgFlags field in MQMD, to indicate when
messages belong to groups or are segments of logical messages, and to indicate the last message in a
group or last segment of a logical message.

After a message group or logical message has been started, subsequent MQPUT calls must specify
the appropriate MQMF_* flags in MsgFlags in MQMD. If the application tries to put a message
that is not in a group when there is an unterminated message group, or put a message that is
not a segment when there is an unterminated logical message, the call fails with reason code
MQRC_INCOMPLETE_GROUP or MQRC_INCOMPLETE_MSG, as appropriate. However, the queue
manager retains the information about the current message group or current logical message, and
the application can terminate them by sending a message (possibly with no application message data)
specifying MQMF_LAST_MSG_IN_GROUP or MQMF_LAST_SEGMENT as appropriate, before reissuing
the MQPUT call to put the message that is not in the group or not a segment.

Figure 62 on page 749 shows the combinations of options and flags that are valid, and the values
of the GroupId, MsgSeqNumber, and Offset fields that the queue manager uses in each case.
Combinations of options and flags that are not shown in the table are not valid. The columns in the
table have the following meanings; Either means Yes or No:
LOG ORD

Whether the MQPMO_LOGICAL_ORDER option is specified on the call.
MIG

Whether the MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP option is specified on the
call.

SEG
Whether the MQMF_SEGMENT or MQMF_LAST_SEGMENT option is specified on the call.

SEG OK
Whether the MQMF_SEGMENTATION_ALLOWED option is specified on the call.

Cur grp
Whether a current message group exists before the call.

Cur log msg
Whether a current logical message exists before the call.

Other columns
Show the values that the queue manager uses. Previous denotes the value used for the field in the
previous message for the queue handle.

Table 116. MQPUT options relating to messages in groups and segments of logical messages

Optio
ns you
specif

y

Optio
ns you
specif

y

Optio
ns you
specif

y

Optio
ns you
specif

y

Group
and
log-
msg

status
befor
e call

Group
and
log-
msg

status
befor
e call

Values the queue
manager uses

Values the queue
manager uses

Values the queue
manager uses

LOG
ORD

MIG SEG SEG
OK

Cur
grp

Cur
log

msg

GroupId MsgSeqNumber Offset

Yes No No No No No MQGI_NONE 1 0

Yes No No Yes No No New group id 1 0

Yes No Yes Either No No New group id 1 0

Yes No Yes Either No Yes Previous group id 1 Previous offset +
previous segment

length

Developing applications for IBM MQ 751

Table 116. MQPUT options relating to messages in groups and segments of logical messages (continued)

Optio
ns you
specif

y

Optio
ns you
specif

y

Optio
ns you
specif

y

Optio
ns you
specif

y

Group
and
log-
msg

status
befor
e call

Group
and
log-
msg

status
befor
e call

Values the queue
manager uses

Values the queue
manager uses

Values the queue
manager uses

Yes Yes Either Either No No New group id 1 0

Yes Yes Either Either Yes No Previous group id Previous sequence
number + 1

0

Yes Yes Yes Either Yes Yes Previous group id Previous sequence
number

Previous offset +
previous segment

length

No No No No Either Either MQGI_NONE 1 0

No No No Yes Either Either New group ID if
MQGI_NONE, else

value in field

1 0

No No Yes Either Either Either New group ID if
MQGI_NONE, else

value in field

1 Value in field

No Yes No Either Either Either New group ID if
MQGI_NONE, else

value in field

Value in field 0

No Yes Yes Either Either Either New group ID if
MQGI_NONE, else

value in field

Value in field Value in field

Note:

• MQPMO_LOGICAL_ORDER is not valid on the MQPUT1 call.
• For the MsgId field, the queue manager generates a new message identifier if

MQPMO_NEW_MSG_ID or MQMI_NONE is specified, and uses the value in the field otherwise.
• For the CorrelId field, the queue manager generates a new correlation identifier if

MQPMO_NEW_CORREL_ID is specified, and uses the value in the field otherwise.

When you specify MQPMO_LOGICAL_ORDER, the queue manager requires that all messages in a
group and segments in a logical message are put with the same value in the Persistence field in
MQMD, that is, all must be persistent, or all must be nonpersistent. If this condition is not satisfied,
the MQPUT call fails with reason code MQRC_INCONSISTENT_PERSISTENCE.

The MQPMO_LOGICAL_ORDER option affects units of work as follows:

• If the first physical message in a group or logical message is put within a unit of work, all the other
physical messages in the group or logical message must be put within a unit of work, if the same
queue handle is used. However, they do not need to be put within the same unit of work, allowing a
message group or logical message that consists of many physical messages to be split across two or
more consecutive units of work for the queue handle.

• If the first physical message in a group or logical message is not put within a unit of work, none of
the other physical messages in the group or logical message can be put within a unit of work, if the
same queue handle is used.

752 Developing Applications for IBM MQ

If these conditions are not satisfied, the MQPUT call fails with reason code
MQRC_INCONSISTENT_UOW.

When MQPMO_LOGICAL_ORDER is specified, the MQMD supplied on the MQPUT call must not
be less than MQMD_VERSION_2. If this condition is not satisfied, the call fails with reason code
MQRC_WRONG_MD_VERSION.

If MQPMO_LOGICAL_ORDER is not specified, messages in groups and segments of logical messages
can be put in any order, and it is not necessary to put complete message groups or complete logical
messages. It is the responsibility of the application to ensure that the GroupId, MsgSeqNumber,
Offset, and MsgFlags fields have appropriate values.

Use this technique to restart a message group or logical message in the middle, after a system
failure has occurred. When the system restarts, the application can set the GroupId, MsgSeqNumber,
Offset, MsgFlags, and Persistence fields to the appropriate values, and then issue the
MQPUT call with MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT set as required, but without
specifying MQPMO_LOGICAL_ORDER. If this call is successful, the queue manager retains the
group and segment information, and subsequent MQPUT calls using that queue handle can specify
MQPMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains for the MQPUT call is separate
from the group and segment information that it retains for the MQGET call.

For any given queue handle, the application can mix MQPUT calls which specify
MQPMO_LOGICAL_ORDER with MQPUT calls that do not, but note the following points:

• If MQPMO_LOGICAL_ORDER is not specified, each successful MQPUT call causes the queue
manager to set the group and segment information for the queue handle to the values specified
by the application, replacing the existing group and segment information retained by the queue
manager for the queue handle.

• If MQPMO_LOGICAL_ORDER is not specified, the call does not fail if there is a current message
group or logical message; the call might succeed with an MQCC_WARNING completion code. Table
117 on page 753 shows the various cases that can arise. In these cases, if the completion code is
not MQCC_OK, the reason code is one of the following (as appropriate):

– MQRC_INCOMPLETE_GROUP
– MQRC_INCOMPLETE_MSG
– MQRC_INCONSISTENT_PERSISTENCE
– MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and segment information for the MQPUT1 call.

Table 117. Outcome when MQPUT or MQCLOSE call is not consistent with group and segment information

Current call is Previous call was MQPUT with
MQPMO_LOGICAL_ORDER

Previous call was MQPUT without
MQPMO_LOGICAL_ORDER

MQPUT with
MQPMO_LOGICAL_ORDER

MQCC_FAILED MQCC_FAILED

MQPUT without
MQPMO_LOGICAL_ORDER

MQCC_WARNING MQCC_OK

MQCLOSE with an unterminated
group or logical message

MQCC_WARNING MQCC_OK

For applications that put messages and segments in logical order, specify MQPMO_LOGICAL_ORDER,
as it is the simplest option to use. This option relieves the application of the need to manage the
group and segment information, because the queue manager manages that information. However,
specialized applications might need more control than that provided by the MQPMO_LOGICAL_ORDER
option, which can be achieved by not specifying that option; if you do so, you must ensure that the

Developing applications for IBM MQ 753

GroupId, MsgSeqNumber, Offset, and MsgFlags fields in MQMD are set correctly, before each
MQPUT or MQPUT1 call.

For example, an application that wants to forward physical messages that it receives, without regard
for whether those messages are in groups or segments of logical messages, must not specify
MQPMO_LOGICAL_ORDER, for two reasons:

• If the messages are retrieved and put in order, specifying MQPMO_LOGICAL_ORDER assigns a new
group identifier to the messages, which might make it difficult or impossible for the originator of the
messages to correlate any reply or report messages that result from the message group.

• In a complex network with multiple paths between sending and receiving queue managers, the
physical messages might arrive out of order. By not specifying MQPMO_LOGICAL_ORDER and
MQGMO_LOGICAL_ORDER on the MQGET call, the forwarding application can retrieve and forward
each physical message as soon as it arrives, without waiting for the next one in logical order to
arrive.

Applications that generate report messages for messages in groups or segments of logical messages
must also not specify MQPMO_LOGICAL_ORDER when putting the report message.

MQPMO_LOGICAL_ORDER can be specified with any of the other MQPMO_* options.

Putting Logically Ordered Groups to a Clustered Queue (MQOO_BIND_ON_GROUP)
The MQOO_BIND_ON_OPEN option ensures that all messages from this application, and therefore all
groups, are routed to a single instance. This has the drawback that the application traffic is not load
balanced across multiple instances of a cluster queue. In order to enable workload balancing while
keeping groups of messages intact, you must set the following options:

• The MQPUT call must specify MQPMO_LOGICAL_ORDER
• The MQOPEN call must specify one of the following two options:

– MQOO_BIND_ON_GROUP
– MQOO_BIND_AS_Q_DEF, and the queue definition must specify DEFBIND(GROUP)

Workload balancing is then driven between groups of messages without requiring an MQCLOSE and
MQOPEN of the queue. Between groups means that MQMF_MSG_IN_GROUP is set in the MQMD(v2) or
MQMDE, and there is no partially complete group in progress. When a group is in progress, the resolved
queue manager and queue name in the object handle are reused.

If the previous message was MQPMO_LOGICAL_ORDER and/or MQMF_MSG_IN_GROUP was set but the
current message is not part of the group, then the PUT call fails with MQRC_INCOMPLETE_GROUP.

If an individual MQPUT does not specify MQPMO_LOGICAL_ORDER, and no current group is
active, then workload balancing is driven for that message (as if the MQOPEN call has specified
MQOO_BIND_NOT_FIXED).

No reallocation takes place for messages bound to a destination using MQOO_BIND_ON_GROUP. For
more information on reallocation, see “Message groups” on page 42.

Grouping logical messages

There are two main reasons for using logical messages in a group:

• You might need to process the messages in a particular order.
• You might need to process each message in a group in a related way.

In either case, retrieve the entire group with the same getting application instance.

For example, assume that the group consists of four logical messages. The putting application looks like
this:

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

754 Developing Applications for IBM MQ

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

 MQCMIT

The getting application specifies the MQGMO_ALL_MSGS_AVAILABLE option for the first message in the
group. This ensures that processing does not start until all the messages within the group have arrived.
The MQGMO_ALL_MSGS_AVAILABLE option is ignored for subsequent messages within the group.

When the first logical message of the group is retrieved, you can use MQGMO_LOGICAL_ORDER to ensure
that the remaining logical messages of the group are retrieved in order.

So, the getting application looks like this:

 /* Wait for the first message in a group, or a message not in a group */
 GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT
 | MQGMO_ALL_MSGS_AVAILABLE | MQGMO_LOGICAL_ORDER
 do while (GroupStatus == MQGS_MSG_IN_GROUP)
 MQGET
 /* Process each remaining message in the group */
 ...

 MQCMIT

For further examples of grouping messages, see “Application segmentation of logical messages” on page
766 and “Putting and getting a group that spans units of work” on page 755.

Attention: When using publish/subscribe to send messages to a topic (or putting messages to a
topic alias) message grouping and segmentation is not permitted.

Because subscriptions can be created and removed independently of publication activity, it cannot
be assured that a subscriber would receive a full message group or all segments of a message; see
RC2417: MQRC_MSG_NOT_ALLOWED_IN_GROUP.

For information on allowing an application to request that a group of messages are all allocated to the
same destination instance for cluster queues, see DefBind.

Putting and getting a group that spans units of work

In the previous case, messages or segments cannot start to leave the node (if its destination is remote) or
start to be retrieved until the whole group has been put and the unit of work is committed. This might not
be what you want if it takes a long time to put the whole group, or if queue space is limited on the node. To
overcome this, put the group in several units of work.

If the group is put within multiple units of work, it is possible for some of the group to commit even when
the putting application fails. The application must therefore save status information, committed with each
unit of work, which it can use after a restart to resume an incomplete group. The simplest place to record
this information is in a STATUS queue. If a complete group has been successfully put, the STATUS queue
is empty.

If segmentation is involved, the logic is similar. In this case, the StatusInfo must include the Offset.

Here is an example of putting the group in several units of work:

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 /* First UOW */

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 StatusInfo = GroupId,MsgSeqNumber from MQMD
 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
 MQCMIT

 /* Next and subsequent UOWs */
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

Developing applications for IBM MQ 755

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
 StatusInfo = GroupId,MsgSeqNumber from MQMD
 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
 MQCMIT

 /* Last UOW */
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP
 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
 MQCMIT

If all the units of work have been committed, the entire group has been put successfully, and the STATUS
queue is empty. If not, the group must be resumed at the point indicated by the status information.
MQPMO_LOGICAL_ORDER cannot be used for the first put, but can thereafter.

Restart processing looks like this:

 MQGET (StatusInfo from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
 if (Reason == MQRC_NO_MSG_AVAILABLE)
 /* Proceed to normal processing */
 ...

 else
 /* Group was terminated prematurely */
 Set GroupId, MsgSeqNumber in MQMD to values from Status message
 PMO.Options = MQPMO_SYNCPOINT
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 /* Now normal processing is resumed.
 Assume this is not the last message */
 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
 StatusInfo = GroupId,MsgSeqNumber from MQMD
 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
 MQCMIT

From the getting application, you might want to start processing the messages in a group before the
whole group has arrived. This improves response times on the messages within the group, and also
means that storage is not required for the entire group. In order to realize the benefits, use several units
of work for each group of messages. For recovery reasons, you must retrieve each message within a unit
of work.

As with the corresponding putting application, this requires status information to be recorded somewhere
automatically as each unit of work is committed. Again, the simplest place to record this information is on
a STATUS queue. If a complete group has been successfully processed, the STATUS queue is empty.

Note: For intermediate units of work, you can avoid the MQGET calls from the STATUS queue by
specifying that each MQPUT to the status queue is a segment of a message (that is, by setting the
MQMF_SEGMENT flag), instead of putting a complete new message for each unit of work. In the last unit
of work, a final segment is put to the status queue specifying MQMF_LAST_SEGMENT, and then the status
information is cleared with an MQGET specifying MQGMO_COMPLETE_MSG.

During restart processing, instead of using a single MQGET to get a possible status message, browse the
status queue with MQGMO_LOGICAL_ORDER until you reach the last segment (that is, until no further
segments are returned). In the first unit of work after restart, also specify the offset explicitly when
putting the status segment.

In the following example, we consider only messages within a group, assuming that the application's
buffer is always large enough to hold the entire message, whether or not the message has been
segmented. MQGMO_COMPLETE_MSG is therefore specified on each MQGET. The same principles apply if
segmentation is involved (in this case, the StatusInfo must include the Offset).

For simplicity, we assume that a maximum of 4 messages are retrieved within a single UOW:

 msgs = 0 /* Counts messages retrieved within UOW */
 /* Should be no status message at this point */

756 Developing Applications for IBM MQ

 /* Retrieve remaining messages in the group */
 do while (GroupStatus == MQGS_MSG_IN_GROUP)

 /* Process up to 4 messages in the group */
 GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT
 | MQGMO_LOGICAL_ORDER
 do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))
 MQGET
 msgs = msgs + 1
 /* Process this message */
 ...
 /* end while

 /* Have retrieved last message or 4 messages */
 /* Update status message if not last in group */
 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
 if (GroupStatus == MQGS_MSG_IN_GROUP)
 StatusInfo = GroupId,MsgSeqNumber from MQMD
 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
 MQCMIT
 msgs = 0
 /* end while

 if (msgs > 0)
 /* Come here if there was only 1 message in the group */
 MQCMIT

If all the units of work have been committed, the entire group has been retrieved successfully, and
the STATUS queue is empty. If not, the group must be resumed at the point indicated by the status
information. MQGMO_LOGICAL_ORDER cannot be used for the first retrieve, but can thereafter.

Restart processing looks like this:

 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
 if (Reason == MQRC_NO_MSG_AVAILABLE)
 /* Proceed to normal processing */
 ...

 else
 /* Group was terminated prematurely */
 /* The next message on the group must be retrieved by matching
 the sequence number and group ID with those retrieved from the
 status information. */
 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT
 MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID | MQMO_MATCH_MSG_SEQ_NUMBER,
 MQMD.GroupId = value from Status message,
 MQMD.MsgSeqNumber = value from Status message plus 1
 msgs = 1
 /* Process this message */
 ...

 /* Now normal processing is resumed */
 /* Retrieve remaining messages in the group */
 do while (GroupStatus == MQGS_MSG_IN_GROUP)

 /* Process up to 4 messages in the group */
 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT
 | MQGMO_LOGICAL_ORDER
 do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))
 MQGET
 msgs = msgs + 1
 /* Process this message */
 ...

 /* Have retrieved last message or 4 messages */
 /* Update status message if not last in group */
 MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
 if (GroupStatus == MQGS_MSG_IN_GROUP)
 StatusInfo = GroupId,MsgSeqNumber from MQMD
 MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
 MQCMIT
 msgs = 0

Developing applications for IBM MQ 757

Getting a particular message
There are a number of ways of getting a particular message from a queue. These are: selecting on the
MsgId and CorrelId, selecting on the GroupId, MsgSeqNumber and Offset, and selecting on the MsgToken.
You can also use a selection string when you open the queue.

To get a particular message from a queue, use the MsgId and CorrelId fields of the MQMD structure.
However, applications can explicitly set these fields, so the values that you specify might not identify a
unique message. Table 118 on page 758 shows which message is retrieved for the possible settings
of these fields. These fields are ignored on input if you specify MQGMO_MSG_UNDER_CURSOR in the
GetMsgOpts parameter of the MQGET call.

Table 118. Using message and correlation identifiers

To retrieve ... MsgId CorrelId

First message in the queue MQMI_NONE MQCI_NONE

First message that matches MsgId Nonzero MQCI_NONE

First message that matches CorrelId MQMI_NONE Nonzero

First message that matches both MsgId and CorrelId Nonzero Nonzero

In each case, first means the first message that satisfies the selection criteria (unless
MQGMO_BROWSE_NEXT is specified, when it means the next message in the sequence satisfying the
selection criteria).

On return, the MQGET call sets the MsgId and CorrelId fields to the message and correlation identifiers
of the message returned, if any.

If you set the Version field of the MQMD structure to 2, you can use the GroupId, MsgSeqNumber, and
Offset fields. Table 119 on page 758 shows which message is retrieved for the possible settings of
these fields.

Table 119. Using the group identifier

To retrieve ... Match options

First message in the queue MQMO_NONE

First message that matches MsgId MQMO_MATCH_MSG_ID

First message that matches CorrelId MQMO_MATCH_CORREL_ID

First message that matches GroupId MQMO_MATCH_GROUP_ID

First message that matches MsgSeqNumber MQMO_MATCH_MSG_SEQ_NUMBER

First message that matches MsgToken MQMO_MATCH_MSG_TOKEN

First message that matches Offset MQMO_MATCH_OFFSET

Notes:

1. MQMO_MATCH_XXX implies that the XXX field in the MQMD structure is set to the value to be
matched.

2. The MQMO flags can be used in combination. For example, MQMO_MATCH_GROUP_ID,
MQMO_MATCH_MSG_SEQ_NUMBER, and MQMO_MATCH_OFFSET can be used together to give the
segment identified by the GroupId, MsgSeqNumber, and Offset fields.

3. If you specify MQGMO_LOGICAL_ORDER, the message that you are trying to retrieve is affected
because the option depends on state information controlled for the queue handle. For information
about this, see “Logical and physical ordering” on page 747 and Options.

758 Developing Applications for IBM MQ

The MQGET call usually retrieves the first message from a queue. If you specify a particular message
when you use the MQGET call, the queue manager must search the queue until it finds that message. This
can affect the performance of your application.

If you are using Version 2 or later of the MQGMO structure and do not specify the MQMO_MATCH_MSG_ID
or MQMO_MATCH_CORREL_ID flags, you do not need to reset the MsgId or CorrelId fields between
MQGETs.

On IBM MQ for z/OS, the queue attribute IndexType can be used to increase the speed of
MQGET operations on the queue. For more information, see “Type of index” on page 763.

You can get a specific message from a queue by specifying its MsgToken and the MatchOption
MQMO_MATCH_MSG_TOKEN in the MQGMO structure. The MsgToken is returned by the MQPUT call that
originally put that message on the queue, or by previous MQGET operations and remains constant unless
the queue manager is restarted.

If you are interested in only a subset of messages on the queue, you can specify which messages you
want to process by using a selection string with the MQOPEN or MQSUB call. MQGET then retrieves
the next message that satisfies that selection string. For more information about selection strings, see
“Selectors” on page 30.

Improving performance of non-persistent messages
When a client requires a message from a server, it sends a request to the server. It sends a separate
request for each of the messages it consumes. To improve the performance of a client consuming non
persistent messages by avoiding having to send these request messages, a client can be configured to use
read ahead. Read ahead allows messages to be sent to a client without an application having to request
them.

When read ahead is enabled, messages are sent to a memory buffer on the client called the read ahead
buffer. The client will have a read ahead buffer for each queue it has open with read ahead enabled.
The messages in the read ahead buffer are not persisted. The client periodically updates the server with
information about the amount of data it has consumed.

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if certain
conditions are met. These conditions include:

• The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
• The client channel must be using TCP/IP protocol
• The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

Using read ahead can improve performance when consuming non persistent messages from a
client application. This performance improvement is available to both MQI and JMS applications.
Client applications using MQGET or asynchronous consumption will benefit from the performance
improvements when consuming non-persistent messages.

Not all client application designs are suited to using read ahead as not all options are supported for use
with read ahead and some options are required to be consistent between MQGET calls when read ahead
is enabled. If a client alters its selection criteria between MQGET calls, messages being stored in the read
ahead buffer will remain stranded in the client read ahead buffer.

If a backlog of stranded messages with the previous selection criteria are no longer required, a
configurable purge interval can be set on the client to automatically purge these messages from the
client. The purge interval is one of a group of read ahead tuning options determined by the client. It is
possible to tune these options to meet your requirements.

If a client application is restarted, messages in the read ahead buffer can be lost. Conversely, a message
that has been moved to a read ahead buffer could then be deleted from the underlying queue; this does
not result in it being removed from the buffer, so an MQGET call using read ahead can return a message
that no longer exists.

Read ahead is only performed for client bindings. The attribute is ignored for all other bindings.

Developing applications for IBM MQ 759

Read ahead has no effect on triggering. No trigger message is generated when a message is read ahead by
the client. Read ahead does not generate accounting and statistics information when it is enabled.

Using read ahead with publish subscribe messaging
When a subscribing application specifies a destination queue to which publications are sent, the
DEFREADA value of the specified queue is used as the default read ahead value.

When a subscribing application requests that IBM MQ manages the destination to which publications are
sent, a managed queue is created as a dynamic queue based upon a predefined model queue. It is the
DEFREADA value of the model queue that is used as the default read ahead value. The default model
queues SYSTEM.DURABLE.PUBLICATIONS.MODEL or SYSTEM.NONDURABLE.PUBLICATIONS.MODEL are
used unless a model queue is defined for this or a parent topic.

Related concepts
“Tuning performance for nonpersistent messages on AIX” on page 762
If you are using AIX V5.3 or later, consider setting your tuning parameter to use full performance for
nonpersistent messages.
Related tasks
“Enabling and disabling read ahead” on page 761
By default read ahead is disabled. You can enable read ahead at queue or application level.
Related reference
“MQGET options and read ahead” on page 760
Not all MQGET options are supported when read ahead is enabled; some options are required to be
consistent between MQGET calls.

MQGET options and read ahead
Not all MQGET options are supported when read ahead is enabled; some options are required to be
consistent between MQGET calls.

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if certain
conditions are met. These conditions include:

• The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
• The client channel must be using TCP/IP protocol
• The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

The following table indicates which options are supported for use with read ahead and whether they can
be altered between MQGET calls.

Table 120. MQGET options and read ahead

MQGET values and
options

Permitted when read ahead is
enabled and can be altered between
MQGET calls 5

Permitted when read ahead is
enabled but cannot be altered
between MQGET calls 1

MQGET Options that are not
permitted when read ahead is
enabled 2

MQGET MQMD
values

MsgId 3
CorrelId 3

Encoding
CodedCharSetId

760 Developing Applications for IBM MQ

Table 120. MQGET options and read ahead (continued)

MQGET values and
options

Permitted when read ahead is
enabled and can be altered between
MQGET calls 5

Permitted when read ahead is
enabled but cannot be altered
between MQGET calls 1

MQGET Options that are not
permitted when read ahead is
enabled 2

MQGET MQGMO
Options

• MQGMO_NO_WAIT
• MQGMO_BROWSE_MESSAGE

_UNDER_CURSOR
• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_NEXT
• MQGMO_FAIL_IF_QUIESCING

• MQGMO_SYNCPOINT_IF
_PERSISTENT

• MQGMO_NO_SYNCPOINT
• MQGMO_ACCEPT_TRUNCATED

_MSG
• MQGMO_CONVERT

• MQGMO_SET_SIGNAL
• MQGMO_SYNCPOINT
• MQGMO_MARK_SKIP _BACKOUT
• MQGMO_MSG_UNDER _CURSOR

4

• MQGMO_LOCK
• MQGMO_UNLOCK
• MQGMO_LOGICAL_ORDER
• MQGMO_COMPLETE_MSG
• MQGMO_ALL_MSGS_AVAILABLE
• MQGMO_ALL_SEGMENTS_

AVAILABLE

Notes:

1. If these options are altered between MQGET calls, an MQRC_OPTIONS_CHANGED reason code is
returned.

2. If these options are specified on the first MQGET call then read ahead is disabled. If these options are
specified on a subsequent MQGET call a reason code MQRC_OPTIONS_ERROR is returned.

3. If a client application alters MsgId and CorrelId values between MQGET calls, messages with the
previous values might already have been sent to the client and will remain in the client read ahead
buffer until consumed (or automatically purged).

4. MQGMO_MSG_UNDER_CURSOR is not possible with read ahead. Read ahead is disabled when both
MQOO_BROWSE and one of the MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE options are
specified when opening the queue.

5. When read ahead is enabled, the first MQGET determines whether messages are to be browsed
or got from a queue. If the client application then uses MQGET with changed options, such as
attempting to browse following an initial get, or attempting to get following an initial browse, an
MQRC_OPTIONS_CHANGED reason code is returned.

If a client alters its selection criteria between MQGET calls, messages being stored in the read ahead
buffer that match the initial selection criteria are not consumed by the client application, and remain
stranded in the client read ahead buffer. In situations where the client read ahead buffer contains many
stranded messages, the benefits associated with read ahead are lost and a separate request to the server
is required for each message consumed. To determine whether read ahead is being used efficiently you
can use the connection status parameter, READA.

Read ahead can be inhibited when requested by an application due to incompatible options specified on
the first MQGET call. In this situation the connection status shows read ahead as being inhibited.

If, because of these restrictions on MQGET, you decide that a client application design is not suited
to read ahead, specify the MQOPEN option MQOO_READ_AHEAD_NO. Alternatively set the default read
ahead value of the queue being opened altered to either NO or DISABLED.

Enabling and disabling read ahead
By default read ahead is disabled. You can enable read ahead at queue or application level.

About this task
When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if certain
conditions are met. These conditions include:

• The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.

Developing applications for IBM MQ 761

• The client channel must be using TCP/IP protocol
• The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

To enable read ahead:

• To configure read ahead at the queue level set the queue attribute, DEFREADA to YES.
• To configure read ahead at the application level:

– to use read ahead wherever possible use the MQOO_READ_AHEAD option on the MQOPEN function
call. It is not possible for the client application to use read ahead if the DEFREADA queue attribute
has been set to DISABLED.

– to use read ahead only when read ahead is enabled on a queue, use the
MQOO_READ_AHEAD_AS_Q_DEF option on the MQOPEN function call.

If a client application design is not suited to read ahead you can disable it:

• at the queue level by setting the queue attribute, DEFREADA to NO if you do not want read ahead to
be used unless it is requested by a client application, or DISABLED if you do not want read ahead to be
used regardless of whether read ahead is required by a client application.

• at the application level by using the MQOO_NO_READ_AHEAD option on the MQOPEN function call.

Two MQCLOSE options allow you to configure what happens to any messages that are being stored in the
read ahead buffer if the queue is closed.

• Use MQCO_IMMEDIATE to discard messages in the read ahead buffer.
• Use MQCO_QUIESCE to ensure that messages in the read ahead buffer are consumed by the application

before the queue is closed. When MQCLOSE with the MQCO_QUIESCE is issued and there are messages
remaining on the read ahead buffer, MQRC_READ_AHEAD_MSGS returns with MQCC_WARNING.

Tuning performance for nonpersistent messages on AIX
If you are using AIX V5.3 or later, consider setting your tuning parameter to use full performance for
nonpersistent messages.

To set the tuning parameter so that it takes effect immediately, issue the following command as a root
user:

/usr/sbin/ioo -o j2_nPagesPerWriteBehindCluster=0

To set the tuning parameter so that it takes effect immediately and persists over reboots, issue the
following command as a root user:

/usr/sbin/ioo -p -o j2_nPagesPerWriteBehindCluster=0

Normally, nonpersistent messages are kept only in memory, but there are circumstances where AIX
can schedule nonpersistent messages to be written to disk. Messages scheduled to be written to disk
are unavailable for MQGET until the disk write completes. The suggested tuning command varies this
threshold; instead of scheduling messages to be written to disk when 16 kilobytes of data are queued,
the write-to-disk occurs only when real storage on the machine becomes close to full. This is a global
alteration and might affect other software components.

On AIX, when using multithreaded applications and especially when running on machines with multiple
processors, we strongly recommend setting AIXTHREAD_SCOPE=S in the mqm ID .profile or setting
AIXTHREAD_SCOPE=S in the environment before starting the application, for better performance and
more solid scheduling. For example:

export AIXTHREAD_SCOPE=S

Setting AIXTHREAD_SCOPE=S means that user threads created with default attributes are placed into
system-wide contention scope. If a user thread is created with system-wide contention scope, it is bound

762 Developing Applications for IBM MQ

to a kernel thread and it is scheduled by the kernel. The underlying kernel thread is not shared with any
other user thread.

File descriptors
When running a multi-threaded process such as the agent process, you might reach the soft limit for file
descriptors. This limit gives you the IBM MQ reason code MQRC_UNEXPECTED_ERROR (2195) and, if
there are enough file descriptors, an IBM MQ FFST™ file.

To avoid this problem, you can increase the process limit for the number of file descriptors. To do so,
alter the nofiles attribute in /etc/security/limits to 10,000 for the mqm user ID or in the default
stanza.

System Resource Limits
Set the system resource limit for data segment and stack segment to unlimited using the following
commands in a command prompt:

ulimit -d unlimited
ulimit -s unlimited

Type of index
The queue attribute, IndexType, specifies the type of index that the queue manager maintains to
increase the speed of MQGET operations on the queue.

Note: Supported only on IBM MQ for z/OS.

You have five options:

Value Description

NONE No index is maintained. Use this when retrieving messages sequentially (see “Priority”
on page 747).

GROUPID An index of group identifiers is maintained. You must use this index type if you want
logical ordering of message groups (see “Logical and physical ordering” on page 747).

MSGID An index of message identifiers is maintained. Use this when retrieving messages using
the MsgId field as a selection criterion on the MQGET call (see “Getting a particular
message” on page 758).

MSGTOKEN An index of message tokens is maintained.

CORRELID An index of correlation identifiers is maintained. Use this when retrieving messages
using the CorrelId field as a selection criterion on the MQGET call (see “Getting a
particular message” on page 758).

Note:

1. If you are indexing using the MSGID option or CORRELID option, set the relative MsgId or CorrelId
parameters in the MQMD. It is not beneficial to set both.

2. Browse uses the index mechanism to find a message if a queue matches all the following conditions:

• It has index type MSGID, CORRELID, or GROUPID
• It is browsed with the same type of id
• It has messages of only one priority

3. Avoid queues (indexed by MsgId or CorrelId) containing thousands of messages because this
affects restart time. (This does not apply to nonpersistent messages as they are deleted at restart.)

4. MSGTOKEN is used to define queues managed by the z/OS workload manager.

Developing applications for IBM MQ 763

For a full description of the IndexType attribute, see IndexType. For further information on the
IndexType attribute, see “Design and performance considerations for z/OS applications” on page 62.

Handling messages greater than 4 MB long
Messages can be too large for the application, queue, or queue manager. Depending on the environment,
IBM MQ provides a number of ways of dealing with messages that are longer than 4 MB.

You can increase the MaxMsgLength attribute up to 100 MB on all IBM MQ systems at V6 or later. Set this
value to reflect the size of the messages using the queue. On IBM MQ for Multiplatforms, you can also:

1. Use segmented messages. (Messages can be segmented by either the application or the queue
manager.)

2. Use reference messages.

Each of these approaches is described in the remainder of this section.

Increasing the maximum message length
The MaxMsgLength queue manager attribute defines the maximum length of a message that can be
handled by a queue manager. Similarly, the MaxMsgLength queue attribute is the maximum length of a
message that can be handled by a queue. The default maximum message length supported depends on
the environment in which you are working.

On IBM MQ for Multiplatforms, you can set both these attributes manually. You can set the
queue manager attribute value in the range 32768 bytes through 100 MB.

Attention: On IBM MQ for z/OS the MaxMsgLength queue manager attribute is hard
coded at 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications and channels to
ensure that the changes take effect.

When these changes are made, the message length must be less than or equal to both the queue and
the queue manager MaxMsgLength attributes. However, existing messages might be longer than either
attribute.

If the message is too big for the queue, MQRC_MSG_TOO_BIG_FOR_Q is returned. Similarly, if the
message is too big for the queue manager, MQRC_MSG_TOO_BIG_FOR_Q_MGR is returned.

This method of handling large messages is easy and convenient. However, consider the following factors
before using it:

• Uniformity among queue managers is reduced. The maximum size of message data is determined by the
MaxMsgLength for each queue (including transmission queues) on which the message will be put. This
value is often defaulted to the queue manager's MaxMsgLength, especially for transmission queues.
This makes it difficult to predict whether a message is too large when it is to travel to a remote queue
manager.

• Usage of system resources is increased. For example, applications need larger buffers, and on some
platforms, there might be increased usage of shared storage. Queue storage should be affected only if
actually required for larger messages.

• Channel batching is affected. A large message still counts as just one message towards the batch count
but needs longer to transmit, thereby increasing response times for other messages.

Message segmentation
Use this information to learn about segmenting messages. This feature is not supported on IBM MQ for
z/OS or by applications using IBM MQ classes for JMS.

Increasing the maximum message length as explained in topic “Increasing the maximum message
length” on page 764 has some negative implications. Also, it can still result in the message being too

764 Developing Applications for IBM MQ

large for the queue or queue manager. In these cases, you can segment a message. For information about
segments, see “Message groups” on page 42.

The next sections look at common uses for segmenting messages. For putting and destructively getting, it
is assumed that the MQPUT or MQGET calls always operate within a unit of work. Always consider using
this technique to reduce the possibility of incomplete groups being present in the network. Single-phase
commit by the queue manager is assumed, but other coordination techniques are equally valid.

Also, in the getting applications, it is assumed that if multiple servers are processing the same
queue, each server executes similar code, so that one server never fails to find a message or
segment that it expects to be there (because it had specified MQGMO_ALL_MSGS_AVAILABLE or
MQGMO_ALL_SEGMENTS_AVAILABLE earlier).

Attention: When using publish/subscribe to send messages to a topic (or putting messages to a
topic alias) message grouping and segmentation is not permitted.

Because subscriptions can be created and removed independently of publication activity, it cannot
be assured that a subscriber would receive a full message group or all segments of a message; see
RC2417: MQRC_MSG_NOT_ALLOWED_IN_GROUP.

Putting and getting a segmented message that spans units of work
You can put and get a segmented message that spans a unit of work in a similar way to “Putting and
getting a group that spans units of work” on page 755.

You cannot, however, put or get segmented messages in a global unit of work.

Segmentation and reassembly by queue manager
This is the simplest scenario, in which one application puts a message to be retrieved by another. The
message might be large: not too large for either the putting or the getting application to handle in a single
buffer, but too large for the queue manager or a queue on which the message is to be put.

The only changes necessary for these applications are for the putting application to authorize the queue
manager to perform segmentation if necessary:

 PMO.Options = (existing options)
 MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED
 MD.Version = MQMD_VERSION_2
 memcpy(MD.GroupId, MQGI_NONE, MQ_GROUP_ID_LENGTH)
MQPUT

and for the getting application to ask the queue manager to reassemble the message if it has been
segmented:

 GMO.Options = MQGMO_COMPLETE_MSG | (existing options)
 MQGET

In this simplest scenario, the application must reset the GroupId field to MQGI_NONE before the MQPUT
call, so that the queue manager can generate a unique group identifier for each message. If this is not
done, unrelated messages can have the same group identifier, which might subsequently lead to incorrect
processing.

The application buffer must be large enough to contain the reassembled message (unless you include the
MQGMO_ACCEPT_TRUNCATED_MSG option).

If the MAXMSGLEN attribute of a queue is to be modified to accommodate message segmentation, then
consider:

• The minimum message segment supported on a local queue is 16 bytes.
• For a transmission queue, MAXMSGLEN must also include the space required for headers. Consider

using a value at least 4000 bytes larger than the maximum expected length of user data in any message
segment that could be put on a transmission queue.

Developing applications for IBM MQ 765

If data conversion is necessary, the getting application might have to do it by specifying
MQGMO_CONVERT. This should be straightforward because the data conversion exit is presented with
the complete message. Do not attempt to convert data in a sender channel if the message is segmented,
and the format of the data is such that the data-conversion exit cannot carry out the conversion on
incomplete data.

Application segmentation
Application segmentation is used when queue manager segmentation is not adequate, or when
applications require data conversion with specific segment boundaries.

Application segmentation is used for two main reasons:

1. Queue manager segmentation alone is not adequate because the message is too large to be handled in
a single buffer by the applications.

2. Data conversion must be performed by sender channels, and the format is such that the putting
application must stipulate where the segment boundaries are to be in order for conversion of an
individual segment to be possible.

However, if data conversion is not an issue, or if the getting application always uses
MQGMO_COMPLETE_MSG, queue manager segmentation can also be allowed by specifying
MQMF_SEGMENTATION_ALLOWED. In our example, the application segments the message into four
segments:

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_LAST_SEGMENT

 MQCMIT

If you do not use MQPMO_LOGICAL_ORDER, the application must set the Offset and the length of each
segment. In this case, logical state is not maintained automatically.

The getting application cannot guarantee to have a buffer large enough to hold any reassembled message.
It must therefore be prepared to process segments individually.

For messages that are segmented, this application does not want to start processing one segment until
all the segments that constitute the logical message are present. MQGMO_ALL_SEGMENTS_AVAILABLE is
therefore specified for the first segment. If you specify MQGMO_LOGICAL_ORDER and there is a current
logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored.

After the first segment of a logical message has been retrieved, use MQGMO_LOGICAL_ORDER to ensure
that the remaining segments of the logical message are retrieved in order.

No consideration is given to messages within different groups. If such messages occur, they are
processed in the order in which the first segment of each message occurs on the queue.

 GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
 | MQGMO_ALL_SEGMENTS_AVAILABLE | MQGMO_WAIT
 do while (SegmentStatus == MQSS_SEGMENT)
 MQGET
 /* Process each remaining segment of the logical message */
 ...

 MQCMIT

Application segmentation of logical messages
The messages must be maintained in logical order in a group, and some or all of them might be so large
that they require application segmentation.

In our example, a group of four logical messages is to be put. All but the third message are large, and
require segmentation, which is performed by the putting application:

766 Developing Applications for IBM MQ

 PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

 MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
 MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_LAST_SEGMENT

 MQCMIT

In the getting application, MQGMO_ALL_MSGS_AVAILABLE is specified on the first MQGET. This means
that no messages or segments of a group are retrieved until the entire group is available. When the first
physical message of a group has been retrieved, MQGMO_LOGICAL_ORDER is used to ensure that the
segments and messages of the group are retrieved in order:

 GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
 | MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT

 do while ((GroupStatus != MQGS_LAST_MSG_IN_GROUP) ||
 (SegmentStatus != MQGS_LAST_SEGMENT))
 MQGET
 /* Process a segment or complete logical message. Use the GroupStatus
 and SegmentStatus information to see what has been returned */
 ...

 MQCMIT

Note: If you specify MQGMO_LOGICAL_ORDER and there is a current group,
MQGMO_ALL_MSGS_AVAILABLE is ignored.

Reference messages and large object transfers
Reference messages allow a large object to be transferred from one node to another without storing the
object on IBM MQ queues at either the source or the destination nodes. This is of particular benefit when
the data exists in another form, for example, for mail applications.

To enable this transfer method, you specify a message exit at both ends of a channel. For information
about how to do this, see “Channel message exit programs” on page 943.

IBM MQ defines the format of a reference message header (MQRMH). See MQRMH for a description of
this. This is recognized with a defined format name and might be followed by actual data.

To initiate transfer of a large object, an application can put a message consisting of a reference message
header with no data following it. As this message leaves the node, the message exit retrieves the object
in an appropriate way and appends it to the reference message. It then returns the message (now larger
than before) to the sending Message Channel Agent for transmission to the receiving MCA.

Another message exit is configured at the receiving MCA. When this message exit receives one of these
messages, it creates the object using the object data that was appended and passes on the reference
message without it. The reference message can now be received by an application and this application
knows that the object (or at least the portion of it represented by this reference message) has been
created at this node.

The maximum amount of object data that a sending message exit can append to the reference message
is limited by the negotiated maximum message length for the channel. The exit can return only a single
message to the MCA for each message that it is passed, so the putting application can put several
messages to cause one object to be transferred. Each message must identify the logical length and offset
of the object that is to be appended to it. However, in cases where it is not possible to know the total
size of the object or the maximum size allowed by the channel, design the sending message exit so

Developing applications for IBM MQ 767

that the putting application just puts a single message, and the exit itself puts the next message on the
transmission queue when it has appended as much data as it can to the message it has been passed.

Before using this method of dealing with large messages, consider the following points:

• The MCA and the message exit run under an IBM MQ user ID. The message exit (and therefore, the
user ID) needs to access the object to either retrieve it at the sending end or create it at the receiving
end; this might only be feasible in cases where the object is universally accessible. This raises a security
issue.

• If the reference message with bulk data appended to it must travel through several queue managers
before reaching its destination, the bulk data is present on IBM MQ queues at the intervening nodes.
However, no special support or exits need to be provided in these cases.

• Designing your message exit is made difficult if rerouting or dead-letter queuing is allowed. In these
cases, the portions of the object might arrive out of order.

• When a reference message arrives at its destination, the receiving message exit creates the object.
However, this is not synchronized with the MCA's unit of work, so if the batch is backed out, another
reference message containing this same portion of the object will arrive in a later batch, and the
message exit might attempt to re-create the same portion of the object. If the object is, for example,
a series of database updates, this might be unacceptable. If so, the message exit must keep a log of
which updates have been applied; this might require the use of an IBM MQ queue.

• Depending on the characteristics of the object type, the message exits and applications might need to
cooperate in maintaining use counts, so that the object can be deleted when it is no longer needed. An
instance identifier might also be required; a field is provided for this in the reference message header
(see MQRMH).

• If a reference message is put as a distribution list, the object must be retrievable for each resulting
distribution list or individual destination at that node. You might need to maintain use counts. Also
consider the possibility that a node might be the final node for some of the destinations in the list, but
an intermediate node for others.

• Bulk data is not typically converted. This is because conversion takes place before the message exit is
invoked. For this reason, conversion must not be requested on the originating sender channel. If the
reference message passes through an intermediate node, the bulk data is converted when sent from the
intermediate node, if requested.

• Reference messages cannot be segmented.

Using the MQRMH and MQMD structures
See MQRMH and MQMD for a description of the fields in the reference message header and the message
descriptor.

In the MQMD structure, set the Format field to MQFMT_REF_MSG_HEADER. The MQHREF format, when
requested on MQGET, is converted automatically by IBM MQ along with any bulk data that follows.

Here is an example of the use of the DataLogicalOffset and DataLogicalLength fields of the
MQRMH:

A putting application might put a reference message with:

• No physical data
• DataLogicalLength = 0 (this message represents the entire object)
• DataLogicalOffset = 0.

Assuming that the object is 70 000 bytes long, the sending message exit sends the first 40 000 bytes
along the channel in a reference message containing:

• 40 000 bytes of physical data following the MQRMH
• DataLogicalLength = 40000
• DataLogicalOffset = 0 (from the start of the object).

768 Developing Applications for IBM MQ

It then places another message on the transmission queue containing:

• No physical data
• DataLogicalLength = 0 (to the end of the object). You could specify a value of 30 000 here.
• DataLogicalOffset = 40000 (starting from this point).

When this message exit is seen by the sending message exit, the remaining 30,000 bytes of data are
appended, and the fields are set to:

• 30,000 bytes of physical data following the MQRMH
• DataLogicalLength = 30000
• DataLogicalOffset = 40000 (starting from this point).

The MQRMHF_LAST flag is also set.

For a description of the sample programs provided for the use of reference messages, see “Using the
sample programs on Multiplatforms” on page 1018.

Waiting for messages
If you want a program to wait until a message arrives on a queue, specify the MQGMO_WAIT option in the
Options field of the MQGMO structure.

Use the WaitInterval field of the MQGMO structure to specify the maximum time (in milliseconds) that
you want an MQGET call to wait for a message to arrive on a queue.

If the message does not arrive within this time, the MQGET call completes with the
MQRC_NO_MSG_AVAILABLE reason code.

You can specify an unlimited wait interval using the constant MQWI_UNLIMITED in the WaitInterval
field. However, events outside your control could cause your program to wait for a long time, so use this
constant with caution. IMS applications must not specify an unlimited wait interval because this would
prevent the IMS system terminating. (When IMS terminates, it requires all dependent regions to end.)
Instead, IMS applications can specify a finite wait interval; then, if the call completes without retrieving a
message after that interval, issue another MQGET call with the wait option.

Note: If more than one program is waiting on the same shared queue to remove a message, only one
program is activated by a message arriving. However, if more than one program is waiting to browse a
message, all the programs can be activated. For more information, see the description of the Options
field of the MQGMO structure in MQGMO.

If the state of the queue or the queue manager changes before the wait interval expires, the following
actions occur:

• If the queue manager enters the quiescing state, and you used the MQGMO_FAIL_IF_QUIESCING
option, the wait is canceled and the MQGET call completes with the MQRC_Q_MGR_QUIESCING reason
code. Without this option, the call remains waiting.

• On z/OS, if the connection (for a CICS or IMS application) enters the quiescing state, and
you used the MQGMO_FAIL_IF_QUIESCING option, the wait is canceled and the MQGET call completes
with the MQRC_CONN_QUIESCING reason code. Without this option, the call remains waiting.

• If the queue manager is forced to stop, or is canceled, the MQGET call completes with either the
MQRC_Q_MGR_STOPPING or the MQRC_CONNECTION_BROKEN reason code.

• If the attributes of the queue (or a queue to which the queue name resolves) are changed so
that get requests are now inhibited, the wait is canceled and the MQGET call completes with the
MQRC_GET_INHIBITED reason code.

• If the attributes of the queue (or a queue to which the queue name resolves) are changed in such a
way that the FORCE option is required, the wait is canceled and the MQGET call completes with the
MQRC_OBJECT_CHANGED reason code.

Developing applications for IBM MQ 769

If you want your application to wait on more than one queue, use the signal facility of IBM
MQ for z/OS (see “Signaling” on page 770). For more information about the circumstances in which
these actions occur, see MQGMO.

Signaling
Signaling is supported only on IBM MQ for z/OS.

Signaling is an option on the MQGET call to allow the operating system to notify (or signal) a program
when an expected message arrives on a queue. This is like the get with wait function described in topic
“Waiting for messages” on page 769 because it allows your program to continue with other work while
waiting for the signal. However, if you use signaling, you can free the application thread and rely on the
operating system to notify the program when a message arrives.

To set a signal
To set a signal, do the following in the MQGMO structure that you use on your MQGET call:

1. Set the MQGMO_SET_SIGNAL option in the Options field.
2. Set the maximum life of the signal in the WaitInterval field. This sets the length of time (in

milliseconds) for which you want IBM MQ to monitor the queue. Use the MQWI_UNLIMITED value to
specify an unlimited life.

Note: IMS applications must not specify an unlimited wait interval because this would prevent the IMS
system from terminating. (When IMS terminates, it requires all dependent regions to end.) Instead,
IMS applications can examine the state of the ECB at regular intervals (see step 3). A program can
have signals set on several queue handles at the same time:

3. Specify the address of the Event Control Block (ECB) in the Signal1 field. This notifies you of the
result of your signal. The ECB storage must remain available until the queue is closed.

Note: You cannot use the MQGMO_SET_SIGNAL option with the MQGMO_WAIT option.

When the message arrives
When a suitable message arrives, a completion code is returned to the ECB.

The completion code describes one of the following:

• The message that you set the signal for has arrived on the queue. The message is not reserved for the
program that requested a signal, so the program must issue an MQGET call again to get the message.

Note: Another application could get the message in the time between your receiving the signal and
issuing another MQGET call.

• The wait interval you set has expired and the message you set the signal for did not arrive on the queue.
IBM MQ has canceled the signal.

• The signal has been canceled. This happens, for example, if the queue manager stops, or the attribute of
the queue is changed, so that MQGET calls are no longer allowed.

When a suitable message is already on the queue, the MQGET call completes in the same way as an
MQGET call without signaling. Also, if an error is detected immediately, the call completes and the return
codes are set.

When the call is accepted and no message is immediately available, control is returned to the program
so that it can continue with other work. None of the output fields in the message descriptor are
set, but the CompCode parameter is set to MQCC_WARNING and the Reason parameter is set to
MQRC_SIGNAL_REQUEST_ACCEPTED.

For information about what IBM MQ can return to your application when it makes an MQGET call using
signaling, see MQGET.

If the program has no other work to do while it is waiting for the ECB to be posted, it can wait for the ECB
using:

770 Developing Applications for IBM MQ

• For a CICS Transaction Server for z/OS program, the EXEC CICS WAIT EXTERNAL command
• For batch and IMS programs, the z/OS WAIT macro

If the state of the queue or the queue manager changes while the signal is set (that is, the ECB has not yet
been posted), the following actions occur:

• If the queue manager enters the quiescing state, and you used the MQGMO_FAIL_IF_QUIESCING
option, the signal is canceled. The ECB is posted with the MQEC_Q_MGR_QUIESCING completion code.
Without this option, the signal remains set.

• If the queue manager is forced to stop, or is canceled, the signal is canceled. The signal is delivered with
the MQEC_WAIT_CANCELED completion code.

• If the attributes of the queue (or a queue to which the queue name resolves) are changed
so that get requests are now inhibited, the signal is canceled. The signal is delivered with the
MQEC_WAIT_CANCELED completion code.

Note:

1. If more than one program has set a signal on the same shared queue to remove a message, only one
program is activated by a message arriving. However, if more than one program is waiting to browse a
message, all the programs can be activated. The rules that the queue manager follows when deciding
which applications to activate are the same as those for waiting applications: for more information, see
the description of the Options field of the MQGMO structure in MQGMO - Get-message options.

2. If there is more than one MQGET call waiting for the same message, with a mixture of wait and
signal options, each waiting call is considered equally. For more information, see the description of the
Options field of the MQGMO structure in MQGMO - Get-message options.

3. Under some conditions, it is possible both for an MQGET call to retrieve a message and for a signal
(resulting from the arrival of the same message) to be delivered. This means that when your program
issues another MQGET call (because the signal was delivered), there could be no message available.
Design your program to test for this situation.

For information about how to set a signal, see the description of the MQGMO_SET_SIGNAL option and the
Signal1 field in Signal1.

Skipping backout
You can prevent an application program from entering an MQGET-error-backout loop by specifying the
MQGMO_MARK_SKIP_BACKOUT option on the MQGET call.

As part of a unit of work, an application program can issue one or more MQGET calls to get messages from
a queue. If the application program detects an error, it can back out the unit of work. This restores all the
resources updated during that unit of work to the state that they were in before the unit of work started,
and reinstates the messages retrieved by the MQGET calls.

Once reinstated, these messages are available to subsequent MQGET calls issued by the application
program. In many cases, this does not cause a problem for the application program. However, in cases
where the error leading to the backout cannot be circumvented, having the message reinstated on the
queue can cause the application program to enter an MQGET-error-backout loop.

To avoid this problem, specify the MQGMO_MARK_SKIP_BACKOUT option on the MQGET call. This marks
the MQGET request as not being involved in application-initiated backout; that is, it must not be backed
out. Use of this option means that when a backout occurs, updates to other resources are backed out as
required, but the marked message is treated as if it had been retrieved under a new unit of work.

The application program must issue an IBM MQ call either to commit the new unit of work, or to back out
the new unit of work. For example, the program can perform exception handling, such as informing the
originator that the message has been discarded, and commit the unit of work so removing the message
from the queue, If the new unit of work is backed out (for any reason) the message is reinstated on the
queue.

Within a unit of work, there can be only one MQGET request marked as skipping backout; however,
there can be several other messages that are not marked as skipping backout. Once a message

Developing applications for IBM MQ 771

has been marked as skipping backout, any further MQGET calls within the unit of work that specify
MQGMO_MARK_SKIP_BACKOUT fail with reason code MQRC_SECOND_MARK_NOT_ALLOWED.

Note:

1. The marked message skips backout only if the unit of work containing it is terminated by an application
request to back it out. If the unit of work is backed out for any other reason, the message is backed out
onto the queue in the same way that it would be if it was not marked to skip backout.

2. Skip backout is not supported within Db2 stored procedures participating in units of work controlled
by RRS. For example, an MQGET call with the MQGMO_MARK_SKIP_BACKOUT option will fail with the
reason code MQRC_OPTION_ENVIRONMENT_ERROR.

Figure 63 on page 772 illustrates a typical sequence of steps that an application program might contain
when an MQGET request is required to skip backout.

Figure 63. Skipping backout using MQGMO_MARK_SKIP_BACKOUT

The steps in Figure 63 on page 772 are:
Step 1

Initial processing occurs within the transaction, including an MQOPEN call to open the queue
(specifying one of the MQOO_INPUT_* options in order to get messages from the queue in Step
2).

Step 2
MQGET is called, with MQGMO_SYNCPOINT and MQGMO_MARK_SKIP_BACKOUT.
MQGMO_SYNCPOINT is required because MQGET must be within a unit of work for

772 Developing Applications for IBM MQ

MQGMO_MARK_SKIP_BACKOUT to be effective. In Figure 63 on page 772 this unit of work is referred
to as UOW1.

Step 3
Other resource updates are made as part of UOW1. These can include further MQGET calls (issued
without MQGMO_MARK_SKIP_BACKOUT).

Step 4
All updates from Steps 2 and 3 complete as required. The application program commits the updates
and UOW1 ends. The message retrieved in Step 2 is removed from the queue.

Step 5
Some of the updates from Steps 2 and 3 do not complete as required. The application program
requests that the updates made during these steps are backed out.

Step 6
The updates made in Step 3 are backed out.

Step 7
The MQGET request made in Step 2 skips backout and becomes part of a new unit of work, UOW2.

Step 8
UOW2 performs exception handling in response to UOW1 being backed out. (For example, an MQPUT
call to another queue, indicating that a problem occurred that caused UOW1 to be backed out.)

Step 9
Step 8 completes as required, the application program commits the activity, and UOW2 ends. As the
MQGET request is part of UOW2 (see Step 7), this commit causes the message to be removed from
the queue.

Step 10
Step 8 does not complete as required and the application program backs out UOW2. Because the get
message request is part of UOW2 (see Step 7), it too is backed out and reinstated on the queue. It is
now available to further MQGET calls issued by this or another application program (in the same way
as any other message on the queue).

Application data conversion
When necessary, MCAs convert the message descriptor and header data into the required character set
and encoding. Either end of the link (that is, the local MCA or the remote MCA) can do the conversion.

When an application puts messages on a queue, the local queue manager adds control information to
the message descriptors to facilitate the control of the messages when they are processed by queue
managers and MCAs. Depending on the environment, the message header data fields are created in the
character set and encoding of the local system.

When you move messages between systems, you sometimes need to convert the application data into
the character set and encoding required by the receiving system. This can be done either from within
application programs on the receiving system or by the MCAs on the sending system. If data conversion is
supported on the receiving system, use application programs to convert the application data, rather than
depending on the conversion having already occurred at the sending system.

Application data is converted within an application program when you specify the MQGMO_CONVERT
option in the Options field of the MQGMO structure passed to an MQGET call, and when all the following
statements are true:

• The CodedCharSetId or Encoding fields set in the MQMD structure associated with the message on
the queue differ from the CodedCharSetId or Encoding fields set in the MQMD structure specified on
the MQGET call.

• The Format field in the MQMD structure associated with the message is not MQFMT_NONE.
• The BufferLength specified on the MQGET call is not zero.
• The message data length is not zero.
• The queue manager supports conversion between the CodedCharSetId and Encoding fields
specified in the MQMD structures associated with the message and the MQGET call. See

Developing applications for IBM MQ 773

CodedCharSetId and Encoding for details of the coded character set identifiers and machine encodings
supported.

• The queue manager supports conversion of the message format. If the Format field of the MQMD
structure associated with the message is one of the built-in formats, the queue manager can convert the
message. If the Format is not one of the built-in formats, you need to write a data-conversion exit to
convert the message.

If the sending MCA is to convert the data, specify the CONVERT(YES) keyword on the definition of each
sender or server channel for which conversion is required. If the data conversion fails, the message is
sent to the DLQ at the sending queue manager and the Feedback field of the MQDLH structure indicates
the reason. If the message cannot be put on the DLQ, the channel closes and the unconverted message
remains on the transmission queue. Data conversion within applications rather than at sending MCAs
avoids this situation.

As a rule, data in the message that is described as character data by the built-in format or data-
conversion exit is converted from the coded character set used by the message to that requested, and
numeric fields are converted to the encoding requested.

For further details of the conversion processing conventions used when converting the built-in formats,
and for information about writing your own data-conversion exits, see “Writing data-conversion exits”
on page 947. See also National languages and Machine encodings for information about the language
support tables and about the supported machine encodings.

Conversion of EBCDIC newline characters
If you need to ensure that the data that you send from an EBCDIC platform to an ASCII one is identical to
the data that you receive back again, you must control the conversion of EBCDIC newline characters.

You can do this using a platform-dependent switch that forces IBM MQ to use the unmodified conversion
tables, but you must be aware of the inconsistent behavior that might result.

The problem arises because the EBCDIC newline character is not converted consistently across platforms
or conversion tables. As a result, if the data is displayed on an ASCII platform, the formatting might be
incorrect. This would make it difficult, for example, to administer an IBM i system remotely from an ASCII
platform using RUNMQSC.

See Data conversion for further information about converting EBCDIC-format data to ASCII format.

Browsing messages on a queue
Use this information to find out about browsing messages on a queue using the MQGET call.

To use the MQGET call to browse the messages on a queue:

1. Call MQOPEN to open the queue for browsing, specifying the MQOO_BROWSE option.
2. To browse the first message on the queue, call MQGET with the MQGMO_BROWSE_FIRST option. To

find the message that you want, call MQGET repeatedly with the MQGMO_BROWSE_NEXT option to
step through many messages.

You must set the MsgId and CorrelId fields of the MQMD structure to null after each MQGET call in
order to see all messages.

3. Call MQCLOSE to close the queue.

The browse cursor
When you open (MQOPEN) a queue for browsing, the call establishes a browse cursor for use with MQGET
calls that use one of the browse options. You can think of the browse cursor as a logical pointer that is
positioned before the first message on the queue.

You can have more than one browse cursor active (from a single program) by issuing several MQOPEN
requests for the same queue.

When you call MQGET for browsing, use one of the following options in your MQGMO structure:

774 Developing Applications for IBM MQ

MQGMO_BROWSE_FIRST
Gets a copy of the first message that satisfies the conditions specified in your MQMD structure.

MQGMO_BROWSE_NEXT
Gets a copy of the next message that satisfies the conditions specified in your MQMD structure.

MQGMO_BROWSE_MSG_UNDER_CURSOR
Gets a copy of the message currently pointed to by the cursor, that is, the one that was last retrieved
using either the MQGMO_BROWSE_FIRST or the MQGMO_BROWSE_NEXT option.

In all cases, the message remains on the queue.

When you open a queue, the browse cursor is positioned logically just before the first message on
the queue. This means that if you make your MQGET call immediately after your MQOPEN call, you
can use the MQGMO_BROWSE_NEXT option to browse the first message; you do not have to use the
MQGMO_BROWSE_FIRST option.

The order in which messages are copied from the queue is determined by the MsgDeliverySequence
attribute of the queue. (For more information, see “The order in which messages are retrieved from a
queue” on page 746.)

• “Queues in FIFO (first in, first out) sequence” on page 775
• “Queues in priority sequence” on page 775
• “Uncommitted messages” on page 775
• “Change to queue sequence” on page 776

• “Using the queue index” on page 776

Queues in FIFO (first in, first out) sequence
The first message in a queue in this sequence is the message that has been on the queue the longest.

Use MQGMO_BROWSE_NEXT to read the messages sequentially in the queue. You will see any messages
put to the queue while you are browsing, as a queue in this sequence has messages placed at the end.
When the cursor recognizes that it has reached the end of the queue, the browse cursor stays where
it is and returns with MQRC_NO_MSG_AVAILABLE. You can then either leave it there waiting for further
messages or reset it to the beginning of the queue with a MQGMO_BROWSE_FIRST call.

Queues in priority sequence
The first message in a queue in this sequence is the message that has been on the queue the longest and
that has the highest priority at the time that the MQOPEN call is issued.

Use MQGMO_BROWSE_NEXT to read the messages in the queue.

The browse cursor points to the next message, working from the priority of the first message to finish with
the message at the lowest priority. It browses any messages put to the queue during this time as long as
they are of priority equal to, or lower than, the message identified by the current browse cursor.

Any messages put to the queue of higher priority can be browsed only by:

• Opening the queue for browse again, at which point a new browse cursor is established
• Using the MQGMO_BROWSE_FIRST option

Uncommitted messages
An uncommitted message is never visible to a browse; the browse cursor skips past it.

Messages within a unit-of-work cannot be browsed until the unit-of-work is committed. Messages do
not change their position on the queue when committed, so skipped, uncommitted messages will not
be seen, even when they are committed, unless you use the MQGMO_BROWSE_FIRST option and work
though the queue again.

Developing applications for IBM MQ 775

Change to queue sequence
If the message delivery sequence is changed from priority to FIFO while there are messages on the
queue, the order of the messages that are already queued is not changed. Messages added to the queue
later, take the default priority of the queue.

Using the queue index

On IBM MQ for z/OS, when you browse an indexed queue that contains only messages of a single priority
(either persistent or nonpersistent or both), the queue manager uses the index to browse when certain
forms of browse are used.

Any of the following forms of browse are used when an indexed queue contains only messages of single
priority:

1. If the queue is indexed by MSGID, browse requests that pass a MSGID in the MQMD structure are
processed using the index to find the target message.

2. If the queue is indexed by CORRELID, browse requests that pass a CORRELID in the MQMD structure
are processed using the index to find the target message.

3. If the queue is indexed by GROUPID, browse requests that pass a GROUPID in the MQMD structure are
processed using the index to find the target message.

If the browse request does not pass a MSGID, CORRELID, or GROUPID in the MQMD structure, the queue
is indexed, and a message is returned, the index entry for the message must be found, and information
within it used to update the browse cursor. If you use a wide selection of index values, this does not add
significant extra processing to the browse request.

Browsing messages when the message length is unknown

To browse a message when you do not know the size of the message, and you do not want
to use the MsgId, CorrelId, or GroupId fields to locate the message, you can use the
MQGMO_BROWSE_MSG_UNDER_CURSOR option:

1. Issue an MQGET with:

• Either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option
• The MQGMO_ACCEPT_TRUNCATED_MSG option
• Buffer length zero

Note: If another program is likely to get the same message, consider using the MQGMO_LOCK option
as well. MQRC_TRUNCATED_MSG_ACCEPTED should be returned.

2. Use the returned DataLength to allocate the storage needed.
3. Issue an MQGET with the MQGMO_BROWSE_MSG_UNDER_CURSOR.

The message pointed to is the last one that was retrieved; the browse cursor will not have moved. You can
choose either to lock the message using the MQGMO_LOCK option, or to unlock a locked message using
MQGMO_UNLOCK option.

The call fails if no MQGET with either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT options
has been issued successfully since the queue was opened.

Removing a message that you have browsed
You can remove from the queue a message that you have already browsed provided that you have opened
the queue for removing messages as well as for browsing. (You must specify one of the MQOO_INPUT_*
options, as well as the MQOO_BROWSE option, on your MQOPEN call.)

To remove the message, call MQGET again, but in the Options field of the MQGMO structure, specify
MQGMO_MSG_UNDER_CURSOR. In this case, the MQGET call ignores the MsgId, CorrelId, and
GroupId fields of the MQMD structure.

776 Developing Applications for IBM MQ

In the time between your browsing and removal steps, another program might have removed messages
from the queue, including the message under your browse cursor. In this case, your MQGET call returns a
reason code to say that the message is not available.

Browsing messages in logical order

“Logical and physical ordering” on page 747 explains the difference between the logical and physical
order of messages on a queue. This distinction is particularly important when browsing a queue, because,
in general, messages are not being deleted and browse operations do not necessarily start at the
beginning of the queue.

If an application browses through the various messages of one group (using logical order), it is important
that logical order should be followed to reach the start of the next group, because the last message of
one group might occur physically after the first message of the next group. The MQGMO_LOGICAL_ORDER
option ensures that logical order is followed when scanning a queue.

Use MQGMO_ALL_MSGS_AVAILABLE (or MQGMO_ALL_SEGMENTS_AVAILABLE) with care for browse
operations. Consider the case of logical messages with MQGMO_ALL_MSGS_AVAILABLE. The effect of
this is that a logical message is available only if all the remaining messages in the group are also present.
If they are not, the message is passed over. This can mean that when the missing messages arrive
subsequently, they are not noticed by a browse-next operation.

For example, if the following logical messages are present,

 Logical message 1 (not last) of group 123
 Logical message 1 (not last) of group 456
 Logical message 2 (last) of group 456

and a browse function is issued with MQGMO_ALL_MSGS_AVAILABLE, the first logical message of group
456 is returned, leaving the browse cursor on this logical message. If the second (last) message of group
123 now arrives:

 Logical message 1 (not last) of group 123
 Logical message 2 (last) of group 123
 Logical message 1 (not last) of group 456 <=== browse cursor
 Logical message 2 (last) of group 456

and the same browse-next function is issued, it is not noticed that group 123 is now complete, because
the first message of this group is before the browse cursor.

In some cases (for example, if messages are retrieved destructively when the group is present
in its entirety), you can use MQGMO_ALL_MSGS_AVAILABLE together with MQGMO_BROWSE_FIRST.
Otherwise, you must repeat the browse scan to take note of newly-arrived messages that
have been missed; just issuing MQGMO_WAIT together with MQGMO_BROWSE_NEXT and
MQGMO_ALL_MSGS_AVAILABLE does not take account of them. (This also happens to higher-priority
messages that might arrive after scanning the messages is complete.)

The next sections look at browsing examples that deal with unsegmented messages; segmented
messages follow similar principles.

Browsing messages in groups
In this example, the application browses through each message on the queue, in logical order.

Messages on the queue might be grouped. For grouped messages, the application does not want to start
processing any group until all the messages within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is
therefore specified for the first message in the group; for subsequent messages in the group, this option is
unnecessary.

MQGMO_WAIT is used in this example. However, although the wait can be satisfied if a new group arrives,
for the reasons in “Browsing messages in logical order” on page 777, it is not satisfied if the browse
cursor has already passed the first logical message in a group, and the remaining messages now arrive.
Nevertheless, waiting for a suitable interval ensures that the application does not constantly loop while
waiting for new messages or segments.

Developing applications for IBM MQ 777

MQGMO_LOGICAL_ORDER is used throughout, to ensure that the scan is in logical order. This
contrasts with the destructive MQGET example, where because each group is being removed,
MQGMO_LOGICAL_ORDER is not used when looking for the first (or only) message in a group.

It is assumed that the application's buffer is always large enough to hold the entire message, whether or
not the message has been segmented. MQGMO_COMPLETE_MSG is therefore specified on each MQGET.

The following gives an example of browsing logical messages in a group:

/* Browse the first message in a group, or a message not in a group */
GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT
MQGET GMO.MatchOptions = MQMO_MATCH_MSG_SEQ_NUMBER, MD.MsgSeqNumber = 1
/* Examine first or only message */
...

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)
 MQGET
 /* Examine each remaining message in the group */
 ...

The group is repeated until MQRC_NO_MSG_AVAILABLE is returned.

Browsing and retrieving destructively
In this example, the application browses each of the logical messages within a group, before deciding
whether to retrieve that group destructively.

The first part of this example is similar to the previous one. However, in this case, having browsed an
entire group, we decide to go back and retrieve it destructively.

As each group is removed in this example, MQGMO_LOGICAL_ORDER is not used when looking for the
first or only message in a group.

The following gives an example of browsing and then retrieving destructively:

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER
 | MQGMO_ALL_MESSAGES_AVAILABE | MQGMO_WAIT
do while (GroupStatus == MQGS_MSG_IN_GROUP)
 MQGET
 /* Examine each remaining message in the group (or as many as
 necessary to decide whether to get it destructively) */
 ...

if (we want to retrieve the group destructively)

 if (GroupStatus == ' ')
 /* We retrieved an ungrouped message */
 GMO.Options = MQGMO_MSG_UNDER_CURSOR | MQGMO_SYNCPOINT
 MQGET GMO.MatchOptions = 0
 /* Process the message */
 ...

 else
 /* We retrieved one or more messages in a group. The browse cursor */
 /* will not normally be still on the first in the group, so we have */
 /* to match on the GroupId and MsgSeqNumber = 1. */
 /* Another way, which works for both grouped and ungrouped messages,*/
 /* would be to remember the MsgId of the first message when it was */
 /* browsed, and match on that. */
 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
 MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID
 | MQMO_MATCH_MSG_SEQ_NUMBER,
 (MQMD.GroupId = value already in the MD)
 MQMD.MsgSeqNumber = 1
 /* Process first or only message */
 ...

 GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
 | MQGMO_LOGICAL_ORDER
 do while (GroupStatus == MQGS_MSG_IN_GROUP)
 MQGET

778 Developing Applications for IBM MQ

 /* Process each remaining message in the group */
...

Avoiding repeated delivery of browsed messages
By using certain open options and get-message options, you can mark messages as having been browsed
so that they are not retrieved again by the current or other cooperating applications. Messages can be
unmarked explicitly or automatically to make them available again for browsing.

If you browse messages on a queue, you might retrieve them in a different order to the order in which
you would retrieve them if you got them destructively. In particular, you can browse the same message
multiple times, which is not possible if it is removed from the queue. To avoid this you can mark messages
as they are browsed, and avoid retrieving marked messages. This is sometimes referred to as browse
with mark. To mark browsed messages, use the get message option MQGMO_MARK_BROWSE_HANDLE,
and to retrieve only messages that are not marked, use MQGMO_UNMARKED_BROWSE_MSG. If you
use the combination of options MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG, and
MQGMO_MARK_BROWSE_HANDLE, and issue repeated MQGETs, you will retrieve each message on the
queue in turn. This prevents repeated delivery of messages even though MQGMO_BROWSE_FIRST is used
to ensure that messages are not skipped. This combination of options can be represented by the single
constant MQGMO_BROWSE_HANDLE. When there are no messages on the queue that have not been
browsed, MQRC_NO_MSG_AVAILABLE is returned.

If multiple applications are browsing the same queue, they can open the queue with the options
MQOO_CO_OP and MQOO_BROWSE. The object handle returned by each MQOPEN is considered to
be part of a cooperating group. Any message returned by an MQGET call specifying the option
MQGMO_MARK_BROWSE_CO_OP is considered to be marked for this cooperating set of handles.

If a message has been marked for some time, it can be automatically unmarked by the queue manager
and made available for browsing again. The queue manager attribute MsgMarkBrowseInterval gives the
time in milliseconds for which a message is to remain marked for the cooperating set of handles. A
MsgMarkBrowseInterval of -1 means that messages are never automatically unmarked.

When the single process or set of cooperative processes marking messages stop, any marked messages
become unmarked.

Examples of cooperative browsing

You might run multiple copies of a dispatcher application to browse messages on a queue and initiate a
consumer based on the content of each message. In each dispatcher, open the queue with MQOO_CO_OP.
This indicates that the dispatchers are cooperating and will be aware of each other's marked messages.
Each dispatcher then makes repeated MQGET calls, specifying the options MQGMO_BROWSE_FIRST,
MQGMO_UNMARKED_BROWSE_MSG , and MQGMO_MARK_BROWSE_CO_OP (you can use the single
constant MQGMO_BROWSE_CO_OP to represent this combination of options). Each dispatcher application
then retrieves only those messages that have not already been marked by other cooperating dispatchers.
The dispatcher initializes a consumer and passes the MsgToken returned by the MQGET to the consumer,
which destructively gets the message from the queue. If the consumer backs out the MQGET of the
message, then the message is available for one of the browsers to re-dispatch, because it is no longer
marked. If the consumer does not do an MQGET on the message, then after the MsgMarkBrowseInterval
has passed, the queue manager unmarks the message for the cooperating set of handles, and it can be
re-dispatched.

Rather than multiple copies of the same dispatcher application, you might have a number of different
dispatcher applications browsing the queue, each suitable for processing a subset of the messages on
the queue. In each dispatcher, open the queue with MQOO_CO_OP. This indicates that the dispatchers are
cooperating and will be aware of each other's marked messages.

• If the order of message processing for a single dispatcher is important, each dispatcher makes repeated
MQGET calls, specifying the options MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG ,
and MQGMO_MARK_BROWSE_HANDLE (or MQGMO_BROWSE_HANDLE). If the browsed message
is suitable for this dispatcher to process, it then makes an MQGET call specifying
MQMO_MATCH_MSG_TOKEN, MQGMO_MARK_BROWSE_CO_OP, and the MsgToken returned by the

Developing applications for IBM MQ 779

previous MQGET call. If the call succeeds, the dispatcher initializes the consumer, passing the
MsgToken to it.

• If the order of message processing is not important and the dispatcher is
expected to process most of the messages it encounters, use the options
MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG , and MQGMO_MARK_BROWSE_CO_OP
(or MQGMO_BROWSE_CO_OP). If the dispatcher browses a message it cannot process,
it unmarks the message by calling MQGET with the option MQMO_MATCH_MSG_TOKEN,
MQGMO_UNMARK_BROWSE_CO_OP, and the MsgToken returned previously.

Some cases where the MQGET call fails
If certain attributes of a queue are changed using the FORCE option on a command between issuing
an MQOPEN and an MQGET call, the MQGET call fails and returns the MQRC_OBJECT_CHANGED reason
code.

The queue manager marks the object handle as being no longer valid. This also happens if the
changes apply to any queue to which the queue name resolves. The attributes that affect the handle
in this way are listed in the description of the MQOPEN call in MQOPEN. If your call returns the
MQRC_OBJECT_CHANGED reason code, close the queue, reopen it, then try to get a message again.

If get operations are inhibited for a queue from which you are attempting to get messages (or any queue
to which the queue name resolves), the MQGET call fails and returns the MQRC_GET_INHIBITED reason
code. This happens even if you are using the MQGET call for browsing. You might be able to get a message
successfully if you attempt the MQGET call at a later time, if the design of the application is such that
other programs change the attributes of queues regularly.

If a dynamic queue (either temporary or permanent) has been deleted, MQGET calls using a previously-
acquired object handle fail and return the MQRC_Q_DELETED reason code.

Writing publish/subscribe applications
Start writing publish/subscribe IBM MQ applications.

For an overview of publish/subscribe concepts, see Publish/subscribe messaging.

See the following topics for information on writing different types of publish/subscribe applications:

• “Writing publisher applications” on page 781
• “Writing subscriber applications” on page 787
• “Publish/subscribe lifecycles” on page 803
• “Publish/subscribe message properties” on page 808
• “Message ordering” on page 809
• “Intercepting publications” on page 810
• “Publishing options” on page 818
• “Subscription options” on page 818

Related concepts
“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.
“Design considerations for IBM MQ applications” on page 47
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Writing a procedural application for queuing” on page 696

780 Developing Applications for IBM MQ

Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 879
What you need to know to write client applications on IBM MQ using a procedural language.
“Building a procedural application” on page 962
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 999
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.
Related tasks
“Using the IBM MQ sample procedural programs” on page 1018
These sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

Writing publisher applications
Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Writing a simple IBM MQ publisher application is just like writing an IBM MQ point to point application
that puts messages to a queue (Table 121 on page 781). The difference is you MQPUT messages to a
topic, not to a queue.

Table 121. Point to point versus publish/subscribe IBM MQ program pattern.

Step Point to point MQ Call Publish MQ Call

Connect to a queue manager MQCONN MQCONN

Open queue MQOPEN

Open topic MQOPEN

Put message(s) MQPUT MQPUT

Close topic MQCLOSE

Close queue MQCLOSE

Disconnect from queue manager MQDISC MQDISC

To make that concrete, there are two examples of applications to publish stock prices. In the first example
(“Example 1: Publisher to a fixed topic” on page 782), that is modeled closely on putting messages to a
queue, the administrator creates a topic definition in a similar way to creating a queue. The programmer
codes MQPUT to write messages to the topic instead of writing them to a queue. In the second example
(“Example 2: Publisher to a variable topic” on page 784), the pattern of interaction of the program with
IBM MQ is similar. The difference is the programmer provides the topic to which the message is written,
rather than the administrator. In practice this typically means that the topic string is content defined, or
provided by another source, such as human input through a browser.

Related concepts
“Writing subscriber applications” on page 787
Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.
Related reference
DEFINE TOPIC
DISPLAYTOPIC

Developing applications for IBM MQ 781

DISPLAYTPSTATUS

Example 1: Publisher to a fixed topic
An IBM MQ program to illustrate publishing to an administratively defined topic.

Note: The compact coding style is intended for readability not production use.

See the output in Figure 65 on page 783

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{
 char topicNameDefault[] = "IBMSTOCKPRICE";
 char publicationDefault[] = "129";
 MQCHAR48 qmName = "";

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
 MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
 MQLONG CompCode = MQCC_OK; /* completion code */
 MQLONG Reason = MQRC_NONE; /* reason code */
 MQOD td = {MQOD_DEFAULT}; /* Object descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
 MQCHAR resTopicStr[151]; /* Returned vale of topic string */
 char * topicName = topicNameDefault;
 char * publication = publicationDefault;
 memset (resTopicStr, 0 , sizeof(resTopicStr));

 switch(argc){ /* replace defaults with args if provided */
 default:
 publication = argv[2];
 case(2):
 topicName = argv[1];
 case(1):
 printf("Optional parameters: TopicObject Publication\n");
 }
 do {
 MQCONN(qmName, &Hconn, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 td.ObjectType = MQOT_TOPIC; /* Object is a topic */
 td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
 strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
 td.ResObjectString.VSPtr = resTopicStr;
 td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;
 MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
 MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode,
&Reason);
 if (CompCode != MQCC_OK) break;
 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQDISC(&Hconn, &CompCode, &Reason);
 } while (0);
 if (CompCode == MQCC_OK)
 printf("Published \"%s\" using topic \"%s\" to topic string \"%s\"\n",
 publication, td.ObjectName, resTopicStr);
 printf("Completion code %d and Return code %d\n", CompCode, Reason);
}

Figure 64. Simple IBM MQ publisher to a fixed topic.

782 Developing Applications for IBM MQ

X:\Publish1\Debug>PublishStock
Optional parameters: TopicObject Publication
Published "129" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

X:\Publish1\Debug>PublishStock IBMSTOCKPRICE 155
Optional parameters: TopicObject Publication
Published "155" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 65. Sample output from first publisher example

The following selected lines of code illustrate aspects of writing a publisher application for IBM MQ.

char topicNameDefault[] = "IBMSTOCKPRICE";
A default topic name is defined in the program. You can override it by providing the name of a different
topic object as the first argument to the program.

MQCHAR resTopicStr[151];
resTopicStr is pointed at by td.ResObjectString.VSPtr and is used by MQOPEN to return
the resolved topic string. Make the length of resTopicStr one larger than the length passed in
td.ResObjectString.VSBufSize to give space for null termination.

memset (resTopicStr, 0, sizeof(resTopicStr));
Initialize resTopicStr to nulls to ensure the resolved topic string returned in an MQCHARV is null
terminated.

td.ObjectType = MQOT_TOPIC
There is a new type of object for publish/subscribe: the topic object.

td.Version = MQOD_VERSION_4;
To use the new type of object, you must use at least version 4 of the object descriptor.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);
The topicName is the name of a topic object, sometimes called an administrative topic object. In
the example the topic object needs to be created beforehand, using IBM MQ Explorer or this MQSC
command,

DEFINE TOPIC(IBMSTOCKPRICE) TOPICSTR(NYSE/IBM/PRICE) REPLACE;

td.ResObjectString.VSPtr = resTopicStr;
The resolved topic string is echoed in the final printf in the program. Set up the MQCHARV
ResObjectString structure for IBM MQ to return the resolved string back to the program.

MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode,
&Reason);

Open the topic for output; just like opening a queue for output.
pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;

You want new subscribers to be able receive the publication, and by specifying MQPMO_RETAIN in
the publisher, when you start a subscriber it receives the latest publication, published before the
subscriber started, as its first matching publication. The alternative is to provide subscribers with
publications published only after the subscriber started. Additionally a subscriber has the option
to decline to receive a retained publication by specifying MQSO_NEW_PUBLICATIONS_ONLY in its
subscription.

MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication,
&CompCode, &Reason);

Add 1 to the length of the string passed to MQPUT to pass the null termination character to IBM MQ as
part of the message buffer.

What does the first example demonstrate? The example imitates as closely as possible the tried and
tested traditional pattern for writing point to point IBM MQ programs. An important feature of the IBM
MQ programming pattern is that the programmer is not concerned where messages are sent. The task of
the programmer is to connect to a queue manager, and pass it the messages that are to be distributed to
recipients. In the point-to-point paradigm, the programmer opens a queue (probably an alias queue) that

Developing applications for IBM MQ 783

the administrator has configured. The alias queue routes messages to a target queue, either on the local
queue manager, or to a remote queue manager. While the messages are waiting to be delivered, they are
stored on queues somewhere between the source and the destination.

In the publish/subscribe pattern, instead of opening a queue, the programmer opens a topic. In our
example, the topic is associated with a topic string by an administrator. The queue manager forwards
the publication, using queues, to local or remote subscribers that have subscriptions that match the
topic string of the publication. If publications are retained the queue manager keeps the latest copy of
the publication, even if it has no subscribers now. The retained publication is available to forward to
future subscribers. The publisher application plays no part in selecting or routing the publication to a
destination; its task is to create and put publications to the topics defined by the administrator.

This fixed topic example is atypical of many publish/subscribe applications: it is static. It requires an
administrator to define the topic strings and change the topics that are published on. Commonly publish/
subscribe applications need to know some or all the topic tree. Perhaps topics change frequently, or
perhaps although the topics do not change much, the number of topic combinations is large and it is too
onerous for an administrator to define a topic node for every topic string that might need to be published
on. Perhaps topic strings are not known in advance of publication; a publisher application might use
information from the publication content to specify a topic string, or it might have information about topic
strings to publish on from another source, such as human input from a browser. To cater for more dynamic
styles of publishing, the next example shows how to create topics dynamically, as part of the publisher
application.

Topics couple publishers and subscribers together. Designing the rules, or architecture, for naming topics,
and organizing them in topic trees is an important step in developing a publish/subscribe solution. Look
carefully at the extent to which organization of the topic tree binds of publisher and subscriber programs
together, and binds them to the content of the topic tree. Ask yourself the question whether changes in
the topic tree affect publisher and subscriber applications, and how you can minimize the effect. Built into
the architecture of the IBM MQ publish/subscribe model is the notion of an administrative topic object
that provides the root part, or root subtree, of a topic. The topic object gives you the option of defining
the root part of the topic tree administratively that simplifies application programming and operations,
and consequently improves maintainability. For example, if you are deploying multiple publish/subscribe
applications that have isolated topic trees, then by administratively defining the root part of the topic
tree, you can guarantee the isolation of topic trees, even if there is no consistency in the topic naming
conventions adopted by the different applications.

In practice, publisher applications cover a spectrum from solely using fixed topics, as in this example, and
variable topics, as in the next. “Example 2: Publisher to a variable topic” on page 784 also demonstrates
combining the use of topics and topic strings.

Related concepts
“Example 2: Publisher to a variable topic” on page 784
A WebSphere MQ program to illustrate publishing to a programmatically defined topic.
“Writing subscriber applications” on page 787
Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.

Example 2: Publisher to a variable topic
A WebSphere MQ program to illustrate publishing to a programmatically defined topic.

Note: The compact coding style is intended for readability not production use.

784 Developing Applications for IBM MQ

See the output in Figure 67 on page 785.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{
 char topicNameDefault[] = "STOCKS";
 char topicStringDefault[] = "IBM/PRICE";
 char publicationDefault[] = "130";
 MQCHAR48 qmName = "";

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
 MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
 MQLONG CompCode = MQCC_OK; /* completion code */
 MQLONG Reason = MQRC_NONE; /* reason code */
 MQOD td = {MQOD_DEFAULT}; /* Object descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
 MQCHAR resTopicStr[151]; /* Returned value of topic string */
 char * topicName = topicNameDefault;
 char * topicString = topicStringDefault;
 char * publication = publicationDefault;
 memset (resTopicStr, 0 , sizeof(resTopicStr));

 switch(argc){ /* Replace defaults with args if provided */
 default:
 publication = argv[3];
 case(3):
 topicString = argv[2];
 case(2):
 if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */
 topicName = argv[1];
 else
 *topicName = '\0';
 case(1):
 printf("Provide parameters: TopicObject TopicString Publication\n");
 }

 printf("Publish \"%s\" to topic \"%-.48s\" and topic string \"%s\"\n", publication, topicName,
topicString);
 do {
 MQCONN(qmName, &Hconn, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 td.ObjectType = MQOT_TOPIC; /* Object is a topic */
 td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
 strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
 td.ObjectString.VSPtr = topicString;
 td.ObjectString.VSLength = (MQLONG)strlen(topicString);
 td.ResObjectString.VSPtr = resTopicStr;
 td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;
 MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
 MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQDISC(&Hconn, &CompCode, &Reason);
 } while (0);
 if (CompCode == MQCC_OK)
 printf("Published \"%s\" to topic string \"%s\"\n", publication, resTopicStr);
 printf("Completion code %d and Return code %d\n", CompCode, Reason);
}

Figure 66. Simple IBM MQ publisher to a variable topic.

X:\Publish2\Debug>PublishStock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

X:\Publish2\Debug>PublishStock / NYSE/IBM/PRICE 131
Provide parameters: TopicObject TopicString Publication
Publish "131" to topic "" and topic string "NYSE/IBM/PRICE"
Published "131" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 67. Sample output from second publisher example

Developing applications for IBM MQ 785

There are a few points to note about this example.
char topicNameDefault[] = "STOCKS";

The default topic name STOCKS defines part of the topic string. You can override this topic name by
providing it as the first argument to the program, or eliminate the use of the topic name by supplying /
as the first parameter.

char topicString[101] = "IBM/PRICE";
IBM/PRICE is the default topic string. You can override this topic string by providing it as the second
argument to the program.
The queue manager combines the topic string provided by the STOCKS topic object, "NYSE", with the
topic string provided by the program "IBM/PRICE" and inserts a "/" between the two topic strings.
The result is the resolved topic string "NYSE/IBM/PRICE". The resulting topic string is the same as
the one defined in the IBMSTOCKPRICE topic object, and has precisely the same effect.
The administrative topic object associated with the resolved topic string is not necessarily the same
topic object as passed to MQOPEN by the publisher. IBM MQ uses the tree implicit in the resolved
topic string to work out which administrative topic object defines the attributes associated with the
publication.
Suppose there are two topic objects A and B, and A defines topic "a", and B defines topic "a/b"
(Figure 68 on page 786). If the publisher program refers to topic object A and provides topic string
"b", resolving the topic to the topic string "a/b", then the publication inherits its properties from
topic object B because the topic matches the topic string "a/b" defined for B.

if (strcmp(argv[1],"/"))
argv[1] is the optionally provided topicName. "/" is invalid as a topic name; here it signifies that
there is no topic name, and the topic string is provided entirely by the program. The output in Figure
67 on page 785 shows the whole topic string being supplied dynamically by the program.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);
For the default case, the optional topicName needs to be created beforehand, using IBM MQ
Explorer or this MQSC command:

DEFINE TOPIC(STOCKS) TOPICSTR(NYSE) REPLACE;

td.ObjectString.VSPtr = topicString;
The topic string is a MQCHARV field in the topic descriptor

Figure 68. Topic object associations

What does the second example demonstrate? Although the code is very similar to the first example -
effectively there are only two lines difference - the result is a significantly different program to the first.
The programmer controls the destinations to which publications are sent. In conjunction with minimal
administrator input used to design subscriber applications, no topics or queues need to be predefined to
route publications from publishers to subscribers.

786 Developing Applications for IBM MQ

In the point-to-point messaging paradigm, queues have to be defined before messages are able to flow.
For publish/subscribe, they do not, although IBM MQ implements publish/subscribe using its underlying
queuing system; the benefits of guaranteed delivery, transactionality and loose coupling associated with
messaging and queuing are inherited by publish/subscribe applications.

A designer has to decide whether publisher, and subscriber, programs are to be aware of the underlying
topic tree or not, and also whether subscriber programs are aware of queuing or not. Study the
subscriber example applications next. They are designed to be used with the publisher examples,
typically publishing and subscribing to NYSE/IBM/PRICE.

Related concepts
“Example 1: Publisher to a fixed topic” on page 782
An IBM MQ program to illustrate publishing to an administratively defined topic.
“Writing subscriber applications” on page 787
Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.

Writing subscriber applications
Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.

In Table 122 on page 787 the three styles of consumer or subscriber are listed, together with the
sequences of IBM MQ function calls that characterize them.

1. The first style, MQ Publication Consumer, is identical to a point to point MQ program that only does
MQGET. The application has no knowledge that it is consuming publications - it is simply reading
messages from a queue. The subscription that causes publications to get routed to the queue is
created administratively using IBM MQ Explorer or a command.

2. The second style is the preferred pattern for most subscriber applications. The subscriber application
creates the subscription, and then gets publications. The queue management is all performed by the
queue manager. This is known as a managed subscriber.

3. In the third style, the subscriber application is responsible for specifying the queue that will be used
to hold publications, opening and closing that queue and issuing subscriptions to fill the queue with
publications. This is known as an unmanaged subscriber.

One way to understand these styles is to study the example C programs listed in Table 122 on page 787
for each of the styles. The examples are designed to be run in conjunction with the publisher example
found in “Writing publisher applications” on page 781.

Table 122. Point to point vs. subscribe IBM MQ program patterns.

Step
MQ message
consumer

“Example 1:
MQ Publication
consumer” on
page 788

“Example 2:
Managed MQ
subscriber” on
page 790

“Example 3:
Unmanaged MQ
subscriber” on
page 795

Connect to a queue
manager

MQCONN MQCONN MQCONN MQCONN

Open queue MQOPEN MQOPEN MQOPEN

Subscribe MQSUB MQSUB

Get message(s) MQGET MQGET MQGET MQGET

Close queue MQCLOSE MQCLOSE (MQCLOSE) MQCLOSE

Close subscription MQCLOSE MQCLOSE

Developing applications for IBM MQ 787

Table 122. Point to point vs. subscribe IBM MQ program patterns. (continued)

Step
MQ message
consumer

“Example 1:
MQ Publication
consumer” on
page 788

“Example 2:
Managed MQ
subscriber” on
page 790

“Example 3:
Unmanaged MQ
subscriber” on
page 795

Disconnect from
queue manager

MQDISC MQDISC MQDISC MQDISC

Using MQCLOSE is always optional, either to release resources, pass MQCLOSE options, or just for
symmetry with MQOPEN. Since you are unlikely to need to specify the MQCLOSE options when the
subscription queue is closed in the Managed MQ subscriber case, and the symmetry argument is not
relevant, the subscription queue is not explicitly closed in Example 2: Managed MQ subscriber.

Another way to understand publish/subscribe application patterns is too look at the interactions between
the different entities involved. Lifeline, or UML sequence diagrams are a good way to study interactions.
Three lifeline examples are described in “Publish/subscribe lifecycles” on page 803.

Example 1: MQ Publication consumer
The MQ Publication consumer is an IBM MQ message consumer that does not subscribe to topics itself.

To create the subscription and publication queue for this example run the following commands, or define
the objects using IBM MQ Explorer.

DEFINE QLOCAL(STOCKTICKER) REPLACE;
DEFINE SUB(IBMSTOCKPRICESUB) DEST(STOCKTICKER) TOPICOBJ(IBMSTOCKPRICE) REPLACE;

The IBMSTOCKPRICESUB subscription references the IBMSTOCK topic object created for the publisher
example and the local queue STOCKTICKER. The topic object IBMSTOCK defines the topic string that is
used in the subscription, NYSE/IBM/PRICE. Note that the topic object and the queue used to receive
publications need to be defined before the subscription is created.

There are a number of valuable facets to the MQ publication consumer pattern:

1. Multiprocessing: sharing out of the work of reading publications. The publications all go onto the
single queue associated with the subscription topic. Multiple consumers can open the queue using
MQOO_INPUT_SHARED.

2. Centrally managed subscriptions. Applications do not construct their own subscription topics or
subscriptions; the administrator is responsible for where publications are sent.

3. Subscription concentration: multiple different subscriptions can be sent to a single queue.
4. Subscription durability: the queue receives all publications whether or not consumers are active.
5. Migration and coexistence: the consumer code works equally well for a point-to-point and a publish/

subscribe scenario.

The subscription creates a relationship between the topic string NYSE/IBM/PRICE and the queue
STOCKTICKER. Publications, including any currently retained publication, are forwarded to STOCKTICKER
from the moment the subscription is created.

An administratively created subscription can be managed or unmanaged. A managed subscription takes
effect as soon as it has been created, just like an unmanaged subscription. Not all the pattern facets are
available to a managed subscription. See “Example 3: Unmanaged MQ subscriber” on page 795

Note: The compact coding style is intended for readability not production use.

788 Developing Applications for IBM MQ

The results are shown in Figure 70 on page 789.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{
MQCHAR publicationBuffer[101];
MQCHAR48 subscriptionQueueDefault = "STOCKTICKER";
MQCHAR48 qmName = ""; /* Use default queue manager */

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQLONG messlen = 0;
MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* Get message options */
char * publication=publicationBuffer;
char * subscriptionQueue = subscriptionQueueDefault;

switch(argc){ /* Replace defaults with args if provided */
default:
subscriptionQueue = argv[1]
case(1):
printf("Optional parameter: subscriptionQueue\n");
}

do {
MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);
MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING , &Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
gmo.WaitInterval = 10000;
printf("Waiting %d seconds for publications from %s\n", gmo.WaitInterval/1000,
subscriptionQueue);
do {
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
memset(publication, 0, sizeof(publicationBuffer));
MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication, &messlen,
&CompCode, &Reason);
if (Reason == MQRC_NONE)
printf("Received publication \"%s\"\n", publication);
}
while (CompCode == MQCC_OK);
if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);
} while (0);
printf("Completion code %d and Return code %d\n", CompCode, Reason);
}

Figure 69. MQ publication consumer.

X:\Subscribe1\Debug>Subscribe1
Optional parameter: subscriptionQueue
Waiting 10 seconds for publications from STOCKTICKER
Received publication "129"
Completion code 0 and Return code 0

Figure 70. Output from MQ publication consumer

There are a couple of standard IBM MQ C language programming tips to be aware of:

Developing applications for IBM MQ 789

memset(publication, 0, sizeof(publicationBuffer));
Ensure the message has a trailing null for easy formatting using printf. The publisher
example includes the trailing null in the message buffer passed to MQPUT by adding 1 to
strlen(publication). Setting MQCHAR buffers to null is good programming style for IBM MQ C
programs that use the buffers to store strings, ensuring a null follows an array of characters that does
not completely fill the buffer.

MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication,
&messlen, &CompCode, &Reason);

Reserve one null at the end of the message buffer to ensure the returned message has trailing null
in case if (messlen == strlen(publication)); is true. This tip complements the preceding
one, and ensures that there is at least one null in publicationBuffer that is not overwritten by the
contents of publication.

Related concepts
“Example 2: Managed MQ subscriber” on page 790
The managed MQ subscriber is the preferred pattern for most subscriber applications. A managed
subscription is one where IBM MQ handles the subscription and does the registering and de-registering
for you. The example requires no administrative definition of queues, topics or subscriptions.
“Example 3: Unmanaged MQ subscriber” on page 795
The unmanaged subscriber is an important class of subscriber application. With it, you combine the
benefits of publish/subscribe with control of queuing and consumption of publications. An unmanaged
subscription is where the application is responsible. for specifying the queue where the subscriptions are
stored. The example demonstrates different ways of combining subscriptions and queues.
“Writing publisher applications” on page 781
Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Example 2: Managed MQ subscriber
The managed MQ subscriber is the preferred pattern for most subscriber applications. A managed
subscription is one where IBM MQ handles the subscription and does the registering and de-registering
for you. The example requires no administrative definition of queues, topics or subscriptions.

This simplest kind of managed subscriber typically uses a non-durable subscription. The example
focuses on a non-durable subscription. The subscription lasts only as long as the lifetime of the
subscription handle from MQSUB. Any publications that match the topic string during the lifetime of
the subscription are sent to the subscription queue (and possibly a retained publication if the flag
MQSO_NEW_PUBLICATIONS_ONLY is not set or defaulted, an earlier publication matching the topic string
was retained, and the publication was persistent or the queue manager has not terminated, since the
publication was created).

You can also use a durable subscription with this pattern. Typically if a managed durable subscription
is used it is done for reliability reasons, rather than to establish a subscription that, without any errors
occurring, would outlive the subscriber. For more information about different life cycles associated with
managed, unmanaged, durable and non-durable subscriptions see the related topics section.

Durable subscriptions are often associated with persistent publications, and non-durable subscriptions
with non-persistent publications, but there is no necessary relationship between subscription durability
and publication persistence. All four combinations of persistence and durability are possible.

For the managed non-durable case considered, the queue manager creates a subscription queue that is
purged and deleted when the queue is closed. The publications are removed from the queue when the
non-durable subscription is closed.

The valuable facets of the managed non-durable pattern exemplified by this code are as follows:

1. On demand subscription: the subscription topic string is dynamic. It is provided by the application
when it runs.

2. Self managing queue: the subscription queue is self defining and managing.

790 Developing Applications for IBM MQ

3. Self managing subscription lifecycle: non-durable subscriptions only exist for the duration of the
subscriber application.

• If you define a durable managed subscription, then it results in a permanent subscription queue
and publications continue to be stored on it with no subscriber programs being active. The
queue manager deletes the queue (and clears any unretrieved publications from it) only after the
application or administrator has chosen to delete the subscription. The subscription can be deleted
using an administrative command, or by closing the subscription with the MQCO_REMOVE_SUB
option.

• Consider setting SubExpiry for durable subscriptions so that publications cease to be sent to the
queue and the subscriber can consume any remaining publications before removing the subscription
and causing the queue manager to delete the queue and any remaining publications on it.

4. Flexible topic string deployment: Subscription topic management is simplified by defining the root
part of the subscription using an administratively defined topic. The root part of the topic tree is
then hidden from the application. By hiding the root part an application can be deployed without the
application inadvertently creating a topic tree that overlaps with another topic tree created by another
instance, or another application.

5. Administered topics: by using a topic string in which the first part matches an administratively defined
topic object, publications are managed according to the attributes of the topic object.

• For example, if the first part of the topic string matches the topic string associated with a clustered
topic object, then the subscription can receive publications from other members of the cluster

• The selective matching of administratively defined topic objects and programmatically defined
subscriptions enables you to combine the benefits of both. The administrator provides attributes
for topics, and the programmer dynamically defines subtopics without being concerned about the
management of topics.

• It is the resultant topic string which is used to match the topic object that provides the attributes
associated with the topic, and not necessarily the topic object named in sd.Objectname, although
they typically turn out to be one and the same. See “Example 2: Publisher to a variable topic” on
page 784.

By making the subscription durable in the example, publications continue to be sent to the subscription
queue after the subscriber has closed the subscription with the MQCO_KEEP_SUB option . The queue
continues to receive publications when the subscriber is not active. You can override this behavior by
creating the subscription with the MQSO_PUBLICATIONS_ON_REQUEST option and using MQSUBRQ to
request the retained publication.

The subscription can be resumed later by opening the subscription with the MQCO_RESUME option.

You can use the queue handle, Hobj, returned by MQSUB in a number of ways. The queue handle is used
in the example to inquire on the name of the subscription queue. Managed queues are opened using the
default model queues SYSTEM.NDURABLE.MODEL.QUEUE or SYSTEM.DURABLE.MODEL.QUEUE. You can
override the defaults by providing your own durable and non-durable model queues on a topic by topic
basis as properties of the topic object associated with the subscription.

Regardless of the attributes inherited from the model queues, you cannot reuse a managed queue handle
to create an additional subscription. Nor can you obtain another handle for the managed queue by
opening the managed queue a second time using the returned queue name. The queue behaves as if it
has been opened for exclusive input .

Unmanaged queues are more flexible than managed queues. You can, for example share unmanaged
queues, or define multiple subscriptions on the one queue. The next example, , demonstrates how to
combine subscriptions with an unmanaged subscription queue.

Note: The compact coding style is intended for readability not production use.

Developing applications for IBM MQ 791

The results are shown in Figure 73 on page 793.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)
{
 MQCHAR48 topicNameDefault = "STOCKS";
 char topicStringDefault[] = "IBM/PRICE";
 MQCHAR48 qmName = ""; /* Use default queue manager */
 MQCHAR48 qName = ""; /* Allocate to query queue name */
 char publicationBuffer[101]; /* Allocate to receive messages */
 char resTopicStrBuffer[151]; /* Allocate to resolve topic string */

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
 MQHOBJ Hobj = MQHO_NONE; /* publication queue handle */
 MQHOBJ Hsub = MQSO_NONE; /* subscription handle */
 MQLONG CompCode = MQCC_OK; /* completion code */
 MQLONG Reason = MQRC_NONE; /* reason code */
 MQLONG messlen = 0;
 MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

 char * topicName = topicNameDefault;
 char * topicString = topicStringDefault;
 char * publication = publicationBuffer;
 char * resTopicStr = resTopicStrBuffer;
 memset(resTopicStr, 0, sizeof(resTopicStrBuffer));

 switch(argc){ /* Replace defaults with args if provided */
 default:
 topicString = argv[2];
 case(2):
 if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */
 topicName = argv[1];
 else
 *topicName = '\0';
 case(1):
 printf("Optional parameters: topicName, topicString\nValues \"%s\" \"%s\"\n",
 topicName, topicString);
}

Figure 71. Managed MQ subscriber - part 1: declarations and parameter handling.

There are some additional comments to make about the declarations in this example.
MQHOBJ Hobj = MQHO_NONE;

You cannot explicitly open a non-durable managed subscription queue to receive publications, but
you do need to allocate storage for the object handle the queue manager returns when it opens the
queue for you. It is important to initialize the handle to MQHO_OBJECT. This indicates to the queue
manager that it needs to return a queue handle to the subscription queue.

MQSD sd = {MQSD_DEFAULT};
The new subscription descriptor, used in MQSUB.

MQCHAR48 qName;
Although the example doesn't require knowledge of the subscription queue, the example does inquire
the name of the subscription queue - the MQINQ binding is a little awkward in the C language, so you
might find this part of the example useful to study.

792 Developing Applications for IBM MQ

 do {
 MQCONN(qmName, &Hconn, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 strncpy(sd.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
 sd.ObjectString.VSPtr = topicString;
 sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE | MQSO_FAIL_IF_QUIESCING ;
 sd.ResObjectString.VSPtr = resTopicStr;
 sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
 MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
 gmo.WaitInterval = 10000;
 inquireQname(Hconn, Hobj, qName);
 printf("Waiting %d seconds for publications matching \"%s\" from \"%-0.48s\"\n",
 gmo.WaitInterval/1000, resTopicStr, qName);
 do {
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;
 memset(publicationBuffer, 0, sizeof(publicationBuffer));
 MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer-1),
 publication, &messlen, &CompCode, &Reason);
 if (Reason == MQRC_NONE)
 printf("Received publication \"%s\"\n", publication);
 }
 while (CompCode == MQCC_OK);
 if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
 MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQDISC(&Hconn, &CompCode, &Reason);
 } while (0);
 printf("Completion code %d and Return code %d\n", CompCode, Reason);
 return;
}
void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {
#define _selectors 1
#define _intAttrs 1

 MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */
 MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */
 MQLONG CompCode, Reason;
 MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName,
 &CompCode, &Reason);
 if (CompCode != MQCC_OK) {
 printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);
 strcpy(qName, "unknown queue");
 }
 return;
}

Figure 72. Managed MQ subscriber - part 2: code body.

W:\Subscribe2\Debug>solution2
Optional parameters: topicName, topicString
Values "STOCKS" "IBM/PRICE"
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from
"SYSTEM.MANAGED.NDURABLE.48A0AC7403300020 "
Received publication "150"
Completion code 0 and Return code 0

W:\Subscribe2\Debug>solution2 / NYSE/IBM/PRICE
Optional parameters: topicName, topicString
Values "" "NYSE/IBM/PRICE"
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from
"SYSTEM.MANAGED.NDURABLE.48A0AC7403310020 "
Received publication "150"
Completion code 0 and Return code 0

Figure 73. MQ subscriber

There are some additional comments to make about the code in this example.

Developing applications for IBM MQ 793

strncpy(sd.ObjectName, topicName, MQ_Q_NAME_LENGTH);
If topicName is null or blank (default value), the topic name is not used to compute the resolved topic
string.

sd.ObjectString.VSPtr = topicString;
Rather than solely use a predefined topic object, in this example the programmer provides a topic
object and a topic string, that are combined by MQSUB. Notice the topic string is a MQCHARV structure.

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
An alternative to setting the length of a MQCHARV field.

sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE |
MQSO_FAIL_IF_QUIESCING;

After defining the topic string, the sd.Options flags need the most careful attention. There are many
options, the example specifies only the most commonly used ones. The other options use the default
values.

1. As the subscription is non-durable, that is, it has a lifetime of the open subscription in the
application, set the MQSO_CREATE flag . You can also set the (default) MQSO_NON_DURABLE flag for
readability.

2. Complementing MQSO_CREATE is MQSO_RESUME. Both flags can be set together; the queue
manager either creates a new subscription or resumes an existing subscription, whichever is
appropriate. However, if you do specify MQSO_RESUME you must also initialize the MQCHARV
structure for sd.SubName, even if there is no subscription to resume. Failure to initialize SubName
results in a return code of 2440: MQRC_SUB_NAME_ERROR from MQSUB.

Note: MQSO_RESUME is always ignored for a non-durable managed subscription: but specifying it
without initializing the MQCHARV structure for sd.SubName does cause the error.

3. In addition there is a third flag affecting how the subscription is opened, MQSO_ALTER. Given
the correct permissions, the properties of a resumed subscription are changed to match other
attributes specified in MQSUB.

Note: At least one of the MQSO_CREATE, MQSO_RESUME and MQSO_ALTER flags must be specified.
See Options (MQLONG). There are examples of using all three flags in “Example 3: Unmanaged MQ
subscriber” on page 795.

4. Set MQSO_MANAGED for the queue manager to manage the subscription for you automatically.

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
Optionally, omit setting the length of MQCHARV for null terminated strings and use the null terminator
flag instead.

sd.ResObjectString.VSPtr = resTopicStr;
The resulting topic string is echoed in first printf in the program. Set up MQCHARV
ResObjectString for IBM MQ to return the resolved string back to the program.

Note: resTopicStringBuffer is initialized to nulls in memset(resTopicStr, 0,
sizeof(resTopicStrBuffer)). Returned topic strings do not end with a trailing null.

sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
Set the buffer size of the sd.ResObjectString to one less than its actual size. This prevents
overwriting the null terminator that is provided, in case the resolved topic string fills the entire buffer.

Note: No error is returned if the topic string is longer than sizeof(resTopicStrBuffer)-1.
Even if VSLength > VSBufSiz the length returned in sd.ResObjectString.VSLength is
the length of the complete string and not necessarily the length of the returned string. Test
sd.ResObjectString.VSLength < sd.ResObjectString.VSBufSiz to confirm the topic
string is complete.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
The MQSUB function creates a subscription. If it is non-durable you are probably not interested in
its name, though you can inspect its status in IBM MQ Explorer. You can provide the sd.SubName
parameter as input, so you know what name to look for; you obviously have to avoid name clashes
with other subscriptions.

794 Developing Applications for IBM MQ

MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);
Closing both the subscription and the subscription queue is optional. In the example the subscription
is closed, but not the queue. The MQCLOSE MQCO_REMOVE_SUB option is the default in this case
anyway as the subscription is non-durable. Using MQCO_KEEP_SUB is an error.

Note: the subscription queue is not closed by MQSUB, and its handle, Hobj, remains valid until the
queue is closed by MQCLOSE or MQDISC. If the application terminates prematurely, the queue and
subscription are cleaned up by the queue manager sometime after application termination.

Related concepts
“Example 1: MQ Publication consumer” on page 788
The MQ Publication consumer is an IBM MQ message consumer that does not subscribe to topics itself.
“Example 3: Unmanaged MQ subscriber” on page 795
The unmanaged subscriber is an important class of subscriber application. With it, you combine the
benefits of publish/subscribe with control of queuing and consumption of publications. An unmanaged
subscription is where the application is responsible. for specifying the queue where the subscriptions are
stored. The example demonstrates different ways of combining subscriptions and queues.
“Writing publisher applications” on page 781
Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Example 3: Unmanaged MQ subscriber
The unmanaged subscriber is an important class of subscriber application. With it, you combine the
benefits of publish/subscribe with control of queuing and consumption of publications. An unmanaged
subscription is where the application is responsible. for specifying the queue where the subscriptions are
stored. The example demonstrates different ways of combining subscriptions and queues.

The unmanaged pattern is more commonly associated with durable subscriptions than non-durable.
Typically the lifecycle of a subscription created by an unmanaged subscriber is independent of the
lifecycle of the subscribing application itself. By making the subscription durable the subscription receives
publications even when no subscribing application is active.

You can create durable managed subscriptions to achieve the same result, but some applications require
more flexibility and control over queues and messages than is possible with a managed subscription. For
a durable managed subscription, the queue manager creates a permanent queue for the publications that
match the subscription topic. It deletes the queue and associated publications when the subscription is
deleted.

Typically durable managed subscriptions are used if the lifecycle of the application and the subscription is
essentially the same, but hard to guarantee. By making the subscription durable, and having the publisher
create persistent publications, there are no lost messages should the queue manager or subscriber
terminate prematurely and need to be recovered.

For non-JMS applications, or JMS applications that are not using a shared subscription, the queue
manager will implicitly open the durable managed subscription queue for a subscriber in such a way
that shared processing of the queue is not possible. In addition, unless your application is using JMS
shared subscriptions, it is not possible to create more than one subscription for each managed queue
and you might find the queues harder to manage because you have less control over the names of the
queues. For these reasons, consider whether the unmanaged MQ subscriber is a better fit for applications
requiring durable subscriptions than the managed MQ subscriber.

The code in Figure 76 on page 800 demonstrates an unmanaged durable subscription pattern. For
illustration the code also creates unmanaged, non-durable subscriptions. This example illustrates the
following pattern facets:

• On demand subscriptions: the subscription topic strings are dynamic. They are provided by the
application when it runs.

• Simplified subscription topic management: subscription topic management is simplified by defining the
root part of the subscription topic string using an administratively defined topic. This hides the root part

Developing applications for IBM MQ 795

of the topic tree from the application. By hiding the root part a subscriber can be deployed to different
topic trees.

• Flexible subscription management: you can define a subscription either administratively, or create it on-
demand in a subscriber program. There is no difference between administratively and programmatically
created subscriptions, except an attribute that shows how the subscription was created. There is
a third type of subscription that is created automatically by the queue manager for distribution of
subscriptions. All subscriptions are displayed in the IBM MQ Explorer.

• Flexible association of subscriptions with queues: a predefined local queue is associated with a
subscription by the MQSUB function. There are different ways to use MQSUB to associate subscriptions
with queues:

– Associate a subscription with a queue having no existing subscriptions, MQSO_CREATE + (Hobj
from MQOPEN).

– Associate a new subscription with a queue having existing subscriptions, MQSO_CREATE + (Hobj
from MQOPEN).

– Move a existing subscription to a different queue, MQSO_ALTER + (Hobj from MQOPEN).
– Resume an existing subscription associated with an existing queue, MQSO_RESUME + (Hobj
= MQHO_NONE), or MQSO_RESUME + (Hobj = from MQOPEN of queue with existing
subscription).

– By combining MQSO_CREATE | MQSO_RESUME | MQSO_ALTER in different combinations, you can
cater for different input states of the subscription and the queue without having to code multiple
versions of MQSUB with different sd.Options values.

– Alternatively, by coding a specific choice of MQSO_CREATE | MQSO_RESUME | MQSO_ALTER the
queue manager returns an error (Table 123 on page 797) if the states of the subscription and
queue provided as input to MQSUB are inconsistent with the value of sd.Options. Figure 82 on page
803 shows the results of issuing MQSUB for Subscription X with different individual settings of the
sd.Options flag, and passing it three different object handles.

Explore different inputs to the example program in Figure 75 on page 799 to become familiar with
these different kinds of errors. One common error, RC = 2440, that is not included in the cases listed
in the table, is a subscription name error. it is commonly caused by passing a null or invalid subscription
name with MQSO_RESUME or MQSO_ALTER.

• Multiprocessing: You can share among many consumers the work of reading publications. The
publications all go onto the single queue associated with the subscription topic. Consumers have a
choice of opening the queue directly using MQOPEN or resuming the subscription using MQSUB.

• Subscription concentration: multiple subscriptions can be created on the same queue. Be cautious
with this capability as it can lead to overlapping subscriptions, and receiving the same publication
multiple times. The MQSO_GROUP_SUB option eliminates duplicate publications caused by overlapping
subscriptions.

• Subscriber and consumer separation: As well as the three consumer models illustrated in the examples,
another model is to separate the consumer from the subscriber. It is a variation of the unmanaged
MQ Subscriber, but rather than issue the MQOPEN and MQSUB in the same program, one program
subscribes to publications, and another program consumes them. For example, the subscriber might be
part of a publish/subscribe cluster and the consumer attached to a queue manager outside the queue
manager cluster. The consumer receives publications through standard distributed queuing by defining
the subscription queue as a remote queue definition.

Understanding the behavior of MQSO_CREATE | MQSO_RESUME | MQSO_ALTER is important, especially
if you plan to simplify your code by using combinations of these options. Study the table Table 123
on page 797 that shows the results of passing different queue handles to MQSUB, and the results of
running the example program shown in Figure 77 on page 801 to Figure 82 on page 803.

The scenario used to construct the table has one subscription X and two queues, A and B. The
subscription name parameter sd.SubName is set to X, the name of a subscription attached to queue
A. Queue B has no subscription attached to it.

796 Developing Applications for IBM MQ

In Table 123 on page 797, MQSUB is passed subscription X and the queue handle to queue A. The results
from subscription options are as follows:

• MQSO_CREATE fails because the queue handle corresponds to the queue A which already has a
subscription to X. Contrast this behavior to the successful call. That call succeeds because queue B
does not have a subscription to X attached to it.

• MQSO_RESUME succeeds because the queue handle corresponds to the queue A which already has a
subscription to X. In contrast, the call fails where the subscription X does not exist on queue A.

• MQSO_ALTER behaves in a similar way to MQSO_RESUME with respect to opening the subscription and
queue. However if the attributes contained within the subscription descriptor passed to MQSUB differ
from the attributes of the subscription, MQSO_RESUME fails, whereas MQSO_ALTER succeeds as long as
the program instance has permission to alter the attributes. Note that you can never change the topic
string in a subscription; but rather than return an error, MQSUB ignores the topic name and topic string
values in the subscription descriptor and uses the values in the existing subscription.

Next, look at Table 123 on page 797 where MQSUB is passed subscription X and the queue handle to
queue B. The results from subscription options are as follows:

• MQSO_CREATE succeeds and creates subscription X on queue B because this is a new subscription on
queue B.

• MQSO_RESUME fails. MQSUB looks for subscription X on queue B and does not find it, but rather than
returning RC = 2428 - subscription X does not exist, it returns RC = 2019 - Subscription queue does not
match queue object handle. The behavior of the third option MQSO_ALTER suggests the reason for this
unexpected error. MQSUB expects the queue handle to point to a queue with a subscription. It checks
this first before checking whether the subscription named in sd.SubName exists.

• MQSO_ALTER succeeds, and moves the subscription from queue A to queue B.

A case that is not shown in the table is if the subscription name of the subscription on queue A does not
match the subscription name in sd.SubName. That call fails with a RC = 2428 - subscription X does not
exist on Queue A.

Table 123. Errors from MQSUB with different queue handles and subscription combinations

Queue handles

Queue A
Subscription X

Queue B
No subscription

Queue A
No subscription

Queue B
No subscription

Hobj for Queue A
passed to
MQSUB

MQSO_CREATE
RC = 2432 - Subscription X already
exists on Queue A

MQSO_RESUME
Resumes subscription X on Queue A

MQSO_ALTER
Resumes subscription X on Queue A
and makes permitted alterations

MQSO_CREATE
Creates subscription X on Queue A

MQSO_RESUME
RC = 2428 - Subscription X does not
exist on Queue A

MQSO_ALTER
RC = 2428 - Subscription X does not
exist on Queue A

Hobj for Queue B
passed to
MQSUB

MQSO_CREATE
Creates new subscription X on Queue
B

MQSO_RESUME
RC = 2019 - Subscription queue does
not match queue object handle

MQSO_ALTER
Move subscription X from Queue A to
Queue B

MQSO_CREATE
Creates new subscription X on Queue
B

MQSO_RESUME
RC = 2428 - subscription X does not
exist on Queue B

MQSO_ALTER
RC = 2428 - subscription X does not
exist on Queue B

Developing applications for IBM MQ 797

Table 123. Errors from MQSUB with different queue handles and subscription combinations (continued)

Queue handles

Queue A
Subscription X

Queue B
No subscription

Queue A
No subscription

Queue B
No subscription

MQHO_NONE
passed to
MQSUB

MQSO_CREATE
RC = 2019 - Bad object handle:
set MQSO_MANAGED flag to create a
managed subscription and create a
managed queue

MQSO_RESUME
Resumes subscription X on Queue A
and returns Hobj to Queue A

MQSO_ALTER
Resumes subscription X on Queue A,
returns Hobj to Queue A and makes
permitted alterations

MQSO_CREATE
RC = 2019 - Bad object handle:
set MQSO_MANAGED flag to create a
managed subscription and create a
managed queue

MQSO_RESUME
RC = 2428 - No subscription X

MQSO_ALTER
RC = 2019 - Bad object handle: No
queue A or B

Note: The compact coding style is intended for readability not production use.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)
{
 MQCHAR48 topicNameDefault = "STOCKS";
 char topicStringDefault[] = "IBM/PRICE";
 char subscriptionNameDefault[] = "IBMSTOCKPRICESUB";
 char subscriptionQueueDefault[] = "STOCKTICKER";
 char publicationBuffer[101]; /* Allocate to receive messages */
 char resTopicStrBuffer[151]; /* Allocate to resolve topic string */
 MQCHAR48 qmName = ""; /* Default queue manager */
 MQCHAR48 qName = ""; /* Allocate storage for MQINQ */

 MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
 MQHOBJ Hobj = MQHO_NONE; /* subscription queue handle */
 MQHOBJ Hsub = MQSO_NONE; /* subscription handle */
 MQLONG CompCode = MQCC_OK; /* completion code */
 MQLONG Reason = MQRC_NONE; /* reason code */
 MQLONG messlen = 0;
 MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */
 MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 MQLONG sdOptions = MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE |
MQSO_FAIL_IF_QUIESCING;

 char * topicName = topicNameDefault;
 char * topicString = topicStringDefault;
 char * subscriptionName = subscriptionNameDefault;
 char * subscriptionQueue = subscriptionQueueDefault;
 char * publication = publicationBuffer;
 char * resTopicStr = resTopicStrBuffer;
 memset(resTopicStrBuffer, 0, sizeof(resTopicStrBuffer));

Figure 74. Unmanaged MQ subscriber - part 1: declarations.

798 Developing Applications for IBM MQ

 switch(argc){ /* Replace defaults with args if provided */
default:
 switch((argv[5][0])) {
case('A'): sdOptions = MQSO_ALTER | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;
 break;
case('C'): sdOptions = MQSO_CREATE | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;
 break;
case('R'): sdOptions = MQSO_RESUME | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;
 break;
default: ;
 }
case(5):
 if (strcmp(argv[4],"/")) /* "/" invalid = No subscription */
 subscriptionQueue = argv[4];
 else {
 *subscriptionQueue = '\0';
 if (argc > 5) {
 if (argv[5][0] == 'C') {
 sdOptions = sdOptions + MQSO_MANAGED;
 }
 }
 else
 sdOptions = sdOptions + MQSO_MANAGED;
 }

case(4):
 if (strcmp(argv[3],"/")) /* "/" invalid = No subscription */
 subscriptionName = argv[3];
 else {
 *subscriptionName = '\0';
 sdOptions = sdOptions - MQSO_DURABLE;
 }
case(3):
 if (strcmp(argv[2],"/")) /* "/" invalid = No topic string */
 topicString = argv[2];
 else
 *topicString = '\0';
case(2):
 if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */
 topicName = argv[1];
 else
 *topicName = '\0';
case(1):
 sd.Options = sdOptions;
 printf("Optional parameters: "
 printf("topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|
R(esume)\n");
 printf("Values \"%-.48s\" \"%s\" \"%s\" \"%-.48s\" sd.Options=%d\n",
 topicName, topicString, subscriptionName, subscriptionQueue, sd.Options);
}

Figure 75. Unmanaged MQ subscriber - part 2: parameter handling.

Additional comments about the parameter handling in this example are as follows:
switch((argv[5][0]))

You have the choice of entering A lter | C reate | R esume in parameter 5, to test the effect of
overriding part of the MQSUB option setting used by default in the example. The default setting used by
the example is MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE.

Note: Setting MQSO_ALTER or MQSO_RESUME without setting MQSO_DURABLE is an error, and
sd.SubName must be set and refer to a subscription that can be resumed or altered.

*subscriptionQueue = '\0';
sdOptions = sdOptions + MQSO_MANAGED;

If the default subscription queue, STOCKTICKER is replaced by a null string then as long as
MQSO_CREATE is set, the example sets the MQSO_MANAGED flag and creates a dynamic subscription
queue. If Alter or Resume are set in the fifth parameter the behavior of the example will depend
on the value of subscriptionName.

Developing applications for IBM MQ 799

*subscriptionName = '\0';
sdOptions = sdOptions - MQSO_DURABLE;

If the default subscription, IBMSTOCKPRICESUB, is replaced by a null string then the example
removes the MQSO_DURABLE flag. If you run the example providing the default values for the other
parameters an additional temporary subscription destined to STOCKTICKER is created and receives
duplicate publications. Next time you run the example, without any parameters, you receive just one
publication again.

 do {
 MQCONN(qmName, &Hconn, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 if (strlen(subscriptionQueue)) {
 strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);
 MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING | MQOO_INQUIRE,
 &Hobj, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 }
 strncpy(sd.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
 sd.ObjectString.VSPtr = topicString;
 sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 sd.SubName.VSPtr = subscriptionName;
 sd.SubName.VSLength = MQVS_NULL_TERMINATED;
 sd.ResObjectString.VSPtr = resTopicStr;
 sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
 MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
 gmo.WaitInterval = 10000;
 gmo.MatchOptions = MQMO_MATCH_CORREL_ID;
 memcpy(md.CorrelId, sd.SubCorrelId, MQ_CORREL_ID_LENGTH);
 inquireQname(Hconn, Hobj, qName);
 printf("Waiting %d seconds for publications matching \"%s\" from %-0.48s\n",
 gmo.WaitInterval/1000, resTopicStr, qName);
 do {
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;
 MQGET(Hconn, Hobj, &md, &gmo, sizeof(publication), publication, &messlen,
&CompCode, &Reason);
 if (Reason == MQRC_NONE)
 printf("Received publication \"%s\"\n", publication);
 }
 while (CompCode == MQCC_OK);
 if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
 MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
 if (CompCode != MQCC_OK) break;
 MQDISC(&Hconn, &CompCode, &Reason);
 } while (0);
 printf("Completion code %d and Return code %d\n", CompCode, Reason);
}
void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {
#define _selectors 1
#define _intAttrs 1

 MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */
 MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */
 MQLONG CompCode, Reason;
 MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName,
&CompCode, &Reason);
 if (CompCode != MQCC_OK) {
 printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);
 strncpy(qName, "unknown queue", MQ_Q_NAME_LENGTH);
 }
 return;
}

Figure 76. Unmanaged MQ subscriber - part 3: code body.

Additional comments on the code in this example are as follows:

800 Developing Applications for IBM MQ

if (strlen(subscriptionQueue))
If there is no subscription queue name then the example uses MQHO_NONE as the value of Hobj.

MQOPEN(...);
The subscription queue is opened and the queue handle saved in Hobj.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
The subscription is opened using the Hobj passed from MQOPEN (or MQHO_NONE if there is no
subscription queue name). An unmanaged queue can be resumed without explicitly opening it with an
MQOPEN.

MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);
The subscription is closed using the subscription handle. Depending on whether the subscription is
durable or not, the subscription is closed with an implicit MQCO_KEEP_SUB or MQCO_REMOVE_SUB.
You can close a durable subscription with MQCO_REMOVE_SUB, but you cannot close a non-durable
subscription with MQCO_KEEP_SUB. The action of MQCO_REMOVE_SUB is to remove the subscription
which stops any further publications being sent to the subscription queue.

MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
No special action is taken if the subscription is unmanaged. If the queue is managed and the
subscription closed with either an explicit or implicit MQCO_REMOVE_SUB, then all publications are
purged from the queue and queue deleted at this point.

gmo.MatchOptions = MQMO_MATCH_CORREL_ID;
memcpy(md.CorrelId, sd.SubCorrelId, MQ_CORREL_ID_LENGTH);

Ensure that the messages received are those for our subscription.

Results from the example illustrate aspects of publish/subscribe:

In Figure 77 on page 801 the example starts by publishing 130 on the NYSE/IBM/PRICE topic.

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 77. Publish 130 to NYSE/IBM/PRICE

In Figure 78 on page 801 execution of the example using default parameters receives the retained
publication 130. The provided topic object and topic string are ignored, as shown in Figure 82 on page
803. The topic object and topic string are always taken from the subscription object, when one is
provided, and the topic string is immutable. The actual behavior of the example depends on the choice
or combination of MQSO_CREATE, MQSO_RESUME, and MQSO_ALTER. In this example MQSO_RESUME is the
option selected.

W:\Subscribe3\Debug>solution3
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|
C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8206
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

Figure 78. Receive the retained publication

In (Figure 79 on page 802) no publications are received, because the durable subscription has already
received the retained publication. In this example, the subscription is resumed by providing only the
subscription name without the queue name. If the queue name was provided, the queue would be opened
first and the handle passed to MQSUB.

Note: The 2038 error from MQINQ is due to the implicit MQOPEN of STOCKTICKER by MQSUB not including
the MQOO_INQUIRE option. Avoid the 2038 return code from MQINQ by opening the queue explicitly.

Developing applications for IBM MQ 801

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE IBMSTOCKPRICESUB / Resume
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|
C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "" sd.Options=8204
MQINQ failed with Condition code 2 and Reason 2038
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from unknown queue
Completion code 0 and Return code 0

Figure 79. Resume subscription

In Figure 80 on page 802, the example creates a non-durable unmanaged subscription using
STOCKTICKER as the destination. Because this is a new subscription, it receives the retained publication.

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|
C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

Figure 80. Receive retained publication with new unmanaged non durable subscription

In Figure 81 on page 802, to demonstrate overlapping subscriptions, another publication is sent,
changing the retained publication. Next, a new non-durable, unmanaged subscription is created by not
providing a subscription name. The retained publication is received twice, once for the new subscription,
and once for the durable IBMSTOCKPRICESUB subscription that is still active on the STOCKTICKER
queue. The example is an illustration that it is the queue that has subscriptions, and not the application.
Despite not referring to the IBMSTOCKPRICESUB subscription in this invocation of the application,
the application receives the publication twice: once from the durable subscription that was created
administratively, and once from the non-durable subscription created by the application itself.

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|
C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Received publication "130"
Completion code 0 and Return code 0

Figure 81. Overlapping subscriptions

In Figure 82 on page 803 the example demonstrates that providing a new topic string and an existing
subscription does not result in a changed subscription.

1. In the first case, Resume resumes the existing subscription, as you might expect, and ignores the
changed topic string.

2. In the second case, Alter causes an error, RC = 2510, Topic not alterable.
3. In the third example, Create causes an error RC = 2432, Sub already exists.

802 Developing Applications for IBM MQ

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Resume
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8204
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Alter
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8201
Completion code 2 and Return code 2510

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8202
Completion code 2 and Return code 2432

Figure 82. Subscription topics cannot be changed

Related concepts
“Example 1: MQ Publication consumer” on page 788
The MQ Publication consumer is an IBM MQ message consumer that does not subscribe to topics itself.
“Example 2: Managed MQ subscriber” on page 790
The managed MQ subscriber is the preferred pattern for most subscriber applications. A managed
subscription is one where IBM MQ handles the subscription and does the registering and de-registering
for you. The example requires no administrative definition of queues, topics or subscriptions.
“Writing publisher applications” on page 781
Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Publish/subscribe lifecycles
Consider the lifecycles of topics, subscriptions, subscribers, publications, publishers and queues in
designing publish/subscribe applications.

The lifecycle of an object, such as a subscription, starts with its creation and ends with its deletion. It may
also include other states and changes that it goes through, such as temporary suspension, having parent
and children topics, expiration and deletion.

Traditionally IBM MQ objects such as queues are created administratively, or by administrative programs
using Programmable Command Format (PCF). Publish/subscribe is different in providing the MQSUB and
MQCLOSE API verbs to create and delete subscriptions, having the concept of managed subscriptions that
not only create and delete queues, but also clean up unconsumed messages, and having associations
between administratively created topic objects and programmatically or administratively created topic
strings.

This functional richness caters for a wide range of publish/subscribe requirements, and also simplifies
designing some common patterns of publish/subscribe application. Managed subscriptions, for example,
simplify both the programming and administration of a subscription that is intended to last only as long
as the program that created it. Unmanaged subscriptions simplify programming where there is a looser
connection between subscribing and consuming publications. Centrally created subscriptions are useful
where the pattern is one of routing publication traffic to consumers based on a centralized model of
control, for example sending flight information to automated gates, whereas programmatically created
subscriptions might be used if gate staff are responsible for subscribing to the passengers records for that
flight, by entering a flight number at a gate.

In this last example a managed durable subscription might be appropriate: managed, because the
subscriptions are being created very often, and have a clear endpoint when the gate closes and the
subscription can be programmatically removed; durable, to avoid losing a passenger record due to the
gate subscriber program going down for one reason or another 8 . To initiate the publication of passenger
records to the gate, a possible design would be for the gate application to both subscribe to the passenger
records using the gate number, and publish the gate opening event using the gate number. The publisher
responds to the gate opening event by publishing the passenger records - which might then also go to

8 The publisher must send the passenger records as persistent messages to avoid other possible failures, of
course.

Developing applications for IBM MQ 803

other interested parties, such as billing, to record the flight is taking place, and to customer services, to
text notifications to passengers' mobile phones of the gate number.

The centrally managed subscription might use a durable unmanaged model, routing passenger lists to the
gate using a predefined queue for each gate.

The following three examples of publish/subscribe lifecycles illustrate how managed non-durable,
managed durable, and unmanaged durable subscribers interact with subscriptions, topics, queues,
publishers and the queue manager, and how the responsibilities might be divided between administration
and the subscriber programs.

Managed non-durable subscriber

Figure 83 on page 805 shows an application creating a managed non-durable subscription, getting two
messages that are published to the topic identified in the subscription, and terminating. The interactions
labeled in an italic gray font with dotted arrows are implicit.

There are some points to note.

1. The application creates a subscription on a topic that has already been published to twice. When
the subscriber receives its first publication, it receives the second publication which is the currently
retained publication.

2. The queue manager creates a temporary subscription queue as well as creating a subscription for the
topic.

3. The subscription has an expiry. When the subscription expires no more publications on the topic
are sent to this subscription, but the subscriber continues to get messages published before the
subscription expired. Publication expiry is not affected by subscription expiry.

4. The fourth publication is not placed on the subscription queue and consequently the last MQGET does
not return a publication.

5. Although the subscriber closes its subscription, it does not close its connection to the queue or the
queue manager.

6. The queue manager cleans up shortly after the application terminates. Because the subscription is
managed and non-durable, the subscription queue is deleted.

804 Developing Applications for IBM MQ

Figure 83. Managed non-durable subscriber lifelines

Managed durable subscriber

The managed durable subscriber takes the previous example a step further, and shows a managed
subscription surviving the termination and restart of the subscribing application.

There are some new points to note.

1. In this example, unlike the last, the publication topic did not exist before it was defined in the
subscription.

2. The first time the subscriber terminates, it closes the subscription with the option MQCO_KEEP_SUB.
That is the default behavior for implicitly closing a managed durable subscription.

3. When the subscriber resumes the subscription, the subscription queue is reopened.
4. The new publication 2, placed on the queue before it is reopened, is available to MQGET, even after the

subscription has been removed.

Even though the subscription is durable, the subscriber reliably receives all messages sent by the
publisher only if both the subscription is durable and the messages persistent. Message persistence
depends on the setting of the Persistent field in the MQMD of the message sent by the publisher. A
subscriber has no control over this.

5. Closing the subscription with the flag MQCO_REMOVE_SUB removes the subscription, stopping any
further publications being placed on the subscription queue. When the subscription queue is closed,
then the queue manager removes the unread publication 3, and then deletes the queue. The action is
equivalent to administratively deleting the subscription.

Note: Do not delete the queue manually, or issue MQCLOSE with the option MQCO_DELETE, or
MQCO_PURGE_DELETE. The visible implementation details of a managed subscription is not part of
the supported IBM MQ interface. The queue manager manage cannot manage a subscription reliably
unless it has complete control.

Developing applications for IBM MQ 805

Figure 84. Managed durable subscriber lifelines

Unmanaged durable subscriber

An administrator is added in the third example: the unmanaged durable subscriber. It is a good example
to show how the administrator might interact with a publish/subscribe application.

The points to note are listed.

1. The publisher puts a message, 1, to a topic that later becomes associated with the topic object that is
used for subscription. The topic object defines a topic string that matches the topic that was published
to by using wildcards.

2. The topic has a retained publication.
3. The administrator creates a topic object, a queue and a subscription. The topic object and queue need

to be defined before the subscription.
4. The application opens the queue associated with the subscription and passes MQSUB the handle of the

queue. It could, alternatively, simply open the subscription, passing it the queue handle MQHO_NONE.
The converse is not true, it cannot resume a subscription by passing it only queue handle without a
subscription name - a queue might have multiple subscriptions.

5. The application opens the subscription using the option MQSO_RESUME even though it is the first time
it has opened the subscription. It is resuming an administratively created subscription.

6. The subscriber receives the retained publication, 1. Publication 2, although published before any
publications were received by the subscriber, was published after the subscription started, and is the
second publication on the subscription queue.

806 Developing Applications for IBM MQ

Note: If the retained publication is not published as a persistent message, then it is lost after queue
manager restart.

7. In this example the subscription is durable. It is possible for a program to create an unmanaged
non-durable subscription; it should be obvious this is not something an administrator can do.

8. The effect of the option MQCO_REMOVE_SUB on closing the subscription is to remove the subscription
just as if the administrator had deleted it. This stops any further publications being sent to the queue,
but does not affect publications that are already on the queue, even when the queue is closed, unlike a
managed durable subscription.

9. The administrator later deletes the remaining message, 3, and deletes the queue.

Figure 85. Unmanaged durable subscriber lifelines

A normal pattern for an unmanaged subscription is for queue and subscription housekeeping to be
performed by the administrator. Typically one would not attempt to emulate the behavior of a managed
subscriber and tidy up queues and subscriptions programmatically in application code. If you find yourself
needing to write management logic, question whether you can achieve the same results using a managed
pattern. It is not easy to write tightly synchronized, completely reliable management code. It is easier to

Developing applications for IBM MQ 807

tidy up later, either manually, or using a automated management program, when you can be sure that
messages, subscriptions, and queues can be simply deleted, regardless of their state.

Publish/subscribe message properties
Several message properties relate to IBM MQ publish/subscribe messaging.

PubAccountingToken
This is the value that will be in the AccountingToken field of the Message Descriptor (MQMD) of all
publication messages matching this subscription. AccountingToken is part of the identity context of the
message. For more information about message context, see “Message context” on page 45. For more
information about the AccountingToken field in the MQMD, see AccountingToken.

PubApplIdentityData
This is the value that will be in the ApplIdentityData field of the Message Descriptor (MQMD) of all
publication messages matching this subscription. ApplIdentityData is part of the identity context of the
message. For more information about message context, see “Message context” on page 45. For more
information about the ApplIdentityData field in the MQMD, see ApplIdentityData.

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the ApplIdentityData which will be set in
each message published for this subscription is blanks, as default context information.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the PubApplIdentityData is being generated by
the user and this field is an input field which contains the ApplIdentityData to be set in each publication
for this subscription.

PubPriority
This is the value that will be in the Priority field of the Message Descriptor (MQMD) of all publication
messages matching this subscription. For more information about the Priority field in the MQMD, see
Priority.

The value must be greater than or equal to zero; zero is the lowest priority. The following special values
can also be used:

• MQPRI_PRIORITY_AS_Q_DEF - When a subscription queue is provided in the Hobj field in the MQSUB
call, and is not a managed handle, then the priority for the message is taken from the DefProirity
attribute of this queue. If the queue so identified is a cluster queue, or there is more than one definition
in the queue-name resolution path, the priority is determined when the publication message is put to
the queue as described for Priority in the MQMD. If the MQSUB call uses a managed handle, the priority
for the message is taken from the DefPriority attribute of the model queue associated with the topic
subscribed to.

• MQPRI_PRIORITY_AS_PUBLISHED - The priority for the message is the priority of the original
publication. This is the initial value of this field.

SubCorrelId
Attention: a correlation identifier can only be passed between queue managers in a publish/
subscribe cluster, not a hierarchy.

All publications sent to match this subscription will contain this correlation identifier in the message
descriptor. If multiple subscriptions use the same queue to get their publications from, using MQGET by
correlation ID allows only publications for a specific subscription to be obtained. This correlation identifier
can either be generated by the queue manager or by the user.

If the option MQSO_SET_CORREL_ID is not specified, the correlation identifier is generated by the queue
manager and this field is an output field which contains the correlation identifier which will be set in each
message published for this subscription.

808 Developing Applications for IBM MQ

If the option MQSO_SET_CORREL_ID is specified, the correlation identifier is being generated by the user
and this field is an input field which contains the correlation identifier to be set in each publication for this
subscription. In this case, if the field contains MQCI_NONE, the correlation identifier which will be set in
each message published for this subscription will be the correlation identifier created by the original put
of the message.

If the option MQSO_GROUP_SUB is specified and the correlation identifier specified is the same as an
existing grouped subscription using the same queue and an overlapping topic string, only the most
significant subscription in the group is provided with a copy of the publication.

SubUserData
This is the subscription user data. The data provided on the subscription in this field will be included as
the MQSubUserData message property of every publication sent to this subscription.

Publication properties
Table 124 on page 809 lists the publication properties that are provided with a publication message.

You can access these properties directly from the MQRFH2 folder, or retrieve them using MQINQMP.
MQINQMP accepts either the property name or MQRFH2 name as the name of the property to inquire on.

Table 124. Publication properties

Property name MQRFH2 name Type Description

MQTopicString mqps.Top MQTYPE_STRING Topic string

MQSubUserData mqps.Sud MQTYPE_STRING Subscriber user data

MQIsRetained mqps.Ret MQTYPE_BOOLEAN Retained publication

MQPubOptions mqps.Pub MQTYPE_INT32 Publication options

MQPubLevel mqps.Pbl MQTYPE_INT32 Publication level

MQPubTime mqpse.Pts MQTYPE_STRING Publication time

MQPubSeqNum mqpse.Seq MQTYPE_INT32 Publication sequence
number

MQPubStrIntData mqpse.Sid MQTYPE_STRING String/Integer data
added by the publisher

MQPubFormat mqpse.Pfmt MQTYPE_INT32 Message format:

MQRFH1
MQRFH2
PCF

Message ordering
For a particular topic, messages are published by the queue manager in the same order as they are
received from publishing applications (subject to reordering based on message priority).

Message ordering normally means that each subscriber receives messages from a particular queue
manager, on a particular topic, from a particular publisher in the order that they are published by that
publisher.

However, as with all IBM MQ messages, it is possible for messages, occasionally, to be delivered out of
order. This can happen in the following situations:

• If a link in the network goes down and subsequent messages are rerouted along another link
• If a queue becomes temporarily full, or put-inhibited, so that a message is put to a dead-letter queue

and therefore delayed, while subsequent messages pass straight through.

Developing applications for IBM MQ 809

• If the administrator deletes a queue manager when publishers and subscribers are still operating,
causing queued messages to be put to the dead-letter queue and subscriptions to be interrupted.

If these circumstances cannot occur, publications are always delivered in order.

Note: It is not possible to use grouped or segmented messages with Publish/Subscribe.

Intercepting publications
You can intercept a publication, modify it, and then republish it before it reaches any other subscriber.

You might want to intercept a publication before it reaches a subscriber in order to do one of the following
actions:

• Attach additional information to the message
• Block the message
• Transform the message

You can perform the same operation on each message or vary the operation depending on the
subscription, the message, or the message header.

Related reference
MQ_PUBLISH_EXIT - Publish exit

Subscription levels
Set the subscription level of a subscription to intercept a publication before it reaches its final
subscribers. An intercepting subscriber subscribes at a higher subscription level, and republishes at a
lower publication level. Build a chain of intercepting subscribers to perform message processing on a
publication before it is delivered to final subscribers.

Figure 86. Sequence of intercepting subscribers

To intercept a publication, use the MQSD SubLevel attribute. After a message has been intercepted, it
can be transformed and then republished at a lower publication level by changing the MQPMO PubLevel
attribute. The message then goes to the final subscribers, or it is intercepted again by an intermediate
subscriber at a lower subscription level.

The intercepting subscriber typically transforms a message before republishing it. A sequence of
intercepting subscribers forms a message flow. Alternatively, you might not republish the intercepted
publication: Subscribers at lower subscription levels would not receive the message.

Ensure that the interceptor receives publications before any other subscribers. Set the subscription level
of the interceptor higher than other subscribers. By default, subscribers have a SubLevel of 1. The
highest value is 9. A publication must start with a PubLevel at least as high as the highest SubLevel.
Publish initially with the default PubLevel of 9.

• If you have one intercepting subscriber on a topic, set the SubLevel to 9.
• For multiple intercepting applications on a topic, set a lower SubLevel for each successive intercepting

subscriber.
• You can implement a maximum of 8 intercepting applications, with subscription levels from 9 down to 2

inclusive. The final recipient of the message has a SubLevel of 1.

The interceptor with the highest subscription level that is equal to, or lower than, the PubLevel of
the publication receives the publication first. Configure only one intercepting subscriber for a topic at

810 Developing Applications for IBM MQ

a particular subscription level. Having multiple subscribers at a particular subscription level results in
multiple copies of the publication being sent to the final set of subscribing applications.

A subscriber with a SubLevel of 0 is used as a catchall. It receives the publication if no final subscriber
gets the message. A subscriber with SubLevel of 0 might be used to monitor the publications that no
other subscribers received.

Programming an intercepting subscriber
Use the subscription options described in Table 125 on page 811.

Table 125. Subscription options for intercepting subscribers

Subscription option Notes

MQSO_SET_CORREL_ID and SubCorrelId set to
MQCI_NONE

Keep the CorrelId of the intercepted publication
the same as the original publication.

Note: You cannot pass the correlation identifier of
a publication in a hierarchy. The field is used by the
queue manager.

PubPriority set to
MQPRI_PRIORITY_AS_PUBLISHED

Keep the priority of the intercepted publication the
same as the original publication.

The options in Table 125 on page 811 must be used by all the intercepting subscribers. The result is that
the correlation identifier and message priority are not modified from the setting of the original publisher.

When the intercepting subscriber has processed the publication, it republishes the message to the same
topic at a PubLevel one lower than the SubLevel of its own subscription. If the intercepting subscriber
set a SubLevel of 9, it republishes the message with a PubLevel of 8.

To republish the message correctly, several pieces of information from the original publication are
required. Reuse the same MQMD as in the original message and set MQPMO_PASS_ALL_CONTEXT to ensure
all information in the MQMD is passed on to the next subscriber. Copy the values from the message
properties shown in Table 126 on page 811 into the corresponding fields of the republished message.
The intercepting subscriber can change these values. Use the OR operator to add additional values to the
MQPMO. Options field, to combine the put message options.

You must open the publication queue explicitly rather than use a managed publication queue. You cannot
set MQSO_SET_CORREL_ID for a managed queue. You also cannot set MQOO_SAVE_ALL_CONTEXT on a
managed queue. See the code fragments listed in “Examples” on page 812.

Table 126. MQPUT values for republished messages

Republish message using MQPUT Information in publication message

MQOD. ObjectString Message property MQTopicString

MQPMO. Options Message property MQPubOptions

The final subscriber has the choice of setting its subscription options differently. For example, it might set
the publication priority explicitly rather than to MQPRI_PRIORITY_AS_PUBLISHED. The settings of a final
subscriber only affect publication from the final intercepting subscriber in the chain.

Retained publications
A retained publication must be preserved after it has been intercepted, by copying the original put-
message options into the republished message.

The MQPMO_RETAIN option is set by the publisher. Each intercepting subscriber must transfer the
MQPubOptions to the put-message options of the republished message as shown in Table 126 on

Developing applications for IBM MQ 811

page 811. Copying the put-message options preserves the options set by the original publisher, including
whether to retain the publication.

When a publication finishes its passage down the chain of intercepting subscribers, and is delivered
to final subscribers, it is finally retained. New subscribers, at SubLevel 1, requesting the retained
publication, receive it without any further interception. Subscribers at a SubLevel greater than 1 are
not sent the retained publication. As a result, the retained publication is not modified by the chain of
intercepting subscribers a second time round.

Examples

The examples are code fragments that can be combined to build an intercepting subscriber. The code is
written to be brief, rather than of production quality.

The preprocessor directives in Figure 87 on page 812 define the two properties to be extracted from the
publication messages that are required by the MQINQMP MQI call.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
#define MQPUBOPTIONS (MQPTR)(char*) "MQPubOptions",\
 0,\
 12,\
 MQVS_NULL_TERMINATED,\
 MQCCSI_APPL
#define MQTOPICSTRING (MQPTR)(char*) "MQTopicString",\
 0,\
 13,\
 MQVS_NULL_TERMINATED,\
 MQCCSI_APPL

Figure 87. Preprocessor directives

Figure 88 on page 813 lists the declarations used in the code fragments. Except for the highlighted
terms, the declarations are standard for an IBM MQ application.

The highlighted Put and Get options are initialized to pass all context. The highlighted MQTOPICSTRING
and MQPUBOPTIONS are MQCHARV initializers for property names that are defined in the preprocessor
directives. The names are passed to MQINQMP.

812 Developing Applications for IBM MQ

int main(int argc, char **argv) {
 MQLONG Reason = MQRC_NONE;
 MQLONG CompCode = MQCC_OK;
 MQHCONN Hcon = MQHC_UNUSABLE_HCONN;
 MQCHAR QMName[49] = " ";
 MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
 MQHMSG Hmsg = MQHM_NONE;
 MQMD md = {MQMD_DEFAULT};
 MQHOBJ gHobj = MQHO_NONE;
 MQOD getOD = {MQOD_DEFAULT};
 MQGMO gmo = {MQGMO_DEFAULT};
 MQLONG GO_Options = MQOO_INPUT_AS_Q_DEF
 | MQOO_FAIL_IF_QUIESCING
 | MQOO_SAVE_ALL_CONTEXT;
 MQLONG GC_Options = MQCO_DELETE_PURGE;
 MQHOBJ Hsub = MQHO_NONE;
 MQSD sd = {MQSD_DEFAULT};
 MQLONG SC_Options = MQCO_NONE;
 MQHOBJ pHobj = MQHO_NONE;
 MQOD putOD = {MQOD_DEFAULT};
 MQLONG PO_Options = MQOO_OUTPUT
 | MQOO_FAIL_IF_QUIESCING
 | MQOO_PASS_ALL_CONTEXT;
 MQLONG PC_Options = MQCO_NONE;
 MQPMO pmo = {MQPMO_DEFAULT};
 MQIMPO InqPropOpts = {MQIMPO_DEFAULT};
 MQPD PropDesc = {MQPD_DEFAULT};
 MQLONG Type = MQTYPE_AS_SET;
 MQCHARV TopStrProp = {MQTOPICSTRING};
 MQCHARV PubOptProp = {MQPUBOPTIONS};
 MQLONG DataLength = 0;
 MQBYTE buffer[256] = "";
 MQLONG buflen = sizeof(buffer) - 1;
 MQLONG messlen = 0;
 char TopStrBuf[256] = "Initial value";
 int i = 0;

Figure 88. Declarations

Initializations that are not easily performed in declarations are shown in Figure 89 on page 814. The
highlighted values require explanation.
SYSTEM.NDURABLE.MODEL.QUEUE

In this example, instead of using MQSUB to open a managed non-durable subscription, the model
queue, SYSTEM.NDURABLE.MODEL.QUEUE, is used to create a temporary dynamic queue. Its handle
is passed to MQSUB. By opening the queue directly you are able to save all message context and set
the subscription option, MQSO_SET_CORREL_ID.

MQGMO_CURRENT_VERSION
It is important to use the current version of most of the IBM MQ structures. Fields such as
gmo.MsgHandle are only available in the latest version of the control structures.

MQGMO_PROPERTIES_IN_HANDLE
The topic string and put message options set in the original publication are to be retrieved by
the intercepting subscriber using message properties. An alternative would be to read the MQRFH2
structure in the message directly.

MQSO_SET_CORREL_ID
Use MQSO_SET_CORREL_ID in combination with,

memcpy(sd.SubCorrelId, MQCI_NONE, sizeof(sd.SubCorrelId));

The effect of these options is to pass on the correlation identifier. The correlation identifier set by the
original publisher is placed in the correlation identifier field of the publication that is received by the
intercepting subscriber. Each intercepting subscriber passes on the same correlation identifier. The
final subscriber then has the option of receiving the same correlation identifier.

Note: If the publication is passed through a publish/subscribe hierarchy, the correlation identifier is
never retained.

Developing applications for IBM MQ 813

MQPRI_PRIORITY_AS_PUBLISHED
The publication is placed on the publication queue with the same message priority as it was published
with.

 strncpy(getOD.ObjectName, "SYSTEM.NDURABLE.MODEL.QUEUE",
 sizeof(getOD.ObjectName));
 gmo.Version = MQGMO_VERSION_4;
 gmo.Options = MQGMO_WAIT
 | MQGMO_PROPERTIES_IN_HANDLE
 | MQGMO_CONVERT;
 gmo.WaitInterval = 30000;
 sd.Options = MQSO_CREATE
 | MQSO_FAIL_IF_QUIESCING
 | MQSO_SET_CORREL_ID;
 sd.PubPriority = MQPRI_PRIORITY_AS_PUBLISHED;
 sd.Version = MQSD_VERSION_1;
 memcpy(sd.SubCorrelId, MQCI_NONE, sizeof(sd.SubCorrelId));
 putOD.ObjectType = MQOT_TOPIC;
 putOD.ObjectString.VSPtr = &TopStrBuf;
 putOD.ObjectString.VSBufSize = sizeof(TopStrBuf);
 putOD.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 putOD.ObjectString.VSCCSID = MQCCSI_APPL;
 putOD.Version = MQOD_VERSION_4;
 pmo.Version = MQPMO_VERSION_3;

Figure 89. Initializations

Figure 90 on page 815 shows the code fragment to read command-line parameters, complete the
initialization, and create the intercepting subscription.

Run the program with the command,

InterSub TopicString
1

SubLevel

" "

QmgrName

To make error handling as unobtrusive as possible, the reason code from each MQI call is stored in a
different array element. After each call the completion code is tested, and if the value is MQCC_FAIL,
control exits the do { } while(0) code block.

The two noteworthy lines of code are,
pmo.PubLevel = sd.SubLevel - 1;

Sets the publication level for the republished message to one less than the subscription level of the
intercepting subscriber.

gmo.MsgHandle = Hmsg;
Provides a message handle for MQGET to return the message properties.

814 Developing Applications for IBM MQ

do {
 printf("Intercepting subscriber start\n");
 if (argc < 2) {
 printf("Required parameter missing - topic string\n");
 exit(99);
 } else {
 sd.ObjectString.VSPtr = argv[1];
 sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 printf("TopicString = %s\n", sd.ObjectString.VSPtr);
 }
 if (argc > 2) {
 sd.SubLevel = atoi(argv[2]);
 pmo.PubLevel = sd.SubLevel - 1;
 printf("SubLevel is %d, PubLevel is %d\n", sd.SubLevel, pmo.PubLevel);
 }
 if (argc > 3)
 strncpy(QMName, argv[3], sizeof(QMName));
 MQCONN(QMName, &Hcon, &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 MQOPEN(Hcon, &getOD, GO_Options, &gHobj, &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 MQSUB(Hcon, &sd, &gHobj, &Hsub, &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 MQCRTMH(Hcon, &CrtMsgHOpts, &Hmsg, &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 gmo.MsgHandle = Hmsg;

Figure 90. Preparing to intercept publications

The main code fragment, Figure 91 on page 816, gets messages from the publication queue. It queries
the message properties and republishes the messages using the topic string, and the original MQPMO.
option properties of the publication.

In this example, no transformation is performed on the publication. The topic string of the republished
publication always matches the topic string the intercepting subscriber subscribed on. If the intercepting
subscriber is responsible for intercepting multiple subscriptions sent to the same publication queue, it
might be necessary to query the topic string to distinguish publications that match different subscriptions.

The calls to MQINQMP are highlighted. The topic string and publication put message options properties are
written directly into the output control structures. The only reason for altering the MQCHARV length field
of putOD.ObjectString from an explicit length to a null terminated string is to use printf to output
the string.

Developing applications for IBM MQ 815

while (CompCode != MQCC_FAILED) {
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;
 printf("MQGET : %d seconds wait time\n", gmo.WaitInterval/1000);
 MQGET(Hcon, gHobj, &md, &gmo, buflen, buffer, &messlen,
 &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 buffer[messlen] = '\0';
 MQINQMP(Hcon, Hmsg, &InqPropOpts, &TopStrProp, &PropDesc, &Type,
 putOD.ObjectString.VSBufSize, putOD.ObjectString.VSPtr,
 &(putOD.ObjectString.VSLength), &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 memset((void *)((MQLONG)(putOD.ObjectString.VSPtr)
 + putOD.ObjectString.VSLength),'\0',1);
 putOD.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 MQINQMP(Hcon, Hmsg, &InqPropOpts, &PubOptProp, &PropDesc, &Type,
 sizeof(pmo.Options), &(pmo.Options), &DataLength,
 &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 MQOPEN(Hcon, &putOD, PO_Options, &pHobj, &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 printf("Republish message <%s> on topic <%s> with options %d\n",
 buffer, putOD.ObjectString.VSPtr, pmo.Options);
 MQPUT(Hcon, pHobj, &md, &pmo, messlen, buffer, &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
 MQCLOSE(Hcon, &pHobj, PC_Options, &CompCode, &Reason);
 if (CompCode == MQCC_FAILED)
 break;
}

Figure 91. Intercept publication and republish

The final code fragment is shown in Figure 92 on page 816.

 } while (0);
 if (CompCode == MQCC_FAILED && Reason != MQRC_NO_MSG_AVAILABLE)
 printf("MQI Call failed with reason code %d\n", Reason);
 if (Hsub!= MQHO_NONE)
 MQCLOSE(Hcon, &Hsub, SC_Options, &CompCode, &Reason);
 if (Hcon!= MQHC_UNUSABLE_HCONN)
 MQDISC(&Hcon, &CompCode, &Reason);
}

Figure 92. Completion

Intercepting publications and distributed publish/subscribe
Follow a simple pattern when you deploy intercepting subscribers or Publish exits to a distributed
publish/subscribe topology. Deploy intercepting subscribers on the same queue managers as publishers,
and Publish exits on the same queue managers as final subscribers.

Figure 93 on page 817 shows two queue managers connected in a publish subscribe cluster. A publisher
creates a publication to a cluster topic at publication level 9. The numbered arrows show the sequence of
steps taken by the publication as it flows to subscribers to the cluster topic. The publication is intercepted
by the subscriber with Sublevel 9 and republished with Publevel 8. It is intercepted again by a
subscriber at Sublevel 8. The subscriber republishes at Publevel 7. The proxy subscriber provided
by the queue manager forwards the publication to queue manager B, where a Publish exit has been
deployed in addition to a final subscriber. The publication is processed by the Publish exit before it is
finally received by the final subscriber at Sublevel 1. The intercepting subscribers and the publish exit
are shown with broken outlines.

816 Developing Applications for IBM MQ

Figure 93. Interception and Publish exit in a cluster

The objective of the simple pattern is for every subscriber receiving a publication to receive the identical
publication. The publication goes through the same sequence of transformations regardless of where the
subscriber is connected. You probably want to avoid having the sequence of transformations varying,
depending on where the publishers or final subscribers are connected. An reasonable exception would
be to tailor the publication finally delivered to each individual subscriber. Use the Publish exit to do
customize the publication based on the queue to which the publication is finally delivered.

You must consider carefully where to deploy intercepting subscribers and Publish exits in a distributed
publish/subscribe topology. The straightforward pattern deploys intercepting subscribers to the same
queue manager as the publishers, and Publish exits to the same queue managers as the final subscribers.

Anti-pattern
Figure 94 on page 818 shows how matters can go awry, if you do not follow a simple pattern.
To complicate the deployment, a final subscriber is added to queue manager A and two additional
intercepting subscribers are added to queue manager B.

The publication is forwarded to queue manager B at PubLevel 7, where it is intercepted by a subscriber
at SubLevel 5 before being consumed by the final subscriber at SubLevel 1. The Publish exit intercepts
the publication before it is passed to both the intercepting consumer and the final consumer at queue
manager B. The publication reaches the final subscriber on queue manager A without being processed by
the Publish exit.

In a publish/subscribe topology, proxy subscribers subscribe at SubLevel 1, and pass on the PubLevel
set by the last intercepting subscriber. In Figure 94 on page 818, the result is that the publication is not
intercepted by the subscriber using SubLevel 9 at queue manager B.

Developing applications for IBM MQ 817

Figure 94. Complex deployment of intercepting subscribers

Publishing options
Several options are available that control the way messages are published.

Withholding reply-to information from subscribers
If you do not want subscribers to be able to reply to publications they receive, it is possible
to withhold information in the ReplyToQ and ReplyToQmgr fields of the MQMD by using the
MQPMO_SUPPRESS_REPLYTO put-message option. If this option is used, the queue manager removes
that information from the MQMD when it receives the publication before forwarding it to any subscribers.

This option cannot be used in combination with a report option that needs a ReplyToQ, if this is attempted
the call with fail with MQRC_MISSING_REPLY_TO_Q.

Publication level
Using publication levels is a way of controlling which subscribers receive the publication. The publication
level denotes the level of subscription targeted by the publication. Only subscriptions with the highest
subscription level less than or equal to the publication's publication level, will receive the publication. This
value must be in the range zero to nine; zero is the lowest publication level. The initial value of this field is
9. One of the uses of publication and subscription levels is to intercept publications.

Checking if a publication is not delivered to any subscribers
To check if a publication has not been delivered to any subscribers, use the
MQPMO_WARN_IF_NO_SUBS_MATCHED put-message option with the MQPUT call. If a completion code
of MQCC_WARNING and a reason code MQRC_NO_SUBS_MATCHED are returned by the put operation,
the publication was not delivered to any subscriptions. If the MQPMO_RETAIN option is specified on the
put operation, the message is retained and delivered to any subsequently defined matching subscription.
In a distributed publish/subscribe system, the MQRC_NO_SUBS_MATCHED reason code is returned only if
there are no proxy subscriptions registered for the topic on the queue manager.

Subscription options
Several options are available that control the way message subscriptions are handled.

Message persistence
Queue managers maintain the persistence of the publications they forward to subscribers as set by the
publisher. The publisher sets the persistence to be one of the following options:

0
Nonpersistent

818 Developing Applications for IBM MQ

1
Persistent

2
Persistence as queue/topic definition

For publish/subscribe, the publisher resolves the topic object and topicString to a resolved topic
object. If the publisher specifies Persistence as queue/topic definition, then the default persistence from
the resolved topic object is set for the publication.

Retained publications
To control when retained publications are received, subscribers can use two subscription options:

Publish on request only, MQSO_PUBLICATIONS_ON_REQUEST

If you want a subscriber to have control of when it receives publications you can use the
MQSO_PUBLICATIONS_ON_REQUEST subscription option. A subscriber can then control when it
receives publications by using the MQSUBRQ call (specifying the Hsub handle that was returned
from the original MQSUB call) to request that it is sent a topic's retained publication. Subscribers
using the MQSO_PUBLICATIONS_ON_REQUEST subscription option, do not receive any non-retained
publications.

If you specify MQSO_PUBLICATIONS_ON_REQUEST you must use MQSUBRQ to retrieve any
publication. If you do not use MQSO_PUBLICATIONS_ON_REQUEST you get messages as they are
published.

If a subscriber uses the MQSUBRQ call and uses wildcards in the subscription's topic, the subscription
might match multiple topics or nodes on a topic tree, all of which with retained messages (if any exist)
will be sent to the subscriber.

This option can be particularly helpful when used with durable subscriptions because a queue
manager will continue to send publications to a subscriber if it subscribed durably even
if that subscriber application is not running. This could lead to a buildup of messages on
the subscriber queue. This build up can be avoided if the subscriber registers using the
MQSO_PUBLICATIONS_ON_REQUEST option. Alternatively, you can use non-durable subscriptions
if appropriate to your application to avoid a build up of unwanted messages.

If a subscription is durable and a publisher uses retained publications the subscriber application
can use the MQSUBRQ call to refresh its state information after a restart. The subscriber must then
refresh its state periodically using the MQSUBRQ call.

No publications will be sent as a result of the MQSUB call using this option. A durable subscription
that has been resumed following disconnection will use the MQSO_PUBLICATIONS_ON_REQUEST
option if the original subscription was configured to use this option.

New publications only, MQSO_NEW_PUBLICATIONS_ONLY

If a retained publication exists on a topic, any subscribers that make a subscription after the
publication was made will receive a copy of that publication. If a subscriber does not want to receive
any publications that were made earlier than the subscription being made, the subscriber can use the
MQSO_NEW_PUBLICATIONS_ONLY subscription option.

Grouping subscriptions
Consider grouping subscriptions if you have set up a queue to receive publications and have a number of
overlapping subscriptions feeding publications to the same queue. This situation is similar to the example
in Overlapping subscriptions.

You can avoid receiving duplicate publications by setting the option MQSO_GROUP_SUB when you
subscribe to a topic. The result is that when more than one subscription in the group matches the topic
of a publication, only one subscription is responsible for placing the publication on the queue. The other
subscriptions that matched the publication topic are ignored.

Developing applications for IBM MQ 819

The subscription responsible for placing the publication on the queue is chosen on the basis that it has
the longest matching topic string, before encountering any wildcards. It can be thought of as the closest
matching subscription. Its properties are propagated to the publication, including whether it has the
MQSO_NOT_OWN_PUBS property. If it does, no publication is delivered to the queue, even though other
matching subscriptions might not have the MQSO_NOT_OWN_PUBS property.

You cannot place all your subscriptions in a single group to eliminate duplicate publications. Grouped
subscriptions must fulfill these conditions:

1. None of the subscriptions are managed.
2. A group of subscriptions deliver publications to the same queue.
3. Each subscription must be at the same subscription level.
4. The publication message for each subscription in the group has the same correlation identifier.

To ensure each subscription results in a publication message with the same correlation identifier,
set MQSO_SET_CORREL_ID to create your own correlation identifier in the publication, and set the
same value in the SubCorrelId field in each subscription. Do not set SubCorrelId to the value
MQCI_NONE.

See ../refdev/q100080_.dita#q100080_/mqso_group_sub for more information.

Inquiring about and setting object attributes
Attributes are the properties that define the characteristics of an IBM MQ object.

They affect the way that a queue manager processes an object. The attributes of each type of IBM MQ
object are described in detail in Attributes of objects.

Some attributes are set when the object is defined, and can be changed only by using the IBM MQ
commands; an example of such an attribute is the default priority for messages put on a queue. Other
attributes are affected by the operation of the queue manager and can change over time; an example is
the current depth of a queue.

You can inquire about the current values of most attributes using the MQINQ call. The MQI also provides
an MQSET call with which you can change some queue attributes. You cannot use the MQI calls to change
the attributes of any other type of object. Instead you must use one of the following resources:

• The MQSC facility, which is described in MQSC commands.

• The CHGMQMx CL commands, which are described in CL commands reference for IBM i,
or the MQSC facility.

• The ALTER operator commands, or the DEFINE commands with the REPLACE option,
which are described in MQSC commands.

Note: The names of the attributes of objects are shown in this documentation in the form that you use
them with the MQINQ and MQSET calls. When you use IBM MQ commands to define, alter, or display
the attributes, you must identify the attributes using the keywords shown in the descriptions of the
commands in the topic links.

Both the MQINQ and the MQSET calls use arrays of selectors to identify those attributes that you want to
inquire about or set. There is a selector for each attribute that you can work with. The selector name has a
prefix, determined by the nature of the attribute:

Table 127. Prefixes for selector names

Prefix Description

MQCA_ These selectors refer to attributes that contain
character data (for example, the name of a queue).

820 Developing Applications for IBM MQ

Table 127. Prefixes for selector names (continued)

Prefix Description

MQIA_ These selectors refer to attributes that
contain either numeric values (such as
CurrentQueueDepth, the number of messages
on a queue) or a constant value (such as
SyncPoint, whether the queue manager supports
syncpoints).

Before you use the MQINQ or MQSET calls your application must be connected to the queue manager,
and you must use the MQOPEN call to open the object for setting or inquiring about attributes. These
operations are described in “Connecting to and disconnecting from a queue manager” on page 709 and
“Opening and closing objects” on page 716.

Use the following links to find out more about getting inquiring about and setting object attributes:

• “Inquiring about the attributes of an object” on page 821
• “Some cases where the MQINQ call fails” on page 822
• “Setting queue attributes” on page 823

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

Inquiring about the attributes of an object
Use the MQINQ call to inquire about the attributes of any type of IBM MQ.

As input to this call, you must supply:

• A connection handle.
• An object handle.
• The number of selectors.

Developing applications for IBM MQ 821

• An array of attribute selectors, each selector having the form MQCA_* or MQIA_*. Each selector
represents an attribute with a value that you want to inquire about, and each selector must be valid
for the type of object that the object handle represents. You can specify selectors in any order.

• The number of integer attributes that you are inquiring about. Specify zero if you are not inquiring about
integer attributes.

• The length of the character attributes buffer in CharAttrLength. This must be at least the sum of
the lengths required to hold each character attribute string. Specify zero if you are not inquiring about
character attributes.

The output from MQINQ is:

• A set of integer attribute values copied into the array. The number of values is determined by
IntAttrCount. If either IntAttrCount or SelectorCount is zero, this parameter is not used.

• The buffer in which character attributes are returned. The length of the buffer is given by the
CharAttrLength parameter. If either CharAttrLength or SelectorCount is zero, this parameter is
not used.

• A completion code. If the completion code gives a warning, this means that the call completed only
partially. In this case, examine the reason code.

• A reason code. There are three partial-completion situations:

– The selector does not apply to the queue type
– There is not enough space allowed for integer attributes
– There is not enough space allowed for character attributes

If more than one of these situations arise, the first one that applies is returned.

If you open a queue for output or inquire and it resolves to a non-local cluster queue you can only inquire
the queue name, queue type, and common attributes. The values of the common attributes are those
of the chosen queue if MQOO_BIND_ON_OPEN was used. The values are those of an arbitrary one of
the possible cluster queues if either MQOO_BIND_NOT_FIXED or MQOO_BIND_ON_GROUP was used or
MQOO_BIND_AS_Q_DEF was used and the DefBind queue attribute was MQBND_BIND_NOT_FIXED. See
“MQOPEN and clusters” on page 853 and MQOPEN for more information.

Note: The values returned by the call are a snapshot of the selected attributes. The attributes can change
before your program acts on the returned values.

There is a description of the MQINQ call in MQINQ.

Some cases where the MQINQ call fails
If you open an alias to inquire about its attributes, you are returned the attributes of the alias queue (the
IBM MQ object used to access another queue), not those of the base queue.

However, the definition of the base queue to which the alias resolves is also opened by the queue
manager, and if another program changes the usage of the base queue in the interval between your
MQOPEN and MQINQ calls, your MQINQ call fails and returns the MQRC_OBJECT_CHANGED reason code.
The call also fails if the attributes of the alias queue object are changed.

Similarly, when you open a remote queue to inquire about its attributes, you are returned the attributes of
the local definition of the remote queue only.

If you specify one or more selectors that are not valid for the type of queue attributes upon which you are
inquiring, the MQINQ call completes with a warning and sets the output as follows:

• For integer attributes, the corresponding elements of IntAttrs are set to MQIAV_NOT_APPLICABLE.
• For character attributes, the corresponding portions of the CharAttrs string are set to asterisks.

If you specify one or more selectors that are not valid for the type of object attributes upon which you are
inquiring, the MQINQ call fails and returns the MQRC_SELECTOR_ERROR reason code.

You cannot call MQINQ to look at a model queue; use either the MQSC facility or the commands available
on your platform.

822 Developing Applications for IBM MQ

Setting queue attributes
Use this information to learn how to set queue attributes using the MQSET call.

You can set only the following queue attributes using the MQSET call:

• InhibitGet (but not for remote queues)

• DistList
• InhibitPut
• TriggerControl
• TriggerType
• TriggerDepth
• TriggerMsgPriority
• TriggerData

The MQSET call has the same parameters as the MQINQ call. However, for MQSET, all parameters except
the completion code and reason code are input parameters. There are no partial-completion situations.

Note: You cannot use the MQI to set the attributes of IBM MQ objects other than locally defined queues.

For more details about the MQSET call, see MQSET.

Committing and backing out units of work
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.

The following terms are used in this topic:

• Commit
• Back out
• Syncpoint coordination
• Syncpoint
• Unit of work
• Single-phase commit
• Two-phase commit

If you are familiar with these transaction processing terms, you can skip to “Syncpoint considerations in
IBM MQ applications” on page 825.
Commit and back out

When a program puts a message on a queue within a unit of work, that message is made visible
to other programs only when the program commits the unit of work. To commit a unit of work, all
updates must be successful to preserve data integrity. If the program detects an error and decides
that the put operation is not permanent, it can back out the unit of work. When a program performs a
backout, IBM MQ restores the queue by removing the messages that were put on the queue by that
unit of work. The way in which the program performs the commit and back out operations depends on
the environment in which the program is running.

Similarly, when a program gets a message from a queue within a unit of work, that message remains
on the queue until the program commits the unit of work, but the message is not available to be
retrieved by other programs. The message is permanently deleted from the queue when the program
commits the unit of work. If the program backs out the unit of work, IBM MQ restores the queue by
making the messages available to be retrieved by other programs.

Syncpoint coordination, syncpoint, unit of work
Syncpoint coordination is the process by which units of work are either committed or backed out with
data integrity.

Developing applications for IBM MQ 823

The decision to commit or back out the changes is taken, in the simplest case, at the end of a
transaction. However, it can be more useful for an application to synchronize data changes at other
logical points within a transaction. These logical points are called syncpoints (or synchronization
points) and the period of processing a set of updates between two syncpoints is called a unit of work.
Several MQGET calls and MQPUT calls can be part of a single unit of work.

The maximum number of messages within a unit of work can be controlled by the MAXUMSGS
attribute of the ALTER QMGR command.

Single-phase commit
A single-phase commit process is one in which a program can commit updates to a queue without
coordinating its changes with other resource managers.

Two-phase commit
A two-phase commit process is one in which updates that a program has made to IBM MQ queues can
be coordinated with updates to other resources (for example, databases under the control of Db2).
Under such a process, updates to all resources are committed or backed out together.

To help handle units of work, IBM MQ provides the BackoutCount attribute. This is incremented
each time that a message within a unit of work is backed out. If the message repeatedly causes
the unit of work to abnormally end, the value of the BackoutCount finally exceeds that of the
BackoutThreshold. This value is set when the queue is defined. In this situation, the application
can remove the message from the unit of work and put it onto another queue, as defined in
BackoutRequeueQName. When the message is moved, the unit of work can commit.

Use the following links to find out more about committing and backing out units of work:

• “Syncpoint considerations in IBM MQ applications” on page 825

• “Syncpoints in IBM MQ for z/OS applications” on page 826

• “Syncpoints in CICS for IBM i applications” on page 828
• “Syncpoints in IBM MQ for Multiplatforms” on page 828

• “Interfaces to the IBM i external syncpoint manager” on page 832

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66

824 Developing Applications for IBM MQ

This information helps you to write IMS applications using IBM MQ.

Syncpoint considerations in IBM MQ applications
Use this information to learn about using syncpoints in IBM MQ applications.

Two-phase commit is supported by the following environments:

• IBM MQ for Multiplatforms

• CICS Transaction Server for z/OS

• TXSeries

• IMS/ESA®

• z/OS batch with RRS
• Other external coordinators using the X/Open XA interface

Single-phase commit is supported by the following environments:

• IBM MQ for Multiplatforms

• z/OS batch

For further information about external interfaces, see “Interfaces to external syncpoint managers on
Multiplatforms” on page 831, and the XA documentation CAE Specification Distributed Transaction
Processing: The XA Specification, published by The Open Group. Transaction managers (such as CICS,
IMS, Encina, and Tuxedo) can participate in two-phase commit, coordinated with other recoverable
resources. This means that the queuing functions provided by IBM MQ can be brought within the scope of
a unit of work, managed by the transaction manager.

Samples shipped with IBM MQ show IBM MQ coordinating XA-compliant databases. For further
information about these samples, see “Using the IBM MQ sample procedural programs” on page 1018.

In your IBM MQ application, you can specify on every put and get call whether you want the call
to be under syncpoint control. To make a put operation operate under syncpoint control, use the
MQPMO_SYNCPOINT value in the Options field of the MQPMO structure when you call MQPUT. For a
get operation, use the MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If you do
not explicitly choose an option, the default action depends on the platform:

• The syncpoint control default is NO.

• The syncpoint control default is YES.

When an MQPUT1 call is issued with MQPMO_SYNCPOINT, the default behavior changes, so that the put
operation is completed asynchronously. This might cause a change in the behavior of some applications
that rely on certain fields in the MQOD and MQMD structures being returned, but which now contain
undefined values. An application can specify MQPMO_SYNC_RESPONSE to ensure that the put operation
is performed synchronously and that all of the appropriate field values are completed.

When your application receives an MQRC_BACKED_OUT reason code in response to an MQPUT or MQGET
under syncpoint, the application should normally back out the current transaction using MQBACK and
then, if appropriate, try the entire transaction again. If the application receives MQRC_BACKED_OUT in
response to an MQCMIT or MQDISC call, it does not need to call MQBACK.

Every time an MQGET call is backed out, the BackoutCount field of the MQMD structure of the affected
message is incremented. A high BackoutCount indicates a message that has been repeatedly backed out.
This might indicate a problem with this message, which you should investigate. See BackoutCount for
details of BackoutCount.

If a program issues the MQDISC call while there are uncommitted requests, an implicit syncpoint occurs
(except on z/OS batch with RRS). If the program ends abnormally, an implicit backout occurs.

Developing applications for IBM MQ 825

On z/OS, an implicit syncpoint also occurs if the program ends normally without first calling
MQDISC. The program is deemed to have ended normally if the TCB connected to MQ ends normally.
When running under z/OS UNIX System Services and Language Environment (LE), default condition
handling is invoked for abends or signals. The LE condition handlers process the error condition and the
TCB ends normally. Under these conditions MQ commits the unit of work. For more information, see
Introduction to Language Environment Condition Handling.

For IBM MQ for z/OS programs, you can use the MQGMO_MARK_SKIP_BACKOUT option
to specify that a message must not be backed out if backout occurs (in order to avoid an MQGET-error-
backout loop). For information about using this option, see “Skipping backout” on page 771.

Changes to queue attributes (either by the MQSET call or by commands) are not affected by the
committing or backing out of units of work.

Syncpoints in IBM MQ for z/OS applications
This topic explains how to use syncpoints in transaction manager (CICS and IMS) and batch applications.

Syncpoints in CICS Transaction Server for z/OS applications
In a CICS application you establish a syncpoint by using the EXEC CICS SYNCPOINT command.

To back out all changes to the previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK
command. For more information, see the CICS Application Programming Reference.

If other recoverable resources are involved in the unit of work, the queue manager (in conjunction with
the CICS syncpoint manager) participates in a two-phase commit protocol; otherwise, the queue manager
performs a single-phase commit process.

If a CICS application issues the MQDISC call, no implicit syncpoint is taken. If the application closes
down normally, any open queues are closed and an implicit commit occurs. If the application closes down
abnormally, any open queues are closed and an implicit backout occurs.

Syncpoints in IMS applications
In an IMS application, establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB and
CHKP (checkpoint).

To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see the IMS documentation.

The queue manager (in conjunction with the IMS syncpoint manager) participates in a two-phase commit
protocol if other recoverable resources are also involved in the unit of work.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven
BMP environment). This is because a different user could initiate the next unit of work and IBM MQ
security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not when
the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify
IBM MQ to close the handles until either the next message arrives or a QC status code is returned to the
application. If the application is waiting in the IMS region and any of these handles belong to triggered
queues, triggering will not occur because the queues are open. For this reason applications running in
a WFI or PWFI environment should explicitly MQCLOSE the queue handles before doing the GU to the
IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no
implicit syncpoint is taken. If the application closes down normally, any open queues are closed and an
implicit commit occurs. If the application closes down abnormally, any open queues are closed and an
implicit backout occurs.

826 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/zos/2.4.0?topic=models-introduction-language-environment-condition-handling

Syncpoints in z/OS batch applications
For batch applications, you can use the IBM MQ syncpoint management calls: MQCMIT and MQBACK. For
compatibility with earlier versions, CSQBCMT and CSQBBAK are available as synonyms.

Note: If you need to commit or back out updates to resources managed by different resource managers,
such as IBM MQ and Db2, within a single unit of work you can use RRS. For further information see
“Transaction management and recoverable resource manager services” on page 827.

Committing changes using the MQCMIT call
As input, you must supply the connection handle (Hconn) that is returned by the MQCONN or MQCONNX
call.

The output from MQCMIT is a completion code and a reason code. The call completes with a warning if
the syncpoint was completed but the queue manager backed out the put and get operations since the
previous syncpoint.

Successful completion of the MQCMIT call indicates to the queue manager that the application has
reached a syncpoint and that all put and get operations made since the previous syncpoint have been
made permanent.

Not all failure responses mean that the MQCMIT did not complete. For example, the application can
receive MQRC_CONNECTION_BROKEN.

There is a description of the MQCMIT call in MQCMIT.

Backing out changes using the MQBACK call
As input, you must supply a connection handle (Hconn). Use the handle that is returned by the MQCONN
or MQCONNX call.

The output from MQBACK is a completion code and a reason code.

The output indicates to the queue manager that the application has reached a syncpoint and that all gets
and puts that have been made since the last syncpoint have been backed out.

There is a description of the MQBACK call in MQBACK.

Transaction management and recoverable resource manager services
Transaction management and recoverable resource manager services (RRS) is a z/OS facility to provide
two-phase syncpoint support across participating resource managers.

An application can update recoverable resources managed by various z/OS resource managers such as
IBM MQ and Db2, and then commit or back out these updates as a single unit of work. RRS provides the
necessary unit-of-work status logging during normal execution, coordinates the syncpoint processing, and
provides appropriate unit-of-work status information during subsystem restart.

IBM MQ for z/OS RRS participant support enables IBM MQ applications in the batch, TSO, and Db2 stored
procedure environments to update both IBM MQ and non-IBM MQ resources (for example, Db2) within
a single logical unit of work. For information about RRS participant support, see z/OS MVS Programming:
Resource Recovery.

Your IBM MQ application can use either MQCMIT and MQBACK or the equivalent RRS calls, SRRCMIT and
SRRBACK. See “The RRS batch adapter” on page 859 for more information.

RRS availability

If RRS is not active on your z/OS system, any IBM MQ call issued from a program linked with either
RRS stub (CSQBRSTB or CSQBRRSI) returns MQRC_ENVIRONMENT_ERROR.

Db2 stored procedures

If you use Db2 stored procedures with RRS, be aware of the following:

Developing applications for IBM MQ 827

https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-programming-resource-recovery
https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-programming-resource-recovery

• Db2 stored procedures that use RRS must be managed by workload manager (WLM-managed).
• If a Db2-managed stored procedure contains IBM MQ calls, and it is linked with either RRS stub

(CSQBRSTB or CSQBRRSI), the MQCONN or MQCONNX call returns MQRC_ENVIRONMENT_ERROR.
• If a WLM-managed stored procedure contains IBM MQ calls, and is linked with a non-RRS stub, the

MQCONN or MQCONNX call returns MQRC_ENVIRONMENT_ERROR, unless it is the first IBM MQ call
executed since the stored procedure address space started.

• If your Db2 stored procedure contains IBM MQ calls and is linked with a non-RRS stub, IBM MQ
resources updated in that stored procedure are not committed until the stored procedure address
space ends, or until a subsequent stored procedure does an MQCMIT (using an IBM MQ Batch/TSO
stub).

• Multiple copies of the same stored procedure can execute concurrently in the same address space.
Ensure that your program is coded in a reentrant manner if you want Db2 to use a single copy of
your stored procedure. Otherwise you might receive MQRC_HCONN_ERROR on any IBM MQ call in
your program.

• Do not code MQCMIT or MQBACK in a WLM-managed Db2 stored procedure.
• Design all programs to run in Language Environment (LE).

Syncpoints in CICS for IBM i applications
IBM MQ for IBM i participates in CICS for IBM i units of work. You can use the MQI within a CICS for IBM i
application to put and get messages inside the current unit of work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that includes the IBM MQ
for IBM i operations. To back out all changes up to the previous syncpoint, you can use the EXEC CICS
SYNCPOINT ROLLBACK command.

If you use MQPUT, MQPUT1, or MQGET with the MQPMO_SYNCPOINT, or MQGMO_SYNCPOINT, option set
in a CICS for IBM i application, you cannot log off CICS for IBM i until IBM MQ for IBM i has removed
its registration as an API commitment resource. Commit or back out any pending put or get operations
before you disconnect from the queue manager. This allows you to log off CICS for IBM i.

Syncpoints in IBM MQ for Multiplatforms
Syncpoint support operates on two types of units of work: local and global.

A local unit of work is one in which the only resources updated are those of the IBM MQ queue manager.
Here syncpoint coordination is provided by the queue manager itself using a single-phase commit
procedure.

A global unit of work is one in which resources belonging to other resource managers, such as databases,
are also updated. IBM MQ can coordinate such units of work itself. They can also be coordinated by an
external commitment controller. For example:

• Another transaction manager

• The IBM i commitment controller

For full integrity, use a two-phase commit procedure. Two-phase commit can be provided by XA-
compliant transaction managers and databases. For example:

• TXSeries
• UDB

• the IBM i commitment controller

IBM MQ products can coordinate global units of work using a two-phase commit process.

IBM MQ for IBM i can act as a resource manager for global units of work within a WebSphere
Application Server environment, but cannot act as a transaction manager.

828 Developing Applications for IBM MQ

Implicit syncpoint
When putting persistent messages, IBM MQ is optimized for putting persistent messages under syncpoint.
Multiple applications putting persistent messages to the same queue perform better if those applications
use syncpoint. This is because there is less contention for the queue, if syncpoint is used to put persistent
messages.

ImplSyncOpenOutput adds an implicit syncpoint when applications put persistent messages outside
of syncpoint. This provides a performance improvement, without applications being aware of the implicit
syncpoint.

Implicit syncpoint only provides a performance boost when there are multiple applications putting to the
queue, because it reduces contention for the queue. So, ImplSyncOpenOutput specifies the minimum
number of applications that have a queue open for output before an implicit syncpoint is added. The
default value is 2. This means, that if you do not specify ImplSyncOpenOutput, implicit syncpoint is only
added if multiple applications are putting to the queue.

See Tuning parameters for more information.

Local units of work on Multiplatforms
Units of work that involve only the queue manager are called local units of work. Syncpoint coordination is
provided by the queue manager itself (internal coordination) using a single-phase commit process.

To start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1 requests specifying
the appropriate syncpoint option. The unit of work is committed using MQCMIT or rolled back using
MQBACK. However, the unit of work also ends when the connection between the application and the
queue manager is broken, intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a global unit of work coordinated
by IBM MQ is still active, an attempt is made to commit the unit of work. If, however, the application
terminates without disconnecting, the unit of work is rolled back as the application is deemed to have
terminated abnormally.

Global units of work on AIX, Linux, and Windows
Use global units of work when you also need to include updates to resources belonging to other resource
managers. The coordination can be internal or external to the queue manager.

Internal syncpoint coordination
Queue manager coordination of global units of work is not supported in an IBM MQ MQI client
environment.

Here, IBM MQ does the coordination. To start a global unit of work, the application issues the MQBEGIN
call.

As input to the MQBEGIN call, you must supply the connection handle (Hconn) that is returned by the
MQCONN or MQCONNX call. This handle represents the connection to the IBM MQ queue manager.

The application issues MQGET, MQPUT, or MQPUT1 requests specifying the appropriate syncpoint option.
This means that you can use MQBEGIN to initiate a global unit of work that updates local resources,
resources belonging to other resource managers, or both. Updates made to resources belonging to other
resource managers are made using the API of that resource manager. However, you cannot use the MQI to
update queues that belong to other queue managers. Issue MQCMIT or MQBACK before starting further
units of work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase commit of all the resource
managers involved in the unit of work. A two-phase commit process is used whereby resource managers
(for example, XA-compliant database managers such as Db2, Oracle, and Sybase) are first all asked to
prepare to commit. Only if all are prepared are they asked to commit. If any resource manager signals that
it cannot commit, each is asked to back out instead. Alternatively, you can use MQBACK to roll back the
updates of all the resource managers.

Developing applications for IBM MQ 829

If an application disconnects (MQDISC) while a global unit of work is still active, the unit of work is
committed. If, however, the application terminates without disconnecting, the unit of work is rolled back
as the application is deemed to have terminated abnormally.

The output from MQBEGIN is a completion code and a reason code.

When you use MQBEGIN to start a global unit of work, all the external resource managers that have been
configured with the queue manager are included. However, the call starts a unit of work but completes
with a warning if:

• There are no participating resource managers (that is, no resource managers have been configured with
the queue manager)

or

• One or more resource managers are not available.

In these cases, the unit of work must include updates to only those resource managers that were
available when the unit of work was started.

If one of the resource managers cannot commit its updates, all the resource managers are instructed
to roll back their updates, and MQCMIT completes with a warning. In unusual circumstances (typically,
operator intervention), an MQCMIT call might fail if some resource managers commit their updates but
others roll them back; the work is deemed to have completed with a mixed outcome. Such occurrences
are diagnosed in the error log of the queue manager so that remedial action may be taken.

An MQCMIT of a global unit of work succeeds if all the resource managers involved commit their updates.

For a description of the MQBEGIN call, see MQBEGIN.

External syncpoint coordination
This occurs when a syncpoint coordinator other than IBM MQ has been selected; for example, CICS,
Encina, or Tuxedo.

In this situation, IBM MQ for AIX, Linux, and Windows systems register their interest in the outcome of
the unit of work with the syncpoint coordinator so that they can commit or roll back any uncommitted get
or put operations as required. The external syncpoint coordinator determines whether one- or two-phase
commitment protocols are provided.

When you use an external coordinator, MQCMIT, MQBACK, and MQBEGIN cannot be issued. Calls to these
functions fail with the reason code MQRC_ENVIRONMENT_ERROR.

The way in which an externally coordinated unit of work is started depends on the programming interface
provided by the syncpoint coordinator. An explicit call might be required. If an explicit call is required, and
you issue an MQPUT call specifying the MQPMO_SYNCPOINT option when a unit of work is not started,
the completion code MQRC_SYNCPOINT_NOT_AVAILABLE is returned.

The scope of the unit of work is determined by the syncpoint coordinator. The state of the connection
between the application and the queue manager affects the success or failure of MQI calls that an
application issues, not the state of the unit of work. An application can, for example, disconnect and
reconnect to a queue manager during an active unit of work and perform further MQGET and MQPUT
operations inside the same unit of work. This is known as a pending disconnect.

You can use IBM MQ API calls in CICS programs, whether you choose to use the XA abilities of CICS. If
you do not use XA, then the puts and gets of messages to and from queues will not be managed within
CICS atomic units of work. One reason for choosing this method is that the overall consistency of the unit
of work is not important to you.

If the integrity of your units of work is important to you, then you must use XA. When you use XA, CICS
uses a two-phase commit protocol to ensure all resources within the unit of work are updated together.

For more information about setting up transactional support, see Transactional support scenarios, and
also TXSeries CICS documentation, for example, TXSeries for Multiplatforms CICS Administration Guide for
Open Systems.

830 Developing Applications for IBM MQ

Implicit syncpoint on Multiplatforms
Implicit syncpoint support enables persistent message puts outside of syncpoint.

When putting persistent messages, IBM MQ is optimized for putting persistent messages under syncpoint.
Multiple applications concurrently putting persistent messages to the same queue typically perform
better if those applications use syncpoint. This is because the locking strategy of IBM MQ is more efficient
if syncpoint is used when putting persistent messages.

The ImplSyncOpenOutput parameter in the qm.ini file, controls whether an implicit syncpoint can be
added when applications put persistent messages outside of syncpoint. This can provide a performance
improvement, without applications being aware of the implicit syncpoint.

Implicit syncpoint only provides a performance boost when there are multiple applications concurrently
putting to the queue, because it reduces lock contention. ImplSyncOpenOutput specifies the minimum
number of applications that have a queue open for output before an implicit syncpoint can be added.
The default value is 2. This means, that if you do not explicitly specify ImplSyncOpenOutput, implicit
syncpoint is only added if multiple applications are putting to the queue.

If you add an implicit syncpoint, statistics reflect that happening, and you might see a transaction output
from runmqsc display conn.

Set ImplSyncOpenOutput=OFF if you never want an implicit syncpoint added.

See Tuning parameters for more information.

Interfaces to external syncpoint managers on Multiplatforms
IBM MQ for Multiplatforms supports coordination of transactions by external syncpoint managers that use
the X/Open XA interface.

Some XA transaction managers (TXSeries) require that each XA resource manager supplies its name. This
is the string called name in the XA switch structure.

• The resource manager for IBM MQ on AIX, Linux, and Windows is named
MQSeries_XA_RMI.

• For IBM i, the resource manager name is MQSeries XA RMI.

For further details on XA interfaces refer to the XA documentation CAE Specification Distributed
Transaction Processing: The XA Specification, published by The Open Group.

In an XA configuration, IBM MQ for Multiplatforms fulfills the role of an XA resource manager. An XA
syncpoint coordinator can manage a set of XA resource managers, and synchronize the commit or backout
of transactions in both resource managers. This is how it works for a statically-registered resource
manager:

1. An application notifies the syncpoint coordinator that it wants to start a transaction.
2. The syncpoint coordinator issues a call to any resource managers that it knows of, to notify them of the

current transaction.
3. The application issues calls to update the resources managed by the resource managers associated

with the current transaction.
4. The application requests that the syncpoint coordinator either commit or roll back the transaction.
5. The syncpoint coordinator issues calls to each resource manager using two-phase commit protocols to

complete the transaction as requested.

The XA specification requires each resource manager to provide a structure called an XA Switch. This
structure declares the capabilities of the resource manager, and the functions that are to be called by the
syncpoint coordinator.

There are two versions of this structure:

Developing applications for IBM MQ 831

Table 128. Versions of XA Switch

Version Description

MQRMIXASwitch Static XA resource management

MQRMIXASwitchDynamic Dynamic XA resource management

For a list of the libraries containing this structure see The IBM MQ XA switch structure.

The method that must be used to link them to an XA syncpoint coordinator is defined by the coordinator;
consult the documentation provided by that coordinator to determine how to enable IBM MQ to cooperate
with your XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint coordinator can be the name
of the queue manager that is to be administered. This takes the same form as the queue manager name
passed to MQCONN or MQCONNX, and can be blank if the default queue manager is to be used. However,
you can use the two extra parameters TPM and AXLIB

TPM allows you to specify to IBM MQ the transaction manager name, for example, CICS. AXLIB allows you
to specify the actual library name in the transaction manager where the XA AX entry points are located.

If you use either of these parameters or a non default queue manager you must specify the queue
manager name using the QMNAME parameter. For further information see The CHANNEL, TRPTYPE,
CONNAME, and QMNAME parameters of the xa_open string.

Restrictions
1. Global units of work are not allowed with a shared Hconn (as described in “Shared (thread

independent) connections with MQCONNX” on page 713.

2. IBM MQ for IBM i does not support dynamic registration of XA resource managers.

The only transaction manager supported is WebSphere Application Server.

3. On Windows systems, all functions declared in the XA switch are declared as _cdecl
functions.

4. An external syncpoint coordinator can administer only one queue manager at a time. This is because
the coordinator has an effective connection to each queue manager, and is therefore subject to the
rule that only one connection is allowed at a time.

Note: Note: A JMS client application (CLIENT JEE application) running in a JEE server does not have
this restriction, so a single JEE server-managed transaction can coordinate multiple queue managers
in the same transaction. However, a JMS server application, running in bindings mode, is still subject to
the rule that only one connection is allowed at a time.

5. All applications that are run using the syncpoint coordinator can connect only to the queue manager
that is administered by the coordinator because they are already effectively connected to that queue
manager. They must issue MQCONN or MQCONNX to obtain a connection handle and must issue
MQDISC before they exit. Alternatively, they can use the exit UE014015 for TXSeries CICS.

Interfaces to the IBM i external syncpoint manager
IBM MQ for IBM i can use native IBM i commitment control as an external syncpoint coordinator.

Thread-independent (shared) connections are not allowed with commitment control. See the IBM i
Programming: Backup and Recovery Guide, SC21-8079 for more information about the commitment
control capabilities of IBM i.

To start the IBM i commitment control facilities, use the STRCMTCTL system command. To end
commitment control, use the ENDCMTCTL system command.

832 Developing Applications for IBM MQ

Note: The default value of Commitment definition scope is *ACTGRP. This must be defined as *JOB for IBM
MQ for IBM i. For example:

STRCMTCTL LCKLVL(*ALL) CMTSCOPE(*JOB)

IBM MQ for IBM i can also perform local units of work containing only updates to IBM MQ resources.
The choice between local units of work and participation in global units of work coordinated by IBM
i is made in each application when the application calls MQPUT, MQPUT1, or MQGET, specifying
MQPMO_SYNCPOINT or MQGMO_SYNCPOINT, or MQBEGIN. If commitment control is not active when
the first such call is issued, IBM MQ starts a local unit of work and all further units of work for this
connection to IBM MQ also use local units of work, regardless of whether commitment control is then
started. To commit a local unit of work, use MQCMIT. To back out a local unit of work, use MQBACK. The
IBM i commit and rollback calls such as the CL command COMMIT have no effect on IBM MQ local units of
work.

If you want to use IBM MQ for IBM i with native IBM i commitment control as an external syncpoint
coordinator, ensure that any job with commitment control is active and that you are using IBM MQ
in a single-threaded job. If you call MQPUT, MQPUT1, or MQGET, specifying MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT, in a multithreaded job in which commitment control has been started, the call fails
with a reason code of MQRC_SYNCPOINT_NOT_AVAILABLE.

It is possible to use local units of work and the MQCMIT and MQBACK calls in a multithreaded job.

If you call MQPUT, MQPUT1, or MQGET, specifying MQPMO_SYNCPOINT or MQGMO_SYNCPOINT, after
starting commitment control, IBM MQ for IBM i adds itself as an API commitment resource to the
commitment definition. This is typically the first such call in a job. While there are any API commitment
resources registered under a particular commitment definition, you cannot end commitment control for
that definition.

IBM MQ for IBM i removes its registration as an API commitment resource when you disconnect from the
queue manager, if there are no pending MQI operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT, MQPUT1, or MQGET
operations in the current unit of work, IBM MQ for IBM i remains registered as an API commitment
resource so that it is notified of the next commit or rollback. When the next syncpoint is reached, IBM MQ
for IBM i commits or rolls back the changes as required. An application can disconnect and reconnect to
a queue manager during an active unit of work and perform further MQGET and MQPUT operations inside
the same unit of work (this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment definition, message
CPF8355 is issued, indicating that pending changes were active. This message also appears in the job
log when the job ends. To avoid this, commit or roll back all pending IBM MQ for IBM i operations, and
disconnect from the queue manager. Thus, using COMMIT or ROLLBACK commands before ENDCMTCTL
enables end-commitment control to complete successfully.

When you use IBM i commitment control as an external syncpoint coordinator, you cannot
issue MQCMIT, MQBACK, and MQBEGIN calls. Calls to these functions fail with the reason code
MQRC_ENVIRONMENT_ERROR.

To commit or roll back (that is, to back out) your unit of work, use one of the programming languages that
supports the commitment control. For example:

• CL commands: COMMIT and ROLLBACK
• ILE C Programming Functions: _Rcommit and _Rrollback
• ILE RPG: COMMIT and ROLBK
• COBOL/400®: COMMIT and ROLLBACK

When you use IBM i commitment control as an external syncpoint coordinator with IBM MQ for IBM
i, IBM i performs a two-phase commit protocol in which IBM MQ participates. Because each unit of
work is committed in two phases, the queue manager might become unavailable for the second phase
after having voted to commit in the first phase. This can happen, for example, if the queue manager's

Developing applications for IBM MQ 833

internal jobs are ended. In this situation, the job log performing the commit contains message CPF835F
indicating that a commit or rollback operation failed. The messages preceding this indicate the cause of
the problem, whether it occurred during a commit or rollback operation, and also the logical unit of work
ID (LUWID) for the failed unit of work.

If the problem was caused by the failure of the IBM MQ API commitment resource during the commit or
rollback of a prepared unit of work, you can use the WRKMQMTRN command to complete the operation
and restore the integrity of the transaction. The command requires that you know the LUWID of the unit of
work to commit and back out.

Starting IBM MQ applications using triggers
Learn about triggers and how to start IBM MQ applications using triggers.

Some IBM MQ applications that serve queues run continuously, so they are always available to retrieve
messages that arrive on the queues. However, you might not want this when the number of messages
arriving on the queues is unpredictable. In this case, applications could be consuming system resources
even when there are no messages to retrieve.

IBM MQ provides a facility that enables an application to be started automatically when there are
messages available to retrieve. This facility is known as triggering.

For information about triggering channels see Triggering channels.

What is triggering?
The queue manager defines certain conditions as constituting trigger events.

If triggering is enabled for a queue and a trigger event occurs, the queue manager sends a trigger
message to a queue called an initiation queue. The presence of the trigger message on the initiation queue
indicates that a trigger event has occurred.

Trigger messages generated by the queue manager are not persistent. This reduces logging (resulting in
improving performance), and minimizing duplicates during restart, so improving restart time.

The program that processes the initiation queue is called a trigger-monitor application, and its function is
to read the trigger message and take appropriate action, based on the information contained in the trigger
message. Typically this action is to start some other application to process the queue that generated
the trigger message. From the point of view of the queue manager, there is nothing special about the
trigger-monitor application; it is simply another application that reads messages from a queue (the
initiation queue).

If triggering is enabled for a queue, you can create a process-definition object associated with it. This
object contains information about the application that processes the message that caused the trigger
event. If the process definition object is created, the queue manager extracts this information and places
it in the trigger message, for use by the trigger-monitor application. The name of the process definition
associated with a queue is given by the ProcessName local-queue attribute. Each queue can specify a
different process definition, or several queues can share the same process definition.

If you want to trigger the start of a channel, you do not need to define a process definition object. The
transmission queue definition is used instead.

Triggering is supported by IBM MQ clients running on AIX, Linux, and Windows. An application running
in a client environment is the same as one running in a full IBM MQ environment, except that you link it
with the client libraries. However the trigger monitor and the application to be started must both be in the
same environment.

Triggering involves:
Application queue

An application queue is a local queue that, when it has triggering set on and when the conditions are
met, requires that trigger messages are written.

834 Developing Applications for IBM MQ

Process definition
An application queue can have a process definition object associated with it that holds details of the
application that will get messages from the application queue. (See Attributes for process definitions
for a list of attributes.)
Remember that if you want a trigger to start a channel, you do not need to define a process
definition object.

Transmission queue
You need a transmission queue if you want a trigger to start a channel.
For a transmission queue on any platform other than Linux, the TriggerData attribute of the
transmission queue can specify the name of the channel to be started. This can replace the process
definition for triggering channels, but is used only when a process definition is not created.

Trigger event
A trigger event is an event that causes a trigger message to be generated by the queue manager.
This is typically a message arriving on an application queue, but it can also occur at other times. For
example, see “Conditions for a trigger event” on page 840.
IBM MQ has a range of options to allow you to control the conditions that cause a trigger event (see
“Controlling trigger events” on page 844).

Trigger message
The queue manager creates a trigger message when it recognizes a trigger event. It copies into the
trigger message information about the application to be started. This information comes from the
application queue and the process definition object associated with the application queue.
Trigger messages have a fixed format (see “Format of trigger messages” on page 851).

Initiation queue
An initiation queue is a local queue on which the queue manager puts trigger messages. Note that an
initiation queue cannot be an alias queue or a model queue.
A queue manager can own more than one initiation queue, and each one is associated with one or
more application queues.

A shared queue, a local queue accessible by queue managers in a queue sharing group,
can be an initiation queue on IBM MQ for z/OS.

Trigger monitor
A trigger monitor is a continuously running program that serves one or more initiation queues. When a
trigger message arrives on an initiation queue, the trigger monitor retrieves the message. The trigger
monitor uses the information in the trigger message. It issues a command to start the application that
is to retrieve the messages arriving on the application queue, passing it information contained in the
trigger message header, which includes the name of the application queue.
On all platforms, a special trigger monitor known as the channel initiator is responsible for starting
channels.

On z/OS, the channel initiator is typically started manually, or it can be done
automatically when a queue manager starts by changing CSQINP2 in the queue manager startup
JCL.

On Multiplatforms, the channel initiator is started automatically when the queue
manager starts, or it can be started manually with the runmqchi command.
For more information, see “Initiation queue processing by trigger monitors” on page 847.

To understand how triggering works, consider Figure 95 on page 836, which is an example of trigger type
FIRST (MQTT_FIRST).

Developing applications for IBM MQ 835

Figure 95. Flow of application and trigger messages

In Figure 95 on page 836, the sequence of events is:

1. Application A, which can be either local or remote to the queue manager, puts a message on the
application queue. No application has this queue open for input. However, this fact is relevant only to
trigger type FIRST and DEPTH.

2. The queue manager checks to see if the conditions are met under which it has to generate a trigger
event. They are, and a trigger event is generated. Information held within the associated process
definition object is used when creating the trigger message.

3. The queue manager creates a trigger message and puts it on the initiation queue associated with this
application queue, but only if an application (trigger monitor) has the initiation queue open for input.

4. The trigger monitor retrieves the trigger message from the initiation queue.
5. The trigger monitor issues a command to start application B (the server application).
6. Application B opens the application queue and retrieves the message.

Note:

1. If the application queue is open for input, by any program, and has triggering set for FIRST or DEPTH,
no trigger event occurs because the queue is already being served.

2. If the initiation queue is not open for input, the queue manager does not generate any trigger
messages; it waits until an application opens the initiation queue for input.

3. When using triggering for channels, use trigger type FIRST or DEPTH.
4. Triggered applications run under the user ID and group of the user who started the trigger monitor, the

CICS user, or the user who started the queue manager.

836 Developing Applications for IBM MQ

So far, the relationship between the queues within triggering has been only on a one to one basis.
Consider Figure 96 on page 837.

Figure 96. Relationship of queues within triggering

An application queue has a process definition object associated with it that holds details of the
application that will process the message. The queue manager places the information in the trigger
message, so only one initiation queue is necessary. The trigger monitor extracts this information from the
trigger message and starts the relevant application to deal with the message on each application queue.

Remember that, if you want to trigger the start of a channel, you do not need to define a process definition
object. The transmission queue definition can determine the channel to be triggered.

Use the following links to find out more about starting IBM MQ applications using triggers:

• “Prerequisites for triggering” on page 838
• “Conditions for a trigger event” on page 840
• “Controlling trigger events” on page 844
• “Designing an application that uses triggered queues” on page 846

Developing applications for IBM MQ 837

• “Initiation queue processing by trigger monitors” on page 847
• “Properties of trigger messages” on page 850
• “When triggering does not work” on page 852

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

Prerequisites for triggering
Use this information to learn about the steps to take before using triggering.

Before your application can take advantage of triggering, complete the following steps:

1. Either:

a. Create an initiation queue for your application queue. For example:

 DEFINE QLOCAL (initiation.queue) REPLACE +
 LIKE (SYSTEM.DEFAULT.INITIATION.QUEUE) +
 DESCR ('initiation queue description')

or
b. Determine the name of a local queue that exists and can be used by your application (typically,

this name is SYSTEM.DEFAULT.INITIATION.QUEUE or, if you are starting channels with triggers,
SYSTEM.CHANNEL.INITQ), and specify its name in the InitiationQName field of the application
queue.

2. Associate the initiation queue with the application queue. A queue manager can own more than one
initiation queue. You might want some of your application queues to be served by different programs,
in which case, you can use one initiation queue for each serving program, although you do not have to.
Here is an example of how to create an application queue:

 DEFINE QLOCAL (application.queue) REPLACE +

838 Developing Applications for IBM MQ

 LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +
 DESCR ('appl queue description') +
 INITQ (initiation.queue) +
 PROCESS (process.name) +
 TRIGGER +
 TRIGTYPE (FIRST)

Here is an extract from a CL program for IBM MQ for IBM i that creates an initiation
queue:

 /* Queue used by AMQSINQA */
 CRTMQMQ QNAME('SYSTEM.SAMPLE.INQ') +
 QTYPE(*LCL) REPLACE(*YES) +
 MQMNAME +
 TEXT('queue for AMQSINQA') +
 SHARE(*YES) /* Shareable */+
 DFTMSGPST(*YES)/* Persistent messages OK */+
 +
 TRGENBL(*YES) /* Trigger control on */+
 TRGTYPE(*FIRST)/* Trigger on first message*/+
 PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +
 INITQNAME('SYSTEM.SAMPLE.TRIGGER')

3. If you are triggering an application, create a process definition object to contain information relating
to the application that is to serve your application queue. For example, to trigger-start a CICS payroll
transaction called PAYR:

 DEFINE PROCESS (process.name) +
 REPLACE +
 DESCR ('process description') +
 APPLICID ('PAYR') +
 APPLTYPE (CICS) +
 USERDATA ('Payroll data')

Here is an extract from a CL program for IBM MQ for IBM i that creates a process
definition object:

 /* Process definition */
 CRTMQMPRC PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +
 REPLACE(*YES) +
 MQMNAME +
 TEXT('trigger process for AMQSINQA') +
 ENVDATA('JOBPTY(3)') /* Submit parameter */+
 APPID('AMQSINQA') /* Program name */

When the queue manager creates a trigger message, it copies information from the attributes of the
process definition object into the trigger message.

Platform To create a process definition object

AIX, Linux, and
Windows systems

Use DEFINE PROCESS or use SYSTEM.DEFAULT.PROCESS and modify using
ALTER PROCESS

z/OS

Use DEFINE PROCESS (see sample code in step “3” on page 839), or use
the operations and control panels.

IBM i

Use a CL program containing code as in step “3” on page 839.

4. Optional: Create a transmission queue definition and use blanks for the ProcessName attribute.

The TrigData attribute can contain the name of the channel to be triggered or it can be left
blank; except on IBM MQ for z/OS, if it is left blank, the channel initiator searches the channel

Developing applications for IBM MQ 839

definition files until it finds a channel that is associated with the named transmission queue. When the
queue manager creates a trigger message, it copies information from the TrigData attribute of the
transmission queue definition into the trigger message.

5. If you have created a process definition object to specify properties of the application that is to serve
your application queue, associate the process object with your application queue by naming it in the
ProcessName attribute of the queue.

Platform Use commands

AIX, Linux, and
Windows systems

ALTER QLOCAL

 z/OS

ALTER QLOCAL

 IBM i

CHGMQMQ

6. Start instances of the trigger monitors (or trigger servers in IBM MQ for IBM i) that are to
serve the initiation queues you have defined. See “Initiation queue processing by trigger monitors” on
page 847 for more information.

If you want to be aware of any undelivered trigger messages, make sure that your queue manager
has a dead-letter (undelivered-message) queue defined. Specify the name of the queue in the
DeadLetterQName queue manager field.

You can then set the trigger conditions that you require, using the attributes of the queue object that
defines your application queue. For more information, see “Controlling trigger events” on page 844.

Conditions for a trigger event
The queue manager creates a trigger message when certain conditions are satisfied.

The following conditions cause the queue manager to create a trigger message:

1. A message is put on a queue.
2. The message has a priority greater than or equal to the threshold trigger priority of the queue. This

priority is set in the TriggerMsgPriority local queue attribute; if it is set to zero, any message
qualifies.

3. The number of messages on the queue with priority greater than or equal to TriggerMsgPriority
was previously, depending on TriggerType:

• Zero (for trigger type MQTT_FIRST)
• Any number (for trigger type MQTT_EVERY)
• TriggerDepth minus 1 (for trigger type MQTT_DEPTH)

Note:

• For non-shared local queues, the queue manager counts both committed and uncommitted
messages when it assesses whether the conditions for a trigger event exist. Consequently an
application might be started when there are no messages for it to retrieve because the messages
on the queue have not been committed. In this situation, consider using the wait option with a
suitable WaitInterval, so that the application waits for its messages to arrive.

• For local shared queues, the queue manager counts committed messages only.
4. For triggering of type FIRST or DEPTH, no program has the application queue open for removing

messages (that is, the OpenInputCount local queue attribute is zero).

Note:

840 Developing Applications for IBM MQ

• For shared queues, special conditions apply when multiple queue managers have trigger monitors
running against a queue. In this situation, if one or more queue managers have the queue open
for input shared, the trigger criteria on the other queue managers are treated as TriggerType
MQTT_FIRST and TriggerMsgPriority zero. When all the queue managers close the queue for
input, the trigger conditions revert to those conditions specified in the queue definition.

An example scenario affected by this condition is multiple queue managers QM1, QM2, and QM3
with a trigger monitor running for an application queue A. A message arrives on A satisfying the
conditions for triggering, and a trigger message is generated on the initiation queue. The trigger
monitor on QM1 gets the trigger message and triggers an application. The triggered application
opens the application queue for shared input. From this point on the trigger conditions for
application queue A are evaluated as TriggerType MQTT_FIRST, and TriggerMsgPriority
zero on queue managers QM2 and QM3, until QM1 closes the application queue.

• For shared queues, this condition is applied for each queue manager. That is, a queue manager's
OpenInputCount for a queue must be zero for a trigger message to be generated for the queue
by that queue manager. However, if any queue manager in the queue sharing group has the queue
open using the MQOO_INPUT_EXCLUSIVE option, no trigger message is generated for that queue
by any of the queue managers in the queue sharing group.

The change in how the trigger conditions are evaluated occurs when the triggered application opens
the queue for input. In scenarios where there is only one trigger monitor running, other applications
can have the same effect because they similarly open the application queue for input. It does not
matter whether the application queue was opened by an application that is started by a trigger
monitor, or by some other application; it is the fact that the queue is open for input on another
queue manager that causes the change in trigger criteria.

5. On IBM MQ for z/OS, if the application queue is one with a Usage attribute of
MQUS_NORMAL, get requests for it are not inhibited (that is, the InhibitGet queue attribute is
MQQA_GET_ALLOWED). Also, if the triggered application queue is one with a Usage attribute of
MQUS_XMITQ, get requests for it are not inhibited.

6. Either:

• The ProcessName local queue attribute for the queue is not blank, and the process definition
object identified by that attribute has been created, or

• The ProcessName local queue attribute for the queue is all blank, but the queue is a transmission
queue. As the process definition is optional, the TriggerData attribute might also contain the
name of the channel to be started. In this case, the trigger message contains attributes with the
following values:

– QName: queue name
– ProcessName: blanks
– TriggerData: trigger data
– ApplType: MQAT_UNKNOWN
– ApplId: blanks
– EnvData: blanks
– UserData: blanks

7. An initiation queue has been created, and has been specified in the InitiationQName local queue
attribute. Also:

• Get requests are not inhibited for the initiation queue (that is, the value of the InhibitGet queue
attribute is MQQA_GET_ALLOWED).

• Put requests must not be inhibited for the initiation queue (that is, the value of the InhibitPut
queue attribute must be MQQA_PUT_ALLOWED).

• The value of the Usage attribute of the initiation queue must be MQUS_NORMAL.
• In environments where dynamic queues are supported, the initiation queue must not be a dynamic

queue that has been marked as logically deleted.

Developing applications for IBM MQ 841

8. A trigger monitor currently has the initiation queue open for removing messages (that is, the
OpenInputCount local queue attribute is greater than zero).

9. The trigger control (TriggerControl local queue attribute) for the application queue is set to
MQTC_ON. To do this, set the trigger attribute when you define your queue, or use the ALTER
QLOCAL command.

10. The trigger type (TriggerType local queue attribute) is not MQTT_NONE.

If all the required conditions are met, and the message that caused the trigger condition is put as part
of a unit of work, the trigger message does not become available for retrieval by the trigger monitor
application until the unit of work completes, whether the unit of work is committed or, for trigger type
MQTT_FIRST or MQTT_DEPTH, backed out.

11. A suitable message is placed on the queue, for a TriggerType of MQTT_FIRST or MQTT_DEPTH,
and the queue:

• Was not previously empty (MQTT_FIRST), or
• Had TriggerDepth or more messages (MQTT_DEPTH)

and conditions “2” on page 840 through “10” on page 842 (excluding “3” on page 840) are satisfied,
if in the case of MQTT_FIRST a sufficient interval (TriggerInterval queue manager attribute) has
elapsed since the last trigger message was written for this queue.

This is to allow for a queue server that ends before processing all the messages on the queue.
The purpose of the trigger interval is to reduce the number of duplicate trigger messages that are
generated.

Note: If you stop and restart the queue manager, the TriggerInterval timer is reset. There is
a small window during which it is possible to produce two trigger messages. The window exists
when the trigger attribute of the queue is set to enabled at the same time as a message arrives
and the queue was not previously empty (MQTT_FIRST) or had TriggerDepth or more messages
(MQTT_DEPTH).

12. The only application serving a queue issues an MQCLOSE call, for a TriggerType of MQTT_FIRST or
MQTT_DEPTH, and there is at least:

• One (MQTT_FIRST), or
• TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition “2” on page 840), and conditions “6” on page
841 through “10” on page 842 are also satisfied.

This is to allow for a queue server that issues an MQGET call, finds the queue empty, and so ends;
however, in the interval between the MQGET and the MQCLOSE calls, one or more messages arrive.

Note:

a. If the program serving the application queue does not retrieve all the messages, this can cause
a closed loop. Each time that the program closes the queue, the queue manager creates another
trigger message that causes the trigger monitor to start the server program again.

b. If the program serving the application queue backs out its get request (or if the program abends)
before it closes the queue, the same happens. However, if the program closes the queue before
backing out the get request, and the queue is otherwise empty, no trigger message is created.

c. To prevent such a loop occurring, use the BackoutCount field of MQMD to detect messages that
are repeatedly backed out. For more information, see “Messages that are backed out” on page 44.

13. The following conditions are satisfied using MQSET or a command:

a. • TriggerControl is changed to MQTC_ON, or
• TriggerControl is already MQTC_ON and the value of either TriggerType,
TriggerMsgPriority, or TriggerDepth (if relevant) is changed,

and there is at least:

• One (MQTT_FIRST or MQTT_EVERY), or

842 Developing Applications for IBM MQ

• TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition “2” on page 840), and conditions “4” on
page 840 through “10” on page 842 (excluding “8” on page 842) are also satisfied.

This is to allow for an application or operator changing the triggering criteria, when the conditions
for a trigger to occur are already satisfied.

b. The value of the InhibitPut queue attribute of an initiation queue changes from
MQQA_PUT_INHIBITED to MQQA_PUT_ALLOWED, and there is at least:

• One (MQTT_FIRST or MQTT_EVERY), or
• TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition “2” on page 840) on any of the queues for which this is
the initiation queue, and conditions “4” on page 840 through “10” on page 842 are also satisfied.
(One trigger message is generated for each such queue satisfying the conditions.)

This is to allow for trigger messages not being generated because of the MQQA_PUT_INHIBITED
condition on the initiation queue, but this condition now having been changed.

c. The value of the InhibitGet queue attribute of an application queue changes from
MQQA_GET_INHIBITED to MQQA_GET_ALLOWED, and there is at least:

• One (MQTT_FIRST or MQTT_EVERY), or
• TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition “2” on page 840) on the queue, and conditions “4” on
page 840 through “10” on page 842, excluding “5” on page 841, are also satisfied.

This allows applications to be triggered only when they can retrieve messages from the
application queue.

d. A trigger-monitor application issues an MQOPEN call for input from an initiation queue, and there
is at least:

• One (MQTT_FIRST or MQTT_EVERY), or
• TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition “2” on page 840) on any of the application queues for
which this is the initiation queue, and conditions “4” on page 840 through “10” on page 842
(excluding “8” on page 842) are also satisfied, and no other application has the initiation queue
open for input (one trigger message is generated for each such queue satisfying the conditions).

This is to allow for messages arriving on queues while the trigger monitor is not running, and for
the queue manager restarting and trigger messages (which are nonpersistent) being lost.

14. MSGDLVSQ is set correctly. If you set MSGDLVSQ=FIFO, messages are delivered to the queue in a
First In First Out basis. The priority of the message is ignored and the default priority of the queue is
assigned to the message. If TriggerMsgPriority is set to a higher value than the default priority
of the queue, no messages are triggered. If TriggerMsgPriority is set equal to or lower than the
default priority of the queue, triggering occurs for type FIRST, EVERY, and DEPTH. For information
about these types, see the description of the TriggerType field under “Controlling trigger events”
on page 844.

If you set MSGDLVSQ=PRIORITY and the message priority is equal to or greater than the
TriggerMsgPriority field, messages only count towards a trigger event. In this case, triggering
occurs for type FIRST, EVERY, and DEPTH. As an example, if you put 100 messages of lower priority
than the TriggerMsgPriority, the effective queue depth for triggering purposes is still zero. If
you then put another message on the queue, but this time the priority is greater than or equal to the
TriggerMsgPriority, the effective queue depth increases from zero to one and the condition for
TriggerType FIRST is satisfied.

Notes:

Developing applications for IBM MQ 843

1. From step “12” on page 842 (where trigger messages are generated as a result of some event other
than a message arriving on the application queue), the trigger message is not put as part of a unit
of work. Also, if the TriggerType is MQTT_EVERY, and if there are one or more messages on the
application queue, only one trigger message is generated.

2. If IBM MQ segments a message during MQPUT, a trigger event will not be processed until all the
segments have been successfully placed on the queue. However, once message segments are on the
queue, IBM MQ treats them as individual messages for triggering purposes. For example, a single
logical message split into three pieces causes only one trigger event to be processed when it is first
MQPUT and segmented. However, each of the three segments causes their own trigger events to be
processed as they are moved through the IBM MQ network.

3. For IBM MQ for z/OS, if a shared queue is setup for triggering and connection to the
Coupling Facility hosting the shared queue is lost, a trigger event might be generated and a message
put to the initiation queue. This can happen even when no message was put to the original shared
queue setup for triggering. This is caused by the over-indication of bits by the IXLVECTR macro as
documented in The List Notification Vector.

Controlling trigger events
You control trigger events using some of the attributes that define your application queue. This
information also gives examples of using the trigger types: EVERY, FIRST, and DEPTH.

You can enable and disable triggering, and you can select the number or priority of the messages that
count toward a trigger event. There is a full description of these attributes in Attributes of objects.

The relevant attributes are:
TriggerControl

Use this attribute to enable and disable triggering for an application queue.
TriggerMsgPriority

The minimum priority that a message must have for it to count toward a trigger event. If
a message of priority less than TriggerMsgPriority arrives on the application queue, the
queue manager ignores the message when it determines whether to create a trigger message. If
TriggerMsgPriority is set to zero, all messages count toward a trigger event.

TriggerType
In addition to the trigger type NONE (which disables triggering just like setting the TriggerControl
to OFF), you can use the following trigger types to set the sensitivity of a queue to trigger events:
EVERY

A trigger event occurs every time that a message arrives on the application queue. Use this type of
trigger if you want multiple instances of an application started.

FIRST
A trigger event occurs only when the number of messages on the application queue changes from
zero to one. Use this type of trigger if you want a serving program to start when the first message
arrives on a queue, continue until there are no more messages to process, then end. You must
always process the queue until it is empty. See also “Special case of trigger type FIRST” on page
845.

DEPTH
A trigger event occurs only when the number of messages on the application queue reaches the
value of the TriggerDepth attribute. A typical use of this type of triggering is to start a program
when all the replies to a set of requests are received.

Triggering by depth: With triggering by depth, the queue manager disables triggering (using the
TriggerControl attribute) after it creates a trigger message. Your application must re-enable
triggering itself (by using the MQSET call) after this has happened.

The action of disabling triggering is not under syncpoint control, so triggering cannot be re-
enabled by backing out a unit of work. If a program backs out a put request that caused a trigger
event, or if the program abends, you must re-enable triggering by using the MQSET call or the
ALTER QLOCAL command.

844 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=monitoring-list-notification-vector

TriggerDepth
The number of messages on a queue that causes a trigger event when using triggering by depth.

The conditions that must be satisfied for a queue manager to create a trigger message are described in
“Conditions for a trigger event” on page 840.

Example of the use of trigger type EVERY
Consider an application that generates requests for motor insurance. The application might send request
messages to a number of insurance companies, specifying the same reply-to queue each time. It might
set a trigger of type EVERY on this reply-to queue so that each time a reply arrives, the reply might trigger
an instance of the server to process the reply.

Example of the use of trigger type FIRST
Consider an organization with a number of branch offices that each transmit details of the days business
to the head office. They all do this at the same time, at the end of the working day, and at the head office
there is an application that processes the details from all the branch offices. The first message to arrive
at the head office could cause a trigger event that starts this application. This application would continue
processing until there are no more messages on its queue.

Example of the use of trigger type DEPTH
Consider a travel agency application that creates a single request to confirm a flight reservation, to
confirm a reservation for a hotel room, to rent a car, and to order some travelers checks. The application
might separate these items into four request messages, sending each to a separate destination. It might
set a trigger of type DEPTH on its reply-to queue (with the depth set to the value 4), so that it is restarted
only when all four replies have arrived.

If another message (possibly from a different request) arrives on the reply-to queue before the last of the
four replies, the requesting application is triggered early. To avoid this, when using DEPTH triggering to
collect multiple replies to a request, always use a new reply-to queue for each request.

Special case of trigger type FIRST
With trigger type FIRST, if there is already a message on the application queue when another message
arrives, the queue manager does not typically create another trigger message.

However, the application serving the queue might not actually open the queue (for example, the
application might end, possibly because of a system problem). If an incorrect application name has
been put into the process definition object, the application serving the queue will not pick up any of the
messages. In these situations, if another message arrives on the application queue, there is no server
running to process this message (and any other messages on the queue).

To deal with this, the queue manager creates further trigger messages under the following circumstances:

• If another message arrives on the application queue, but only if a predefined time interval has elapsed
since the queue manager created the last trigger message for that queue. This time interval is defined in
the queue manager attribute TriggerInterval. Its default value is 999 999 999 milliseconds.

• On IBM MQ for z/OS, application queues that name an open initiation queue are scanned
periodically. If TRIGINT milliseconds have passed since the last trigger message was sent and the
queue satisfies the conditions for a trigger event and CURDEPTH is greater than zero, a trigger message
is generated. This process is called backstop triggering.

Consider the following points when deciding on a value for the trigger interval to use in your application:

• If you set TriggerInterval to a low value, and there is no application serving the application queue,
trigger type FIRST might behave like trigger type EVERY. This depends on the rate that messages are
being put onto the application queue, which in turn might depend on other system activity. This is
because, if the trigger interval is very small, another trigger message is generated each time that a

Developing applications for IBM MQ 845

message is put onto the application queue, even though the trigger type is FIRST, not EVERY. (Trigger
type FIRST with a trigger interval of zero is equivalent to trigger type EVERY.)

• On IBM MQ for z/OS if you set TRIGINT to a low value, and there is no application serving
the trigger type FIRST application queue, backstop triggering will generate a trigger message each time
the periodic scan of application queues that name open initiation queues takes place.

• If a unit of work is backed out (see Trigger messages and units of work) and the trigger interval has
been set to a high value (or the default value), one trigger message is generated when the unit of work
is backed out. However, if you have set the trigger interval to a low value or to zero (causing trigger type
FIRST to behave like trigger type EVERY) many trigger messages can be generated. If the unit of work is
backed out, all the trigger messages are still made available. The number of trigger messages that are
generated depends on the trigger interval. If the trigger interval is set to zero, the maximum number of
messages are generated.

Designing an application that uses triggered queues
You have seen how to set up, and control, triggering for your applications. Here are some tips to consider
when you design your application.

Trigger messages and units of work
Trigger messages created because of trigger events that are not part of a unit of work are put on the
initiation queue, outside any unit of work, with no dependence on any other messages, and are available
for retrieval by the trigger monitor immediately.

Trigger messages created because of trigger events that are part of a unit of work are made available on
the initiation queue when the UOW is resolved, whether the unit of work is committed or backed out

If the queue manager fails to put a trigger message on an initiation queue, it will be put on the dead-letter
(undelivered-message) queue.

Note:

1. The queue manager counts both committed and uncommitted messages when it assesses whether the
conditions for a trigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even if the unit of work
is backed out so that a trigger message is always available when the required conditions are met. For
example, consider a put request within a unit of work for a queue that is triggered with trigger type
FIRST. This causes the queue manager to create a trigger message. If another put request occurs,
from another unit of work, this does not cause another trigger event because the number of messages
on the application queue has now changed from one to two, which does not satisfy the conditions
for a trigger event. Now if the first unit of work is backed out, but the second is committed, a trigger
message is still created.

However, this means that trigger messages are sometimes created when the conditions for a
trigger event are not satisfied. Applications that use triggering must always be prepared to handle
this situation. It is recommended that you use the wait option with the MQGET call, setting the
WaitInterval to a suitable value.

Created trigger messages are always made available, whether the unit of work is backed out or
committed.

2. For local shared queues (that is, shared queues in a queue sharing group) the queue manager counts
committed messages only.

Getting messages from a triggered queue
When you design applications that use triggering, be aware that there might be a delay between a trigger
monitor starting a program and other messages becoming available on the application queue. This can
happen when the message that causes the trigger event is committed before the others.

846 Developing Applications for IBM MQ

To allow time for messages to arrive, always use the wait option when you use the MQGET call to remove
messages from a queue for which trigger conditions are set. The WaitInterval must be sufficient to
allow for the longest reasonable time between a message being put and that put call being committed. If
the message is arriving from a remote queue manager, this time is affected by:

• The number of messages that are put before being committed
• The speed and availability of the communication link
• The sizes of the messages

For an example of a situation where you should use the MQGET call with the wait option, consider the
same example that we used when describing units of work. This was a put request within a unit of work
for a queue that is triggered with trigger type FIRST. This event causes the queue manager to create a
trigger message. If another put request occurs, from another unit of work, this does not cause another
trigger event because the number of messages on the application queue has not changed from zero to
one. Now if the first unit of work is backed out, but the second is committed, a trigger message is still
created. So the trigger message is created at the time that the first unit of work is backed out. If there is
a significant delay before the second message is committed, the triggered application might need to wait
for it.

With triggering of type DEPTH, a delay can occur even if all relevant messages are eventually committed.
Suppose that the TriggerDepth queue attribute has the value 2. When two messages arrive on the
queue, the second causes a trigger message to be created. However, if the second message is the first to
be committed, it is at that time that the trigger message becomes available. The trigger monitor starts the
server program, but the program can retrieve only the second message until the first one is committed. So
the program might need to wait for the first message to be made available.

Design your application so that it terminates if no messages are available for retrieval when your wait
interval expires. If one or more messages arrive later, rely on your application being retriggered to process
them. This method prevents applications being idle, and unnecessarily using resources.

Initiation queue processing by trigger monitors
To a queue manager, a trigger monitor is like any other application that serves a queue. However, a trigger
monitor serves initiation queues.

A trigger monitor is usually a continuously-running program. When a trigger message arrives on an
initiation queue, the trigger monitor retrieves that message. It uses information in the message to issue a
command to start the application that is to process the messages on the application queue.

The trigger monitor must pass sufficient information to the program that it is starting so that the program
can perform the correct actions on the correct application queue.

A channel initiator is an example of a special type of trigger monitor for message channel agents. In this
situation however, you must use either trigger type FIRST or DEPTH.

Trigger monitors on AIX, Linux, and Windows systems
This topic contains information about trigger monitors provided on AIX, Linux, and Windows systems.

The following trigger monitors are provided for the server environment:
amqstrg0

This is a sample trigger monitor that provides a subset of the function provided by runmqtrm. See
“Using the sample programs on Multiplatforms” on page 1018 for more information about amqstrg0.

runmqtrm
The syntax of this command is runmqtrm [-m QMgrName] [-q InitQ], where
QMgrName is the queue manager and InitQ is the initiation queue. The default queue is
SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue manager. It calls programs for the
appropriate trigger messages. This trigger monitor supports the default application type.

The command string passed by the trigger monitor to the operating system is built as follows:

Developing applications for IBM MQ 847

1. The ApplId from the relevant PROCESS definition (if created)
2. The MQTMC2 structure, enclosed in double quotation marks
3. The EnvData from the relevant PROCESS definition (if created)

where ApplId is the name of the program to run as it would be entered on the command line.

The parameter passed is the MQTMC2 character structure. A command string is invoked that has this
string, exactly as provided, in double quotation marks, in order that the system command will accept it
as one parameter.

The trigger monitor does not look to see if there is another message on the initiation queue until the
completion of the application that it has just started. If the application has much processing to do, the
trigger monitor might not be able to keep up with the number of trigger messages arriving. You have
two options:

• Have more trigger monitors running
• Run the started applications in the background

If you have more trigger monitors running, you can control the maximum number of applications that
can run at any one time. If you run applications in the background, there is no restriction imposed by
IBM MQ on the number of applications that can run.

To run the started application in the background on AIX and Linux, put an
& at the end of the EnvData of the PROCESS definition.

To run the started application in the background on Windows systems, within the ApplId field, prefix
the name of your application with a START command. For example:

START ?B AMQSECHA

Note: Where a Windows path has spaces as a part of the path name, these should
be enclosed in quotation marks (") to ensure that it is handled as a single argument. For example,
"C:\Program Files\Application Directory\Application.exe".

The following is an example of an APPLICID string where the file name includes spaces as a part of
the path:

START "" /B "C:\Program Files\Application Directory\Application.exe"

The syntax of the Windows START command in the example includes an empty string enclosed in
double quotation marks. START specifies that the first argument in quotation marks will be treated
as the title of the new command. To ensure that Windows does not mistake the application path for
a 'title' argument, add a title string enclosed in double quotation marks to the command before the
application name.

The following trigger monitors are provided for the IBM MQ client:
runmqtmc

This is the same as runmqtrm except that it links with the IBM MQ MQI client libraries.

Trigger monitor for CICS
The amqltmc0 trigger monitor is provided for CICS. It works in the same way as the standard trigger
monitor, runmqtrm, but you run it in a different way and it triggers CICS transactions.

This topic applies only to Windows, AIX and Linux x86-64 systems.

The trigger monitor is supplied as a CICS program; define it with a 4-character transaction name. Enter
the 4-character name to start the trigger monitor. It uses the default queue manager (as named in the
qm.ini file or, on IBM MQ for Windows, the registry), and the SYSTEM.CICS.INITIATION.QUEUE.

848 Developing Applications for IBM MQ

If you want to use a different queue manager or queue, build the trigger monitor MQTMC2 structure: this
requires you to write a program using the EXEC CICS START call, because the structure is too long to add
as a parameter. Then, pass the MQTMC2 structure as data to the START request for the trigger monitor.

When you use the MQTMC2 structure, you need to supply only the StrucId, Version, QName, and
QMgrName parameters to the trigger monitor as it does not reference any other fields.

Messages are read from the initiation queue and used to start CICS transactions, using EXEC CICS
START, assuming the APPL_TYPE in the trigger message is MQAT_CICS. The reading of messages from the
initiation queue is performed under CICS syncpoint control.

Messages are generated when the monitor starts and stops, and when an error occurs. These messages
are sent to the CSMT transient data queue.

Table 129. Available versions of the trigger monitor.

A table with two columns. the first colum lists the available versions of the trigger monitor and the
second column shows which platforms each version is used for.

Version Use

amqltmc0 TXSeries for:

• AIX

• Linux x86-64 systems

amqltmc4 TXSeries for Windows 5.1

amqltmcc Client bound version of the CICS trigger monitor

amqltmc064

64 bit TXSeries for Linux x86-64 systems

amqltmcc64

Client version of amqltmc064

If you need a trigger monitor for other environments, write a program that can process the trigger
messages that the queue manager puts on the initiation queues. Such a program should perform the
following actions:

1. Use the MQGET call to wait for a message to arrive on the initiation queue.
2. Examine the fields of the MQTM structure of the trigger message to find the name of the application to

start, and the environment in which it runs.
3. Issue an environment-specific start command.

For example, on z/OS batch, submit a job to the internal reader.
4. Convert the MQTM structure to the MQTMC2 structure if required.
5. Pass either the MQTMC2 or MQTM structure to the started application. This can contain user data.
6. Associate with your application queue the application that is to serve that queue. You do this by

naming the process definition object (if created) in the ProcessName attribute of the queue. To name
the process definition object, you can use the DEFINE QLOCAL or ALTER QLOCAL command.

On IBM i, you can also use CRTMQMQ or CHGMQMQ.

For more information about the trigger monitor interface, see MQTMC2.

Developing applications for IBM MQ 849

Trigger monitors on IBM i
On IBM i, instead of the runmqtrm control command, use the IBM MQ for IBM i CL command STRMQMTRM.

Use the STRMQMTRM command as follows:

STRMQMTRM INITQNAME(InitQ) MQMNAME(QMgrName)

Details are as for runmqtrm.

The following sample programs are also provided, which you can use as models to write your own trigger
monitors:
AMQSTRG4

This is a trigger monitor that submits an IBM i job for the process that is to be started, but this means
that there is additional processing associated with each trigger message.

AMQSERV4
This is a trigger server. For each trigger message, this server runs the command for the process in its
own job, and can call CICS transactions.

Both the trigger monitor and the trigger server pass an MQTMC2 structure to the programs that they start.
For a description of this structure, see MQTMC2. Both of these samples are delivered in both source and
executable forms.

Because these trigger monitors can invoke only native IBM i programs, they cannot trigger Java programs
directly, because Java classes are located in the IFS. However, Java programs can be triggered indirectly
by triggering a CL program that then invokes the Java program and passes across the TMC2 structure. The
minimum size of the TMC2 structure is 732 bytes.

Here is the source of a sample CLP:

 PGM PARM(&TMC2)
 DCL &TMC2 *CHAR LEN(800)
 ADDENVVAR ENVVAR(TM) VALUE(&TMC2)
 QSH CMD('java_pgmname $TM')
 RMVENVVAR ENVVAR(TM)
 ENDPGM

The following trigger monitor program is provided for the IBM MQ MQI client: RUNMQTMC

Call the RUNMQTMC as follows:

CALL PGM(QMQM/RUNMQTMC) PARM('-m' QMgrName '-q' InitQ)

Properties of trigger messages
The following topics describe some other properties of trigger messages.

• “Persistence and priority of trigger messages” on page 850
• “Queue manager restart and trigger messages” on page 851
• “Trigger messages and changes to object attributes” on page 851
• “Format of trigger messages” on page 851

Persistence and priority of trigger messages
Trigger messages are not persistent because there is no requirement for them to be so.

However, the conditions for generating triggering events do persist, so trigger messages are generated
whenever these conditions are met. If a trigger message is lost, the continued existence of the application
message on the application queue guarantees that the queue manager generates a trigger message as
soon as all the conditions are met.

If a unit of work is rolled back, any trigger messages it generated are always delivered.

850 Developing Applications for IBM MQ

Trigger messages take the default priority of the initiation queue.

Queue manager restart and trigger messages
Following the restart of a queue manager, when an initiation queue is next opened for input, a trigger
message can be put to this initiation queue if an application queue associated with it has messages on it,
and is defined for triggering.

Trigger messages and changes to object attributes
Trigger messages are created according to the values of the trigger attributes in force at the time of the
trigger event.

If the trigger message is not made available to a trigger monitor until later (because the message that
caused it to be generated was put within a unit of work), any changes to the trigger attributes in the
meantime have no effect on the trigger message. In particular, disabling triggering does not prevent a
trigger message being made available once it has been created. Also, the application queue might no
longer exist at the time that the trigger message is made available.

Format of trigger messages
The format of a trigger message is defined by the MQTM structure.

This has the following fields, which the queue manager fills when it creates the trigger message, using
information in the object definitions of the application queue and of the process associated with that
queue:
StrucId

The structure identifier.
Version

The version of the structure.
QName

The name of the application queue on which the trigger event occurred. When the queue manager
creates a trigger message, it fills this field using the QName attribute of the application queue.

ProcessName
The name of the process definition object that is associated with the application queue. When the
queue manager creates a trigger message, it fills this field using the ProcessName attribute of the
application queue.

TriggerData
A free-format field for use by the trigger monitor. When the queue manager creates a trigger
message, it fills this field using the TriggerData attribute of the application queue. On IBM MQ
for Multiplatforms, this field can be used to specify the name of the channel to be triggered.

ApplType
The type of the application that the trigger monitor is to start. When the queue manager creates
a trigger message, it fills this field using the ApplType attribute of the process definition object
identified in ProcessName.

ApplId
A character string that identifies the application that the trigger monitor is to start. When the queue
manager creates a trigger message, it fills this field using the ApplId attribute of the process
definition object identified in ProcessName.

When you use the trigger monitor CKTI, supplied by CICS, the ApplId attribute of the process
definition object is a CICS transaction identifier.

When you use CSQQTRMN supplied by IBM MQ for z/OS, the ApplId attribute of the
process definition object is an IMS transaction identifier.

Developing applications for IBM MQ 851

EnvData
A character field containing environment-related data for use by the trigger monitor. When the queue
manager creates a trigger message, it fills this field using the EnvData attribute of the process
definition object identified in ProcessName. The CICS-supplied trigger monitor (CKTI) or the IBM
MQ for z/OS-supplied trigger monitor (CSQQTRMN) does not use this field, but other trigger monitors
might choose to use it.

UserData
A character field containing user data for use by the trigger monitor. When the queue manager creates
a trigger message, it fills this field using the UserData attribute of the process definition object
identified in ProcessName. This field can be used to specify the name of the channel to be triggered.

There is a full description of the trigger message structure in MQTM.

When triggering does not work
A program is not triggered if the trigger monitor cannot start the program or the queue manager cannot
deliver the trigger message. For example, the applid in the process object must specify that the program
is to be started in the background; otherwise, the trigger monitor cannot start the program.

If a trigger message is created but cannot be put on the initiation queue (for example, because the queue
is full or the length of the trigger message is greater than the maximum message length specified for the
initiation queue), the trigger message is put instead on the dead-letter (undelivered message) queue.

If the put operation to the dead-letter queue cannot complete successfully, the trigger message is

discarded and a warning message is sent to the z/OS console or to the system operator or is
put on the error log.

Putting the trigger message on the dead-letter queue might generate a trigger message for that queue.
This second trigger message is discarded if it adds a message to the dead-letter queue.

If the program is triggered successfully but abends before it receives the message from the queue, use a
trace utility (for example, CICS AUXTRACE if the program is running under CICS) to find the cause of the
failure.

Working with the MQI and clusters
There are special options on calls and return codes that relate to clustering.

Use the following links to find out more about the options available on the calls and return codes for use
with clusters:

• “MQOPEN and clusters” on page 853
• “MQPUT, MQPUT1 and clusters” on page 854
• “MQINQ and clusters” on page 854
• “MQSET and clusters” on page 855
• “Return codes” on page 855

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741

852 Developing Applications for IBM MQ

Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

MQOPEN and clusters
The queue to which a message is put to, or read from, when a cluster queue is opened, depends on the
MQOPEN call.

Selecting the target queue
If you do not provide a queue manager name in the object descriptor, MQOD, the queue manager selects
the queue manager to send the message to. If you do provide a queue manager name in the object
descriptor, then messages are always sent to the queue manager you have selected.

If the queue manager is selecting the target queue manager, the selection depends on the binding
options, MQOO_BIND_* and if a local queue exists. If there is a local instance of the queue, it is always
opened in preference to a remote instance, unless the CLWLUSEQ attribute is set to ANY. Otherwise,
the selection depends on the binding options. Either MQOO_BIND_ON_OPEN or MQOO_BIND_ON_GROUP
must be specified when using message groups with clusters to ensure that all messages in the group are
processed at the same destination.

If the queue manager is selecting the target queue manager, it does so in a round-robin fashion, using the
workload management algorithm; see Workload balancing in clusters.

When the workload balancing algorithm is used depends on the way the cluster queue is opened:

• MQOO_BIND_ON_OPEN - the algorithm is used once at the time the queue is opened by the application.
• MQOO_BIND_NOT_FIXED - the algorithm is used for every message put to the queue.
• MQOO_BIND_ON_GROUP - the algorithm is used once at the start of each message group.

MQOO_BIND_ON_OPEN
The MQOO_BIND_ON_OPEN option on the MQOPEN call specifies that the target queue manager is to be
fixed. Use the MQOO_BIND_ON_OPEN option if there are multiple instances of the same queue within a
cluster. All messages put to the queue specifying the object handle returned from the MQOPEN call are
directed to the same queue manager.

• Use the MQOO_BIND_ON_OPEN option if messages have affinities. For example, if a batch of
messages is all to be processed by the same queue manager, specify MQOO_BIND_ON_OPEN when
you open the queue. IBM MQ fixes the queue manager and the route to be taken by all messages put
to that queue.

• If MQOO_BIND_ON_OPEN option is specified, the queue must be reopened for a new instance of the
queue to be selected.

MQOO_BIND_NOT_FIXED
The MQOO_BIND_NOT_FIXED option on the MQOPEN call specifies that the target queue manager is
not fixed. Messages written to the queue specifying the object handle returned from the MQOPEN
call are routed to a queue manager at MQPUT time on a message-by-message basis. Use the

Developing applications for IBM MQ 853

MQOO_BIND_NOT_FIXED option if you do not want to force all your messages to be written to the
same destination.

• Do not specify MQOO_BIND_NOT_FIXED and MQMF_SEGMENTATION_ALLOWED at the same time. If
you do, the segments of your message might be delivered to different queue managers, scattered
throughout the cluster.

MQOO_BIND_ON_GROUP
Allows an application to request that a group of messages is allocated to the same destination
instance. This option is valid only for queues, and affects only cluster queues. If specified for a queue
that is not a cluster queue, the option is ignored.

• Groups are only routed to a single destination when MQPMO_LOGICAL_ORDER is specified on the
MQPUT. When MQOO_BIND_ON_GROUP is specified, but a message is not part of a logical group,
BIND_NOT_FIXED behavior is used instead.

MQOO_BIND_AS_Q_DEF
If you do not specify either MQOO_BIND_ON_OPEN, MQOO_BIND_NOT_FIXED or
MQOO_BIND_ON_GROUP, the default option is MQOO_BIND_AS_Q_DEF. Using MQOO_BIND_AS_Q_DEF
causes the binding that is used for the queue handle to be taken from the DefBind queue attribute.

Relevance of MQOPEN options
The MQOPEN options MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET require a local instance of the
cluster queue for MQOPEN to succeed.

The MQOPEN options MQOO_OUTPUT, MQOO_BIND_*, or MQOO_INQUIRE do not require a local instance of
the cluster queue to succeed.

Resolved queue manager name
When a queue manager name is resolved at MQOPEN time, the resolved name is returned to the
application. If the application tries to use this name on a subsequent MQOPEN call, it might find that
it is not authorized to access the name.

MQPUT, MQPUT1 and clusters
If MQOO_BIND_NOT_FIXED is specified on an MQOPEN the workload management routines chooses which
destination MQPUT or MQPUT1 select.

If MQOO_BIND_NOT_FIXED is specified on an MQOPEN call, each subsequent MQPUT call invokes the
workload management routine to determine which queue manager to send the message to. The
destination and route to be taken are selected on a message-by-message basis. The destination and
route might change after the message has been put if conditions in the network change. The MQPUT1 call
always operates as though MQOO_BIND_NOT_FIXED were in effect, that is, it always invokes the workload
management routine.

When the workload management routine has selected a queue manager, the local queue manager
completes the put operation. The message can be placed on different queues:

1. If the destination is the local instance of the queue, the message is placed on the local queue.
2. If the destination is a queue manager in a cluster, the message is placed on a cluster transmission

queue.
3. If the destination is a queue manager outside a cluster, the message is placed on a transmission queue

with the same name as the target queue manager.

If MQOO_BIND_ON_OPEN is specified on the MQOPEN call, MQPUT calls do not invoke the workload
management routine because the destination and route have already been selected.

MQINQ and clusters
Which cluster queue is inquired upon depends upon the options you combine with MQOO_INQUIRE.

Before you can inquire on a queue, open it using the MQOPEN call and specify MQOO_INQUIRE.

854 Developing Applications for IBM MQ

To inquire on a cluster queue, use the MQOPEN call and combine other options with MQOO_INQUIRE. The
attributes that can be inquired depend on whether there is a local instance of the cluster queue, and on
how the queue is opened:

• Combining MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET with MQOO_INQUIRE requires a local instance
of the cluster queue for the open to succeed. In this case you can inquire on all the attributes that are
valid for local queues.

• Combining MQOO_OUTPUT with MQOO_INQUIRE, and specifying none of the preceding options, the
instance opened is either:

– The instance on the local queue manager, if there is one. In this case you can inquire on all the
attributes that are valid for local queues.

– An instance elsewhere in the cluster, if there is no local queue manager instance. In this case only
the following attributes can be inquired on. The QType attribute has the value MQQT_CLUSTER in this
case.

- DefBind
- DefPersistence
- DefPriority
- InhibitPut
- QDesc
- QName
- QType

To inquire on the DefBind attribute of a cluster queue, use the MQINQ call with the selector
MQIA_DEF_BIND. The value returned is either MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED, or
MQBND_BIND_ON_GROUP. Either MQBND_BIND_ON_OPEN or MQBND_BIND_ON_GROUP must be specified
when using groups with clusters.

To inquire on the CLUSTER and CLUSNL attributes of the local instance of a queue, use the MQINQ call
with the selector MQCA_CLUSTER_NAME or the selector MQCA_CLUSTER_NAMELIST.

Note: If you open a cluster queue without fixing the queue that MQOPEN has bound to, successive MQINQ
calls might inquire on different instances of the cluster queue.

Related concepts
“MQOPEN option for cluster queue” on page 722
The binding used for the queue handle is taken from the DefBind queue attribute, which can take the
value MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP.

MQSET and clusters
The MQOPEN option MQOO_SET option requires there to be a local instance of a cluster queue for MQSET to
succeed.

You cannot use the MQSET call to set the attributes of a queue elsewhere in the cluster.

You can open a local alias or remote queue defined with the cluster attribute and use the MQSET call. You
can set the attributes of the local alias or remote queue. It does not matter if the target queue is a cluster
queue defined on a different queue manager.

Return codes
Return codes specific to clusters

MQRC_CLUSTER_EXIT_ERROR (2266 X'8DA')

An MQOPEN, MQPUT, or MQPUT1 call is issued to open a cluster queue or put a message on it. The
cluster workload exit, defined by the ClusterWorkloadExit attribute of a queue manager, fails
unexpectedly or does not respond in time.

Developing applications for IBM MQ 855

A message is written to the system log on IBM MQ for z/OS giving more information
about this error.

Subsequent MQOPEN, MQPUT, and MQPUT1 calls for this queue handle are processed as though the
ClusterWorkloadExit attribute were blank.

MQRC_CLUSTER_EXIT_LOAD_ERROR (2267 X'8DB')

On z/OS, the cluster workload exit cannot be loaded.

A message is written to the system log and processing continues as though the
ClusterWorkloadExit attribute is blank.

On Multiplatforms, an MQCONN or MQCONNX call is issued to connect to a queue
manager. The call fails because the cluster workload exit, defined by the queue manager
ClusterWorkloadExit attribute of the queue manager, cannot be loaded.

MQRC_CLUSTER_PUT_INHIBITED (2268 X'8DC')

An MQOPEN call with the MQOO_OUTPUT and MQOO_BIND_ON_OPEN options in effect is issued for
a cluster queue. All the instances of the queue in the cluster are currently put-inhibited by having
the InhibitPut attribute set to MQQA_PUT_INHIBITED. Because there are no queue instances
available to receive messages, the MQOPEN call fails.

This reason code occurs only when both of the following statements are true:

• There is no local instance of the queue. If there is a local instance, the MQOPEN call succeeds, even if
the local instance is put-inhibited.

• There is no cluster workload exit for the queue, or there is a cluster workload exit but it does not
choose a queue instance. (If the cluster workload exit chooses a queue instance, the MQOPEN call
succeeds, even if that instance is put-inhibited.)

If the MQOO_BIND_NOT_FIXED option is specified on the MQOPEN call, the call can succeed even if
all the queues in the cluster are put-inhibited. However, a subsequent MQPUT call might fail if all the
queues are still put-inhibited at the time of that call.

MQRC_CLUSTER_RESOLUTION_ERROR (2189 X'88D')

1. An MQOPEN, MQPUT, or MQPUT1 call is issued to open a cluster queue or put a message on it.
The queue definition cannot be resolved correctly because a response is required from the full
repository queue manager but none is available.

2. An MQOPEN, MQPUT, MQPUT1 or MQSUB call is issued for a topic object specifying PUBSCOPE (ALL)
or SUBSCOPE (ALL). The cluster topic definition cannot be resolved correctly because a response
is required from the full repository queue manager but none is available.

MQRC_CLUSTER_RESOURCE_ERROR (2269 X'8DD')

An MQOPEN, MQPUT, or MQPUT1 call is issued for a cluster queue. An error occurs while trying to use a
resource required for clustering.

MQRC_NO_DESTINATIONS_AVAILABLE (2270 X'8DE')

An MQPUT or MQPUT1 call is issued to put a message on a cluster queue. At the time of the call, there
are no longer any instances of the queue in the cluster. The MQPUT fails and the message is not sent.

The error can occur if MQOO_BIND_NOT_FIXED is specified on the MQOPEN call that opens the queue,
or MQPUT1 is used to put the message.

MQRC_STOPPED_BY_CLUSTER_EXIT (2188 X'88C')

An MQOPEN, MQPUT, or MQPUT1 call is issued to open or put a message on a cluster queue. The cluster
workload exit rejects the call.

856 Developing Applications for IBM MQ

Using and writing applications on IBM MQ for z/OS
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

This information explains the IBM MQ facilities available to programs running in each of the supported
environments. In addition,

• For information about using the IBM MQ-CICS bridge, see Using IBM MQ with CICS .
• For information about using IMS and the IMS bridge, see “IMS and IMS bridge applications on IBM MQ

for z/OS” on page 66.

Use the following links to find out more about using and writing applications on IBM MQ for z/OS:

• “Environment-dependent IBM MQ for z/OS functions” on page 857
• “Debugging facilities, syncpoint support, and recovery support” on page 858
• “The IBM MQ for z/OS interface with the application environment” on page 859
• “Writing z/OS UNIX System Services applications” on page 860
• “Application programming with shared queues” on page 863

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 66
This information helps you to write IMS applications using IBM MQ.

Environment-dependent IBM MQ for z/OS functions
Use this information when considering IBM MQ for z/OS functions.

The main differences to be considered between IBM MQ functions in the environments in which IBM MQ
for z/OS runs are:

• IBM MQ for z/OS supplies the following trigger monitors:

– CKTI for use in the CICS environment
– CSQQTRMN for use in the IMS environment

You must write your own module to start applications in other environments.

Developing applications for IBM MQ 857

• Syncpointing using two-phase commit is supported in the CICS and IMS environments. It is also
supported in the z/OS batch environment using transaction management and recoverable resource
manager services (RRS). Single-phase commit is supported in the z/OS environment by IBM MQ itself.

• For the batch and IMS environments, the MQI provides calls to connect programs to, and to disconnect
them from, a queue manager. Programs can connect to more than one queue manager.

• A CICS system can connect to only one queue manager. This can be made to happen when CICS
is initiated if the subsystem name is defined in the CICS system startup job. The MQI connect and
disconnect calls are tolerated, but have no effect, in the CICS environment.

• The API-crossing exit allows a program to intervene in the processing of all MQI calls. This exit is
available in the CICS environment only.

• In CICS on multiprocessor systems, some performance advantage is gained because MQI calls can be
executed under multiple z/OS TCBs. For more information, see the Planning on z/OS IBM MQ for z/OS
Concepts and Planning Guide.

These features are summarized in Table 130 on page 858.

Table 130. z/OS environmental features

CICS IMS Batch/TSO

Trigger monitor supplied Yes Yes No

Two-phase commit Yes Yes Yes

Single-phase commit Yes No Yes

Connect/disconnect MQI calls Tolerated Yes Yes

API-crossing exit Yes No No

Note: Two-phase commit is supported in the Batch/TSO environment using RRS.

Debugging facilities, syncpoint support, and recovery support
Use this information to learn about program debugging facilities, syncpoint support, and recovery support.

Program debugging facilities
IBM MQ for z/OS provides a trace facility that you can use to debug your programs in all environments.

Additionally, in the CICS environment you can use:

• The CICS Execution Diagnostic Facility (CEDF)
• The CICS Trace Control Transaction (CETR)
• The IBM MQ for z/OS API-crossing exit

On the z/OS platform, you can use any available interactive debugging tool that is supported by the
programming language that you are using.

Syncpoint support
Synchronizing the start and end of units of work is necessary in a transaction processing environment so
that transaction processing can be used safely.

This is fully supported by IBM MQ for z/OS in the CICS and IMS environments. Full support means
cooperation between resource managers so that units of work can be committed or backed out in unison,
under control of CICS or IMS. Examples of resource managers are Db2, CICS File Control, IMS, and IBM
MQ for z/OS.

z/OS batch applications can use IBM MQ for z/OS calls to give a single-phase commit facility. This means
that an application-defined set of queue operations can be committed, or backed out, without reference
to other resource managers.

858 Developing Applications for IBM MQ

Two-phase commit is also supported in the z/OS batch environment using transaction management
and recoverable resource manager services (RRS). For further information see Syncpoints in z/OS batch
applications.

Recovery support
If the connection between a queue manager and a CICS or IMS system is broken during a transaction,
some units of work might not be backed out successfully.

However, these units of work are resolved by the queue manager (under the control of the syncpoint
manager) when its connection with the CICS or IMS system is reestablished.

The IBM MQ for z/OS interface with the application environment
To allow applications running in different environments to send and receive messages through a message
queuing network, IBM MQ for z/OS provides an adapter for each of the environments it supports.

These adapters are the interface between application programs and IBM MQ for z/OS subsystems. They
allow the programs to use the MQI.

The batch adapter
Use this information to learn about the batch adapter and the commit protocol it supports.

The batch adapter provides access to IBM MQ for z/OS resources for programs running in:

• Task (TCB) mode
• Problem or supervisor state
• Primary address space control mode

The programs must not be in cross-memory mode.

Connections between application programs and IBM MQ for z/OS are at the task level. The adapter
provides a single connection thread from an application task control block (TCB) to IBM MQ for z/OS.

The adapter supports a single-phase commit protocol for changes made to resources owned by IBM MQ
for z/OS ; it does not support multiphase-commit protocols.

The RRS batch adapter
Use this information to learn about the RRS batch adapter and the two RRS batch adapters provided by
IBM MQ.

The transaction management and recoverable resource manager services (RRS) adapter:

• Uses z/OS RRS for commit control.
• Supports simultaneous connections to multiple IBM MQ subsystems running on a single z/OS instance

from a single task.
• Provides z/OS-wide coordinated commitment control (using z/OS RRS) for recoverable resources

accessed through z/OS RRS-compliant recoverable managers for:

– Applications that connect to IBM MQ using the RRS batch adapter.
– Db2-stored procedures executing in a Db2-stored procedures address space that is managed by a

workload manager (WLM) on z/OS.
• Supports the ability to switch an IBM MQ batch thread between TCBs.

IBM MQ for z/OS provides two RRS batch adapters:
CSQBRSTB

This adapter requires you to change any MQCMIT statement to SRRCMIT and any MQBACK statement
to SRRBACK in your IBM MQ application. (If you code MQCMIT or MQBACK in an application linked
with CSQBRSTB, you receive MQRC_ENVIRONMENT_ERROR.)

Developing applications for IBM MQ 859

CSQBRRSI
This adapter allows your IBM MQ application to use either MQCMIT and MQBACK or SRRCMIT and
SRRBACK.

Note: CSQBRSTB and CSQBRRSI are shipped with linkage attributes AMODE(31) RMODE(ANY). If your
application loads either stub below the 16 MB line, first relink the stub with RMODE(24).

Migration
You can migrate existing Batch/TSO IBM MQ applications to use RRS coordination with few or no changes.

If you link-edit your IBM MQ application with the CSQBRRSI adapter, MQCMIT and MQBACK syncpoint
your unit of work across IBM MQ and all other RRS-enabled resource managers. If you link-edit your IBM
MQ application with the CSQBRSTB adapter, change MQCMIT to SRRCMIT and MQBACK to SRRBACK. The
latter approach is preferable; it clearly indicates that the syncpoint is not restricted to IBM MQ resources
only.

The IMS adapter
If you are using the IMS adapter from an IBM MQ for z/OS system, ensure that IMS can obtain sufficient
storage to accommodate messages up to 100 MB long.

Note to users
The IMS adapter provides access to IBM MQ for z/OS resources for:

• Online message processing programs (MPPs)
• Interactive fast path programs (IFPs)
• Batch message processing programs (BMPs)

To use these resources, the programs must be running in task (TCB) mode and problem state; they must
not be in cross-memory mode or access-register mode.

The adapter provides a connection thread from an application task control block (TCB) to IBM MQ. The
adapter supports a two-phase commit protocol for changes made to resources owned by IBM MQ for
z/OS, with IMS acting as the syncpoint coordinator.

The adapter also provides a trigger monitor program that can start programs automatically when certain
trigger conditions on a queue are met. For more information, see “Starting IBM MQ applications using
triggers” on page 834.

If you are writing batch DL/I programs, follow the guidance given in this topic for z/OS batch programs.

Writing z/OS UNIX System Services applications
The batch adapter supports queue manager connections from batch and TSO address spaces.

For a batch address space, the adapter supports connections from multiple TCBs within that address
space as follows:

• Each TCB can connect to multiple queue managers using the MQCONN or MQCONNX call (but a TCB can
only have one instance of a connection to a particular queue manager at any one time).

• Multiple TCBs can connect to the same queue manager (but the queue manager handle returned on any
MQCONN or MQCONNX call is bound to the issuing TCB and cannot be used by any other TCB).

z/OS UNIX System Services supports two types of pthread_create call:

1. Heavyweight threads, run one for each TCB, that are ATTACHed and DETACHed at thread start and end
by z/OS.

2. Medium-weight threads, run one for each TCB, but the TCB can be one of a pool of long-running TCBs.
The application must perform all necessary application cleanup, because, if it is connected to a server,
the default thread termination that might be provided by the server at task (TCB) termination, is not
always driven.

860 Developing Applications for IBM MQ

Lightweight threads are not supported. (If an application creates permanent threads that dispatch their
own work requests, the application is responsible for cleaning up any resources before starting the next
work request.)

IBM MQ for z/OS supports z/OS UNIX System Services threads using the Batch Adapter as follows:

1. Heavyweight threads are fully supported as batch connections. Each thread runs in its own TCB, which
is attached and detached at thread start and end. Should the thread end before issuing an MQDISC
call, IBM MQ for z/OS performs its standard task cleanup, which includes committing any outstanding
unit of work if the thread terminated normally, or backing it out if the thread terminated abnormally.

2. Medium-weight threads are fully supported, but if the TCB is going to be reused by another thread,
the application must ensure that an MQDISC call, preceded by either MQCMIT or MQBACK, is issued
before the next thread start. This implies that if the application has established a Program Interrupt
Handler, and the application then abends, the Interrupt Handler must issue MQCMIT and MQDISC
calls before reusing the TCB for another thread.

Note: Threading models do not support access to common IBM MQ resources from multiple threads.

The API-crossing exit for z/OS
This topic contains product-sensitive programming interface information.

An exit is a point in IBM-supplied code where you can run your own code. IBM MQ for z/OS provides an
API-crossing exit that you can use to intercept calls to the MQI, and to monitor or modify the function
of the MQI calls. This section describes how to use the API-crossing exit, and describes the sample exit
program that is supplied with IBM MQ for z/OS.

This section is applicable only for users of CICS TS V3.1 and earlier. Users of CICS TS V3.2 and later
should refer to the section CICS Integration with IBM MQ in the CICS product documentation.

Note
The API-crossing exit is invoked only by the CICS adapter of IBM MQ for z/OS. The exit program runs in
the CICS address space.

Writing your own exit program
You can use the sample API-crossing exit program (CSQCAPX) that is supplied with IBM MQ for z/OS as a
framework for your own program.

This is described in “The sample API-crossing exit program, CSQCAPX” on page 862.

When writing an exit program, to find the name of an MQI call issued by an application, examine the
ExitCommand field of the MQXP structure. To find the number of parameters on the call, examine the
ExitParmCount field. You can use the 16-byte ExitUserArea field to store the address of any dynamic
storage that the application obtains. This field is retained across invocations of the exit and has the same
lifetime as a CICS task.

If you are using CICS Transaction Server V3.2, you must write your exit program to be threadsafe
and declare your exit program as threadsafe. If you are using earlier CICS releases, you are also
recommended to write and declare your exit programs as threadsafe to be ready for migrating to CICS
Transaction Server V3.2.

Your exit program can suppress execution of an MQI call by returning MQXCC_SUPPRESS_FUNCTION
or MQXCC_SKIP_FUNCTION in the ExitResponse field. To allow the call to be executed (and the exit
program to be reinvoked after the call has completed), your exit program must return MQXCC_OK.

When invoked after an MQI call, an exit program can inspect and modify the completion and reason codes
set by the call.

Usage notes
Here are some general points to consider when writing your exit program:

Developing applications for IBM MQ 861

• For performance reasons, write your program in assembler-language. If you write it in any of the other
languages supported by IBM MQ for z/OS, you must provide your own data definition file.

• Link-edit your program as AMODE(31) and RMODE(ANY).
• To define the exit parameter block to your program, use the assembler-language macro, CMQXPA.
• Specify CONCURRENCY(THREADSAFE) when you define your exit program and any programs that your

exit program calls.
• If you are using the CICS Transaction Server for z/OS storage protection feature, your program must run

in CICS execution key. That is, you must specify EXECKEY(CICS) when defining both your exit program
and any programs to which it passes control. For information about CICS exit programs and the CICS
storage protection facility, see the CICS Customization Guide.

• Your program can use all the APIs (for example, IMS, Db2, and CICS) that a CICS task-related user
exit program can use. It can also use any of the MQI calls except MQCONN, MQCONNX, and MQDISC.
However, any MQI calls within the exit program do not invoke the exit program a second time.

• Your program can issue EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK commands.
However, these commands commit or roll back all the updates done by the task up to the point that the
exit was used, and so their use is not recommended.

• Your program must end by issuing an EXEC CICS RETURN command. It must not transfer control with
an XCTL command.

• Exits are written as extensions to the IBM MQ for z/OS code. Ensure that your exit does not disrupt any
IBM MQ for z/OS programs or transactions that use the MQI. These are typically indicated with a prefix
of CSQ or CK.

• If CSQCAPX is defined to CICS, the CICS system attempts to load the exit program when CICS connects
to IBM MQ for z/OS. If this attempt is successful, message CSQC301I is sent to the CKQC panel or to the
system console. If the load is unsuccessful (for example, if the load module does not exist in any of the
libraries in the DFHRPL concatenation), message CSQC315 is sent to the CKQC panel or to the system
console.

• Because the parameters in the communication area are addresses, the exit program must be defined as
local to the CICS system (that is, not as a remote program).

The sample API-crossing exit program, CSQCAPX
The sample exit program is supplied as an assembler-language program. The source file (CSQCAPX)
is supplied in the library thlqual.SCSQASMS (where thlqual is the high-level qualifier used by your
installation). This source file includes pseudocode that describes the program logic.

The sample program contains initialization code and a layout that you can use when writing your own exit
programs.

The sample shows how to:

• Set up the exit parameter block
• Address the call and exit parameter blocks
• Determine for which MQI call the exit is being invoked
• Determine whether the exit is being invoked before or after processing of the MQI call
• Put a message on a CICS temporary storage queue
• Use the macro DFHEIENT for dynamic storage acquisition to maintain reentrancy
• Use DFHEIBLK for the CICS exec interface control block
• Trap error conditions
• Return control to the caller

862 Developing Applications for IBM MQ

Design of the sample exit program
The sample exit program writes messages to a CICS temporary storage queue (CSQ1EXIT) to show the
operation of the exit.

The messages show whether the exit is being invoked before or after the MQI call. If the exit is invoked
after the call, the message contains the completion code and reason code returned by the call. The
sample uses named constants from the CMQXPA macro to check on the type of entry (that is, before or
after the call).

The sample does not perform any monitoring function, but simply places time-stamped messages into a
CICS queue indicating the type of call it is processing. This provides an indication of the performance of
the MQI, as well as the correct functioning of the exit program.

Note: The sample exit program issues six EXEC CICS calls for each MQI call that is made while the
program is running. If you use this exit program, IBM MQ for z/OS performance is degraded.

Preparing and using the API-crossing exit
The sample exit is supplied in source form only.

To use the sample exit, or an exit program that you have written, create a load library, as you would for
any other CICS program, as described in “Building CICS applications in z/OS” on page 988.

• For CICS Transaction Server for z/OS and CICS for MVS™/ESA, when you update the CICS system
definition (CSD) data set, the definitions you need are in the member thlqual.SCSQPROC(CSQ4B100).

Note: The definitions use a suffix of MQ. If this suffix is already used in your enterprise, this must be
changed before the assembly stage.

If you use the default CICS program definitions supplied, the exit program CSQCAPX is installed in a
disabled state. This is because using the exit program can produce a significant reduction in performance.

To activate the API-crossing exit temporarily:

1. Issue the command CEMT S PROGRAM(CSQCAPX) ENABLED from the CICS master terminal.
2. Run the CKQC transaction, and use option 3 in the Connection pull-down to alter the status of the

API-crossing exit to Enabled.

If you want to run IBM MQ for z/OS with the API-crossing exit permanently enabled, with CICS
Transaction Server for z/OS and CICS for MVS/ESA, do one of the following:

• Alter the CSQCAPX definition in member CSQ4B100, changing STATUS(DISABLED) to
STATUS(ENABLED). You can update the CICS CSD definition using the CICS-supplied batch program
DFHCSDUP.

• Alter the CSQCAPX definition in the CSQCAT1 group by changing the status from DISABLED to
ENABLED.

In both cases, you must reinstall the group. You can do this by cold-starting your CICS system or by using
the CICS CEDA transaction to reinstall the group while CICS is running.

Note: Using CEDA might cause an error if any of the entries in the group are currently in use.

End of product-sensitive programming interface information.

Application programming with shared queues
This topic provides information on some of the factors that you need to take into account when designing
new applications to use shared queues, and when migrating existing applications to the shared-queue
environment.

Developing applications for IBM MQ 863

Serializing your applications
Certain types of applications might have to ensure that messages are retrieved from a queue in exactly
the same order as they arrived on the queue.

For example, if IBM MQ is being used to shadow database updates on to a remote system, a message
describing the update to a record must be processed after a message describing the insert of that
record. In a local queuing environment, this is often achieved by the application that is getting the
messages opening the queue with the MQOO_INPUT_EXCLUSIVE option, thus preventing any other
getting application from processing the queue at the same time.

IBM MQ allows applications to open shared queues exclusively in the same way. However, if the
application is working from a partition of a queue (for example, all database updates are on the same
queue, but those for table A have a correlation identifier of A, and those for table B a correlation identifier
of B), and applications want to get messages for table A updates and table B updates concurrently, the
simple mechanism of opening the queue exclusively is not possible.

If this type of application is to take advantage of the high availability of shared queues, you might decide
that another instance of the application that accesses the same shared queues, running on a secondary
queue manager, should take over if the primary getting application or queue manager fails.

If the primary queue manager fails, two things happen:

• Shared queue peer recovery ensures that any incomplete updates from the primary application are
completed or backed out.

• The secondary application takes over processing the queue.

The secondary application might start before all the incomplete units of work have been dealt with, which
could lead to the secondary application retrieving the messages out of sequence. To solve this type of
problem, the application can choose to be a serialized application.

A serialized application uses the MQCONNX call to connect to the queue manager, specifying a connection
tag when it connects that is unique to that application. Any units of work performed by the application are
marked with the connection tag. IBM MQ ensures that units of work within the queue sharing group with
the same connection tag are serialized (according to the serialization options on the MQCONNX call).

This means that, if the primary application uses the MQCONNX call with a connection tag of Database
shadow retriever, and the secondary takeover application attempts to use the MQCONNX call with
an identical connection tag, the secondary application cannot connect to the second IBM MQ until any
outstanding primary units of work have been completed, in this case by peer recovery.

Consider using the serialized application technique for applications that depend on the exact sequence of
messages on a queue. In particular:

• Applications that must not restart after an application or queue manager failure until all commit and
backout operations for the previous execution of the application are complete.

In this case, the serialized application technique is only applicable if the application works in syncpoint.
• Applications that must not start while another instance of the same application is already running.

In this case, the serialized application technique is only required if the application cannot open the
queue for exclusive input.

Note: IBM MQ only guarantees to preserve the sequence of messages when certain criteria are met.
These are described in the description of MQGET.

Applications that are not suitable for use with shared queues
Some features of IBM MQ are not supported when you are using shared queues, so applications that use
these features are not suitable for the shared queue environment.

Consider the following points when designing your shared-queue applications:

• Queue indexing is limited for shared queues. If you want to use the message identifier or correlation
identifier to select the message that you want to get from the queue, the queue should be indexed
with the correct value. If you are selecting messages by message identifier alone, the queue needs an

864 Developing Applications for IBM MQ

index type of MQIT_MSG_ID (although you can also use MQIT_NONE). If you are selecting messages by
correlation identifier alone, the queue must have an index type of MQIT_CORREL_ID.

• You cannot use temporary dynamic queues as shared queues. However, you can use permanent
dynamic queues. The models for shared dynamic queues have a DEFTYPE of SHAREDYN (shared
dynamic) although they are created and destroyed in the same way as PERMDYN (permanent dynamic)
queues.

Deciding whether to share non-application queues
Use this information when considering sharing non-application queues.

There are queues other than application queues that you might want to consider sharing:
Initiation queues

If you define a shared initiation queue, you do not need to have a trigger monitor running on every
queue manager in the queue sharing group, as long as there is at least one trigger monitor running.
(You can also use a shared initiation queue even if there is a trigger monitor running on each queue
manager in the queue sharing group.)

If you have a shared application queue and use the trigger type of EVERY (or a trigger type of FIRST
with a small trigger interval, which behaves like a trigger type of EVERY) your initiation queue must
always be a shared queue. For more information about when to use a shared initiation queue, see
Table 131 on page 866.

SYSTEM.* queues
You can define the SYSTEM.ADMIN.* queues used to hold event messages as shared queues. This can
be useful to check load balancing if an exception occurs. Each event message created by IBM MQ
contains a correlation identifier indicating which queue manager produced it.

You must define the SYSTEM.QSG.* queues used for shared channels and intra-group queuing as
shared queues.

You can also change the definitions of the SYSTEM.DEFAULT.LOCAL.QUEUE to be shared, or define
your own default shared queue definition. See Defining system objects for IBM MQ for z/OS for more
information.

You cannot define any other SYSTEM.* queues as shared queues.

Migrating your existing applications to use shared queues
Reason codes, triggering, and the MQINQ API call can work differently in a shared queue environment.

See Migrating non-shared queues to shared queues for information on migrating your existing queues to
shared queues.

When you migrate your existing applications, consider the following things, which might work in a
different way in the shared queue environment:
Reason codes

When you migrate your existing applications to use shared queues, check for the new reason codes
that can be issued.

Triggering
If you are using a shared application queue, triggering works on committed messages only (on a
non-shared application queue, triggering works on all messages).

If you use triggering to start applications, you might want to use a shared initiation queue. Table 131
on page 866 describes what you need to consider when deciding which type of initiation queue to
use.

Developing applications for IBM MQ 865

Table 131. When to use a shared-initiation queue

Non-shared application queue Shared application queue

Non-shared
initiation queue

As for previous releases. If you use a trigger type of FIRST or DEPTH, you
can use a non-shared initiation queue with a shared
application queue. Extra trigger messages might
be generated, but this setup is good for triggering
long-running applications (like the CICS bridge) and
provides high availability.

For trigger type FIRST or DEPTH, a trigger message
triggers an instance of the application on every
queue manager that is running a trigger monitor and
that does not already have the application queue
open for input. One trigger message is generated
for every queue manager; if there is more than one
trigger monitor running against the non-shared local
initiation queue, on a particular queue manager, they
will compete to process the message.

Shared initiation
queue

Do not use a shared initiation queue
with a non-shared application
queue.

For trigger type EVERY, when an application puts a
message to a shared application queue, the putting
queue manager determines which queue managers
have an interest in the trigger-every event and sends
a notification to one of those queue managers. On
the notified queue manager, the resulting action is to
generate a trigger message to the initiation queue.,

Note: If you have a shared application queue that
has a trigger type of EVERY, use a shared initiation
queue, or you might lose trigger messages in certain
circumstances; for example, a queue manager failing.

For trigger type FIRST or DEPTH, one trigger message
is generated by each queue manager that has the
named initiation queue open for input.

Note: For trigger type FIRST or DEPTH, if one trigger
monitor instance is busy, this leaves the potential
for less busy trigger monitors to process more than
one trigger message from the shared initiation queue.
Hence, multiple instances of the server application
may be started against a given queue manager. Note
that these multiple instances are started as a result
of processing multiple trigger messages. Ordinarily,
for trigger type FIRST or DEPTH, if an application
instance is already serving an application queue,
another trigger message will not be generated by the
queue manager that the application is connected to.

MQINQ
When you use the MQINQ call to display information about a shared queue, the values of the number
of MQOPEN calls that have the queue open for input and output relate only to the queue manager that
issued the call. No information is produced about other queue managers in the queue sharing group
that have the queue open.

866 Developing Applications for IBM MQ

IMS and IMS bridge applications on IBM MQ for z/OS
This information helps you to write IMS applications using IBM MQ.

• To use syncpoints and MQI calls in IMS applications, see “Writing IMS applications using IBM MQ” on
page 67.

• To write applications that use the IBM MQ - IMS bridge, see “Writing IMS bridge applications” on page
71.

Use the following links to find out more about IMS and IMS bridge applications on IBM MQ for z/OS:

• “Writing IMS applications using IBM MQ” on page 67
• “Writing IMS bridge applications” on page 71

Related concepts
“The Message Queue Interface overview” on page 697
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 709
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 716
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 727
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 741
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 820
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 823
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 834
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 852
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 857
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

Writing IMS applications using IBM MQ
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

Use the following links to find out more about writing IMS applications on IBM MQ for z/OS:

• “Syncpoints in IMS applications” on page 67
• “MQI calls in IMS applications” on page 68

Restrictions
There are restrictions on which IBM MQ API calls can used by an application using the IMS adapter.

The following IBM MQ API calls are not supported within an application using the IMS adapter:

• MQCB
• MQCB_FUNCTION

Developing applications for IBM MQ 867

• MQCTL

Related concepts
“Writing IMS bridge applications” on page 71
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB
and CHKP (checkpoint).

To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see ROLB call in the IMS documentation.

The queue manager is a participant in a two-phase commit protocol; the IMS syncpoint manager is the
coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven
BMP environment). This is because a different user could initiate the next unit of work and IBM MQ
security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not when
the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify
IBM MQ to close the handles until either the next message arrives or a QC status code is returned to the
application. If the application is waiting in the IMS region and any of these handles belong to triggered
queues, triggering will not occur because the queues are open. For this reason, applications running in
a WFI or PWFI environment should explicitly MQCLOSE the queue handles before doing the GU to the
IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no
implicit syncpoint is taken. If the application ends normally, any open queues are closed and an implicit
commit occurs. If the application ends abnormally, any open queues are closed and an implicit backout
occurs.

MQI calls in IMS applications
Use this information to learn about the use of MQI calls on Server applications and Enquiry applications.

This section covers the use of MQI calls in the following types of IMS applications:

• “Server applications” on page 868
• “Inquiry applications” on page 870

Server applications
Here is an outline of the MQI server application model:

Initialize/Connect
.
Open queue for input shared
.
Get message from IBM MQ queue
.
Do while Get does not fail
.
If expected message received
Process the message
Else
Process unexpected message
End if
.
Commit
.
Get next message from IBM MQ queue
.
End do
.
Close queue/Disconnect

868 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/ims/15.4.0?topic=dcitss-rolb-call

.
END

Sample program CSQ4ICB3 shows the implementation, in C/370, of a BMP using this model. The program
establishes communication with IMS first, and then with IBM MQ:

main()

Call InitIMS
If IMS initialization successful
Call InitMQM
If IBM MQ initialization successful
Call ProcessRequests
Call EndMQM
End-if
End-if

Return

The IMS initialization determines whether the program has been called as a message-driven or a batch-
oriented BMP and controls IBM MQ queue manager connection and queue handles accordingly:

InitIMS

Get the IO, Alternate and Database PCBs
Set MessageOriented to true

Call ctdli to handle status codes rather than abend
If call is successful (status code is zero)
While status code is zero
Call ctdli to get next message from IMS message queue
If message received
Do nothing
Else if no IOPBC
Set MessageOriented to false
Initialize error message
Build 'Started as batch oriented BMP' message
Call ReportCallError to output the message
End-if
Else if response is not 'no message available'
Initialize error message
Build 'GU failed' message
Call ReportCallError to output the message
Set return code to error
End-if
End-if
End-while
Else
Initialize error message
Build 'INIT failed' message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

The IBM MQ initialization connects to the queue manager and opens the queues. In a message-driven
BMP this is called after each IMS syncpoint is taken; in a batch-oriented BMP, this is called only during
program startup:

InitMQM

Connect to the queue manager
If connect is successful
Initialize variables for the open call
Open the request queue
If open is not successful
Initialize error message
Build 'open failed' message
Call ReportCallError to output the message
Set return code to error
End-if
Else
Initialize error message

Developing applications for IBM MQ 869

Build 'connect failed' message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

The implementation of the server model in an MPP is influenced by the fact that the MPP processes
a single unit of work per invocation. This is because, when a syncpoint (GU) is taken, the connection
and queue handles are closed and the next IMS message is delivered. This limitation can be partially
overcome by one of the following:

• Processing many messages within a single unit-of-work

This involves:

– Reading a message
– Processing the required updates
– Putting the reply

in a loop until all messages have been processed or until a set maximum number of messages has been
processed, at which time a syncpoint is taken.

Only certain types of application (for example, a simple database update or inquiry) can be approached
in this way. Although the MQI reply messages can be put with the authority of the originator of the MQI
message being handled, the security implications of any IMS resource updates need to be addressed
carefully.

• Processing one message per invocation of the MPP and ensuring multiple scheduling of the MPP to
process all available messages.

Use the IBM MQ IMS trigger monitor program (CSQQTRMN) to schedule the MPP transaction when there
are messages on the IBM MQ queue and no applications serving it.

If trigger monitor starts the MPP, the queue manager name and queue name are passed to the program,
as shown in the following COBOL code extract:

* Data definition extract
01 WS-INPUT-MSG.
05 IN-LL1 PIC S9(3) COMP.
05 IN-ZZ1 PIC S9(3) COMP.
05 WS-STRINGPARM PIC X(1000).
01 TRIGGER-MESSAGE.
COPY CMQTMC2L.
*
* Code extract
GU-IOPCB SECTION.
MOVE SPACES TO WS-STRINGPARM.
CALL 'CBLTDLI' USING GU,
IOPCB,
WS-INPUT-MSG.
IF IOPCB-STATUS = SPACES
MOVE WS-STRINGPARM TO MQTMC.
* ELSE handle error
*
* Now use the queue manager and queue names passed
DISPLAY 'MQTMC-QMGRNAME ='
MQTMC-QMGRNAME OF MQTMC '='.
DISPLAY 'MQTMC-QNAME ='
MQTMC-QNAME OF MQTMC '='.

The server model, which is expected to be a long running task, is better supported in a batch processing
region, although the BMP cannot be triggered using CSQQTRMN.

Inquiry applications
A typical IBM MQ application initiating an inquiry or update works as follows:

• Gather data from the user

870 Developing Applications for IBM MQ

• Put one or more IBM MQ messages
• Get the reply messages (you might have to wait for them)
• Provide a response to the user

Because messages put on to IBM MQ queues do not become available to other IBM MQ applications until
they are committed, they must either be put out of syncpoint, or the IMS application must be split into
two transactions.

If the inquiry involves putting a single message, you can use the no syncpoint option; however, if the
inquiry is more complex, or resource updates are involved, you might get consistency problems if failure
occurs and you do not use syncpointing.

To overcome this, you can split IMS MPP transactions using MQI calls using a program-to-program
message switch; see IMS Intersystem Communication (ISC) for information about this. This allows an
inquiry program to be implemented in an MPP:

Initialize first program/Connect
.
Open queue for output
.
Put inquiry to IBM MQ queue
.
Switch to second IBM MQ program, passing necessary data in save
pack area (this commits the put)
.
END
.
.
Initialize second program/Connect
.
Open queue for input shared
.
Get results of inquiry from IBM MQ queue
.
Return results to originator
.
END

Writing IMS bridge applications
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

For information about the IBM MQ - IMS bridge, see The IMS bridge.

Use the following links to find out more about writing IMS bridge applications on IBM MQ for z/OS:

• “How the IMS bridge deals with messages” on page 71
• “Writing IMS transaction programs through IBM MQ” on page 878

Related concepts
“Writing IMS applications using IBM MQ” on page 67
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

How the IMS bridge deals with messages
When you use the IBM MQ - IMS bridge to send messages to an IMS application, you need to construct
your messages in a special format.

You must also put your messages on IBM MQ queues that have been defined with a storage class that
specifies the XCF group and member name of the target IMS system. These are known as MQ-IMS bridge
queues, or simply bridge queues.

The IBM MQ-IMS bridge requires exclusive input access (MQOO_INPUT_EXCLUSIVE) to the bridge queue
if it is defined with QSGDISP(QMGR), or if it is defined with QSGDISP(SHARED) together with the
NOSHARE option.

Developing applications for IBM MQ 871

https://www.ibm.com/docs/en/ims/15.4.0?topic=connections-intersystem-communication-isc

A user does not need to sign on to IMS before sending messages to an IMS application. The user ID in
the UserIdentifier field of the MQMD structure is used for security checking. The level of checking
is determined when IBM MQ connects to IMS, and is described in Application access control for the IMS
bridge. This enables a pseudo signon to be implemented.

The IBM MQ - IMS bridge accepts the following types of message:

• Messages containing IMS transaction data and an MQIIH structure (described in MQIIH):

MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

Note:

1. The square brackets, [], represent optional multi-segments.
2. Set the Format field of the MQMD structure to MQFMT_IMS to use the MQIIH structure.

• Messages containing IMS transaction data but no MQIIH structure:

LLZZ<trancode><data> \
[LLZZ<data>][LLZZ<data>]

IBM MQ validates the message data to ensure that the sum of the LL bytes plus the length of the MQIIH (if
it is present) is equal to the message length.

When the IBM MQ - IMS bridge gets messages from the bridge queues, it processes them as follows:

• If the message contains an MQIIH structure, the bridge verifies the MQIIH (see MQIIH), builds the
OTMA headers, and sends the message to IMS. The transaction code is specified in the input message.
If this is an LTERM, IMS replies with a DFS1288E message. If the transaction code represents a
command, IMS executes the command; otherwise the message is queued in IMS for the transaction.

• If the message contains IMS transaction data, but no MQIIH structure, the IMS bridge makes the
following assumptions:

– The transaction code is in bytes 5 through 12 of the user data
– The transaction is in nonconversational mode
– The transaction is in commit mode 0 (commit-then-send)
– The Format in the MQMD is used as the MFSMapName (on input)
– The security mode is MQISS_CHECK

The reply message is also built without an MQIIH structure, taking the Format for the MQMD from the
MFSMapName of the IMS output.

The IBM MQ - IMS bridge uses one or two Tpipes for each IBM MQ queue:

• A synchronized Tpipe is used for all messages using Commit mode 0 (COMMIT_THEN_SEND) (these
show with SYN in the status field of the IMS /DIS TMEMBER client TPIPE xxxx command)

• A non-synchronized Tpipe is used for all messages using Commit mode 1 (SEND_THEN_COMMIT)

The Tpipes are created by IBM MQ when they are first used. A non-synchronized Tpipe exists until IMS is
restarted. Synchronized Tpipes exist until IMS is cold started. You cannot delete these Tpipes yourself.

See the following topics for more information about how the IBM MQ - IMS bridge deals with messages:

• “Mapping IBM MQ messages to IMS transaction types” on page 73
• “If the message cannot be put to the IMS queue” on page 73
• “IMS bridge feedback codes” on page 74
• “The MQMD fields in messages from the IMS bridge” on page 74
• “The MQIIH fields in messages from the IMS bridge” on page 75
• “Reply messages from IMS” on page 76
• “Using alternate response PCBs in IMS transactions” on page 76

872 Developing Applications for IBM MQ

• “Sending unsolicited messages from IMS” on page 76
• “Message segmentation” on page 77
• “Data conversion for messages to and from the IMS bridge” on page 77

Related concepts
“Writing IMS transaction programs through IBM MQ” on page 878
The coding required to handle IMS transactions through IBM MQ depends on the message format
required by the IMS transaction and the range of responses it can return. However, there are several
points to consider when your application handles IMS screen formatting information.

Mapping IBM MQ messages to IMS transaction types
A table describing the mapping of IBM MQ messages to IMS transaction types.

Table 132. How IBM MQ messages map to IMS transaction types

IBM MQ message type Commit-then-send (mode 0) -
uses synchronized IMS Tpipes

Send-then-commit (mode 1)
- uses non-synchronized IMS
Tpipes

Persistent IBM MQ messages • Recoverable full function
transactions

• Unrecoverable transactions are
rejected by IMS

• Fastpath transactions
• Conversational transactions
• Full function transactions

Nonpersistent IBM MQ messages • Unrecoverable full function
transactions

• Recoverable transactions are
permitted with IMS V8 and APAR
PQ61404 and all later versions of
IMS

• Fastpath transactions
• Conversational transactions
• Full function transactions

Note: IMS commands cannot use persistent IBM MQ messages with commit mode 0. See Commit mode
(commitMode) for more information.

If the message cannot be put to the IMS queue
Learn about actions to take if the message cannot be put to the IMS queue.

If the message cannot be put to the IMS queue, the following action is taken by IBM MQ:

• If a message cannot be put to IMS because the message is invalid, the message is put to the dead-letter
queue, and a message is sent to the system console.

• If the message is valid, but is rejected by IMS, IBM MQ sends an error message to the system console,
the message includes the IMS sense code, and the IBM MQ message is put to the dead-letter queue. If
the IMS sense code is 001A, IMS sends an IBM MQ message containing the reason for the failure to the
reply-to queue.

Note: In the circumstances listed previously, if IBM MQ cannot put the message to the dead-letter
queue for any reason, the message is returned to the originating IBM MQ queue. An error message is
sent to the system console, and no further messages are sent from that queue.

To resend the messages, do one of the following:

– Stop and restart the Tpipes in IMS corresponding to the queue
– Alter the queue to GET(DISABLED), and again to GET(ENABLED)
– Stop and restart IMS or the OTMA
– Stop and restart your IBM MQ subsystem

Developing applications for IBM MQ 873

https://www.ibm.com/docs/en/ims/15.4.0?topic=properties-commit-mode-commitmode
https://www.ibm.com/docs/en/ims/15.4.0?topic=properties-commit-mode-commitmode

• If the message is rejected by IMS for anything other than a message error, the IBM MQ message is
returned to the originating queue, IBM MQ stops processing the queue, and an error message is sent to
the system console.

If an exception report message is required, the bridge puts it to the reply-to queue with the authority of
the originator. If the message cannot be put to the queue, the report message is put to the dead-letter
queue with the authority of the bridge. If it cannot be put to the DLQ, it is discarded.

IMS bridge feedback codes
IMS sense codes are typically output in hexadecimal format in IBM MQ console messages such as
CSQ2001I (for example, sense code 0x001F). IBM MQ feedback codes as seen in the dead-letter header
of messages put to the dead-letter queue are decimal numbers.

The IMS bridge feedback codes are in the range 301 through 399, or 600 through 855 for NACK sense
code 0x001A. They are mapped from the IMS-OTMA sense codes as follows:

1. The IMS-OTMA sense code is converted from a hexadecimal number to a decimal number.
2. 300 is added to the number resulting from the calculation in 1, giving the IBM MQ Feedback code.
3. The IMS-OTMA sense code 0x001A, decimal 26 is a special case. A Feedback code in the range

600-855 is generated.

a. The IMS-OTMA reason code is converted from a hexadecimal number to a decimal number.
b. 600 is added to the number resulting from the calculation in a, giving the IBM MQ Feedback code.

For information about IMS-OTMA sense codes, see OTMA sense codes for NAK messages.

The MQMD fields in messages from the IMS bridge
Learn about the MQMD fields in messages from the IMS bridge.

The MQMD of the originating message is carried by IMS in the User Data section of the OTMA headers.
If the message originates in IMS, this is built by the IMS Destination Resolution Exit. The MQMD of a
message received from IMS is built as follows:

StrucID
"MD "

Version
MQMD_VERSION_1

Report
MQRO_NONE

MsgType
MQMT_REPLY

Expiry
If MQIIH_PASS_EXPIRATION is set in the Flags field of the MQIIH, this field contains the remaining
expiry time, else it is set to MQEI_UNLIMITED

Feedback
MQFB_NONE

Encoding
MQENC.Native (the encoding of the z/OS system)

CodedCharSetId
MQCCSI_Q_MGR (the CodedCharSetID of the z/OS system)

Format
MQFMT_IMS if the MQMD.Format of the input message is MQFMT_IMS, otherwise IOPCB.MODNAME

Priority
MQMD.Priority of the input message

874 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/ims/15.4.0?topic=codes-otma-sense-nak-messages

Persistence
Depends on commit mode: MQMD.Persistence of the input message if CM-1; persistence matches
recoverability of the IMS message if CM-0

MsgId
MQMD.MsgId if MQRO_PASS_MSG_ID, otherwise New MsgId (the default)

CorrelId
MQMD.CorrelId from the input message if MQRO_PASS_CORREL_ID, otherwise MQMD.MsgId from the
input message (the default)

BackoutCount
0

ReplyToQ
Blanks

ReplyToQMgr
Blanks (set to local qmgr name by the queue manager during the MQPUT)

UserIdentifier
MQMD.UserIdentifier of the input message

AccountingToken
MQMD.AccountingToken of the input message

ApplIdentityData
MQMD.ApplIdentityData of the input message

PutApplType
MQAT_XCF if no error, otherwise MQAT_BRIDGE

PutApplName
<XCFgroupName><XCFmemberName> if no error, otherwise QMGR name

PutDate
Date when message was put

PutTime
Time when message was put

ApplOriginData
Blanks

The MQIIH fields in messages from the IMS bridge
Learn about the MQIIH fields in messages from the IMS bridge.

The MQIIH of a message received from IMS is built as follows:

StrucId
"IIH "

Version
1

StrucLength
84

Encoding
MQENC_NATIVE

CodedCharSetId
MQCCSI_Q_MGR

Format
MQIIH.ReplyToFormat of the input message if MQIIH.ReplyToFormat is not blank, otherwise
IOPCB.MODNAME

Flags
0

Developing applications for IBM MQ 875

LTermOverride
LTERM name (Tpipe) from OTMA header

MFSMapName
Map name from OTMA header

ReplyToFormat
Blanks

Authenticator
MQIIH.Authenticator of the input message if the reply message is being put to an MQ-IMS bridge
queue, otherwise blanks.

TranInstanceId
Conversation ID / Server Token from OTMA header if in conversation. In versions of IMS prior to V14,
this field is always nulls if not in conversation. From IMS V14 onwards, this field may be set by IMS
even if not in conversation.

TranState
"C" if in conversation, otherwise blank

CommitMode
Commit mode from OTMA header ("0" or "1")

SecurityScope
Blank

Reserved
Blank

Reply messages from IMS
When an IMS transaction ISRTs to its IOPCB, the message is routed back to the originating LTERM or
TPIPE.

These are seen in IBM MQ as reply messages. Reply messages from IMS are put onto the reply-to
queue specified in the original message. If the message cannot be put onto the reply-to queue, it is put
onto the dead-letter queue using the authority of the bridge. If the message cannot be put onto the
dead-letter queue, a negative acknowledgment is sent to IMS to say that the message cannot be received.
Responsibility for the message is then returned to IMS. If you are using commit mode 0, messages from
that Tpipe are not sent to the bridge, and remain on the IMS queue; that is, no further messages are sent
until restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MQFMT_IMS; if not, its format type is specified by
the IMS MOD name used when inserting the message.

Using alternate response PCBs in IMS transactions
When an IMS transaction uses alternate response PCBs (ISRTs to the ALTPCB, or issues a CHNG call to
a modifiable PCB), the pre-routing exit (DFSYPRX0) is invoked to determine if the message should be
rerouted.

If the message is to be rerouted, the destination resolution exit (DFSYDRU0) is invoked to confirm the
destination and prepare the header information See Using OTMA exits in IMS and The pre-routing exit
DFSYPRX0 for information about these exit programs.

Unless action is taken in the exits, all output from IMS transactions initiated from an IBM MQ queue
manager, whether to the IOPCB or to an ALTPCB, will be returned to the same queue manager.

Sending unsolicited messages from IMS
To send messages from IMS to an IBM MQ queue, you need to invoke an IMS transaction that ISRTs to an
ALTPCB.

You need to write pre-routing and destination resolution exits to route unsolicited messages from IMS
and build the OTMA user data, so that the MQMD of the message can be built correctly. See The pre-
routing exit DFSYPRX0 and The destination resolution user exit for information about these exit programs.

876 Developing Applications for IBM MQ

Note: The IBM MQ - IMS bridge does not know whether a message that it receives is a reply or an
unsolicited message. It handles the message the same way in each case, building the MQMD and MQIIH
of the reply based on the OTMA UserData that arrived with the message

Unsolicited messages can create new Tpipes. For example, if an existing IMS transaction switched to a
new LTERM (for example PRINT01), but the implementation requires that the output be delivered through
OTMA, a new Tpipe (called PRINT01 in this example) is created. By default, this is a non-synchronized
Tpipe. If the implementation requires the message to be recoverable, set the destination resolution exit
output flag. See the IMS Customization Guide for more information.

Message segmentation
You can define IMS transactions as expecting single- or multi-segment input.

The originating IBM MQ application must construct the user input following the MQIIH structure as one
or more LLZZ-data segments. All segments of an IMS message must be contained in a single IBM MQ
message sent with a single MQPUT.

The maximum length of an LLZZ-data segment is defined by IMS/OTMA (32767 bytes). The total IBM MQ
message length is the sum of the LL bytes, plus the length of the MQIIH structure.

All the segments of the reply are contained in a single IBM MQ message.

There is a further restriction on the 32 KB limitation on messages with format MQFMT_IMS_VAR_STRING.
When the data in an ASCII-mixed CCSID message is converted to an EBCDIC-mixed CCSID message, a
shift-in byte or a shift-out byte is added every time that there is a transition between SBCS and DBCS
characters. The 32 KB restriction applies to the maximum size of the message. That is, because the LL
field in the message cannot exceed 32 KB, the message must not exceed 32 KB including all shift-in and
shift-out characters. The application building the message must allow for this.

Data conversion for messages to and from the IMS bridge
The data conversion is performed by either the distributed queuing facility (which may call any necessary
exits) or by the intra group queuing agent (which does not support the use of exits) when it puts
a message to a destination queue that has XCF information defined for its storage class. The data
conversion does not occur when a message is delivered to a queue by publish/subscribe.

Any exits needed must be available to the distributed queuing facility in the data set referenced by the
CSQXLIB DD statement. This means that you can send messages to an IMS application using the IBM MQ
- IMS bridge from any IBM MQ platform.

If there are conversion errors, the message is put to the queue unconverted; this results eventually in it
being treated as an error by the IBM MQ - IMS bridge, because the bridge cannot recognize the header
format. If a conversion error occurs, an error message is sent to the z/OS console.

See “Writing data-conversion exits” on page 947 for detailed information about data conversion in
general.

Sending messages to the IBM MQ - IMS bridge
To ensure that conversion is performed correctly, you must tell the queue manager what the format of the
message is.

If the message has an MQIIH structure, the Format in the MQMD must be set to the built-in format
MQFMT_IMS, and the Format in the MQIIH must be set to the name of the format that describes your
message data. If there is no MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your format name (in the MQIIH
or MQMD, as appropriate) the built-in format MQFMT_IMS_VAR_STRING. Otherwise, use your own format
name, in which case you must also provide a data-conversion exit for your format. The exit must handle
the conversion of the LLZZs in your message, in addition to the data itself (but it does not have to handle
any MQIIH at the start of the message).

If your application uses MFSMapName, you can use messages with the MQFMT_IMS instead, and define
the map name passed to the IMS transaction in the MFSMapName field of the MQIIH.

Developing applications for IBM MQ 877

Receiving messages from the IBM MQ - IMS bridge
If an MQIIH structure is present on the original message that you are sending to IMS, one is also present
on the reply message.

To ensure that your reply is converted correctly:

• If you have an MQIIH structure on your original message, specify the format that you want for your
reply message in the MQIIH ReplytoFormat field of the original message. This value is placed in the
MQIIH Format field of the reply message. This is particularly useful if all your output data is of the form
LLZZ<character data>.

• If you do not have an MQIIH structure on your original message, specify the format that you want for the
reply message as the MFS MOD name in the IMS application's ISRT to the IOPCB.

Writing IMS transaction programs through IBM MQ
The coding required to handle IMS transactions through IBM MQ depends on the message format
required by the IMS transaction and the range of responses it can return. However, there are several
points to consider when your application handles IMS screen formatting information.

When an IMS transaction is started from a 3270 screen, the message passes through IMS Message
Format Services. This can remove all terminal dependency from the data stream seen by the transaction.
When a transaction is started through OTMA, MFS is not involved. If application logic is implemented in
MFS, this must be re-created in the new application.

In some IMS transactions, the end-user application can modify certain 3270 screen behavior, for
example, highlighting a field that has had invalid data entered. This type of information is communicated
by adding a two-byte attribute field to the IMS message for each screen field that needs to be modified by
the program.

Thus, if you are coding an application to mimic a 3270, you need to take account of these fields when
building or receiving messages.

You might need to code information in your program to process:

• Which key is pressed (for example, Enter and PF1)
• Where the cursor is when the message is passed to your application
• Whether the attribute fields have been set by the IMS application

– High, normal, or zero intensity
– Color
– Whether IMS is expecting the field back the next time that Enter is pressed

• Whether the IMS application has used null characters (X'3F') in any fields.

If your IMS message contains only character data (apart from the LLZZ-data segment), and you
are using an MQIIH structure, set the MQMD format to MQFMT_IMS and the MQIIH format to
MQFMT_IMS_VAR_STRING.

If your IMS message contains only character data (apart from the LLZZ-data segment), and you are
not using an MQIIH structure, set the MQMD format to MQFMT_IMS_VAR_STRING and ensure that
your IMS application specifies MODname MQFMT_IMS_VAR_STRING when replying. If a problem occurs
(for example, user not authorized to use the transaction) and IMS sends an error message, this has
an MODname of the form DFSMOx, where x is a number in the range 1 through 5. This is put in the
MQMD.Format.

If your IMS message contains binary, packed, or floating point data (apart from the LLZZ-data segment),
code your own data-conversion routines. Refer to IMS/ESA Application Programming: Transaction
Manager for information about IMS screen formatting.

Consider the following topics when writing code to handle IMS transactions through IBM MQ.

• “Writing IBM MQ applications to invoke IMS conversational transactions” on page 879
• “Writing programs containing IMS commands” on page 879

878 Developing Applications for IBM MQ

• “Triggering” on page 879

Writing IBM MQ applications to invoke IMS conversational transactions
Use this information as a guide for considerations when writing IBM MQ application to invoke IMS
conversational transactions.

When you write an application that invokes an IMS conversation, consider the following:

• Include an MQIIH structure with your application message.
• Set the CommitMode in MQIIH to MQICM_SEND_THEN_COMMIT.
• To invoke a new conversation, set TranState in MQIIH to MQITS_NOT_IN_CONVERSATION.
• To invoke second and subsequent steps of a conversation, set TranState to

MQITS_IN_CONVERSATION, and set TranInstanceId to the value of that field returned in the
previous step of the conversation.

• There is no easy way in IMS to find the value of a TranInstanceId, should you lose the original
message sent from IMS.

• The application must check the TranState of messages from IMS to check whether the IMS
transaction has terminated the conversation.

• You can use /EXIT to end a conversation. You must also quote the TranInstanceId, set TranState
to MQITS_IN_CONVERSATION, and use the IBM MQ queue on which the conversation is being carried
out.

• You cannot use /HOLD or /REL to hold or release a conversation.
• Conversations invoked through the IBM MQ - IMS bridge are terminated if IMS is restarted.

Writing programs containing IMS commands
An application program can build an IBM MQ message of the form LLZZcommand, instead of a
transaction, where command is of the form /DIS TRAN PART or /DIS POOL ALL.

Most IMS commands can be issued in this way; see IMS V11 Communications and Connections for details.
The command output is received in the IBM MQ reply message in the text form as would be sent to a
3270 terminal for display.

OTMA has implemented a special form of the IMS display transaction command, which returns an
architected form of the output. The exact format is defined in IMS V11 Communications and Connections.
To invoke this form from an IBM MQ message, build the message data as before, for example /DIS TRAN
PART, and set the TranState field in the MQIIH to MQITS_ARCHITECTED. IMS processes the command,
and returns the reply in the architected form. An architected response contains all the information that
could be found in the text form of the output, and one additional piece of information: whether the
transaction is defined as recoverable or non-recoverable.

Triggering
The IBM MQ - IMS bridge does not support trigger messages.

If you define an initiation queue that uses a storage class with XCF parameters, messages put to that
queue are rejected when they get to the bridge.

Writing client procedural applications
What you need to know to write client applications on IBM MQ using a procedural language.

Applications can be built and run in the IBM MQ client environment. The application must be built and
linked to the IBM MQ MQI client used. The way in which applications are built and linked varies according
to the platform and programming language used. For information on how to build client applications, see
“Building applications for IBM MQ MQI clients” on page 885.

Developing applications for IBM MQ 879

You can run an IBM MQ application both in a full IBM MQ environment and in an IBM MQ MQI client
environment without changing your code, provided that certain conditions are met. For more information
on running your applications in the IBM MQ client environment, see “Running applications in the IBM MQ
MQI client environment” on page 887.

If you use the message queue interface (MQI) to write applications to run in an IBM MQ MQI client
environment there are some additional controls to impose during an MQI call to ensure that the IBM MQ
application processing is not disrupted. For more information about these controls, see “Using the MQI in
a client application” on page 880.

See the following topics for information preparing and running other application types as client
applications:

• “Preparing and running CICS and Tuxedo applications” on page 899
• “Preparing and running Microsoft Transaction Server applications” on page 47
• “Preparing and running IBM MQ JMS applications” on page 902

Related concepts
“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.
“Design considerations for IBM MQ applications” on page 47
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Writing a procedural application for queuing” on page 696
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing publish/subscribe applications” on page 780
Start writing publish/subscribe IBM MQ applications.
“Building a procedural application” on page 962
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 999
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.
Related tasks
“Using the IBM MQ sample procedural programs” on page 1018
These sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

Using the MQI in a client application
This collection of topics considers the differences between writing your IBM MQ application to run in
a message queue interface (MQI) client environment and to run in the full IBM MQ queue manager
environment.

When you design an application, consider what controls you need to impose during an MQI call to ensure
that the IBM MQ application processing is not disrupted.

Before you can run applications that use the MQI you must create certain IBM MQ objects. For more
information, see Application programs using the MQI.

880 Developing Applications for IBM MQ

Limiting the size of a message in a client application
A queue manager has a maximum message length, but the maximum size of message you can transmit
from a client application is limited by the channel definition.

The maximum message length (MaxMsgLength) attribute of a queue manager is the maximum length of a
message that can be handled by that queue manager.

On Multiplatforms, you can increase the maximum message length attribute of a queue
manager. For more information, see ALTER QMGR.

You can find out the value of MaxMsgLength for a queue manager by using the MQINQ call.

If the MaxMsgLength attribute is changed, no check is made that there are not already queues, and even
messages, with a length greater than the new value. After you change this attribute, restart applications
and channels in order to ensure that the change has taken effect. It is then not possible for any new
messages to be generated that exceed the MaxMsgLength of either the queue manager or the queue
(unless queue manager segmentation is allowed).

The maximum message length in a channel definition limits the size of a message that you can transmit
along a client connection. If an IBM MQ application tries to use the MQPUT call or the MQGET call with
a message larger than this, an error code is returned to the application. The maximum message size
parameter of the channel definition does not affect the maximum message size which can be consumed
using MQCB over a client connection.

Related concepts
“Using MQCONNX” on page 885
You can use the MQCONNX call to specify a channel definition (MQCD) structure in the MQCNO structure.
Related reference
Maximum message length (MAXMSGL)
ALTER CHANNEL
2010 (07DA) (RC2010): MQRC_DATA_LENGTH_ERROR

Choosing client or server CCSID
Use the local coded character set identifier (CCSID) for the client. The queue manager performs
necessary conversion. You can use the MQCCSID environment variable to override the CCSID. If your
application performs multiple PUTs, the CCSID and encoding fields of the MQMD can be overwritten after
completion of the first PUT.

The data passed across the message queue interface (MQI) from the application to the client stub must
be in the local CCSID, encoded for the IBM MQ MQI client. If the connected queue manager requires the
data to be converted, then conversion is done by the client support code on the queue manager.

In IBM WebSphere MQ 7.0 and later versions, the Java client can do the conversion if the queue manager
is unable to do so. See “IBM MQ classes for Java client connections” on page 359.

The client code assumes that the character data crossing the MQI in the client is in the CCSID configured
for that workstation. If this CCSID is an unsupported CCSID or is not the required CCSID, it can be
overridden with the MQCCSID environment variable by using one of these commands:

•

SET MQCCSID=850

•

export MQCCSID=850

•

Developing applications for IBM MQ 881

ADDENVVAR ENVVAR(MQCCSID) VALUE(37)

If this parameter is set in the profile, all MQI data is assumed to be in code page 850.

Note: The assumption about code page 850 does not apply to application data in the message.

If your application is performing multiple PUTs that include IBM MQ headers after the message descriptor
(MQMD), be aware that the CCSID and encoding fields of the MQMD are overwritten after completion of
the first PUT.

After the first PUT, these fields contain the value used by the connected queue manager to convert the
IBM MQ headers. Ensure that your application resets the values to the values it requires.

Using MQINQ in a client aplication
Some values queried using MQINQ are modified by the client code.

CCSID
is set to the client CCSID, not that of the queue manager.

MaxMsgLength
is reduced if it is restricted by the channel definition. This will be the lower of:

• The value defined in the queue definition, or
• The value defined in the channel definition

For more information, see the MQINQ.

Using sync point coordination in a client application
An application running on the base client can issue MQCMIT and MQBACK, but the scope of the sync point
control is limited to the MQI resources. You can use an external transaction manager with an extended
transactional client.

Within IBM MQ, one of the roles of the queue manager is sync point control within an application. If an
application runs on an IBM MQ base client, it can issue MQCMIT and MQBACK, but the scope of the sync
point control is limited to the MQI resources. The IBM MQ verb MQBEGIN is not valid in a base client
environment.

Applications running in the full queue manager environment on the server can coordinate multiple
resources (for example databases) via a transaction monitor. On the server you can use the Transaction
Monitor supplied with IBM MQ products, or another transaction monitor such as CICS. You cannot use a
transaction monitor with a base client application.

You can use an external transaction manager with an IBM MQ extended transactional client. See What is
an extended transactional client? for details.

Using read ahead in a client application
You can use read ahead on a client to allow non persistent messages to be sent to a client without the
client application having to request the messages.

When a client requires a message from a server, it sends a request to the server. It sends a separate
request for each of the messages it consumes. To improve the performance of a client consuming non
persistent messages by avoiding having to send these request messages, a client can be configured to use
read ahead. Read ahead allows messages to be sent to a client without an application having to request
them.

Using read ahead can improve performance when consuming non persistent messages from a client
application. This performance improvement is available to both MQI and JMS applications. Client
applications using MQGET or asynchronous consumption benefit from the performance improvements
when consuming non persistent messages.

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if certain
conditions are met. These conditions include:

882 Developing Applications for IBM MQ

• The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
• The client channel must be using TCP/IP protocol
• The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

When read ahead is enabled, messages are sent to a memory buffer on the client called the read ahead
buffer. The client has a read ahead buffer for each queue it has open with read ahead enabled. The
messages in the read ahead buffer are not persisted. The client periodically updates the server with
information about the amount of data it has consumed.

Not all client application designs are suited to using read ahead because not all options are supported for
use. Some options are required to be consistent between MQGET calls when read ahead is enabled. If a
client alters its selection criteria between MQGET calls, messages being stored in the read ahead buffer
remain stranded in the client read ahead buffer. For more information, see “Improving performance of
non-persistent messages” on page 759

Read ahead configuration is controlled by three attributes, MaximumSize, PurgeTime, and
UpdatePercentage, which are specified in the MessageBuffer stanza of the IBM MQ client configuration
file.

Using asynchronous put in a client application
Using asynchronous put, an application can put a message to a queue without waiting for a response from
the queue manager. You can use this to improve messaging performance in some situations.

Normally, when an application puts a message or messages on a queue, using MQPUT or MQPUT1,
the application has to wait for the queue manager to confirm that it has processed the MQI request.
You can improve messaging performance, particularly for applications that use client bindings, and
applications that put large numbers of small messages to a queue, by choosing instead to put messages
asynchronously. When an application puts a message asynchronously, the queue manager does not return
the success or failure of each call, but you can instead check for errors periodically.

To put a message on a queue asynchronously, use the MQPMO_ASYNC_RESPONSE option in the Options
field of the MQPMO structure.

If a message is not eligible for asynchronous put, it is put to a queue synchronously.

When requesting asynchronous put response for MQPUT or MQPUT1, a CompCode and Reason of
MQCC_OK and MQRC_NONE does not necessarily mean that the message was successfully put to a
queue. Although the success or failure of each individual MQPUT or MQPUT1 call might not be returned
immediately, the first error that occurred under an asynchronous call can be determined later through a
call to MQSTAT.

For more details on MQPMO_ASYNC_RESPONSE, see MQPMO options.

The Asynchronous Put sample program demonstrates some of the features available. For details of the
features and design of the program, and how to run it, see “The Asynchronous Put sample program” on
page 1037.

Using sharing conversations in a client application
In an environment where sharing conversations is permitted, conversations can share an MQI channel
instance.

Sharing conversations is controlled by two fields, both called SharingConversations, one of which is
part of the channel definition (MQCD) structure and one of which is part of the channel exit parameter
(MQCXP) structure. The SharingConversations field in the MQCD is an integer value, determining the
maximum number of conversations that can share a channel instance associated with the channel. The
SharingConversations field in the MQCXP is a boolean value, indicating whether the channel instance is
currently shared.

In an environment where sharing conversations is not permitted, new client connections specifying
identical MQCDs will not share a channel instance.

Developing applications for IBM MQ 883

A new client application connection will share the channel instance when the following conditions are
true:

• Both the client-connection and server-connection ends of the channel instance are configured for
sharing conversations, and these values are not overridden by channel exits.

• The client connection MQCD value (supplied on the client MQCONNX call or from the client channel
definition table (CCDT)) exactly matches the client connection MQCD value supplied on the client
MQCONNX call or from the CCDT when the existing channel instance was first established. Note that the
original MQCD might have been subsequently altered by exits or by channel negotiation, but that the
match is made against the value which was supplied to the client system before these changes were
made.

• The sharing conversations limit on the server side is not exceeded.

If a new client application connection matches the criteria to run sharing a channel instance with other
conversations, this decision is made before any exits are called on that conversation. Exits on such a
conversation cannot alter the fact that it is sharing the channel instance with other conversations. If
there are no existing channel instances matching the new channel definition, a new channel instance is
connected.

Channel negotiation only occurs for the first conversation on a channel instance; the negotiated values for
the channel instance are fixed at that stage and cannot be altered when subsequent conversations start.
TLS authentication also only occurs for the first conversation.

If the MQCD SharingConversations value is altered during the initialization of any security, send or receive
exits for the first conversation on the socket at either the client-connection or the server-connection end
of the channel instance, the new value it has after all these exits are initialized is used to determine the
sharing conversations value for the channel instance (the lowest value takes precedence).

If the negotiated value for sharing conversations is zero, the channel instance is never shared. Further exit
programs that set this field to zero similarly run on their own channel instance.

If the negotiated value for sharing conversations is greater than zero then MQCXP SharingConversations is
set to TRUE for subsequent calls to exits, indicating that other exit programs on this channel instance can
be entered simultaneously with this one.

When you write a channel exit program, consider whether it will run on a channel instance that might
involve sharing conversations. If the channel instance might involve sharing conversations, consider the
effect on other instances of the channel exit of changing MQCD fields; all MQCD fields have common
values across all the sharing conversations. After the channel instance is established, if exit programs try
to alter MQCD fields they might encounter problems because other instances of exit programs running on
the channel instance could be attempting to alter the same fields at the same time. If this situation could
arise with your exit programs, you must serialize access to the MQCD in your exit code.

If you are working with a channel which is defined to share conversations, but you do not want sharing to
occur on a particular channel instance, set the MQCD value of SharingConversations to 1 or 0 when you
initialize a channel exit on the first conversation on the channel instance. See SharingConversations for an
explanation of the values of SharingConversations.

Example

Sharing conversations is enabled.

You are using a client-connection channel definition which specifies an exit program.

The first time that this channel starts, the exit program alters some of the MQCD parameters when it is
initialized. These are acted on by the channel, so the definition that the channel is running with is now
different from the one that was originally supplied. The MQCXP SharingConversations parameter is set to
TRUE.

The next time that the application connects using this channel, the conversation runs on the channel
instance which was started previously, because it has the same original channel definition. The channel
instance the application connects to the second time is the same instance as the first time it connected.
Consequently, it uses the definitions that have been altered by the exit program. When the exit program

884 Developing Applications for IBM MQ

is initialized for the second conversation, although it can alter MQCD fields, they are not acted on by
the channel. These same characteristics apply to any subsequent conversations which share the channel
instance.

Using MQCONNX
You can use the MQCONNX call to specify a channel definition (MQCD) structure in the MQCNO structure.

This allows the calling client application to specify the definition of the client-connection channel at run
time. For more information, see Creating a client-connection channel on the IBM MQ MQI client using
MQCNO. When you use MQCONNX, the call issued at the server depends on the server level and listener
configuration.

When you use MQCONNX from a client, the following options are ignored:

• MQCNO_STANDARD_BINDING
• MQCNO_FASTPATH_BINDING

The MQCD structure you can use depends on the MQCD version number you are using. For information
on MQCD versions (MQCD_VERSION), see MQCD Version. You can use the MQCD structure, for example,
to pass channel-exit programs to the server. If you are using MQCD Version 3 or later, you can use
the structure to pass an array of exits to the server. You can use this function to perform more than
one operation on the same message, such as encryption and compression, by adding an exit for each
operation, rather than modifying an existing exit. If you do not specify an array in the MQCD structure,
the single exit fields will be checked. For more information on channel-exit programs, see “Channel-exit
programs for messaging channels” on page 926.

Shared connection handles on MQCONNX
You can share handles between different threads within the same process, using shared connection
handles.

When you specify a shared connection handle, the connection handle returned from the MQCONNX call
can be passed in subsequent MQI calls on any thread in the process.

Note: You can use a shared connection handle on an IBM MQ MQI client to connect to a server queue
manager that does not support shared connection handles.

Building applications for IBM MQ MQI clients
Applications can be built and run in IBM MQ MQI client environment. The application must be built and
linked to the IBM MQ MQI client used. The way in which applications are built and linked varies according
to the platform and programming language used.

If an application is to run in a client environment, you can write it in the languages shown in the following
table:

Table 133. Programming languages supported in client environments

Client platform C C++ COBOL pTAL RPG Visual
Basic

 AIX Yes Yes Yes

IBM i Yes Yes Yes

Linux Yes Yes Yes

Windows Yes Yes Yes Yes

Developing applications for IBM MQ 885

Linking C applications with the IBM MQ MQI client code
Having written your IBM MQ application that you want to run on the IBM MQ MQI client, you must link it to
the IBM MQ MQI client code.

You can link your application to the IBM MQ MQI client code in two ways:

1. Directly, by connecting your application to a queue manager, in which case the queue manager must
be on the same machine as your application.

2. To a client library file, which gives you access to queue managers on the same or on a different
machine.

IBM MQ provides a client library file for each environment:

AIX
libmqic.a library for non-threaded applications, or libmqic_r.a library for threaded applications.

Linux
libmqic.so library for non-threaded applications, or libmqic_r.so library for threaded applications.

IBM i
Bind client application with LIBMQIC client service program for non-threaded applications, or
LIBMQIC_R service program for threaded applications.

Windows
MQIC32.LIB.

Linking C++ applications with the IBM MQ MQI client code
You can write applications to run on the client in C++. Build methods vary according to the environment.

For information about how to link your C++ applications, see Building IBM MQ C++ programs.

For full details of all aspects of using C++, see Using C++

Linking COBOL applications with the IBM MQ MQI client code
Having written a COBOL application that you want to run on the IBM MQ MQI client, you must link it with
an appropriate library.

IBM MQ provides a client library file for each environment:

AIX
Link your non-threaded COBOL application with the library libmqicb.a or threaded COBOL application
with libmqicb_r.a.

IBM i
Bind COBOL client application with AMQCSTUB service program for non-threaded applications, or
AMQCSTUB_R service program for threaded applications.

Windows
Link your application code with the MQICCBB library for 32-bit COBOL. The IBM MQ MQI client for
Windows does not support 16-bit COBOL.

Linking Visual Basic applications with the IBM MQ MQI client code
You can link Microsoft Visual Basic applications with the IBM MQ MQI client code on Windows.

From IBM MQ 9.0, support for Microsoft Visual Basic 6.0 is deprecated. IBM MQ classes for .NET are the
recommended replacement technology. For more information, see Developing .NET applications.

Link your Visual Basic application with the following include files:

886 Developing Applications for IBM MQ

CMQB.bas
MQI

CMQBB.bas
MQAI

CMQCFB.bas
PCF commands

CMQXB.bas
Channels

Set mqtype=2 for the client in the Visual Basic compiler, to ensure the correct automatic selection of the
client dll:
MQIC32.dll

Windows 7, Windows 8, Windows 2008, and Windows 2012

Related concepts
“Coding in Visual Basic” on page 1012
Information to consider when coding IBM MQ programs in Microsoft Visual Basic. Visual Basic is
supported only on Windows.
“Preparing Visual Basic programs in Windows” on page 981
Information to consider when using Microsoft Visual Basic programs on Windows.

Running applications in the IBM MQ MQI client environment
You can run an IBM MQ application both in a full IBM MQ environment and in an IBM MQ MQI client
environment without changing your code, provided that certain conditions are met.

These conditions are that:

• The application does not need to connect to more than one queue manager concurrently.
• The queue manager name is not prefixed with an asterisk (*) on an MQCONN or MQCONNX call.
• The application does not need to use any of the exceptions listed in What applications run on an IBM

MQ MQI client?

Note: The libraries that you use at link-edit time determine the environment in which your application
must run.

When working in the IBM MQ MQI client environment, remember that:

• Each application running in the IBM MQ MQI client environment has its own connections to servers. An
application establishes one connection to a server each time it issues an MQCONN or MQCONNX call.

• An application sends and gets messages synchronously. This implies a wait between the time the call is
issued at the client and the return of a completion code and reason code across the network.

• All data conversion is done by the server, but see also MQCCSID for information about overriding the
machine's configured CCSID.

Connecting IBM MQ MQI client applications to queue managers
An application running in an IBM MQ MQI client environment can connect to a queue manager in various
ways. You can use environment variables, the MQCNO structure, or a client definition table.

When an application running in an IBM MQ client environment issues an MQCONN or MQCONNX call, the
client identifies how it is to make the connection. When an MQCONNX call is issued by an application on
an IBM MQ client, the MQI client library searches for the client channel information in the following order:

1. Using the contents of the ClientConnOffset or ClientConnPtr fields of the MQCNO structure (if
supplied). These fields identify the channel definition structure (MQCD) to be used as the definition of
the client connection channel. Connection details can be overridden by using a pre-connect exit. For
more information, see “Referencing connection definitions using a pre-connect exit from a repository”
on page 956.

2. If the MQSERVER environment variable is set, the channel that it defines is used.

Developing applications for IBM MQ 887

3. If an mqclient.ini file is defined and the Channels stanza contains a ServerConnectionParms
attribute, the channel that it defines is used. For more information, see IBM MQ MQI client
configuration file, mqclient.ini and Channels stanza of the client configuration file.

4. If the MQCHLLIB and MQCHLTAB environment variables are set, the client channel definition table that
they point to is used. Alternatively, the MQCCDTURL environment variable provides the equivalent
capability to setting a combination of the MQCHLLIB and MQCHLTAB environment variables. If
MQCCDTURL is set, the client channel definition table that it points to is used. For more information,
see URL access to the CCDT.

5. If an mqclient.ini file is defined and the Channels stanza contains
ChannelDefinitionDirectory and ChannelDefinitionFile attributes, these attributes are
used to locate the client channel definition table. For more information, see IBM MQ MQI client
configuration file, mqclient.ini and Channels stanza of the client configuration file.

6. Finally, if the environment variables are not set, the client searches for a client channel definition
table with a path and name that are established from the DefaultPrefix attribute of the
AllQueueManagers stanza in the mqs.ini file. For more information, see AllQueueManagers stanza
of the mqs.ini file.

If the search for a client channel definition table fails, the client uses the following paths:

• On AIX and Linux: /var/mqm/AMQCLCHL.TAB

• On Windows: C:\Program Files\IBM\MQ\amqclchl.tab

• On IBM i: /QIBM/UserData/mqm/@ipcc

• On IBM MQ Appliance: QMname_AMQCLCHL.TAB. They appear under the
mqbackup:// URI.

The first of the options described in the previous list (using the ClientConnOffset or ClientConnPtr
fields of MQCNO) is supported only by the MQCONNX call. If the application is using MQCONN rather than
MQCONNX, the channel information is searched for in the remaining five ways in the order shown in the
list. If the client fails to find the channel information, the MQCONN or MQCONNX call fails.

The channel name (for the client connection) must match the server-connection channel name defined on
the server for the MQCONN or MQCONNX call to succeed.

Related concepts
Web addressable access to the client channel definition table
Related tasks
Configuring connections between the server and client
Related reference
Client channel definition table
MQCNO - Connect options

Connecting client applications to queue managers using environment variables
Client channel information can be supplied to an application running in a client environment by
environment variables.

An application running in an IBM MQ MQI client environment can connect to a queue manager by using
the following environment variables:
MQSERVER

The MQSERVER environment variable is used to define a minimal channel. MQSERVER specifies the
location of the IBM MQ server and the communication method to be used.

MQCHLLIB
The MQCHLLIB environment variable specifies the directory path to the file containing the client
channel definition table (CCDT). The file is created on the server, but can be copied across to the IBM
MQ MQI client workstation.

888 Developing Applications for IBM MQ

MQCHLTAB
The MQCHLTAB environment variable specifies the name of the file containing the client channel
definition table (CCDT).

The MQCCDTURL environment variable provides the equivalent capability to setting a combination of the
MQCHLLIB and MQCHLTAB environment variables. MQCCDTURL allows you to provide a file, ftp, or http URL
as a single value from which a client channel definition table can be obtained. For more information, see
Web addressable access to the client channel definition table.

Connecting client applications to queue managers using the MQCNO structure
You can specify the definition of the channel in a channel definition structure (MQCD), which is supplied
using the MQCNO structure of the MQCONNX call.

For more information, see Creating a client-connection channel on the IBM MQ MQI client using MQCNO.

Connecting client applications to queue managers using a client channel definition table
If you use the MQSC DEFINE CHANNEL command, the details you provide are placed in the client channel
definition table (ccdt). The contents of the QMgrName parameter of the MQCONN or MQCONNX call
determines which queue manager the client connects to.

This file is accessed by the client to determine the channel an application will use. Where there is more
than one suitable channel definition, the choice of channel is influenced by the client channel weight
(CLNTWGHT) and connection affinity (AFFINITY) channel attributes.

Using automatic client reconnection
You can make your client applications reconnect automatically, without writing any additional code, by
configuring a number of components.

Automatic client reconnection is inline. The connection is automatically restored at any point in the client
application program, and the handles to open objects are all restored.

In contrast, manual reconnection requires the client application to re-create a connection using MQCONN
or MQCONNX, and to reopen objects. Automatic client reconnection is suitable for many, but not all client
applications.

For more information, see Automatic client reconnection.

Role of the client channel definition table
The client channel definition table (CCDT) contains definitions of client connection channels. It is
particularly useful if your client applications might need to connect to a number of alternative queue
managers.

The client channel definition table is created when you define a queue manager. The same file can be
used by more than one IBM MQ client.

There are a number of ways for a client application to use a CCDT. The CCDT can be copied to the client
computer. You can copy the CCDT to a location shared by more than one client. You can make the CCDT
accessible to the client as a shared file, while it remains located on the server.

The CCDT can be hosted in a central location that is accessible through a URI, removing the need to
individually update the CCDT for each deployed client.

Related concepts
Web addressable access to the client channel definition table
Related tasks
Accessing client-connection channel definitions
Related reference
Client channel definition table

Developing applications for IBM MQ 889

Queue manager groups in the CCDT
You can define a set of connections in the client channel definition table (CCDT) as a queue manager
group. You can connect an application to a queue manager that is part of a queue manager group. This can
be done by prefixing the queue manager name on an MQCONN or MQCONNX call with an asterisk.

You might choose to define connections to more than one server machine because:

• You want to connect a client to any one of a set of queue managers that is running, to improve
availability.

• You want to reconnect a client to the same queue manager it connected to successfully last time, but
connect to a different queue manager if the connection fails.

• You want to be able to retry a client connection to a different queue manager if the connection fails, by
issuing the MQCONN in the client program again.

• You want to automatically reconnect a client connection to another queue manager if the connection
fails, without writing any client code.

• You want to automatically reconnect a client connection to a different instance of a multi-instance
queue manager if a standby instance takes over, without writing any client code.

• You want to balance your client connections across a number of queue managers, with more clients
connecting to some queue managers than others.

• You want to spread the reconnection of many client connections over multiple queue managers and
over time, in case the high volume of connections causes a failure.

• You want to be able to move your queue managers without changing any client application code.
• You want to write client application programs that do not need to know queue manager names.

It is not always appropriate to connect to different queue managers. An extended transactional client or a
Java client in WebSphere Application Server, for example, might need to connect to a predictable queue
manager instance. Automatic client reconnect is not supported by IBM MQ classes for Java.

A queue manager group is a set of connections defined in the client channel definition table (CCDT). The
set is defined by its members having the same value of the QMNAME attribute in their channel definitions.

Figure 97 on page 891 is a graphical representation of a client connection table, showing three queue
manager groups, two named queue manager groups written in the CCDT as QMNAME (QM1) and QMNAME
(QMGrp1), and one blank or default group written as QMNAME (' ').

1. Queue manager group QM1 has three client connection channels, connecting it to queue managers QM1
and QM2. QM1 might be a multi-instance queue manager located on two different servers.

2. The default queue manager group has six client connection channels connecting it to all the queue
managers.

3. QMGrp1 has client connection channels to two queue managers, QM4 and QM5.

890 Developing Applications for IBM MQ

Figure 97. Queue manager groups

Four examples of using this client connection table are described with the help of the numbered client
applications in Figure 97 on page 891.

1. In the first example, the client application passes a queue manager name, QM1, as the QmgrName
parameter to its MQCONN or MQCONNX MQI call. The IBM MQ client code selects the matching queue
manager group, QM1. The group contains three connection channels, and the IBM MQ MQI client
tries to connect to QM1 using each of these channels in turn until it finds an IBM MQ listener for the
connection attached to a running queue manager called QM1.

The order of connection attempts depends on the value of the client connection AFFINITY attribute
and the client channel weightings. Within these constraints, the order of connection attempts is
randomized, both over the three possible connections, and over time, in order to spread out the load of
making connections.

The MQCONN or MQCONNX call issued by the client application succeeds when a connection is
established to a running instance of QM1.

2. In the second example, the client application passes a queue manager name prefixed with an asterisk,
*QMGrp1 as the QmgrName parameter to its MQCONN or MQCONNX MQI call. The IBM MQ client selects
the matching queue manager group, QMGrp1. This group contains two client connection channels,
and the IBM MQ MQI client tries to connect to any queue manager using each channel in turn. In
this example, the IBM MQ MQI client needs to make a successful connection; the name of the queue
manager that it connects to does not matter.

The rule for the order of making connection attempts is the same as before. The only difference is that
by prefixing the queue manager name with an asterisk, the client indicates that the name of the queue
manager is not relevant.

Developing applications for IBM MQ 891

The MQCONN or MQCONNX call issued by the client application succeeds when a connection is
established to a running instance of any queue manager connected to by the channels in the QMGrp1
queue manager group.

3. The third example is essentially the same as the second because the QmgrName parameter is prefixed
by an asterisk, *QM1. The example illustrates that you cannot determine which queue manager a client
channel connection is going to connect to by inspecting the QMNAME attribute in one channel definition
by itself. The fact that the QMNAME attribute of the channel definition is QM1, is not sufficient to require
a connection is made to a queue manager called QM1. If your client application prefixes its QmgrName
parameter with an asterisk then any queue manager is a possible connection target.

In this case the MQCONN or MQCONNX calls issued by the client application succeed when a connection
is established to a running instance of either QM1 or QM2.

4. The fourth example illustrates use of the default group. In this case the client application passes
an asterisk, '*', or blank ' ', as the QmgrName parameter to its MQCONN or MQCONNX MQI call.
By convention in the client channel definition, a blank QMNAME attribute signifies the default queue
manager group and either a blank or asterisk QmgrName parameter matches a blank QMNAME attribute.

In this example the default queue manager group has client channel connections to all the queue
managers. By selecting the default queue manager group the application might be connected to any
queue manager in the group.

The MQCONN or MQCONNX call issued by the client application succeeds when a connection is
established to a running instance of any queue manager.

Note: The default group is different from a default queue manager, although an application uses a
blank QmgrName parameter to connect to either the default queue manager group or to the default
queue manager. The concept of a default queue manager group is only relevant to a client application,
and a default queue manager to a server application.

Define your client connection channels on one queue manager only, including those channels that
connect to a second or third queue manager. Do not define them on two queue managers and then try to
merge the two client channel definition tables. Only one client channel definition table can be accessed by
the client.

Examples

Look again at the list of reasons for using queue manager groups at the beginning of the topic. How does
using a queue manager group provide those capabilities?
Connect to any one of a set of queue managers.

Define a queue manager group with connections to all the queue managers in the set, and connect to
the group using the QmgrName parameter prefixed by an asterisk.

Reconnect to the same queue manager, but connect to a different one, if the queue manager
connected to last time is unavailable.

Define a queue manager group as before but set the attribute, AFFINITY (PREFERRED) on each
client channel definition.

Retry a connection to another queue manager if a connection fails.
Connect to a queue manager group, and reissue the MQCONN or MQCONNX MQI call if the connection is
broken or the queue manager fails.

Automatically reconnect to another queue manager if a connection fails.
Connect to a queue manager group using the MQCONNX MQCNO option MQCNO_RECONNECT.

Automatically reconnect to a different instance of a multi-instance queue manager.
Do the same as the preceding example. In this case, if you want to restrict the queue manager
group to connect to the instances of a particular multi-instance queue manager, define the group with
connections to only the multi-instance queue manager instances.
You can also ask the client application to issue its MQCONN or MQCONNX MQI call with no asterisk
prefixed to the QmgrName parameter. That way the client application can only connect to the named
queue manager. Finally, you can set the MQCNO option to MQCNO_RECONNECT_Q_MGR. This option

892 Developing Applications for IBM MQ

accepts reconnections to the same queue manager that was previously connected. You can also use
this value to restrict reconnections to the same instance of a normal queue manager.

Balance client connections across queue managers, with more clients connected to some queue
managers than others.

Define a queue manager group, and set the CLNTWGHT attribute on each client channel definition to
distribute the connections unevenly.

Spread the client reconnection load unevenly, and spread it over time, after a connection or queue
manager failure.

Do the same as the preceding example. The IBM MQ MQI client randomizes reconnections across
queue managers and spreads the reconnections over time.

Move your queue managers without changing any client code.
The CCDT isolates your client application from the location of the queue manager. The CCDT is a data
file which can be defined at the client, read from a shared location or fetched from a web-server. For
more information, see Client channel definition table.

Write a client application that does not know queue manager names.
Use queue manager group names and establish a naming convention for queue manager group names
that is relevant to your client applications in your organization, and reflects the architecture of your
solutions rather than the naming of queue managers.

Connecting to queue sharing groups
You can connect your application to a queue manager that is part of a queue sharing group. This can be
done by using the queue sharing group name instead of the queue manager name on the MQCONN or
MQCONNX call.

Queue sharing groups have a name of up to four characters. The name must be unique in your network,
and must be different from any queue manager names.

The client channel definition should use the queue sharing group generic interface to connect to an
available queue manager in the group. For more information, see Connecting a client to a queue sharing
group. A check is made to ensure that the queue manager the listener connects to is a member of the
queue sharing group.

For more information on shared queues, see Shared queues and queue sharing groups.

Examples of channel weighting and affinity
These examples illustrate how client-connection channels are selected when non-zero
ClientChannelWeights are used.

The ClientChannelWeight and ConnectionAffinity channel attributes control how client-
connection channels are selected when more than one suitable channel is available for a connection.
These channels are configured to connect to different queue managers in order to provide higher
availability, workload balancing, or both. MQCONN calls that could result in a connection to one of several
queue managers must prefix the queue manager name with an asterisk as described in: Examples of
MQCONN calls: Example 1. Queue manager name includes an asterisk (*).

Applicable candidate channels for a connection are those where the QMNAME attribute matches the
queue manager name specified in the MQCONN call. If all applicable channels for a connection have
a ClientChannelWeight of zero (the default) then they are selected in alphabetical order as in the
example: Examples of MQCONN calls: Example 1. Queue manager name includes an asterisk (*).

The following examples illustrate what happens when non-zero ClientChannelWeights are used. Note
that, since this feature involves pseudo-random channel selection, the examples show a sequence of
actions that might happen rather than what definitely will.

Developing applications for IBM MQ 893

Example 1. Selecting channels when ConnectionAffinity is set to PREFERRED
This example illustrates how an IBM MQ MQI client selects a channel from a CCDT, where the
ConnectionAffinity is set to PREFERRED.

In this example, a number of client machines use a Client Channel Definition Table (CCDT) provided by a
queue manager. The CCDT includes client connection channels with the following attributes (shown using
the syntax of the DEFINE CHANNEL command):

CHANNEL(A) QMNAME(DEV) CONNAME(devqm.it.company.example)
CHANNEL(B) QMNAME(CORE) CONNAME(core1.ops.company.example) CLNTWGHT(5) +
AFFINITY(PREFERRED)
CHANNEL(C) QMNAME(CORE) CONNAME(core2.ops.company.example) CLNTWGHT(3) +
AFFINITY(PREFERRED)
CHANNEL(D) QMNAME(CORE) CONNAME(core3.ops.company.example) CLNTWGHT(2) +
AFFINITY(PREFERRED)

The application issues MQCONN(*CORE)

Channel A is not a candidate for this connection, because the QMNAME attribute does not match.
Channels B, C and D are identified as candidates, and are placed in an order of preference based on
their weighting. In this example the order might be C, B, D. The client attempts to connect to the queue
manager at core2.ops.company.example. The name of the queue manager at that address is not checked,
because the MQCONN call included an asterisk in the queue manager name.

It is important to note that, with AFFINITY(PREFERRED), each time this particular client machine
connects it will place the channels in the same initial order of preference. This applies even when the
connections are from different processes or at different times.

In this example, the queue manager at core.2.ops.company.example cannot be reached. The client
attempts to connect to core1.ops.company.example because channel B is next in the order of preference.
In addition, channel C is demoted to become the least preferred.

A second MQCONN(*CORE) call is issued by the same application. Channel C was demoted by
the previous connection, so the most preferred channel is now B. This connection is made to
core1.ops.company.example.

A second machine sharing the same Client Channel Definition Table migh place the channels in a different
initial order of preference. For example, D, B, C. Under normal circumstances, with all channels working,
applications on this machine are connected to core3.ops.company.example while those on the first
machine are connected to core2.ops.company.example. This allows workload balancing of large numbers
of clients across multiple queue managers while allowing each individual client to connect to the same
queue manager if it is available.

Example 2. Selecting channels when ConnectionAffinity is set to NONE
This example illustrates how an IBM MQ MQI client selects a channel from a CCDT, where the
ConnectionAffinity is set to NONE.

In this example, a number of clients use a Client Channel Definition Table (CCDT) provided by a queue
manager. The CCDT includes client connection channels with the following attributes (shown using the
syntax of the DEFINE CHANNEL command):

CHANNEL(A) QMNAME(DEV) CONNAME(devqm.it.company.example)
CHANNEL(B) QMNAME(CORE) CONNAME(core1.ops.company.example) CLNTWGHT(5) +
AFFINITY(NONE)
CHANNEL(C) QMNAME(CORE) CONNAME(core2.ops.company.example) CLNTWGHT(3) +
AFFINITY(NONE)
CHANNEL(D) QMNAME(CORE) CONNAME(core3.ops.company.example) CLNTWGHT(2) +
AFFINITY(NONE)

The application issues MQCONN(*CORE). As in the previous example, channel A is not considered
because the QMNAME does not match. Channel B, C, or D are selected based on their weighting, with
probabilities of 50%, 30%, or 20%. In this example, channel B might be selected. There is no persistent
order of preference created.

894 Developing Applications for IBM MQ

A second MQCONN(*CORE) call is made. Again, one of the three applicable channels is selected, with the
same probabilities. In this example, channel C is chosen. However, core2.ops.company.example does not
respond, so another choice is made between the remaining candidate channels. Channel B is selected
and the application is connected to core1.ops.company.example.

With AFFINITY(NONE), each MQCONN call is independent of any other. Therefore when this example
application makes a third MQCONN(*CORE), it might once more attempt to connect through the broken
channel C, before choosing one of B or D.

Examples of MQCONN calls
Examples of using MQCONN to connect to a specific queue manager, or to one of a group of queue
managers.

In each of the following examples, the network is the same; there is a connection defined to two servers
from the same IBM MQ MQI client. (In these examples, the MQCONNX call could be used instead of the
MQCONN call.)

There are two queue managers running on the server machines, one named SALE and the other named
SALE_BACKUP.

Figure 98. MQCONN example

The definitions for the channels in these examples are:

SALE definitions:

DEFINE CHANNEL(ALPHA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Server connection to IBM MQ MQI client')

DEFINE CHANNEL(ALPHA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME(9.20.4.26) DESCR('IBM MQ MQI client connection to server 1') +
QMNAME(SALE)

DEFINE CHANNEL(BETA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME(9.20.5.26) DESCR('IBM MQ MQI client connection to server 2') +
QMNAME(SALE)

SALE_BACKUP definition:

Developing applications for IBM MQ 895

DEFINE CHANNEL(BETA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Server connection to IBM MQ MQI client')

The client channel definitions can be summarized as follows:

Name CHLTYPE TRPTYPE CONNAME QMNAME

ALPHA CLNTCONN TCP 9.20.4.26 SALE

BETA CLNTCONN TCP 9.20.5.26 SALE

What the MQCONN examples demonstrate
The examples demonstrate the use of multiple queue managers as a backup system.

Suppose the communication link to Server 1 is temporarily broken. The use of multiple queue managers
as a backup system is demonstrated.

Each example covers a different MQCONN call and gives an explanation of what happens in the specific
example presented, by applying the following rules:

1. The client channel definition table (CCDT) is scanned in alphabetical channel name order for a queue
manager name (QMNAME field) corresponding to the one given in the MQCONN call.

2. If a match is found, the channel definition is used.
3. An attempt is made to start the channel to the machine identified by the connection name

(CONNAME). If this is successful, the application continues. It requires:

• A listener to be running on the server.
• The listener to be connected to the same queue manager as the one the client wants to connect to (if
specified).

4. If the attempt to start the channel fails and there is more than one entry in the client channel definition
table (in this example there are two entries), the file is searched for a further match. If a match is
found, processing continues at step 1.

5. If no match is found, or there are no more entries in the client channel definition table and the channel
has failed to start, the application is unable to connect. An appropriate reason code and completion
code are returned in the MQCONN call. The application can take action based on the reason and
completion codes returned.

Example 1. Queue manager name includes an asterisk (*)
In this example the application is not concerned about which queue manager it connects to. The
application issues an MQCONN call for a queue manager name including an asterisk. A suitable channel is
chosen.

The application issues:

MQCONN (*SALE)

Following the rules, this is what happens in this instance:

1. The client channel definition table (CCDT) is scanned for the queue manager name SALE, matching
with the application MQCONN call.

2. Channel definitions for ALPHA and BETA are found.
3. If one channel has a CLNTWGHT value of 0, this channel is selected. If both have a CLNTWGHT value

of 0, channel ALPHA is selected because it is first in alphabetical sequence. If both channels have a
non-zero CLNTWGHT value, one channel is randomly selected, based on its weighting.

4. An attempt to start the channel is made.
5. If channel BETA was selected, the attempt to start it is successful.

896 Developing Applications for IBM MQ

6. If channel ALPHA was selected, the attempt to start it is NOT successful because the communication
link is broken. The following steps then apply:

a. The only other channel for the queue manager name SALE is BETA.
b. An attempt to start this channel is made - this is successful.

7. A check to see that a listener is running shows that there is one running. It is not connected to the
SALE queue manager, but because the MQI call parameter has an asterisk (*) included in it, no check is
made. The application is connected to the SALE_BACKUP queue manager and continues processing.

Example 2. Queue manager name specified
In this example the application must connect to a particular queue manager. The application issues an
MQCONN call for that queue manager name. A suitable channel is chosen.

The application requires a connection to a specific queue manager, named SALE, as seen in the MQI call:

MQCONN (SALE)

Following the rules, this is what happens in this instance:

1. The client channel definition table (CCDT) is scanned in alphabetical channel name sequence, for the
queue manager name SALE, matching with the application MQCONN call.

2. The first channel definition found to match is ALPHA.
3. An attempt to start the channel is made - this is not successful because the communication link is

broken.
4. The client channel definition table is again scanned for the queue manager name SALE and the

channel name BETA is found.
5. An attempt to start the channel is made - this is successful.
6. A check to see that a listener is running shows that there is one running, but it is not connected to the
SALE queue manager.

7. There are no further entries in the client channel definition table. The application cannot continue and
receives return code MQRC_Q_MGR_NOT_AVAILABLE.

Example 3. Queue manager name is blank or an asterisk (*)
In this example the application is not concerned about which queue manager it connects to. The
application issues an MQCONN specifying a blank queue manager name or an asterisk. A suitable channel
is chosen.

This is treated in the same way as “Example 1. Queue manager name includes an asterisk (*)” on page
896.

Note: If this application were running in an environment other than an IBM MQ MQI client, and the name
was blank, it would be attempting to connect to the default queue manager. This is not the case when it
is run from a client environment; the queue manager accessed is the one associated with the listener to
which the channel connects.

The application issues:

MQCONN ("")

or

MQCONN (*)

Following the rules, this is what happens in this instance:

1. The client channel definition table (CCDT) is scanned in alphabetical channel name sequence, for a
queue manager name that is blank, matching with the application MQCONN call.

Developing applications for IBM MQ 897

2. The entry for the channel name ALPHA has a queue manager name in the definition of SALE. This does
not match the MQCONN call parameter, which requires the queue manager name to be blank.

3. The next entry is for the channel name BETA.
4. The queue manager name in the definition is SALE. Once again, this does not match the MQCONN

call parameter, which requires the queue manager name to be blank.
5. There are no further entries in the client channel definition table. The application cannot continue and

receives return code MQRC_Q_MGR_NOT_AVAILABLE.

Triggering in the client environment
Messages sent by IBM MQ applications running on IBM MQ MQI clients contribute to triggering in exactly
the same way as any other messages, and they can be used to trigger programs on both the server and
the client.

Triggering is explained in detail in the Triggering channels.

The trigger monitor and the application to be started must be on the same system.

The default characteristics of the triggered queue are the same as those in the server environment. In
particular, if no MQPMO sync point control options are specified in a client application putting messages
to a triggered queue that is local to a z/OS queue manager, the messages are put within a unit of work. If
the triggering condition is then met, the trigger message is put on the initiation queue within the same unit
of work and cannot be retrieved by the trigger monitor until the unit of work ends. The process that is to
be triggered is not started until the unit of work ends.

Process definition
You must define the process definition on the server, because this is associated with the queue that has
triggering set on.

The process object defines what is to be triggered. If the client and server are not running on the same
platform, any processes started by the trigger monitor must define ApplType, otherwise the server takes
its default definitions (that is, the type of application that is normally associated with the server machine)
and causes a failure.

For example, if the trigger monitor is running on an IBM MQ MQI client and wants to send a request to a
server on another operating system, MQAT_WINDOWS_NT must be defined otherwise the other operating
system uses its default definitions and the process fails.

Trigger monitor
The trigger monitor provided by IBM MQ for Multiplatforms runs in the client environments for
Multiplatforms systems.

To run the trigger monitor, issue one of these commands:

• On IBM i:

CALL PGM(QMQM/RUNMQTMC) PARM('-m' QmgrName '-q' InitQ)

• On AIX, Linux, and Windows platforms:

runmqtmc [-m QMgrName] [-q InitQ]

The default initiation queue is SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue manager. The
initiation queue is where the trigger monitor looks for trigger messages. It then calls programs for the
appropriate trigger messages. This trigger monitor supports the default application type and is the same
as runmqtrm except that it links the client libraries.

The command string, built by the trigger monitor, is as follows:

1. The ApplicId from the relevant process definition. ApplicId is the name of the program to run, as it
would be entered on the command line.

898 Developing Applications for IBM MQ

2. The MQTMC2 structure, enclosed in quotation marks, obtained from the initiation queue. A command
string is started that has this string, exactly as provided, in quotation marks in order that the system
command accepts it as one parameter.

3. The EnvrData from the relevant process definition.

The trigger monitor does not look to see if there is another message on the initiation queue until the
completion of the application it has started. If the application has much processing to do, the trigger
monitor might not keep up with the number of trigger messages arriving. There are two ways to deal with
this situation:

1. Have more trigger monitors running

If you choose to have more trigger monitors running, you can control the maximum number of
applications that can run at any one time.

2. Run the started applications in the background

If you choose to run applications in the background, IBM MQ imposes no restriction on the number of
applications that can run.

To run the started application in the background on AIX and Linux systems, you must put an &
(ampersand) at the end of the EnvrData of the process definition.

CICS applications (non-z/OS)
A non-z/OS CICS application program that issues an MQCONN or MQCONNX call must be defined to CEDA as
RESIDENT. If you relink a CICS server application as a client, you risk losing sync point support.

A non-z/OS CICS application program that issues an MQCONN or MQCONNX call must be defined to CEDA as
RESIDENT. To make the resident code as small as possible, you can link to a separate program to issue
the MQCONN or MQCONNX call.

If the MQSERVER environment variable is used to define the client connection, it must be specified in the
CICSENV.CMD file.

IBM MQ applications can be run in an IBM MQ server environment or on an IBM MQ client without
changing code. However, in an IBM MQ server environment, CICS can act as sync point coordinator, and
you use EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK rather than MQCMIT and MQBACK.
If a CICS application is simply relinked as a client, sync point support is lost. MQCMIT and MQBACK must be
used for the application running on an IBM MQ MQI client.

Preparing and running CICS and Tuxedo applications
To run CICS and Tuxedo applications as client applications, you use different libraries from those you use
with server applications. The user ID under which the application runs is also different.

To prepare CICS and Tuxedo applications to run as IBM MQ MQI client applications, follow the
instructions in the Configuring an extended transactional client.

Note, however, that the information that deals specifically with preparing CICS and Tuxedo applications,
including the sample programs supplied with IBM MQ, assumes that you are preparing applications to run
on an IBM MQ server system. As a result, the information refers only to IBM MQ libraries that are intended
for use on a server system. When you are preparing your client applications, you must do the following
things:

• Use the appropriate client system library for the language bindings that your application uses. For
example:

– For applications written in C on AIX and Linux, use the library libmqic
instead of libmqm.

– On Windows systems, use the library mqic.lib instead of mqm.lib.
• Instead of the server system libraries shown in Table 134 on page 900 and Table 135 on page 900,

use the equivalent client system libraries. If a server system library is not listed in these tables, use the
same library on a client system.

Developing applications for IBM MQ 899

Table 134. Client system libraries on AIX and Linux

Library for an IBM MQ server system Equivalent library to use on an IBM MQ client
system

libmqmxa libmqcxa

libmqmxa64 libmqcxa64

Table 135. Client system libraries on Windows systems

Library for an IBM MQ server system Equivalent library to use on an IBM MQ client
system

mqmxa.lib mqcxa.lib

mqmtux.lib mqcxa.lib

mqmenc.lib mqcxa.lib

mqmcics4.lib mqccics4.lib

The user ID used by a client application
When you run an IBM MQ server application under CICS, it normally switches from the CICS user to
the user ID of the transaction. However, when you run an IBM MQ MQI client application under CICS, it
retains the CICS privileged authority.

CICS and Tuxedo sample programs
CICS and Tuxedo sample programs for use on AIX, Linux, and Windows systems.

Table 136 on page 900 lists the CICS and Tuxedo sample programs that are supplied for use on AIX and
Linux client systems. Table 137 on page 900 lists the equivalent information for Windows client systems.
The tables also list the files that are used for preparing and running the programs. For a description of the
sample programs, see “The CICS transaction sample” on page 1040 and “Using the TUXEDO samples on
AIX, Linux, and Windows” on page 1083.

Table 136. Sample programs for AIX and Linux client systems

Description Source Executable
module

CICS program amqscic0.ccs amqscicc

Header file for the CICS program amqscih0.h -

Tuxedo client program to put messages amqstxpx.c -

Tuxedo client program to get messages amqstxgx.c -

Tuxedo server program for the two client programs amqstxsx.c -

UBBCONFIG file for the Tuxedo programs ubbstxcx.cfg -

Field table file for the Tuxedo programs amqstxvx.flds -

View description file for the Tuxedo programs amqstxvx.v -

Table 137. Sample programs for Windows client systems

Description Source Executable
module

CICS transaction amqscic0.ccs amqscicc

900 Developing Applications for IBM MQ

Table 137. Sample programs for Windows client systems (continued)

Description Source Executable
module

Header file for the CICS transaction amqscih0.h -

Tuxedo client program to put messages amqstxpx.c -

Tuxedo client program to get messages amqstxgx.c -

Tuxedo server program for the two client programs amqstxsx.c -

UBBCONFIG file for the Tuxedo programs ubbstxcx.cfg -

Field table file for the Tuxedo programs amqstxvx.fld -

View description file for the Tuxedo programs amqstxvx.v -

Makefile for the Tuxedo programs amqstxmc.mak -

ENVFILE file for the Tuxedo programs amqstxen.env -

Error message AMQ5203, as modified for CICS and Tuxedo applications
When you run CICS or Tuxedo applications that use an extended transactional client, you might see
standard diagnostic messages. One of these has been modified for use with an extended transactional
client

The messages that you might see in the IBM MQ error log files are documented in Diagnostic messages:
AMQ4000-9999. Message AMQ5203 has been modified for use with an extended transactional client.
Here is the text of the modified message:

AMQ5203: An error occurred calling the XA interface.
Explanation

The error number is &2 where a value of 1 indicates the supplied flags value of &1 was invalid, 2
indicates that there was an attempt to use threaded and non-threaded libraries in the same process,
3 indicates that there was an error with the supplied queue manager name '&3', 4 indicates that
the resource manager ID of &1 was invalid, 5 indicates that an attempt was made to use a second
queue manager called '&3' when another queue manager was already connected, 6 indicates that the
Transaction Manager has been called when the application isn't connected to a queue manager, 7
indicates that the XA call was made while another call was in progress, 8 indicates that the xa_info
string '&4' in the xa_open call contained an invalid parameter value for parameter name '&5', and 9
indicates that the xa_info string '&4' in the xa_open call is missing a required parameter, parameter
name '&5'.

User response
Correct the error and try the operation again.

Preparing and running Microsoft Transaction Server applications
To prepare an MTS application to run as an IBM MQ MQI client application, follow these instructions as
appropriate for your environment.

For general information about how to develop Microsoft Transaction Server (MTS) applications that access
IBM MQ resources, see the section on MTS in the IBM MQ Help Center.

To prepare an MTS application to run as an IBM MQ MQI client application, do one of the following for
each component of the application:

• If the component uses the C language bindings for the MQI, follow the instructions in “Preparing C
programs in Windows” on page 978 but link the component with the library mqicxa.lib instead of
mqic.lib.

Developing applications for IBM MQ 901

• If the component uses the IBM MQ C++ classes, follow the instructions in “Building C++ programs on
Windows” on page 531 but link the component with the library imqx23vn.lib instead of imqc23vn.lib.

• If the component uses the Visual Basic language bindings for the MQI, follow the instructions in the
“Preparing Visual Basic programs in Windows” on page 981 but when you define the Visual Basic
project, type MqType=3 in the Conditional Compilation Arguments field.

Preparing and running IBM MQ JMS applications
You can run IBM MQ JMS applications in client mode, with WebSphere Application Server as your
transaction manager. You might see certain warning messages.

To prepare and run IBM MQ JMS applications in client mode, with WebSphere Application Server as your
transaction manager, follow the instructions in “Using IBM MQ classes for JMS/Jakarta Messaging” on
page 79.

When you run an IBM MQ JMS client application, you might see the following warning messages:
MQJE080

Insufficient license units - run setmqcap
MQJE081

File containing the license unit information is in the wrong format - run setmqcap
MQJE082

File containing the license unit information could not be found - run setmqcap

User exits, API exits, and IBM MQ installable services
This topic contains links to information about using and developing these programs.

For an introduction to how you can use user exits, API exits, and installable services to extend queue
manager facilities, see Extending queue manager facilities.

For information on writing and compiling exits and installable services, see the subtopics.

Related concepts
Channel-exit programs for MQI channels
Related reference
API exit reference
Installable services interface reference information

Installable services interface reference information on IBM i

Writing exits and installable services on AIX, Linux, and Windows
You can write and compile exits without linking to any IBM MQ libraries on AIX, Linux, and Windows.

About this task
This topic applies to AIX, Linux, and Windows systems only. For details on writing exits and installable
services for other platforms, see the relevant platform specific topics.

If IBM MQ is installed in a non-default location you must write and compile your exits without linking to
any IBM MQ libraries.

You can write and compile exits on AIX, Linux, and Windows systems without linking any of these IBM MQ
libraries:

• mqmzf
• mqm
• mqmvx
• mqmvxd

902 Developing Applications for IBM MQ

• mqic
• mqutl

Existing exits that are linked to these libraries continue to work, providing that on AIX and Linux systems
IBM MQ is installed in the default location.

Procedure
1. Include the cmqec.h header file.

Including this header file automatically includes the cmqc.h, cmqxc.h and cmqzc.h header files.
2. Write the exit so that MQI and DCI calls are made through the MQIEP structure. For more information

about the MQIEP structure, see MQIEP structure.

• Installable services

– Use the Hconfig parameter to point to the MQZEP call.
– You must check that the first 4 bytes of Hconfig match the StrucId of the MQIEP structure

before using the Hconfig parameter.
– For more information about writing installable service components, see MQIEP.

• API exits

– Use the Hconfig parameter to point to the MQXEP call.
– You must check that the first 4 bytes of Hconfig match the StrucId of the MQIEP structure

before using the Hconfig parameter.
– For more information about writing API exits, see “Writing API exits” on page 919.

• Channel exits

– Use the pEntryPoints parameter of the MQCXP structure to point to MQI and DCI calls.
– You must check that the MQCXP version number is at version 8 or higher before using
pEntryPoints.

– For more information about writing channel exits, see “Writing channel-exit programs” on page
929.

• Data conversion exits

– Use the pEntryPoints parameter of the MQDXP structure to point to MQI and DCI calls.
– You must check that the MQDXP version number is at version 2 or higher before using
pEntryPoints.

– You can use the crtmqcvx command and the amqsvfc0.c source file to create data conversion
code that uses the pEntryPoints parameter. See “Writing a data-conversion exit for IBM MQ for
Windows” on page 954 and “Writing a data-conversion exit for IBM MQ for AIX or Linux systems”
on page 951.

– If you have existing data conversion exits that were generated using the crtmqcvx command, you
must regenerate the exit using the updated command.

– For more information about writing data conversion exits, see “Writing data-conversion exits” on
page 947.

• Pre-connect exits

– Use the pEntryPoints parameter of the MQNXP structure to point to MQI and DCI calls.
– You must check that the MQNXP version number is at version 2 or higher before using
pEntryPoints.

– For more information about writing pre-connect exits, see “Referencing connection definitions
using a pre-connect exit from a repository” on page 956.

• Publish exits

– Use the pEntryPoints parameter of the MQPSXP structure to point to MQI and DCI calls.

Developing applications for IBM MQ 903

– You must check that the MQPSXP version number is at version 2 or higher before using
pEntryPoints.

– For more information about writing publish exits, see “Writing and compiling publish exits” on
page 957.

• Cluster workload exits

– Use the pEntryPoints parameter of the MQWXP structure to point to MQXCLWLN calls.
– You must check that the MQWXP version number is at version 4 or higher before using
pEntryPoints.

– For more information about writing cluster workload exits, see “Writing and compiling cluster
workload exits” on page 959.

For example, in a channel exit calling MQPUT:

pChannelExitParms -> pEntryPoints -> MQPUT_Call(pChannelExitParms -> Hconn,
 Hobj,
 &md,
 &pmo,
 messlen,
 buffer,
 &CompCode,
 &Reason);

Further examples can be seen in the “Using the IBM MQ sample procedural programs” on page 1018.
3. Compile the exit:

• Do not link to the IBM MQ libraries.
• Do not include an embedded RPath to any IBM MQ libraries in your exit.
• For more information about compiling your exit, see one of the following topics:

– API exits: “Compiling API exits” on page 921.
– Channel exits, publish exits, Cluster workload exits: “Compiling channel exit programs on AIX,

Linux, and Windows systems” on page 946.
– Data conversion exits: “Writing data-conversion exits” on page 947.

4. Put the exit in one of the following places:

• A path of your choosing that you fully qualify when configuring the exit
• The default exit path, in a specific installation directory. For example, MQ_DATA_PATH/exits/

installation2.
• The default exit path

The default exit path is MQ_DATA_PATH/exits for 32 bit exits, and MQ_DATA_PATH/exits64 for
64 bit exits. You can change these paths in the qm.ini or mqclient.ini file. For more information, see
Exit path. On Windows and Linux, you can use the IBM MQ Explorer to change the path:

a. Right click the queue manager name
b. Click Properties...
c. Click Exits
d. In the exits default path field, specify the path name of the directory that holds the exit program.

If an exit is placed in both a specific installation directory and in the default path directory, the specific
installation directory exit is used by the installation of IBM MQ named in the path. For example,
the exit is placed in /exits/installation2 and in /exits, but not in /exits/installation1.
The IBM MQ installation installation2 uses the exit from /exits/installation2. The IBM MQ
installation installation1 uses the exit from the /exits directory.

5. If necessary, configure the exit:

• Installable services: “Configuring services and components” on page 912.

904 Developing Applications for IBM MQ

• API exits: “Configuring API exits” on page 923.
• Channel exits: “Configuring channel exits” on page 947.
• Publish exits: “Configuring publish exits” on page 959.
• Pre-connect exits: PreConnect stanza of the client configuration file.

API exits not linked with an MQI library
Under certain circumstances, you should link your existing API exit, that cannot be re-coded to use the
MQIEP function pointers, with an IBM MQ API library.

This is necessary, so that your existing API exit can be successfully loaded, by the runtime linker of your
system, into programs that do not already have the function pointers loaded.

Note: This information is limited to those existing API exits that make MQI calls directly. That is, those
exits that do not use , MQIEP. Where possible, you should plan to re-code the exit to use the MQIEP entry
points instead.

runmqsc is an example of a program that does not link directly with an MQI library.

Therefore, an API exit that has not been linked with its required IBM MQ API library, or re-coded to use
the MQIEP, fails to load into runmqsc.

You see errors in the queue manager error log, for example, AMQ6175: The system could not
dynamically load the shared library, together with qualifying text such as undefined
symbol: MQCONN.

and AMQ7214: The module for API Exit 'myexitname' could not be loaded.

Related tasks
“Writing exits and installable services on AIX, Linux, and Windows” on page 902
You can write and compile exits without linking to any IBM MQ libraries on AIX, Linux, and Windows.

Installable services and components for AIX, Linux, and Windows
This section introduces the installable services and the functions and components associated with them.
The interface to these functions is documented so that you, or software vendors, can supply components.

The main reasons for providing IBM MQ installable services are:

• To provide you with the flexibility of choosing whether to use components provided by IBM MQ
products, or replace or augment them with others.

• To allow vendors to participate, by providing components that might use new technologies, without
making internal changes to IBM MQ products.

• To allow IBM MQ to exploit new technologies faster and cheaper, and so provide products earlier and at
lower prices.

Installable services and service components are part of the IBM MQ product structure. At the center of
this structure is the part of the queue manager that implements the function and rules associated with
the Message Queue Interface (MQI). This central part requires a number of service functions, called
installable services, in order to perform its work. The installable services are:

• Authorization service
• Name service

Each installable service is a related set of functions implemented using one or more service components.
Each component is invoked using a properly-architected, publicly-available interface. This enables
independent software vendors and other third parties to provide installable components to augment
or replace those provided by the IBM MQ products. Table 138 on page 906 summarizes the services and
components that can be used.

Developing applications for IBM MQ 905

Table 138. Installable service components summary

Installable service Supplied
component

Function Requirements

Authorization service object authority
manager (OAM)

Provides authorization
checking on commands and
MQI calls. Users can write
their own component to
augment or replace the OAM.

For example, to check that a
user ID has authority to open
a queue.

(Appropriate platform
authorization facilities are
assumed)

Name service None Provides support to the queue
manager for looking up the
name of the queue manager
that owns a specified queue.

• User defined

• A third-party or user-
written name manager

The installable services interface is described in Installable services interface reference information.

Related tasks
Configuring installable services

Writing a service component
This section describes the relationship between services, components, entry points, and return codes.

Functions and components
Each service consists of a set of related functions. For example, the name service contains function for:

• Looking up a queue name and returning the name of the queue manager where the queue is defined
• Inserting a queue name into the service's directory
• Deleting a queue name from the service's directory

It also contains initialization and termination functions.

An installable service is provided by one or more service components. Each component can perform some
or all of the functions that are defined for that service. For example, in IBM MQ for AIX, the supplied
authorization service component, the OAM, performs all the available functions. See “Authorization
service interface” on page 909 for more information. The component is also responsible for managing
any underlying resources or software (for example, an LDAP directory) that it needs to implement
the service. Configuration files provide a standard way of loading the component and determining the
addresses of the functional routines that it provides.

Figure 99 on page 907 shows how services and components are related:

• A service is defined to a queue manager by stanzas in a configuration file.
• Each service is supported by supplied code in the queue manager. Users cannot change this code and

therefore cannot create their own services.
• Each service is implemented by one or more components; these can be supplied with the product

or user-written. Multiple components for a service can be invoked, each supporting different facilities
within the service.

• Entry points connect the service components to the supporting code in the queue manager.

906 Developing Applications for IBM MQ

Figure 99. Understanding services, components, and entry points

Entry-points
Each service component is represented by a list of the entry-point addresses of the routines that support
a particular installable service. The installable service defines the function to be performed by each
routine.

The ordering of the service components when they are configured defines the order in which entry-points
are called in an attempt to satisfy a request for the service.

In the supplied header file cmqzc.h, the supplied entry points to each service have an MQZID_ prefix.

If the services are present, the services are loaded in a predefined order. The following list shows the
services, and the order in which they are initialized.

1. NameService
2. AuthorizationService
3. UserIdentifierService

The AuthorizationService is the only service that is configured by default. Configure the
NameService and UserIdentifierService manually if you want to use them.

Services, and service components have a one-to-one or one-to-many mapping. Multiple
service components can be defined for each service. On AIX and Linux systems, the
ServiceComponent stanza's Service value must match the Service stanza's Name value in the
qm.ini file. On Windows, the ServiceComponent 's Service registry key value must match the
Name registry key value, and is defined as: HKEY_LOCAL_MACHINE\SOFTWARE\IBM\WebSphere
MQ\Installation\MQ_INSTALLATION_NAME\Configuration\QueueManager\qmname\ where
qmname is the name of the queue manager.

For AIX and Linux systems, service components are started in the order they are defined in the qm.ini file.
On Windows, because the Windows registry is used, IBM MQ issues a RegEnumKey call which returns the
values in alphabetic order. Therefore, on Windows the services are called in alphabetic order, as they are
defined in the registry.

The ordering of the ServiceComponent definitions is significant. This ordering dictates the order in
which components are run for a given service. For example, the AuthorizationService on Windows
is configured with the default OAM component named MQSeries.WindowsNT.auth.service.
Additional components can be defined for this service in order to override the default OAM. Unless
MQCACF_SERVICE_COMPONENT is specified, the first component encountered in alphabetic order is used
to process the request, and the name for that component is used.

Return codes
Service components provide return codes to the queue manager to report on various conditions. They
report the success or failure of the operation, and indicate whether the queue manager is to proceed to
the next service component. A separate Continuation parameter carries this indication.

Developing applications for IBM MQ 907

Component data
A single service component might require data to be shared between its various functions. Installable
services provide an optional data area to be passed on each invocation of a service component. This
data area is for the exclusive use of the service component. It is shared by all the invocations of a
particular function, even if they are made from different address spaces or processes. It is guaranteed to
be addressable from the service component whenever it is called. You must declare the size of this area in
the ServiceComponent stanza.

Initialization and termination of components
The use of component initialization and termination options.

When the component initialization routine is invoked, it must call the queue manager MQZEP function
for each entry-point supported by the component. MQZEP defines an entry-point to the service. All the
undefined exit points are assumed to be NULL.

A component is always invoked once with the primary initialization option, before it is invoked in any other
way.

A component can be invoked with the secondary initialization option on certain platforms. For example, it
can be invoked once for each operating system process, thread, or task by which the service is accessed.

If secondary initialization is used:

• The component can be invoked more than once for secondary initialization. For each such call, a
matching call for secondary termination is issued when the service is no longer needed.

For naming services this is the MQZ_TERM_NAME call.

For authorization services this is the MQZ_TERM_AUTHORITY call.
• The entry points must be re-specified (by calling MQZEP) each time the component is called for primary

and secondary initialization.
• Only one copy of component data is used for the component; there is not a different copy for each

secondary initialization.
• The component is not invoked for any other calls to the service (from the operating system process,

thread, or task, as appropriate) before secondary initialization has been carried out.
• The component must set the Version parameter to the same value for primary and secondary

initialization.

The component is always invoked with the primary termination option once, when it is no longer required.
No further calls are made to this component.

The component is invoked with the secondary termination option, if it has been invoked for secondary
initialization.

Object authority manager (OAM)
The authorization service component supplied with the IBM MQ products is called the Object Authority
Manager (OAM).

By default, the OAM is active and works with the control commands dspmqaut (display authority),
dmpmqaut (dump authority), and setmqaut (set or reset authority).

The syntax of these commands and how to use them are described in Administering IBM MQ for
Multiplatforms using control commands.

The OAM works with the entity of a principal or group:

• On AIX and Linux systems, a principal is a user ID, or an ID associated with
an application program running on behalf of a user; a group is a system-defined collection of principals.

• On Windows systems, a principal is a Windows user ID, or an ID associated with an
application program running on behalf of a user; a group is a Windows group.

Authorizations can be granted or revoked at the principal or group level.

908 Developing Applications for IBM MQ

When an MQI request is made or a command is issued, the OAM checks whether the entity associated
with the operation has authorization to perform the requested operation and to access the specified
queue manager resources.

The authorization service enables you to augment or replace the authority checking provided for queue
managers by writing your own authorization service component.

Name service
The name service is an installable service that provides support to the queue manager for looking up the
name of the queue manager that owns a specified queue. No other queue attributes can be retrieved from
a name service.

The name service enables an application to open remote queues for output as if they were local queues. A
name service is not invoked for objects other than queues.

Note: The remote queues must have their Scope attribute set to CELL.

When an application opens a queue, it looks for the name of the queue first in the queue manager's
directory. If it does not find it there, it looks in as many name services as have been configured, until it
finds one that recognizes the queue name. If none recognizes the name, the open fails.

The name service returns the owning queue manager for that queue. The queue manager then continues
with the MQOPEN request as if the command had specified the queue and queue manager name in the
original request.

The name service interface (NSI) is part of the IBM MQ framework.

How the name service works
If a queue definition specifies the Scope attribute as queue manager, that is, SCOPE(QMGR) in MQSC, the
queue definition (along with all the queue attributes) is stored in the queue manager's directory only. This
cannot be replaced by an installable service.

If a queue definition specifies the Scope attribute as cell, that is, SCOPE(CELL) in MQSC, the queue
definition is again stored in the queue manager's directory, along with all the queue attributes. However,
the queue and queue manager name are also stored in a name service. If no service is available that can
store this information, a queue with the Scope cell cannot be defined.

The directory in which the information is stored can be managed by the service, or the service can use an
underlying service, for example, an LDAP directory, for this purpose. In either case, definitions stored in
the directory must persist, even after the component and queue manager have terminated, until they are
explicitly deleted.

Note:

1. To send a message to a remote host's local queue definition (with a scope of CELL) on a different
queue manager within a naming directory cell, you need to define a channel.

2. You cannot get messages directly from the remote queue, even when it has a scope of CELL.
3. No remote queue definition is required when sending to a queue with a scope of CELL.
4. The naming service centrally defines the destination queue, although you still need a transmission

queue to the destination queue manager and a pair of channel definitions. In addition, the
transmission queue on the local system must have the same name as the queue manager owning
the target queue, with the scope of cell, on the remote system.

For example, if the remote queue manager has the name QM01, the transmission queue on the local
system must also have the name QM01.

Authorization service interface
The authorization service provides entry points for use by the queue manager.

The entry points are as follows:

Developing applications for IBM MQ 909

MQZ_AUTHENTICATE_USER
Authenticates a user ID and password, and can set identity context fields.

MQZ_CHECK_AUTHORITY
Checks whether an entity has authority to perform one or more operations on a specified object.

MQZ_CHECK_PRIVILEGED
Checks whether a specified user is a privileged user.

MQZ_COPY_ALL_AUTHORITY
Copies all the current authorizations that exist for a referenced object to another object.

MQZ_DELETE_AUTHORITY
Deletes all authorizations associated with a specified object.

MQZ_ENUMERATE_AUTHORITY_DATA
Retrieves all the authority data that matches the selection criteria specified.

MQZ_FREE_USER
Frees associated allocated resources.

MQZ_GET_AUTHORITY
Gets the authority that an entity has to access a specified object.

MQZ_GET_EXPLICIT_AUTHORITY
Gets either the authority that a named group has to access a specified object (but without the
additional authority of the nobody group) or the authority that the primary group of the named
principal has to access a specified object.

MQZ_INIT_AUTHORITY
Initializes authorization service component.

MQZ_INQUIRE
Queries the supported functionality of the authorization service.

MQZ_REFRESH_CACHE
Refresh all authorizations.

MQZ_SET_AUTHORITY
Sets the authority that an entity has to a specified object.

MQZ_TERM_AUTHORITY
Terminates authorization service component.

In addition, on IBM MQ for Windows, the authorization service provides the following entry points for use
by the queue manager:

• MQZ_CHECK_AUTHORITY_2
• MQZ_GET_AUTHORITY_2
• MQZ_GET_EXPLICIT_AUTHORITY_2
• MQZ_SET_AUTHORITY_2

These entry points support the use of the Windows Security Identifier (NT SID).

These names are defined as typedef s, in the header file cmqzc.h, which can be used to prototype the
component functions.

The initialization function (MQZ_INIT_AUTHORITY) must be the main entry point for the component.
The other functions are invoked through the entry point address that the initialization function has added
into the component entry point vector.

Name service interface
A name service provides entry points for use by the queue manager.

The following entry points are provided:
MQZ_INIT_NAME

Initialize the name service component.

910 Developing Applications for IBM MQ

MQZ_TERM_NAME
Terminate the name service component.

MQZ_LOOKUP_NAME
Look up the queue manager name for the specified queue.

MQZ_INSERT_NAME
Insert an entry containing the owning queue manager name for the specified queue into the directory
used by the service.

MQZ_DELETE_NAME
Delete the entry for the specified queue from the directory used by the service.

If there is more than one name service configured:

• For lookup, the MQZ_LOOKUP_NAME function is invoked for each service in the list until the queue
name is resolved (unless any component indicates that the search should stop).

• For insert, the MQZ_INSERT_NAME function is invoked for the first service in the list that supports this
function.

• For delete, the MQZ_DELETE_NAME function is invoked for the first service in the list that supports this
function.

Do not have more than one component that supports the insert and delete functions. However, a
component that only supports lookup is feasible, and could be used, for example, as the last component
in the list to resolve any name that is not known by any other name service component to a queue
manager at which the name can be defined.

In the C programming language the names are defined as function data types using the typedef
statement. These can be used to prototype the service functions, to ensure that the parameters are
correct.

The header file that contains all the material specific to installable services is cmqzc.h for the C
language.

Apart from the initialization function (MQZ_INIT_NAME), which must be the component's main entry
point, functions are invoked by the entry point address that the initialization function has added, using the
MQZEP call.

Using multiple service components
You can install more than one component for a service. This allows components to provide only partial
implementations of the service, and to rely on other components to provide the remaining functions.

Example of using multiple components
Suppose you create two a name services components called ABC_name_serv and XYZ_name_serv.
ABC_name_serv

This component supports inserting a name in, or deleting a name from, the service directory, but does
not support looking up a queue name.

XYZ_name_serv
This component supports looking up a queue name, but does not support inserting a name in, or
deleting a name from, the service directory.

Component ABC_name_serv holds a database of queue names, and uses two simple algorithms to either
insert, or delete, a name from the service directory.

Component XYZ_name_serv uses a simple algorithm that returns a fixed queue manager name for any
queue name with which it is invoked. It does not hold a database of queue names, and therefore does not
support the insert and delete functions.

The components are installed on the same queue manager. The ServiceComponent stanzas are
ordered so that component ABC_name_serv is invoked first. Any calls to insert or delete a queue in
a component directory are handled by component ABC_name_serv ; it is the only one that implements
these functions. However, a lookup call that component ABC_name_serv cannot resolve is passed on to

Developing applications for IBM MQ 911

the lookup-only component, XYZ_name_serv. This component supplies a queue manager name from its
simple algorithm.

Omitting entry points when using multiple components
If you decide to use multiple components to provide a service, you can design a service component
that does not implement certain functions. The installable services framework places no restrictions on
which you can omit. However, for specific installable services, omission of one or more functions might be
logically inconsistent with the purpose of the service.

Example of entry points used with multiple components
Table 139 on page 912 shows an example of the installable name service for which the two components
have been installed. Each supports a different set of functions associated with this particular installable
service. For insert function, the ABC component entry-point is invoked first. Entry points that have not
been defined to the service (using MQZEP) are assumed to be NULL. An entry-point for initialization is
provided in the table, but this is not required because initialization is carried out by the main entry-point
of the component.

When the queue manager has to use an installable service, it uses the entry-points defined for that
service (the columns in Table 139 on page 912). Taking each component in turn, the queue manager
determines the address of the routine that implements the required function. It then calls the routine, if it
exists. If the operation is successful, any results and status information are used by the queue manager.

Table 139. Example of entry-points for an installable service

Function number ABC name service component XYZ name service component

MQZID_INIT_NAME (Initialize) ABC_initialize() XYZ_initialize()

MQZID_TERM_NAME (Terminate) ABC_terminate() XYZ_terminate()

MQZID_INSERT_NAME (Insert) ABC_Insert() NULL

MQZID_DELETE_NAME (Delete) ABC_Delete() NULL

MQZID_LOOKUP_NAME (Lookup) NULL XYZ_Lookup()

If the routine does not exist, the queue manager repeats this process for the next component in the list.
In addition, if the routine does exist but returns a code indicating that it could not perform the operation,
the attempt continues with the next available component. Routines in service components might return a
code that indicates that no further attempts to perform the operation should be made.

Configuring services and components
You configure service components using the queue manager configuration files, except on Windows
systems, where each queue manager has its own stanza in the Registry.

Procedure
1. Add stanzas to the queue manager configuration file, qm.ini, to define the service to the queue

manager and specify the location of the module:

• Each service used must have a Service stanza, which defines the service to the queue manager. For
more information, see Service stanza of the qm.ini file.

• For each component within a service, there must be a ServiceComponent stanza. This stanza
identifies the name and path of the module containing the code for that component. For more
information, see ServiceComponent stanza of the qm.ini file.

The authorization service component, known as the Object Authority Manager (OAM), is supplied with
the product. When you create a queue manager, the queue manager configuration file (or the Registry
on Windows systems) is automatically updated to include the appropriate stanzas for the authorization

912 Developing Applications for IBM MQ

service and for the default component (the OAM). For the other components, you must configure the
queue manager configuration file manually.

The code for each service component is loaded into the queue manager when the queue manager is
started, using dynamic binding, where this is supported on the platform.

2. Stop and restart the queue manager to activate the component.

Related reference
Service stanza of the qm.ini file
ServiceComponent stanza of the qm.ini file

Refreshing the OAM after changing a user's authorization
In IBM MQ, you can refresh the OAM's authorization group information immediately after changing a
user's authorization group membership, reflecting changes made at the operating system level, without
needing to stop and restart the queue manager. In order to do this, issue the REFRESH SECURITY
command.

Note: When you change authorizations with the setmqaut command, the OAM implements such changes
immediately.

Queue managers store authorization data on a local queue called SYSTEM.AUTH.DATA.QUEUE. This data
is managed by amqzfuma.exe.

Related reference
REFRESH SECURITY

Installable services and components on IBM i
Use this information to learn about the installable services and the functions and components associated
with them. The interface to these functions is documented so that you, or software vendors, can supply
components.

The main reasons for providing IBM MQ installable services are:

• To provide you with the flexibility of choosing whether to use components provided by IBM MQ for IBM
i, or replace or augment them with others.

• To allow vendors to participate, by providing components that might use new technologies, without
making internal changes to IBM MQ for IBM i.

• To allow IBM MQ to exploit new technologies faster and cheaper, and so provide products earlier and at
lower prices.

Installable services and service components are part of the IBM MQ product structure. At the center of
this structure is the part of the queue manager that implements the function and rules associated with
the Message Queue Interface (MQI). This central part requires a number of service functions, called
installable services, in order to perform its work. The installable service available in IBM MQ for IBM i is
the authorization service.

Each installable service is a related set of functions implemented using one or more service components.
Each component is invoked using a properly-architected, publicly-available interface. This enables
independent software vendors and other third parties to provide installable components to augment
or replace those provided by IBM MQ for IBM i. Table 140 on page 913 summarizes support for the
authorization service.

Table 140. Authorization service components summary

Supplied component Function Requirements

Object authority manager
(OAM)

Provides authorization checking on
commands and MQI calls. Users can
write their own component to augment
or replace the OAM.

(Appropriate platform
authorization facilities are
assumed)

Developing applications for IBM MQ 913

Table 140. Authorization service components summary (continued)

Supplied component Function Requirements

DCE name service
component

Note: DCE is only
supported on versions of
IBM MQ earlier than V6.0.

• Allows queue managers to share
queues, or

• User defined

Note: Shared queues must have their
Scope attribute set to CELL.

• DCE is required for the supplied
component, or

• A third-party or user-written
name manager

Functions and components on IBM i
Use this information to understand the functions and components, entry-points, return codes, and
component data that you can use in IBM MQ for IBM i.

Each service consists of a set of related functions. For example, the name service contains function for:

• Looking up a queue name and returning the name of the queue manager where the queue is defined
• Inserting a queue name into the service's directory
• Deleting a queue name from the service's directory

It also contains initialization and termination functions.

An installable service is provided by one or more service components. Each component can perform some
or all of the functions that are defined for that service. The component is also responsible for managing
any underlying resources or software that it needs to implement the service. Configuration files provide a
standard way of loading the component and determining the addresses of the functional routines that it
provides.

Services and components are related as follows:

• A service is defined to a queue manager by stanzas in a configuration file.
• Each service is supported by supplied code in the queue manager. Users cannot change this code and

therefore cannot create their own services.
• Each service is implemented by one or more components; these can be supplied with the product

or user-written. Multiple components for a service can be invoked, each supporting different facilities
within the service.

• Entry points connect the service components to the supporting code in the queue manager.

Entry-points
Each service component is represented by a list of the entry-point addresses of the routines that support
a particular installable service. The installable service defines the function to be performed by each
routine. The ordering of the service components when they are configured defines the order in which
entry-points are called in an attempt to satisfy a request for the service. In the supplied header file
cmqzc.h, the supplied entry points to each service have an MQZID_ prefix.

Return codes
Service components provide return codes to the queue manager to report on a variety of conditions. They
report the success or failure of the operation, and indicate whether the queue manager is to proceed to
the next service component. A separate Continuation parameter carries this indication.

Component data
A single service component might require data to be shared between its various functions. Installable
services provide an optional data area to be passed on each invocation of a particular service component.
This data area is for the exclusive use of the service component. It is shared by all the invocations of a
given function, even if they are made from different address spaces or processes. It is guaranteed to be

914 Developing Applications for IBM MQ

addressable from the service component whenever it is called. You must declare the size of this area in
the ServiceComponent stanza.

Initialization on IBM i
When the component initialization routine is invoked, it must call the queue manager MQZEP function
for each entry-point supported by the component. MQZEP defines an entry-point to the service. All the
undefined exit points are assumed to be NULL.

Primary initialization
A component is always invoked with this option once, before it is invoked in any other way.

Secondary initialization
A component can be invoked with this option on certain platforms. For example, it can be invoked
once for each operating system process, thread, or task by which the service is accessed.

If secondary initialization is used:

• The component can be invoked more than once for secondary initialization. For each such call, a
matching call for secondary termination is issued when the service is no longer needed.

For authorization services this is the MQZ_TERM_AUTHORITY call.
• The entry points must be re-specified (by calling MQZEP) each time the component is called for

primary and secondary initialization.
• Only one copy of component data is used for the component; there is not a different copy for each

secondary initialization.
• The component is not invoked for any other calls to the service (from the operating system process,

thread, or task, as appropriate) before secondary initialization has been carried out.
• The component must set the Version parameter to the same value for primary and secondary

initialization.

Primary termination
The component is always started with this option once, when it is no longer required. No further calls
are made to this component.

Secondary termination
The component is started with this option, if it has been started for secondary initialization.

Configuring services and components on IBM i
You configure service components using the queue manager configuration files.

Procedure
1. Add stanzas to the queue manager configuration file, qm.ini, to define the service to the queue

manager and specify the location of the module:

• Each service used must have a Service stanza, which defines the service to the queue manager. For
more information, see Service stanza of the qm.ini file.

• For each component within a service, there must be a ServiceComponent stanza. This stanza
identifies the name and path of the module containing the code for that component. For more
information, see ServiceComponent stanza of the qm.ini file.

The authorization service component, known as the Object Authority Manager (OAM), is supplied with
the product. When you create a queue manager, the queue manager configuration file is automatically
updated to include the appropriate stanzas for the authorization service and for the default component
(the OAM). For the other components, you must configure the queue manager configuration file
manually.

The code for each service component is loaded into the queue manager when the queue manager is
started, using dynamic binding, where this is supported on the platform.

2.

Developing applications for IBM MQ 915

Creating your own service component on IBM i
Use this information to learn how to create a service component on IBM MQ for IBM i.

To create your own service component:

• Ensure that the header file cmqzc.h is included in your program.
• Create the shared library by compiling the program and linking it with the shared libraries libmqm* and
libmqmzf*.

Note: Because the agent can run in a threaded environment, you must build the OAM to run in a
threaded environment. This includes using the threaded versions of libmqm and libmqmzf.

• Add stanzas to the queue manager configuration file to define the service to the queue manager and to
specify the location of the module.

• Stop and restart the queue manager to activate the component.

Authorization service on IBM i
The authorization service is an installable service that enables queue managers to invoke authorization
facilities, for example, checking that a user ID has authority to open a queue.

This service is a component of the IBM MQ security enabling interface (SEI), which is part of the IBM MQ
framework. The following subjects are discussed:

• “Object authority manager (OAM)” on page 916
• “Defining the service to the operating system” on page 916
• “Configuring authorization service stanzas” on page 917
• “Authorization service interface on IBM i” on page 917

Object authority manager (OAM)
The authorization service component supplied with the IBM MQ products is called the object authority
manager (OAM). By default, the OAM is active and works with the following control commands:

• WRKMQMAUT work with authority
• WRKMQMAUTD work with authority data
• DSPMQMAUT display object authority
• GRTMQMAUT grant object authority
• RVKMQMAUT revoke object authority
• RFRMQMAUT refresh security

The syntax of these commands and how to use them are described in the CL command help. The OAM
works with the entity of a principal or group.

When an MQI request is made or a command is issued, the OAM checks the authorization of the entity
associated with the operation to see whether it can do the following actions:

• Perform the requested operation.
• Access the specified queue manager resources.

The authorization service enables you to augment or replace the authority checking provided for queue
managers by writing your own authorization service component.

Defining the service to the operating system
The authorization service stanzas in the queue manager configuration file qm.ini define the
authorization service to the queue manager. See “Configuring services and components on IBM i” on
page 915 for information about the types of stanza.

916 Developing Applications for IBM MQ

Configuring authorization service stanzas
On IBM MQ for IBM i:
Principal

Is an IBM i system user profile.
Group

Is an IBM i system group profile.

Authorizations can be granted or revoked at the group level only. A request to grant or revoke a user's
authority updates the primary group for that user.

Each queue manager has its own queue manager configuration file. For example, the default path and file
name of the queue manager configuration file for queue manager QMNAME is /QIBM/UserData/mqm/
qmgrs/QMNAME/qm.ini.

The Service stanza and the ServiceComponent stanza for the default authorization component are
added to qm.ini automatically, but can be overridden by WRKENVVAR. Any other ServiceComponent
stanzas must be added manually.

For example, the following stanzas in the queue manager configuration file define two authorization
service components:

Service:
 Name=AuthorizationService
 EntryPoints=7

ServiceComponent:
 Service=AuthorizationService
 Name=MQ.UNIX.authorization.service
 Module=QMQM/AMQZFU
 ComponentDataSize=0

ServiceComponent:
 Service=AuthorizationService
 Name=user.defined.authorization.service
 Module=LIBRARY/SERVICE PROGRAM NAME
 ComponentDataSize=96

Figure 100. Authorization service stanzas in qm.ini on IBM i

The first service component stanza MQ.UNIX.authorization.service defines the default
authorization service component, the OAM. If you remove this stanza and restart the queue manager,
the OAM is disabled and no authorization checks are made.

Authorization service interface on IBM i
The authorization service interface provides several entry points for use by the queue manager.

MQZ_AUTHENTICATE_USER
Authenticates a user ID and password, and can set identity context fields.

MQZ_CHECK_AUTHORITY
Checks whether an entity has authority to perform one or more operations on a specified object.

MQZ_COPY_ALL_AUTHORITY
Copies all the current authorizations that exist for a referenced object to another object.

MQZ_DELETE_AUTHORITY
Deletes all authorizations associated with a specified object.

MQZ_ENUMERATE_AUTHORITY_DATA
Retrieves all the authority data that matches the selection criteria specified.

MQZ_FREE_USER
Frees associated allocated resources.

MQZ_GET_AUTHORITY
Gets the authority that an entity has to access a specified object.

Developing applications for IBM MQ 917

MQZ_GET_EXPLICIT_AUTHORITY
Gets either the authority that a named group has to access a specified object (but without the
additional authority of the nobody group) or the authority that the primary group of the named
principal has to access a specified object.

MQZ_INIT_AUTHORITY
Initializes authorization service component.

MQZ_INQUIRE
Queries the supported functionality of the authorization service.

MQZ_REFRESH_CACHE
Refresh all authorizations.

MQZ_SET_AUTHORITY
Sets the authority that an entity has to a specified object.

MQZ_TERM_AUTHORITY
Terminates authorization service component.

These entry points support the use of the Windows Security Identifier (NT SID).

These names are defined as typedef s, in the header file cmqzc.h, which can be used to prototype the
component functions.

The initialization function (MQZ_INIT_AUTHORITY) must be the main entry point for the component.
The other functions are invoked through the entry point address that the initialization function has added
into the component entry point vector.

See “Creating your own service component on IBM i” on page 916 for more information.

Writing and compiling API exits on Multiplatforms
API exits let you write code that changes the behavior of IBM MQ API calls, such as MQPUT and MQGET,
and then insert that code immediately before or immediately after those calls.

Note: Not supported on IBM MQ for z/OS.

Why use API exits?
Each of your applications has a specific job to do, and its code should do that task as efficiently as
possible. At a higher level, you might want to apply standards or business processes to a particular queue
manager for all the applications that use that queue manager. It is more efficient to do this above the level
of individual applications, and thus without having to change the code of each application affected.

Here are a few suggestions of areas in which API exits might be useful:
Security

For security, you can provide authentication, checking that applications are authorized to access
a queue or queue manager. You can also police applications' use of the API, authenticating the
individual API calls, or even the parameters they use.

Flexibility
For flexibility, you can respond to rapid changes in your business environment without changing
the applications that rely on the data in that environment. You could, for example, have API exits
that respond to changes in interest rates, currency exchange rates, or the price of components in a
manufacturing environment.

Monitoring use of a queue or queue manager
For monitoring use of a queue or queue manager, you can trace the flow of applications and
messages, log errors in the API calls, set up audit trails for accounting purposes, or collect usage
statistics for planning purposes.

918 Developing Applications for IBM MQ

What happens when an API exit runs?
Once you have written an exit program and identified it to IBM MQ, the queue manager automatically
invokes your exit code at the registered points.

The API exit routines to run are identified in stanzas on Multiplatforms. This topic covers the stanzas in
the configuration files mqs.ini and qm.ini.

The definition of the routines can occur in three places:

1. ApiExitCommon, in the mqs.ini file, identifies routines, for the whole of IBM MQ, applied when queue
managers start. These can be overridden by routines defined for individual queue managers (see item
“3” on page 919 in this list).

2. ApiExitTemplate, in the mqs.ini file, identifies routines, for the whole of IBM MQ, copied to the
ApiExitLocal set (see item “3” on page 919 in this list) when a new queue manager is created.

3. ApiExitLocal, in the qm.ini file, identifies routines that apply to a particular queue manager.

When a new queue manager is created, the ApiExitTemplate definitions in mqs.ini are copied to the
ApiExitLocal definitions in qm.ini for the new queue manager. When a queue manager is started,
both the ApiExitCommon and ApiExitLocal definitions are used. The ApiExitLocal definitions replace
the ApiExitCommon definitions if both identify a routine of the same name. The Sequence attribute,
described in “Configuring API exits” on page 923 determines the order in which the routines defined in
the stanzas run.

Using API exits across multiple installations of IBM MQ
Ensure that the API exits written for the earlier version of IBM MQ are used to work with all versions
because the changes made to exits in IBM WebSphere MQ 7.1 might not work with an earlier version.
For more information about the changes made to exits, see “Writing exits and installable services on AIX,
Linux, and Windows” on page 902.

The samples provided for API exits amqsaem and amqsaxe reflect the changes required while writing
exits. The client application must ensure that the correct IBM MQ libraries that correspond to the
installation of the queue manager with which the application is associated are linked to it prior to the
launch of the application.

Writing API exits
You can write exits for every API call using the C programming language.

Available exits
Exits are available for every API call, as follows:

• MQCB, to reregister a callback for the specified object handle and control activation and changes to the
callback

• MQCTL, to perform controlling actions on the object handles opened for a connection
• MQCONN/MQCONNX, to provide a queue manager connection handle for use on subsequent API calls
• MQDISC, to disconnect from a queue manager
• MQBEGIN, to begin a global unit of work (UOW)
• MQBACK, to back out a UOW
• MQCMIT, to commit a UOW
• MQOPEN, to open an IBM MQ resource for subsequent access
• MQCLOSE, to close an IBM MQ resource that had previously been opened for access
• MQGET, to retrieve a message from a queue that has previously been opened for access
• MQPUT1, to place a message on to a queue
• MQPUT, to place a message on to a queue that has previously been opened for access

Developing applications for IBM MQ 919

• MQINQ, to inquire on the attributes of an IBM MQ resource that has previously been opened for access
• MQSET, to set the attributes of a queue that has previously been opened for access
• MQSTAT, to retrieve status information
• MQSUB, to register the applications subscription to a particular topic
• MQSUBRQ, to make a request for a subscription

MQ_CALLBACK_EXIT provides an exit function to perform before and after callback processing. For more
information, see Callback - MQ_CALLBACK_EXIT.

Writing API exits
Within API exits, the calls take the general form:

MQ_call_EXIT (parameters, context, ApiCallParameters)

where call is the MQI call name without the MQ prefix; for example, PUT, GET. The parameters
control the function of the exit, primarily providing communication between the exit and the external
control blocks MQAXP (the API exit parameter structure) and MQAXC (the API exit context structure).
context describes the context in which the API exit was called, and ApiCallParameters represent the
parameters to the MQI call.

To help you write your API exit, a sample exit, amqsaxe0.c, is provided; this exit generates trace entries
to a file that you specify. You can use this sample as your starting point when writing exits. For more
information about using the sample exit, see “The API exit sample program” on page 1035.

For more information about the API exit calls, external control blocks, and associated topics, see API exit
reference.

For general information on how to write, compile and configure an exit, see “Writing exits and installable
services on AIX, Linux, and Windows” on page 902.

Using message handles in API exits
You can control which message properties an API exit has access to. Properties are associated with an
ExitMsgHandle. Properties set in a put exit are set on the message being put, but properties retrieved in a
get exit are not returned to the application.

When you register an MQ_INIT_EXIT exit function using the MQXEP MQI call with Function set to
MQXF_INIT and ExitReason set to MQXR_CONNECTION, you pass in an MQXEPO structure as the
ExitOpts parameter. The MQXEPO structure contains the ExitProperties field, which specifies the set of
properties to be made available to the exit. It is specified as a character string representing the prefix of
the properties, which corresponds to an MQRFH2 folder name.

Each API exit receives an MQAXP structure, containing an ExitMsgHandle field. This field is set to a value
generated by IBM MQ and is specific to a connection. The handle is therefore unchanged between API
exits of the same or different types on the same connection.

In an MQ_PUT_EXIT or MQ_PUT1_EXIT with an ExitReason of MQXR_BEFORE, that is, an API
exit performed before putting a message, any properties (other than message descriptor properties)
associated with the ExitMsgHandle when the exit completes are set on the message being put. To prevent
this happening, set ExitMsgHandle to MQHM_NONE. You can also supply a different message handle.

In an MQ_GET_EXIT and MQ_CALLBACK_EXIT, the ExitMsgHandle is cleared of properties and populated
with the properties specified in the ExitProperties field when the MQ_INIT_EXIT was registered, other
than message descriptor properties. These properties are not made available to the getting application. If
the getting application specified a message handle in the MQGMO (Get message options) field, then any
properties associated with that handle, including message descriptor properties, are available to the API
exit. To prevent the ExitMsgHandle being populated with properties, set it to MQHM_NONE.

A sample program, amqsaem0.c, is provided to illustrate the use of message handles in API exits.

920 Developing Applications for IBM MQ

Related reference
User exits, API exits, and installable services reference

Compiling API exits
After you have written an exit, you compile and link it as follows.

The following examples show the commands used for the sample program described in “The API
exit sample program” on page 1035. For platforms other than Windows systems, you can find the
sample API exit code in MQ_INSTALLATION_PATH/samp and the compiled and linked shared library in
MQ_INSTALLATION_PATH/samp/bin.

For Windows systems, you can find the sample API exit code in MQ_INSTALLATION_PATH
\Tools\c\Samples. MQ_INSTALLATION_PATH represents the directory in which IBM MQ was installed.

Note: Guidance on programming 64 bit applications is listed in Coding standards on 64-bit platforms.

For Multicast clients, API exits and data-conversion exits need to be able to run on the client-side
because some messages might not go through the queue manager. The following libraries are part of the
client packages as well as the server packages:

Table 141. Libraries that are in the client and server packages

Operating system Libraries

AIX 32 bit & 64 bit: libmqm.a & libmqm_r.a

IBM i LIBMQM & LIBMQM_R

Linux 32 bit & 64 bit: libmqm.so & libmqm_r.so

Windows 32 bit & 64 bit: mqm.dll & mqm.pdb

Compiling API exits on AIX and Linux systems
Examples of how to Compile API exits on AIX and Linux systems.

On all platforms, the entry point to the module is MQStart.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

On AIX

Compile the API exit source code by issuing one of the following commands:
32 bit applications

Non-threaded

cc -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits/amqsaxe \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Threaded

xlc_r -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits/amqsaxe_r \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Developing applications for IBM MQ 921

64 bit applications
Non-threaded

cc -q64 -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits64/amqsaxe \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Threaded

xlc_r -q64 -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits64/amqsaxe_r \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

On Linux

Compile the API exit source code by issuing one of the following commands:
31 bit applications

Non-threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/amqsaxe amqsaxe0.c \
 -I MQ_INSTALLATION_PATH/inc

Threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/amqsaxe_r amqsaxe0.c \
 -I MQ_INSTALLATION_PATH/inc

32 bit applications
Non-threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/amqsaxe amqsaxe0.c \
 -I MQ_INSTALLATION_PATH/inc

Threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/amqsaxe_r amqsaxe0.c \
 -I MQ_INSTALLATION_PATH/inc

64 bit applications
Non-threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsaxe amqsaxe0.c \
 -I MQ_INSTALLATION_PATH/inc

Threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsaxe_r amqsaxe0.c \
 -I MQ_INSTALLATION_PATH/inc

Compiling API exits on Windows systems
Compile and link the sample API exit program, amqsaxe0.c, on Windows

A manifest file is an optional XML document containing the version, or any other, information that can be
embedded in a compiled application or DLL.

If you have no such document, omit the -manifest manifest.file parameter in the mt command.

922 Developing Applications for IBM MQ

Adapt the commands in the examples in Figure 101 on page 923 or Figure 102 on page 923 to compile
and link amqsaxe0.c on Windows. The commands work with Microsoft Visual Studio 2008, 2010, or
2012. The examples assume that the C:\Program Files\IBM\MQ\tools\c\samples directory is the
current directory.

32 bit

cl /c /nologo /MD /Foamqsaxe0.obj amqsaxe0.c

link /nologo /dll /def:amqsaxe.def

amqsaxe0.obj \
 /manifest /out:amqsaxe.dll

mt -nologo -manifest amqsaxe.dll.manifest \
 -outputresource:amqsaxe.dll;2

Figure 101. Compile and link amqsaxe0.c on 32 bit Windows

64 bit

cl /c /nologo /MD /Foamqsaxe0.obj amqsaxe0.c

link /nologo /dll /def:amqsaxe.def \
 /libpath:..\..\lib64 \

amqsaxe0.obj /manifest /out:amqsaxe.dll

mt -nologo -manifest amqsaxe.dll.manifest \
 -outputresource:amqsaxe.dll;2

Figure 102. Compile and link amqsaxe0.c on 64 bit Windows

Related concepts
“The API exit sample program” on page 1035
The sample API exit generates an MQI trace to a user-specified file with a prefix defined in the
MQAPI_TRACE_LOGFILE environment variable.

Compliling API exits on IBM i
Compiling API exits on IBM i.

An exit is created as follows (for a C language example):

1. Create a module using CRTCMOD. Compile it to use teraspace by including the parameter
TERASPACE(*YES *TSIFC).

2. Create a service program from the module using CRTSRVPGM. You must bind it to the service program
QMQM/LIBMQMZF_R for multithreaded API exits.

Configuring API exits
You configure IBM MQ to enable API exits by changing the configuration information.

To change the configuration information, you must change the stanzas that define the exit routines and
the sequence in which they run. This information can be changed in the following ways:

Developing applications for IBM MQ 923

• Using the IBM MQ Explorer on Windows and Linux (x86 and x86-64
platforms).

• Using the amqmdain command on Windows.

• Using the mqs.ini and qm.ini files directly on Multiplatforms.

The mqs.ini file contains information relevant to all the queue managers on a particular node. You can
find it in the following locations:

– In the /var/mqm directory on AIX and Linux.

– In the WorkPath specified in the HKLM\SOFTWARE\IBM\WebSphere MQ key on
Windows systems.

– In the /QIBM/UserData/mqm directory on IBM i.

The qm.ini file contains information relevant to a specific queue manager. There is one queue manager
configuration file for each queue manager, held in the root of the directory tree occupied by the queue
manager. For example, the path and the name for a configuration file for a queue manager called
QMNAME is:

On IBM i systems:

/QIBM/UserData/mqm/qmgrs/QMNAME/qm.ini

On AIX and Linux systems:

/var/mqm/qmgrs/QMNAME/qm.ini

On Windows systems:

C:\ProgramData\IBM\MQ\qmgrs\QMNAME\qm.ini

Before editing a configuration file, back it up so that you have a copy you can revert to if the need arises.

You can edit configuration files in either of the following ways:

– Automatically, using commands that change the configuration of queue managers on the node.
– Manually, using a standard text editor.

If you set an incorrect value on a configuration file attribute, the value is ignored and an operator
message is issued to indicate the problem. The effect is the same as missing out the attribute entirely.

Stanzas to configure
The stanzas that must be changed are the following:
ApiExitCommon

Defined in mqs.ini and in the IBM MQ Explorer on the IBM MQ properties page, under Exits.

When any queue manager starts, the attributes in this stanza are read, and then overridden by the API
exits defined in qm.ini.

ApiExitTemplate

Defined in mqs.ini and in the IBM MQ Explorer on the IBM MQ properties page, under Exits.

When any queue manager is created, the attributes in this stanza are copied into the newly created
qm.ini file under the ApiExitLocal stanza.

924 Developing Applications for IBM MQ

ApiExitLocal

Defined in qm.ini and in the IBM MQ Explorer on the queue manager properties page, under Exits.

When the queue manager starts, API exits defined here override the defaults defined in mqs.ini.

Attributes for the stanzas
• Name the API exit using the following attribute:

Name=ApiExit_name
The descriptive name of the API exit passed to it in the ExitInfoName field of the MQAXP structure.

This name must be unique, no longer than 48 characters, and contain only valid characters for the
names of IBM MQ objects (for example, queue names).

• Identify the module and entry point of the API exit code to run using the following attributes:
Function=function_name

The name of the function entry point into the module containing the API exit code. This entry point
is the MQ_INIT_EXIT function.

The length of this field is limited to MQ_EXIT_NAME_LENGTH.

Module=module_name
The module containing the API exit code.

If this field contains the full path name of the module it is used as is.

If this field contains just the module name, the module is located using the ExitsDefaultPath
attribute in the ExitPath in qm.ini.

On platforms that support separate threaded libraries, you must provide both a non-threaded and a
threaded version of the API exit module. The threaded version must have an _r suffix. The threaded
version of the IBM MQ application stub implicitly appends _r to the given module name before it is
loaded.

The length of this field is limited to the maximum path length the platform supports.
• Optionally pass data with the exit using the following attribute:

Data=data_name
Data to be passed to the API exit in the ExitData field of the MQAXP structure.

If you include this attribute, leading and trailing blanks are removed, the remaining string is
truncated to 32 characters, and the result is passed to the exit. If you omit this attribute, the default
value of 32 blanks is passed to the exit.

The maximum length of this field is 32 characters.
• Identify the sequence of this exit in relation to other exits using the following attribute:

Sequence=sequence_number
The sequence in which this API exit is called relative to other API exits. An exit with a low sequence
number is called before an exit with a higher sequence number. There is no need for the sequence
numbering of exits to be contiguous. A sequence of 1, 2, 3 has the same result as a sequence
of 7, 42, 1096. If two exits have the same sequence number, the queue manager decides which
one to call first. You can tell which was called after the event by putting the time or a marker in
ExitChainArea indicated by the ExitChainAreaPtr in MQAXP or by writing your own log file.

This attribute is an unsigned numeric value.

Sample stanzas
The sample mqs.ini file contains the following stanzas:
ApiExitTemplate

This stanza defines an exit with the descriptive name OurPayrollQueueAuditor, module name
auditor, and sequence number 2. A data value of 123 is passed to the exit.

Developing applications for IBM MQ 925

ApiExitCommon
This stanza defines an exit with the descriptive name MQPoliceman, module name tmqp, and
sequence number 1. The data passed is an instruction (CheckEverything).

mqs.ini

 ApiExitTemplate:
 Name=OurPayrollQueueAuditor
 Sequence=2
 Function=EntryPoint
 Module=/usr/ABC/auditor
 Data=123
 ApiExitCommon:
 Name=MQPoliceman
 Sequence=1
 Function=EntryPoint
 Module=/usr/MQPolice/tmqp
 Data=CheckEverything

The following sample qm.ini file contains an ApiExitLocal definition of an exit with the descriptive name
ClientApplicationAPIchecker, module name ClientAppChecker, and sequence number 3.

qm.ini

 ApiExitLocal:
 Name=ClientApplicationAPIchecker
 Sequence=3
 Function=EntryPoint
 Module=/usr/Dev/ClientAppChecker
 Data=9.20.176.20

Channel-exit programs for messaging channels
This collection of topics contains information about IBM MQ channel-exit programs for messaging
channels.

Message channel agents (MCAs) can also call data-conversion exits. For more information about writing
data-conversion exits, see “Writing data-conversion exits” on page 947.

Some of this information also applies to exits on MQI channels, which connect IBM MQ MQI clients to
queue managers. For more information, see Channel-exit programs for MQI channels.

Channel-exit programs are called at defined places in the processing carried out by MCA programs.

Some of these user-exit programs work in complementary pairs. For example, if a user-exit program is
called by the sending MCA to encrypt the messages for transmission, the complementary process must
be functioning at the receiving end to reverse the process.

Table 142 on page 926 shows the types of channel exit that are available for each channel type.

Table 142. Channel exits available for each channel type

Channel
Type

Message exit Message-
retry exit

Receive exit Security exit Send exit Auto-
definition

exit

Sender
channel

Yes Yes Yes Yes

Server
channel

Yes Yes Yes Yes

Cluster-
sender
channel

Yes Yes Yes Yes Yes

926 Developing Applications for IBM MQ

Table 142. Channel exits available for each channel type (continued)

Channel
Type

Message exit Message-
retry exit

Receive exit Security exit Send exit Auto-
definition

exit

Receiver
channel

Yes Yes Yes Yes Yes Yes

Requester
channel

Yes Yes Yes Yes Yes

Cluster-
receiver
channel

Yes Yes Yes Yes Yes Yes

Client-
connection
channel

Yes Yes Yes

Server-
connection
channel

Yes Yes Yes Yes

Notes:

1. On z/OS, the auto-definition exit applies to cluster-sender and cluster-receiver channels only.

If you are going to run channel exits on a client, you cannot use the MQSERVER environment variable.
Instead, create and reference a client channel definition table (CCDT) as described in Client channel
definition table.

Processing overview
An overview of how MCAs use channel-exit programs.

On startup, the MCAs exchange a startup dialog to synchronize processing. Then they switch to a data
exchange that includes the security exits. These exits must end successfully for the startup phase to
complete and to allow messages to be transferred.

The security check phase is a loop, as shown in Figure 103 on page 927.

Figure 103. Security exit loop

During the message transfer phase, the sending MCA gets messages from a transmission queue, calls the
message exit, calls the send exit, and then sends the message to the receiving MCA, as shown in Figure
104 on page 928.

Developing applications for IBM MQ 927

Figure 104. Example of a send exit at the sender end of message channel

Figure 105. Example of a receive exit at the receiver end of message channel

The receiving MCA receives a message from the communications link, calls the receive exit, calls the
message exit, and then puts the message on the local queue, as shown in Figure 105 on page 928. (The
receive exit can be called more than once before the message exit is called.)

928 Developing Applications for IBM MQ

Writing channel-exit programs
You can use the following information to help you write channel-exit programs.

User exits and channel-exit programs can use all MQI calls, except as noted in the sections that follow.
For MQ V7 and later, the MQCXP structure version 7 and higher contains the connection handle hConn,
which can be used instead of issuing MQCONN. For earlier versions, to obtain the connection handle, an
MQCONN must be issued, even though an MQRC_ALREADY_CONNECTED warning is returned because the
channel itself is connected to the queue manager.

Note that the channel exit must be threadsafe.

For exits on client-connection channels, the queue manager to which the exit tries to connect depends on
how the exit was linked. If the exit was linked with MQM.LIB (or QMQM/LIBMQM on IBM i) and you do
not specify a queue manager name on the MQCONN call, the exit tries to connect to the default queue
manager on your system. If the exit was linked with MQM.LIB (or QMQM/LIBMQM on IBM i) and you
specify the name of the queue manager that was passed to the exit through the QMgrName field of MQCD,
the exit tries to connect to that queue manager. If the exit was linked with MQIC.LIB or any other library,
the MQCONN call fails whether you specify a queue manager name or not.

You should avoid altering the state of the transaction associated with the passed hConn in a channel exit;
you must not use the MQCMIT, MQBACK or MQDISC verbs with the channel hConn, and you cannot use
the MQBEGIN verb specifying the channel hConn.

If MQCONNX is used specifying MQCNO_HANDLE_SHARE_BLOCK or
MQCNO_HANDLE_SHARE_NO_BLOCK to create a new IBM MQ connection, then it is your responsibility to
ensure that the connection is correctly managed and disconnects from the queue manager correctly. For
example, a channel exit that creates a new connection to the queue manager on every invocation without
disconnecting, results in connection handles building up and an increase in the number of agent threads.

An exit runs in the same thread as the MCA itself and uses the same connection handle. So, it runs inside
the same UOW as the MCA and any calls made under sync point are committed or backed out by the
channel at the end of the batch.

Therefore, a channel message exit could send notification messages that are only committed to that
queue when the batch containing the original message is committed. So, it is possible to issue sync point
MQI calls from a channel message exit.

A channel exit can change fields in the MQCD. However, these changes are not acted on, except in the
circumstances listed. If a channel exit program changes a field in the MQCD data structure, the new value
is ignored by the IBM MQ channel process. However, the new value remains in the MQCD and is passed
to any remaining exits in an exit chain and to any conversation sharing the channel instance. For more
information, see Changing MQCD fields in a channel exit

Also, for programs written in C, non-reentrant C library function must not be used in a channel-exit
program.

If you use multiple channel exit libraries simultaneously, problems can arise
on some UNIX and Linux platforms if the code for two different exits contains identically named functions.
When a channel exit is loaded, the dynamic loader resolves function names in the exit library to the
addresses where the library is loaded. If two exit libraries define separate functions which happen to
have identical names, this resolution process might incorrectly resolve the function names of one library
to use the functions of another. If this problem occurs, specify to the linker that it must only export
the required exit and MQStart functions, as these functions are unaffected. Other functions must be
given local visibility so that they are not used by functions outside their own exit library. Consult the
documentation for the linker for more information.

All exits are called with a channel exit parameter structure (MQCXP), a channel definition structure
(MQCD), a prepared data buffer, data length parameter, and buffer length parameter. The buffer length
must not be exceeded:

• For message exits, you must allow for the largest message required to be sent across the channel, plus
the length of the MQXQH structure.

• For send and receive exits, the largest buffer you must allow for is as follows:

Developing applications for IBM MQ 929

LU 6.2
32 KB

TCP:
 IBM i 16 KB

Others 32 KB

Note: The maximum usable length might be 2 bytes less than this length. Check the value
returned in MaxSegmentLength for details. For more information about MaxSegmentLength, see
MaxSegmentLength.

NetBIOS:
64 KB

SPX:
64 KB

Note: Receive exits on sender channels and sender exits on receiver channels use 2 KB buffers for TCP.
• For security exits, the distributed queuing facility allocates a buffer of 4000 bytes.

It is permissible for the exit to return an alternative buffer, together with the relevant parameters. See
“Channel-exit programs for messaging channels” on page 926 for call details.

Writing channel exit programs on z/OS
You can use the following information to help you write and compile channel-exit programs for z/OS.

The exits are started as if by a z/OS LINK, in:

• Non-authorized problem program state
• Primary address space control mode
• Non-cross-memory mode
• Non-access register mode
• 31 bit addressing mode

The link-edited modules must be placed in the data set specified by the CSQXLIB DD statement of the
channel initiator address space procedure; the names of the load modules are specified as the exit names
in the channel definition.

When writing channel exits for z/OS, the following rules apply:

• Exits must be written in assembler or C; if C is used, it must conform to the C systems programming
environment for system exits, described in the z/OS C/C++ Programming Guide.

• Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD statement. Providing
CSQXLIB has DISP=SHR, exits can be updated while the channel initiator is running. The new version is
used when the channel is restarted.

• Exits must be reentrant, and capable of running anywhere in virtual storage.
• Exits must reset the environment, on return, to that at entry.
• Exits must free any storage obtained, or ensure that it is freed by a subsequent exit invocation.

For storage that is to persist between invocations, use the z/OS STORAGE service, or the 4kmalc library
function for System Programming C.

For more information about this function, see 4kmalc() -- Allocate Page-Aligned Storage.
• All IBM MQ MQI calls except MQCMIT or CSQBCMT and MQBACK or CSQBBAK can be used. They must

be contained after MQCONN (with a blank queue manager name). If these calls are used, the exit must
be link-edited with the stub CSQXSTUB.

The exception to this rule is that security channel exits can issue commit and backout MQI calls.
To issue such calls, code the verbs CSQXCMT and CSQXBAK in place of MQCMIT or CSQBCMT and
MQBACK or CSQBBAK.

930 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/zos/2.4.0?topic=cc-zos-xl-programming-guide
https://www.ibm.com/docs/en/zos/2.4.0?topic=c-4kmalc-allocate-page-aligned-storage

• All exits that use stub CSQXSTUB from IBM WebSphere MQ 7.0 or later must be link-edited in a
CSQXLIB load library with format PDS-E.

• Exits must not use any system services that cause a wait, because using system services would severely
affect the handling of some or all the other channels. Many channels are run under a single TCB
typically. If you do something in an exit that causes a wait and you do not use MQXWAIT, it causes all
these channels to wait. Causing channels to wait does not give any functional problems, but might have
an adverse effect on performance. Most SVCs involve waits, so you must avoid them, except for the
following SVCs:

– GETMAIN/FREEMAIN/STORAGE
– LOAD/DELETE

In general, therefore, avoid SVCs, PCs, and I/O. Instead, use the MQXWAIT call.
• Exits do not issue ESTAEs or SPIEs, apart from in any subtasks they attach, because their error handling

might interfere with the error handling performed by IBM MQ. This means that IBM MQ might not be
able to recover from an error, or that your exit program might not receive all the error information.

• The MQXWAIT call (see MQXWAIT) provides a wait service that waits for I/O and other events; if this
service is used, exits must not use the linkage stack.

For I/O and other facilities that do not provide non-blocking facilities or an ECB to wait on, a separate
subtask must be ATTACHed, and its completion waited for by MQXWAIT; because of the processing that
this technique incurs, this facility must be used only by the security exit.

• The MQDISC MQI call does not cause an implicit commit to occur within the exit program. A commit of
the channel process is performed only when the channel protocol dictates.

The following exit samples are provided with IBM MQ for z/OS:
CSQ4BAX0

This sample is written in assembler, and illustrates the use of MQXWAIT.
CSQ4BCX1 and CSQ4BCX2

These samples are written in C and illustrate how to access the parameters.
CSQ4BCX3 and CSQ4BAX3

These samples are written in C and assembler respectively.

The CSQ4BCX3 sample (which is pre-compiled into the SCSQAUTH LOADLIB, should function
with no changes necessary on the exit itself. You can create a LOADLIB (for example, called
MY.TEST.LOADLIB) and copy the SCSQAUTH(CSQ4BCX3) member to it.

To set up a security exit on a client connection, carry out the following procedure:

1. Establish a valid OMVS segment for the user ID that the channel initiator uses.

This allows the IBM MQ for z/OS channel initiator to use TCP/IP with the z/OS UNIX System
Services (z/OS UNIX) socket interface, in order to facilitate exit processing. Note that it is
unnecessary to define an OMVS segment for the user ID of any connecting client.

2. Ensure that the exit code itself runs only in a program controlled environment.

This means everything loaded into the CHINIT address space must be loaded from a program
controlled library (meaning all libraries in the STEPLIB), and any libraries named on CSQXLIB and

++hlq++.SCSQANLx
++hlq++.SCSQMVR1
++hlq++.SCSQAUTH

To set a load library as program controlled, use a command similar to this example:

RALTER PROGRAM * ADDMEM('MY.TEST.LOADLIB'//NOPADCHK)

Then you can activate or refresh the program controlled environment by issuing the command:

Developing applications for IBM MQ 931

SETROPTS WHEN(PROGRAM) REFRESH

3. Add the exit LOADLIB to the CSQXLIB DD (in the CHINIT started procedure), by issuing the
following command:

ALTER CHANNEL(xxxx) CHLTYPE(SVRCONN)SCYEXIT(CSQ4BCX3)

This activates the exit for the named channel.
4. Your external security manager (ESM) lists any other libraries to be program controlled, but note

that none of the ESM or C libraries needs to be under program control.

See IBM MQ for z/OS server connection channel for further information on setting up a security exit
using the sample CSQ4BCX3.

CSQ4BCX4
This sample is written in C and demonstrates using the RemoteProduct and RemoteVersion fields
in MQCXP.

Related concepts
“Writing channel exit programs on IBM i” on page 932
You can use the following information to help you write and compile channel-exit programs for IBM i.
“Writing channel-exit programs on AIX, Linux, and Windows” on page 933
You can use the following information to help you write channel-exit programs for AIX, Linux, and
Windows systems.
Related reference
IBM MQ for z/OS server connection channel

Writing channel exit programs on IBM i
You can use the following information to help you write and compile channel-exit programs for IBM i.

The exit is a program object written in the ILE C, ILE RPG, or ILE COBOL language. The exit program
names and their libraries are named in the channel definition.

Observe the following conditions when creating and compiling an exit program:

• The program must be made thread safe and created with the ILE C, ILE RPG, or ILE COBOL compiler.
For ILE RPG you must specify the THREAD(*SERIALIZE) control specification, and for ILE COBOL you
must specify SERIALIZE for the THREAD option of the PROCESS statement. The programs must also
be bound to the threaded IBM MQ libraries: QMQM/LIBMQM_R in the case of ILE C and ILE RPG,
and AMQ0STUB_R in the case of ILE COBOL. For additional information about making RPG or COBOL
applications thread safe, refer to the appropriate Programmer's Guide for the language.

• IBM MQ for IBM i requires that the exit programs are enabled for teraspace support. (Teraspace is
a form of shared memory introduced in OS/400 V4R4.) For the ILE RPG and COBOL compilers, any
programs compiled on OS/400 V4R4 or later are so enabled. For C, the programs must be compiled with
the TERASPACE(*YES *TSIFC) options specified on CRTCMOD or CRTBNDC commands.

• An exit returning a pointer to its own buffer space must ensure that the object pointed to exists beyond
the time span of the channel-exit program. The pointer cannot be the address of a variable on the
program stack, nor of a variable in the program heap. Instead, the pointer must be obtained from the
system. An example is a user space created in the user exit. To ensure that any data area allocated by
the channel-exit program is still available for the MCA when the program ends, the channel exit must
run in the activation group of the caller or a named activation group. Do this by setting the ACTGRP
parameter on CRTPGM to a user-defined value or *CALLER. If the program is created in this way, the
channel-exit program can allocate dynamic memory and pass a pointer to this memory back to the
MCA.

Related concepts
“Writing channel-exit programs on AIX, Linux, and Windows” on page 933

932 Developing Applications for IBM MQ

You can use the following information to help you write channel-exit programs for AIX, Linux, and
Windows systems.
“Writing channel exit programs on z/OS ” on page 930
You can use the following information to help you write and compile channel-exit programs for z/OS.

Writing channel-exit programs on AIX, Linux, and Windows
You can use the following information to help you write channel-exit programs for AIX, Linux, and
Windows systems.

Follow the instructions outlined in “Writing exits and installable services on AIX, Linux, and Windows” on
page 902. Use the following channel exit specific information, where appropriate:

The exit must be written in C, and is a DLL on Windows.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry point in the library. Figure
106 on page 933 shows how to set up an entry to your program:

#include <cmqec.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQCXP pChannelExitParms,
 PMQCD pChannelDefinition,
 PMQLONG pDataLength,
 PMQLONG pAgentBufferLength,
 PMQVOID pAgentBuffer,
 PMQLONG pExitBufferLength,
 PMQPTR pExitBufferAddr)
{
... Insert code here
}

Figure 106. Sample source code for a channel exit

When writing channel exits for Windows using Visual C++, you must write your own DEF file. An example
of how is shown in Figure 107 on page 933. For further information on writing channel exit programs,
see “Writing channel-exit programs” on page 929.

EXPORTS
ChannelExit

Figure 107. Sample DEF file for Windows

Related concepts
“Writing channel exit programs on IBM i” on page 932
You can use the following information to help you write and compile channel-exit programs for IBM i.
“Writing channel exit programs on z/OS ” on page 930
You can use the following information to help you write and compile channel-exit programs for z/OS.

Channel security exit programs
You can use security exit programs to verify that the partner at the other end of a channel is genuine. This
is known as authentication.

To specify that a channel must use a security exit, specify the exit name in the SCYEXIT field of the
channel definition.

Note: Authentication can also be achieved with channel authentication records. Channel authentication
records provide great flexibility in preventing access to queue managers from certain users and channels,
and in mapping remote users to IBM MQ user identifiers. TLS support is also provided by IBM MQ
to authenticate your users and to provide encryption and data integrity checks for your data. For
more information about TLS, see TLS security protocols in IBM MQ. However, if you still require more
sophisticated (or different) forms of security processing, and other types of checks and security context
establishment, consider writing security exits.

Developing applications for IBM MQ 933

The Subject and Issuer DN attributes appear in the following channel status attributes:

• SSLPEER (PCF selector MQCACH_SSL_SHORT_PEER_NAME)
• SSLCERTI (PCF selector MQCACH_SSL_CERT_ISSUER_NAME)

These values are returned by channel status commands as well as the data passed to channel security
exits listed, as shown:

• MQCD SSLPeerNamePtr
• MQCXP SSLRemCertIssNamePtr

A security exit can be written in C or Java.

Channel security exit programs are called at the following places in the processing cycle of an MCA:

• At MCA initiation and termination.
• Immediately after the initial data negotiation is finished on channel startup. The receiver or server end

of the channel can initiate a security message exchange with the remote end by providing a message to
be delivered to the security exit at the remote end. It might also decline to do so. The exit program is
started again to process any security message received from the remote end.

• Immediately after the initial data negotiation is finished on channel startup. The sender or requester
end of the channel processes a security message received from the remote end, or initiates a security
exchange when the remote end cannot. The exit program is started again to process all subsequent
security messages that might be received.

A requester channel never gets called with MQXR_INIT_SEC. The channel notifies the server that it has a
security exit program, and the server then has the opportunity to initiate a security exit. If it does not have
one, it informs the requester and a zero length flow is returned to the exit program.

Note: Avoid sending zero-length security messages.

Examples of the data exchanged by security-exit programs are illustrated in figures Figure 108 on page
935 through Figure 111 on page 937. These examples show the sequence of events that occur
involving the security exit of the receiver, and the security exit of the sender. Successive rows in the
figures represent the passage of time. In some cases, the events at the receiver and sender are not
correlated, and therefore can occur at the same time or at different times. In other cases, an event at one
exit program results in a complementary event occurring later at the other exit program. For example, in
Figure 108 on page 935:

1. The receiver and sender are each invoked with MQXR_INIT, but these invocations are not correlated
and can therefore occur at the same time or at different times.

2. The receiver is next invoked with MQXR_INIT_SEC, but returns MQXCC_OK which requires no
complementary event at the sender exit.

3. The sender is next invoked with MQXR_INIT_SEC. This is not correlated with the invocation of
the receiver with MQXR_INIT_SEC. The sender returns MQXCC_SEND_SEC_MSG, which causes a
complementary event at the receiver exit.

4. The receiver is then invoked with MQXR_SEC_MSG, and returns MQXCC_SEND_SEC_MSG, which
causes a complementary event at the sender exit.

5. The sender is then invoked with MQXR_SEC_MSG, and returns MQXCC_OK which requires no
complementary event at the receiver exit.

934 Developing Applications for IBM MQ

Figure 108. Sender-initiated exchange with agreement

Developing applications for IBM MQ 935

Figure 109. Sender-initiated exchange with no agreement

936 Developing Applications for IBM MQ

Figure 110. Receiver-initiated exchange with agreement

Figure 111. Receiver-initiated exchange with no agreement

Developing applications for IBM MQ 937

The channel security exit program is passed an agent buffer containing the security data, excluding any
transmission headers, generated by the security exit. This data can be any suitable data so that either end
of the channel is able to perform security validation.

The security exit program at both the sending and receiving end of the message channel can return either
of two response codes to any call:

• Security exchange ended with no errors
• Suppress the channel and close down

Note:

1. The channel security exits typically work in pairs. When you define the appropriate channels, make
sure that compatible exit programs are named for both ends of the channel.

2. In IBM i , security exit programs that have been compiled with Use adopted
authority (USEADPAUT=*YES) can adopt QMQM or QMQMADM authority. Take care that the exit
does not use this feature to pose a security risk to your system.

3. On a TLS channel on which the other end of the channel provides a certificate, the security exit
receives the Distinguished Name of the subject of this certificate in the MQCD field accessed
by SSLPeerNamePtr and the Distinguished Name of the issuer in the MQCXP field accessed by
SSLRemCertIssNamePtr. Uses to which this name can be put are:

• To restrict access over the TLS channel.
• To change MQCD.MCAUserIdentifier based on the name.

Related concepts
Transport Layer Security (TLS) concepts
Related reference
Channel authentication records

Writing a security exit
You can write a security exit by using the security exit skeleton code.

Figure 112 on page 938 illustrates how to write a security exit.

void MQENTRY MQStart() {;}
void MQENTRY EntryPoint (PMQVOID pChannelExitParms,
 PMQVOID pChannelDefinition,
 PMQLONG pDataLength,
 PMQLONG pAgentBufferLength,
 PMQVOID pAgentBuffer,
 PMQLONG pExitBufferLength,
 PMQPTR pExitBufferAddr)
{
 PMQCXP pParms = (PMQCXP)pChannelExitParms;
 PMQCD pChDef = (PMQCD)pChannelDefinition;
 /* TODO: Add Security Exit Code Here */

}

Figure 112. Security exit skeleton code

The standard IBM MQ Entry Point MQStart must exist, but is not required to perform any function. The
name of the function (EntryPoint in this example) can be changed, but the function must be exported
when the library is compiled and linked. As in the previous example, the pointers pChannelExitParms
must be cast to PMQCXP and pChannelDefinition must be cast to PMQCD. For general information about
calling channel exits and the use of parameters, see MQ_CHANNEL_EXIT. These parameters are used in a
security exit as follows:
PMQVOID pChannelExitParms

input/output

938 Developing Applications for IBM MQ

Pointer to MQCXP structure - cast to PMQCXP to access fields. This structure is used to communicate
between the Exit and MCA. The following fields in the MQCXP are of particular interest for Security
Exits:
ExitReason

Tells the Security Exit the current state in the security exchange and is used when deciding what
action to take.

ExitResponse
The response to the MCA which dictates the next stage in the security exchange.

ExitResponse2
Extra control flags to govern how the MCA interprets the response of the Security Exit.

ExitUserArea
16 bytes (maximum) of storage which can be used by the Security Exit to maintain state between
calls.

ExitData
Contains the data specified in the SCYDATA field of the channel definition (32 bytes padded to the
right with blanks).

PMQVOID pChannelDefinition
input/output

Pointer to MQCD structure - cast to PMQCD to access fields. This parameter contains the definition of
the channel. The following fields in the MQCD are of particular interest for Security Exits:
ChannelName

The channel name (20 bytes padded to the right with blanks).
ChannelType

A code defining the channel type.
MCA User Identifier

This group of three fields is initialized to the value of the MCAUSER field specified in the channel
definition. Any user identifier specified by the Security Exit in these fields is used for access
control (not applicable to SDR, SVR, CLNTCONN, or CLUSSDR channels).
MCAUserIdentifier

First 12 bytes of identifier padded to the right with blanks.
LongMCAUserIdPtr

Pointer to a buffer containing the full length identifier (not guaranteed null terminated) takes
priority over MCAUserIdentifier.

LongMCAUserIdLength
Length of string pointed to by LongMCAUserIdPtr - must be set if LongMCAUserIdPtr is set.

Remote User Identifier
Only applies to CLNTCONN/SVRCONN channel pairs. If no CLNTCONN Security Exit is defined then
these three fields are initialized by the client MCA, so they might contain a user identifier from the
environment of the client which can be used by a SVRCONN Security Exit for authentication and
when specifying the MCA User Identifier. If a CLNTCONN Security Exit is defined then these fields
are not initialized and can be set by the CLNTCONN Security Exit, or security messages can be
used to pass a user identifier from Client to Server.
RemoteUserIdentifier

First 12 Bytes of identifier padded to the right with blanks.
LongRemoteUserIdPtr

Pointer to a buffer containing the full length identifier (not guaranteed null terminated) takes
priority over RemoteUserIdentifier.

LongRemoteUserIdLength
Length of string pointed to by LongRemoteUserIdPtr - must be set if LongRemoteUserIdPtr is
set.

Developing applications for IBM MQ 939

PMQLONG pDataLength
input/output

Pointer to MQLONG. Contains the length of any Security Exit contained in the AgentBuffer upon
invocation of the Security Exit. Must be set by a Security Exit to the length of any message being sent
in the AgentBuffer or ExitBuffer.

PMQLONG pAgentBufferLength
input

Pointer to MQLONG. The length of the data contained in the AgentBuffer on invocation of the Security
Exit.

PMQVOID pAgentBuffer
input/output

On invocation of the Security Exit, this points to any message sent from the partner exit. If
ExitResponse2 in the MQCXP structure has the MQXR2_USE_AGENT_BUFFER flag set (default) then a
Security Exit needs to set this parameter to point to any message data being sent.

PMQLONG pExitBufferLength
input/output

Pointer to MQLONG. This parameter is initialized to 0 on the first invocation of a Security Exit and the
value returned is maintained between calls to the Security Exit during a security exchange.

PMQPTR pExitBufferAddr
input/output

This parameter is initialized to a null pointer on the first invocation of a Security Exit and the
value returned is maintained between calls to the Security Exit during a security exchange. If the
MQXR2_USE_EXIT_BUFFER flag is set in the ExitResponse2 in the MQCXP structure then a Security
Exit needs to set this parameter to point to any message data being sent.

Differences in behavior between security exits defined on CLNTCONN/SVRCONN channel pairs and other
channel pairs
Security exits can be defined on all types of channel. However, the behavior of security exits defined
on CLNTCONN/SVRCONN channel pairs is slightly different from security exits defined on other channel
pairs.

A Security Exit on a CLNTCONN channel can set the Remote User Identifier in the channel definition for
processing by a partner SVRCONN exit, or for OAM authorization if no SVRCONN Security Exit is defined
and the MCAUSER field of the SVRCONN is not set.

If no CLNTCONN Security Exit is defined then the Remote User Identifier in the channel definition is set to
a user identifier from the client environment (which can be blank) by the client MCA.

A security exchange between Security Exits defined on a CLNTCONN and SVRCONN channel pair
completes successfully when the SVRCONN Security Exit returns an ExitResponse of MQXCC_OK. A
security exchange between other channel pairs completes successfully when the Security Exit which
initiated the exchange returns an ExitResponse of MQXCC_OK.

However, the MQXCC_SEND_AND_REQUEST_SEC_MSG ExitResponse code can be used to force
continuation of the security exchange: If an ExitResponse of MQXCC_SEND_AND_REQUEST_SEC_MSG
is returned by a CLNTCONN or SVRCONN Security Exit then the partner exit must respond by sending
a security message (not MQXCC_OK or a null response) or the channel terminates. For Security
Exits defined on other types of channel, an ExitResponse of MQXCC_OK returned in response to a
MQXCC_SEND_AND_REQUEST_SEC_MSG from the partner Security Exit results in continuation of the
security exchange as if a null response was returned and not in termination of the channel.

940 Developing Applications for IBM MQ

SSPI security exit
IBM MQ for Windows supplies a security exit that provides authentication for IBM MQ channels by using
the Security Services Programming Interface (SSPI). The SSPI provides the integrated security facilities of
Windows.

This security exit is for both the IBM MQ client and the IBM MQ server.

The security packages are loaded from either security.dll or secur32.dll. These DLLs are supplied with
your operating system.

One-way authentication is provided on Windows, using NTLM authentication services. Two-way
authentication is provided on Windows 2000, using Kerberos authentication services.

The security exit program is supplied in source and object format. You can use the object code as it
is, or you can use the source code as a starting point to create your own user-exit programs. For more
information about using the object or source code of the SSPI security exit, see “Using the SSPI security
exit on Windows” on page 1092

Channel send and receive exit programs
You can use the send and receive exits to perform tasks such as data compression and decompression.
You can specify a list of send and receive exit programs to be run in succession.

Channel send and receive exit programs are called at the following places in the processing cycle of an
MCA:

• The send and receive exit programs are called for initialization at MCA initiation and for termination at
MCA termination.

• The send exit program is invoked at one or other end of the channel, depending on the end at which
a transmission for one message transfer is sent, immediately before a transmission is sent over the
link. Note 4 explains why exits are available in both directions even though message channels send
messages in one direction only.

• The receive exit program is invoked at one or other end of the channel, depending on the end at which
a transmission for one message transfer is received, immediately after a transmission has been taken
from the link. Note 4 explains why exits are available in both directions even though message channels
send messages in one direction only.

There might be many transmissions for one message transfer, and there could be many iterations of the
send and receive exit programs before a message reaches the message exit at the receiving end.

The channel send and receive exit programs are passed an agent buffer containing the transmission data
as sent or received from the communications link. For send exit programs, the first 8 bytes of the buffer
are reserved for use by the MCA, and must not be changed. If the program returns a different buffer, then
these first 8 bytes must exist in the new buffer. The format of data presented to the exit programs is not
defined.

A good response code must be returned by send and receive exit programs. Any other response causes an
MCA abnormal end (abend).

Note: Do not issue an MQGET, MQPUT, or MQPUT1 call within sync point from a send or receive exit.

Note:

1. Send and receive exits typically work in pairs. For example a send exit might compress the data and
a receive exit decompress it, or a send exit might encrypt the data and a receive exit decrypt it. When
you define the appropriate channels, make sure that compatible exit programs are named for both
ends of the channel.

2. If compression is turned on for the channel, the exits are passed compressed data.
3. Channel send and receive exits might be called for message segments other than for application data,

for example, status messages. They are not called during the startup dialog, nor the security check
phase.

4. Although message channels send messages in one direction only, channel-control data, such as heart
beats and end of batch processing, flows in both directions, and these exits are available in both

Developing applications for IBM MQ 941

directions, also. However, some of the initial channel startup data flows are exempt from processing by
any of the exits.

5. There are circumstances in which send and receive exits could be invoked out of sequence; for
example, if you are running a series of exit programs or if you are also running security exits. Then,
when the receive exit is first called upon to process data, it might receive data that has not passed
through the corresponding send exit. If the receive exit just performed the operation, for example
decompression, without first checking that it was required, the results would be unexpected.

You need to code your send and receive exits in such a way that the receive exit can check that the
data it is receiving has been processed by the corresponding send exit. The recommended way to do
so is to code your exit programs so that:

• The send exit sets the value of the ninth byte of data to 0 and shifts all the data along 1 byte, before
performing the operation. (The first 8 bytes are reserved for use by the MCA.)

• If the receive exit receives data that has a 0 in byte 9, it knows that the data has come from the send
exit. It removes the 0, performs the complementary operation, and shifts the resulting data back by
1 byte.

• If the receive exit receives data that has something other than 0 in byte 9, it assumes that the send
exit has not run, and sends the data back to the caller unchanged.

When using security exits, if the channel is ended by the security exit it is possible that a send exit
might be called without the corresponding receive exit. One way to prevent this problem is to code the
security exit to set a flag, in MQCD.SecurityUserData or MQCD.SendUserData, for example, when the
exit decides to end the channel. Then the send exit needs to check this field, and process the data only
if the flag is not set. This check prevents the send exit from unnecessarily altering the data, and thus
prevents any conversion errors that could occur if the security exit received altered data.

Channel send exit programs - reserving space
You can use send and receive exits to transform the data before transmission. Channel send exit
programs can add their own data about the transformation by reserving space in the transmission buffer.

This data is processed by the receive exit program and then removed from the buffer. For example, you
might want to encrypt the data and add a security key for decryption.

How you reserve space and use it
When the send exit program is called for initialization, set the ExitSpace field of MQXCP to the number
of bytes to be reserved. See MQCXP for details. ExitSpace can be set only during initialization, that
is when ExitReason has the value MQXR_INIT. When the send exit is invoked immediately before
transmission, with ExitReason set to MQXR_XMIT, ExitSpace bytes are reserved in the transmission
buffer. ExitSpace is not supported on z/OS.

The send exit need not use all the reserved space. It can use less than ExitSpace bytes or, if the
transmission buffer is not full, the exit can use more than the amount reserved. When setting the value
of ExitSpace, you must leave at least 1 KB for message data in the transmission buffer. Channel
performance can be affected if reserved space is used for large amounts of data.

The transmission buffer is normally 32KB long. However, if the channel uses TLS then the transmission
buffer size is reduced to 15,352 bytes in order fit within the maximum record length defined by RFC 6101
and the related family of TLS standards. A further 1024 bytes are reserved for use by IBM MQ, so the
maximum transmission buffer space usable by send exits is 14,328 bytes.

What happens at the receiving end of the channel
Channel receive exit programs must be set up to be compatible with the corresponding send exits.
Receive exits must know the number of bytes in the reserved space and must remove the data in that
space.

942 Developing Applications for IBM MQ

Multiple send exits
You can specify a list of send and receive exit programs to be run in succession. IBM MQ maintains a total
for the space reserved by all the send exits. This total space must leave at least 1 KB for message data in
the transmission buffer.

The following example shows how space is allocated for three send exits, called in succession:

1. When called for initialization:

• Send exit A reserves 1 KB.
• Send exit B reserves 2 KB.
• Send exit C reserves 3 KB.

2. The maximum transmission size is 32 KB and the user data is 5 KB long.
3. Exit A is called with 5 KB of data; up to 27 KB are available, because 5 KB is reserved for exits B and C.

Exit A adds 1 KB, the amount it reserved.
4. Exit B is called with 6 KB of data; up to 29 KB are available, because 3 KB is reserved for exit C. Exit B

adds 1 KB, less than the 2 KB it reserved.
5. Exit C is called with 7 KB of data; up to 32 KB are available. Exit C adds 10K, more than the 3 KB

it reserved. This amount is valid, because the total amount of data, 17 KB, is less than the 32 KB
maximum.

The maximum transmission buffer size for a channel using TLS is 15,352 bytes, not 32KB. This is because
the underlying secure socket transmission segments are limited to 16KB and some of the space is
required for TLS record overheads. A further 1024 bytes are reserved for use by IBM MQ, so the maximum
transmission buffer space usable by send exits is 14,328 bytes.

Channel message exit programs
You can use the channel message exit to perform tasks such as encryption on the link, validation or
substitution of incoming user IDs, message data conversion, journaling, and reference message handling.
You can specify a list of message exit programs to be run in succession.

Channel message exit programs are called at the following places in the processing cycle of the MCA:

• At MCA initiation and termination
• Immediately after a sending MCA has issued an MQGET call
• Before the receiving MCA issues an MQPUT call

The message exit is passed an agent buffer containing the transmission queue header MQXQH, and
the application message text as retrieved from the queue. The format of MQXQH is given in MQXQH -
Transmission-queue header.

If you use reference messages (that is, messages that contain only a header that points to
some other object that is to be sent), the message exit recognizes the header, MQRMH. It identifies the
object, retrieves it in whatever way is appropriate, appends it to the header, then passes it to the MCA
for transmission to the receiving MCA. At the receiving MCA, another message exit recognizes that this
message is a reference message, extracts the object, and passes the header on to the destination queue.
See “Reference messages and large object transfers” on page 767 and “Running the Reference Message
samples” on page 1066 for more information about reference messages and some sample message exits
that handle them.

Message exits can return the following responses:

• Send the message (GET exit). The message might have been changed by the exit. (This returns
MQXCC_OK.)

• Put the message on the queue (PUT exit). The message might have been changed by the exit. (This
returns MQXCC_OK.)

Developing applications for IBM MQ 943

• Do not process the message. The message is placed on the dead-letter queue (undelivered message
queue) by the MCA.

• Close the channel.
• Bad return code, which causes the MCA to abnormally end.

Note:

1. Message exits are called once for every complete message transferred, even when the message is split
into parts.

2. If you provide a message exit on AIX or Linux, the automatic conversion of
user IDs to lowercase characters (described here) does not operate.

3. An exit runs in the same thread as the MCA itself. It also runs inside the same unit of work (UOW)
as the MCA because it uses the same connection handle. So any calls made under sync point are
committed or backed out by the channel at the end of the batch. For example, one channel message
exit program can send notification messages to another and these messages are only committed to the
queue when the batch containing the original message is committed.

Therefore you can issue sync point MQI calls from a channel message exit program.

Message conversion outside the message exit
Before calling the message exit, the receiving MCA performs some conversions on the message. This topic
describes the algorithms used to perform the conversions.

Which headers are processed
A conversion routine runs in the MCA of the receiver before the message exit is called. The conversion
routine begins with the MQXQH header at the beginning of the message. The conversion routine then
processes through the chained headers that follow the MQXQH, performing conversion where necessary.
The chained headers can extend beyond the offset contained in the HeaderLength parameter of the
MQCXP data that is passed to the message exit of the receiver. The following headers are converted
in-place:

• MQXQH (format name " MQXMIT ")
• MQMD (this header is part of the MQXQH and has no format name)
• MQMDE (format name " MQHMDE ")
• MQDH (format name " MQHDIST ")
• MQWIH (format name " MQHWIH ")

The following headers are not converted, but are stepped over as the MCA continues to process the
chained headers:

• MQDLH (format name " MQDEAD ")
• any headers with format names beginning with the three characters 'MQH' (for example " MQHRF ") that

are not otherwise mentioned

How the headers are processed
The Format parameter of each IBM MQ header is read by the MCA. The Format parameter is 8 bytes
within the header, which are 8 single-byte characters containing a name.

The MCA then interprets the data following each header as being of the named type. If the Format is
the name of a header type eligible for IBM MQ data conversion, it is converted. If it is another name
indicating non-MQ data (for example MQFMT_NONE or MQFMT_STRING) then the MCA stops processing
the headers.

944 Developing Applications for IBM MQ

What is the MQCXP HeaderLength?
The HeaderLength parameter in the MQCXP data supplied to a message exit is the total length of the
MQXQH (which includes the MQMD), MQMDE and MQDH headers at the start of the message. These
headers are chained using the 'Format' names and lengths.

MQWIH
Chained headers can extend beyond the HeaderLength into the user data area. The MQWIH header, if it is
present, is one of those headers that appear beyond the HeaderLength.

If there is an MQWIH header in the chained headers, it is converted in-place before the message exit of
the receiver is called.

Channel message retry exit program
The channel message-retry exit is called when an attempt to open the target queue is unsuccessful. You
can use the exit to determine under which circumstances to retry, how many times to retry, and how
frequently.

This exit is also called at the receiving end of the channel at MCA initiation and termination.

The channel message-retry exit is passed an agent buffer containing the transmission queue header,
MQXQH, and the application message text as retrieved from the queue. The format of MQXQH is given in
Overview for MQXQH.

The exit is invoked for all reason codes; the exit determines for which reason codes it wants the MCA
to retry, for how many times, and at what intervals. (The value of the message-retry count set when the
channel was defined is passed to the exit in the MQCD, but the exit can ignore this value.)

The MsgRetryCount field in MQCXP is incremented by the MCA each time the exit is invoked,
and the exit returns either MQXCC_OK with the wait time contained in the MsgRetryInterval field
of MQCXP, or MQXCC_SUPPRESS_FUNCTION. Retries continue indefinitely until the exit returns
MQXCC_SUPPRESS_FUNCTION in the ExitResponse field of MQCXP. See MQCXP for information about
the action taken by the MCA for these completion codes.

If all the retries are unsuccessful, the message is written to the dead-letter queue. If there is no dead-
letter queue available, the channel stops.

If you do not define a message-retry exit for a channel and a failure occurs that is likely to be temporary,
for example MQRC_Q_FULL, the MCA uses the message-retry count and message-retry intervals set when
the channel was defined. If the failure is of a more permanent nature and you have not defined an exit
program to handle it, the message is written to the dead-letter queue.

Channel auto-definition exit program
The channel auto-definition exit can be used when a request is received to start a receiver or server-
connection channel but no definition for that channel exists (not for IBM MQ for z/OS). It can also be
called on all platforms for cluster-sender and cluster-receiver channels to allow definition modification for
an instance of the channel.

The channel auto-definition exit can be called on all platforms except z/OS when a request is received
to start a receiver or server-connection channel but no channel definition exists. You can use it to
modify the supplied default definition for an automatically defined receiver or server-connection channel,
SYSTEM.AUTO.RECEIVER, or SYSTEM.AUTO.SVRCON. See Preparing channels for a description of how
channel definitions can be created automatically.

The channel auto-definition exit can also be called when a request is received to start a cluster-sender
channel. It can be called for cluster-sender and cluster-receiver channels to allow definition modification
for this instance of the channel. In this case, the exit also applies to IBM MQ for z/OS. A common
use of the channel auto-definition exit is to change the names of message exits (MSGEXIT, RCVEXIT,
SCYEXIT, and SENDEXIT) because exit names have different formats on different platforms. If no
channel auto-definition exit is specified, the default behavior on z/OS is to examine a distributed
exit name of the form [path]/libraryname(function) and take up to eight chars of function, if
present, or libraryname. On z/OS, a channel auto-definition exit program must alter the fields addressed

Developing applications for IBM MQ 945

by MsgExitPtr, MsgUserDataPtr, SendExitPtr, SendUserDataPtr, ReceiveExitPtr, and ReceiveUserDataPtr,
rather than the MsgExit, MsgUserData, SendExit, SendUserData, ReceiveExit and ReceiveUserData fields
themselves.

For more information, see Working with auto-defined channels.

As with other channel exits, the parameter list is:

MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

ChannelExitParms are described in MQCXP. ChannelDefinition is described in MQCD.

MQCD contains the values that are used in the default channel definition if they are not altered by the exit.
The exit can modify only a subset of the fields; see MQ_CHANNEL_AUTO_DEF_EXIT. However, attempting
to change other fields does not cause an error.

The channel auto-definition exit returns a response of either MQXCC_OK or
MQXCC_SUPPRESS_FUNCTION. If neither of these responses is returned, the MCA continues processing
as though MQXCC_SUPPRESS_FUNCTION were returned. That is, the auto-definition is abandoned, no
new channel definition is created, and the channel cannot start.

Compiling channel exit programs on AIX, Linux, and Windows systems
Use the following examples to help you compile channel-exit programs for AIX, Linux, and Windows
systems.

Windows

The compiler and linker command for channel-exit programs on Windows:

cl.exe /Ic:\mqm\tools\c\include /nologo /c myexit.c
link.exe /nologo /dll myexit.obj /def:myexit.def /out:myexit.dll

AIX and Linux systems

In these examples exit is the library name and ChannelExit is the function name. On AIX the export
file is called exit.exp. These names are used by the channel definition to reference the exit program
using the format described in MQCD- channel definition. See also the MSGEXIT parameter of the DEFINE
CHANNEL command.

Sample compiler and linker commands for channel exits on AIX:

$ xlc_r -q64 -e MQStart -bE:exit.exp -bM:SRE -o /var/mqm/exits64/exit
exit.c -I/usr/mqm/inc

Sample compiler and linker commands for channel-exits on Linux where the queue manager
is 32 bit:

$ gcc -shared -fPIC -o /var/mqm/exits/exit exit.c -I/opt/mqm/inc

Sample compiler and linker commands for channel-exits on Linux where the queue manager
is 64-bit:

$ gcc -m64 -shared -fPIC -o /var/mqm/exits64/exit exit.c -I/opt/mqm/inc

946 Developing Applications for IBM MQ

On the client, a 32 bit or 64 bit exit can be used. This exit must be linked to mqic_r.

On AIX, all functions that are called by IBM MQ must be exported. A sample export file for
this make file:

#
!channelExit
MQStart

Configuring channel exits
To call the channel exit, you must name it in the channel definition.

Channel exits must be named in the channel definition. You can do this naming when you first define the
channels, or you can add the information later using, for example, the MQSC command ALTER CHANNEL.
You can also give the channel exit names in the MQCD channel data structure. The format of the exit name
depends on your IBM MQ platform; see MQCD or MQSC commands for information.

If the channel definition does not contain a user-exit program name, the user exit is not called.

The channel auto-definition exit is the property of the queue manager, not the individual channel. In order
for this exit to be called, it must be named in the queue manager definition. To alter a queue manager
definition, use the MQSC command ALTER QMGR.

Writing data-conversion exits
This collection of topics contains information about how to write data-conversion exits.

Note: Not supported in MQSeries for VSE/ESA.

When you do an MQPUT, your application creates the message descriptor (MQMD) of the message.
Because IBM MQ needs to be able to understand the contents of the MQMD regardless of the platform it
is created on, it is converted automatically by the system.

Application data, however, is not converted automatically. If character data is being exchanged between
platforms where the CodedCharSetId and Encoding fields differ, for example, between ASCII and
EBCDIC, the application must arrange for conversion of the message. Application data conversion can
be performed by the queue manager itself or by a user exit program, referred to as a data-conversion
exit. The queue manager can perform data conversion itself, using one of its built-in conversion routines,
if the application data is in one of the built-in formats (such as MQFMT_STRING). This topic contains
information about the data-conversion exit facility that IBM MQ provides for when the application data is
not in a built-in format.

Control can be passed to the data-conversion exit during an MQGET call. This avoids converting across
different platforms before reaching the final destination. However, if the final destination is a platform
that does not support data conversion on the MQGET, you must specify CONVERT(YES) on the sender
channel that sends the data to its final destination. This ensures that IBM MQ converts the data during
transmission. In this case, your data-conversion exit must reside on the system where the sender channel
is defined.

The MQGET call is issued directly by the application. Set the CodedCharSetId and Encoding fields
in the MQMD to the character set and encoding required. If your application uses the same character
set and encoding as the queue manager, set CodedCharSetId to MQCCSI_Q_MGR, and Encoding
to MQENC_NATIVE. After the MQGET call completes, these fields have the values appropriate to the
message data returned. These might differ from the values required if the conversion was not successful.
Your application should reset these fields to the values required before each MQGET call.

The conditions required for the data-conversion exit to be called are defined for the MQGET call in
MQGET.

For a description of the parameters that are passed to the data-conversion exit, and detailed usage notes,
see Data conversion for the MQ_DATA_CONV_EXIT call and the MQDXP structure.

Developing applications for IBM MQ 947

Programs that convert application data between different machine encodings and CCSIDs must conform
to the IBM MQ data conversion interface (DCI).

For Multicast clients, API exits and data-conversion exits need to be able to run on the client-side
because some messages might not go through the queue manager. The following libraries are part of the
client packages as well as the server packages:

Table 143. Libraries that are in the client and server packages

Operating system Libraries

AIX 32 bit & 64 bit: libmqm.a & libmqm_r.a

IBM i LIBMQM & LIBMQM_R

Linux 32 bit & 64 bit: libmqm.so & libmqm_r.so

Windows 32 bit & 64 bit: mqm.dll & mqm.pdb

Invoking the data-conversion exit
A data-conversion exit is a user-written exit that receives control during the processing of an MQGET call.

The exit is invoked if the following statements are true:

• The MQGMO_CONVERT option is specified on the MQGET call.
• Some or all of the message data is not in the requested character set or encoding.
• The Format field in the MQMD structure associated with the message is not MQFMT_NONE.
• The BufferLength specified on the MQGET call is not zero.
• The message data length is not zero.
• The message contains data that has a user-defined format. The user-defined format can occupy

the entire message, or be preceded by one or more built-in formats. For example, the user-defined
format might be preceded by an MQFMT_DEAD_LETTER_HEADER format. The exit is invoked to convert
only the user-defined format; the queue manager converts any built-in formats that precede the user-
defined format.

A user-written exit can also be invoked to convert a built-in format, but this happens only if the built-in
conversion routines cannot convert the built-in format successfully.

There are some other conditions, described fully in the usage notes of the MQ_DATA_CONV_EXIT call in
MQ_DATA_CONV_EXIT.

See MQGET for details of the MQGET call. Data-conversion exits cannot use MQI calls, other than
MQXCNVC.

A new copy of the exit is loaded when an application attempts to retrieve the first message that uses that
Format since the application connected to the queue manager. A new copy might also be loaded at other
times if the queue manager has discarded a previously loaded copy.

The data-conversion exit runs in an environment like that of the program that issued the MQGET call.
As well as user applications, the program can be an MCA (message channel agent) sending messages
to a destination queue manager that does not support message conversion. The environment includes
address space and user profile, where applicable. The exit cannot compromise the integrity of the queue
manager, because it does not run in the queue manager's environment.

Data conversion on z/OS

On z/OS, be aware of the following:

• Exit programs can be written in assembly language only.

948 Developing Applications for IBM MQ

• Exit programs must be reentrant, and capable of running anywhere in storage.
• Exit programs must restore the environment on exit to that at entry, and must free any storage obtained.
• Exit programs must not WAIT, or issue ESTAEs or SPIEs.
• Exit programs are typically invoked as if by z/OS LINK in:

– Non-authorized problem program state
– Primary address space control mode
– Non cross-memory mode
– Non access-register mode
– 31 bit addressing mode
– TCB-PRB mode

• When used by a CICS application, the exit is invoked by EXEC CICS LINK, and must conform to
the CICS programming conventions. The parameters are passed by pointers (addresses) in the CICS
communication area (COMMAREA).

Although not recommended, user exit programs can also use CICS API calls, with the following caution:

– Do not issue sync points, as the results could influence units of work declared by the MCA.
– Do not update any resources controlled by a resource manager other than IBM MQ for z/OS, including

those controlled by CICS Transaction Server.

For channels with CONVERT=YES, the exit is loaded from the data set referenced by the CSQXLIB
DD statement. MQ-supplied exits CSQCBDCI and CSQCBDCO for the IBM MQ CICS Bridge are in
SCSQAUTH.

Writing a data-conversion exit program for IBM i
Information about steps to consider when writing MQ data-conversion exit programs for IBM i.

Follow these steps:

1. Name your message format. The name must fit in the Format field of the MQMD. The Format name
must not have leading embedded blanks, and trailing blanks are ignored. The object's name must
have no more than eight non-blank characters, because the Format is only eight characters long.
Remember to use this name each time that you send a message (our example uses the name Format).

2. Create a structure to represent your message. See Valid syntax for an example.
3. Run this structure through the CVTMQMDTA command to create a code fragment for your data-

conversion exit.

The functions generated by the CVTMQMDTA command use macros that are shipped in the file QMQM/
H(AMQSVMHA). These macros are written assuming that all structures are packed; amended them if
this is not the case.

4. Take a copy of the supplied skeleton source file, QMQMSAMP/QCSRC(AMQSVFC4) and rename it. (Our
example uses the name EXIT_MOD.)

5. Find the following comment boxes in the source file and insert code as described:

a. Toward the end of the source file, a comment box starts with:

 /* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step “3” on page 949.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format's */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Developing applications for IBM MQ 949

Change the name of the function to the name of the function that you added in step “5.a” on page
949. Remove the comment characters to activate the function. If there are several functions, create
calls for each of them.

c. Near the beginning of the source file, a comment box starts with:

 /* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step “5.a” on page 949.

If the message contains character data, the generated code calls MQXCNVC; this can be resolved by
binding the service program QMQM/LIBMQM.

6. Compile the source module, EXIT_MOD, as follows:

 CRTCMOD MODULE(library/EXIT_MOD) +
 SRCFILE(QCSRC) +
 TERASPACE(*YES *TSIFC)

7. Create/link the program.

For nonthreaded applications, use the following:

 CRTPGM PGM(library/Format) +
 MODULE(library/EXIT_MOD) +
 BNDSRVPGM(QMQM/LIBMQM) +
 ACTGRP(QMQM) +
 USRPRF(*USER)

In addition to creating the data-conversion exit for the basic environment, another is required in the
threaded environment. This loadable object must be followed by _R. Use the LIBMQM_R library to
resolve calls to the MQXCNVC. Both loadable objects are required for a threaded environment.

 CRTPGM PGM(library/Format_R) +
 MODULE(library/EXIT_MOD) +
 BNDSRVPGM(QMQM/LIBMQM_R) +
 ACTGRP(QMQM) +
 USRPRF(*USER)

8. Place the output in the library list for the IBM MQ job. It is recommended that, for production,
data-conversion exit programs be stored in QSYS.

Note:

1. If CVTMQMDTA uses packed structures, all IBM MQ applications must use the _Packed qualifier.
2. Data-conversion exit programs must be reentrant.
3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.
4. Compile the exit program with the user profile compiler option set to *USER, so that the exit runs with

the authority of the user.
5. Teraspace memory enablement is required for all user exits with IBM MQ for IBM i ; specify

TERASPACE(*YES *TSIFC) in the CRTCMOD and CRTBNDC commands.

Writing a data-conversion exit program for IBM MQ for z/OS
Information about steps to consider when writing data-conversion exit programs for IBM MQ for z/OS.

Follow these steps:

1. Take the supplied source skeleton CSQ4BAX9 (for non-CICS environments) or CSQ4CAX9 (for CICS)
as your starting point.

2. Run the CSQUCVX utility.
3. Follow the instructions in the prolog of CSQ4BAX9 or CSQ4CAX9 to incorporate the routines generated

by the CSQUCVX utility, in the order that the structures occur in the message that you want to convert.

950 Developing Applications for IBM MQ

4. The utility assumes that the data structures are not packed, that the implied alignment of the data is
honored, and that the structures start on a fullword boundary, with bytes being skipped as required
(as between ID and VERSION in the example in Valid syntax). If the structures are packed, omit the
CMQXCALA macros that are generated. Therefore, consider declaring your structures in such a way
that all fields are named and no bytes are skipped; in the example in Valid syntax, add a field "MQBYTE
DUMMY;" between ID and VERSION.

5. The supplied exit returns an error if the input buffer is shorter than the message format to be
converted. Although the exit converts as many complete fields as possible, the error causes an
unconverted message to be returned to the application. If you want to allow short input buffers to
be converted as far as possible, including partial fields, change the TRUNC= value on the CSQXCDFA
macro to YES: no error is returned, so the application receives a converted message. The application
must handle the truncation.

6. Add any other special processing code that you need.
7. Rename the program to your data format name.
8. Compile and link-edit your program like a batch application program (unless it is for use with CICS

applications). The macros in the code generated by the utility are in the library, thlqual.SCSQMACS.

If the message contains character data, the generated code calls MQXCNVC. If your exit uses
this call, link-edit it with the exit stub program CSQASTUB. The stub is language-independent and
environment-independent. Alternatively, you can load the stub dynamically using the dynamic call
name CSQXCNVC. See “Dynamically calling the IBM MQ stub” on page 990 for more information.

Place the link-edited module in your application load library, and in a data set that is referenced by the
CSQXLIB DD statement of your task procedure started by your channel initiator.

9. If the exit is for use by CICS applications, compile and link-edit it like a CICS application program,
including CSQASTUB if required. Place it in your CICS application program library. Define the program
to CICS in the typical way, specifying EXECKEY(CICS) in the definition.

Note: Although the LE/370 runtime libraries are needed for running the CSQUCVX utility (see step “2” on
page 950), they are not needed for link-editing or running the data-conversion exit itself (see steps “8” on
page 951 and “9” on page 951).

See “Writing IMS bridge applications” on page 71 for information about data conversion within the IBM
MQ - IMS bridge.

Writing a data-conversion exit for IBM MQ for AIX or Linux
systems
Information about steps to consider when writing data-conversion exit programs for IBM MQ for AIX or
Linux systems.

Follow these steps:

1. Name your message format. The name must fit in the Format field of the MQMD, and be in uppercase,
for example, MYFORMAT. The Format name must not have leading blanks. Trailing blanks are ignored.
The object's name must have no more than eight non-blank characters, because the Format is only
eight characters long. Remember to use this name each time that you send a message.

If the data conversion exit is used in a threaded environment, the loadable object must be followed by
_r to indicate that it is a threaded version.

2. Create a structure to represent your message. See Valid syntax for an example.
3. Run this structure through the crtmqcvx command to create a code fragment for your data-

conversion exit.

The functions generated by the crtmqcvx command use macros that assume that all structures are
packed; amend them if this is not the case.

4. Copy the supplied skeleton source file, renaming it to the name of your message format that you set in
step “1” on page 951. The skeleton source file, and the copy, are read-only.

The skeleton source file is called amqsvfc0.c.

Developing applications for IBM MQ 951

5. On IBM MQ for AIX, a skeleton export file called amqsvfc.exp is also supplied. Copy this file, renaming
it to MYFORMAT.EXP.

6. The skeleton includes a sample header file, amqsvmha.h, in the directory MQ_INSTALLATION_PATH/
inc, where MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed..
Make sure that your include path points to this directory to pick up this file.

The amqsvmha.h file contains macros that are used by the code generated by the crtmqcvx
command. If the structure to be converted contains character data, these macros call MQXCNVC.

7. Find the following comment boxes in the source file and insert code as described:

a. Toward the end of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step “3” on page 951.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format's */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function that you added in step “7.a” on page
952. Remove the comment characters to activate the function. If there are several functions, create
calls for each of them.

c. Near the beginning of the source file, a comment box starts with:

/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step “3” on page 951.
8. Compile your exit as a shared library, using MQStart as the entry point. To do this, see “Compiling

data-conversion exits on AIX and Linux systems” on page 952.
9. Place the output in the exit directory. The default exit directory is /var/mqm/exits for 32 bit systems

and /var/mqm/exits64, for 64 bit systems. You can change these directories in the qm.ini or
mqclient.ini file. This path can be set for each queue manager and the exit is only looked for in that
path or paths.

Note:

1. If crtmqcvx uses packed structures, all IBM MQ applications must be compiled in this way.
2. Data-conversion exit programs must be reentrant.
3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.

Compiling data-conversion exits on AIX and Linux systems
Examples of how to compile a data conversion exit on AIX and Linux systems.

On all platforms, the entry point to the module is MQStart.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

AIX

Compile the exit source code by issuing one of the following commands:

952 Developing Applications for IBM MQ

32 bit applications
Non-threaded

cc -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits/MYFORMAT \
 MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Threaded

xlc_r -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits/MYFORMAT_r \
 MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

64 bit applications
Non-threaded

cc -q64 -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits64/MYFORMAT \
 MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Threaded

xlc_r -q64 -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits64/MYFORMAT_r \
 MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Linux

Compile the exit source code by issuing one of the following commands:
31 bit applications

Non-threaded

 gcc -m31 -shared -fPIC -o /var/mqm/exits/MYFORMAT MYFORMAT.c \
 -I MQ_INSTALLATION_PATH/inc

Threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/MYFORMAT_r MYFORMAT.c
 -I MQ_INSTALLATION_PATH/inc

32 bit applications
Non-threaded

 gcc -m32 -shared -fPIC -o /var/mqm/exits/MYFORMAT MYFORMAT.c
 -I MQ_INSTALLATION_PATH/inc

Threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/MYFORMAT_r MYFORMAT.c
 -I MQ_INSTALLATION_PATH/inc

Developing applications for IBM MQ 953

64 bit applications
Non-threaded

 gcc -m64 -shared -fPIC -o /var/mqm/exits64/MYFORMAT MYFORMAT.c
 -I MQ_INSTALLATION_PATH/inc

Threaded

 gcc -m64 -shared -fPIC -o /var/mqm/exits64/MYFORMAT_r MYFORMAT.c
 -I MQ_INSTALLATION_PATH/inc

Writing a data-conversion exit for IBM MQ for Windows
Information about steps to consider when writing data-conversion exit programs for IBM MQ for
Windows.

Follow these steps:

1. Name your message format. The name must fit in the Format field of the MQMD. The Format name
must not have leading blanks. Trailing blanks are ignored. The object's name must have no more than
eight non-blank characters, because the Format is only eight characters long.

A .DEF file called amqsvfcn.def is also supplied in the samples directory,
MQ_INSTALLATION_PATH\Tools\C\Samples. MQ_INSTALLATION_PATH is the directory where IBM
MQ is installed. Take a copy of this file and rename it, for example, to MYFORMAT.DEF. Make sure that
the name of the DLL being created and the name specified in MYFORMAT.DEF are the same. Overwrite
the name FORMAT1 in MYFORMAT.DEF with the new format name.

Remember to use this name each time that you send a message.
2. Create a structure to represent your message. See Valid syntax for an example.
3. Run this structure through the crtmqcvx command to create a code fragment for your data-

conversion exit.

The functions generated by the CRTMQCVX command use macros that are written assuming that all
structures are packed; amend them if this is not the case.

4. Copy the supplied skeleton source file, amqsvfc0.c, renaming it to the name of your message format
that you set in step “1” on page 954.

amqsvfc0.c is in MQ_INSTALLATION_PATH\Tools\C\Samples where MQ_INSTALLATION_PATH
is the directory where IBM MQ is installed. (The default installation directory is C:\Program
Files\IBM\MQ.)

The skeleton includes a sample header file amqsvmha.h in the
MQ_INSTALLATION_PATH\Tools\C\include directory. Make sure that your include path points to
this directory to pick up this file.

The amqsvmha.h file contains macros that are used by the code generated by the CRTMQCVX
command. If the structure to be converted contains character data, these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as described:

a. Toward the end of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step “3” on page 954.

954 Developing Applications for IBM MQ

b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format's */

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function that you added in step “5.a” on page
954. Remove the comment characters to activate the function. If there are several functions, create
calls for each of them.

c. Near the beginning of the source file, a comment box starts with:

/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step “3” on page 954.
6. Create the following command file:

cl -I MQ_INSTALLATION_PATH\Tools\C\Include -Tp \
MYFORMAT.C

MYFORMAT.DEF

where MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.
7. Issue the command file to compile your exit as a DLL file.
8. Place the output in the exit subdirectory below the IBM MQ data directory. The default directory

for installing your exits on 32 bit systems is MQ_DATA_PATH\Exits and for 64 bit systems is
MQ_DATA_PATH\Exits64

The path used to look for the data-conversion exits is given in the registry. The registry folder is:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\WebSphere
MQ\Installation\MQ_INSTALLATION_NAME\Configuration\ClientExitPath\

and the registry key is: ExitsDefaultPath. This path can be set for each queue manager and the
exit is only looked for in that path or paths.

Note:

1. If CRTMQCVX uses packed structures, all IBM MQ applications must be compiled in this way.
2. Data-conversion exit programs must be reentrant.
3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.

Exit and switch load files on Windows operating systems
The IBM WebSphere MQ for Windows 7.5 queue manager processes are 32-bit. As a result, when using
64-bit applications, some types of exit and XA switch load files also need to have a 32-bit version
available for use by the queue manager. If the 32-bit version of the exit or XA switch load file is required
and is not available, then the relevant API call or command fails.

Two attributes are supported in the qm.ini file for ExitPath. These are ExitsDefaultPath=
MQ_INSTALLATION_PATH\exits and ExitsDefaultPath64= MQ_INSTALLATION_PATH\exits64.
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed. Using these
ensures that the appropriate library can be found. If an exit is used in an IBM MQ cluster, this also ensures
that the appropriate library on a remote system can be found.

The following table lists the different types of Exit and Switch load files and notes whether 32-bit or
64-bit versions, or both, are required, according to whether 32-bit or 64-bit applications are being used:

Developing applications for IBM MQ 955

File types 32-bit applications 64-bit applications

API exit 32-bit and 64-bit 64-bit

Data conversion exit 32-bit 64-bit

Server Channel exits (all types) 64-bit 64-bit

Client Channel exits (all types) 32-bit 64-bit

Installable service exit 64-bit 64-bit

Cluster WLM exit 64-bit 64-bit

Pub/Sub routing exit 64-bit 64-bit

Database switch load files 32-bit and 64-bit 64-bit

External Transaction Manager AX
libraries

32-bit 64-bit

Pre-connect exit 32-bit 64-bit

Referencing connection definitions using a pre-connect exit from a repository
IBM MQ MQI clients can be configured to look up a repository to obtain connection definitions using a
pre-connect exit library.

Introduction
A client application can connect to a queue manager using client channel definition tables (CCDT).
Generally, the CCDT file is located on a central network file server, and have clients referencing it. Since
it is difficult to manage and administer various client applications referencing the CCDT file, a flexible
approach is to store the client definitions in a global repository like an LDAP directory, a WebSphere
Registry and Repository or any other repository. Storing the client connection definitions in a repository
makes managing client connection definitions easier, and applications can access the correct and most
current client connection definitions.

During the MQCONN/X call execution, the IBM MQ MQI client loads an application specified pre-connect
exit library, and invokes an exit function to retrieve connection definitions. The retrieved connection
definitions are then used to establish connection to a queue manager. The details of exit library and
function to invoke are specified in the mqclient.ini configuration file.

Syntax
void MQ_PRECONNECT_EXIT (pExitParms, pQMgrName, ppConnectOpts, pCompCode, pReason);

Parameters
pExitParms

Type: PMQNXP input /output

The PreConnection exit parameter structure.

The structure is allocated and maintained by the caller of the exit.

pQMgrName
Type: PMQCHAR input/output

Name of the queue manager.

On input, this parameter is the filter string supplied to the MQCONN API call through the QMgrName
parameter. This field might be blank, explicit, or contain certain wildcard characters. The field is
changed by the exit. The parameter is NULL when the exit is called with MQXR_TERM.

956 Developing Applications for IBM MQ

ppConnectOpts
Type: ppConnectOpts input/output

Options that control the action of MQCONNX.

This is a pointer to an MQCNO connection options structure that controls the action of the MQCONN
API call. The parameter is NULL when the exit is called with MQXR_TERM. The MQI client always
provides an MQCNO structure to the exit, even if it was not originally provided by the application. If an
application provides an MQCNO structure, the client makes a duplicate to pass it to the exit where it is
modified. The client retains the ownership of the MQCNO.

An MQCD referenced through the MQCNO takes precedence over any connection definition provided
through the array. The client uses the MQCNO structure to connect to the queue manager and the
others are ignored.

pCompCode
Type: PMQLONG input/output

Completion code.

Pointer to an MQLONG that receives the exits completion code. It must be one of the following values:

• MQCC_OK - Successful completion
• MQCC_WARNING - Warning (partial completion)
• MQCC_FAILED - Call failed

pReason
Type: PMQLONG input/output

Reason qualifying pCompCode.

Pointer to an MQLONG that receives the exit reason code. If the completion code is MQCC_OK, the
only valid value is:

• MQRC_NONE - (0, x'000') No reason to report.

If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C Invocation

void MQ_PRECONNECT_EXIT (&ExitParms, &QMgrName, &pConnectOpts, &CompCode, &Reason);

Parameter

PMQNXP pExitParms /*PreConnect exit parameter structure*/
PMQCHAR pQMgrName /*Name of the queue manager*/
PPMQCNO ppConnectOpts/*Options controlling the action of MQCONNX*/
PMQLONG pCompCode /*Completion code*/
PMQLONG pReason /*Reason qualifying pCompCode*/

Writing and compiling publish exits
You can configure a publish exit at the queue manager to change the contents of a published message
before it is received by subscribers. You can also change the message header, or not deliver the message
to a subscription.

Note: Publish exits are not supported on z/OS.

You can use the publish exit to inspect and alter messages delivered to subscribers:

• Examine the contents of a message published to each subscriber
• Modify the contents of a message published to each subscriber
• Alter the queue to which a message is put

Developing applications for IBM MQ 957

• Stop the delivery of a message to a subscriber

Writing a publish exit
Use the steps in “Writing exits and installable services on AIX, Linux, and Windows” on page 902, to help
you write and compile your exit.

The provider of the publish exit defines what the exit does. The exit, however, must conform to the rules
defined in MQPSXP.

IBM MQ does not provide an implementation of the MQ_PUBLISH_EXIT entry point. It does provide a C
language typedef declaration. Use the typedef to declare the parameters to a user-written exit correctly.
The following example illustrates how to use the typedef declaration:

#include "cmqec.h"

MQ_PUBLISH_EXIT MyPublishExit;

void MQENTRY MyPublishExit(PMQPSXP pExitParms,
 PMQPBC pPubContext,
 PMQSBC pSubContext)
{
/* C language statements to perform the function of the exit */
}

The publish exit runs within the queue manager process, as a result of the following operations:

• A Publish operation where a message is delivered to one or more subscribers
• A Subscribe operation where one or more retained messages are delivered
• A Subscription Request operation where one or more retained messages are delivered

If the publish exit is called for a connection, the first time that it is called an ExitReason code of
MQXR_INIT is set. Before the connection disconnects after using a publish exit, the exit is called with an
ExitReason code of MQXR_TERM.

If the publish exit is configured, but cannot be loaded when the queue manager is started, publish/
subscribe message operations are inhibited for the queue manager. You must fix the problem or restart
the queue manager before publish/subscribe messaging is re-enabled.

Each IBM MQ connection that requires the publish exit might fail to load or initialize the exit. If the exit
fails to load or initialize, publish/subscribe operations that require the publish exit are disabled for that
connection. The operations fail with the IBM MQ reason code MQRC_PUBLISH_EXIT_ERROR.

The context in which the publish exit is called is the connection by an application to the queue manager. A
user data area is maintained by queue manager for each connection that is performing publish operations.
The exit can retain information in the user data area for each connection.

A publish exit can use some MQI calls. It can only use those MQI calls that manipulate message
properties. The calls are:

• MQBUFMH
• MQCRTMH
• MQDLTMH
• MQDLTMP
• MQMHBUF
• MQINQMP
• MQSETMP

If the publish exit changes the destination queue manager or queue name, no new authority check is
carried out.

958 Developing Applications for IBM MQ

Compiling a publish exit
The publish exit is a dynamically loaded library; it can be thought of as a channel-exit. For information
about compiling exits, see “Writing exits and installable services on AIX, Linux, and Windows” on page
902.

Sample publish exit
The sample exit program is called amqspse0.c. It writes a different message to a log file depending on
whether the exit was called for initialize, publish, or terminate operations. It also demonstrates the use of
the exit user area field to allocate and free storage appropriately.

Configuring publish exits
You must define certain attributes to configure a publish exit.

On Windows and Linux you can use the IBM MQ explorer to define the attributes. The attributes are
defined on the queue manager properties page, under Publish/Subscribe.

To configure the publish exit in the qm.ini file on AIX and Linux systems, create a stanza called
PublishSubscribe. The PublishSubscribe stanza has the following attributes:
PublishExitPath=[path]|module_name

Module name and path containing the publish exit code. The maximum length of this field is
MQ_EXIT_NAME_LENGTH. The default is no publish exit.

PublishExitFunction= function_name
Name of the function entry point into the module that contains the publish exit code. The maximum
length of this field is MQ_EXIT_NAME_LENGTH.

On IBM i, if a program is used, omit PublishExitFunction.
PublishExitData= string

If the queue manager is calling a publish exit, it passes an MQPSXP structure as input. The data
specified using the PublishExitData attribute is provided in the ExitData field of the structure.
The string can be up to MQ_EXIT_DATA_LENGTH characters in length. The default is 32 blank
characters.

Writing and compiling cluster workload exits
Write a cluster workload exit program to customize the workload management of clusters. You might
take the cost of using a channel at different times of day, or message content, into account when routing
messages. These are factors that are not considered by the standard workload management algorithm.

In most cases the workload management algorithm is sufficient for your needs. However, so that you can
provide your own user-exit program to tailor workload management, IBM MQ includes a user exit, the
cluster workload exit.

You might have some particular information about your network or messages that you could use to
influence workload balancing. You might know which are the high-capacity channels or the cheap network
routes, or you might want to route messages depending upon their content. You could decide to write a
cluster workload exit program, or use one supplied by a third party.

The cluster workload exit is called when accessing a cluster queue. It is called by MQOPEN, MQPUT1 and
MQPUT.

The target queue manager selected at MQOPEN time is fixed if MQOO_BIND_ON_OPEN is specified. In this
case the exit is run only once.

If the target queue manager is not fixed at MQOPEN time, the target queue manager is chosen at the time
of the MQPUT call. If the target queue manager is not available, or fails while the message is still on the
transmission queue, the exit is called again. A new target queue manager is selected. If the message
channel fails while the message is being transferred, and the message is backed out, a new target queue
manager is selected.

Developing applications for IBM MQ 959

On Multiplatforms, the queue manager loads the new cluster workload exit the next time the
queue manager is started.

If the queue manager definition does not contain a cluster workload exit program name, the cluster
workload exit is not called.

Various data are passed to a cluster workload exit in the exit parameter structure, MQWXP:

• The message definition structure, MQMD.
• The message length parameter.
• A copy of the message, or part of the message.

On non-z/OS platforms, if you use CLWLMode=FAST, each operating system process loads its own copy of
the exit. Different connections to the queue manager can cause different copies of the exit to be invoked.
If the exit is run in the default safe mode, CLWLMode=SAFE, a single copy of the exit runs in its own
separate process.

Writing cluster workload exits

For information about writing cluster workload exits for z/OS, see “Cluster workload exit
programming for IBM MQ for z/OS” on page 962.

From IBM MQ 9.1.0, cluster workload exits run in the channel initiator address space, instead of the
queue manager address space. If you have a cluster workload exit, you should remove the CSQXLIB DD
statement from your queue manager started task procedure, and add the dataset containing the cluster
workload exit to the CSQXLIB concatenation on your channel initiator started task procedure.

For Multiplatforms, cluster workload exits must not use MQI calls. In other respects, the
rules for writing and compiling cluster workload exit programs are like the rules that apply to channel
exit programs. Follow the steps in “Writing exits and installable services on AIX, Linux, and Windows” on
page 902, and use the sample program, “Sample cluster workload exit” on page 960 to help write and
compile your exit.

For more information about channel exits, see “Writing channel-exit programs” on page 929.

Configuring cluster workload exits
You name cluster workload exits in the queue manager definition by specifying the cluster workload exit
attribute on the ALTER QMGR command. For example:

ALTER QMGR CLWLEXIT(myexit)

Related reference
Cluster workload exit call and data structures

Sample cluster workload exit
IBM MQ includes a sample cluster workload exit program. You can copy the sample and use it as a basis
for your own programs.

IBM MQ for z/OS
The sample cluster workload exit program is supplied in Assembler and in C. The Assembler version
is called CSQ4BAF1 and can be found in the library thlqual.SCSQASMS. The C version is called
CSQ4BCF1 and can be found in the library thlqual.SCSQC37S. thlqual is the target library high-
level qualifier for IBM MQ data sets in your installation.

IBM MQ for Multiplatforms
The sample cluster workload exit program is supplied in C and is called amqswlm0.c. It can be found
in:

960 Developing Applications for IBM MQ

Table 144. Sample cluster workload exit program location for Multiplatforms

Platform Filepath

AIX
MQ_INSTALLATION_PATH/samp

Windows
MQ_INSTALLATION_PATH \Tools\c\Samples

IBM i
The qmqm library

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

This sample exit routes all messages to a particular queue manager, unless that queue manager becomes
unavailable. It reacts to the failure of the queue manager by routing messages to another queue manager.

Indicate which queue manager you want messages to be sent to. Supply the name of the cluster-receiver
channel in the CLWLDATA attribute on the queue manager definition. For example:

ALTER QMGR CLWLDATA(' my-cluster-name. my-queue-manager ')

To enable the exit, supply its full path and name in the CLWLEXIT attribute:

On AIX and Linux:

ALTER QMGR CLWLEXIT(' path /amqswlm(clwlFunction)')

On Windows:

ALTER QMGR CLWLEXIT(' path \amqswlm(clwlFunction)')

On z/OS:

ALTER QMGR CLWLEXIT(CSQ4BxF1)

where x is either 'A' or 'C', depending on the programming language of the version you are using.

On IBM i, use either of the following commands:

• Use the MQSC command:

ALTER QMGR CLWLEXIT('AMQSWLM library ')

Both the program name and the library name occupy 10 characters and are blank-padded to the right if
necessary.

• Use the CL command:

CHGMQM MQMNAME(qmgrname) CLWLEXIT(' library /AMQSWLM')

Now, instead of using the supplied workload management algorithm, IBM MQ calls this exit to route all
messages to your chosen queue manager.

Developing applications for IBM MQ 961

Cluster workload exit programming for IBM MQ for z/OS
Cluster workload exits are invoked as if by a z/OS LINK command. Exits are subject to a number of
stringent programming rules. Avoid using most SVC commands that involve waits, or using a STAE or
ESTAE in a workload exit.

Cluster workload exits are invoked as if by a z/OS LINK in:

• Non-authorized problem program state
• Primary address space control mode
• Non-cross-memory mode
• Non-access register mode
• 31 bit addressing mode
• Storage key 8
• Program Key Mask 8
• TCB key 8

Put the link-edited modules in the data set specified by the CSQXLIB DD statement of the started task
procedure of the channel initiator. The names of the load modules are specified as the workload exit
names in the queue manager definition.

When writing workload exits for IBM MQ for z/OS, the following rules apply:

• You must write exits in assembler or C. If you use C, it must conform to the C systems programming
environment for system exits, described in the z/OS C/C++ Programming Guide, SC09-4765.

• If using the MQXCLWLN call, link edit with CSQMFCLW, supplied in thlqual.SCSQLOAD.
• Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD statement. Providing
CSQXLIB has DISP=SHR, exits can be updated while the queue manager is running, with the new
version used in the next MQCONN thread the queue manager starts.

• Exits must be reentrant, and capable of running anywhere in virtual storage.
• Exits must reset the environment on return to that at entry.
• Exits must free any storage obtained, or ensure that storage is freed by a subsequent exit invocation.
• No MQI calls are allowed.
• Exits must not use any system services that could cause a wait, because a wait severely degrades the

performance of the queue manager. In general, therefore, avoid an SVC, PC, or I/O.
• Exits must not issue an ESTAE or SPIE, apart from within any subtasks they attach.

Note: There are no absolute restrictions on what you can do in an exit. However, most SVCs involve waits,
so avoid them, except for the following commands:

• GETMAIN / FREEMAIN
• LOAD / DELETE

Do not use ESTAEs and ESPIEs because their error handling might interfere with the error handling
performed by IBM MQ. IBM MQ might not be able to recover from an error, or your exit program might not
receive all the error information.

The system parameter EXITLIM limits the amount of time an exit might run for. The default value for
EXITLIM is 30 seconds. If you see the return code MQRC_CLUSTER_EXIT_ERROR, 2266 X'8DA' your
exit might be looping. If you think the exit needs more than 30 seconds to complete, increase the value of
EXITLIM.

Building a procedural application
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.

962 Developing Applications for IBM MQ

Building your procedural application on AIX
The AIX publications describe how to build executable applications from the programs that you write.

This topic describes the additional tasks, and the changes to the standard tasks, that you must perform
when building IBM MQ for AIX applications to run under AIX. C, C++, and COBOL are supported. For
information about preparing your C++ programs, see Using C++.

The tasks that you must perform to create an executable application using IBM MQ for AIX vary with the
programming language that your source code is written in. In addition to coding the MQI calls in your
source code, you must add the appropriate language statements to include the IBM MQ for AIX include
files for the language that you are using. Make yourself familiar with the contents of these files. See “IBM
MQ data definition files” on page 693 for a full description.

When you run threaded server or threaded client applications, set the environment variable
AIXTHREAD_SCOPE=S.

Preparing C programs in AIX
Prepare and compile C programs in AIX using the ANSI compiler, the XLC 17 compiler, or the VisualAge
C/C++ compiler.

Before you begin
In the following code examples, ${MQ_INSTALLATION_PATH} represents the high-level directory in
which IBM MQ is installed. You can either use the code unchanged, to pull in the value that you have set
for variable MQ_INSTALLATION_PATH, or you can replace ${MQ_INSTALLATION_PATH} with the actual
path.

You need to link your program with one of the following library files:

Library file Program/exit type

libmqm.a Server for C (unthreaded application)

libmqm_r.a Server for C (threaded application)

libmqic.a & libmqm.a Client for C (unthreaded application)

libmqic_r.a & libmqm_r.a Client for C (threaded application)

Note:

1. You cannot link to more than one library. That is, you cannot link to both a threaded and a non-
threaded library at the same time.

2. If you are writing an installable service (see the Administering IBM MQ for further information), you
need to link to the libmqmzf.a library in a non-threaded application and to the libmqmzf_r.a
library in a threaded application.

3. If you are producing an application for external coordination by an XA-compliant transaction manager
such as IBM TXSeries, Encina, or BEA Tuxedo, you need to link to the libmqmxa.a (or libmqmxa64.a
if your transaction manager treats the 'long' type as 64 bit) and libmqz.a libraries in a non-threaded
application and to the libmqmxa_r.a (or libmqmxa64_r.a) and libmqz_r.a libraries in a
threaded application.

4. You need to link trusted applications to the threaded IBM MQ libraries. However, only one thread in a
trusted application on IBM MQ for AIX or Linux systems can be connected at a time.

5. You must link IBM MQ libraries before any other product libraries.

About this task
Sample C programs are supplied in the ${MQ_INSTALLATION_PATH}/samp/bin directory.

Developing applications for IBM MQ 963

Each of the following code examples uses the amqsput0 sample program with the ANSI compiler or the
XLC 17 compiler, and links with one of the Server for C library files. If you want to use the program on a
machine that has only the IBM MQ MQI client for AIX installed, alter the example code to link with one of
the client library (-lmqic) files instead.

If you are using the VisualAge C/C++ compiler for C++ programs, include the option -q
namemangling=v5 to get all the IBM MQ symbols resolved when linking the libraries.

For more information about writing 64-bit applications, see Coding standards on 64-bit platforms.

Example

To compile a sample C program from a single compilation unit, run the appropriate command from the
following list:

32 bit non-threaded application

xlc -o amqsput_32 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/lib
-lmqm

32 bit non-threaded application using XLC 17 compiler

ibm-clang -o amqsput_32 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib -lmqm

32 bit threaded application

xlc_r -o amqsputc_32_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib -lmqm_r

32 bit threaded application using XLC 17 compiler

ibm-clang_r -o amqsput_32_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib -lmqm_r

64 bit non-threaded application

xlc -q64 -o amqsput_64 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/
lib64 -lmqm

64 bit non-threaded application using XLC 17 compiler

ibm-clang -m64 -o amqsput_64 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib64 -lmqm

64 bit threaded application

xlc_r -q64 -o amqsputc_64_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib64 -lmqm_r

64 bit threaded application using XLC 17 compiler

ibm-clang_r -m64 -o amqsput_64_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib64 -lmqm_r

Preparing COBOL programs in AIX
Prepare and compile COBOL programs in AIX using IBM COBOL Set or Micro Focus COBOL.

Before you begin
In the following code examples, ${MQ_INSTALLATION_PATH} represents the high-level directory in
which IBM MQ is installed. You can either use the code unchanged, to pull in the value that you have set

964 Developing Applications for IBM MQ

for variable MQ_INSTALLATION_PATH, or you can replace ${MQ_INSTALLATION_PATH} with the actual
path.

• 32 bit COBOL copy books are installed in directory ${MQ_INSTALLATION_PATH}/inc/cobcpy32, and
symbolic links are created in directory ${MQ_INSTALLATION_PATH}/inc

• 64 bit COBOL copy books are installed in directory ${MQ_INSTALLATION_PATH}/inc/cobcpy64

You need to link your program with one of the following library files:

Library file Program/exit type

libmqmcb.a Server for COBOL (unthreaded application)

libmqmcb_r.a Server for COBOL (threaded application)

libmqicb.a Client for COBOL (unthreaded application

libmqicb_r.a Client for COBOL (threaded application)

About this task
Sample COBOL programs are supplied with IBM MQ, and the following code examples use these
programs. You can use the IBM COBOL Set compiler or Micro Focus COBOL compiler, depending on
the program:

• Programs beginning amq0 are suitable for either compiler.
• Programs beginning amqm are suitable for the Micro Focus COBOL compiler.

Example

Preparing COBOL programs using IBM COBOL Set for AIX

To compile a sample COBOL program, run the appropriate command from the following list:

32 bit non-threaded server application

cob2 -o amq0put0 amq0put0.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqmcb -qLIB \
-I${MQ_INSTALLATION_PATH}/inc/cobcpy32

32 bit non-threaded client application

cob2 -o amq0put0 amq0put0.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqicb -qLIB \
-I${MQ_INSTALLATION_PATH}/inc/cobcpy32

32 bit threaded server application

cob2_r -o amq0put0 amq0put0.cbl -qTHREAD -L${MQ_INSTALLATION_PATH}/lib \
-lmqmcb_r -qLIB -I${MQ_INSTALLATION_PATH}/inc/cobcpy32

32 bit threaded client application

cob2_r -o amq0put0 amq0put0.cbl -qTHREAD -L${MQ_INSTALLATION_PATH}/lib \
-lmqicb_r -qLIB -I${MQ_INSTALLATION_PATH}/inc/cobcpy32

64 bit non-threaded server application

cob2 -o amq0put0 amq0put0.cbl -q64 -L${MQ_INSTALLATION_PATH}/lib -lmqmcb \
-qLIB -I${MQ_INSTALLATION_PATH}/inc/cobcpy64

64 bit non-threaded client application

cob2 -o amq0put0 amq0put0.cbl -q64 -L${MQ_INSTALLATION_PATH}/lib -lmqicb \
-qLIB -I${MQ_INSTALLATION_PATH}/inc/cobcpy64

Developing applications for IBM MQ 965

64 bit threaded server application

cob2_r -o amq0put0 amq0put0.cbl -q64 -qTHREAD -L${MQ_INSTALLATION_PATH}/lib \
-lmqmcb_r -qLIB -I${MQ_INSTALLATION_PATH}/inc/cobcpy64

64 bit threaded client application

cob2_r -o amq0put0 amq0put0.cbl -q64 -qTHREAD -L${MQ_INSTALLATION_PATH}/lib \
-lmqicb_r -qLIB -I${MQ_INSTALLATION_PATH}/inc/cobcpy64

Preparing COBOL programs using Micro Focus COBOL

For a description of the environment variables that you need to set up, see the Micro Focus COBOL
documentation.

To compile a 32 bit COBOL program using Micro Focus COBOL, first set the COBCPY environment variable:

export COBCPY=${MQ_INSTALLATION_PATH}/inc/cobcpy32

then enter the appropriate command from the following list:
32 bit non-threaded server application

cob32 -xvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqmcb

32 bit non-threaded client application

cob32 -xvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqicb

32 bit threaded server application

cob32 -xtvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqmcb_r

32 bit threaded client application

cob32 -xtvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqicb_r

To compile a 64 bit COBOL program using Micro Focus COBOL, first set the COBCPY environment variable:

export COBCPY=${MQ_INSTALLATION_PATH}/inc/cobcpy64

then enter the appropriate command from the following list:
64 bit non-threaded server application

cob64 -xvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib64 -lmqmcb

64 bit non-threaded client application

cob64 -xvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib64 -lmqicb

64 bit threaded server application

cob64 -xtvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib64 -lmqmcb_r

64 bit threaded client application

cob64 -xtvP amqminqx.cbl -L${MQ_INSTALLATION_PATH}/lib64 -lmqicb_r

Preparing CICS application programs in AIX
Use this information when preparing CICS programs in AIX.

Use XA switch modules to link CICS with IBM MQ. For more information on the XA switch structure, see
The XA switch structures.

966 Developing Applications for IBM MQ

The sample source code file is provided to enable you to develop the XA switches for other transaction
messages. The name of the switch load module provided is listed inTable 145 on page 967.

Table 145. Essential code for CICS application programs on AIX: XA initialization routine

Description C (source) C (exec) - add to your XAD.Stanza

XA initialization routine amqzscix.c amqzsc - CICS for AIX

Use the prebuilt version of the IBM MQ switch load file amqzsc, which is provided with the product.

Always link your C transactions with the threadsafe IBM MQ library libmqm_r.a., and your COBOL
transactions with the COBOL library libmqmcb_r.a..

You can find more information about supporting CICS transactions in the Administering IBM MQ IBM MQ
System Administration Guide.

TXSeries CICS support
IBM MQ on AIX supports TXSeries CICS using the XA interface. Ensure that CICS applications are linked
to the threaded version of the IBM MQ libraries.

You can run CICS programs using IBM COBOL Set for AIX or Micro Focus COBOL. The following sections
describe the difference between running CICS programs on IBM COBOL Set for AIX and Micro Focus
COBOL.

Write IBM MQ programs that are loaded into the same CICS region in either C or COBOL. You cannot
make a combination of C and COBOL MQI calls into the same CICS region. Most MQI calls in the second
language used fail with a reason code of MQRC_HOBJ_ERROR.

Preparing CICS COBOL programs using IBM COBOL Set for AIX
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To use IBM COBOL, follow these steps:

1. Export the following environment variable:

export LDFLAGS="-qLIB -bI:/usr/lpp/cics/lib/cicsprIBMCOB.exp \
 -I${MQ_INSTALLATION_PATH}/inc -I/usr/lpp/cics/include \
 -e _iwz_cobol_main \

where LIB is a compiler directive.
2. Translate, compile, and link the program:

cicstcl -l IBMCOB yourprog.ccp

Preparing CICS COBOL programs using Micro Focus COBOL
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To use Micro Focus COBOL, follow these steps:

1. Add the IBM MQ COBOL runtime library module to the runtime library:

cicsmkcobol -L/usr/lib/dce -L${MQ_INSTALLATION_PATH}/lib \
 ${MQ_INSTALLATION_PATH}/lib/libmqmcbrt.o -lmqe_r

Note: With cicsmkcobol, IBM MQ does not allow you to make MQI calls in the C programming
language from your COBOL application.

If your existing applications have any such calls, you are recommended to move these functions from
the COBOL applications to your own library, for example, myMQ.so. After moving the functions, do not
include the IBM MQ library libmqmcbrt.o when building the COBOL application for CICS.

Developing applications for IBM MQ 967

Additionally, if your COBOL application does not make any COBOL MQI call, do not link libmqmz_r
with cicsmkcobol.

This creates the Micro Focus COBOL language method file and enables the CICS runtime COBOL library
to call IBM MQ for AIX or Linux systems.

Note: Run cicsmkcobol only when you install one of the following products:

• New version or release of Micro Focus COBOL
• New version or release of CICS for AIX
• New version or release of any supported database product (for COBOL transactions only)
• New version or release of IBM MQ

2. Export the following environment variable:

COBCPY=${MQ_INSTALLATION_PATH}/inc export COBCPY

3. Translate, compile, and link the program:

cicstcl -l COBOL -e yourprog.ccp

Preparing CICS C programs
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Build CICS C programs using the standard CICS facilities:

1. Export one of the following environment variables:

• LDFLAGS="-L${MQ_INSTALLATION_PATH}/lib -lmqm_r" export LDFLAGS

• USERLIB="-L${MQ_INSTALLATION_PATH}/lib -lmqm_r" export USERLIB

2. Translate, compile, and link the program:

cicstcl -l C amqscic0.ccs

CICS C sample transaction

Sample C source for a AIX IBM MQ transaction is provided by AMQSCIC0.CCS. The transaction
reads messages from the transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default
queue manager and places them onto the local queue with a queue name that is contained in the
transmission header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ.
Use the sample MQSC script AMQSCIC0.TST to create these queues and sample input queues.

Building your procedural application on IBM i
The IBM i publications describe how to build executable applications from the programs that you write, to
run with IBM i on iSeries or System i systems.

This topic describes the additional tasks, and the changes to the standard tasks, that you must perform
when building IBM MQ for IBM i procedural applications to run on IBM i systems. COBOL, C, C++, Java
and RPG programming languages are supported. For information about preparing your C++ programs, see
Using C++. For information about preparing your Java programs, see Using IBM MQ classes for Java.

The tasks that you must perform to create an executable IBM MQ for IBM i application depend on the
programming language that the source code is written in. In addition to coding the MQI calls in your
source code, you must add the appropriate language statements to include the IBM MQ for IBM i data
definition files for the language that you are using. Make yourself familiar with the contents of these files.
See “IBM MQ data definition files” on page 693 for a full description.

968 Developing Applications for IBM MQ

Preparing C programs in IBM i
IBM MQ for IBM i supports messages up to 100 MB in size. Application programs written in ILE C,
supporting IBM MQ messages greater than 16 MB, need to use the Teraspace compiler option to
allocate sufficient memory for these messages.

For more information about the C compiler options, see the WebSphere Development Studio ILE C/C++
Programmer's Guide.

To compile a C module, you can use the IBM i command CRTCMOD. Make sure that the library containing
the include files (QMQM) is in the library list when you compile.

You must then bind the output of the compiler with the service program using the CRTPGM command.

Table 146. Example of CRTPGM in non-threaded and threaded environments

Type of environment Command Program/exit type

Non-threaded environment
CRTPGM PGM(pgmname)
MODULE(pgmname)
BNDSRVPGM(QMQM/LIBMQM)

Server or client for C

Threaded environment
CRTPGM PGM(pgmname)
MODULE(pgmname)
BNDSRVPGM(QMQM/LIBMQM_R)

Server or client for C

where pgmname is the name of your program.

Table 147 on page 969 lists the libraries that are needed when preparing C programs on IBM i in a
non-threaded environment and threaded environment.

Table 147. Libraries needed for non-threaded and threaded environments

Type of environment Library file Program/exit type

Non-threaded environment LIBMQM Server for C

LIBMQIC & LIBMQM Client for C

Threaded environment LIBMQM_R Server for C

LIBMQIC_R & LIBMQM_R Client for C

Preparing COBOL programs in IBM i
Learn about preparing COBOL programs in IBM i and the method of accessing the MQI from within the
COBOL program.

About this task
For accessing the MQI from within COBOL programs, IBM MQ for IBM i provides a bound procedural call
interface provided by service programs. This provides access to all the MQI functions in IBM MQ for IBM i
and support for threaded applications. This interface can be used only with the ILE COBOL compiler.

The standard COBOL CALL syntax is used to access the MQI functions.

The COBOL copy files containing the named constants and structure definitions for use with the MQI are
contained in the source physical file QMQM/QCBLLESRC.

The COBOL copy files use the single quotation mark character (') as the string delimiter. The IBM
i COBOL compilers assume that the delimiter is the quotation mark ("). To prevent the compilers
generating warning messages, specify OPTION(*APOST) on the commands CRTCBLPGM, CRTBNDCBL,
or CRTCBLMOD.

Developing applications for IBM MQ 969

To make the compiler accept the single quotation mark character (') as the string delimiter in the COBOL
copy files, use the compiler option \APOST.

Note: The dynamic call interface is not provided in IBM MQ 9.0 or later.

To use the bound procedure call interface, complete the following steps.

Procedure
1. Create a module using the CRTCBLMOD compiler specifying the parameter:

LINKLIT(*PRC)

2. Use the CRTPGM command to create the program object, specifying the appropriate parameter:

For non-threaded applications:

BNDSRVPGM(QMQM/AMQ0STUB) Server for COBOL for non-threaded applications
BNDSRVPGM(QMQM/AMQCSTUB) Client for COBOL for non-threaded applications

For threaded applications:

BNDSRVPGM(QMQM/AMQ0STUB_R) Server for COBOL for threaded applications
BNDSRVPGM(QMQM/AMQCSTUB_R) Client for COBOL for threaded applications

Note: Except for programs created using the V4R4 ILE COBOL compiler and containing the
THREAD(SERIALIZE) option in the PROCESS statement, COBOL programs must not use the threaded
IBM MQ libraries. Even if a COBOL program has been made thread safe in this manner, be careful when
you design the application, because THREAD(SERIALIZE) forces serialization of COBOL procedures at
the module level and might affect overall performance.

See the WebSphere Development Studio: ILE COBOL Programmer's Guide and the WebSphere
Development Studio: ILE COBOL Reference for further information.

For more information about compiling a CICS application, see the CICS for IBM i Application
Programming Guide, SC41-5454.

Preparing CICS programs in IBM i
Learn about the steps required when preparing CICS programs in IBM i.

To create a program that includes EXEC CICS statements and MQI calls, perform these steps:

1. If necessary, prepare maps using the CRTCICSMAP command.
2. Translate the EXEC CICS commands into native language statements. Use the CRTCICSC command for

a C program. Use the CRTCICSCBL command for a COBOL program.

Include CICSOPT(*NOGEN) in the CRTCICSC or CRTCICSCBL command. This halts processing to
enable you to include the appropriate CICS and IBM MQ service programs. This command puts the
code, by default, into QTEMP/QACYCICS.

3. Compile the source code using the CRTCMOD command (for a C program) or the CRTCBLMOD
command (for a COBOL program).

4. Use CRTPGM to link the compiled code with the appropriate CICS and IBM MQ service programs. This
creates the executable program.

An example of such code follows (it compiles the shipped CICS sample program):

CRTCICSC OBJ(QTEMP/AMQSCIC0) SRCFILE(/MQSAMP/QCSRC) +
 SRCMBR(AMQSCIC0) OUTPUT(*PRINT) +
 CICSOPT(*SOURCE *NOGEN)
CRTCMOD MODULE(MQTEST/AMQSCIC0) +
 SRCFILE(QTEMP/QACYCICS) OUTPUT(*PRINT)

970 Developing Applications for IBM MQ

CRTPGM PGM(MQTEST/AMQSCIC0) MODULE(MQTEST/AMQSCIC0) +
 BNDSRVPGM(QMQM/LIBMQIC QCICS/AEGEIPGM)

Preparing RPG programs in IBM i
If you are using IBM MQ for IBM i, you can write your applications in RPG.

For more information see “Coding IBM MQ programs in RPG (IBM i only)” on page 1017, and refer to the
IBM i Application Programming Reference (ILE/RPG).

SQL programming considerations for IBM i
Learn about the steps required when building an application on IBM i using SQL.

If your program contains EXEC SQL statements and MQI calls, perform these steps:

1. Translate the EXEC SQL commands into native language statements. Use the CRTSQLCI command for
a C program. Use the CRTSQLCBLI command for a COBOL program.

Include OPTION(*NOGEN) in the CRTSQLCI or CRTSQLCBLI command. This halts processing to enable
you to include the appropriate IBM MQ service programs. This command puts the code, by default, into
QTEMP/QSQLTEMP.

2. Compile the source code using the CRTCMOD command (for a C program) or the CRTCBLMOD
command (for a COBOL program).

3. Use CRTPGM to link the compiled code with the appropriate IBM MQ service programs. This creates
the executable program.

An example of such code follows (it compiles a program, SQLTEST, in library, SQLUSER):

CRTSQLCI OBJ(MQTEST/SQLTEST) SRCFILE(SQLUSER/QCSRC) +
 SRCMBR(SQLTEST) OUTPUT(*PRINT) OPTION(*NOGEN)
CRTCMOD MODULE(MQTEST/SQLTEST) +
 SRCFILE(QTEMP/QSQLTEMP) OUTPUT(*PRINT)
CRTPGM PGM(MQTEST/SQLTEST) +
 BNDSRVPGM(QMQM/LIBMQIC)

Building your procedural application on Linux
This information describes the additional tasks, and the changes to the standard tasks, that you must
perform when building IBM MQ for Linux applications to run.

C and C++ are supported. For information about preparing your C++ programs, see Using C++.

Preparing C programs in Linux
Precompiled C programs are supplied in the MQ_INSTALLATION_PATH/samp/bin directory. To build a
sample from source code, use the gcc compiler.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Work in your normal environment. For further information about programming 64 bit applications, see
Coding standards on 64-bit platforms.

Linking libraries
The following tables lists the libraries that are needed when preparing C programs on Linux.

• You need to link your programs with the appropriate library provided by IBM MQ.

In a non-threaded environment, link to only one of the following libraries:

Developing applications for IBM MQ 971

Library file Program/exit type

libmqm.so Server for C

libmqic.so & libmqm.so Client for C

In a threaded environment, link to only one of the following libraries:

Library file Program/exit type

libmqm_r.so Server for C

libmqic_r.so & libmqm_r.so Client for C

Note:

1. You cannot link to more than one library. That is, you cannot link to both a threaded and a non-
threaded library at the same time.

2. If you are writing an installable service (see the Administering IBM MQ for further information), you
need to link to the libmqmzf.so library.

3. If you are producing an application for external coordination by an XA-compliant transaction
manager such as IBM TXSeries Encina, or BEA Tuxedo, you need to link to the libmqmxa.so
(or libmqmxa64.so if your transaction manager treats the 'long' type as 64 bit) and libmqz.so
libraries in a non-threaded application and to the libmqmxa_r.so (or libmqmxa64_r.so) and
libmqz_r.so libraries in a threaded application.

4. You must link IBM MQ libraries before any other product libraries.

Building 31-bit applications
This topic contains examples of the commands used to build 31-bit programs in various environments.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C client application, 31-bit, non-threaded

gcc -m31 -o famqsputc_32 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -LMQ_INSTALLATION_PATH/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqic

C client application, 31-bit, threaded

gcc -m31 -o amqsputc_32_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc
-LMQ_INSTALLATION_PATH/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server application, 31-bit, non-threaded

gcc -m31 -o amqsput_32 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqm

C server application, 31-bit, threaded

gcc -m31 -o amqsput_32_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqm_r -lpthread

C++ client application, 31-bit, non-threaded

g++ -m31 -fsigned-char -o imqsputc_32 imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqc23gl
-limqb23gl -lmqic

972 Developing Applications for IBM MQ

C++ client application, 31-bit, threaded

g++ -m31 -fsigned-char -o imqsputc_32_r imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqc23gl_r
-limqb23gl_r -lmqic_r -lpthread

C++ server application, 31-bit, non-threaded

g++ -m31 -fsigned-char -o imqsput_32 imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqs23gl
-limqb23gl -lmqm

C++ server application, 31-bit, threaded

g++ -m31 -fsigned-char -o imqsput_32_r imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqs23gl_r
-limqb23gl_r -lmqm_r -lpthread

C client exit, 31-bit, non-threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/cliexit_32 cliexit.c
-I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqic

C client exit, 31-bit, threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/cliexit_32_r cliexit.c
-I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server exit, 31-bit, non-threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/srvexit_32 srvexit.c
-I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqm

C server exit, 31-bit, threaded

gcc -m31 -shared -fPIC -o /var/mqm/exits/srvexit_32_r srvexit.c
-I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqm_r -lpthread

Building 32-bit applications
This topic contains examples of the commands used to build 32-bit programs in various environments.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C client application, 32-bit, non-threaded

gcc -m32 -o amqsputc_32 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqic

C client application, 32-bit, threaded

gcc -m32 -o amqsputc_32_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqic_r -lpthread

Developing applications for IBM MQ 973

C server application, 32-bit, non-threaded

gcc -m32 -o amqsput_32 amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqm

C server application, 32-bit, threaded

gcc -m32 -o amqsput_32_r amqsput0.c -I${MQ_INSTALLATION_PATH}/inc -L$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib -lmqm_r -lpthread

C++ client application, 32-bit, non-threaded

g++ -m32 -fsigned-char -o imqsputc_32 imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqc23gl -limqb23gl -lmqic

C++ client application, 32-bit, threaded

g++ -m32 -fsigned-char -o imqsputc_32_r imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

C++ server application, 32-bit, non-threaded

g++ -m32 -fsigned-char -o imqsput_32 imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqs23gl -limqb23gl -lmqm

C++ server application, 32-bit, threaded

g++ -m32 -fsigned-char -o imqsput_32_r imqsput.cpp -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=/usr/lib
-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

C client exit, 32-bit, non-threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/cliexit_32 cliexit.c
-I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqic

C client exit, 32-bit, threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/cliexit_32_r cliexit.c
-I${MQ_INSTALLATION_PATH}/inc -L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=$
{MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server exit, 32-bit, non-threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/srvexit_32 srvexit.c -I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqm

C server exit, 32-bit, threaded

gcc -m32 -shared -fPIC -o /var/mqm/exits/srvexit_32_r srvexit.c -I$
{MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib -Wl,-rpath=${MQ_INSTALLATION_PATH}/lib
-Wl,-rpath=/usr/lib -lmqm_r -lpthread

Building 64-bit applications
This topic contains examples of the commands used to build 64-bit programs in various environments.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

974 Developing Applications for IBM MQ

C client application, 64-bit, non-threaded

gcc -m64 -o amqsputc_64 amqsput0.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqic

C client application, 64-bit, threaded

gcc -m64 -o amqsputc_64_r amqsput0.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqic_r -lpthread

C server application, 64-bit, non-threaded

gcc -m64 -o amqsput_64 amqsput0.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqm

C server application, 64-bit, threaded

gcc -m64 -o amqsput_64_r amqsput0.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqm_r -lpthread

C++ client application, 64-bit, non-threaded

g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -limqc23gl -limqb23gl -lmqic

C++ client application, 64-bit, threaded

g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

C++ server application, 64-bit, non-threaded

g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -limqs23gl -limqb23gl -lmqm

C++ server application, 64-bit, threaded

g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

C client exit, 64-bit, non-threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/cliexit_64 cliexit.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqic

Developing applications for IBM MQ 975

C client exit, 64-bit, threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/cliexit_64_r cliexit.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqic_r -lpthread

C server exit, 64-bit, non-threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/srvexit_64 srvexit.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqm

C server exit, 64-bit, threaded

gcc -m64 -shared -fPIC -o /var/mqm/exits64/srvexit_64_r srvexit.c
-I${MQ_INSTALLATION_PATH}/inc
-L${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=${MQ_INSTALLATION_PATH}/lib64
-Wl,-rpath=/usr/lib64 -lmqm_r -lpthread

Preparing COBOL programs in Linux
Learn about preparing COBOL programs in Linux and preparing COBOL programs using IBM COBOL for
Linux on x86 and Micro Focus COBOL.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

1. 32-bit COBOL copy books are installed in the following directory:

MQ_INSTALLATION_PATH/inc/cobcpy32

and symbolic links are created in:

MQ_INSTALLATION_PATH/inc

2. On 64-bit platforms, 64 bit COBOL copy books are installed in the following directory:

MQ_INSTALLATION_PATH/inc/cobcpy64

3. In the following examples set COBCPY to:

MQ_INSTALLATION_PATH/inc/cobcpy32

for 32-bit applications, and:

MQ_INSTALLATION_PATH/inc/cobcpy64

for 64-bit applications.

You need to link your program with one of the following:

Library file Program/exit type

libmqmcb.so Server for COBOL

libmqicb.so Client for COBOL

libmqmcb_r.so Server for COBOL (threaded application)

libmqicb_r.so Client for COBOL (threaded application)

976 Developing Applications for IBM MQ

Preparing COBOL programs using IBM COBOL for Linux on x86
Sample COBOL programs are supplied with IBM MQ. To compile such a program, enter the appropriate
command from the following list:

32-bit non-threaded server application

cob2 -o amq0put0 amq0put0.cbl -q"BINARY(BE)" -q"FLOAT(BE)" -q"UTF16(BE)"
-L${MQ_INSTALLATION_PATH}/lib -lmqmcb
-ICOBCPY_VALUE

32-bit non-threaded client application

cob2 -o amq0put0 amq0put0.cbl -q"BINARY(BE)" -q"FLOAT(BE)" -q"UTF16(BE)"
-L${MQ_INSTALLATION_PATH}/lib -lmqicb
-ICOBCPY_VALUE

32-bit threaded server application

cob2_r -o amq0put0 amq0put0.cbl -q"BINARY(BE)" -q"FLOAT(BE)" -q"UTF16(BE)" -qTHREAD
-L${MQ_INSTALLATION_PATH}/lib -lmqmcb_r
-ICOBCPY_VALUE

32-bit threaded client application

cob2_r -o amq0put0 amq0put0.cbl -q"BINARY(BE)" -q"FLOAT(BE)" -q"UTF16(BE)" -qTHREAD
-L${MQ_INSTALLATION_PATH}/lib -lmqicb_r
-ICOBCPY_VALUE

Preparing COBOL programs using Micro Focus COBOL
See the Micro Focus COBOL documentation for a description of the environment variables that you need.

Set environment variables before compiling your program:

export COBCPY=COBCPY_VALUE
export LIB=${MQ_INSTALLATION_PATH} lib:$LIB

Compile a 32-bit COBOL program (where supported) using Micro Focus COBOL, where amqsput is a
sample program:

cob32 -xvP amqsput.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqmcb Server for COBOL
cob32 -xvP amqsput.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqicb Client for COBOL
cob32 -xtvP amqsput.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqmcb_r Threaded Server for COBOL
cob32 -xtvP amqsput.cbl -L${MQ_INSTALLATION_PATH}/lib -lmqicb_r Threaded Client for COBOL

Compile a 64-bit COBOL program using Micro Focus COBOL, where amqsput is a sample program:

cob64 -xvP amqsput.cbl -LMQ_INSTALLATION_PATH/lib64 -lmqmcb Server for COBOL
cob64 -xvP amqsput.cbl -LMQ_INSTALLATION_PATH/lib64 -lmqicb Client for COBOL
cob64 -xtvP amqsput.cbl -LMQ_INSTALLATION_PATH/lib64 -lmqmcb_r Threaded Server for COBOL
cob64 -xtvP amqsput.cbl -LMQ_INSTALLATION_PATH/lib64 -lmqicb_r Threaded Client for COBOL

Building your procedural application on Windows
The Windows systems publications describe how to build executable applications from the programs that
you write.

This topic describes the additional tasks, and the changes to the standard tasks, that you must perform
when building IBM MQ for Windows applications to run under Windows systems. C, C++, COBOL, and
Visual Basic programming languages are supported. For information about preparing your C++ programs,
see Using C++.

The tasks that you must perform to create an executable application using IBM MQ for Windows vary
with the programming language that your source code is written in. In addition to coding the MQI calls in
your source code, you must add the appropriate language statements to include the IBM MQ for Windows

Developing applications for IBM MQ 977

include files for the language that you are using. Make yourself familiar with the contents of these files.
See “IBM MQ data definition files” on page 693 for a full description.

Building 64-bit applications on Windows
Both 32-bit and 64-bit applications are supported on IBM MQ for Windows. The IBM MQ executable and
library files are supplied in both 32-bit and 64-bit forms, use the appropriate version depending on the
application you are working with.

Executable files and libraries
Both 32-bit and 64-bit versions of the IBM MQ libraries are supplied in the following locations:

Table 148. Location of IBM MQ libraries

Library version Directory containing library files

32-bit MQ_INSTALLATION_PATH \Tools\Lib

64-bit MQ_INSTALLATION_PATH \Tools\Lib64

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

32-bit applications continue to work normally after migration. The 32-bit files exist in the same directory
as in previous versions of the product.

If you want to create 64-bit version you must ensure that your environment is configured to use the
library files in MQ_INSTALLATION_PATH \Tools\Lib64. Ensure that the LIB environment variable is not
set to look in the folder containing the 32-bit libraries.

Preparing C programs in Windows
Work in your typical Windows environment; IBM MQ for Windows requires nothing special.

For further information about programming 64-bit applications see Coding standards on 64-bit platforms.

• Link your programs with the appropriate libraries provided by IBM MQ:

Library file Program/exit type

MQ_INSTALLATION_PAT
H
\Tools\Lib\mqm.lib

server for 32-bit C

MQ_INSTALLATION_PAT
H
\Tools\Lib\mqic.li
b

client for 32-bit C

MQ_INSTALLATION_PAT
H
\Tools\Lib\mqicxa.
lib

client for 32-bit C with transaction co-ordination

MQ_INSTALLATION_PAT
H
\Tools\Lib64\mqm.l
ib

server for 64-bit C

MQ_INSTALLATION_PAT
H
\Tools\Lib64\mqic.
lib

client for 64-bit C

978 Developing Applications for IBM MQ

Library file Program/exit type

MQ_INSTALLATION_PAT
H
\Tools\Lib64\mqicx
a.lib

client for 64-bit C with transaction co-ordination

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The following command gives an example of compiling the sample program amqsget0 (using the
Microsoft Visual C++ compiler).

For 32-bit applications:

cl -MD amqsget0.c -Feamqsget.exe ${MQ_INSTALLATION_PATH}\Tools\Lib\mqm.lib

For 64-bit applications:

cl -MD amqsget0.c -Feamqsget.exe ${MQ_INSTALLATION_PATH}\Tools\Lib64\mqm.lib

Note:

– If you are writing an installable service (see the Administering IBM MQ for further information), you
need to link to the mqmzf.lib library.

– If you are producing an application for external coordination by an XA-compliant transaction manager
such as IBM TXSeries Encina, or BEA Tuxedo, you need to link to the mqmxa.lib or mqmxa.lib library.

– If you are writing a CICS exit, link to the mqmcics4.lib library.
– You must link IBM MQ libraries before any other product libraries.

• The DLLs must be in the path (PATH) that you have specified.
• If you use lowercase characters whenever possible, you can move from IBM MQ for Windows to IBM MQ

for AIX or Linux systems, where use of lowercase is necessary.

Preparing CICS and Transaction Server programs
Sample C source for a CICS IBM MQ transaction is provided by AMQSCIC0.CCS. You build it using the
standard CICS facilities. For example, for TXSeries for Windows 2000:

1. Set the environment variable (enter the following code on one line):

 set CICS_IBMC_FLAGS=-I${MQ_INSTALLATION_PATH}\Tools\C\Include;
 %CICS_IBMC_FLAGS%

2. Set the USERLIB environment variable:

 set USERLIB=MQM.LIB;%USERLIB%

3. Translate, compile, and link the sample program:

 cicstcl -l IBMC amqscic0.ccs

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

This is described in the Transaction Server for Windows NT Application Programming Guide (CICS) V4.

You can find more information about supporting CICS transactions in the Administering IBM MQ.

Preparing COBOL programs in Windows
Use this information to learn to prepare COBOL programs in Windows, and preparing CICS and
Transaction Server programs.

1. The 32-bit COBOL copy books are installed in the following directory: MQ_INSTALLATION_PATH
\Tools\cobol\CopyBook.

Developing applications for IBM MQ 979

2. The 64-bit COBOL copy books are installed in the following directory: MQ_INSTALLATION_PATH
\Tools\cobol\CopyBook64

3. In the following examples set CopyBook to:

CopyBook

for 32-bit applications, and:

CopyBook64

for 64-bit applications.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To prepare COBOL programs on Windows systems, link your program to one of the following libraries
provided by IBM MQ:

Library file Program or exit type

MQ_INSTALLATION_PATH \Tools\Lib\mqmcb 32-bit server for Micro Focus COBOL

MQ_INSTALLATION_PATH \Tools\Lib\mqiccb 32-bit client for Micro Focus COBOL

MQ_INSTALLATION_PATH \Tools\Lib64\mqmcb 64-bit server for Micro Focus COBOL

MQ_INSTALLATION_PATH \Tools\Lib64\mqiccb 64-bit client for Micro Focus COBOL

When you are running a program in the MQI client environment, ensure that the DOSCALLS library
appears before any COBOL or IBM MQ library.

Preparing COBOL programs using Micro Focus COBOL
Relink any existing 32-bit IBM MQ Micro Focus COBOL programs using either mqmcb.lib or
mqiccb.lib, rather than the mqmcbb and mqiccbb libraries.

To compile, for example, the sample program amq0put0, using Micro Focus COBOL:

1. Set the COBCPY environment variable to point to the IBM MQ COBOL copybooks (enter the following
code on one line):

 set COBCPY=${MQ_INSTALLATION_PATH}\
 Tools\Cobol\Copybook

2. Compile the program to give you an object file:

cobol amq0put0 LITLINK

3. Link the object file to the run time system.

• Set the LIB environment variable to point to the compiler COBOL libraries.
• Link the object file for use on the IBM MQ server:

cbllink amq0put0.obj mqmcb.lib

• Or link the object file for use on the IBM MQ client:

cbllink amq0put0.obj mqiccb.lib

Preparing CICS and Transaction Server programs
To compile and link a TXSeries for Windows NT, V5.1 program using IBM VisualAge COBOL:

1. Set the environment variable (enter the following code on one line):

980 Developing Applications for IBM MQ

set CICS_IBMCOB_FLAGS=${MQ_INSTALLATION_PATH}\
Cobol\Copybook\VAcobol;%CICS_IBMCOB_FLAGS%

2. Set the USERLIB environment variable:

set USERLIB=MQMCBB.LIB

3. Translate, compile, and link your program:

cicstcl -l IBMCOB myprog.ccp

This is described in the Transaction Server for Windows NT, V4 Application Programming Guide.

To compile and link a CICS for Windows V5 program using Micro Focus COBOL:

• Set the INCLUDE variable:

set
INCLUDE=drive:\programname\ibm\websphere\tools\c\include;
 drive:\opt\cics\include;%INCLUDE%

• Set the COBCPY environment variable:

setCOBCPY=drive:\programname\ibm\websphere\tools\cobol\copybook;
 drive:\opt\cics\include

• Set the COBOL options:

– set
– COBOPTS=/LITLINK /NOTRUNC

and run the following code:

cicstran cicsmq00.ccp
cobol cicsmq00.cbl /LITLINK /NOTRUNC
cbllink -D -Mcicsmq00 -Ocicsmq00.cbmfnt cicsmq00.obj
%CICSLIB%\cicsprCBMFNT.lib user32.lib msvcrt.lib kernel32.lib mqmcb.lib

Preparing Visual Basic programs in Windows
Information to consider when using Microsoft Visual Basic programs on Windows.

From IBM MQ 9.0, support for Microsoft Visual Basic 6.0 is deprecated. IBM MQ classes
for .NET are the recommended replacement technology. For more information, see Developing .NET
applications.

Note: 64-bit versions of the Visual Basic module files are not supplied.

To prepare Visual Basic programs on Windows:

1. Create a new project.
2. Add the supplied module file, CMQB.BAS, to the project.
3. Add other supplied module files if you need them:

• CMQBB.BAS: MQAI support
• CMQCFB.BAS: PCF support
• CMQXB.BAS: Channel exits support
• CMQPSB.BAS: Publish/subscribe

See “Coding in Visual Basic” on page 1012 for information about using the MQCONNXAny call from within
Visual Basic.

Call the procedure MQ_SETDEFAULTS before making any MQI calls in the project code. This procedure
sets up default structures that the MQI calls require.

Developing applications for IBM MQ 981

Specify whether you are creating an IBM MQ server or client, before you compile or run the project, by
setting the conditional compilation variable MqType. Set MqType in a Visual Basic project to 1 for a server
or 2 for a client as follows:

1. Select the Project menu.
2. Select Name Properties (where Name is the name of the current project).
3. Select the Make tab in the dialog box.
4. In the Conditional Compilation Arguments field, enter this for a server:

MqType=1

or this for a client:

MqType=2

Related concepts
“Coding in Visual Basic” on page 1012
Information to consider when coding IBM MQ programs in Microsoft Visual Basic. Visual Basic is
supported only on Windows.
Related reference
“Linking Visual Basic applications with the IBM MQ MQI client code” on page 886
You can link Microsoft Visual Basic applications with the IBM MQ MQI client code on Windows.

SSPI security exit
IBM MQ for Windows supplies a security exit for both the IBM MQ MQI client and the IBM MQ server.
This is a channel-exit program that provides authentication for IBM MQ channels by using the Security
Services Programming Interface (SSPI). The SSPI provides the integrated security facilities of Windows
systems.

The security packages are loaded from either security.dll or secur32.dll. These DLLs are supplied with
your operating system.

One-way authentication is provided using NTLM authentication services. Two-way authentication is
provided using Kerberos authentication services.

The security exit program is supplied in source and object format. You can use the object code as it is, or
you can use the source code as a starting point to create your own user-exit programs.

See also “Using the SSPI security exit on Windows” on page 1092.

Introduction to security exits
A security exit forms a secure connection between two security exit programs, where one program is for
the sending message channel agent (MCA), and one is for the receiving MCA.

The program that initiates the secure connection, that is, the first program to get control after the MCA
session is established, is known as the context initiator. The partner program is known as the context
acceptor.

The following table shows some of the channel types that are context initiators and their associated
context acceptors.

Table 149. Context initiators and their associated context acceptors

Context Initiator Context Acceptor

MQCHT_CLNTCONN MQCHT_SVRCONN

MQCHT_RECEIVER MQCHT_SENDER

982 Developing Applications for IBM MQ

Table 149. Context initiators and their associated context acceptors (continued)

Context Initiator Context Acceptor

MQCHT_CLUSRCVR MQCHT_CLUSSDR

The security exit program has two entry points:

• SCY_NTLM

This uses NTLM authentication services, which provide one-way authentication. NTLM allows servers to
verify the identities of their clients. It does not allow clients to verify a server's identity, or one server
to verify the identity of another. NTLM authentication was designed for a network environment in which
servers are assumed to be genuine.

• SCY_KERBEROS

This uses Kerberos mutual authentication services. The Kerberos protocol does not assume that servers
in a network environment are genuine. Parties at both ends of a network connection can verify the
identity of the other party. That is, servers can verify the identity of clients and other servers, and clients
can verify the identity of a server.

What the security exit does
This topic describes what the SSPI channel-exit programs do.

The supplied channel-exit programs provide either one-way or two-way (mutual) authentication of a
partner system when a session is being established. For a particular channel, each exit program has an
associated principal (similar to a user ID, see “IBM MQ access control and Windows principals” on page
983). A connection between two exit programs is an association between the two principals.

After the underlying session is established, a secure connection between two security exit programs (one
for the sending MCA and one for the receiving MCA), is established. The sequence of operations is as
follows:

1. Each program is associated with a particular principal, for example as a result of an explicit login
operation.

2. The context initiator requests a secure connection with the partner from the security package (for
Kerberos, the named partner) and receives a token (called token1). The token is sent, using the
underlying session that is already established, to the partner program.

3. The partner program (the context acceptor) passes token1 to the security package, which verifies that
the context initiator is authentic. For NTLM, the connection is now established.

4. For the Kerberos-supplied security exit (that is, for mutual authentication), the security package also
generates a second token (called token2), which the context acceptor returns to the context initiator
by using the underlying session.

5. The context initiator uses token2 to verify that the context acceptor is authentic.
6. At this stage, if both applications are satisfied with the authenticity of the partner's token, the secure

(authenticated) connection is established.

IBM MQ access control and Windows principals
The access control that IBM MQ provides is based on the user and group. The authentication that
Windows provides is based on principals, such as user and servicePrincipalName (SPN). In the case of
servicePrincipalName, there might be many of these associated with a single user.

The SSPI security exit uses the relevant Windows principals for authentication. If Windows authentication
is successful, the exit passes the user ID that is associated with the Windows principal to IBM MQ for
access control.

Developing applications for IBM MQ 983

The Windows principals that are relevant for authentication vary, depending on the type of authentication
used.

• For NTLM authentication, the Windows principal for Context Initiator is the user ID associated with
the process that is running. Because this authentication is one way, the principal associated with the
Context Acceptor is irrelevant.

• For Kerberos authentication, on CLNTCONN channels, the Windows principal is the user ID associated
with the process that is running. Otherwise, the Windows principal is the servicePrincipalName that is
formed by adding the following prefix to the QueueManagerName.

ibmMQSeries/

Building your procedural application on z/OS
The CICS, IMS, and z/OS publications describe how to build applications that run in these environments.

This collection of topics describes the additional tasks, and the changes to the standard tasks, that
you must perform when building IBM MQ for z/OS applications for these environments. COBOL, C,
C++, Assembler, and PL/I programming languages are supported. (For information about building C++
applications see Using C++.)

The tasks that you must perform to create an executable IBM MQ for z/OS application depend on both the
programming language that the program is written in, and the environment in which the application will
run.

In addition to coding the MQI calls in your program, add the appropriate language statements to include
the IBM MQ for z/OS data definition file for the language that you are using. Make yourself familiar with
the contents of these files. See “IBM MQ data definition files” on page 693 for a full description.

Note
The name thlqual is the high-level qualifier of the installation library on z/OS.

Preparing your program to run
After you have written the program for your IBM MQ application to create an executable application, you
have to compile or assemble it, then link-edit the resulting object code with the stub program that IBM
MQ for z/OS supplies for each environment that it supports.

How you prepare your program depends on both the environment (batch, CICS, IMS(BMP or MPP), Linux
or z/OS UNIX System Services) in which the application runs, and the structure of the data sets on your
z/OS installation.

“Dynamically calling the IBM MQ stub” on page 990 describes an alternative method of making MQI
calls in your programs so that you do not need to link-edit an IBM MQ stub. This method is not available
for all languages and environments.

Do not link-edit a higher level of stub program than that of the version of IBM MQ for z/OS on which
your program is running. For example, a program running on MQSeries for OS/390®, V5.2 must not be
link-edited with a stub program supplied with IBM MQ for z/OS V7.

Building 64 bit C applications
In z/OS, 64 bit C applications are built using the LP64 compiler and binder options. The IBM MQ for z/OS
cmqc.h header file recognizes when this option is provided to the compiler, and generates IBM MQ data
types and structures appropriate for 64 bit operation.

C code built with this option must be built to use dynamic-link libraries (DLLs) appropriate for the
coordination semantic required. To achieve this, you bind the compiled code with the appropriate side-
deck defined in the following table:

984 Developing Applications for IBM MQ

Table 150. Side-deck name required for each coordination semantic

Coordination Side-deck name

Single phase commit MQI CSQBMQ2X

Two phase commit with RRS coordination, using RRS verbs CSQBRR2X

Two phase commit with RRS coordination, using MQI verbs CSQBRI2X

Note: For 31-bit C applications you also set compiler options for the calling interface (either Language
Environment or XPLINK), as described in “Building z/OS batch applications using 31-bit Language
Environment or XPLINK” on page 986. For 64-bit C applications you do not specify the calling interface,
because the only supported linkage is XPLINK.

Use the EDCQCB JCL procedure, supplied with z/OS XL C/C++, to build a single phase commit IBM MQ
program as a batch job, as follows:

//PROCS JCLLIB ORDER=CBC.SCCNPRC
//CLG EXEC EDCQCB,
// INFILE='thlqual.SCSQC37S(CSQ4BCG1)', < MQ SAMPLES
// CPARM='RENT,SSCOM,DLL,LP64,LIST,NOMAR,NOSEQ', < COMPILER OPTIONS
// LIBPRFX='CEE', < PREFIX FOR LIBRARY DSN
// LNGPRFX='CBC', < PREFIX FOR LANGUAGE DSN
// BPARM='MAP,XREF,RENT,DYNAM=DLL', < LINK EDIT OPTIONS
// OUTFILE='userid.LOAD(CSQ4BCG1),DISP=SHR'
//COMPILE.SYSLIB DD
// DD
// DD DISP=SHR,DSN=thlqual.SCSQC370
//BIND.SCSQDEFS DD DISP=SHR,DSN=thlqual.SCSQDEFS
//BIND.SYSIN DD *
INCLUDE SCSQDEFS(CSQBMQ2X)
NAME CSQ4BCG1

To build an RRS coordinated program in z/OS UNIX System Services, compile and link as follows:
cc -o mqsamp -W c,LP64,DLL -W l,DYNAM=DLL,LP64 -I"//'thlqual.SCSQC370'" "//'thlqual.SCSQDEFS(CSQBRR2X)'" mqsamp.c

Building z/OS batch applications
Learn how to build z/OS batch applications and the steps to consider when doing so.

To build an application for IBM MQ for z/OS that runs under z/OS batch, create job control language (JCL)
that performs these tasks:

1. Compile (or assemble) the program to produce object code. The JCL for your compilation must include
SYSLIB statements that make the product data definition files available to the compiler. The data
definitions are supplied in the following IBM MQ for z/OS libraries:

• For COBOL, thlqual.SCSQCOBC
• For assembler language, thlqual.SCSQMACS
• For C, thlqual.SCSQC370
• For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object code created in step “1” on page 985.
3. For PL/I applications, use the compiler option EXTRN(SHORT).
4. Link-edit the object code created in step “1” on page 985 (or step “2” on page 985 for a C application)

to produce a load module. When you link-edit the code, you must include one of the IBM MQ for z/OS
batch stub programs (CSQBSTUB or one of the RRS stub programs: CSQBRRSI or CSQBRSTB).
CSQBSTUB

single-phase commit provided by IBM MQ for z/OS
CSQBRRSI

two-phase commit provided by RRS using the MQI

Developing applications for IBM MQ 985

CSQBRSTB
two-phase commit provided by RRS directly

Notes:

a. If you use CSQBRSTB, you must also link-edit your application with ATRSCSS from SYS1.CSSLIB.
Figure 113 on page 986 and Figure 114 on page 986 show fragments of JCL to do this. The stubs
are language-independent and are supplied in library thlqual.SCSQLOAD.

b. If your application runs under Language Environment, you should ensure you link-edit with the
Language Environment DLL instead as described in “Building z/OS batch applications using 31-bit
Language Environment or XPLINK” on page 986.

5. Store the load module in an application load library.

⋮
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING BATCH STUB
//*
//CSQSTUB DD DSN=++THLQUAL++.SCSQLOAD,DISP=SHR
//*
⋮
//SYSIN DD *
 INCLUDE CSQSTUB(CSQBSTUB)
⋮
/*

Figure 113. Fragments of JCL to link-edit the object module in the batch environment, using single-phase
commit

⋮
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING BATCH STUB
//*
//CSQSTUB DD DSN=++THLQUAL++.SCSQLOAD,DISP=SHR
//CSSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//*
⋮
//SYSIN DD *
INCLUDE CSQSTUB(CSQBRSTB)
INCLUDE CSSLIB(ATRSCSS)
⋮
/*

Figure 114. Fragments of JCL to link-edit the object module in the batch environment, using two-phase
commit

To run a batch or RRS program, you must include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD
in the STEPLIB or JOBLIB data set concatenation.

To run a TSO program, you must include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD in the
STEPLIB used by the TSO session.

To run a batch program from the z/OS UNIX System Services shell, add the libraries thlqual.SCSQAUTH
and thlqual.SCSQLOAD to the STEPLIB specification in your $HOME?.profile like this:

STEPLIB= thlqual.SCSQAUTH: thlqual.SCSQLOAD
export STEPLIB

Building z/OS batch applications using 31-bit Language Environment or XPLINK
IBM MQ for z/OS provides a set of dynamic link libraries (DLLs) that must be used when you link-edit your
applications.

There are two variants of the libraries that allow the application to use one of the following calling
interfaces:

• The 31-bit Language Environment calling interface.

986 Developing Applications for IBM MQ

• The 31-bit XPLINK calling interface. z/OS XPLINK is a high performance calling convention available for
C applications. See XPLINK | NOXPLINK in the z/OS 2.2 documentation.

To use the DLLs, the application is bound or linked against so called sidedecks, instead of the stubs
provided with earlier versions. The sidedecks are found in the SCSQDEFS library (instead of the
SCSQLOAD library).

Table 151. Variants of dynamic link libraries

Commit
31-bit Language
Environment DLL 31-bit XPLINK DLL Equivalent stub name

1 phase commit MQI
libraries

CSQBMQ1 CSQBMQ1X CSQBSTUB

2 phase commit with
RRS co-ordination using
RRS transaction-control
verbs

CSQBRR1 CSQBRR1X CSQBRSTB

2 phase commit with
RRS co-ordination using
MQI transaction-control
verbs

CSQBRI1 CSQBRI1X CSQBRRSI

Note: All sidedecks contain a definition of the data conversion entry point, MQXCNVC, previously resolved
by including CSQASTUB.

Common issues:

• The following message appears on the job log if your application uses asynchronous message consume
(MQCB, MQCTL or MQSUB calls) and the previous DLL interface is not used:
CSQB001E Language environment programs running in z/OS batch or z/OS UNIX System Services must
use the DLL interface to IBM MQ

Solution: Rebuild your application using sidedecks instead of stubs as detailed previously.
• At program build time, the following message appears
IEW2469E The Attributes of a reference to MQAPI-NAME from section your-code do not match the
attributes of
the target symbol

Reason: This means that you have compiled your XPLINK program with V701 (or later) version of
cmqc.h, but are not binding with sidedecks.

Solution: Change your program's build file to bind against the appropriate sidedeck from SCSQDEFS
instead of a stub from SCSQLOAD

The following sample JCL demonstrates how you can compile and link-edit a C program to use the 31 bit
Language Environment DLL calling interface:

//CLG EXEC EDCCB,
// INFILE=MYPROGS.CPROGS(MYPROGRAM),
// CPARM='OPTF(DD:OPTF)',
// BPARM='XREF,MAP,DYNAM=DLL' < LINKEDIT OPTIONS
//COMPILE.OPTF DD *
RENT,CHECKOUT(ALL),SSCOM,DEFINE(MVS),NOMARGINS,NOSEQ,DLL
SE(DD:SYSLIBV)
//COMPILE.SYSLIB DD
// DD
// DD DISP=SHR,DSN=hlq.SCSQC370
//COMPILE.SYSLIBV DD DISP=SHR,DSN=hlq.BASE.H
/*
//BIND.SYSOBJ DD DISP=SHR,DSN=CEE.SCEEOBJ
// DD DISP=SHR,DSN=hlq.SCSQDEFS
//BIND.SYSLMOD DD DISP=SHR,DSN=hlq.LOAD(MYPROGAM)
//BIND.SYSIN DD *
 ENTRY CEESTART
 INCLUDE SYSOBJ(CSQBMQ1)

Developing applications for IBM MQ 987

 NAME MYPROGAM(R)
//

Note: The compilation uses the DLL option. The link-edit uses DYNAM=DLL option and the references the
CSQBMQ1 library.

The following sample JCL demonstrates how you can compile and link-edit a C program to use the 31 bit
XPLINK DLL calling interface:

//CLG EXEC EDCXCB,
// INFILE=MYPROGS.CPROGS(MYPROGRAM),
// CPARM='OPTF(DD:OPTF)',
// BPARM='XREF,MAP,DYNAM=DLL' < LINKEDIT OPTIONS
//COMPILE.OPTF DD *
RENT,CHECKOUT(ALL),SSCOM,DEFINE(MVS),NOMARGINS,NOSEQ,XPLINK,DLL
SE(DD:SYSLIBV)
//COMPILE.SYSLIB DD
// DD
// DD DISP=SHR,DSN=hlq.SCSQC370
//COMPILE.SYSLIBV DD DISP=SHR,DSN=hlq.BASE.H
/*
//BIND.SYSOBJ DD DISP=SHR,DSN=CEE.SCEEOBJ
// DD DISP=SHR,DSN=hlq.SCSQDEFS
//BIND.SYSLMOD DD DISP=SHR,DSN=hlq.LOAD(MYPROGAM)
//BIND.SYSIN DD *
 ENTRY CEESTART
 INCLUDE SYSOBJ(CSQBMQ1X)
 NAME MYPROGAM(R)
//

Note: The compilation uses the XPLINK and DLL options. The link-edit uses DYNAM=DLL option and
references the CSQBMQ1X library.

Ensure that you add the compilation option DLL to each program in the module. Messages such as
IEW2456E 9207 SYMBOL CSQ1BAK UNRESOLVED are an indication that you need to check that all of the
programs have been compiled with the DLL option.

Building CICS applications in z/OS
Use this information when building CICS applications in z/OS.

To build an application for IBM MQ for z/OS that runs under CICS, you must:

• Translate the CICS commands in your program into the language in which the rest of your program is
written.

• Compile or assemble the output from the translator to produce object code.

– For PL/I programs, use the compiler option EXTRN(SHORT).
– For C applications, if the application is not using XPLINK, use the compiler option

DEFINE(MQ_OS_LINKAGE=1).
• Link-edit the object code to create a load module.

CICS provides a procedure to execute these steps in sequence for each of the programming languages it
supports.

• For CICS Transaction Server for z/OS, the CICS Transaction Server for z/OS System Definition Guide
describes how to use these procedures and the CICS/ESA Application Programming Guide gives more
information on the translation process.

You must include:

• In the SYSLIB statement of the compilation (or assembly) stage, statements that make the product data
definition files available to the compiler. The data definitions are supplied in the following IBM MQ for
z/OS libraries:

– For COBOL, thlqual.SCSQCOBC
– For assembler language, thlqual.SCSQMACS

988 Developing Applications for IBM MQ

– For C, thlqual.SCSQC370
– For PL/I, thlqual.SCSQPLIC

• In your link-edit JCL, the IBM MQ for z/OS CICS stub program (CSQCSTUB). Figure 115 on page 989
shows fragments of JCL code to do this. The stub is language-independent and is supplied in library
thlqual.SCSQLOAD.

⋮
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING CICS STUB
//*
//CSQSTUB DD DSN=++THLQUAL++.SCSQLOAD,DISP=SHR
//*
⋮
//LKED.SYSIN DD *
 INCLUDE CSQSTUB(CSQCSTUB)
 ⋮
/*

Figure 115. Fragments of JCL to link-edit the object module in the CICS environment
• For CICS versions later than CICS TS 3.2, or, if you want to use IBM MQ message property APIs, or

IBM MQ APIs MQCB, MQCTL, MQSTAT, MQSUB or MQSUBR, you must linkedit your object code with the
CICS supplied stub, DFHMQSTB and not the IBM MQ supplied CSQCSTUB. For more information about
building IBM MQ programs for CICS, see API stub program to access IBM MQ MQI calls in the CICS
product documentation.

When you have completed these steps, store the load module in an application load library and define the
program to CICS in the usual way.

Before you run a CICS program, your system administrator must define it to CICS as an IBM MQ program
and transaction, You can then run it in the typical way.

Building IMS (BMP or MPP) applications
Use this information when building IMS (BMP or MPP) applications.

If you are building batch DL/I programs, see “Building z/OS batch applications” on page 985. To build
other applications that run under IMS (either as a BMP or an MPP), create JCL that performs these tasks:

1. Compile (or assemble) the program to produce object code. The JCL for your compilation must include
SYSLIB statements that make the product data definition files available to the compiler. The data
definitions are supplied in the following IBM MQ for z/OS libraries:

• For COBOL, thlqual.SCSQCOBC
• For assembler language, thlqual.SCSQMACS
• For C, thlqual.SCSQC370
• For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object module created in step “1” on page 989.
3. For PL/I programs, use the compiler option EXTRN(SHORT).
4. For a C application, if the application is not using XPLINK, use the compiler option

DEFINE(MQ_OS_LINKAGE=1).
5. Link-edit the object code created in step “1” on page 989 (or step “2” on page 989 for a C/370

application) to produce a load module:

a. Include the IMS language interface module (DFSLI000).
b. Include the IBM MQ for z/OS IMS stub program (CSQQSTUB). Figure 116 on page 990 shows

fragments of JCL to do this. The stub is language independent and is supplied in library
thlqual.SCSQLOAD.

Note: If you are using COBOL, select the NODYNAM compiler option to enable the linkage editor
to resolve references to CSQQSTUB unless you intend to use dynamic linking as described in
“Dynamically calling the IBM MQ stub” on page 990.

Developing applications for IBM MQ 989

6. Store the load module in an application load library.

⋮
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING IMS STUB
//*
//CSQSTUB DD DSN=thlqual.SCSQLOAD,DISP=SHR
//*
⋮
//LKED.SYSIN DD *
 INCLUDE CSQSTUB(CSQQSTUB)
 ⋮
/*

Figure 116. Fragments of JCL to link-edit the object module in the IMS environment

Before you run an IMS program, your system administrator must define it to IMS as an IBM MQ program
and transaction: you can then run it in the typical way.

Building z/OS UNIX System Services applications
Use this information when building z/OS UNIX System Services applications.

To build a C application for IBM MQ for z/OS that runs under z/OS UNIX System Services, compile and link
your application as follows:

cc -o mqsamp -W c,DLL -I "//' thlqual.SCSQC370'" mqsamp.c "//' thlqual.SCSQDEFS(CSQBMQ1)'"

where thlqual is the high-level qualifier used by your installation.

To run the C program, you need to add the following to your .profile file; this should be in your root
directory:

STEPLIB= thlqual.SCSQANLE:thlqual.SCSQAUTH: STEPLIB

Note that you need to exit from z/OS UNIX System Services, and enter z/OS UNIX System Services again,
for the change to be recognized.

If you want to run multiple shells, add the word export at the beginning of the line, that is:

export STEPLIB= thlqual.SCSQANLE:thlqual.SCSQAUTH: STEPLIB

Once this completes successfully you can link the CSQBSTUB and issue IBM MQ calls.

“Dynamically calling the IBM MQ stub” on page 990 describes an alternative method of making MQI
calls in your programs so that you do not need to link-edit an IBM MQ stub. This method is not available
for all languages and environments.

Do not link-edit a higher level of stub program than that of the version of IBM MQ for z/OS on which your
program is running. For example, a program running on IBM WebSphere MQ for z/OS 7.1 must not be
link-edited with a stub program supplied with IBM MQ for z/OS 8.0.

Dynamically calling the IBM MQ stub
Instead of link-editing the IBM MQ stub program with your object code, you can dynamically call the stub
from within your program.

You can do this in the batch, IMS, and CICS environments. This facility is not supported in the RRS
environment. If your application program uses RRS to coordinate updates, see “RRS Considerations” on
page 995.

However, this method:

• Increases the complexity of your programs
• Increases the storage required by your programs at execution time

990 Developing Applications for IBM MQ

• Reduces the performance of your programs
• Means that you cannot use the same programs in other environments

If you call the stub dynamically, the appropriate stub program and its aliases must be available at
execution time. To ensure this, include the IBM MQ for z/OS data set SCSQLOAD:

• For batch and IMS, in the STEPLIB concatenation of the JCL.
• For CICS, in the CICS DFHRPL concatenation.

For IMS, ensure that the library containing the dynamic stub (built as described in the information about
installing the IMS adapter in Setting up the IMS adapter) is ahead of the data set SCSQLOAD in the
STEPLIB concatenation of the region JCL.

Use the names shown in Table 152 on page 991 when you call the stub dynamically. In PL/I, only
declare the call names used in your program.

Table 152. Call names for dynamic linking

MQI call Batch (non-RRS)
dynamic call names

CICS dynamic call
names

IMS dynamic call
names

MQBACK CSQBBACK not supported Not supported

MQBUFMH CSQBBFMH CSQCBFMH 1 MQBUFMH

MQCB CSQBCB CSQCCB 1 Not supported

MQCLOSE CSQBCLOS CSQCCLOS MQCLOSE

MQCMIT CSQBCOMM not supported Not supported

MQCONN CSQBCONN CSQCCONN MQCONN

MQCONNX CSQBCONX CSQCCONX MQCONNX

MQCRTMH CSQBCTMH CSQCCTMH 1 MQCRTMH

MQCTL CSQBCTL CSQCCTL 1 Not supported

MQDISC CSQBDISC CSQCDISC MQDISC

MQDLTMH CSQBDTMH CSQCDTMH 1 MQDLTMH

MQDLTMP CSQBDTMP CSQCDTMP 1 MQDLTMP

MQGET CSQBGET CSQCGET MQGET

MQINQ CSQBINQ CSQCINQ MQINQ

MQINQMP CSQBIQMP CSQCIQMP 1 MQINQMP

MQMHBUF CSQBMHBF CSQCMHBF 1 MQMHBUF

MQOPEN CSQBOPEN CSQCOPEN MQOPEN

MQPUT CSQBPUT CSQCPUT MQPUT

MQPUT1 CSQBPUT1 CSQCPUT1 MQPUT1

MQSET CSQBSET CSQCSET MQSET

MQSETMP CSQBSTMP CSQCSTMP 1 MQSETMP

MQSTAT CSQBSTAT CSQCSTAT 1 MQSTAT

MQSUB CSQBSUB CSQCSUB 1 MQSUB

MQSUBRQ CSQBSUBR CSQCSUBR 1 MQSUBRQ

Developing applications for IBM MQ 991

Note: 1. These API calls are available only when using CICS TS 3.2 or later and the CSQCSTUB shipped
with CICS must be used. For CICS TS 3.2, APAR PK66866 must be applied. For CICS TS 4.1, APAR
PK89844 must be applied.

For examples of how to use this technique, see the following figures:

• Batch and COBOL: see Figure 117 on page 992
• CICS and COBOL: see Figure 118 on page 992
• IMS and COBOL: see Figure 119 on page 993
• Batch and assembler: see Figure 120 on page 993
• CICS and assembler: see Figure 121 on page 993
• IMS and assembler: see Figure 122 on page 993
• Batch and C: Figure 123 on page 994
• CICS and C: see Figure 124 on page 994
• IMS and C: see Figure 125 on page 994
• Batch and PL/I: see Figure 126 on page 994
• IMS and PL/I: see Figure 127 on page 995

...
 WORKING-STORAGE SECTION.
...
 05 WS-MQOPEN PIC X(8) VALUE 'CSQBOPEN'.
...
 PROCEDURE DIVISION.
...
 CALL WS-MQOPEN WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...

Figure 117. Dynamic linking using COBOL in the batch environment

...
 WORKING-STORAGE SECTION.
...
 05 WS-MQOPEN PIC X(8) VALUE 'CSQCOPEN'.
...
 PROCEDURE DIVISION.
...
 CALL WS-MQOPEN WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...

Figure 118. Dynamic linking using COBOL in the CICS environment

992 Developing Applications for IBM MQ

...
 WORKING-STORAGE SECTION.
...
 05 WS-MQOPEN PIC X(8) VALUE 'MQOPEN'.
...
 PROCEDURE DIVISION.
...
 CALL WS-MQOPEN WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...
 * --- *
 *
 * If the compilation option 'DYNAM' is specified
 * then you may code the MQ calls as follows
 *
 * --- *
...
 CALL 'MQOPEN' WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...

Figure 119. Dynamic linking using COBOL in the IMS environment

...
 LOAD EP=CSQBOPEN
...
 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL
...
 DELETE EP=CSQBOPEN
...

Figure 120. Dynamic linking using assembly language in the batch environment

...
 EXEC CICS LOAD PROGRAM('CSQCOPEN') ENTRY(R15)
...
 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL
...
 EXEC CICS RELEASE PROGRAM('CSQCOPEN')
...

Figure 121. Dynamic linking using assembly language in the CICS environment

...
 LOAD EP=MQOPEN
...
 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL
...
 DELETE EP=MQOPEN
...

Figure 122. Dynamic linking using assembly language in the IMS environment

Developing applications for IBM MQ 993

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...
main()
{
CALL_ME * csqbopen;
...
csqbopen = (CALL_ME *) fetch("CSQBOPEN");
(*csqbopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 123. Dynamic linking using C language in the batch environment

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...
main()
{
CALL_ME * csqcopen;
...
 EXEC CICS LOAD PROGRAM("CSQCOPEN") ENTRY(csqcopen);
(*csqcopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 124. Dynamic linking using C language in the CICS environment

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...
main()
{
CALL_ME * mqopen;
...
mqopen = (CALL_ME *) fetch("MQOPEN");
(*mqopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 125. Dynamic linking using C language in the IMS environment

...
 DCL CSQBOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);
...
 FETCH CSQBOPEN;

 CALL CSQBOPEN(HQM,
 MQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

 RELEASE CSQBOPEN;

Figure 126. Dynamic linking using PL/I in the batch environment

994 Developing Applications for IBM MQ

...
 DCL MQOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);
...
 FETCH MQOPEN;

 CALL MQOPEN(HQM,
 MQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

 RELEASE MQOPEN;

Figure 127. Dynamic linking using PL/I in the IMS environment

RRS Considerations
Consider using this information if your application program uses RRS to coordinate updates.

IBM MQ provides two different stubs for batch programs which need RRS coordination - see “The RRS
batch adapter” on page 859. The difference in behavior of later API calls is determined at MQCONN time
by the batch adapter from information passed by the stub routine on the MQCONN or MQCONNX API. This
means that dynamic API calls are available for batch programs which need RRS coordination, provided
that the initial connection to IBM MQ was done by using the appropriate stub. The following example
illustrates this:

 WORKING-STORAGE SECTION.
 05 WS-MQOPEN PIC X(8) VALUE 'MQOPEN' .
.
.
.
 PROCEDURE DIVISION.
.
.
.
 *
 * Static call to MQCONN must be resolved by linkage edit to
 * CSQBRSTB or CSQBRRSI for RRS coordination
 *
 CALL 'MQCONN' USING W00-QMGR
 W03-HCONN
 W03-COMPCODE
 W03-REASON.
.
.
.
 *
 CALL WS-MQOPEN WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.

Debugging your programs
Use this information to learn about debugging TSO and CICS programs, and an insight into CICS trace.

The main aids to debugging IBM MQ for z/OS application programs are the reason codes returned by each
API call. For a list of these, including ideas for corrective action, see:

• IBM MQ for z/OS messages, completion, and reason codes for IBM MQ for z/OS
• Messages and reason codes for all other IBM MQ platforms

This topic also suggests other debugging tools to use in particular environments.

Debugging TSO programs
The following interactive debugging tools are available for TSO programs:

Developing applications for IBM MQ 995

• TEST tool
• VS COBOL II interactive debugging tool
• INSPECT interactive debugging tool for C and PL/I programs

Debugging CICS programs
You can use the CICS Execution Diagnostic Facility (CEDF) to test your CICS programs interactively
without having to modify the program or program-preparation procedure.

For more information about EDF, see the CICS Transaction Server for z/OS CICS Application Programming
Guide.

CICS trace
You will probably also find it helpful to use the CICS Trace Control transaction (CETR) to control CICS
trace activity.

For more information about CETR, see CICS Transaction Server for z/OS CICS-Supplied Transactions
manual.

To determine whether CICS trace is active, display connection status using the CKQC panel. This panel
also shows the trace number.

To interpret CICS trace entries, see Table 153 on page 996.

The CICS trace entry for these values is AP0 xxx (where xxx is the trace number specified when the CICS
adapter was enabled). All trace entries except CSQCTEST are issued by CSQCTRUE. CSQCTEST is issued
by CSQCRST and CSQCDSP.

Table 153. CICS adapter trace entries

Name Description Trace sequence Trace data

CSQCABNT Abnormal termination Before issuing END_THREAD
ABNORMAL to IBM MQ. This is
because of the end of the task
and an implicit backout could be
performed by the application. A
ROLLBACK request is included
in the END_THREAD call in this
case.

Unit of work information. You
can use this information when
finding out about the status
of work. (For example, it
can be verified against the
output produced by the DISPLAY
THREAD command, or the IBM
MQ for z/OS log print utility.)

CSQCBACK Syncpoint backout Before issuing BACKOUT to IBM
MQ for z/OS. This is due to an
explicit backout request from
the application.

Unit of work information.

CSQCCCRC Completion code and
reason code

After unsuccessful return from
API call.

Completion code and reason
code.

CSQCCOMM Syncpoint commit Before issuing COMMIT to IBM
MQ for z/OS. This can be
due to a single-phase commit
request or the second phase of
a two-phase commit request.
The request is due to an
explicit syncpoint request from
the application.

Unit of work information.

996 Developing Applications for IBM MQ

Table 153. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCEXER Execute resolve Before issuing
EXECUTE_RESOLVE to IBM MQ
for z/OS.

The unit of work information
of the unit of work issuing the
EXECUTE_RESOLVE. This is the
last indoubt unit of work in the
resynchronization process.

CSQCGETW GET wait Before issuing CICS wait. Address of the ECB to be waited
on.

CSQCGMGD GET message data After successful return from
MQGET.

Up to 40 bytes of the message
data.

CSQCGMGH GET message handle Before issuing MQGET to IBM
MQ for z/OS.

Object handle.

CSQCGMGI Get message ID After successful return from
MQGET.

Message ID and correlation ID of
the message.

CSQCINDL Indoubt list After successful return from the
second INQUIRE_INDOUBT.

The indoubt units of work list.

CSQCINDO IBM use only

CSQCINDS Indoubt list size After successful return from the
first INQUIRE_INDOUBT and the
indoubt list is not empty.

Length of the list. Divided by
64 gives the number of indoubt
units of work.

CSQCINQH INQ handle Before issuing MQINQ to IBM
MQ for z/OS.

Object handle.

CSQCLOSH CLOSE handle Before issuing MQCLOSE to IBM
MQ for z/OS.

Object handle.

CSQCLOST Disposition lost During the resynchronization
process, CICS informs the
adapter that it has been
restarted so no disposition
information regarding the unit
of work being resynchronized is
available.

Unit of work ID known to CICS
for the unit of work being
resynchronized.

CSQCNIND Disposition not indoubt During the resynchronization
process, CICS informs the
adapter that the unit of work
being resynchronized should not
have been indoubt (that is,
perhaps it is still running).

Unit of work ID known to CICS
for the unit of work being
resynchronized.

CSQCNORT Normal termination Before issuing END_THREAD
NORMAL to IBM MQ for z/OS.
This is due to the end of
the task and therefore the
application might perform an
implicit syncpoint commit. A
COMMIT request is included in
the END_THREAD call in this
case.

Unit of work information.

Developing applications for IBM MQ 997

Table 153. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCOPNH OPEN handle After successful return from
MQOPEN.

Object handle.

CSQCOPNO OPEN object Before issuing MQOPEN to IBM
MQ for z/OS.

Object name.

CSQCPMGD PUT message data Before issuing MQPUT to IBM
MQ for z/OS.

Up to 40 bytes of the message
data.

CSQCPMGH PUT message handle Before issuing MQPUT to IBM
MQ for z/OS.

Object handle.

CSQCPMGI PUT message ID After successful MQPUT from
IBM MQ for z/OS.

Message ID and correlation ID of
the message.

CSQCPREP Syncpoint prepare Before issuing PREPARE to IBM
MQ for z/OS in the first phase of
two-phase commit processing.
This call can also be issued
from the distributed queuing
component as an API call.

Unit of work information.

CSQCP1MD PUTONE message data Before issuing MQPUT1 to IBM
MQ for z/OS.

Up to 40 bytes of data of the
message.

CSQCP1MI PUTONE message ID After successful return from
MQPUT1.

Message ID and correlation ID of
the message.

CSQCP1ON PUTONE object name Before issuing MQPUT1 to IBM
MQ for z/OS.

Object name.

CSQCRBAK Resolved backout Before issuing
RESOLVE_ROLLBACK to IBM MQ
for z/OS.

Unit of work information.

CSQCRCMT Resolved commit Before issuing
RESOLVE_COMMIT to IBM MQ
for z/OS.

Unit of work information.

CSQCRMIR RMI response Before returning to the CICS RMI
(resource manager interface)
from a specific invocation.

Architected RMI response value.
Its meaning depends of the
type of the invocation. These
values are documented in the
CICS Transaction Server for
z/OS Customization Guide. To
determine the type of invocation,
look at previous trace entries
produced by the CICS RMI
component.

CSQCRSYN Resynchronization Before the resynchronization
process starts for the task.

Unit of work ID known to CICS
for the unit of work being
resynchronized.

CSQCSETH SET handle Before issuing MQSET to IBM
MQ for z/OS.

Object handle.

CSQCTASE IBM use only

998 Developing Applications for IBM MQ

Table 153. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCTEST Trace test Used in EXEC CICS ENTER
TRACE call to verify the trace
number supplied by the user
or the trace status of the
connection.

No data.

CSQCDCFF IBM use only

Handling procedural program errors
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

Whenever possible, the queue manager returns any errors as soon as an MQI call is made. These are
locally determined errors.

When sending messages to a remote queue, errors might not be apparent when the MQI call is made. In
this case, the queue manager that identifies the errors reports them by sending another message to the
originating program. These are remotely determined errors.

Locally determined errors
Information about locally determined errors which include: failure on an MQI call, system interruptions,
and messages containing incorrect data.

The three most common causes of errors that the queue manager can report immediately are:

• Failure of an MQI call; for example, because a queue is full
• An interruption to the running of some part of the system on which your application depends; for

example, the queue manager
• Messages containing data that cannot be processed successfully

If you are using the asynchronous put facility, errors are not reported immediately. Use the MQSTAT call to
retrieve status information about previous asynchronous put operations.

Failure of an MQI call
The queue manager can report immediately any errors in the coding of an MQI call. It does this using a set
of predefined return codes. These are divided into completion codes and reason codes.

To show whether a call is successful, the queue manager returns a completion code when the call
completes. There are three completion codes, indicating success, partial completion, and failure of the
call. The queue manager also returns a reason code that indicates the reason for the partial completion or
the failure of the call.

The completion and reason codes for each call are listed with the description of that call in Return codes.
For more detailed information, including ideas for corrective action, see:

• IBM MQ for z/OS messages, completion, and reason codes for IBM MQ for z/OS
• Messages and reason codes for all other IBM MQ platforms

Design your programs to handle all the return codes that can arise from each call.

System interruptions
Your application might be unaware of any interruption if the queue manager to which it is connected has
to recover from a system failure. However, you must design your application to ensure that your data is
not lost if such an interruption occurs.

Developing applications for IBM MQ 999

The methods that you can use to make sure that your data remains consistent depends on the platform
on which your queue manager is running:

z/OS
In the CICS and IMS environments, you can make MQPUT and MQGET calls within units of work that
are managed by CICS or IMS. In the batch environment, you can make MQPUT and MQGET calls in the
same way, but you must declare sync points using:

• The IBM MQ for z/OS MQCMIT and MQBACK calls (see “Committing and backing out units of work”
on page 823), or

• The z/OS Transaction Management and Recoverable Resource Manager Services (RRS) to provide
two-phase sync point support. RRS allows you to update both IBM MQ and other RRS-enabled
product resources, such as Db2 stored procedure resources, within a single logical unit of work. For
information about RRS sync point support see “Transaction management and recoverable resource
manager services” on page 827.

IBM i
You can make your MQPUT and MQGET calls within global units of work that are managed by IBM i
commitment control. You can declare sync points by using the native IBM i COMMIT and ROLLBACK
commands or the language-specific commands. Local units of work are managed by IBM MQ using the
MQCMIT and MQBACK calls.

AIX, Linux, and Windows systems
In these environments, you can make your MQPUT and MQGET calls in the usual way, but you must
declare sync points by using the MQCMIT and MQBACK calls (see “Committing and backing out units
of work” on page 823). In the CICS environment, MQCMIT and MQBACK commands are disabled,
because you can make your MQPUT and MQGET calls within units of work that are managed by CICS.

Use persistent messages for carrying all data that you cannot afford to lose. Persistent messages are

reinstated on queues if the queue manager has to recover from a failure. With IBM MQ on
AIX, Linux, and Windows, an MQGET or MQPUT call within your application will fail at the point of filling all
the log files, with the message MQRC_RESOURCE_PROBLEM. For more information about log files on AIX,

Linux, and Windows, see Administering IBM MQ. For z/OS see Planning on z/OS.

If the queue manager is stopped by an operator while an application is running, the quiesce option
is usually used. The queue manager enters a quiescing state in which applications can continue to do
work, but they must terminate as soon as convenient. Small, quick applications can probably ignore the
quiescing state and continue until they terminate as normal. Longer running applications, or ones that
wait for messages to arrive, should use the fail if quiescing option when they use the MQOPEN, MQPUT,
MQPUT1, and MQGET calls. These options mean that the calls fail when the queue manager quiesces, but
the application might still have time to terminate cleanly by issuing calls that ignore the quiescing state.
Such applications could also commit, or back out, changes that they have made, and then terminate.

If the queue manager is forced to stop (that is, stop without quiescing), applications will receive
the MQRC_CONNECTION_BROKEN reason code when they make MQI calls. Exit the application or,

alternatively, on IBM MQ for IBM i, AIX, Linux, and Windows systems, issue an MQDISC
call.

Messages containing incorrect data
When you use units of work in your application, if a program cannot successfully process a message that it
retrieves from a queue, the MQGET call is backed out.

The queue manager maintains a count (in the BackoutCount field of the message descriptor) of the
number of times that happens. It maintains this count in the descriptor of each message that is affected.
This count can provide valuable information about the efficiency of an application. Messages with backout
counts that are increasing over time are being repeatedly rejected; design your application so that it
analyzes the reasons for this and handles such messages accordingly.

1000 Developing Applications for IBM MQ

On IBM MQ for z/OS, to make the backout count survive restarts of the queue manager, set
the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED; otherwise, if the queue manager has
to restart, it does not maintain an accurate backout count for each message. Setting the attribute this way
adds the penalty of extra processing.

On IBM MQ for IBM i, AIX, Linux, and Windows systems, the backout count always survives
the queue manager restarts.

Also, on IBM MQ for z/OS, when you remove messages from a queue within a unit of work,
you can mark one message so that it is not made available again if the unit of work is backed out by the
application. The marked message is treated as if it has been retrieved under a new unit of work. You mark
the message that is to skip backout using the MQGMO_MARK_SKIP_BACKOUT option (in the MQGMO
structure) when you use the MQGET call. See “Skipping backout” on page 771 for more information about
this technique.

Using report messages for problem determination
The remote queue manager cannot report errors such as failing to put a message on a queue when you
make your MQI call, but it can send you a report message to say how it has processed your message.

Within your application you can create (MQPUT) report messages as well as select the option to receive
them (in which case they are sent by either another application or by a queue manager).

Creating report messages
Report messages enable an application to tell another application that it cannot deal with the message
that was sent.

However, the Report field must initially be analyzed to determine whether the application that sent the
message is interested in being informed of any problems. Having determined that a report message is
required, you have to decide:

• Whether you want to include the entire original message, just the first 100 bytes of data, or none of the
original message.

• What to do with the original message. You can discard it or let it go to the dead-letter queue.
• Whether the contents of the MsgId and CorrelId fields are needed as well.

Use the Feedback field to indicate the reason for the report message being generated. Put your report
messages on an application's reply-to queue. See Feedback for further information.

Requesting and receiving (MQGET) report messages
When you send a message to another application, you are not informed of any problems unless you
complete the Report field to indicate the feedback that you require. See Structure of the report field for
the options available.

Queue managers always put report messages on an application's reply-to queue and it is recommended
that your own applications do the same. When you use the report message facility, specify the name of
your reply-to queue in the message descriptor of your message; otherwise, the MQPUT call fails.

Your application must contain procedures that monitor your reply-to queue and process any messages
that arrive on it. Remember that a report message can contain all the original message, the first 100 bytes
of the original message, or none of the original message.

The queue manager sets the Feedback field of the report message to indicate the reason for the error; for
example, the target queue does not exist. Your programs should do the same.

For more information about report messages, see “Report messages” on page 19.

Developing applications for IBM MQ 1001

Remotely determined errors
When you send messages to a remote queue, even when the local queue manager has processed your
MQI call without finding an error, other factors can influence how your message is handled by a remote
queue manager.

For example, the queue that you are targeting might be full, or might not even exist. If your message has
to be handled by other intermediate queue managers on the route to the target queue, any of these could
find an error.

Problems delivering a message
When an MQPUT call fails, you can try to put the message on the queue again, return it to the sender, or
put it on the dead-letter queue.

Each option has its merits, but you might not want to try putting a message again if the reason that the
MQPUT failed was because the destination queue was full. In this instance, putting it on the dead-letter
queue allows you to deliver it to the correct destination queue later on.

Retry message delivery

Before the message is put on a dead-letter queue, a remote queue manager attempts to put the
message on the queue again if the attributes MsgRetryCount and MsgRetryInterval have been
set for the channel, or if there is a retry exit program for it to use (the name of which is held in the
channel attribute MsgRetryExitId field).

If the MsgRetryExitId field is blank, the values in the attributes MsgRetryCount and
MsgRetryInterval are used.

If the MsgRetryExitId field is not blank, the exit program of this name runs. For more information
about using your own exit programs, see “Channel-exit programs for messaging channels” on page
926.

Return message to sender

You return a message to the sender by requesting a report message to be generated to include all of
the original message.

See “Report messages” on page 19 for details on report message options.

Using the dead-letter (undelivered message) queue
When a queue manager cannot deliver a message, it attempts to put the message on its dead-letter
queue. This queue should be defined when the queue manager is installed.

Your programs can use the dead-letter queue in the same way that the queue manager uses it. You can
find the name of the dead-letter queue by opening the queue manager object (using the MQOPEN call)
and inquiring about the DeadLetterQName attribute (using the MQINQ call).

When the queue manager puts a message on this queue, it adds a header to the message, the format of
which is described by the dead-letter header (MQDLH) structure; see MQDLH - Dead-letter header. This
header includes the name of the target queue and the reason that the message was put on the dead-letter
queue. It must be removed and the problem must be resolved before the message is put on the intended
queue. Also, the queue manager changes the Format field of the message descriptor (MQMD) to indicate
that the message contains an MQDLH structure.

MQDLH structure
You are recommended to add an MQDLH structure to all messages that you put on the dead-letter queue;
however, if you intend to use the dead-letter handler provided by certain IBM MQ products, you must add
an MQDLH structure to your messages.

The addition of the header to a message might make the message too long for the dead-letter queue,
so always make sure that your messages are shorter than the maximum size allowed for the dead-letter
queue, by at least the value of the MQ_MSG_HEADER_LENGTH constant. The maximum size of messages

1002 Developing Applications for IBM MQ

allowed on a queue is determined by the value of the MaxMsgLength attribute of the queue. For the
dead-letter queue, make sure that this attribute is set to the maximum allowed by the queue manager.
If your application cannot deliver a message, and the message is too long to be put on the dead-letter
queue, follow the advice given in the description of the MQDLH structure.

Ensure that the dead-letter queue is monitored, and that any messages arriving on it get processed. The
dead-letter queue handler runs as a batch utility and can be used to perform various actions on selected
messages on the dead-letter queue. For further details, see “Dead-letter queue processing” on page
1003.

If data conversion is necessary, the queue manager converts the header information when you use the
MQGMO_CONVERT option on the MQGET call. If the process putting the message is an MCA, the header is
followed by all the text of the original message.

Messages put on the dead-letter queue might be truncated if they are too long for this queue. A possible
indication of this situation is the messages on the dead-letter queue being the same length as the value of
the MaxMsgLength attribute of the queue.

Dead-letter queue processing
This information contains general-use programming interface information when using dead-letter queue
processing.

Dead-letter queue processing depends on local system requirements, but consider the following things
when you draw up the specification:

• The message can be identified as having a dead-letter queue header because the value of the format
field in the MQMD, is MQFMT_DEAD_LETTER_HEADER.

• On IBM MQ for z/OS using CICS, if an MCA puts this message to the dead-letter queue, the
PutApplType field is MQAT_CICS, and the PutApplName field is the ApplId of the CICS system
followed by the transaction name of the MCA.

• The reason for the message to be routed to the dead-letter queue is contained in the Reason field of
the dead-letter queue header.

• The dead-letter queue header contains details of the destination queue name and queue manager
name.

• The dead-letter queue header contains fields that have to be reinstated in the message descriptor
before the message is put to the destination queue. These are:

1. Encoding
2. CodedCharSetId
3. Format

• The message descriptor is the same as PUT by the original application, except for the three fields shown
(Encoding, CodedCharSetId, and Format).

Your dead-letter queue application must do one or more of the following things:

• Examine the Reason field. A message might have been put by an MCA for the following reasons:

– The message was longer than the maximum message size for the channel

The reason is MQRC_MSG_TOO_BIG_FOR_CHANNEL
– The message could not be put to its destination queue

The reason is any MQRC_* reason code that can be returned by an MQPUT operation
– A user exit has requested this action

The reason code is that supplied by the user exit, or the default MQRC_SUPPRESSED_BY_EXIT
• Try to forward the message to its intended destination, where this is possible.
• Retain the message for a certain length of time before discarding when the reason for the diversion is

determined, but not immediately correctable.
• Give instructions to administrators correct problems where these have been determined.

Developing applications for IBM MQ 1003

• Discard messages that are corrupted or otherwise not processible.

There are two ways to deal with the messages that you have recovered from the dead-letter queue:

1. If the message is for a local queue:

• Carry out any code translations required to extract the application data
• Carry out code conversions on that data if this is a local function
• Put the resulting message on the local queue with all the detail of the message descriptor restored

2. If the message is for a remote queue, put the message on the queue.

For information about how undelivered messages are handled in a distributed queuing environment, see
What happens when a message cannot be delivered?.

Multicast programming
Use this information to learn about the IBM MQ Multicast programming tasks such as connecting to a
queue manager and exception reporting.

IBM MQ Multicast was designed to be as transparent to the user as possible and yet still be compatible
with existing applications. Defining a COMMINFO object and setting the TOPIC object's MCAST and
COMMINFO parameters, means that existing IBM MQ applications do not require substantial rewriting
to use multicast. However, there might be some limitations (see “Multicast and the MQI” on page 1004
for more information) and some security issues to consider (see Multicast security for more information).

Multicast and the MQI
Use this information to understand the major Message Queue Interface (MQI) concepts and how they
relate to IBM MQ Multicast.

Multicast subscriptions are nondurable; because there are no physical queues involved, there is nowhere
to store the offline messages that are created by durable subscriptions.

After an application has subscribed to a multicast topic, it is given back an object handle which it can
consume or MQGET from, as if it were a handle to a queue. This means that only managed multicast
subscriptions (subscriptions created with MQSO_MANAGED) are supported, that is; it is not possible
to make a subscription and 'point' the messages at a queue. This means that messages must be
consumed from the object handle returned on the subscription call. On the client, the messages are
stored in a message buffer until they are consumed by the client; see MessageBuffer stanza of the
client configuration file for more information. If the client does not keep up with the publishing rate, the
messages are discarded as required, with the oldest messages discarded first.

It is normally an administration decision whether an application uses Multicast or not, specified by setting
the MCAST attribute of a TOPIC object. If a publishing application must ensure that multicast is not used,
it can use the MQOO_NO_MULTICAST option. Similarly, a subscribing application can ensure that multicast
is not used by subscribing with the MQSO_NO_MULTICAST option.

IBM MQ Multicast supports the use of message selectors. A selector is used by an application to register
its interest in only those messages with properties that satisfy the SQL92 query that the selection string
represents. For more information about message selectors, see “Selectors” on page 30.

The following table lists all the major MQI concepts and how they relate to Multicast:

Table 154. MQI concepts and how they relate to multicast

MQI Concept

Action when
tried using
multicast Reason code

Putting a zero length message Rejected 2005 (07D5) (RC2005):
MQRC_BUFFER_LENGTH_ERROR

Grouping Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

1004 Developing Applications for IBM MQ

Table 154. MQI concepts and how they relate to multicast (continued)

MQI Concept

Action when
tried using
multicast Reason code

Segmentation Rejected 2443 (098B) (RC2443):
MQRC_SEGMENTATION_NOT_ALLOWED

Distribution lists Rejected 2154 (086A) (RC2154): MQRC_RECS_PRESENT_ERROR

MQINQ Rejected for
topics handles:
MQINQ and
MQSET of topics
is not supported.

2038 (07F6) (RC2038):
MQRC_NOT_OPEN_FOR_INQUIRE

MQINQ Accepted for
managed
handle. Only
Current
Depth can be
inquired.

• If the value is Current Depth, then there is no
applicable reason code.

• If the value is anything other than Current
Depth, the reason code is 2067 (0813) (RC2067):
MQRC_SELECTOR_ERROR.

MQSET Rejected for all
handles.

2040 (07F8) (RC2040): MQRC_NOT_OPEN_FOR_SET

Transactions (XA or not) Rejected 2072 (0818) (RC2072):
MQRC_SYNCPOINT_NOT_AVAILABLE

Message browse Rejected 2036 (07F4) (RC2036):
MQRC_NOT_OPEN_FOR_BROWSE

Lock messages Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

Browse with mark Rejected 2036 (07F4) (RC2036):
MQRC_NOT_OPEN_FOR_BROWSE

Pass context Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

MQPUT1 Rejected. It is
invalid to try and
MQPUT1 to a
Multicast only
topic.

2560 (0A00) (RC2560): MQRC_MULTICAST_ONLY

Durable subscription Rejected if the
topic is marked
as "Multicast
only", otherwise
a non-Multicast
subscription is
made.

2436 (0984) (RC2436):
MQRC_DURABILITY_NOT_ALLOWED

TopicString > 255 Rejected. If the
topic string is
greater than 255
characters, it is
rejected in the
client.

2425 (0979) (RC2425): MQRC_TOPIC_STRING_ERROR

Developing applications for IBM MQ 1005

Table 154. MQI concepts and how they relate to multicast (continued)

MQI Concept

Action when
tried using
multicast Reason code

Non-managed subscription made Rejected if the
topic is marked
as "Multicast
only", otherwise
a non-Multicast
subscription is
made.

2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

MQPMO_NOT_OWN_SUBS Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

The following items expand on some of the MQI concepts from the previous table, and provides
information on some of the MQI concepts that are not in the table:
Message persistence

For nondurable multicast subscribers, persistent messages from the publisher are delivered in an
unrecoverable fashion.

Message truncation
Message truncation is supported, which means that it is possible for an application to:

1. Issue an MQGET.
2. Get MQRC_TRUNCATED_MSG_FAILED.
3. Allocate a larger buffer.
4. Reissue the MQGET to retrieve the message.

Subscription expiry
Subscription expiry is not supported. Any attempt to set an expiry is ignored.

High availability for multicast
Use this information to understand IBM MQ Multicast continuous peer-to-peer operation; although IBM
MQ connects to an IBM MQ queue manager, messages do not flow through that queue manager.

Although a connection to a queue manager must be made in order to MQOPEN or MQSUB the multicast
topic object, the messages themselves do not flow through the queue manager. Therefore, after the
MQOPEN or MQSUB is completed on the multicast topic object, it is possible to continue transmitting
multicast messages even if the connection to the queue manager has been lost. There are two modes of
operation:
A normal connection is made to the queue manager

Multicast communication is possible while the connection to the queue manager exists. If the
connection fails, the normal MQI rules are applied, for example; an MQPUT to the multicast object
handle returns 2009 (07D9) (RC2009): MQRC_CONNECTION_BROKEN.

A reconnecting client connection is made to the queue manager
Multicast communication is possible even during the reconnection cycle. This means that even when
the connection to the queue manager has been broken, the putting and consuming of multicast
messages is not affected. The client attempts to reconnect to a queue manager, and if that
reconnection fails, the connection handle becomes broken and all MQI calls, including multicast ones,
fail. For more information, see: Automatic client reconnection

If any application explicitly issues an MQDISC, then all multicast subscriptions and object handles are
closed.

1006 Developing Applications for IBM MQ

Multicast continuous peer-to-peer operation
One of the advantages of peer-to-peer communication between the clients is that the messages do not
need to flow through the queue manager; therefore if the connection to the queue manager breaks,
message transfer continues. The following restrictions apply to the continuous message requirements of
this mode:

• The connection must be made using one of the MQCNO_RECONNECT_* options for continuous
operation. This process means that although the communications session might be broken, the actual
connection handle is not broken, and is in the reconnecting state instead. If reconnection fails, the
connection handle is now broken which prevents all further MQI calls.

• Only MQPUT, MQGET, MQINQ, and Async Consume are supported in this mode. Any MQOPEN,
MQCLOSE, or MQDISC verbs require reconnection to the queue manager to complete.

• Status flows to the queue manager stop; any state in the queue manager might therefore be stale or
missing. This means that the clients might be sending and receiving messages and there is no status
known on the queue manager. For more information, see: Multicast application monitoring

Data conversion in the MQI for multicast messaging
Use this information to understand how data conversion works for IBM MQ Multicast messaging.

IBM MQ Multicast is a shared, connectionless protocol, and so it is not possible for each client to make
specific requests for data conversion. Every client subscribed to the same multicast stream receives the
same binary data; therefore, if IBM MQ data conversion is required, the conversion is performed locally at
each client.

Data is converted on the client for IBM MQ Multicast traffic. If the MQGMO_CONVERT option is specified,
data conversion is done as requested. User defined formats need the data conversion exit installed on the
client; see “Writing data-conversion exits” on page 947 for information about which libraries are now in
the client and server packages.

For information about administering data conversion, see Enabling data conversion for Multicast
messaging.

For more information about data conversion, see Data conversion.

For more information about data conversion exits and ClientExitPath, see ClientExitPath stanza of the
client configuration file.

Multicast exception reporting
Use this information to learn about IBM MQ Multicast event handlers and reporting IBM MQ Multicast
exceptions.

IBM MQ Multicast assists with problem determination by calling the event handler to report multicast
events which are reported using the standard IBM MQ event handler mechanism.

An individual Multicast event can result in more than one IBM MQ event being called because there might
be multiple MQHCONN connection handles using the same multicast transmitter or receiver. However, each
multicast exception causes only one event handler to be called per IBM MQ connection.

The IBM MQ MQCBDO_EVENT_CALL constant enables applications to register a callback to receive only
IBM MQ events, and the MQCBDO_MC_EVENT_CALL enable applications to register a callback to receive
only multicast events. If both constants are used, both types of event are received.

Requesting Multicast events
IBM MQ Multicast events use the MQCBDO_MC_EVENT_CALL constant in the cbd.Options field. The
following example demonstrates how to request multicast events:

cbd.CallbackType = MQCBT_EVENT_HANDLER;
cbd.Options = MQCBDO_MC_EVENT_CALL;

Developing applications for IBM MQ 1007

cbd.CallbackFunction = EventHandler;
MQCB(Hcon,MQOP_REGISTER,&cbd,MQHO_UNUSABLE_HOBJ,NULL,NULL,&CompCode,&Reason);

When the MQCBDO_MC_EVENT_CALL option is specified for the cbd.Options field, the event handler
is sent only IBM MQ Multicast events instead of connection level events. To request that both types of
events are sent to the event handler, the application must specify the MQCBDO_EVENT_CALL constant
in the cbd.Options field as well as the MQCBDO_MC_EVENT_CALL constant as shown in the following
example:

cbd.CallbackType = MQCBT_EVENT_HANDLER;
cbd.Options = MQCBDO_EVENT_CALL | MQCBDO_MC_EVENT_CALL
cbd.CallbackFunction = EventHandler;
MQCB(Hcon,MQOP_REGISTER,&cbd,MQHO_UNUSABLE_HOBJ,NULL,NULL,&CompCode,&Reason);

If neither of these constants is used, only connection level events are sent to the event handler.

For more information about values for the Options field see Options (MQLONG).

Multicast event format
IBM MQ Multicast exceptions include some supporting information which is returned in the Buffer
parameter of the callback function. The Buffer pointer points to an array of pointers and the
MQCBC.DataLength field specifies the size, in bytes, of the array. The first element of the array always
points to a short text description of the event. More parameters might be supplied depending on the type
of event. The following table lists the exceptions:

Table 155. Multicast event code descriptions

Event code Description Additional data

MQMCEV_PACKET_LOSS Unrecoverable packet loss Number of lost packets

MQMCEV_HEARTBEAT_TIMEOUT Long absence of heartbeat
control packet

N/A

MQMCEV_VERSION_CONFLICT Reception of newer protocol
version packets

N/A

MQMCEV_RELIABILITY Different reliability modes of the
transmitter and the receiver

N/A

MQMCEV_CLOSED_TRANS Topic transmission is closed by 1
source

N/A

MQMCEV_STREAM_ERROR Error detected on stream N/A

MQMCEV_NEW_SOURCE A new source starts to transmit
on the topic

Source structure

MQMCEV_RECEIVE_QUEUE_TRIMMED Packets removed from PacketQ
due to time or space expiration

Number of trimmed
packets

MQMCEV_PACKET_LOSS_NACK_EXPIRE Unrecoverable packet loss due to
NACK expiration

Number of lost packets

MQMCEV_ACK_RETRIES_EXCEEDED Packets removed from history
after max_ack_retries was
exceeded

Number of packets
removed

MQMCEV_STREAM_SUSPEND_NACK NACKs have been suspended on
a stream accepted by this topic

Suspend stream ID

Time in milliseconds that
the stream is suspended
for

1008 Developing Applications for IBM MQ

Table 155. Multicast event code descriptions (continued)

Event code Description Additional data

MQMCEV_STREAM_RESUME_NACK NACKs have been resumed after
they have been suspended on a
stream

Stream ID

MQMCEV_STREAM_EXPELLED A stream accepted by this topic
has been rejected due to an
expel request

Stream ID

MQMCEV_FIRST_MESSAGE First message from a source Message number

MQMCEV_LATE_JOIN_FAILURE Failed to start late join session N/A

MQMCEV_MESSAGE_LOSS Unrecoverable message loss Number of lost messages

MQMCEV_SEND_PACKET_FAILURE Multicast transmitter failed to
send a multicast packet

N/A

MQMCEV_REPAIR_DELAY Multicast receiver did not
receive a repair packet for an
outstanding NAK

N/A

MQMCEV_MEMORY_ALERT_ON Receiver reception buffers are
filling up

Buffer pool utilization
percentage

MQMCEV_MEMORY_ALERT_OFF Receiver reception buffers are
down to normal

Buffer pool utilization
percentage

MQMCEV_NACK_ALERT_ON Receiver repair packet request
rate reached high water mark

Current repair request
rate in packets per second

MQMCEV_NACK_ALERT_OFF Receiver repair packet request
rate is down to normal

Current repair request
rate in packets per second

MQMCEV_REPAIR_ALERT_ON Transmitter repair packet send
rate reached high water mark

N/A

MQMCEV_REPAIR_ALERT_OFF Transmitter repair packet send
rate is down to normal

N/A

MQMCEV_SHM_DEST_UNUSABLE The Shared Memory region
used by a transmitter topic
destination has been detected to
be unusable

N/A

MQMCEV_SHM_PORT_UNUSABLE The Shared Memory port used
by a receiver instance has been
detected to be unusable

N/A

MQMCEV_CCT_GETTIME_FAILED The get time from Coordinated
Cluster Time failed

N/A

MQMCEV_DEST_INTERFACE_FAILURE The network interface used by
a transmitter topic destination
has failed and a backup network
interface is unavailable

MQMCEV_DEST_INTERFACE_FAILOVER The network interface used by a
transmitter topic destination has
failed and a successful failover
to another Interface has been
completed

Developing applications for IBM MQ 1009

Table 155. Multicast event code descriptions (continued)

Event code Description Additional data

MQMCEV_PORT_INTERFACE-FAILURE The network interface used by a
receiver rmmPort has failed and
a backup network interface is
unavailable (or has also failed)

RMM configuration

MQMCEV_PORT_INTERFACE_FAILOVER The network interface used by a
receiver rmmPort has failed and
a successful failover to another
Interface has been completed

RMM configuration

Coding in C
Note the information in the following sections when coding IBM MQ programs in C.

• “Parameters of the MQI calls” on page 1010
• “Parameters with undefined data type” on page 1010
• “Data types” on page 1010
• “Manipulating binary strings” on page 1011
• “Manipulating character strings” on page 1011
• “Initial values for structures” on page 1011
• “Initial values for dynamic structures” on page 1012
• “Use from C++” on page 1012

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, MQHMSG, or MQLONG are passed by
value; for all other parameters, the address of the parameter is passed by value.

Not all parameters that are passed by address need to be specified every time a function is invoked.
Where a particular parameter is not required, a null pointer can be specified as the parameter on the
function invocation, in place of the address of the parameter data. Parameters for which this is possible
are identified in the call descriptions.

No parameter is returned as the value of the function; in C terminology, this means that all functions
return void.

The attributes of the function are defined by the MQENTRY macro variable; the value of this macro
variable depends on the environment.

Parameters with undefined data type
The MQGET, MQPUT, and MQPUT1 functions each have a Buffer parameter that has an undefined data
type. This parameter is used to send and receive the application's message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. You can declare the
parameters in this way, but it is typically more convenient to declare them as the structure that describes
the layout of the data in the message. The function parameter is declared as a pointer-to-void, and so the
address of any data can be specified as the parameter on the function invocation.

Data types
All data types are defined with the typedef statement.

For each data type, the corresponding pointer data type is also defined. The name of the pointer data type
is the name of the elementary or structure data type prefixed with the letter P to denote a pointer. The

1010 Developing Applications for IBM MQ

attributes of the pointer are defined by the MQPOINTER macro variable; the value of this macro variable
depends on the environment. The following code illustrates how to declare pointer data types:

#define MQPOINTER /* depends on environment */
...
typedef MQLONG MQPOINTER PMQLONG; /* pointer to MQLONG */
typedef MQMD MQPOINTER PMQMD; /* pointer to MQMD */

Manipulating binary strings
Strings of binary data are declared as one of the MQBYTEn data types.

Whenever you copy, compare, or set fields of this type, use the C functions memcpy, memcmp, or memset:

#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /* set "MsgId" field to nulls */
 MQMI_NONE, /* ...using named constant */
 sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /* set "CorrelId" field to nulls */
 0x00, /* ...using a different method */
 sizeof(MQBYTE24));

Do not use the string functions strcpy, strcmp, strncpy, or strncmp because these do not work correctly
with data declared as MQBYTE24.

Manipulating character strings
When the queue manager returns character data to the application, the queue manager always pads
the character data with blanks to the defined length of the field. The queue manager does not return
null-terminated strings, but you can use them in your input. Therefore, when copying, comparing, or
concatenating such strings, use the string functions strncpy, strncmp, or strncat.

Do not use the string functions that require the string to be terminated by a null (strcpy, strcmp, and
strcat). Also, do not use the function strlen to determine the length of the string; use instead the sizeof
function to determine the length of the field.

Initial values for structures
The include file <cmqc.h> defines various macro variables that you can use to provide initial values for the
structures when declaring instances of those structures. These macro variables have names of the form
MQxxx_DEFAULT, where MQxxx represents the name of the structure. Use them like this:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields, the MQI defines particular values that are valid (for example, for the StrucId
fields or for the Format field in MQMD). For each of the valid values, two macro variables are provided:

• One macro variable defines the value as a string with a length, excluding the implied null, that exactly
matches the defined length of the field. In the following examples, the symbol ¬ represents a single
blank character:

#define MQMD_STRUC_ID "MD¬¬"
#define MQFMT_STRING "MQSTR¬¬¬"

Use this form with the memcpy and memcmp functions.

Developing applications for IBM MQ 1011

• The other macro variable defines the value as an array of char; the name of this macro variable is the
name of the string form suffixed with _ARRAY. For example:

#define MQMD_STRUC_ID_ARRAY 'M','D','¬','¬'
#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','¬','¬','¬'

Use this form to initialize the field when an instance of the structure is declared with values different
from those provided by the MQMD_DEFAULT macro variable.

Initial values for dynamic structures
When a variable number of instances of a structure are required, the instances are typically created in
main storage obtained dynamically using the calloc or malloc functions.

To initialize the fields in such structures, the following technique is recommended:

1. Declare an instance of the structure using the appropriate MQxxx_DEFAULT macro variable to initialize
the structure. This instance becomes the model for other instances:

MQMD ModelMsgDesc = {MQMD_DEFAULT};
 /* declare model instance */

Code the static or auto keywords on the declaration to give the model instance static or dynamic
lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of the structure:

PMQMD InstancePtr;
InstancePtr = malloc(sizeof(MQMD));
 /* get storage for dynamic instance */

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy(InstancePtr,&ModelMsgDesc,sizeof(MQMD));
 /* initialize dynamic instance */

Use from C++
For the C++ programming language, the header files contain the following additional statements that are
included only when a C++ compiler is used:

#ifdef __cplusplus
 extern "C" {
#endif

/* rest of header file */

#ifdef __cplusplus
 }
#endif

Coding in Visual Basic
Information to consider when coding IBM MQ programs in Microsoft Visual Basic. Visual Basic is
supported only on Windows.

Note:

From IBM WebSphere MQ 7.0, outside the .NET environment, support for Visual Basic (VB)
has been stabilized at the IBM WebSphere MQ 6.0 level. Most new function added to IBM WebSphere MQ

1012 Developing Applications for IBM MQ

7.0 or later is not available to VB applications. If you are programming in VB.NET, use the IBM MQ classes
for .NET. For more information, see Developing .NET applications.

From IBM MQ 9.0, support for Microsoft Visual Basic 6.0 is deprecated. IBM MQ classes
for .NET are the recommended replacement technology.

To avoid unintended translation of binary data passing between Visual Basic and IBM MQ, use an MQBYTE
definition instead of MQSTRING. CMQB.BAS defines several new MQBYTE types that are equivalent to
a C byte definition and uses these within IBM MQ structures. For example, for the MQMD (message
descriptor) structure, MsgId (message identifier) is defined as MQBYTE24.

Visual Basic does not have a pointer data type, so references to other IBM MQ data structures are by
offset rather than pointer. Declare a compound structure consisting of the two component structures, and
specify the compound structure on the call. IBM MQ support for Visual Basic provides an MQCONNXAny
call to make this possible and allow client applications to specify the channel properties on a client
connection. It accepts an untyped structure (MQCNOCD) in place of the typical MQCNO structure.

The MQCNOCD structure is a compound structure consisting of an MQCNO followed by an MQCD. This
structure is declared in the exits header file CMQXB. Use the routine MQCNOCD_DEFAULTS to initialize an
MQCNOCD structure. A sample making MQCONNX calls is provided (amqscnxb.vbp).

MQCONNXAny has the same parameters as MQCONNX, except that the ConnectOpts parameter is
declared as being of Any data type rather than of MQCNO data type. This allows the function to accept
either the MQCNO or the MQCNOCD structure. This function is declared in the main header file CMQB.

Related concepts
“Preparing Visual Basic programs in Windows” on page 981
Information to consider when using Microsoft Visual Basic programs on Windows.
Related reference
“Linking Visual Basic applications with the IBM MQ MQI client code” on page 886
You can link Microsoft Visual Basic applications with the IBM MQ MQI client code on Windows.

Coding in COBOL
Note the information in the following section when coding IBM MQ programs in COBOL.

Named constants
The names of constants are shown containing the underscore character (_) as part of the name. In
COBOL, you must use the hyphen character (-) in place of the underscore. Constants that have character-
string values use the single quotation mark character (') as the string delimiter. To make the compiler
accept this character, use the compiler option APOST.

The copy file CMQV contains declarations of the named constants as level-10 items. To use the constants,
declare the level-01 item explicitly, then use the COPY statement to copy in the declarations of the
constants:

WORKING-STORAGE SECTION.
01 MQM-CONSTANTS.
COPY CMQV.

However, this method causes the constants to occupy storage in the program even if they are not referred
to. If the constants are included in many separate programs within the same run unit, multiple copies of
the constants will exist; this might result in a significant amount of main storage being used. You can avoid
this by adding the GLOBAL clause to the level-01 declaration:

* Declare a global structure to hold the constants
01 MQM-CONSTANTS GLOBAL.
COPY CMQV.

Developing applications for IBM MQ 1013

This allocates storage for only one set of constants within the run unit; the constants, however, can be
referred to by any program within the run unit, not just the program that contains the level-01 declaration.

Ensuring structure alignment
Care should be taken to ensure IBM MQ structures that are passed on to start on the MQ call's must be
aligned on word boundaries. A word boundary is 4 bytes for 32-bit processes, 8 bytes for 64 bit processes
and 16 bytes for 128 bit processes (IBM i).

Where possible, place all IBM MQ structures together so they are all boundary aligned.

Coding in System/390 assembler language (Message queue interface)
Note the information in the following sections when coding IBM MQ for z/OS programs in assembler
language.

• “Names” on page 1014
• “Using the MQI calls” on page 1014
• “Declaring constants” on page 1014
• “Specifying the name of a structure” on page 1015
• “Specifying the form of a structure” on page 1015
• “Controlling the listing” on page 1015
• “Specifying initial values for fields” on page 1016
• “Writing reenterable programs” on page 1016
• “Using CEDF” on page 1016

Names
The names of parameters in the descriptions of calls, and the names of fields in the descriptions of
structures are shown in mixed case. In the assembler-language macros supplied with IBM MQ, all names
are in uppercase.

Using the MQI calls
The MQI is a call interface, so assembler-language programs must observe the OS linkage convention.

In particular, before they issue an MQI call, assembler-language programs must point register R13 at
a save area of at least 18 full words. This save area provides storage for the called program. It stores
the registers of the caller before their contents are destroyed, and restores the contents of the caller's
registers on return.

Note: This is important for CICS assembler-language programs that use the DFHEIENT macro to set up
their dynamic storage, but that choose to override the default DATAREG from R13 to other registers. When
the CICS Resource Manager Interface receives control from the stub, it saves the current contents of the
registers at the address to which R13 is pointing. Failing to reserve a save area for this purpose gives
unpredictable results, and will probably cause an abend in CICS.

Declaring constants
Most constants are declared as equates in macro CMQA.

However, the following constants cannot be defined as equates, and these are not included when you call
the macro using default options:

• MQACT_NONE
• MQCI_NONE
• MQFMT_NONE

1014 Developing Applications for IBM MQ

• MQFMT_ADMIN
• MQFMT_COMMAND_1
• MQFMT_COMMAND_2
• MQFMT_DEAD_LETTER_HEADER
• MQFMT_EVENT
• MQFMT_IMS
• MQFMT_IMS_VAR_STRING
• MQFMT_PCF
• MQFMT_STRING
• MQFMT_TRIGGER
• MQFMT_XMIT_Q_HEADER
• MQMI_NONE

To include them, add the keyword EQUONLY=NO when you call the macro.

CMQA is protected against multiple declaration, so you can include it many times. However, the keyword
EQUONLY takes effect only the first time that the macro is included.

Specifying the name of a structure
To allow more than one instance of a structure to be declared, the macro that generates the structure
prefixes the name of each field with a user-specifiable string and an underscore character (_).

Specify the string when you invoke the macro. If you do not specify a string, the macro uses the name of
the structure to construct the prefix:

* Declare two object descriptors
CMQODA Prefix used="MQOD_" (the default)
MY_MQOD CMQODA Prefix used="MY_MQOD_"

The structure declarations in Call descriptions show the default prefix.

Specifying the form of a structure
The macros can generate structure declarations in one of two forms, controlled by the DSECT parameter:
DSECT=YES

An assembler-language DSECT instruction is used to start a new data section; the structure definition
immediately follows the DSECT statement. No storage is allocated, so no initialization is possible. The
label on the macro invocation is used as the name of the data section; if no label is specified, the
name of the structure is used.

DSECT=NO
Assembler-language DC instructions are used to define the structure at the current position in the
routine. The fields are initialized with values, which you can specify by coding the relevant parameters
on the macro invocation. Fields for which no values are specified on the macro invocation are
initialized with default values.

DSECT=NO is assumed if the DSECT parameter is not specified.

Controlling the listing
You can control the appearance of the structure declaration in the assembler-language listing with the
LIST parameter:
LIST=YES

The structure declaration appears in the assembler-language listing.

Developing applications for IBM MQ 1015

LIST=NO
The structure declaration does not appear in the assembler-language listing. This is assumed if the
LIST parameter is not specified.

Specifying initial values for fields
You can specify the value to be used to initialize a field in a structure by coding the name of that field
(without the prefix) as a parameter on the macro invocation, accompanied by the value required.

For example, to declare a message descriptor structure with the MsgType field initialized with
MQMT_REQUEST, and the ReplyToQ field initialized with the string MY_REPLY_TO_QUEUE, use the
following code:

MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X
REPLYTOQ=MY_REPLY_TO_QUEUE

If you specify a named constant (or equate) as a value on the macro invocation, use the CMQA macro to
define the named constant. You must not enclose in single quotation marks (' ') values that are character
strings.

Writing reenterable programs
IBM MQ uses its structures for both input and output. If you want your program to remain reenterable:

1. Define working storage versions of the structures as DSECTs, or define the structures inline within an
already-defined DSECT. Then copy the DSECT to storage that is obtained using:

• For batch and TSO programs, the STORAGE or GETMAIN z/OS assembler macros
• For CICS, the working storage DSECT (DFHEISTG) or the EXEC CICS GETMAIN command

To correctly initialize these working storage structures, copy a constant version of the corresponding
structure to the working storage version.

Note: The MQMD and MQXQH structures are each more than 256 bytes long. To copy these structures
to storage, use the MVCL assembler instruction.

2. Reserve space in storage by using the LIST form (MF=L) of the CALL macro. When you use the CALL
macro to make an MQI call, use the EXECUTE form (MF=E) of the macro, using the storage reserved
earlier, as shown in the example under “Using CEDF” on page 1016. For more examples of how to do
this, see the assembler language sample programs as shipped with IBM MQ.

Use the assembler language RENT option to help you to determine if your program is reenterable.

For information on writing reenterable programs, see z/OS MVS Application Development Guide:
Assembler Language Programs.

Using CEDF
If you want to use the CICS-supplied transaction, CEDF (CICS Execution Diagnostic Facility) to help you
to debug your program, add the ,VL keyword to each CALL statement, for example:

CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

The previous example is reenterable assembler-language code where PARMAREA is an area in the working
storage that you specified.

Using the MQI calls

The MQI is a call interface, so assembler-language programs must observe the OS linkage convention.
In particular, before they issue an MQI call, assembler-language programs must point register R13 at
a save area of at least 18 full words. This save area provides storage for the called program. It stores

1016 Developing Applications for IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-programming-assembler-services-guide
https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-programming-assembler-services-guide

the registers of the caller before their contents are destroyed, and restores the contents of the caller's
registers on return.

Note: This is important for CICS assembler-language programs that use the DFHEIENT macro to set up
their dynamic storage, but that choose to override the default DATAREG from R13 to other registers. When
the CICS Resource Manager Interface receives control from the stub, it saves the current contents of the
registers at the address to which R13 is pointing. Failing to reserve a proper save area for this purpose
gives unpredictable results, and will probably cause an abend in CICS.

Coding IBM MQ programs in RPG (IBM i only)
In the IBM MQ documentation, the parameters of calls, the names of data types, the fields of structures,
and the names of constants are all described using their long names. In RPG, these names are
abbreviated to six or fewer uppercase characters.

For example, the field MsgType becomes MDMT in RPG. For more information, see the IBM i Application
Programming Reference (ILE/RPG).

Coding in PL/I (z/OS only)
Useful information when coding for IBM MQ in PL/I.

Structures
Structures are declared with the BASED attribute, and so do not occupy any storage unless the program
declares one or more instances of a structure.

An instance of a structure can be declared using the like attribute, for example:

dcl my_mqmd like MQMD; /* one instance */
dcl my_other_mqmd like MQMD; /* another one */

The structure fields are declared with the INITIAL attribute; when the like attribute is used to declare an
instance of a structure, that instance inherits the initial values defined for that structure. You need to set
only those fields where the value required is different from the initial value.

PL/I is not sensitive to case, and so the names of calls, structure fields, and constants can be coded in
lowercase, uppercase, or mixed case.

Named constants
The named constants are declared as macro variables; as a result, named constants that are not referred
to by the program do not occupy any storage in the compiled procedure.

However, the compiler option that causes the source to be processed by the macro preprocessor must be
specified when the program is compiled.

All the macro variables are character variables, even the ones that represent numeric values. Although
this might seem counter intuitive, it does not result in any data-type conflict after the macro variables
have been substituted by the macro processor, for example:

%dcl MQMD_STRUC_ID char;
%MQMD_STRUC_ID = '''MD ''';

%dcl MQMD_VERSION_1 char;
%MQMD_VERSION_1 = '1';

Developing applications for IBM MQ 1017

Using the IBM MQ sample procedural programs
These sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

About this task
There are two sets of samples:

• Sample programs for Multiplatforms.

• Sample programs for z/OS.

Procedure
• Use the following links to find out more about the sample programs:

– “Using the sample programs on Multiplatforms” on page 1018

– “Using the sample programs for z/OS” on page 1118

Related concepts
“Application development concepts” on page 6
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Before you
start to design and write your IBM MQ applications, familiarize yourself with the basic IBM MQ concepts.
“Developing applications for IBM MQ” on page 5
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ supports applications written in many different languages and frameworks.
“Design considerations for IBM MQ applications” on page 47
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Writing a procedural application for queuing” on page 696
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 879
What you need to know to write client applications on IBM MQ using a procedural language.
“Writing publish/subscribe applications” on page 780
Start writing publish/subscribe IBM MQ applications.
“Building a procedural application” on page 962
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 999
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

Using the sample programs on Multiplatforms
These sample procedural programs are delivered with the product. The samples are written in C and
COBOL, and demonstrate typical uses of the Message Queue Interface (MQI).

About this task
The samples are not intended to demonstrate general programming techniques, so some error checking
that you might want to include in a production program is omitted.

1018 Developing Applications for IBM MQ

The source code for all the samples is provided with the product; this source includes comments that
explain the message queuing techniques demonstrated in the programs.

For RPG programming, see IBM i Application Programming Reference (ILE/RPG).

The names of the samples start with the prefix amq. The fourth character indicates the programming
language, and the compiler where necessary:

• s: C language
• 0: COBOL language on both IBM and Micro Focus compilers
• i: COBOL language on IBM compilers only
• m: COBOL language on Micro Focus compilers only

The eighth character of the executable indicates whether the sample runs in local binding mode or client
mode. If there is no eighth character, then the sample runs in local bindings mode. If the eighth character
is 'c' then the sample runs in client mode.

Before you can run the sample applications, you must first create and configure a queue manager. To set
up the queue manager to accept client connections, see “Configuring a queue manager to accept client
connections on Multiplatforms” on page 1028.

Procedure
• Use the following links to find out more about the sample programs:

– “Features demonstrated in the sample programs on Multiplatforms” on page 1020
– “Preparing and running the sample programs” on page 1028
– “The API exit sample program” on page 1035
– “The Asynchronous consumption sample program” on page 1036
– “The Asynchronous Put sample program” on page 1037
– “The Browse sample programs” on page 1038
– “The Browser sample program” on page 1039
– “The CICS transaction sample” on page 1040
– “The Connect sample program” on page 1041
– “The Data-Conversion sample program” on page 1042
– “Database coordination samples” on page 1042
– “Dead-letter queue handler sample” on page 1049
– “The Distribution List sample program” on page 1049
– “The Echo sample programs” on page 1050
– “The Get sample programs” on page 1051
– “High availability sample programs” on page 1052
– “The Inquire sample programs” on page 1056
– “The Inquire Properties of a Message Handle sample program” on page 1057
– “The Publish/Subscribe sample programs” on page 1057
– “The Publish Exit sample program” on page 1062
– “The Put sample programs” on page 1063
– “The Reference Message sample programs” on page 1065
– “The Request sample programs” on page 1072
– “The Set sample programs” on page 1077
– “The TLS sample program” on page 1078
– “The Triggering sample programs” on page 1081

Developing applications for IBM MQ 1019

– “Using the TUXEDO samples on AIX, Linux, and Windows” on page 1083
– “Using the SSPI security exit on Windows” on page 1092
– “Running the samples using remote queues” on page 1093
– “The Cluster Queue Monitoring sample program (AMQSCLM)” on page 1093
– “Sample program for Connection Endpoint Lookup (CEPL)” on page 1103

Related concepts
“C++ sample programs” on page 511
Four sample programs are supplied, to demonstrate getting and putting messages.
Related tasks
“Using the sample programs for z/OS” on page 1118
The sample procedural applications that are delivered with IBM MQ for z/OS demonstrate typical uses of
the Message Queue Interface (MQI).

Features demonstrated in the sample programs on Multiplatforms
A collection of tables that show the techniques demonstrated by the IBM MQ sample programs.

All the samples open and close queues using the MQOPEN and MQCLOSE calls, so these techniques are
not listed separately in the tables. See the heading that includes the platform that you are interested in.

For the z/OS platform, see “Using the sample programs for z/OS” on page 1118.

Samples for AIX and Linux systems
The techniques demonstrated by the sample programs for IBM MQ for AIX or Linux.

See “Preparing and running sample programs on AIX and Linux” on page 1032 to find out where the
sample programs for IBM MQ for AIX or Linux are stored.

Table 156 on page 1020 The table lists which C and COBOL source files are provided, and whether a
server or client executable is included.

Table 156. Sample programs that demonstrate the use of the MQI (C and COBOL) on AIX and Linux.

A table with four columns. The first columns lists the techniques demonstrated by the samples. The second
column lists the C samples and the third column lists the COBOL samples that demonstrate each of the
techniques listed in the first column. The fourth column shows whether a server C executable is or is not
included and the fifth column shows whether a client C executable is or is not included.

Technique

C (source)
(“1” on page
1023)

COBOL
(source) (“2”
on page
1023)

Server (C
executable)

Client (C
executable)

Using the publish/subscribe interface amqspuba
amqssuba
amqssbxa

no sample amqspub
amqssub
amqssbx

no sample

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc

Putting a single message using the MQPUT1
call

amqsinqa
amqsecha

amqminqx
amqmechx
amqiinqx
amqiechx

amqsinq
amqsech

amqsechc

Putting messages to a distribution list (“3” on
page 1023)

amqsptl0 amq0ptl0.cbl amqsptl amqsptlc

Replying to a request message amqsinqa amqminqx
amqiinqx

amqsinq no sample

1020 Developing Applications for IBM MQ

Table 156. Sample programs that demonstrate the use of the MQI (C and COBOL) on AIX and Linux.

A table with four columns. The first columns lists the techniques demonstrated by the samples. The second
column lists the C samples and the third column lists the COBOL samples that demonstrate each of the
techniques listed in the first column. The fourth column shows whether a server C executable is or is not
included and the fifth column shows whether a client C executable is or is not included.

(continued)

Technique

C (source)
(“1” on page
1023)

COBOL
(source) (“2”
on page
1023)

Server (C
executable)

Client (C
executable)

Getting messages using browse (no wait) amqsgbr0 amq0gbr0 amqsgbr no sample

Getting messages (wait with a time limit) amqsget0 amq0get0 amqsget amqsgetc

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech no sample

Putting Reference Messages to a queue (“3”
on page 1023)

amqsprma no sample amqsprm amqsprmc

Getting Reference Messages from a queue
(“3” on page 1023)

amqsgrma no sample amqsgrm amqsgrmc

Reference Message channel exit (“3” on page
1023)

amqsqrma
amqsxrma

no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Using a shared input queue amqsinqa amqminqx
amqiinqx

amqsinq amqsinqc

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminqx
amqiinqx

amqsinq no sample

Using the MQSET call amqsseta amqmsetx
amqisetx

amqsset amqssetc

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq no sample

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr no sample

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr no sample

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion (“4” on page
1023)

no sample no sample no sample

IBM MQ (coordinating XA-compliant database
managers) accessing a single database using
SQL

amqsxas0.sqc
Db2
amqsxas0.ec
Informix

amq0xas0.sq
b

no sample no sample

Developing applications for IBM MQ 1021

Table 156. Sample programs that demonstrate the use of the MQI (C and COBOL) on AIX and Linux.

A table with four columns. The first columns lists the techniques demonstrated by the samples. The second
column lists the C samples and the third column lists the COBOL samples that demonstrate each of the
techniques listed in the first column. The fourth column shows whether a server C executable is or is not
included and the fifth column shows whether a client C executable is or is not included.

(continued)

Technique

C (source)
(“1” on page
1023)

COBOL
(source) (“2”
on page
1023)

Server (C
executable)

Client (C
executable)

IBM MQ (coordinating XA-compliant database
managers) accessing two databases using SQL

amqsxag0.c
amqsxab0.sq
c
amqsxaf0.sqc

amq0xag0.cbl
amq0xab0.sq
b
amq0xaf0.sqb

no sample no sample

CICS transaction (“5” on page 1023) amqscic0.ccs no sample amqscic0 no sample

Encina transaction (“3” on page 1023) amqsxae0 no sample amqsxae0 no sample

TUXEDO transaction to put messages “6” on
page 1023)

amqstxpx no sample no sample no sample

TUXEDO transaction to get messages (“6” on
page 1023)

amqstxgx no sample no sample no sample

Server for TUXEDO (“6” on page 1023) amqstxsx no sample no sample no sample

Dead-letter queue handler Directory ./
tools/c/
Samples/dl
q (“7” on
page 1023)

no sample amqsdlq no sample

From an MQI client, putting a message no sample no sample no sample amqsputc

From an MQI client, getting a message no sample no sample no sample amqsgetc

Connecting to the queue manager using
MQCONNX

amqscnxc no sample no sample amqscnxc

Using API exits amqsaxe0 no sample amqsaxe no sample

Cluster workload balancing exit amqswlm0 no sample amqswlm no sample

Putting messages asynchronously and getting
status using the MQSTAT call

amqsapt0 no sample amqsapt amqsaptc

Reconnectable clients amqsphac
amqsghac
amqsmhac

no sample not applicable amqsphac
amqsghac
amqsmhac

Using message consumers to asynchronously
consume messages from multiple queues

amqscbf0 no sample amqscbf amqscbfc

Specifying TLS connection information on
MQCONNX

amqssslc no sample not applicable amqssslc

Notes:

1022 Developing Applications for IBM MQ

1. The executable version of the IBM MQ MQI client samples share the same source as the samples that
run in a server environment.

2. Compile programs beginning 'amqm' with the Micro Focus COBOL compiler, those beginning 'amqi'
with the IBM COBOL compiler, and those beginning 'amq0' with either.

3. Supported on IBM MQ for AIX only.

4. On IBM MQ for AIX this program is called amqsvfc0.c

5. CICS is supported by IBM MQ for AIX only.

6. TUXEDO is not supported by IBM MQ for Linux on System p.
7. The source for the dead-letter queue handler consists of several files and is provided in a separate

directory.

For detailed information about support for AIX and Linux systems, see System Requirements for IBM MQ.

Samples for IBM MQ for Windows
The techniques demonstrated by the sample programs for IBM MQ for Windows.

Table 157 on page 1023 lists which C and COBOL source files are provided, and whether a server or client
executable is included.

Table 157. IBM MQ for Windows sample programs demonstrating use of the MQI (C and COBOL)

Technique C (source) COBOL
(source)

Server (C
executable)

Client (C
executable)

Using the publish/subscribe interface amqspuba
amqssuba
amqssbxa

no sample amqspub
amqssub
amqssbx

no sample

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc

Putting a single message using the MQPUT1
call

amqsinqa
amqsecha

amqminq2
amqmech2
amqiinq2
amqiech2

amqsinq
amqsech

amqsinqc
amqsechc

Putting messages to a distribution list amqsptl0 amq0ptl0.cbl amqsptl amqsptlc

Replying to a request message amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Getting messages (wait with a time limit) amqsget0 amq0get0 amqsget amqsgetc

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech amqsechc

Putting Reference Messages to a queue amqsprma no sample amqsprm amqsprmc

Getting Reference Messages from a queue amqsgrma no sample amqsgrm amqsgrmc

Reference Message channel exit amqsqrma
amqsxrma

no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Using a shared input queue amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Developing applications for IBM MQ 1023

https://www.ibm.com/support/pages/system-requirements-ibm-mq

Table 157. IBM MQ for Windows sample programs demonstrating use of the MQI (C and COBOL) (continued)

Technique C (source) COBOL
(source)

Server (C
executable)

Client (C
executable)

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Using the MQSET call amqsseta amqmset2
amqiset2

amqsset amqssetc

Using the MQINQMP call amqsiqma no sample no sample no sample

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq amqsreqc

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion amqsvfc0 no sample no sample no sample

IBM MQ (coordinating XA-compliant database
managers) accessing a single database using
SQL

amqsxas0.sqc
Db2
amqsxas0.ec
Informix

amq0xas0.sq
b

no sample no sample

IBM MQ (coordinating XA-compliant database
managers) accessing two databases using SQL

amqsxag0.c
amqsxab0.sq
c
Db2
amqsxaf0.sqc
Db2

amq0xag0.cbl
amq0xab0.sq
b
amq0xaf0.sqb

no sample no sample

TUXEDO transaction to put messages amqstxpx no sample no sample no sample

TUXEDO transaction to get messages amqstxgx no sample no sample no sample

Server for TUXEDO amqstxsx no sample no sample no sample

Dead-letter queue handler Directory ./
tools/c/
Samples/dl
q (“1” on
page 1025)

no sample amqsdlq no sample

From an IBM MQ MQI client, putting a
message

no sample no sample no sample amqsputc

From an IBM MQ MQI client, getting a
message

no sample no sample no sample amqsgetc

Connecting to the queue manager using
MQCONNX

amqscnxc no sample no sample amqscnxc

Using API exits amqsaxe0 no sample amqsaxe no sample

Cluster workload balancing amqswlm0 no sample amqswlm no sample

1024 Developing Applications for IBM MQ

Table 157. IBM MQ for Windows sample programs demonstrating use of the MQI (C and COBOL) (continued)

Technique C (source) COBOL
(source)

Server (C
executable)

Client (C
executable)

SSPI security routines amqsspin no sample amqrspin.dll amqrspin.dll

Putting messages asynchronously and getting
status using the MQSTAT call

amqsapt0 no sample amqsapt amqsaptc

Reconnectable clients amqsphac
amqsghac
amqsmhac

no sample Not
applicable

amqsphac
amqsghac
amqsmhac

Using message consumers to asynchronously
consume messages from multiple queues

amqscbf0 no sample amqscbf amqscbfc

Specifying TLS connection information on
MQCONNX

amqssslc no sample not applicable amqssslc

Notes:

1. The source for the dead-letter queue handler consists of several files and is provided in a separate
directory.

Visual Basic samples for IBM MQ for Windows
The techniques demonstrated by the sample programs for IBM MQ on Windows systems.

Table 158 on page 1025 shows the techniques demonstrated by the IBM MQ for Windows sample
programs.

A project can contain several files. When you open a project within Visual Basic, the other files are loaded
automatically. No executable programs are provided.

All the sample projects, except mqtrivc.vbp, are set up to work with the IBM MQ server. To find out how
to change the sample projects to work with the IBM MQ clients see “Preparing Visual Basic programs in
Windows” on page 981.

Table 158. IBM MQ for Windows sample programs demonstrating use of the MQI (Visual Basic)

Technique Project file name

Putting messages using the MQPUT call amqsputb.vbp

Getting messages using the MQGET call amqsgetb.vbp

Browsing a queue using the MQGET call amqsbcgb.vbp

Simple MQGET and MQPUT sample (client) mqtrivc.vbp

Simple MQGET and MQPUT sample (server) mqtrivs.vbp

Putting and getting strings and user-defined structures using MQPUT and MQGET strings.vbp

Using PCF structures to start and stop a channel pcfsamp.vbp

Creating a queue using the MQAI amqsaicq.vbp

Listing a queue manager's queues using the MQAI amqsailq.vbp

Monitoring events using the MQAI amqsaiem.vbp

Developing applications for IBM MQ 1025

Samples for IBM i
The techniques demonstrated by the sample programs for IBM MQ on IBM i systems.

Table 159 on page 1026 shows the techniques demonstrated by the IBM MQ for IBM i sample programs.
Some techniques occur in more than one sample program, but only one program is listed in the table.

Table 159. Sample programs demonstrating use of the MQI (C and COBOL) on IBM i

Technique C (source)
(“1” on page
1027)

COBOL
(source) (“2”
on page
1027)

RPG (source)
(“3” on page
1027)

Client (C
executable)
(4)

Putting messages using the MQPUT call AMQSPUT0 AMQ0PUT4 AMQ3PUT4 AMQSPUTC

Putting messages from a data file using the
MQPUT call

AMQSPUT4 no sample no sample no sample

Putting a single message using the MQPUT1
call

AMQSINQ4,
AMQSECH4

AMQ0INQ4,
AMQ0ECH4

AMQ3INQ4,
AMQ3ECH4

AMQSINQC,
AMQSECHC

Putting messages to a distribution list AMQSPTL4 no sample no sample AMQSPTLC

Replying to a request message AMQSINQ4 AMQ0INQ4 AMQ3INQ4 AMQSINQC

Getting messages (no wait) AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Getting messages (wait with a time limit) AMQSGET4 AMQ0GET4 AMQ3GET4 AMQSGETC

Getting messages (unlimited wait) AMQSTRG4 no sample AMQ3TRG4 AMQSTRGC

Getting messages (with data conversion) AMQSECH4 AMQ0ECH4 AMQ3ECH4 AMQSECHC

Putting Reference Messages to a queue AMQSPRM4 no sample no sample AMQSPRMC

Getting Reference Messages from a queue AMQSGRM4 no sample no sample AMQSGRMC

Reference Message channel exit AMQSQRM4,
AMQSXRM4

no sample no sample no Sample

Message exit AMQSCMX4 no sample no sample no Sample

Browsing first 49 characters of a message AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Browsing complete messages AMQSBCG4 no sample no sample AMQSBCGC

Using a shared input queue AMQSINQ4 AMQ0INQ4 AMQ3INQ4 AMQSINQC

Using an exclusive input queue AMQSREQ4 AMQ0REQ4 AMQ3REQ4 AMQSREQC

Using the MQINQ call AMQSINQ4 AMQ0INQ4 AMQ3INQ4 AMQSINQC

Using the MQSET call AMQSSET4 AMQ0SET4 AMQ3SET4 AMQSSETC

Using a reply-to queue AMQSREQ4 AMQ0REQ4 AMQ3REQ4 AMQSREQC

Requesting message exceptions AMQSREQ4 AMQ0REQ4 AMQ3REQ4 AMQSREQC

Accepting a truncated message AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Using a resolved queue name AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Triggering a process AMQSTRG4 no sample AMQ3TRG4 AMQSTRGC

Trigger server AMQSERV4 no sample AMQ3SRV4 no sample

Using a trigger server (including CICS
transactions)

AMQSERV4 no sample AMQ3SRV4 no sample

1026 Developing Applications for IBM MQ

Table 159. Sample programs demonstrating use of the MQI (C and COBOL) on IBM i (continued)

Technique C (source)
(“1” on page
1027)

COBOL
(source) (“2”
on page
1027)

RPG (source)
(“3” on page
1027)

Client (C
executable)
(4)

Using data conversion AMQSVFC4 no sample no sample no sample

Using API exits AMQSAXE0 no sample no sample no sample

Cluster workload balancing AMQSWLM0 no sample no sample no sample

Putting messages asynchronously and getting
status using the MQSTAT call

AMQSAPT0 no sample no sample AMQSAPTC

Using the publish/subscribe interface AMQSPUBA,
AMQSSUBA,
AMQSSBXA

no sample no sample AMQSPUBC,
AMQSSUBC,
AMQSSBXC

Reconnectable clients (5) AMQSPHAC,
AMQSGHAC,
AMQSMHAC

no sample no sample no sample

Using message consumers to asynchronously
consume messages from multiple queues (5)

AMQSCBFO no sample no sample no sample

Specifying TLS connection information on
MQCONNX

AMQSSSLC no sample no sample AMQSSSLC

Connecting to the queue manager using
MQCONNX

AMQSCNXC no sample no sample AMQSCNXC

Inquire properties of a message handle, using
MQINQMP, from a message queue

AMQISQMA no sample no sample AMQISQMC

Set properties of a message handle using
MQSETMP and put it to a message queue

AMQSSQMA no sample no sample AMQSSQMC

Notes:

1. Source for the C samples is in the file QMQMSAMP/QCSRC. Include files exist as members in the file
QMQM/H.

2. Source for the COBOL samples are in the files QMQMSAMP/QCBLLESRC. The members are named
AMQ0 xxx 4, where xxx indicates the sample function.

3. Source for the RPG samples is in QMQMSAMP/QRPGLESRC. Members are named AMQ3 xxx 4, where
xxx indicates the sample function. Copy members exist in QMQM/QRPGLESRC. Each member name
has the suffix G.

4. The executable version of the IBM MQ MQI client samples share the same source as the samples that
run in a server environment. Source for the samples in the client environment is same as the server.
IBM MQ MQI client samples are linked with client library LIBMQIC and IBM MQ server samples are
linked with server library LIBMQM.

5. If client executable for sample application of Reconnectable client and asynchronously consumer
application has to be run, it has to be compiled and linked with threaded library LIBMQIC_R. Hence, it
has to be run in threaded environment. Set the environment variable QIBM_MULTI_THREADED to 'Y'
and run the application from qsh.

See Setting up IBM MQ with Java and JMS for more information.

See “Preparing and running sample programs on IBM i” on page 1030 for more information.

In addition to these, the IBM MQ for IBM i sample option includes a sample data file, which you use
as input to the sample programs, AMQSDATA and sample CL programs that demonstrate administration

Developing applications for IBM MQ 1027

tasks. The CL samples are described in the Administering IBM i . You could use the sample CL program
amqsamp4 to create queues to use with the sample programs described in this topic.

Preparing and running the sample programs
After completing some initial preparation, you can then run the sample programs.

About this task
Before you run the sample programs, you must first create a queue manager and also create the queues
that you need. You might also need to do some additional preparation, for example, if you want to run
COBOL samples. After completing the necessary preparation, you can then run the sample programs.

Procedure
For information about how to prepare and run the sample programs, see the following topics:

• “Configuring a queue manager to accept client connections on Multiplatforms” on page 1028
• “Preparing and running sample programs on IBM i” on page 1030
• “Preparing and running sample programs on AIX and Linux” on page 1032
• “Preparing and running sample programs on Windows” on page 1033

Configuring a queue manager to accept client connections on Multiplatforms
Before you can run the sample applications, you must first create a queue manager. You can then
configure the queue manager to securely accept incoming connection requests from applications that are
running in client mode.

Before you begin
Ensure the queue manager already exists and has been started. Determine whether channel
authentication records are already enabled by issuing the MQSC command:

DISPLAY QMGR CHLAUTH

Important: This task expects that channel authentication records are enabled. If this is a queue manager
used by other users and applications, changing this setting will affect all other users and applications. If
your queue manager does not make use of channel authentication records then step 4 can be replaced
with an alternate authentication method (for example, a security exit) which sets the MCAUSER to the
non-privileged-user-id you will obtain in step “1” on page 1028.

You must know which channel name your application expects to use so that the application can be
permitted to use the channel. You must also know which objects, for example queues or topics, your
application expects to use so that your application can be permitted to use them.

About this task
This task creates a non-privileged user ID to be used for a client application which connects to the queue
manager. Access is granted for the client application only to be able to use the channel it needs and the
queue it needs by use of this user ID.

Procedure
1. Obtain a user ID on the system your queue manager is running on. For this task this user ID must not

be a privileged administrative user. This user ID will be the authority under which the client connection
will run on the queue manager.

2. Start a listener program with the following commands, where:

qmgr-name is the name of your queue manager
nnnn is your chosen port number

1028 Developing Applications for IBM MQ

a)
For AIX, Linux, and Windows systems:

runmqlsr -t tcp -m qmgr-name -p nnnn

b)
For IBM i:

STRMQMLSR MQMNAME(qmgr-name) PORT(nnnn)

3. If your application uses the SYSTEM.DEF.SVRCONN then this channel is already defined. If your
application uses another channel, create it by issuing the following MQSC command:

DEFINE CHANNEL(' channel-name ') CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Channel for use by sample programs')

where channel-name is the name of your channel.
4. Create a channel authentication rule allowing only the IP address of your client system to use the

channel by issuing the following MQSC command:

SET CHLAUTH(' channel-name ') TYPE(ADDRESSMAP) ADDRESS(' client-machine-IP-address ') +
MCAUSER(' non-privileged-user-id ')

where

channel-name is the name of your channel.
client-machine-IP-address is the IP address of your client system. If your sample client application
is running on the same machine as the queue manager then use an IP address of '127.0.0.1' if
your application is going to connect using 'localhost'. If several different client machines are going
to connect in, you can use a pattern or a range instead of a single IP address. See Generic IP
addresses for details.
non-privileged-user-id is the user ID you obtained in step “1” on page 1028

5. If your application uses the SYSTEM.DEFAULT.LOCAL.QUEUE then this queue is already defined. If your
application uses another queue, create it by issuing the following MQSC command:

DEFINE QLOCAL(' queue-name ') DESCR('Queue for use by sample programs')

where queue-name is the name of your queue.
6. Grant access to connect to and inquire the queue manager by issuing the following MQSC command:

SET AUTHREC OBJTYPE(QMGR) PRINCIPAL(' non-privileged-user-id ') +
AUTHADD(CONNECT, INQ)

where non-privileged-user-id is the user ID you obtained in step “1” on page 1028 .
7. If your application is a point-to-point application, that is it makes use of queues, grant access to allow

inquiring and the putting and getting messages using your queue by the user ID to be used, by issuing
the following MQSC commands:

SET AUTHREC PROFILE(' queue-name ') OBJTYPE(QUEUE) +
PRINCIPAL(' non-privileged-user-id ') AUTHADD(PUT, GET, INQ, BROWSE)

where

queue-name is the name of your queue
non-privileged-user-id is the user ID you obtained in step “1” on page 1028

Developing applications for IBM MQ 1029

8. If your application is a publish/subscribe application, that is it makes use of topics, grant access to
allow publishing and subscribing using your topic by the user ID to be used, by issuing the MQSC
commands:

SET AUTHREC PROFILE('SYSTEM.BASE.TOPIC') OBJTYPE(TOPIC) +
PRINCIPAL(' non-privileged-user-id ') AUTHADD(PUB, SUB)

where

non-privileged-user-id is the user ID you obtained in step “1” on page 1028
This will give non-privileged-user-id access to any topic in the topic tree, alternatively, you can
define a topic object using DEFINE TOPIC and grant accesses only to the part of the topic tree
referenced by that topic object. See Controlling user access to topics for details.

What to do next
Your client application can now connect to the queue manager and put or get messages using the queue.
Related concepts

Giving access to an IBM MQ object on AIX, Linux, and Windows
Related reference
SET CHLAUTH
DEFINE CHANNEL
DEFINE QLOCAL
SET AUTHREC

IBM MQ authorities on IBM i

Preparing and running sample programs on IBM i
Before you run the sample programs on IBM i, you must first create a queue manager and also create
the queues that you need. If you want to run COBOL samples, you might need to do some additional
preparation.

About this task
The source for the IBM MQ for IBM i sample programs is provided in library QMQMSAMP as members of
QCSRC, QCLSRC, QCBLLESRC, and QRPGLESRC.

You can use your own queues when you run the samples, or you can run the sample program AMQSAMP4
to create some sample queues. The source for the AMQSAMP4 program is included in file QCLSRC in
library QMQMSAMP. You can compile it by using the CRTCLPGM command.

To run the samples, either use the C executable versions, which are supplied in the library QMQM, or
compile them in a similar way to any other IBM MQ application.

The following sample programs have authentication capabilities:

• amqsbcg0.c
• amqsfhac.c
• amqsget0.c
• amqsghac.c
• amqsmhac.c
• amqsphac.c
• amqspuba.c
• amqsput0.c
• amqssslc.c
• amqssuba.c

1030 Developing Applications for IBM MQ

The executable versions of these samples have authentication enabled. However, compiling the source
versions with authentication enabled requires the compile flag SAMPLE_AUTH_ENABLED to be defined
and the amqsauth.c source file to be compiled with the desired sample. For example:

• Creating the amqssslc program without authentication enabled:

CRTCMOD MODULE(MYLIB/AMQSSSLC) SRCFILE(QMQMSAMP/QCSRC)
CRTPGM PGM(MYLIB/AMQSSSLC) MODULE(MYLIB/AMQSSSLC) BNDSRVPGM(QMQM/LIBMQIC)

• Creating the amqssslc with authentication enabled:

CRTCMOD MODULE(MYLIB/AMQSSSLC) DEFINE('SAMPLE_AUTH_ENABLED') SRCFILE(QMQMSAMP/QCSRC)
CRTCMOD MODULE(MYLIB/AMQSAUTH) SRCFILE(QMQMSAMP/QCSRC)
CRTPGM PGM(MYLIB/AMQSSSLC_AUTH) MODULE(MYLIB/AMQSSSLC MYLIB/AMQSAUTH) BNDSRVPGM(QMQM/LIBMQIC)

Procedure
1. Create a queue manager and set up the default definitions.

You must do this before you can run any of the sample programs. For more information about creating
a queue manager, see Administering IBM MQ. For information about configuring a queue manager to
securely accept incoming connection requests from applications that are running in client mode, see
“Configuring a queue manager to accept client connections on Multiplatforms” on page 1028.

2. To call one of the sample programs by using data from member PUT in file AMQSDATA of library
QMQMSAMP, use a command like:

CALL PGM(QMQM/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

Note: For a compiled module to use the IFS file system, specify the option SYSIFCOPT(*IFSIO) on
CRTCMOD, then the file name, passed as a parameter, must be specified in the following format:

home/me/myfile

3. If you want to use the COBOL versions of the Inquire, Set, and Echo examples, change the process
definitions before you run these samples.
For the Inquire, Set, and Echo examples, the sample definitions trigger the C versions of these
samples. If you want the COBOL versions, you must change the process definitions:

• SYSTEM.SAMPLE.INQPROCESS
• SYSTEM.SAMPLE.SETPROCESS
• SYSTEM.SAMPLE.ECHOPROCESS

On IBM i, you can use the CHGMQMPRC command (for details, see Change MQ Process (CHGMQMPRC)),
or edit and run the AMQSAMP4 command with the alternative definition.

4. Run the sample programs.
For more information on the parameters that each of the samples expects, see the descriptions of the
individual samples.

Note: For the COBOL sample programs, when you pass queue names as parameters, you must provide
48 characters, padding with blank characters if necessary. Anything other than 48 characters causes
the program to fail with reason code 2085.

Related reference
“Samples for IBM i” on page 1026

Developing applications for IBM MQ 1031

The techniques demonstrated by the sample programs for IBM MQ on IBM i systems.

Preparing and running sample programs on AIX and Linux
Before you run the sample programs on AIX and Linux, you must first create a queue manager and
also create the queues that you need. If you want to run COBOL samples, you might need to do some
additional preparation.

About this task
The IBM MQ on AIX and Linux systems sample files are in the directories listed in Table 160 on page 1032
if the defaults were used at installation time.

Table 160. Where to find the samples for IBM MQ on AIX and Linux systems

Content Directory

source files MQ_INSTALLATION_PATH/samp

dead-letter queue handler source files MQ_INSTALLATION_PATH/samp/dlq

executable files MQ_INSTALLATION_PATH/samp/bin

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The samples need a set of queues to work with. You can either use your own queues or run the sample
MQSC file amqscos0.tst to create a set. To run the samples, either use the executable versions supplied or
compile the source versions as you would any other applications, using an ANSI compiler.

The following sample programs have authentication capabilities:

• amqsbcg0.c
• amqsfhac.c
• amqsget0.c
• amqsghac.c
• amqsmhac.c
• amqsphac.c
• amqspuba.c
• amqsput0.c
• amqssslc.c
• amqssuba.c

The executable versions of these samples have authentication enabled. However, compiling the source
versions with authentication enabled requires the compile flag SAMPLE_AUTH_ENABLED to be defined
and the amqsauth.c source file to be compiled with the desired sample. For example:

• Compiling amqsput0.c without authentication enabled:

gcc -m64 -I /opt/mqm/inc -L /opt/mqm/lib64 -lmqic -fsanitize=address -o /bin/amqsput
amqsput0.c

• Compiling amqsput0.c with authentication enabled:

gcc -m64 -I /opt/mqm/inc -L /opt/mqm/lib64 -lmqic -fsanitize=address -D SAMPLE_AUTH_ENABLED
-o /bin/amqsputc_auth amqsauth.c amqsput0.c

Procedure
1. Create a queue manager and set up the default definitions.

1032 Developing Applications for IBM MQ

You must do this before you can run any of the sample programs. For more information about creating
a queue manager, see Administering IBM MQ. For information about configuring a queue manager to
securely accept incoming connection requests from applications that are running in client mode, see
“Configuring a queue manager to accept client connections on Multiplatforms” on page 1028.

2. If you are not using your own queues, run the sample MQSC file amqscos0.tst to create a set of
queues.
To do this on AIX and Linux systems, enter:

runmqsc QManagerName <amqscos0.tst > /tmp/sampobj.out

Check the sampobj.out file to ensure that there are no errors.
3. If you want to use the COBOL versions of the Inquire, Set, and Echo examples, change the process

definitions before you run these samples.
For the Inquire, Set, and Echo examples, the sample definitions trigger the C versions of these
samples. If you want the COBOL versions, you must change the process definitions:

• SYSTEM.SAMPLE.INQPROCESS
• SYSTEM.SAMPLE.SETPROCESS
• SYSTEM.SAMPLE.ECHOPROCESS

On AIX and Linux, do this by editing the amqscos0.tst file and changing the C executable file names
to the COBOL executable file names before using the runmqsc command to run these samples.

4. Run the sample programs.
To run a sample, enter its name followed by any parameters, for example:

amqsput myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be put, and
qmanagername is the queue manager that owns myqueue.

For more information on the parameters that each of the samples expects, see the descriptions of the
individual samples.

Note: For the COBOL sample programs, when you pass queue names as parameters, you must provide
48 characters, padding with blank characters if necessary. Anything other than 48 characters causes
the program to fail with reason code 2085.

Related reference
“Samples for AIX and Linux systems” on page 1020
The techniques demonstrated by the sample programs for IBM MQ for AIX or Linux.

Preparing and running sample programs on Windows
Before you run the sample programs on Windows, you must first create a queue manager and also create
the queues that you need. If you want to run COBOL samples, you might need to do some additional
preparation.

About this task
The IBM MQ for Windows sample files are in the directories listed in Table 161 on page 1033, if the
defaults were used at installation time. The installation drive defaults to <c:>.

Table 161. Where to find the samples for IBM MQ for Windows

Content Directory

C source code MQ_INSTALLATION_PATH\Tools\C\Samples

Source code for dead-
letter handler sample

MQ_INSTALLATION_PATH\Tools\C\Samples\DLQ

Developing applications for IBM MQ 1033

Table 161. Where to find the samples for IBM MQ for Windows (continued)

Content Directory

COBOL source code MQ_INSTALLATION_PATH\Tools\Cobol\Samples

C executable files 1 MQ_INSTALLATION_PATH\ Tools\C\Samples\Bin (32-bit versions)
MQ_INSTALLATION_PATH\ Tools\C\Samples\Bin64 (64-bit versions)

Sample MQSC files MQ_INSTALLATION_PATH\Tools\MQSC\Samples

Visual Basic source code MQ_INSTALLATION_PATH\Tools\VB\SampVB6

.NET samples MQ_INSTALLATION_PATH\Tools\dotnet\Samples

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note: 64-bit versions are available of some C executable file samples.

The samples need a set of queues to work with. You can either use your own queues or run the sample
MQSC file amqscos0.tst to create a set of queues. To run the samples, either use the executable versions
supplied or compile the source versions as you would any other IBM MQ for Windows applications.

The following sample programs have authentication capabilities:

• amqsbcg0.c
• amqsfhac.c
• amqsget0.c
• amqsghac.c
• amqsmhac.c
• amqsphac.c
• amqspuba.c
• amqsput0.c
• amqssslc.c
• amqssuba.c

The executable versions of these samples have authentication enabled. However, compiling the source
versions with authentication enabled requires the compile flag SAMPLE_AUTH_ENABLED to be defined
and the amqsauth.c source file to be compiled with the desired sample. For example:

• Compiling amqsput0.c without authentication enabled:

CL amqsput0.c /link mqic.lib /OUT:Bin\amqsputc.exe

• Compiling amqsput0.c with authentication enabled:

CL /D SAMPLE_AUTH_ENABLED amqsauth.c amqsput0.c /link mqic.lib /OUT:Bin\amqsputc_auth.exe

Procedure
1. Create a queue manager and set up the default definitions.

You must do this before you can run any of the sample programs. For more information about creating
a queue manager, see Administering IBM MQ. For information about configuring a queue manager to
securely accept incoming connection requests from applications that are running in client mode, see
“Configuring a queue manager to accept client connections on Multiplatforms” on page 1028.

2. If you are not using your own queues, run the sample MQSC file amqscos0.tst to create a set of
queues.

1034 Developing Applications for IBM MQ

To do this on Windows systems enter:

runmqsc QManagerName < amqscos0.tst > sampobj.out

Check the sampobj.out file to ensure that there are no errors. This file is in your current directory.
3. If you want to use the COBOL versions of the Inquire, Set, and Echo examples, change the process

definitions before you run these samples.
For the Inquire, Set, and Echo examples, the sample definitions trigger the C versions of these
samples. If you want the COBOL versions, you must change the process definitions:

• SYSTEM.SAMPLE.INQPROCESS
• SYSTEM.SAMPLE.SETPROCESS
• SYSTEM.SAMPLE.ECHOPROCESS

On Windows, do this by editing the amqscos0.tst file and changing the C executable file names to
the COBOL executable file names before using the runmqsc command to run these samples.

4. Run the sample programs.
To run a sample, enter its name followed by any parameters, for example:

amqsput myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be put, and
qmanagername is the queue manager that owns myqueue.

For more information on the parameters that each of the samples expects, see the descriptions of the
individual samples.

Note: For the COBOL sample programs, when you pass queue names as parameters, you must provide
48 characters, padding with blank characters if necessary. Anything other than 48 characters causes
the program to fail with reason code 2085.

Related reference
“Samples for IBM MQ for Windows” on page 1023
The techniques demonstrated by the sample programs for IBM MQ for Windows.
“Visual Basic samples for IBM MQ for Windows” on page 1025
The techniques demonstrated by the sample programs for IBM MQ on Windows systems.

The API exit sample program
The sample API exit generates an MQI trace to a user-specified file with a prefix defined in the
MQAPI_TRACE_LOGFILE environment variable.

For more information about API exits, see “Writing and compiling API exits on Multiplatforms” on page
918.
Source

amqsaxe0.c
Binary

amqsaxe

Configuring for the sample exit
1. Add the following information to the ApiExitLocal stanza of the qm.ini file.

Platforms other than Windows

ApiExitLocal:
Sequence=100
Function=EntryPoint
Module= MQ_INSTALLATION_PATH/samp/bin/amqsaxe
Name=SampleApiExit

Developing applications for IBM MQ 1035

where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.
Windows

ApiExitLocal:
Sequence=100
Function=EntryPoint
Module= MQ_INSTALLATION_PATH\Tools\c\Samples\bin\amqsaxe
Name=SampleApiExit

where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.
2. Set the MQAPI_TRACE_LOGFILE environment variable

MQAPI_TRACE_LOGFILE=/tmp/MqiTrace

3. Run your application.

Output files are created in the /tmp directory with names like: MqiTrace.pid.tid.log.

The Asynchronous consumption sample program
The amqscbf sample program demonstrates the use of MQCB and MQCTL to consume messages from
multiple queues asynchronously.

amqscbf is provided as C source code, and a binary client and server executable on AIX, Linux, and
Windows platforms.

The program is started from the command line and takes the following optional parameters:

Usage: [Options] Queue Name {queue_name}
 where Options are:
 -m Queue Manager Name
 -o Open options
 -r Reconnect Type
 d Reconnect Disabled
 r Reconnect
 m Reconnect Queue Manager

Provide more than one queue name to read messages from multiple queues (a maximum of ten queues
are supported by the sample.)

Note: Reconnect type is only valid for client programs.

Example
The example shows amqscbf run as a server program reading one message from QL1 and then being
stopped.

Use IBM MQ Explorer to put a test message on QL1. Stop the program by pressing enter.

C:\>amqscbf QL1
Sample AMQSCBF0 start

Press enter to end
Message Call (9 Bytes) :
Message 1

Sample AMQSCBF0 end

What amqscbf demonstrates
The sample shows how to read messages from multiple queues in the order of their arrival. This would
require a lot more code using synchronous MQGET. In the case of asynchronous consumption, no polling
is required, and thread and storage management is performed by IBM MQ. A "real world" example would
need to deal with errors; in the sample errors are written out to the console.

1036 Developing Applications for IBM MQ

The sample code has the following steps,

1. Define the single message consumption callback function,

void MessageConsumer(MQHCONN hConn,
 MQMD * pMsgDesc,
 MQGMO * pGetMsgOpts,
 MQBYTE * Buffer,
 MQCBC * pContext)
{ ... }

2. Connect to the queue manager,

MQCONNX(QMName,&cno,&Hcon,&CompCode,&CReason);

3. Open the input queues, and associate each one with the MessageConsumer callback function,

MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);
cbd.CallbackFunction = MessageConsumer;
MQCB(Hcon,MQOP_REGISTER,&cbd,Hobj,&md,&gmo,&CompCode,&Reason);

cbd.CallbackFunction does not need to be set for each queue; it is an input-only field. But you
could associate a different callback function with each queue.

4. Start consumption of the messages,

MQCTL(Hcon,MQOP_START,&ctlo,&CompCode,&Reason);

5. Wait until the user has pressed enter and then stop consumption of messages,

MQCTL(Hcon,MQOP_STOP,&ctlo,&CompCode,&Reason);

6. Finally disconnect from the queue manager,

MQDISC(&Hcon,&CompCode,&Reason);

The Asynchronous Put sample program
Learn about running the amqsapt sample and the design of the Asynchronous Put sample program.

The asynchronous put sample program puts messages on a queue using the asynchronous MQPUT call
and then retrieves status information using the MQSTAT call. See “Features demonstrated in the sample
programs on Multiplatforms” on page 1020 for the name of this program on different platforms.

Running the amqsapt sample
This program takes up to 6 parameters:

1. The name of the target queue (required)
2. The name of the queue manager (optional)
3. Open options (optional)
4. Close options (optional)
5. The name of the target queue manager (optional)
6. The name of the dynamic queue (optional)

If a queue manager is not specified, amqsapt connects to the default queue manager.

Developing applications for IBM MQ 1037

Design of the Asynchronous Put sample program
The program uses the MQOPEN call with the output options supplied, or with the MQOO_OUTPUT and
MQOO_FAIL_IF_QUIESCING options to open the target queue for putting messages.

If it cannot open the queue, the program outputs an error message containing the reason code returned
by the MQOPEN call. To keep the program simple, on this and on subsequent MQI calls, the program uses
default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call with
MQPMO_ASYNC_RESPONSE to create a datagram message containing the text of that line and
asynchronously put it to the target queue. The program continues until it reaches the end of the input or
the MQPUT call fails. If the program reaches the end of the input, it closes the queue using the MQCLOSE
call.

The program then issues the MQSTAT call, returning an MQSTS structure, and displays messages
containing the number of messages put successfully, the number of messages put with a warning, and the
number of failures.

The Browse sample programs
The Browse sample programs browse messages on a queue using the MQGET call.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

Design of the Browse sample program
The program opens the target queue using the MQOPEN call with the MQOO_BROWSE option. If it cannot
open the queue, the program outputs an error message containing the reason code returned by the
MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the message from the queue,
then displays the data contained in the message. The MQGET call uses these options:
MQGMO_BROWSE_NEXT

After the MQOPEN call, the browse cursor is positioned logically before the first message in the
queue, so this option causes the first message to be returned when the call is first made.

MQGMO_NO_WAIT
The program does not wait if there are no messages on the queue.

MQGMO_ACCEPT_TRUNCATED_MSG
The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the program
displays the truncated message, together with a warning that the message has been truncated.

The program demonstrates how you must clear the MsgId and CorrelId fields of the MQMD structure
after each MQGET call, because the call sets these fields to the values contained in the message it
retrieves. Clearing these fields means that successive MQGET calls retrieve messages in the order in
which the messages are held in the queue.

The program continues to the end of the queue; the MQGET call returns the MQRC_NO_MSG_AVAILABLE
reason code and the program displays a warning message. If the MQGET call fails, the program displays
an error message that contains the reason code.

The program then closes the queue using the MQCLOSE call.

The Browse sample programs for AIX, Linux, and Windows
Consider using this topic when learning about Browse sample programs on AIX, Linux, and Windows.

The C version of the program takes 2 parameters

1. The name of the source queue (necessary)
2. The name of the queue manager (optional)

1038 Developing Applications for IBM MQ

If a queue manager is not specified, it connects to the default one. For example, enter one of the
following:

• amqsgbr myqueue qmanagername
• amqsgbrc myqueue qmanagername
• amq0gbr0 myqueue

where myqueue is the name of the queue that the messages will be viewed from, and qmanagername is
the queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it assumes that the default queue manager
owns the queue.

The COBOL version does not have any parameters. It connects to the default queue manager and when
you run it you are prompted:

Please enter the name of the target queue

Only the first 50 characters of each message are displayed, followed by - - - truncated when this is
the case.

The Browse sample programs on IBM i
Each program retrieves copies of all the messages on the queue that you specify when you call the
program; the messages remain on the queue.

You can use the supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to put some
messages on the queue. You can use the queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the
same local queue. The program continues until it reaches the end of the queue or an MQI call fails.

The C samples let you specify the queue manager name, generally as the second parameter, in a similar
fashion to the Windows systems samples. For example:

CALL PGM(QMQM/AMQSTRG4) PARM('SYSTEM.SAMPLE.TRIGGER' 'QM01')

If a queue manager is not specified, it connects to the default one. This is also relevant to the RPG
samples. However, with the RPG samples you must supply a queue manager name rather than allowing it
to default.

The Browser sample program
The Browser sample program reads and writes both the message descriptor and the message content
fields of all the messages on a queue.

The sample program is written as a utility, not just to demonstrate a technique. See “Features
demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of these programs.

This program takes these positional parameters:

1. The name of the source queue (required)
2. The name of the queue manager (required)
3. An optional parameter for properties (optional)

Use the following environment variables to supply credentials that are used to authenticate with the
queue manager:
MQSAMP_USER_ID

Set to the user ID to be used for connection authentication, if you want use a user ID and a password
to authenticate with the queue manager. The program prompts for the password to accompany the
user ID.

Developing applications for IBM MQ 1039

MQSAMP_TOKEN
Set to a non-blank value if you want to supply an authentication token to authenticate with the queue
manager. The program prompts for the authentication token. Authentication tokens can be used only
by the amqsbcgc sample that uses client bindings.

To run these programs, enter one of the following commands:

• amqsbcg myqueue qmanagername
• amqsbcgc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be browsed, and
qmanagername is the queue manager that owns myqueue.

It reads each message from the queue and writes the following to stdout:

• Formatted message descriptor fields
• Message data (dumped in hex and, where possible, character format)

Table 162. Permissible values for the property parameter

Value Behavior

0 Default behavior. The properties that get delivered to the application depend on the
PropertyControl queue attribute that the message is retrieved from.

1 A message handle is created and used with the MQGET. Properties of the message, except
those contained in the message descriptor (or extension) are displayed in a similar fashion
to the message descriptor. For example:

****Message properties****
 property name: property value

Or if no properties are available:

****Message properties****
 None

Numeric values are displayed using printf, string values are surrounding in single
quotation marks, and byte strings are surrounded with X and single quotation marks, as
for the message descriptor.

2 MQGMO_NO_PROPERTIES is specified, so that only message descriptor properties will be
returned.

3 MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, so that all properties are returned in
the message data.

4 MQGMO_PROPERTIES_COMPATIBILITY is specified, so that all properties can be returned
depending on whether an IBM MQ property is included, otherwise the properties are
discarded.

The program is restricted to printing the first 65535 characters of the message, and fails with the reason
truncated msg if a longer message is read.

For an example of the output from this utility, see Browsing queues.

The CICS transaction sample
A sample CICS transaction program is provided, named amqscic0.ccs for source code and amqscic0 for
the executable version. You can build transactions using the standard CICS facilities.

See “Building a procedural application” on page 962 for details on the commands needed for your
platform.

1040 Developing Applications for IBM MQ

The transaction reads messages from the transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the
default queue manager and places them onto the local queue, the name of which is contained in the
transmission header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ.

Note: You can use a sample MQSC script amqscic0.tst to create these queues and sample input queues.

The Connect sample program
The Connect sample program allows you to explore the MQCONNX call and its options from a client. The
sample connects to the queue manager using the MQCONNX call, inquires about the name of the queue
manager using the MQINQ call, and displays it. Also, learn about running the amqscnxc sample.

Note: The Connect sample program is a client sample. You can compile and run it on a server but the
function is meaningful only on a client, and only client-executable files are supplied.

Running the amqscnxc sample
The command-line syntax of the Connect sample program is:

amqscnxc [-x ConnName [-c SvrconnChannelName]] [-u User] [QMgrName]

The parameters are optional and their order is not important except for QMgrName, which, if specified,
must come last. The parameters are:
ConnName

The TCP/IP connection name of the server queue manager

If you do not specify the TCP/IP connection name, MQCONNX is issued with the ClientConnPtr set to
NULL.

SvrconnChannelName
The name of the server connection channel

If you specify the TCP/IP connection name but not the server connection channel (the reverse is not
allowed), the sample uses the name SYSTEM.DEF.SVRCONN.

User
The user name to be used for connection authentication

If you specify this the program will prompt for a password to accompany that user ID.

QMgrName
The name of the target queue manager

If you do not specify the target queue manager, the sample connects to whichever queue manager is
listening at the given TCP/IP connection name.

Note: If you enter a question mark as the only parameter, or if you enter incorrect parameters, you get a
message explaining how to use the program.

If you run the sample with no command-line options, the contents of the MQSERVER environment
variable are used to determine the connection information. (In this example MQSERVER is set to
SYSTEM.DEF.SVRCONN/TCP/machine.site.company.com.) You see output like this:

Sample AMQSCNXC start
Connecting to the default queue manager
with no client connection information specified.
Connection established to queue manager machine

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a server connection channel name but
no target queue manager name, like this:

Developing applications for IBM MQ 1041

amqscnxc -x machine.site.company.com -c SYSTEM.ADMIN.SVRCONN

the default queue manager name is used and you see output like this:

Sample AMQSCNXC start
Connecting to the default queue manager
using the server connection channel SYSTEM.ADMIN.SVRCONN
on connection name machine.site.company.com.
Connection established to queue manager MACHINE

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a target queue manager name, like this:

amqscnxc -x machine.site.company.com MACHINE

you see output like this:

Sample AMQSCNXC start
Connecting to queue manager MACHINE
using the server connection channel SYSTEM.DEF.SVRCONN
on connection name machine.site.company.com.
Connection established to queue manager MACHINE

Sample AMQSCNXC end

The Data-Conversion sample program
The data-conversion sample program is a skeleton of a data conversion exit routine. Learn about the
design of the data-conversion sample.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

Design of the data-conversion sample
Each data-conversion exit routine converts a single named message format. This skeleton is intended as a
wrapper for code fragments generated by the data-conversion exit generation utility program.

The utility produces one code fragment for each data structure; several such structures make up a format,
so several code fragments are added to this skeleton to produce a routine to do data conversion of the
entire format.

The program then checks whether the conversion is a success or failure, and returns the values required
to the caller.

Database coordination samples
Two samples are provided that demonstrate how IBM MQ can coordinate both IBM MQ updates and
database updates within the same unit of work.

These samples are:

1. AMQSXAS0 (in C) or AMQ0XAS0 (in COBOL), which updates a single database within an IBM MQ unit of
work.

2. AMQSXAG0 (in C) or AMQ0XAG0 (in COBOL), AMQSXAB0 (in C) or AMQ0XAB0 (in COBOL), and
AMQSXAF0 (in C) or AMQ0XAF0 (in COBOL), which together update two databases within an IBM
MQ unit of work, showing how multiple databases can be accessed. These samples are provided to
show the use of the MQBEGIN call, mixed SQL and IBM MQ calls, and where and when to connect to a
database.

Figure 128 on page 1043 shows how the samples provided are used to update databases:

1042 Developing Applications for IBM MQ

Figure 128. The database coordination samples

The programs read a message from a queue (under syncpoint), then, using the information in the
message, obtain the relevant information from the database and update it. The new status of the
database is then printed.

The program logic is as follows:

1. Use the name of the input queue from the program argument
2. Connect to the default queue manager (or optionally the supplied name in C) using MQCONN
3. Open a queue (using MQOPEN) for input while there are no failures
4. Start a unit of work using MQBEGIN
5. Get the next message (using MQGET) from the queue under syncpoint
6. Get information from databases
7. Update information from databases
8. Commit changes using MQCMIT
9. Print updated information (no message being available counts as a failure, and the loop ends)

10. Close the queue using MQCLOSE
11. Disconnect from the queue using MQDISC

SQL cursors are used in the samples, so that reads from the databases (that is, multiple instances)
are locked while a message is being processed, allowing multiple instances of these programs to run
simultaneously. The cursors are explicitly opened, but implicitly closed by the MQCMIT call.

The single database sample (AMQSXAS0 or AMQ0XAS0) has no SQL CONNECT statements and the
connection to the database is implicitly made by IBM MQ with the MQBEGIN call. The multiple database

Developing applications for IBM MQ 1043

sample (AMQSXAG0 or AMQ0XAG0, AMQSXAB0 or AMQ0XAB0, and AMQSXAF0 or AMQ0XAF0) has SQL
CONNECT statements, as some database products allow only one active connection. If this is not the case
for your database product, or if you are accessing a single database in multiple database products, the
SQL CONNECT statements can be removed.

The samples are prepared with the IBM Db2 database product, so you might need to modify them to work
with other database products.

The SQL error checking uses routines in UTIL.C and CHECKERR.CBL supplied by Db2. These must be
compiled or replaced before compiling and linking.

Note: If you are using the Micro Focus COBOL source CHECKERR.MFC for SQL error checking, you must
change the program ID to uppercase, that is CHECKERR, for AMQ0XAS0 to link correctly.

Creating the databases and tables
Create the databases and tables before compiling the samples.

To create the databases, use the usual method for your database product, for example:

DB2 CREATE DB MQBankDB
DB2 CREATE DB MQFeeDB

Create the tables using SQL statements as follows:

In C:

EXEC SQL CREATE TABLE MQBankT(Name VARCHAR(40) NOT NULL,
 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,
 PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQBankTB(Name VARCHAR(40) NOT NULL,
 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,
 Transactions INTEGER,
 PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQFeeTB(Account INTEGER NOT NULL,
 FeeDue INTEGER NOT NULL,
 TranFee INTEGER NOT NULL,
 Transactions INTEGER,
 PRIMARY KEY (Account));

In COBOL:

EXEC SQL CREATE TABLE
 MQBankT(Name VARCHAR(40) NOT NULL,
 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,
 PRIMARY KEY (Account))
 END-EXEC.

EXEC SQL CREATE TABLE
 MQBankTB(Name VARCHAR(40) NOT NULL,
 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,
 Transactions INTEGER,
 PRIMARY KEY (Account))
 END-EXEC.

EXEC SQL CREATE TABLE
 MQFeeTB(Account INTEGER NOT NULL,
 FeeDue INTEGER NOT NULL,
 TranFee INTEGER NOT NULL,
 Transactions INTEGER,
 PRIMARY KEY (Account))
 END-EXEC.

Enter data into the tables using SQL statements as follows:

1044 Developing Applications for IBM MQ

EXEC SQL INSERT INTO MQBankT VALUES ('Mr Fred Bloggs',1,0);
EXEC SQL INSERT INTO MQBankT VALUES ('Mrs S Smith',2,0);
EXEC SQL INSERT INTO MQBankT VALUES ('Ms Mary Brown',3,0);
⋮
EXEC SQL INSERT INTO MQBankTB VALUES ('Mr Fred Bloggs',1,0,0);
EXEC SQL INSERT INTO MQBankTB VALUES ('Mrs S Smith',2,0,0);
EXEC SQL INSERT INTO MQBankTB VALUES ('Ms Mary Brown',3,0,0);
⋮
EXEC SQL INSERT INTO MQFeeTB VALUES (1,0,50,0);
EXEC SQL INSERT INTO MQFeeTB VALUES (2,0,50,0);
EXEC SQL INSERT INTO MQFeeTB VALUES (3,0,50,0);
⋮

Note: For COBOL, use the same SQL statements but add END_EXEC at the end of each line.

Precompiling, compiling, and linking the samples
Learn about precompiling, compiling, and linking samples in C and COBOL.

Precompile the .SQC files (in C) and .SQB files (in COBOL), and bind them against the appropriate
database to produce the .C or .CBL files. To do this, use the typical method for your database product.

Precompiling in C

db2 connect to MQBankDB
db2 prep AMQSXAS0.SQC
db2 connect reset

db2 connect to MQBankDB
db2 prep AMQSXAB0.SQC
db2 connect reset

db2 connect to MQFeeDB
db2 prep AMQSXAF0.SQC
db2 connect reset

Precompiling in COBOL

db2 connect to MQBankDB
db2 prep AMQ0XAS0.SQB bindfile target ibmcob
db2 bind AMQ0XAS0.BND
db2 connect reset

db2 connect to MQBankDB
db2 prep AMQ0XAB0.SQB bindfile target ibmcob
db2 bind AMQ0XAB0.BND
db2 connect reset

db2 connect to MQFeeDB
db2 prep AMQ0XAF0.SQB bindfile target ibmcob
db2 bind AMQ0XAF0.BND
db2 connect reset

Compiling and linking
The following sample commands use the symbols DB2TOP and MQ_INSTALLATION_PATH. DB2TOP
represents the installation directory for the Db2 product. MQ_INSTALLATION_PATH represents the high-
level directory in which IBM MQ is installed.

• On AIX, the directory path is:

/usr/lpp/db2_05_00

Developing applications for IBM MQ 1045

• On Windows systems, the directory path depends on the path chosen when installing the
product. If you chose the default settings the path is this:

c:\sqllib

Note: Before issuing the link command on Windows systems, ensure that the LIB environment variable
contains paths to the Db2 and IBM MQ libraries.

Copy the following files into a temporary directory:

• The amqsxag0.c file from your IBM MQ installation

Note: This file can be found in the following directories:

– On AIX and Linux systems:

MQ_INSTALLATION_PATH/samp/xatm

– On Windows systems:

MQ_INSTALLATION_PATH\tools\c\samples\xatm

• The .c files that you have obtained by precompiling the .sqc source files, amqsxas0.sqc,
amqsxaf0.sqc, and amqsxab0.sqc.

• The files util.c and util.h from your Db2 installation.

Note: These files can be found in the directory:

DB2TOP/samples/c

Build the object files for each .c file using the following compiler command for the platform that you are
using:

• AIX

xlc_r -I MQ_INSTALLATION_PATH/inc -I DB2TOP/include -c -o
FILENAME.o FILENAME.c

• Windows systems

cl /c /I MQ_INSTALLATION_PATH\tools\c\include /I DB2TOP\include
FILENAME.c

Build the amqsxag0 executable file using the following link command for the platform that you are using:

• AIX

xlc_r -H512 -T512 -L DB2TOP/lib -ldb2 -L MQ_INSTALLATION_PATH/lib
-lmqm util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

• Windows systems

link util.obj amqsxaf0.obj amqsxab0.obj amqsxag0.obj mqm.lib db2api.lib
/out:amqsxag0.exe

Build the amqsxas0 executable file using the following compiling and linking commands for the platform
that you are using:

1046 Developing Applications for IBM MQ

• AIX

xlc_r -H512 -T512 -L DB2TOP/lib -ldb2
-L MQ_INSTALLATION_PATH/lib -lmqm util.o amqsxas0.o -o amqsxas0

• Windows systems

link util.obj amqsxas0.obj mqm.lib db2api.lib /out:amqsxas0.exe

Additional information

If you are working on AIX and want to access Oracle, use the xlc_r compiler and link to
libmqm_r.a.

Running the samples
Use this information to learn how to configure the queue manager before running database coordination
samples on C and COBOL.

Before you run the samples, configure the queue manager with the database product that you are using.
For information about how to do this, see Scenario 1: Queue manager performs the coordination.

The following titles provide information about how to run samples in C and COBOL:

• “C samples” on page 1047
• “COBOL samples” on page 1048

C samples
Messages must be in the following format to be read from a queue:

UPDATE Balance change=nnn WHERE Account=nnn

AMQSPUT can be used to put the messages on the queue.

The database coordination samples take two parameters:

1. Queue name (required)
2. Queue manager name (optional)

Assuming that you have created and configured a queue manager for the single database sample called
singDBQM, with a queue called singDBQ, you increment Mr Fred Bloggs's account by 50 as follows:

AMQSPUT singDBQ singDBQM

Then key in the following message:

UPDATE Balance change=50 WHERE Account=1

You can put multiple messages on the queue.

AMQSXAS0 singDBQ singDBQM

The updated status of Mr Fred Bloggs's account is then printed.

Assuming that you have created and configured a queue manager for the multiple-database sample
called multDBQM, with a queue called multDBQ, you decrement Ms Mary Brown's account by 75 as
follows:

Developing applications for IBM MQ 1047

AMQSPUT multDBQ multDBQM

Then key in the following message:

UPDATE Balance change=-75 WHERE Account=3

You can put multiple messages on the queue.

AMQSXAG0 multDBQ multDBQM

The updated status of Ms Mary Brown's account is then printed.

COBOL samples
Messages must be in the following format to be read from a queue:

UPDATE Balance change=snnnnnnnn WHERE Account=nnnnnnnn

For simplicity, the Balance change must be a signed eight-character number and the Account must be
an eight-character number.

The sample AMQSPUT can be used to put the messages on the queue.

The samples take no parameters and use the default queue manager. It can be configured to run only one
of the samples at any time. Assuming that you have configured the default queue manager for the single
database sample, with a queue called singDBQ, you increment Mr Fred Bloggs's account by 50 as follows:

AMQSPUT singDBQ

Then key in the following message:

UPDATE Balance change=+00000050 WHERE Account=00000001

You can put multiple messages on the queue:

AMQ0XAS0

Type in the name of the queue:

singDBQ

The updated status of Mr Fred Bloggs's account is then printed.

Assuming that you have configured the default queue manager for the multiple database sample, with a
queue called multDBQ, you decrement Ms Mary Brown's account by 75 as follows:

AMQSPUT multDBQ

Then key in the following message:

UPDATE Balance change=-00000075 WHERE Account=00000003

You can put multiple messages on the queue:

AMQ0XAG0

1048 Developing Applications for IBM MQ

Type in the name of the queue:

multDBQ

The updated status of Ms Mary Brown's account is then printed.

Dead-letter queue handler sample
A sample dead-letter queue handler is provided, the name of the executable version is amqsdlq. If you
want a dead-letter queue handler that is different from RUNMQDLQ, the source of the sample is available
for you to use as your base.

The sample is similar to the dead-letter handler provided within the product but trace and error reporting
are different. There are two environment variables available to you:
ODQ_TRACE

Set to YES or yes to switch tracing on.
ODQ_MSG

Set to the name of the file containing error and information messages. The file provided is called
amqsdlq.msg.

You need to make these variables known to your environment using either the export or set commands,
depending on your platform; trace is turned off using the unset command.

You can modify the error message file, amqsdlq.msg, to suit your own requirements. The sample puts
messages to stdout, not to the IBM MQ error log file.

For more information on how the dead-letter handler works, and how you run it, see Processing messages
on an IBM MQ dead-letter queue or the System Management Guide for your platform.

The Distribution List sample program
The Distribution List sample amqsptl0 gives an example of putting a message on several message queues.
It is based on the MQPUT sample, amqsput0.

Running the Distribution List sample, amqsptl0
The Distribution List sample runs in a similar way to the Put samples.

It takes the following parameters:

• The names of the queues
• The names of the queue managers

These values are entered as pairs. For example:

amqsptl0 queue1 qmanagername1 queue2 qmanagername2

The queues are opened using MQOPEN and messages are put to the queues using MQPUT. Reason codes
are returned if any of the queue or queue manager names are not recognized.

Remember to define channels between queue managers so that messages can flow between them. The
sample program does not do that for you.

Design of the Distribution List sample
Put Message Records (MQPMRs) specify message attributes for each destination. The sample provides
values for MsgId and CorrelId, and these override the values specified in the MQMD structure.

The PutMsgRecFields field in the MQPMO structure indicates which fields are present in the MQPMRs:

MQLONG PutMsgRecFields=MQPMRF_MSG_ID + MQPMRF_CORREL_ID;

Developing applications for IBM MQ 1049

Next, the sample allocates the response records and object records. The object records (MQORs) require
at least one pair of names and an even number of names, that is, ObjectName and ObjectQMgrName.

The next stage involves connecting to the queue managers using MQCONN. The sample attempts to
connect to the queue manager associated with the first queue in the MQOR; if this fails, it goes through
the object records in turn. You are informed if it is not possible to connect to any queue manager and the
program exits.

The target queues are opened using MQOPEN and the message is put to these queues using MQPUT. Any
problems and failures are reported in the response records (MQRRs).

Finally, the target queues are closed using MQCLOSE and the program disconnects from the queue
manager using MQDISC. The same response records are used for each call stating the CompCode and
Reason.

The Echo sample programs
The Echo sample programs echo a message from a message queue to the reply queue.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

The programs are intended to run as triggered programs.

On IBM i, AIX, Linux, and Windows systems, their only input is an MQTMC2 (trigger message) structure
that contains the name of a target queue and the queue manager. The COBOL version uses the default
queue manager.

On IBM i, for the triggering process to work, ensure that the Echo sample program that you
want to use is triggered by messages arriving on queue SYSTEM.SAMPLE.ECHO. To do this, specify the
name of the Echo sample program that you want to use in the ApplId field of the process definition
SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC command; for details, see
Change MQ Process (CHGMQMPRC).) The sample queue has a trigger type of FIRST, so, if there are
already messages on the queue before you run the Request sample, the Echo sample is not triggered by
the messages that you send.

When you have set the definition correctly, first start AMQSERV4 in one job, then start AMQSREQ4 in
another. You could use AMQSTRG4 instead of AMQSERV4, but potential job submission delays could
make it less easy to follow what is happening.

Use the Request sample programs to send messages to queue SYSTEM.SAMPLE.ECHO. The Echo sample
programs send a reply message containing the data in the request message to the reply-to queue
specified in the request message.

Design of the Echo sample programs
The program opens the queue named in the trigger message structure that it was passed when it started.
(For clarity, this is referred to as the request queue.) The program uses the MQOPEN call to open this
queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the
MQGMO_ACCEPT_TRUNCATED_MSG, MQGMO_CONVERT, and MQGMO_WAIT options, with a wait interval
of 5 seconds. The program tests the descriptor of each message to see if it is a request message; if it is
not, the program discards the message and displays a warning message.

For each line of input, the program then reads the text into a buffer and uses the MQPUT1 call to put a
request message, containing the text of that line, onto the reply-to queue.

If the MQGET call fails, the program puts a report message on the reply-to queue, setting the Feedback
field of the message descriptor to the reason code returned by the MQGET.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

1050 Developing Applications for IBM MQ

On IBM i, the program can also respond to messages sent to the queue from platforms other
than IBM MQ for IBM i, although no sample is supplied for this situation. To make the ECHO program
work:

• Write a program, correctly specifying the Format, Encoding, and CCSID parameters, to send text
request messages.

The ECHO program requests the queue manager to perform message data conversion, if this is needed.
• Specify CONVERT(*YES) on the IBM MQ for IBM i sending channel, if the program that you have written

does not provide similar conversion for the reply.

The Get sample programs
The Get sample programs get messages from a queue using the MQGET call.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

Design of the Get sample program
The program opens the target queue using the MQOPEN call with the MQOO_INPUT_AS_Q_DEF option. If
it cannot open the queue, the program displays an error message containing the reason code returned by
the MQOPEN call.

For each message on the queue, the program uses the MQGET call to remove the message from the
queue, then displays the data contained in the message. The MQGET call uses the MQGMO_WAIT option,
specifying a WaitInterval of 15 seconds, so that the program waits for this period if there is no
message on the queue. If no message arrives before this interval expires, the call fails and returns the
MQRC_NO_MSG_AVAILABLE reason code.

The program demonstrates how you must clear the MsgId and CorrelId fields of the MQMD structure
after each MQGET call because the call sets these fields to the values contained in the message it
retrieves. Clearing these fields means that successive MQGET calls retrieve messages in the order in
which the messages are held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the call fails and the
program stops.

The program continues until either the MQGET call returns the MQRC_NO_MSG_AVAILABLE reason code
or the MQGET call fails. If the call fails, the program displays an error message that contains the reason
code.

The program then closes the queue using the MQCLOSE call.

Running the amqsget and amqsgetc samples

These programs each take the following positional parameters:

1. The name of the source queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsget connects to the default queue manager and amqsgetc
connects to the queue manager identified by the MQSERVER environment variable or the client
channel definition file.

3. The open options (optional)

If open options are not specified, the sample uses a value of 8193 which is the combination of these
two options:

• MQOO_INPUT_AS_Q_DEF
• MQOO_FAIL_IF_QUIESCING

4. The close options (optional)

If close options are not specified, the sample uses a value of 0 which is MQCO_NONE.

Developing applications for IBM MQ 1051

Use the following environment variables to supply credentials that are used to authenticate with the
queue manager:
MQSAMP_USER_ID

Set to the user ID to be used for connection authentication, if you want use a user ID and a password
to authenticate with the queue manager. The program prompts for the password to accompany the
user ID.

MQSAMP_TOKEN
Set to a non-blank value if you want to supply an authentication token to authenticate with the queue
manager. The program prompts for the authentication token. Authentication tokens can be used only
by the amqsgetc sample that uses client bindings.

To run these programs, enter one of the following:

• amqsget myqueue qmanagername
• amqsgetc myqueue qmanagername

where myqueue is the name of the queue from which the program will get messages, and qmanagername
is the queue manager that owns myqueue.

Using amqsget and amqsgetc
Note that amqsget performs a local connection to the queue manager, using shared memory to attach
to the queue manager, and as such can only be run on the system the queue manager resides, whereas
amqsgetc performs a client style connection (even if connecting to a queue manager on the same
system).

When using amqsgetc you need to provide the application details of how to actually reach the queue
manager, in terms of the queue manager host or IP address and queue manager listener port.

Normally this is done either using the MQSERVER environment variable or by defining connection details
using a client channel definition table,which can also be provided to amqsgetc using environment
variables; for example, see MQCCDTURL.

An example using MQSERVER, connecting to a queue manager locally, which has a listener running on port
1414 and using the default server connection channel is:

export MQSERVER="SYSTEM.DEF.SVRCONN/TCP/ localhost(1414)"

High availability sample programs
The amqsghac, amqsphac, and amqsmhac high availability sample programs use automated client
reconnection to demonstrate recovery following the failure of a queue manager. amqsfhac checks that a
queue manager using networked storage maintains data integrity following a failure.

The amqsghac, amqsphac, and amqsmhac programs are started from the command line, and can be used
in combination to demonstrate reconnection after the failure of one instance of a multi-instance queue
manager.

Alternatively, you can also use the amqsghac, amqsphac, and amqsmhac samples to demonstrate client
reconnection to single instance queue managers, typically configured into a queue manager group.

To keep the example simple, so it is easy to configure, you are shown the sample programs reconnecting
to a single instance queue manager that is started, stopped and then restarted again; see “Set up and
control the queue manager” on page 1054.

Use amqsfhac in parallel with amqmfsck to check file system integrity. See amqmfsck (file system
check) and Verifying shared file system behavior for more information.

amqsphac queueName [qMgrName]

• amqsphac is an IBM MQ MQI client application. It puts a sequence of messages to a queue with a
two second delay between each message and displays events sent to its event handler.

• No sync point is used to put messages to the queue.

1052 Developing Applications for IBM MQ

• Reconnection can be made to any queue manager in the same queue manager group.

amqsghac queueName [qMgrName]

• amqsghac is an IBM MQ MQI client application. It gets messages from a queue and displays events
sent to its event handler.

• No sync point is used to get messages from the queue.
• Reconnection can be made to any queue manager in the same queue manager group.

amqsmhac -s sourceQueueName -t targetQueueName [-m qMgrName] [-w waitInterval]

• amqsmhac is an IBM MQ MQI client application. It copies messages from one queue to another
with a default wait interval of 15 minutes after the last message that is received before the program
finishes.

• The messages are copied within sync point.
• Reconnection can be made only to the same queue manager.

amqsfhac QueueManagerName QueueName SideQueueName InTransactionCount RepeatCount (0 | 1 |
2)

• amqsfhac is an IBM MQ MQI client application. It checks that an IBM MQ multi-instance queue
manager using networked storage, such as a NAS or a cluster file system, maintains data integrity.
Follow the steps to run amqsfhac in Verifying shared file system behavior.

• It uses the MQCNO_RECONNECT_Q_MGR option when connecting to QueueManagerName. It
automatically reconnects when the queue manager fails over.

• It puts InTransactionCount*RepeatCount persistent messages to QueueName during which time you
cause the queue manager to fail over any number of times. amqsfhac reconnects to the queue
manager each time, and continues. The test is to make sure that no messages are lost.

• InTransactionCount messages are put within each transaction. The transaction is repeated
RepeatCount number of times. If a failure occurs within a transaction, amqsfhac rolls back and
resubmits the transaction when amqsfhac reconnects to the queue manager.

• It also puts messages to SideQueueName. It uses SideQueueName to check whether the all
the messages are committed or rolled back from QueueName successfully. If it detects an
inconsistency, it writes out an error message.

• Vary the amount of output tracing from amqsfhac by setting the last parameter to (0|1|2).
0

Least output.
1

Middling output.
2

Most output.

Configuring a client connection
You need to configure a client and server connection channel to run the samples. The client verification
procedure explains how to set up a client test environment.

Alternatively, use the configuration provided in the following example.

Example using amqsghac, amqsphac, and amqsmhac

The example demonstrates reconnectable clients using a single instance queue manager.

Messages are placed on the queue SOURCE by amqsphac, transferred to TARGET by amqsmhac, and
retrieved from TARGET by amqsghac ; see Figure 129 on page 1054.

Developing applications for IBM MQ 1053

Figure 129. Reconnectable client samples

Follow these steps to run the samples.

1. Create a file hasamples.tst containing the commands:

DEFINE QLOCAL(SOURCE) REPLACE
DEFINE QLOCAL(TARGET) REPLACE
DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
 MCAUSER(MUSR_MQADMIN) REPLACE
DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
 CONNAME('LOCALHOST(2345)') QMNAME(QM1) REPLACE
ALTER LISTENER(SYSTEM.DEFAULT.LISTENER.TCP) TRPTYPE(TCP) +
 PORT(2345)
START LISTENER(SYSTEM.DEFAULT.LISTENER.TCP)
START CHANNEL(CHANNEL1)

2. Type the following commands at a command prompt:

a. crtmqm QM1
b. strmqm QM1
c. runmqsc QM1 < hasamples.tst

3. Set the environment variable MQCHLLIB to the path to the AMQCLCHL.TAB client channel definition
file; for example, SET MQCHLLIB=C:\IBM\MQ\MQ7\Data\qmgrs\QM1\@ipcc.

4. Open three new windows with MQCHLLIB set; for example on Windows, type start three times at the
previous command prompt starting each program in one of the windows. See step “5” on page 1055 in
“Set up and control the queue manager” on page 1054.)

5. Type the command endmqm -r -p QM1 to stop the queue manager, and then allow the clients to
reconnect.

6. Type the command strmqm QM1 to restart the queue manager.

The results from running the amqsghac, amqsphac, and amqsmhac samples on Windows are shown in
the following examples.

Set up and control the queue manager

1. Create the queue manager.

C:\> crtmqm QM1
IBM MQ queue manager created.
Directory 'C:\IBM\MQ\MQ7\Data\qmgrs\QM1' created.
Creating or replacing default objects for QM1.
Default objects statistics : 67 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

Remember the data directory to set the MQCHLLIB variable later.

1054 Developing Applications for IBM MQ

2. Start the queue manager.

C:\> strmqm QM1

IBM MQ queue manager 'QM1' starting.
5 log records accessed on queue manager 'QM1' during the log replay phase.
Log replay for queue manager 'QM1' complete.
Transaction manager state recovered for queue manager 'QM1'.
IBM MQ queue manager 'QM1' started.

3. Create the queues and channels, modify the listener port, and start the listener and channel.

C:\> runmqsc QM1 < hasamples.tst

5724-H72 (C) Copyright IBM Corp. 1994, 2024. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM1.

 1 : DEFINE QLOCAL(SOURCE) REPLACE
AMQ8006: IBM MQ queue created.
 2 : DEFINE QLOCAL(TARGET) REPLACE
AMQ8006: IBM MQ queue created.
 3 : DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(MUSR_MQADMIN)
REPLACE
AMQ8014: IBM MQ channel created.
 4 : DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) CONNAME('LOCALHOST(2345)')
QMNAME(QM1) REPLACE
AMQ8014: IBM MQ channel created.
 5 : ALTER LISTENER(SYSTEM.DEFAULT.LISTENER.TCP) TRPTYPE(TCP) PORT(2345)
AMQ8623: IBM MQ listener changed.
 6 : START LISTENER(SYSTEM.DEFAULT.LISTENER.TCP)
AMQ8021: Request to start IBM MQ Listener accepted.
 7 : START CHANNEL(CHANNEL1)
AMQ8018: Start IBM MQ channel accepted.
7 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

4. Make the client channel table known to the clients.

Use the data directory returned from the crtmqm command in step “1” on page 1054, and add the
directory @ipcc to it to set the MQCHLLIB variable.

C:\> SET MQCHLLIB=C:\IBM\MQ\MQ7\Data\qmgrs\QM1\@ipcc

5. Start the sample programs in the other windows

C:\> start amqsphac SOURCE QM1
C:\> start amqsmhac -s SOURCE -t TARGET -m QM1
C:\> start amqsghac TARGET QM1

6. End the queue manager and restart it again.

C:\> endmqm -r -p QM1

Waiting for queue manager 'QM1' to end.
IBM MQ queue manager 'QM1' ending.
IBM MQ queue manager 'QM1' ended.

C:\> strmqm QM1

IBM MQ queue manager 'QM1' starting.
5 log records accessed on queue manager 'QM1' during the log replay phase.
Log replay for queue manager 'QM1' complete.
Transaction manager state recovered for queue manager 'QM1'.
IBM MQ queue manager 'QM1' started.

Developing applications for IBM MQ 1055

amqsphac

Sample AMQSPHAC start
target queue is SOURCE
message Message 1
message Message 2
16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)
16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)
16:26:02 : EVENT : Connection Reconnectedmessage
Message 3
message Message 4
message Message 5

amqsmhac

Sample AMQSMHA0 start
16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)
16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)
16:26:02 : EVENT : Connection Reconnected
No more messages.
Sample AMQSMHA0 end
C:\>

amqsghac

Sample AMQSGHAC start
message Message 1
message Message 2
16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)
16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)
16:26:02 : EVENT : Connection Reconnected
message Message 3
message Message 4
message Message 5

Related tasks
Verifying shared file system behavior
Related reference
amqmfsck (file system check)

The Inquire sample programs
The Inquire sample programs inquire about some of the attributes of a queue using the MQINQ call.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

These programs are intended to run as triggered programs, so their only input is an MQTMC2 (trigger
message) structure for IBM MQ for Multiplatforms. This structure contains the name of a target queue
with attributes that are to be inquired upon. The C version also uses the queue manager name. The
COBOL version uses the default queue manager.

For the triggering process to work, ensure that the Inquire sample program that you want to use
is triggered by messages arriving on queue SYSTEM.SAMPLE.INQ. To do this, specify the name of
the Inquire sample program that you want to use in the ApplicId field of the process definition

SYSTEM.SAMPLE.INQPROCESS. For IBM i, you can use the CHGMQMPRC command for this;
for details, see Change MQ Process (CHGMQMPRC). The sample queue has a trigger type of FIRST; if there
are already messages on the queue before you run the request sample, the inquire sample is not triggered
by the messages that you send.

When you have set the definition correctly:

1056 Developing Applications for IBM MQ

• For AIX, Linux, and Windows, start the runmqtrm program in one session, then start the
amqsreq program in another.

• For IBM i, start the AMQSERV4 program in one session, then start the AMQSREQ4
program in another. You could use AMQSTRG4 instead of AMQSERV4, but potential job submission
delays could make it less easy to follow what is happening.

Use the Request sample programs to send request messages, each containing just a queue name, to
queue SYSTEM.SAMPLE.INQ. For each request message, the Inquire sample programs send a reply
message containing information about the queue specified in the request message. The replies are sent to
the reply-to queue specified in the request message.

On IBM i, if the sample input file member QMQMSAMP.AMQSDATA(INQ) is used, the last
queue named does not exist, so the sample returns a report message with a reason code for the failure.

Design of the Inquire sample program
The program opens the queue named in the trigger message structure that it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue for
shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the
MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, with a wait interval of 5 seconds. The
program tests the descriptor of each message to see if it is a request message; if it is not, the program
discards the message and displays a warning message.

For each request message removed from the request queue, the program reads the name of the queue
(which we will call the target queue) contained in the data, and opens that queue using the MQOPEN call
with the MQOO_INQ option. The program then uses the MQINQ call to inquire about the values of the
InhibitGet, CurrentQDepth, and OpenInputCount attributes of the target queue.

If the MQINQ call is successful, the program uses the MQPUT1 call to put a reply message on the reply-to
queue. This message contains the values of the three attributes.

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT1 call to put a report message
on the reply-to queue. In the Feedback field of the message descriptor of this report message is the
reason code returned by either the MQOPEN or MQINQ call, depending on which one failed.

After the MQINQ call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

The Inquire Properties of a Message Handle sample program
AMQSIQMA is a sample C program to inquire properties of a message handle from a message queue, and
is an example of the use of the MQINQMP API call.

This sample creates a message handle and puts it into the MsgHandle field of the MQGMO structure. The
sample then gets one message and inquires and prints all properties with which the message handle was
populated.

C:\Program Files\IBM\MQ\tools\c\Samples\Bin >amqsiqm Q QM1
Sample AMQSIQMA start
property name MyProp value MyValue
message text Hello world!
Sample AMQSIQMA end

The Publish/Subscribe sample programs
The publish/subscribe sample programs demonstrate the use of the publish and subscribe features in
IBM MQ.

There are three C language sample programs illustrating how to program to the IBM MQ publish/
subscribe interface. There are some C samples that use older interfaces, and there are Java samples.

Developing applications for IBM MQ 1057

The Java samples use the IBM MQ publish/subscribe interface in com.ibm.mq.jar and the JMS publish/
subscribe interface in com.ibm.mqjms. The JMS samples are not covered in this topic.

C
Find the publisher sample amqspub in the C samples folder. Run it with any topic name you like as
the first parameter, followed by an optional queue manager name. For example, amqspub mytopic
QM3 . There is also a client version called amqspubc. If you choose to run the client version, first see
“Configuring a queue manager to accept client connections on Multiplatforms” on page 1028 for details.

The publisher connects to the default queue manager and responds with the output, target topic is
mytopic . Every line you enter into this window from now onwards is published to mytopic .

Open another command window in the same directory, and run the subscriber program, amqssub,
supplying it with the same topic name, and an optional queue manager name. For example, amqssub
mytopic QM3 .

The subscriber responds with the output, Calling MQGET : 30 seconds wait time . From now
onwards, lines you type into the publisher appear in the output of the subscriber.

Start another subscriber in another command window, and watch both subscribers receive publications.

For full documentation of the parameters, including setting options, refer to the sample source code. The
values for the subscriber options field is described in the following topic: Options (MQLONG).

There is another subscriber sample amqssbx, which offers additional subscription options as command
line switches.

Type amqssbx -d mysub -t mytopic -k to invoke the subscriber using durable subscriptions that
are retained after the subscriber has terminated.

Test the subscription by publishing another item using the publisher. Wait for 30 seconds for the
subscriber to terminate. Publish some more items under the same topic. Restart the subscriber. The
last item published while the subscriber was not running is displayed by the subscriber immediately it is
restarted.

C legacy
There is an additional set of C samples which demonstrate queued commands. Some of these samples
were originally shipped as part of the MQ0C Supportpac. The capabilities the samples demonstrate are
fully supported, for compatibility reasons.

We discourage you from using the queued command interface. It is much more complex than the publish/
subscribe API, and there is no compelling functional reason to program complex queued commands.
However, you might find the queued approach more suitable, perhaps because you are already using the
interface, or because your programming environment makes it easier to build a complex message and call
a generic MQPUT, rather than constructing different calls to MQSUB.

The additional samples are located in the pubsub subdirectory in the samples folder.

There are six types of sample listed in Table 163 on page 1058.

Table 163. Categories of legacy publish/subscribe sample C programs

Category Programs Comments

RFH1 amqssr1a.c
amqspr1a.c

Simple publish/subscribe example built using RFH1 format
messages.

RFH2 amqssr2a.c
amqspr2a.c

Simple publish/subscribe example built using RFH2 format
messages.

1058 Developing Applications for IBM MQ

Table 163. Categories of legacy publish/subscribe sample C programs (continued)

Category Programs Comments

MQAI
samples

amqsppca.c
amqsspca.c

Simple publish/subscribe example built using PCF commands and
the MQAI command interface.

MA0C
Results
service
using
RFH1

amqsgama.c
amqsresa.c

Results service built using RFH1 headers

1. Requires the queues defined in amqsgama.tst and
amqsresa.tst

2. amqsresa must be started before amqsgama

MA0C
Results
service
using
RFH2

amqsgr2a.c
amqsrr2a.c

Results service built using RFH2 headers

1. Requires the queues defined in amqsgama.tst and
amqsresa.tst

2. amqsresa must be started before amqsgama

Routing
exit
publish/
subscribe
sample

amqspsra.c Demonstrates how to change the queue or queue manager
destination for a publish/subscribe message in a routing exit.

Sample program for Java
The Java sample MQPubSubApiSample.java combines publisher and subscribers in a single program.
Its source and compiled class files are found in the wmqjava samples folder.

If you choose to run in client mode, first see “Configuring a queue manager to accept client connections
on Multiplatforms” on page 1028 for details.

Run the sample from the command line using the Java command, if you have a Java environment
configured. You can also run the sample from the IBM MQ Explorer Eclipse workspace that has a Java
programming workbench already set up.

You might need to change some of the sample program's properties to run it. You do this by providing
parameters to the JVM, or editing the source.

The instructions in “Running the MQPubSubApiSample Java sample” on page 1059 show how to run the
sample from the Eclipse workspace.

Running the MQPubSubApiSample Java sample
How to run the MQPubSubApiSample using the Java Development Tools from the Eclipse platform.

Before you begin
Open the Eclipse workbench. Create a new workspace directory and select it. Close the welcome window.

Follow the steps in “Configuring a queue manager to accept client connections on Multiplatforms” on
page 1028 prior to running as a client.

About this task
The Java publish/subscribe sample program is an IBM MQ MQI client Java program. The sample runs
without modification using a default queue manager listening on port 1414. The task describes this
simple case, and indicates in general terms how to provide parameters and modify the sample to suit
different IBM MQ configurations. The example is illustrated running on Windows. The file paths will differ
on other platforms.

Developing applications for IBM MQ 1059

Procedure
1. Import the Java sample programs

a) In the workbench, click Window > Open perspective > Other > Java and click OK.
b) Switch to the Package Explorer view.
c) Right-click in the white-space in the Package Explorer view. Click New > Java project.
d) In the Project name field type MQ Java Samples. Click Next.
e) In the Java Settings panel, switch to the Libraries tab.
f) Click Add External JARs.
g) Browse to MQ_INSTALLATION_PATH \java\lib where MQ_INSTALLATION_PATH is the IBM MQ

installation folder and select com.ibm.mq.jar and com.ibm.mq.jmqi.jar
h) Click Open > Finish.
i) Right-click src in the Package Explorer view.
j) Select Import... > General > File System > Next > Browse... and browse to the path

MQ_INSTALLATION_PATH \tools\wmqjava\samples where MQ_INSTALLATION_PATH is the IBM
MQ installation directory.

k) On the Import panel, Figure 130 on page 1061, click samples (do not select the check box).
l) Select MQPubSubApiSample.java. The Into folder field should contain MQ Java Samples/
src. Click Finish.

1060 Developing Applications for IBM MQ

Figure 130. File system import

2. Run the publish/subscribe sample program.
There are two ways to run the program, depending on whether you need to change the default
parameters.

• The first choice runs the program without making any changes:

– In the workspace main menu, expand the src folder. Right-click MQPubSubApiSample.java
Run-as > 1. Java Application

• The second choice runs the program with parameters or with modified source code for your
environment:

– Open MQPubSubApiSample.java and study the MQPubSubApiSample constructor.

Developing applications for IBM MQ 1061

– Modify the attributes of the program.

These attributes are modifiable using the -D JVM switch, or by providing a default value for the
System property by editing the source code.

- topicObject
- queueManagerName
- subscriberCount

These attributes are changeable only by editing the source code in the constructor.

- hostname
- port
- channel

To set System properties, code a default value in the accessor, for example:

queueManagerName = System.getProperty("com.ibm.mq.pubSubSample.queueManagerName",
"QM3");

Or provide the parameter to the JVM using the -D option, as shown in the following steps:

a. Copy the full name of the System.Property you want to set, for example:
com.ibm.mq.pubSubSample.queueManagerName.

b. In the workspace, right-click Run > Open Run Dialog. Double-click Java Application in Create,
Manage and Run applications and click the (x) = Arguments tab.

c. In the VM arguments: pane, type -D and paste the System.property name,
com.ibm.mq.pubSubSample.queueManagerName, followed by =QM3. Click Apply > Run.

d. Add further arguments as a comma separated list, or as additional lines in the pane, without
comma separators.

For example: -Dcom.ibm.mq.pubSubSample.queueManagerName=QM3,
-Dcom.ibm.mq.pubSubSample.subscriberCount=6.

The Publish Exit sample program
AMQSPSE0 is a sample C program of an exit to intercept a publication before it is delivered to a
subscriber. The exit can then, for example, alter the message headers, payload or destination, or prevent
the message being published to a subscriber.

To run the sample, perform the following tasks:

1. Configure the queue manager:

• On AIX and Linux systems add a stanza like this to the qm.ini file:

PublishSubscribe:
PublishExitPath=Module
PublishExitFunction=EntryPoint

where the module is MQ_INSTALLATION_PATH/samp/bin/amqspse. MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

• On Windows set the equivalent attributes in the registry.
2. Make sure the Module is accessible to IBM MQ.
3. Restart the queue manager to pick up the configuration.
4. In the application process to be traced, describe where the trace files should be written to. For

example:

1062 Developing Applications for IBM MQ

• On AIX and Linux systems, ensure that the directory /var/mqm/trace
exists and export the MQPSE_TRACE_LOGFILE environment variable:

export MQPSE_TRACE_LOGFILE=/var/mqm/trace/PubTrace

• On Windows, ensure that the directory C:\temp exists and set the
MQPSE_TRACE_LOGFILE environment variable:

set MQPSE_TRACE_LOGFILE=C:\temp\PubTrace

The Put sample programs
The Put sample programs put messages on a queue using the MQPUT call.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

Design of the Put sample program
The program uses the MQOPEN call with the MQOO_OUTPUT option to open the target queue for putting
messages.

If it cannot open the queue, the program outputs an error message containing the reason code returned
by the MQOPEN call. To keep the program simple, on this and on subsequent MQI calls, the program uses
default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call to create a
datagram message containing the text of that line. The program continues until either it reaches the end
of the input or the MQPUT call fails. If the program reaches the end of the input, it closes the queue using
the MQCLOSE call.

Running the Put sample programs

Running the amqsput and amqsputc samples

The amqqsput sample is the program for putting messages using local bindings, and the amqsputc
sample is the program for putting messages using client bindings. These programs each take the following
positional parameters:

1. The name of the target queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsput connects to the default queue manager and amqsputc
connects to the queue manager identified by the MQSERVER environment variable or the client
channel definition file.

3. The open options (optional)

If open options are not specified, the sample uses a value of 8208 which is the combination of these
two options:

• MQOO_OUTPUT
• MQOO_FAIL_IF_QUIESCING

4. The close options (optional)

If close options are not specified, the sample uses a value of 0 which is MQCO_NONE.
5. The name of the target queue manager (optional)

If a target queue manager is not specified, the ObjectQMgrName field in the MQOD will be left blank.

Developing applications for IBM MQ 1063

6. The name of the dynamic queue (optional)

If a dynamic queue name is not specified, the DynamicQName field in the MQOD will be left blank.

Use the following environment variables to supply credentials that are used to authenticate with the
queue manager:
MQSAMP_USER_ID

Set to the user ID to be used for connection authentication, if you want use a user ID and a password
to authenticate with the queue manager. The program prompts for the password to accompany the
user ID.

MQSAMP_TOKEN
Set to a non-blank value if you want to supply an authentication token to authenticate with the queue
manager. The program prompts for the authentication token. Authentication tokens can be used only
by the amqsputc sample that uses client bindings.

To run these programs, enter one of the following commands:

• amqsput myqueue qmanagername
• amqsputc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be put, and qmanagername
is the queue manager that owns myqueue.

Running the amq0put sample

The COBOL version does not have any parameters. It connects to the default queue manager and when
you run it you are prompted:

Please enter the name of the target queue

It takes input from StdIn and adds each line of input to the target queue. A blank line indicates there is no
more data.

Running the AMQSPUT4 C sample (IBM i)

The C program AMQSPUT4, available only for the IBM i platform, creates messages by reading data from a
member of a source file.

You must specify the name of the file as a parameter when you start the program. The structure of the file
must be:

queue name
text of message 1
text of message 2
⋮
text of message n
blank line

A sample of input for the put samples is supplied in library QMQMSAMP file AMQSDATA member PUT.

Note: Remember that queue names are case sensitive. All the queues created by the sample file create
program AMQSAMP4 have names created in uppercase characters.

The C program puts messages on the queue named in the first line of the file; you can use the supplied
queue SYSTEM.SAMPLE.LOCAL. The program puts the text of each of the following lines of the file into
separate datagram messages, and stops when it reads a blank line at the end of the file.

Using the example data file the command is:

1064 Developing Applications for IBM MQ

CALL PGM(QMQM/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

Running the AMQ0PUT4 COBOL sample (IBM i)

The COBOL program AMQ0PUT4, available only on the IBM i platform, creates messages by accepting
data from the keyboard.

To start the program, call the program and give the name of your target queue as a program parameter.
The program accepts input from the keyboard into a buffer and creates a datagram message for each line
of text. The program stops when you enter a blank line at the keyboard.

The Reference Message sample programs
The Reference Message samples allow a large object to be transferred from one node to another (usually
on different systems) without the need for the object to be stored on IBM MQ queues at either the source
or the destination nodes.

A set of sample programs is provided to demonstrate how Reference Messages can be put to a queue,
received by message exits, and taken from a queue. The sample programs use Reference Messages to
move files. If you want to move other objects such as databases, or if you want to perform security
checks, define your own exit, based on the sample, amqsxrm.

The version of the Reference Message exit sample program to use depends on the platform on which the
channel is running:

• On all platforms, use amqsxrma at the sending end.
• Use amqsxrma at the receiving end if the receiver is running under any platform except IBM i.

• If the receiver is running under IBM i, use amqsxrm4.

.

Notes for IBM i users
To receive a Reference Message using the sample message exit, specify a file in the root file system of IFS
or any subdirectory so that a stream file can be created.

The sample message exit on IBM i creates the file, converts the data to EBCDIC, and sets the code page
to your system code page. You can then copy this file to the QSYS.LIB file system using the CPYFRMSTMF
command. For example:

CPYFRMSTMF FROMSTMF('JANEP/TEST.TXT')
TOMBR('qsys.lib.janep.lib/test.fie/test.mbr') MBROPT(*REPLACE)
CVTDTA(*NONE)

The CPYFRMSTMF command does not create the file. You must create it before running this command.

If you send a file from QSYS.LIB, no changes are required to the samples. For any other file system ensure
that the CCSID specified in the CodedCharSetId field in the MQRMH structure matches the bulk data that
you are sending.

When using the integrated file system, create program modules with the SYSIFCOPT(*IFSIO) option set.
If you want to move database or fixed-length record files, define your own exit based on the supplied
sample AMQSXRM4.

The recommended method of transferring a database file is to convert it to IFS structure, using the
CPYTOSTMF command, and then send the Reference Message attaching the IFS file. If you choose to
transfer a database file by referring to it from within IFS, but do not convert it to IFS structure, you must
specify the member name. Data integrity is not guaranteed if you choose this method.

Developing applications for IBM MQ 1065

Running the Reference Message samples
Use this example to find out how to run Reference Message sample application AMQSPRM on AIX, Linux,
and Windows, or AMQSPRMA on IBM i. The example shows how Reference Messages can be put to a
queue, received by message exits, and taken from a queue.

The Reference Message samples run as follows:

Figure 131. Running the Reference Message samples

1. Set up the environment to start the listeners, channels, and trigger monitors, and define your channels
and queues.

For the purposes of describing how to set up the Reference Message, this example refers to the
sending machine as MACHINE1 with a queue manager called QMGR1 and the receiving machine as
MACHINE2 with a queue manager called QMGR2.

Note: The following definitions allow a Reference Message to be built to send a file with an object type
of FLATFILE from queue manager QMGR1 to QMGR2 and to re-create the file as defined in the call
to AMQSPRM (or AMQSPRMA on IBM i). The Reference Message (including the file data) is sent using
channel CHL1 and transmission queue XMITQ and placed on queue DQ. Exception and COA reports are
sent back to QMGR1 using the channel REPORT and transmission queue QMGR1.

1066 Developing Applications for IBM MQ

The application that receives the Reference Message (AMQSGRM or AMQSGRMA on IBM i) is triggered
using the initiation queue INITQ and process PROC. Ensure that the CONNAME fields are set correctly
and the MSGEXIT field reflects your directory structure, depending on machine type and where the
IBM MQ product is installed.

The MQSC definitions have used an AIX style for defining the exits, so if you are using
MQSC on IBM i, you need to modify these accordingly. It is important to note that the message data
FLATFILE is case sensitive and the sample will not work unless it is in uppercase.

On machine MACHINE1, queue manager QMGR1

MQSC syntax

define chl(chl1) chltype(sdr) trptype(tcp) conname('machine2') xmitq(xmitq)
msgdata(FLATFILE) msgexit('/usr/lpp/mqm/samp/bin/amqsxrm(MsgExit)
')

define ql(xmitq) usage(xmitq)

define chl(report) chltype(rcvr) trptype(tcp) replace

define qr(qr) rname(dq) rqmname(qmgr2) xmitq(xmitq) replace

 IBM i command syntax

Note: If you do not specify a queue manager name the system uses the default queue manager.

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*SDR) MQMNAME(QMGR1) +
 REPLACE(*YES) TRPTYPE(*TCP) +
 CONNAME('MACHINE2(60501)') TMQNAME(XMITQ) +
 MSGEXIT(QMQM/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMQ QNAME(XMITQ) QTYPE(*LCL) MQMNAME(QMGR1) +
 REPLACE(*YES) USAGE(*TMQ)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*RCVR) +
 MQMNAME(QMGR1) REPLACE(*YES) TRPTYPE(*TCP)

CRTMQMQ QNAME(QR) QTYPE(*RMT) MQMNAME(QMGR1) +
 REPLACE(*YES) RMTQNAME(DQ) +
 RMTMQMNAME(QMGR2) TMQNAME(XMITQ)

On machine MACHINE2, queue manager QMGR2

MQSC syntax

define chl(chl1) chltype(rcvr) trptype(tcp)
msgexit('/usr/lpp/mqm/samp/bin/amqsxrm(MsgExit)')
 msgdata(flatfile)

define chl(report) chltype(sdr) trptype(tcp) conname('MACHINE1')
 xmitq(qmgr1)

define ql(initq)

define ql(qmgr1) usage(xmitq)

define pro(proc) applicid('/usr/lpp/mqm/samp/bin/amqsgrm')

define ql(dq) initq(initq) process(proc) trigger trigtype(first)

 IBM i command syntax

Note: On IBM i, if you do not specify a queue manager name the system uses the default
queue manager.

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*RCVR) MQMNAME(QMGR2) +
REPLACE(*YES) TRPTYPE(*TCP) +

Developing applications for IBM MQ 1067

MSGEXIT(QMQM/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*SDR) MQMNAME(QMGR2) +
REPLACE(*YES) TRPTYPE(*TCP) +
CONNAME('MACHINE1(60500)') TMQNAME(QMGR1)

CRTMQMQ QNAME(INITQ) QTYPE(*LCL) MQMNAME(QMGR2) +
REPLACE(*YES) USAGE(*NORMAL)

CRTMQMQ QNAME(QMGR1) QTYPE(*LCL) MQMNAME(QMGR2) +
REPLACE(*YES) USAGE(*TMQ)

CRTMQMPRC PRCNAME(PROC) MQMNAME(QMGR2) REPLACE(*YES) +
APPID('QMQM/AMQSGRM4')

CRTMQMQ QNAME(DQ) QTYPE(*LCL) MQMNAME(QMGR2) +
REPLACE(*YES) PRCNAME(PROC) TRGENBL(*YES) +
INITQNAME(INITQ)

2. Once the IBM MQ objects have been created:

a. Where applicable to the platform, start the listener for the sending and receiving queue managers
b. Start the channels CHL1 and REPORT
c. On the receiving queue manager start the trigger monitor for the initiation queue INITQ

3. Invoke the put Reference Message sample program AMQSPRM (AMQSPRMA on IBM i) from the
command line using the following parameters:
-m

Name of the local queue manager; this defaults to the default queue manager
-i

Name and location of source file
-o

Name and location of the destination file
-q

Name of the queue
-g

Name of the queue manager where the queue, defined in the -q parameter exists. This defaults to
the queue manager specified in the -m parameter.

-t
Object type

-w
Wait interval, that is, the waiting time for exception and COA reports from the receiving queue
manager

For example, to use the sample with the objects defined previously you would use the following
parameters:

-mQMGR1 -iInput File -oOutput File -qQR -tFLATFILE -w120

Increasing the waiting time allows time for a large file to be sent across a network before the program
putting the messages times out.

amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

IBM i users: On IBM i, complete the following steps:

a. Use the following command:

CALL PGM(QMQM/AMQSPRM4) PARM('-mQMGR1' +
'-i/refmsgs/rmsg1' +

1068 Developing Applications for IBM MQ

'-o/refmsgs/rmsgx' '-qQR' +
'-gQMGR1' '-tFLATFILE' '-w15')

This assumes that the original file rmsg1 is in IFS directory /refmsgs and that you want the
destination file to be rmsgx in IFS directory /refmsgs on the target system.

b. Create your own directory using the CRTDIR command rather than using the root directory.
c. When you call the program that puts data, remember that the output file name needs to reflect

the IFS naming convention; for example /TEST/FILENAME creates a file called FILENAME in the
directory TEST.

Note:

On IBM i, you can use either a forward slash (/) or a dash (-) when specifying parameters.
For example:

amqsprm /i d:\files\infile.dat /o e:\files\outfile.dat /q QR
/m QMGR1 /w 30 /t FLATFILE

For AIX and Linux platforms, you must use two backslashes (\\) instead of
one to denote the destination file directory. Therefore, the amqsprm command looks like this:

amqsprm -i /files/infile.dat -o e:\\files\\outfile.dat -q QR
-m QMGR1 -w 30 -t FLATFILE

Running the put Reference Message program does the following:

• The Reference Message is put to queue QR on queue manager QMGR1.
• The source file and path are d:\files\infile.dat and exists on the system where the example

command is issued.
• If the queue QR is a remote queue, the Reference Message is sent to another queue manager, on

a different system, where a file is created with the name and path e:\files\outfile.dat. The
contents of this file are the same as the source file.

• amqsprm waits for 30 seconds for a COA report from the destination queue manager.
• The object type is flatfile, so the channel used to move messages from the queue QR must

specify this in the MsgData field.
4. When you define your channels, select the message exit at both the sending and receiving ends to be

amqsxrm.

This is defined on Windows as follows:

msgexit(' pathname\amqsxrm.dll(MsgExit)')

This is defined on AIX and Linux as follows:

msgexit(' pathname/amqsxrm(MsgExit)')

If you specify a path name, specify the complete name. If you omit the path name, it is assumed that
the program is in the path specified in the qm.ini file (or, on IBM MQ for Windows, the path specified
in the registry).

5. The channel exit reads the Reference Message header and finds the file that it refers to.
6. The channel exit can then segment the file before sending it down the channel along with the header.

On AIX and Linux, change the group owner of the target directory to 'mqm'
so that the sample message exit can create the file in that directory. Also, change the permissions of

Developing applications for IBM MQ 1069

the target directory to allow mqm group members to write to it. The file data is not stored on the IBM
MQ queues.

7. When the last segment of the file is processed by the receiving message exit, the Reference Message
is put to the destination queue specified by amqsprm. If this queue is triggered (that is, the definition
specifies Trigger, InitQ, and Process queue attributes), the program specified by the PROC
parameter of the destination queue is triggered. The program to be triggered must be defined in the
ApplId field of the Process attribute.

8. When the Reference Message reaches the destination queue (DQ), a COA report is sent back to the
putting application (amqsprm).

9. The Get Reference Message sample, amqsgrm, gets messages from the queue specified in the input
trigger message and checks the existence of the file.

Design of the Put Reference Message sample (amqsprma.c, AMQSPRM4)
This topic gives a detailed description of a Put Reference Message sample.

This sample creates a Reference Message that refers to a file and puts it on a specified queue:

1. The sample connects to a local queue manager using MQCONN.
2. It then opens (MQOPEN) a model queue that is used to receive report messages.
3. The sample builds a Reference Message containing the values required to move the file, for example,

the source and destination file names and the object type. As an example, the sample shipped with
IBM MQ builds a Reference Message to send the file d:\x\file.in from QMGR1 to QMGR2 and to
re-create the file as d:\y\file.out using the following parameters:

amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

Where QR is a remote queue definition that refers to a target queue on QMGR2.

Note: For AIX and Linux platforms, use two backslashes (\\) instead of one to denote the destination
file directory. Therefore, the amqsprm command looks like this:

amqsprm -q QR -m QMGR1 -i /x/file.in -o d:\\y\\file.out -t FLATFILE

4. The Reference Message is put (without any file data) to the queue specified by the /q parameter. If this
is a remote queue, the message is put to the corresponding transmission queue.

5. The sample waits, for the duration of time specified in the /w parameter (which defaults to 15
seconds), for COA reports, which, along with exception reports, are sent back to the dynamic queue
created on the local queue manager (QMGR1).

Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)
This sample recognizes Reference Messages with an object type that matches the object type in the
message exit user data field of the channel definition.

For these messages, the following happens:

• At the sender or server channel, the specified length of data is copied from the specified offset of the
specified file into the space remaining in the agent buffer after the Reference Message. If the end of
the file is not reached, the Reference Message is put back on the transmission queue after updating the
DataLogicalOffset field.

• At the requester or receiver channel, if the DataLogicalOffset field is zero and the specified file
does not exist, it is created. The data following the Reference Message is added to the end of the
specified file. If the Reference Message is not the last one for the specified file, it is discarded.
Otherwise, it is returned to the channel exit, without the appended data, to be put on the target queue.

For sender and server channels, if the DataLogicalLength field in the input Reference Message is zero,
the remaining part of the file, from DataLogicalOffset to the end of the file, is to be sent along the
channel. If it is not zero, only the length specified is sent.

1070 Developing Applications for IBM MQ

If an error occurs (for example, if the sample cannot open a file), MQCXP. ExitResponse is set to
MQXCC_SUPPRESS_FUNCTION so that the message being processed is put to the dead-letter queue
instead of continuing to the destination queue. A feedback code is returned in MQCXP. Feedback and
returned to the application that put the message in the Feedback field of the message descriptor
of a report message. This is because the putting application requested exception reports by setting
MQRO_EXCEPTION in the Report field of the MQMD.

If the encoding or CodedCharacterSetId (CCSID) of the Reference Message is different from that of
the queue manager, the Reference Message is converted to the local encoding and CCSID. In our sample,
amqsprm, the format of the object is MQFMT_STRING, so amqsxrm converts the object data to the local
CCSID at the receiving end before the data is written to the file.

Do not specify the format of the file being transferred as MQFMT_STRING if the file contains multibyte
characters (for example, DBCS or Unicode). This is because a multibyte character could be split when the
file is segmented at the sending end. To transfer and convert such a file, specify the format as something
other than MQFMT_STRING so that the Reference Message exit does not convert it and convert the file at
the receiving end when the transfer is complete.

Compiling the Reference Message Exit sample
To compile the Reference Message Exit sample, use the command for the platform on which IBM MQ is
installed.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To compile amqsxrma, use the following commands:

On AIX

xlc_r -q64 -e MsgExit -bE:amqsxrm.exp -bM:SRE -o amqsxrm_64_r
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -lmqm_r amqsqrma.c

On IBM i

CRTCMOD MODULE(MYLIB/AMQSXRMA) SRCFILE(QMQMSAMP/QCSRC)
TERASPACE(*YES *TSIFC)

Note:

1. To create your module so that it uses the IFS file system, add the option SYSIFCOPT(*IFSIO)
2. To create the program for use with non-threaded channels use the following command: CRTPGM
PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM)

3. To create the program for use with threaded channels use the following command: CRTPGM
PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM_R)

On Linux

$ gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsxrma amqsqrma.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-lmqm_r

Developing applications for IBM MQ 1071

On Windows
 IBM MQ now supplies the mqm library with client packages as well as server packages, so

the following example uses mqm.lib instead of mqmvx.lib:

cl amqsqrma.c /link /out:amqsxrm.dll /dll mqm.lib mqm.lib /def:amqsxrm.def

Related concepts
“Writing channel-exit programs” on page 929
You can use the following information to help you write channel-exit programs.

Design of the Get Reference Message sample (amqsgrma.c, AMQSGRM4)
This topic explains the design of the Get Reference Message sample.

The program logic is as follows:

1. The sample is triggered and extracts the queue and queue manager names from the input trigger
message.

2. It then connects to the specified queue manager using MQCONN and opens the specified queue using
MQOPEN.

3. The sample issues MQGET with a wait interval of 15 seconds within a loop to get messages from the
queue.

4. If a message is a Reference Message, the sample checks the existence of the file that has been
transferred.

5. It then closes the queue and disconnects from the queue manager.

The Request sample programs
The Request sample programs demonstrate client/server processing. The samples are the clients that put
request messages on a target server queue that is processed by a server program. They wait for the server
program to put a reply message on a reply-to queue.

The Request samples put a series of request messages on the target server queue using the MQPUT call.
These messages specify the local queue, SYSTEM.SAMPLE.REPLY as the reply-to queue, which can be a
local or remote queue. The programs wait for reply messages, then display them. Replies are sent only
if the target server queue is being processed by a server application, or if an application is triggered for
that purpose (the Inquire, Set, and Echo sample programs are designed to be triggered). The C sample
waits 1 minute (the COBOL sample waits 5 minutes), for the first reply to arrive (to allow time for a server
application to be triggered), and 15 seconds for subsequent replies, but both samples can end without
getting any replies. See “Features demonstrated in the sample programs on Multiplatforms” on page
1020 for the names of the Request sample programs.

Running the Request sample programs

Running the amqsreq0.c, amqsreq, and amqsreqc samples
The C version of the program takes three parameters:

1. The name of the target server queue (necessary)
2. The name of the queue manager (optional)
3. The reply queue (optional)

For example, enter one of the following:

• amqsreq myqueue qmanagername replyqueue
• amqsreqc myqueue qmanagername
• amq0req0 myqueue

where myqueue is the name of the target server queue, qmanagername is the name of the queue
manager that owns myqueue, and replyqueue is the name of the reply queue.

1072 Developing Applications for IBM MQ

If you omit the name of the queue manager, it is assumed that the default queue manager owns the
queue. If you omit the name of the reply queue, the default reply queue is provided.

Running the amq0req0.cbl sample
The COBOL version does not have any parameters. It connects to the default queue manager and when
you run it you are prompted:

Please enter the name of the target server queue

The program takes its input from StdIn and adds each line to the target server queue, taking each line of
text as the content of a request message. The program ends when a null line is read.

Running the AMQSREQ4 sample
The C program creates messages by taking data from stdin (the keyboard) with a blank time terminating
input. The program takes up to three parameters: the name of the target queue (required), the
queue manager name (optional), and the reply-to queue name (optional). If no queue manager
name is specified, the default queue manager is used. If no reply-to queue is specified, the
SYSTEM.SAMPLE.REPLY queue is used.

Here is an example of how to call the C sample program, specifying the reply-to queue, but letting the
queue manager default:

CALL PGM(QMQM/AMQSREQ4) PARM('SYSTEM.SAMPLE.LOCAL' '' 'SYSTEM.SAMPLE.REPLY')

Note: Remember that queue names are case sensitive. All the queues created by the sample file create
program AMQSAMP4 have names created in uppercase characters.

Running the AMQ0REQ4 sample
The COBOL program creates messages by accepting data from the keyboard. To start the program, call
the program and specify the name of your target queue as a parameter. The program accepts input from
the keyboard into a buffer and creates a request message for each line of text. The program stops when
you enter a blank line at the keyboard.

Running the Request sample using triggering

If the sample is used with triggering and one of the Inquire, Set, or Echo sample programs, the line of
input must be the queue name of the queue that you want the triggered program to access.

Running the Request sample using triggering on AIX, Linux, and Windows
On AIX, Linux, and Windows, start the trigger monitor program RUNMQTRM in one session, and then start
the amqsreq program in another session.

To run the samples using triggering:

1. Start the trigger monitor program RUNMQTRM in one session (the initiation queue
SYSTEM.SAMPLE.TRIGGER is available for you to use).

2. Start the amqsreq program in another session.
3. Make sure that you have defined a target server queue.

The sample queues available to you to use as the target server queue for the request sample to put
messages are:

• SYSTEM.SAMPLE.INQ - for the Inquire sample program
• SYSTEM.SAMPLE.SET - for the Set sample program
• SYSTEM.SAMPLE.ECHO - for the Echo sample program

Developing applications for IBM MQ 1073

These queues have a trigger type of FIRST, so if there are already messages on the queues before you
run the Request sample, server applications are not triggered by the messages you send.

4. Make sure that you have defined a queue for the Inquire, Set or Echo sample program to use.

This means that the trigger monitor is ready when the request sample sends a message.

Note: The sample process definitions created using RUNMQSC and the amqscos0.tst file trigger the C
samples. Change the process definitions in amqscos0.tst and use RUNMQSC with this updated file to use
COBOL versions.

Figure 132 on page 1074 demonstrates how to use the Request and Inquire samples together.

Figure 132. Request and Inquire samples using triggering

In Figure 132 on page 1074 the Request sample puts messages onto the target server queue,
SYSTEM.SAMPLE.INQ, and the Inquire sample queries the queue, MYQUEUE. Alternatively, you can use
one of the sample queues defined when you ran amqscos0.tst, or any other queue that you have defined,
for the Inquire sample.

Note: The numbers in Figure 132 on page 1074 show the sequence of events.

To run the Request and Inquire samples, using triggering:

1. Check that the queues that you want to use are defined. Run amqscos0.tst, to define the sample
queues, and define a queue MYQUEUE.

2. Run the trigger monitor command RUNMQTRM:

1074 Developing Applications for IBM MQ

RUNMQTRM -m qmanagername -q SYSTEM.SAMPLE.TRIGGER

3. Run the request sample

amqsreq SYSTEM.SAMPLE.INQ

Note: The process object defines what is to be triggered. If the client and server are not running on
the same platform, any processes started by the trigger monitor must define ApplType, otherwise the
server takes its default definitions (that is, the type of application that is normally associated with the
server machine) and causes a failure.

For a list of application types, see ApplType.
4. Enter the name of the queue that you want the Inquire sample to use:

MYQUEUE

5. Enter a blank line (to end the Request program).
6. The request sample will then display a message, containing the data the Inquire program obtained

from MYQUEUE.

You can use more than one queue; in this case, enter the names of the other queues at step “4” on page
1075.

For more information on triggering see “Starting IBM MQ applications using triggers” on page 834.

Running the Request sample using triggering on IBM i
On IBM i, start the sample trigger server, AMQSERV4, in one job, then start AMQSREQ4 in another. This
means that the trigger server is ready when the Request sample program sends a message.

Note:

1. The sample definitions created by AMQSAMP4 trigger the C versions of the samples. If you want
to trigger the COBOL versions, change the process definitions SYSTEM.SAMPLE.ECHOPROCESS,
SYSTEM.SAMPLE.INQPROCESS, and SYSTEM.SAMPLE.SETPROCESS. You can use the CHGMQMPRC
command (for details, see Change MQ Process (CHGMQMPRC)) to do this, or edit and run your own
version of AMQSAMP4.

2. Source code for AMQSERV4 is supplied for the C language only. However, a compiled version (that you
can use with the COBOL samples) is supplied in library QMQM.

You could put your request messages on these sample server queues:

• SYSTEM.SAMPLE.ECHO (for the Echo sample programs)
• SYSTEM.SAMPLE.INQ (for the Inquire sample programs)
• SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 133 on page 1077. Using the
example data file the command to issue the C program request to this server is:

CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(ECHO)')

Note: This sample queue has a trigger type of FIRST, so if there are already messages on the queue
before you run the Request sample, server applications are not triggered by the messages you send.

If you want to attempt further examples, you can try the following variations:

• Use AMQSTRG4 (or its command line equivalent STRMQMTRM, for details, see Start MQ Trigger Monitor
(STRMQMTRM)) instead of AMQSERV4 to submit the job instead, but potential job submission delays
could make it less easy to follow what is happening.

Developing applications for IBM MQ 1075

• Run the SYSTEM.SAMPLE.INQUIRE and SYSTEM.SAMPLE.SET sample programs. Using the example
data file the commands to issue the C program requests to these servers are, respectively:

CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(INQ)')
CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(SET)')

These sample queues also have a trigger type of FIRST.

Design of the Request sample program
The program opens the target server queue so that it can put messages. It uses the MQOPEN call with the
MQOO_OUTPUT option. If it cannot open the queue, the program displays an error message containing
the reason code returned by the MQOPEN call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so that it can get reply
messages. For this, the program uses the MQOPEN call with the MQOO_INPUT_EXCLUSIVE option. If
it cannot open the queue, the program displays an error message containing the reason code returned by
the MQOPEN call.

For each line of input, the program then reads the text into a buffer and uses the MQPUT call
to create a request message containing the text of that line. On this call the program uses the
MQRO_EXCEPTION_WITH_DATA report option to request that any report messages sent about the
request message will include the first 100 bytes of the message data. The program continues until either
it reaches the end of the input or the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the queue, and displays
the data contained in the replies. The MQGET call uses the MQGMO_WAIT, MQGMO_CONVERT, and
MQGMO_ACCEPT_TRUNCATED options. The WaitInterval is 5 minutes in the COBOL version, and
1 minute in the C version, for the first reply (to allow time for a server application to be triggered),
and 15 seconds for subsequent replies. The program waits for these periods if there is no message
on the queue. If no message arrives before this interval expires, the call fails and returns the
MQRC_NO_MSG_AVAILABLE reason code. The call also uses the MQGMO_ACCEPT_TRUNCATED_MSG
option, so that messages longer than the declared buffer size are truncated.

The program demonstrates how to clear the MsgId and CorrelId fields of the MQMD structure after
each MQGET call because the call sets these fields to the values contained in the message it retrieves.
Clearing these fields means that successive MQGET calls retrieve messages in the order in which the
messages are held in the queue.

The program continues until either the MQGET call returns the MQRC_NO_MSG_AVAILABLE reason code
or the MQGET call fails. If the call fails, the program displays an error message that contains the reason
code.

The program then closes both the target server queue and the reply-to queue using the MQCLOSE call.

1076 Developing Applications for IBM MQ

Figure 133. Sample IBM i Client/Server (Echo) program flowchart

The Set sample programs
The Set sample programs inhibit put operations on a queue by using the MQSET call to change the
queue's InhibitPut attribute. Also, learn about the design of Set sample programs.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

The programs are intended to run as triggered programs, so their only input is an MQTMC2 (trigger
message) structure that contains the name of a target queue with attributes that are to be inquired upon.
The C version also uses the queue manager name. The COBOL version uses the default queue manager.

For the triggering process to work, ensure that the Set sample program that you want to use
is triggered by messages arriving on queue SYSTEM.SAMPLE.SET. To do this, specify the name of
the Set sample program that you want to use in the ApplicId field of the process definition
SYSTEM.SAMPLE.SETPROCESS. The sample queue has a trigger type of FIRST; if there are already

Developing applications for IBM MQ 1077

messages on the queue before you run the Request sample, the Set sample is not triggered by the
messages that you send.

When you have set the definition correctly:

• For AIX, Linux, and Windows systems, start the runmqtrm program in one session, then
start the amqsreq program in another.

• For IBM i, start the AMQSERV4 program in one session, then start the AMQSREQ4
program in another. You could use AMQSTRG4 instead of AMQSERV4, but potential job submission
delays could make it less easy to follow what is happening.

Use the Request sample programs to send request messages, each containing just a queue name, to
queue SYSTEM.SAMPLE.SET. For each request message, the Set sample programs send a reply message
containing a confirmation that put operations have been inhibited on the specified queue. The replies are
sent to the reply-to queue specified in the request message.

Design of the Set sample program
The program opens the queue named in the trigger message structure that it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue for
shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the
MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, with a wait interval of 5 seconds. The
program tests the descriptor of each message to see if it is a request message; if it is not, the program
discards the message, and displays a warning message.

For each request message removed from the request queue, the program reads the name of the queue
(which we will call the target queue) contained in the data and opens that queue using the MQOPEN call
with the MQOO_SET option. The program then uses the MQSET call to set the value of the InhibitPut
attribute of the target queue to MQQA_PUT_INHIBITED.

If the MQSET call is successful, the program uses the MQPUT1 call to put a reply message on the reply-to
queue. This message contains the string PUT inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT1 call to put a report
message on the reply-to queue. In the Feedback field of the message descriptor of this report message is
the reason code returned by either the MQOPEN or MQSET call, depending on which one failed.

After the MQSET call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

The TLS sample program
AMQSSSLC is a sample C program that demonstrates how to use the MQCNO and MQSCO structures to
supply TLS client connection information on the MQCONNX call. This enables a client MQI application to
provide the definition of its client connection channel and TLS settings at run time without a client channel
definition table (CCDT).

If a connection name is supplied, the program constructs a client connection channel definition in an
MQCD structure.

If the stem name of the key repository file is supplied, the program constructs an MQSCO structure; if
an OCSP responder URL is also supplied, the program constructs an authentication information record
MQAIR structure.

The program then connects to the queue manager using MQCONNX. It inquires and prints out the name of
the queue manager to which it connected.

This program is intended to be linked as an MQI client application. However, it can be linked as a
regular MQI application, in which case it simply connects to a local queue manager and ignores the client
connection information.

1078 Developing Applications for IBM MQ

If the passphrase to access the key repository is not stashed to a file, you must supply the passphrase to
amqssslc when the application runs. You can supply the passphrase either by:

• Requesting amqssslc to prompt for the passphrase, or
• Using the MQKEYRPWD environment variable, or
• Using the SSLKeyRepositoryPassword attribute in the client configuration file

For more information about supplying the key repository password to IBM MQ MQI client applications,
see Supplying the key repository password for an IBM MQ MQI client on AIX, Linux, and Windows.

amqssslc accepts the following parameters, all of which are optional:
-m QmgrName

Name of the queue manager to connect to
-c ChannelName

Name of the channel to use
-x ConnName

Server connection name

TLS parameters:
-k KeyReposFileName

The name of the key repository file. If the file extension is not supplied, it is assumed to be .kdb. For
example:

/home/user/client.kdb
C:\User\client.p12

-s CipherSpec
The TLS channel CipherSpec string corresponding to the SSLCIPH on the SVRCONN channel definition
on the queue manager.

-f
Specifies that only FIPS 140-2 certified algorithms must be used.

-b VALUE1[,VALUE2...]
Specifies that only Suite B compliant algorithms must be used. This parameter is a comma-
separated list of one or more of the following values: NONE,128_BIT,192_BIT. These values
have the same meaning as those for the MQSUITEB environment variable, and the equivalent
EncryptionPolicySuiteB setting in the client configuration file SSL stanza.

-p Policy
Specifies the certificate validation policy to be used. This can be one of the following values:
ANY

Apply each of the certificate validation policies supported by the secure sockets library and accept
the certificate chain if any of the policies considers the certificate chain valid. This setting can
be used for maximum backwards compatibility with older digital certificates which do not comply
with the modern certificate standards.

RFC5280
Apply only the RFC 5280 compliant certificate validation policy. This setting provides stricter
validation than the ANY setting, but rejects some older digital certificates.

The default value is ANY.
-l CertLabel

The certificate label to use for the secure connection.

Note: You must specify the value using lowercase characters.

-w
Specifies that amqssslc prompts for the key repository passphrase to be supplied.

Developing applications for IBM MQ 1079

-i
Specifies that amqssslc prompts for the initial key used to encrypt the key repository passphrase to
be supplied.
Specify this option if an initial key file was specified when the key repository passphrase was
encrypted using the runmqicred utility.

OCSP certificate revocation parameter:
-o URL

The OCSP Responder URL

You can also set one of the following environment variables to supply credentials that are used to
authenticate with the queue manager:
MQSAMP_USER_ID

Set to the user ID to be used for connection authentication, if you want use a user ID and a password
to authenticate with the queue manager. The program prompts for the password to accompany the
user ID.

MQSAMP_TOKEN
Set to a non-blank value if you want to supply an authentication token to authenticate with the queue
manager. The program prompts for the authentication token.

Running the TLS sample program
To run the TLS sample program you must first set up your TLS environment. You then run the sample from
the command line, supplying a number of parameters.

About this task
The following instructions run the sample program using personal certificates. By varying the command
you can, for example, use CA certificates and check their status using an OCSP responder. See the
instructions within the sample.

Procedure
1. Create a queue manager with the name QM1. For more information, see crtmqm.
2. Create a key repository for the queue manager. For more information, see Setting up a key repository

on AIX, Linux, and Windows.
3. Create a key repository for the client. Call it clientkey.kdb.

Stash the key repository password in a file when you create the key repository.
4. Create a personal certificate for the queue manager. For more information, see Creating a self-signed

personal certificate on AIX, Linux, and Windows.
5. Create a personal certificate for the client.
6. Extract the personal certificate from the server key repository and add it to the client repository. For

more information, see Extracting the public part of a self-signed certificate from a key repository on
AIX, Linux, and Windows, and Adding a CA certificate (or the public part of a self-signed certificate)
into a key repository, on AIX, Linux, and Windows systems.

7. Extract the personal certificate from the client key repository and add it to the server key repository.
8. Create a server connection channel using the MQSC command:

DEFINE CHANNEL(QM1SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)
SSLCIPH(TLS_RSA_WITH_AES_128_CBC_SHA256)

For more information see Server-connection channel
9. Define and start a channel listener on the queue manager. For more information see DEFINE

LISTENER and START LISTENER.
10. Run the sample program using the following command:

1080 Developing Applications for IBM MQ

AMQSSSLC -m QM1 -c QM1SVRCONN -x localhost
-k "C:\Program Files\IBM\MQ\clientkey.kdb" -s TLS_RSA_WITH_AES_128_CBC_SHA256
-o http://dummy.OCSP.responder

Results
The sample program performs the following actions:

1. Connects to any specified queue manager, or to the default queue manager, using any options
specified.

2. Opens the queue manager and inquires on its name.
3. Closes the queue manager.
4. Disconnects from the queue manager.

If the sample program runs successfully, it displays output similar to the following example:

Sample AMQSSSLC start
Connecting to queue manager QM1
Using the server connection channel QM1SVRCONN
on connection name localhost.
Using TLS CipherSpec TLS_RSA_WITH_AES_128_CBC_SHA256
Using TLS key repository stem C:\Program Files\IBM\MQ\clientkey
Using OCSP responder URL http://dummy.OCSP.responder
Connection established to queue manager QM1

Sample AMQSSSLC end

If the sample program encounters a problem, it displays an appropriate error message, for example if you
specify an invalid OCSP responder URL, you receive the following message:

MQCONNX ended with reason code 2553

For a list of reason codes see API completion and reason codes.

The Triggering sample programs
The function provided in the triggering sample is a subset of that provided in the trigger monitor in the
runmqtrm program.

See “Features demonstrated in the sample programs on Multiplatforms” on page 1020 for the names of
these programs.

Design of the triggering sample
The triggering sample program opens the initiation queue using the MQOPEN call with the
MQOO_INPUT_AS_Q_DEF option. It gets messages from the initiation queue using the MQGET call
with the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, specifying an unlimited wait
interval. The program clears the MsgId and CorrelId fields before each MQGET call to get messages in
sequence.

When it has retrieved a message from the initiation queue, the program tests the message by checking
the size of the message to make sure that it is the same size as an MQTM structure. If this test fails, the
program displays a warning.

For valid trigger messages, the triggering sample copies data from these fields: ApplicId, EnvrData,
Version, and ApplType. The last two of these fields are numeric, so the program creates character
replacements to use in an MQTMC2 structure for IBM i, AIX, Linux, and Windows systems.

Developing applications for IBM MQ 1081

The triggering sample issues a start command to the application specified in the ApplicId field of
the trigger message, and passes an MQTMC2 or MQTMC (a character version of the trigger message)
structure.

• In AIX, Linux, and Windows systems, the EnvData field is used as an extension to the
invoking command string.

• In IBM i, it is used as job submission parameters, for example, the job priority or the job
description.

Finally, the program closes the initiation queue.

Ending the triggering sample programs on IBM i

A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or by inhibiting gets from
the trigger queue.

If the sample trigger queue is used, the command is:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') MQMNAME GETENBL(*NO)

Important: Before starting triggering again on this queue, you must enter the following command:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(*YES)

Running the Triggering sample programs
This topic contains information about running Triggering sample programs.

Running the amqstrg0.c, amqstrg, and amqstrgc samples
The program takes 2 parameters:

1. The name of the initiation queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it connects to the default one. A sample initiation queue will have
been defined when you ran amqscos0.tst; the name of that queue is SYSTEM.SAMPLE.TRIGGER, and you
can use it when you run this program.

Note: The function in this sample is a subset of the full triggering function that is supplied in the
runmqtrm program.

Running the AMQSTRG4 sample

This is a trigger monitor for the IBM i environment. It submits one IBM i job for each application to be
started. This means that there is additional processing associated with each trigger message.

AMQSTRG4 (in QCSRC) takes two parameters: the name of the initiation queue that it is to serve, and
the name of the queue manager (optional). AMQSAMP4 (in QCLSRC) defines a sample initiation queue,
SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

Using the example trigger queue, the command to issue is:

CALL PGM(QMQM/AMQSTRG4) PARM('SYSTEM.SAMPLE.TRIGGER')

Alternatively, you can use the CL equivalent STRMQMTRM; for details, see Start MQ Trigger Monitor
(STRMQMTRM).

1082 Developing Applications for IBM MQ

Running the AMQSERV4 sample

This is a trigger server for the IBM i environment. For each trigger message, this server runs the start
command in its own job to start the specified application. The trigger server can call CICS transactions.

AMQSERV4 takes two parameters: the name of the initiation queue that it is to serve, and the name of
the queue manager (optional). AMQSAMP4 defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER,
that you can use when you try the sample programs.

Using the example trigger queue the command to issue is:

CALL PGM(QMQM/AMQSERV4) PARM('SYSTEM.SAMPLE.TRIGGER')

Design of the trigger server
The design of the trigger server is similar to that of the trigger monitor, with a few exceptions

The design of the trigger server is similar to that of the trigger monitor, except that the trigger server:

• Allows MQAT_CICS as well as MQAT_OS400 applications.

• Calls IBM i applications in its own job (or uses STRCICSUSR to start CICS applications)
rather than submitting an IBM i job.

• For CICS applications, substitutes the EnvData, for example, to specify the CICS region, from the
trigger message in the STRCICSUSR command.

• Opens the initiation queue for shared input, so that many trigger servers can run at the same time.

Note: Programs started by AMQSERV4 must not use the MQDISC call because this stops
the trigger server. If programs started by AMQSERV4 use the MQCONN call, they get the
MQRC_ALREADY_CONNECTED reason code.

Using the TUXEDO samples on AIX, Linux, and Windows
Learn about the Put and Get sample programs for TUXEDO, and building the server environment in
TUXEDO.

Before you begin
Before running these samples, you must build the server environment.

About this task
Note: Throughout this section, the backslash (\) character is used to split long commands over more than
one line. Do not enter this character. Enter each command as a single line.

Building the server environment
Information about building the server environment for IBM MQ for different platforms.

Before you begin
It is assumed that you have a working TUXEDO environment.

Building the server environment for AIX (32-bit)
How to build the server environment for IBM MQ for AIX (32-bit).

Procedure
1. Create a directory (for example, APPDIR) in which the server environment is built and execute all

commands in this directory.

Developing applications for IBM MQ 1083

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO, and
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed:

$ export CFLAGS="-I MQ_INSTALLATION_PATH/inc -I /APPDIR -L MQ_INSTALLATION_PATH/lib"
$ export LDOPTS="-lmqm"
$ export FIELDTBLS= MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ export VIEWFILES=/APPDIR/amqstxvx.V
$ export LIBPATH=$TUXDIR/lib: MQ_INSTALLATION_PATH/lib:/lib

3. Add the following line to the TUXEDO file udataobj/RM:

MQSeries_XA_RMI:MQRMIXASwitchDynamic: -lmqmxa -lmqm

4. Run the commands:

$ mkfldhdr MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ viewc MQ_INSTALLATION_PATH/samp/amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
 -f MQ_INSTALLATION_PATH/lib/libmqm.a \
 -r MQSeries_XA_RMI -s MPUT1:MPUT \
 -s MGET1:MGET \
 -v -bshm
$ buildserver -o MQSERV2 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
 -f MQ_INSTALLATION_PATH/lib/libmqm.a \
 -r MQSeries_XA_RMI -s MPUT2:MPUT
 -s MGET2:MGET \
 -v -bshm
$ buildclient -o doputs -f MQ_INSTALLATION_PATH/samp/amqstxpx.c \
 -f MQ_INSTALLATION_PATH/lib/libmqm.a
$ buildclient -o dogets -f MQ_INSTALLATION_PATH/samp/amqstxgx.c \
 -f MQ_INSTALLATION_PATH/lib/libmqm.a

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:

$ tmloadcf -y MQ_INSTALLATION_PATH/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

$tmadmin -c

A prompt is displayed. At this prompt, enter:

> crdl -z /APPDIR/TLOG1

7. Start the queue manager:

$ strmqm

8. Start Tuxedo:

$ tmboot -y

What to do next
You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

1084 Developing Applications for IBM MQ

Building the server environment for AIX (64-bit)
How to build the server environment for IBM MQ for AIX (64-bit).

Procedure
1. Create a directory (for example, APPDIR) in which the server environment is built and execute all

commands in this directory.
2. Export the following environment variables, where TUXDIR represents the root directory for TUXEDO,

and MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.:

$ export CFLAGS="-I MQ_INSTALLATION_PATH/inc -I /APPDIR -L MQ_INSTALLATION_PATH/lib64"
$ export LDOPTS="-lmqm"
$ export FIELDTBLS= MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ export VIEWFILES=/APPDIR/amqstxvx.V
$ export LIBPATH=$TUXDIR/lib64: MQ_INSTALLATION_PATH/lib64:/lib64

3. Add the following line to the TUXEDO file udataobj/RM:

MQSeries_XA_RMI:MQRMIXASwitchDynamic: -lmqmxa64 -lmqm

4. Run the commands:

$ mkfldhdr MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ viewc MQ_INSTALLATION_PATH/samp/amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
 -f MQ_INSTALLATION_PATH/lib64/libmqm.a \
 -r MQSeries_XA_RMI -s MPUT1:MPUT \
 -s MGET1:MGET \
 -v -bshm
$ buildserver -o MQSERV2 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
 -f MQ_INSTALLATION_PATH/lib64/libmqm.a \
 -r MQSeries_XA_RMI -s MPUT2:MPUT
 -s MGET2:MGET \
 -v -bshm
$ buildclient -o doputs -f MQ_INSTALLATION_PATH/samp/amqstxpx.c \
 -f MQ_INSTALLATION_PATH/lib64/libmqm.a
$ buildclient -o dogets -f MQ_INSTALLATION_PATH/samp/amqstxgx.c \
 -f MQ_INSTALLATION_PATH/lib64/libmqm.a

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:

$ tmloadcf -y MQ_INSTALLATION_PATH/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

$tmadmin -c

A prompt is displayed. At this prompt, enter:

> crdl -z /APPDIR/TLOG1

7. Start the queue manager:

$ strmqm

8. Start Tuxedo:

$ tmboot -y

Developing applications for IBM MQ 1085

What to do next
You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

Building the server environment for Windows (32-bit)
Building the server environment for IBM MQ for Windows (32-bit).

About this task
Note: Change the fields identified as VARIABLES in the following, to the directory paths:

Table 164. Fields to change to directory paths

Field Directory path

MQMDIR The directory path specified when IBM MQ was installed, for example
g:\Program Files\IBM\MQ.

TUXDIR The directory path specified when TUXEDO was installed, for example
f:\tuxedo.

APPDIR The directory path to be used for the sample application, for example
f:\tuxedo\apps\mqapp.

*RESOURCES
IPCKEY 99999
UID 0
GID 0
MAXACCESSERS 20
MAXSERVERS 20
MAXSERVICES 50
MASTER SITE1
MODEL SHM
LDBAL N

*MACHINES
MachineName LMID=SITE1
 TUXDIR="f:\tuxedo"
 APPDIR="f:\tuxedo\apps\mqapp;g:\Program Files\IBM\WebSphere MQ\bin"
 ENVFILE="f:\tuxedo\apps\mqapp\amqstxen.env"
 TUXCONFIG="f:\tuxedo\apps\mqapp\tuxconfig"
 ULOGPFX="f:\tuxedo\apps\mqapp\ULOG"
 TLOGDEVICE="f:\tuxedo\apps\mqapp\TLOG"
 TLOGNAME=TLOG
 TYPE="i386NT"
 UID=0
 GID=0

*GROUPS
GROUP1
 LMID=SITE1 GRPNO=1
 TMSNAME=MQXA
 OPENINFO="MQSERIES_XA_RMI:MYQUEUEMANAGER"

*SERVERS
DEFAULT: CLOPT="-A -- -m MYQUEUEMANAGER"

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 134. Example of ubbstxcn.cfg file for IBM MQ for Windows

1086 Developing Applications for IBM MQ

Note: Change the machine name MachineName, and the directory paths, to match your installation. Also
change the queue manager name MYQUEUEMANAGER to the name of the queue manager that you want to
connect to.

The sample ubbconfig file for IBM MQ for Windows is listed in Figure 134 on page 1086. It is supplied
as ubbstxcn.cfg in the IBM MQ samples directory.

The sample makefile (see Figure 135 on page 1087) supplied for IBM MQ for Windows is called
ubbstxmn.mak, and is held in the IBM MQ samples directory.

TUXDIR = f:\tuxedo
MQMDIR = g:\Program Files\IBM\WebSphere MQ
APPDIR = f:\tuxedo\apps\mqapp
MQMLIB = $(MQMDIR)\tools\lib
MQMINC = $(MQMDIR)\tools\c\include
MQMSAMP = $(MQMDIR)\tools\c\samples
INC = -f "-I$(MQMINC) -I$(APPDIR)"
DBG = -f "/Zi"

amqstx.exe:
 $(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld
 $(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v
 $(TUXDIR)\bin\buildtms -o MQXA -r MQSERIES_XA_RMI
 $(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \
 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
 -r MQSERIES_XA_RMI \
 -s MPUT1:MPUT -s MGET1:MGET
 $(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \
 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
 -r MQSERIES_XA_RMI \
 -s MPUT2:MPUT -s MGET2:MGET
 $(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \
 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)
$(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \
 -f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)
 $(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Figure 135. Sample TUXEDO makefile for IBM MQ for Windows

To build the server environment and samples, complete the following steps.

Procedure
1. Create an application directory in which to build the sample application, for example:

f:\tuxedo\apps\mqapp

2. Copy the following sample files from the IBM MQ sample directory to the application directory:

• amqstxmn.mak
• amqstxen.env
• ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on your installation.
4. Edit ubbstxcn.cfg (see Figure 134 on page 1086) to add details of the machine name and the queue

manager that you want to connect to.
5. Add the following line to the TUXEDO file TUXDIRudataobj\rm:

MQSERIES_XA_RMI;MQRMIXASwitchDynamic;MQMDIR\tools\lib\mqmxa.lib MQMDIR\tools\lib\mqm.lib

The new entry must be one line in the file.
6. Set the following environment variables:

TUXDIR=TUXDIR
TUXCONFIG=APPDIR\tuxconfig

Developing applications for IBM MQ 1087

FIELDTBLS=MQMDIR\tools\c\samples\amqstxvx.fld
LANG=C

7. Create a TLOG device for TUXEDO.
To do this, invoke tmadmin -c, and enter the following command:

crdl -z APPDIR\TLOG

8. Set the current directory to APPDIR, and invoke the sample makefile amqstxmn.mak as an external
project makefile. For example, with Microsoft Visual C++ , issue the following command:

msvc amqstxmn.mak

Select build to build all the sample programs.

Building the server environment for Windows (64-bit)
How to build the server environment for IBM MQ for Windows (64-bit).

About this task
Note: Change the fields identified as VARIABLES in the following, to the directory paths:

Table 165. Fields to change to directory paths

Field Directory path

MQMDIR The directory path specified when IBM MQ was installed, for example
g:\Program Files\IBM\MQ.

TUXDIR The directory path specified when TUXEDO was installed, for example
f:\tuxedo.

APPDIR The directory path to be used for the sample application, for example
f:\tuxedo\apps\mqapp.

1088 Developing Applications for IBM MQ

*RESOURCES
IPCKEY 99999
UID 0
GID 0
MAXACCESSERS 20
MAXSERVERS 20
MAXSERVICES 50
MASTER SITE1
MODEL SHM
LDBAL N

*MACHINES
MachineName LMID=SITE1
 TUXDIR="f:\tuxedo"
 APPDIR="f:\tuxedo\apps\mqapp;g:\Programï¿½Files\IBM\WebSphere MQ\bin"
 ENVFILE="f:\tuxedo\apps\mqapp\amqstxen.env"
 TUXCONFIG="f:\tuxedo\apps\mqapp\tuxconfig"
 ULOGPFX="f:\tuxedo\apps\mqapp\ULOG"
 TLOGDEVICE="f:\tuxedo\apps\mqapp\TLOG"
 TLOGNAME=TLOG
 TYPE="i386NT"
 UID=0
 GID=0

*GROUPS
GROUP1
 LMID=SITE1 GRPNO=1
 TMSNAME=MQXA
 OPENINFO="MQSERIES_XA_RMI:MYQUEUEMANAGER"

*SERVERS
DEFAULT: CLOPT="-A -- -m MYQUEUEMANAGER"

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 136. Example of ubbstxcn.cfg file for IBM MQ for Windows

Note: Change the machine name MachineName, and the directory paths, to match your installation. Also
change the queue manager name MYQUEUEMANAGER to the name of the queue manager that you want to
connect to.

The sample ubbconfig file for IBM MQ for Windows is listed in Figure 136 on page 1089. It is supplied as
ubbstxcn.cfg in the IBM MQ samples directory.

The sample makefile (see Figure 137 on page 1090) supplied for IBM MQ for Windows is called
ubbstxmn.mak, and is held in the IBM MQ samples directory.

Developing applications for IBM MQ 1089

TUXDIR = f:\tuxedo
MQMDIR = g:\Program Files\IBM\WebSphere MQ
APPDIR = f:\tuxedo\apps\mqapp
MQMLIB = $(MQMDIR)\tools\lib64
MQMINC = $(MQMDIR)\tools\c\include
MQMSAMP = $(MQMDIR)\tools\c\samples
INC = -f "-I$(MQMINC) -I$(APPDIR)"
DBG = -f "/Zi"

amqstx.exe:
 $(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld
 $(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v
 $(TUXDIR)\bin\buildtms -o MQXA -r MQSERIES_XA_RMI
 $(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \
 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
 -r MQSERIES_XA_RMI \
 -s MPUT1:MPUT -s MGET1:MGET
 $(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \
 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
 -r MQSERIES_XA_RMI \
 -s MPUT2:MPUT -s MGET2:MGET
 $(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \
 -f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)
 $(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \
 -f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)
 $(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Figure 137. Sample TUXEDO makefile for IBM MQ for Windows

To build the server environment and samples, complete the following steps.

Procedure
1. Create an application directory in which to build the sample application, for example:

f:\tuxedo\apps\mqapp

2. Copy the following sample files from the IBM MQ sample directory to the application directory:

• amqstxmn.mak
• amqstxen.env
• ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on your installation.
4. Edit ubbstxcn.cfg (see Figure 136 on page 1089) to add details of the machine name and the

queue manager that you want to connect to.
5. Add the following line to the TUXEDO file TUXDIRudataobj\rm

MQSERIES_XA_RMI;MQRMIXASwitchDynamic;MQMDIR\tools\lib64\mqmxa64.lib
MQMDIR\tools\lib64\mqm.lib

The new entry must be one line in the file.
6. Set the following environment variables:

TUXDIR=TUXDIR
TUXCONFIG=APPDIR\tuxconfig
FIELDTBLS=MQMDIR\tools\c\samples\amqstxvx.fld
LANG=C

7. Create a TLOG device for TUXEDO. To do this, invoke tmadmin -c, and enter the command:

crdl -z APPDIR\TLOG

8. Set the current directory to APPDIR, and invoke the sample makefile amqstxmn.mak as an external
project makefile. For example, with Microsoft Visual C++ , issue the following command:

1090 Developing Applications for IBM MQ

msvc amqstxmn.mak

Select build to build all the sample programs.

Sample server program for TUXEDO
The sample server program (amqstxsx) is designed to run with the Put (amqstxpx.c) and the Get
(amqstxgx.c) sample programs. The sample server program runs automatically when TUXEDO is started.

Note: You must start your queue manager before you start TUXEDO.

The sample server provides two TUXEDO services, MPUT1 and MGET1:

• The MPUT1 service is driven by the PUT sample and uses MQPUT1 in syncpoint to put a message in
a unit of work controlled by TUXEDO. It takes the parameters QName and Message Text, which are
supplied by the PUT sample.

• The MGET1 service opens and closes the queue each time that it gets a message. It takes the
parameters QName and Message Text, which are supplied by the GET sample.

Any error messages, reason codes, and status messages are written to the TUXEDO log file.

Figure 138. How TUXEDO samples work together

Developing applications for IBM MQ 1091

Put sample program for TUXEDO
This sample allows you to put a message on a queue multiple times, in batches, demonstrating
syncpointing using TUXEDO as the resource manager.

The sample server program amqstxsx must be running for the put sample to succeed; the server sample
program connects to the queue manager and uses the XA interface. To run the sample enter:

• doputs -n queuename -b batchsize -c trancount -t message

For example:

• doputs -n myqueue -b 5 -c 6 -t "Hello World"

This puts 30 messages onto the queue named myqueue, in six batches, each with five messages in it. If
there are any problems it backs a batch of messages out, otherwise it commits them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason codes are written to
stderr.

Get sample for TUXEDO
This sample allows you to get messages from a queue in batches.

The sample server program amqstxsx must be running for the Get sample to succeed; the sample server
program connects to the queue manager and uses the XA interface. To run the sample, enter the following
command:

• dogets -n queuename -b batchsize -c trancount

For example:

• dogets -n myqueue -b 6 -c 4

This takes 24 messages off the queue named myqueue, in six batches, each with four messages in it. If
you run this after the put example, which puts 30 messages on myqueue, you have only six messages on
myqueue. The number of batches and the batch size can vary between putting the messages and getting
them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason codes are written to
stderr.

Using the SSPI security exit on Windows
This topic describes how to use the SSPI channel-exit programs on Windows systems. The supplied exit
code is in two formats: object and source.

Object code
The object code file is called amqrspin.dll. For both client and server, it is installed as a standard
part of IBM MQ for Windows in the MQ_INSTALLATION_PATH/exits/INSTALLATION_NAME folder. For
example, C:\Program Files\IBM\MQ\exits\installation2. It is loaded as a standard user exit.
You can run the supplied security channel exit and use authentication services in your definition of the
channel.

To do this, specify either of the following:

SCYEXIT('amqrspin(SCY_KERBEROS)')

SCYEXIT('amqrspin(SCY_NTLM)')

To provide support for a restricted channel, specify the following on the SVRCONN channel:

SCYDATA('remote_principal_name')

1092 Developing Applications for IBM MQ

where remote_principal_name is in the form DOMAIN\user. The secure channel is established only if the
name of the remote principal matches remote_principal_name.

To use the supplied channel-exit programs between systems that operate within a Kerberos security
domain, create a servicePrincipalName for the queue manager.

Source code
The exit source code file is called amqsspin.c. It is in C:\Program
Files\IBM\MQ\Tools\c\Samples.

If you modify the source code, you must recompile the modified source.

You compile and link it in the same way as any other channel exit for the relevant platform, except that
SSPI headers need to be accessed at compile time, and the SSPI security libraries, together with any
recommended associated libraries, need to be accessed at link time.

Before you execute the following command, make sure that cl.exe, and the Visual C++ library, and the
include folder are available in your path. For example:

cl /VERBOSE /LD /MT /Ipath_to_Microsoft_platform_SDK\include
/Ipath_to_IBM_MQ\tools\c\include amqsspin.c /DSECURITY_WIN32
-link /DLL /EXPORT:SCY_KERBEROS /EXPORT:SCY_NTLM STACK:8192

Note: The source code does not include any provision for tracing or error handling. If you modify and use
the source code, add your own tracing and error-handling routines.

Running the samples using remote queues
You can demonstrate remote queuing by running the samples on connected queue managers.

Program amqscos0.tst provides a local definition of a remote queue (SYSTEM.SAMPLE.REMOTE) that uses
a remote queue manager named OTHER. To use this sample definition, change OTHER to the name of the
second queue manager that you want to use. You must also set up a message channel between your two
queue managers; for information on how to do this, see Defining the channels.

The Request sample programs put their own local queue manager name in the ReplyToQMgr field of
messages that they send. The Inquire and Set samples send reply messages to the queue and message
queue manager named in the ReplyToQ and ReplyToQMgr fields of the request messages that they
process.

The Cluster Queue Monitoring sample program (AMQSCLM)
This sample uses the built-in IBM MQ cluster workload balancing features to direct messages to instances
of queues that have consuming applications attached. This automatic direction prevents the build-up of
messages on an instance of a cluster queue to which no consuming application is attached.

Overview
You can set up a cluster that has more than one definition for the same queue on different queue
managers. This configuration provides the benefit of increased availability and workload balancing.
However, there is no capability built into IBM MQ to dynamically modify the distribution of messages
across a cluster based on the state of attached applications. For this reason, a consuming application
must always be attached to every instance of a queue to ensure that messages are processed.

The cluster queue monitoring sample program monitors the state of attached applications. The program
dynamically adjusts the built-in workload balancing configuration to direct messages to instances of a
clustered queue with consuming applications attached. In certain situations this program can be used
to relax the need for a consuming application to always be connected to every instance of a queue. It
also resends messages that become queued on an instance of a queue with no consuming applications
attached. Resending messages enables messages to be routed around a consuming application that is
temporarily shut down.

Developing applications for IBM MQ 1093

The program is designed to be used where the consuming applications are long running applications,
rather than frequently attaching and detaching applications.

The cluster queue monitoring sample program is the compiled executable program of the C sample file
amqsclma.c.

Further information about clusters and workload can be found in Using clusters for workload management

AMQSCLM: Design and Planning for using the sample
Information about how the cluster queue monitoring sample program works, points to consider when
setting up a system for the sample program to run on, and modifications that can be made to the sample
source code.

Design
The cluster queue monitoring sample program monitors local clustered queues that have consuming
applications attached. The program monitors queues specified by the user. The name of the queue might
be specific, for example APP.TEST01, or generic. Generic names must be in a format that conforms to
PCF (Programmable Command Format). Examples of generic names are APP.TEST*, or APP*.

Each queue manager in a cluster that owns an instance of a local queue to be monitored, requires an
instance of the cluster queue monitoring sample program to be connected to it.

Dynamic message routing
The cluster queue monitoring sample program uses the IPPROCS (open for input process count) value of
a queue to determine whether that queue has any consumers. A value greater than 0 indicates that the
queue has at least one consuming application attached. Such queues are active. A value of 0 indicates
that the queue has no attached consuming programs. Such queues are inactive.

For a clustered queue with multiple instances in a cluster, IBM MQ uses the cluster workload priority
property CLWLPRTY of each queue instance to determine which instances to send messages to. IBM MQ
sends messages to the available instances of a queue with the highest CLWLPRTY value.

The cluster queue monitoring sample program activates a cluster queue by setting the local CLWLPRTY
value to 1. The program deactivates a cluster queue by setting its CLWLPRTY value to 0.

IBM MQ clustering technology propagates the updated CLWLPRTY property of a clustered queue to all
relevant queue managers in the cluster. For example,

• A queue manager with a connected application that puts messages to the queue.
• A queue manager that owns a local queue of the same name in the same cluster.

The propagation is done using the full repository queue managers of the cluster. New messages for the
cluster queue are directed to the instances with the highest CLWLPRTY value within the cluster.

Queued message transfer
The dynamic modification of the value of CLWLPRTY influences the routing of new messages. This
dynamic modification does not affect messages already queued on a queue instance with no attached
consumers, or messages that have been through the workload balancing mechanism before a modified
CLWLPRTY value was propagated across the cluster. As a result, messages remain on any inactive queue
and not be processed by a consuming application. To solve this, the cluster queue monitoring sample
program is able to get messages from a local queue with no consumers, and send these messages to
remote instances of the same queue where consumers are attached.

The cluster queue monitoring sample program transfers messages from an inactive local queue to one
or more active remote queues by getting messages (using MQGET) and putting messages (using MQPUT)
to the same clustered queue. This transfer causes the IBM MQ cluster workload management to select
a different target instance, based on a higher CLWLPRTY value than that of the local queue instance.
Message persistence and context are preserved during the message transfer. Message order, and any
binding options are not preserved.

1094 Developing Applications for IBM MQ

Planning
The cluster queue monitoring sample program modifies the cluster configuration when there is a change
in the connectivity of consuming applications. Modifications are transmitted from the queue managers
where the cluster queue monitoring sample program is monitoring queues, to the full repository queue
managers in the cluster. The full repository queue managers process the configuration updates and
resend them to all relevant queue managers in the cluster. Relevant queue managers include those
queue managers that own clustered queues of the same name (where an instance of the cluster queue
monitoring sample program is running), and any queue manager where an application opened the cluster
queue to put messages to it in the last 30 days.

Changes are asynchronously processed across the cluster. Therefore, after each change, different queue
managers in the cluster might have different views of the configuration for a period of time.

The cluster queue monitoring sample program is only suitable for systems where consuming applications
infrequently attach or detach; for example, long running consuming applications. When used to monitor
systems where consuming applications are only attached for short periods, the latency incurred when
distributing the configuration updates might result in queue managers in the cluster having an incorrect
view of the queues where consumers are attached. This latency might result in incorrectly routed
messages.

When monitoring many queues, a relatively low rate of change in attached consumers across all queues
might increase cluster configuration traffic across the cluster. Increased cluster configuration traffic can
result in excessive load on one or more of the following queue managers.

• The queue managers where the cluster queue monitoring sample program is running
• The full repository queue managers
• A queue manager with a connected application that puts messages to the queue
• A queue manager that owns a local queue of the same name in the same cluster

Processor usage on the full repository queue managers must be assessed. Additional processor usage is
visible as message traffic on the full repository queue SYSTEM.CLUSTER.COMMAND.QUEUE. If messages
build up on that queue, it indicates that the full repository queue managers are unable to keep up with the
rate of cluster configuration change in the system.

When many queues are being monitored by the cluster queue monitoring sample program, there is an
amount of work performed by the sample program and the queue manager. This work is performed,
even when there are no changes to the attached consumers. The -i argument can be modified to
reduce processor usage of the sample program on the local system, by decreasing the frequency of the
monitoring cycle.

To help detect excessive activity, the cluster queue monitoring sample program reports average
processing time per polling interval, elapsed processing time, and number of configuration changes.
The reports are delivered in an information message, CLM0045I, every 30 minutes, or every 600 poll
intervals, whichever is sooner.

Cluster queue monitoring usage requirements
The cluster queue monitoring sample program has requirements and restrictions. You can modify the
sample source code provided to change some of these restrictions in how it can be used. Examples listed
in this section detail modifications that can be made.

• The cluster queue monitoring sample program is designed to be used to monitor queues where
consuming applications are either attached, or not attached. If the system has consuming applications
that are frequently attaching and detaching, the sample program might generate excessive cluster
configuration activity across the entire cluster. This might have an impact on the performance of the
queue managers in the cluster.

• The cluster queue monitoring sample program depends upon the underlying IBM MQ system and
cluster technology. The number of queues being monitored, the frequency of monitoring and the
frequency of the change of the state of each queue affects the load on the overall system. These factors
must be considered when selecting the queues to be monitored and the poll interval of the monitoring.

Developing applications for IBM MQ 1095

• An instance of the cluster queue monitoring sample program must be connected to every queue
manager in the cluster that owns an instance of a queue to be monitored. It is not necessary to connect
the sample program to queue managers in the cluster that do not own the queues.

• The cluster queue monitoring sample program must be run with suitable authorization to access all of
the IBM MQ resources required. For example,

– The queue manager to be connected to
– The SYSTEM.ADMIN.COMMAND.QUEUE
– All the queues to be monitored when message transfer is performed

• The command server must be running for each queue manager with the cluster queue monitoring
sample program connected.

• Each instance of the cluster queue monitoring sample program requires exclusive use of a local (non-
clustered) queue on the queue manager that it is connected to. This local queue is used to control the
sample program, and receive reply messages from inquires made to the command server of the queue
manager.

• All queues to be monitored by a single instance of the cluster queue monitoring sample program must
be in the same cluster. If a queue manager has queues in multiple clusters that require monitoring,
multiple instances of the sample program are required. Each instance needs a local queue for control
and reply messages.

• All queues to be monitored must be in a single cluster. Queues configured to use a cluster namelist are
not monitored.

• Enabling the transfer of messages from inactive queues is optional. It applies to all queues being
monitored by the instance of the cluster queue monitoring sample program. If only a subset of
the queues being monitored require message transfer enabled, two instances of the cluster queue
monitoring sample program are needed. One sample program has message transfer enabled, and the
other has message transfer disabled. Each instance of the sample program needs a local queue for
control and reply messages.

• IBM MQ cluster workload balancing will, by default, send messages to instances of clustered queues
that reside on the same queue manager that a putting application is connected to. This must be
disabled while the local queue is inactive in the following circumstances:

– Putting applications connect to queue managers that own instances of an inactive queue that are
being monitored

– Queued messages are being transferred from inactive queues to active queues.

The local workload balancing preference on the queue can be disabled statically, through setting the
CLWLUSEQ value to ANY. In this configuration messages put on local queues are distributed to local
and remote queue instances to balance workload, even when there are local consuming applications.
Alternatively, the cluster queue monitoring sample program can be configured to temporarily set the
CLWLUSEQ value to ANY while the queue has no attached consumers which results in only local
messages going to local instances of a queue while that queue is active.

• The IBM MQ system and applications must not use CLWLPRTY for the queues to be monitored, or
channels being used. Otherwise, the actions of the cluster queue monitoring sample program on
CLWLPRTY queue attributes might have undesired effects.

• The cluster queue monitoring sample program logs runtime information to a set of report files. A
directory to store these reports is required, and the cluster queue monitoring sample program must
have authorization to write to it.

AMQSCLM: Preparing and running the sample
The cluster queue monitoring sample can either be run locally connected to a queue manager, or as a
client connected over a channel. The sample should be running whenever the queue manager is running,

1096 Developing Applications for IBM MQ

when running locally it can be configured as a queue manager service to automatically start and stop the
sample with the queue manager.

Before you begin
The following steps must be completed before running the cluster queue monitoring sample.

1. Create a working queue on each queue manager for the internal use of the sample.

Each instance of the sample needs a local non-cluster queue for exclusive internal use. You can
choose the name of the queue. The example uses the name AMQSCLM.CONTROL.QUEUE. For example,
on Windows, you can create this queue by using the following MQSC command:

DEFINE QLOCAL(AMQSCLM.CONTROL.QUEUE)

You can leave the values of MAXDEPTH and MAXMSGL as default.
2. Create a directory for error and information message logs.

The sample writes diagnostic messages to report files. You must choose a directory in which to store
the files. For example, on Windows, you can create a directory using the following command:

mkdir C:\AMQSCLM\rpts

The report files created by the sample have the following naming convention:

 QmgrName.ClusterName.RPT0n.LOG

3. (Optional) Define the cluster queue monitoring sample as an IBM MQ service.

To monitor queues, the sample must always be running. To ensure that the cluster queue monitoring
sample is always running, you can define the sample as a queue manager service. Defining the
sample as a service means that AMQSCLM is started when the queue manager starts. You can use the
following example to define the cluster queue monitoring sample as an IBM MQ service.

define service(AMQSCLM) +
 descr('Active Cluster Queue Message Distribution Monitor - AMQSCLM') +
 control(qmgr) +
 servtype(server) +
 startcmd('MQ_INSTALLATION_PATH\tools\c\samples\Bin\AMQSCLM.exe') +
 startarg('-m +QMNAME+ -c CLUSTER1 -q ABC* -r AMQSCLM.CONTROL.QUEUE -l
c:\AMQSCLM\rpts') +
 stdout('C:\AMQSCLM\rpts\+QMNAME+.TSTCLUS.stdout.log') +
 stderr('C:\AMQSCLM\rpts\+QMNAME+.TSTCLUS.stderr.log')

Definition Description

service Specifies the service name. You can choose the service name.

descr Specifies a textual description of the service.

control Indicates that the service starts and stops at the same time as the queue manager.

servtype Indicates a server service object, meaning only one instance, can be executed at a time
for this queue manager.

startcmd Specifies the location and name of the program.

startarg Specifies the arguments of the sample. Note the use of +QMNAME+. The name of the
queue manager is automatically substituted.

stdout The fully qualified file name to which standard output is redirected. The sample writes
to this file only messages confirming that the sample has terminated. The sample does

Developing applications for IBM MQ 1097

Definition Description

this because the standard error file has already closed in an earlier stage of the sample
termination process.

stderr The fully qualified file name to which standard error output is redirected. The sample
writes to the standard error file any error messages prior to termination of the sample.

About this task
This task enables you to start and stop the cluster queue monitoring sample in different ways. It also
enables you to run the sample in a mode that generates report files containing statistical information
about the queues being monitored.

The sample program can be run by using the following command.

AMQSCLM -m QMgrName -c ClusterName (-q QNameMask| -f QListFile) -r MonitorQName
[-l ReportDir] [-t] [-u ActiveVal] [-i Interval] [-d] [-s] [-v]

1098 Developing Applications for IBM MQ

The table lists the arguments that can be used with the cluster queue monitoring sample, along with
additional information about each.

Argument Variable Further Information

-m QMgrName The queue manager to monitor.

-c ClusterName The cluster containing the queues to monitor.

-q QNameMask The queue, or queues, to monitor. A trailing * monitors all queues with
names that match zero or more trailing characters.

-f QListFile The full path and file name of a file containing a list of queue names or
queue name masks to monitor. The file must contain one queue name/
mask per line. You can specify -q or -f, but not both.

-r MonitorQName The local queue being used exclusively by the sample.

-l ReportDir The directory path in which to store logged information messages in a set
of wrapping9 report files.

-t (Optional) Enables the transfer of queued messages from inactive local
queues to active queues. If not enabled, only new messages entering the
cluster are dynamically routed to active instances of a queue.

-u ActiveVal (Optional) Automatically switches the CLWLUSEQ property of a monitored
queue instance to ANY when it is inactive, and to the value of ActiveVal
when active. ActiveVal can be LOCAL or QMGR. If this argument is not
set in a system where putting applications connect to the same queue
manager, or where message transfer is enabled, then monitored queues
must have a CLWLUSEQ value of ANY, or QMGR with the queue manager
having a value of ANY.

-i Interval (Optional) The time interval in seconds, at which the monitor checks the
queues. Default is 300 seconds (5 minutes).

-d (Optional) Enables additional diagnostic output. Debug output might be
useful when initially configuring the system, or when working with the
sample code.

-s (Optional) Enables minimal statistical output per interval.

-v (Optional) Log report information to standard out, in addition to the
report files.

Argument list examples:

-m QMGR1 -c CLUS1 -f c:\QList.txt -r CLMQ -l c:\amqsclm\rpts -s
-m QMGR2 -c CLUS1 -q ABC* -r CLMQ -l c:\amqsclm\rpts -i 600
-m QMGR1 -c CLUSDEV -q QUEUE.* -r CLMQ -l c:\amqsclm\rpts -t -u QMGR -d

Example queue list file:

Q1
QUEUE.*
ABC
ABD

9 For each queue manager and queue combination a fixed-size log file is generated that, when full, is
overwritten. The logger always writes into the same file, and also keeps the two previous versions of the
file.

Developing applications for IBM MQ 1099

Procedure
1. Start the cluster queue monitoring sample. You can start the sample in one of the following ways:

• Use a command prompt with the appropriate user authorizations.
• Use the MQSC START SERVICE command, if the sample is configured as an IBM MQ service.

The argument list is the same in both cases.
The sample does not start monitoring the queues for 10 seconds after the program is initialized. This
delay allows consuming applications to connect to the monitored queues first, preventing unnecessary
changes to the active state of the queue.

2. Stop the cluster queue monitoring sample. The sample automatically stops when the queue manager
is stopped, stopping, quiescing, or if the connection to the queue manager is broken. There are ways to
stop the sample without ending the queue manager:

• Configure the local queue used exclusively by the sample to disable the Get function.
• Send a message with a CorrelId of "STOP CLUSTER MONITOR\0\0\0\0", to the local queue

used exclusively by the sample.
• Terminate the sample process. This might result in the loss of non-persistent messages being

transferred to active queues. It might also result in the local queue used by the sample being held
open for a number of seconds after the termination. This situation prevents a new instance of the
cluster queue monitoring sample from starting immediately.

If the sample has been started as an IBM MQ service, STOP SERVICE has no effect. It is possible
to use one of the termination methods described as a configured STOP SERVICE mechanism in the
queue manager.

What to do next
Check the status of the sample.

If reporting is enabled, you can review the report files for status. Use the following command to review the
most current report file:

QMgrName.ClusterName.RPT01.LOG

To review older report files, use the following commands:

QMgrName.ClusterName.RPT02.LOG
QMgrName.ClusterName.RPT03.LOG

Report files grow to a maximum size of approximately 1 MB. When the RPT01 file fills up, a new RPT01
file is created. The old RPT01 file is renamed to RPT02. RPT02 is renamed to RPT03. The old RPT03 is
discarded.

The sample creates information messages in the following situations:

• at startup
• at termination
• when it marks a queue ACTIVE or INACTIVE
• when it requeues messages from an inactive queue to an active instance or instances

The sample creates an error message CLMnnnnE to report a problem that requires attention.

Every 30 minutes, the sample reports average processing time per polling interval, and elapsed
processing time. This information is held in message CLM0045I.

When statistical messages are enabled -s, the sample reports the following statistical information about
each queue check:

• Time taken to process the queues (in milliseconds)

1100 Developing Applications for IBM MQ

• Number of queues checked
• Number of active/inactive changes made
• Number of messages transferred

This information is reported in message CLM0048I.

Report files might grow rapidly in debug mode, and quickly wrap. In this situation, the 1 MB size limit for
individual files might be exceeded.

AMQSCLM: Troubleshooting
The following sections contain information about scenarios that might be encountered while using the
sample. Information about potential explanations for a scenario, and options on how to resolve it, are
provided.

Scenario: AMQSCLM is not starting
Potential explanation: Incorrect syntax.

Action: Check standard error output for correct syntax

Potential explanation: Queue manager is not available.

Action: Check the report file for message ID CLM0010E.

Potential explanation: Cannot open or create report file or files.

Action: Check standard error output for error messages during initialization.

Scenario: AMQSCLM is not changing a queue to ACTIVE or INACTIVE
Potential explanation: The queue is not in the list of queues to be monitored

Action: Check the -q and -f parameter values.

Potential explanation: The queue is not a local queue in the correct cluster.

Action: Check that the queue is local and in the correct cluster.

Potential explanation: AMQSCLM is not running for this queue manager and cluster.

Action: Start AMQSCLM for the relevant queue manager and cluster.

Potential explanation: The queue is left INACTIVE, CLWLPRTY =0, because it has no consumers.
Alternatively, it is left ACTIVE CLWLPRTY >=1, because it has at least 1 consumer.

Action: Check whether consuming applications are attached to the queue.

Potential explanation: The command server of the queue manager is not running.

Action: Check the report files for errors.

Scenario: Messages are not being routed around INACTIVE queues
Potential explanation: Messages are put directly to the queue manager that owns the inactive queue,
and the CLWLUSEQ value of the queue is not ANY, and the -u argument is not being used for AMQSCLM.

Action: Check the CLWLUSEQ value of the relevant queue manager, or ensure that the -u argument is
used for AMQSCLM.

Potential explanation: There are no active queues on any queue managers. Messages are evenly
workload balanced across all inactive queues until a queue becomes active.

Action: Check the status of the queues on all queue managers.

Potential explanation: Messages are put to a different queue manager in the cluster to the one that owns
the inactive queue, and the updated CLWLPRTY value of 0 is not propagated to the queue manager of the
putting application.

Developing applications for IBM MQ 1101

Action: Check that the cluster channels between the monitored queue manager, and the full repository
queue manager, are running. Check that the channels between the putting queue manager, and the full
repository queue manager, are running. Check the error logs of the monitored, putting, and full repository
queue managers.

Potential explanation: The remote queue instances are active (CLWLPRTY=1), but messages cannot be
routed to those queue instances because the cluster sender channel from the local queue manager is not
running.

Action: Check the status of the cluster sender channels from the local queue manager to the remote
queue manager, or managers, with an active instance of the queue.

Scenario: AMQSCLM is not transferring messages from an inactive queue
Potential explanation: Message transfer is not enabled (-t).

Action: Ensure that message transfer is enabled (-t).

Potential explanation: The queue is not in the list of queues to be monitored.

Action: Check the -q and -f parameter values.

Potential explanation: AMQSCLM is not running for this, or other queue managers in the cluster, that own
instances of the same queue.

Action: Start AMQSCLM.

Potential explanation: The queue has CLWLUSEQ = LOCAL or CLWLUSEQ = QMGR, and the -u argument is
not set.

Action: Set the -u parameter, or change the queue, or queue manager configuration, to ANY.

Potential explanation: There are no active instances of the queue in the cluster.

Action: Check for instances of the queue with a CLWLPRTY value of 1, or greater.

Potential explanation: Remote queue instances have consumers (IPPROCS >=1) but are inactive on
those queue managers (CLWLPRTY =0) because AMQSCLM is not monitoring those remote instances.

Action: Ensure that AMQSCLM is running on those queue managers, and / or the queue is in the list of
queues to be monitored by checking the -q and -f parameter values.

Potential explanation: The remote queue instances are active (CLWLPRTY =1), but are seen as inactive
on the local queue manager (CLWLPRTY =0). This situation is due to the updated CLWLPRTY value not
being propagated to this queue manager.

Action: Ensure that the remote queue managers are connected to at least one of the full repository queue
managers in the cluster. Ensure that the full repository queue managers are functioning correctly. Check
that the channels between the full repository queue managers, and the monitored queue managers, are
running.

Potential explanation: The messages are not committed, therefore they are not retrievable.

Action: Check that the sending application is functioning correctly.

Potential explanation: AMQSCLM does not have access to the local queue where messages are queued.

Action: Check whether AMQSCLM is running as a user with sufficient authorization to access the queue.

Potential explanation: The command server of the queue manager is not running.

Action: Start the command server of the queue manager.

Potential explanation: AMQSCLM encountered an error.

Action: Check the report files for errors.

Potential explanation: The remote queue instances are active (CLWLPRTY=1), but messages cannot be
transferred to those queue instances because the cluster sender channel from the local queue manager is
not running. This is often accompanied by a CLM0030W warning in the amqsclm report log.

1102 Developing Applications for IBM MQ

Action: Check the status of the cluster sender channels from the local queue manager to the remote
queue manager, or managers, with an active instance of the queue.

Sample program for Connection Endpoint Lookup (CEPL)
IBM MQ Connection Endpoint Lookup sample provides a simple yet powerful exit module that offers IBM
MQ users a way to retrieve connection definitions from an LDAP repository such as Tivoli Directory Server.

Tivoli Directory Server v6.3 Client must be installed in order to use CEPL.

A working knowledge of IBM MQ administration on the supported platforms is required to use this
sample.

Introduction
Configure a global repository, for example, an LDAP (Lightweight Directory Access Protocol) directory, to
store client connection definitions to aid maintenance and administration.

Using an IBM MQ Client application to establish a connection to a Queue Manager via a Client Connection
Definition Table (CCDT).

The CCDT is created through the standard IBM MQ MQSC Administration interface. The user
must be connected to a Queue Manager in order to create client connection definitions, even
though the data contained within the definition is not restricted to the Queue Manager. The

Developing applications for IBM MQ 1103

CCDT file generated must be manually distributed among client machines and applications.

The CCDT file must be distributed to each IBM MQ client. Where thousands of clients can exist either
locally or globally, it would soon become difficult to maintain and administer. A more flexible approach is
needed to help ensure that each client has the correct client definitions available to them.

One such approach is to store the client connection definitions in a global repository such as an LDAP
(Lightweight Directory Access Protocol) directory. An LDAP directory can also provide additional security,
indexing, and search facilities, thereby allowing each client access to only those connection definitions
pertaining to them.

The LDAP directory can be configured so that only specific definitions are available to
certain user groups. For example, the Test Clients can access both Queue Manager

1104 Developing Applications for IBM MQ

#1 and #2, whereas the Development Clients can access Queue Manager #2 only.

The exit module can look up an LDAP repository, for example, IBM Tivoli Directory Server, to retrieve
channel definitions. Using those connection definitions, an IBM MQ client application can establish
connection to a queue manager.

The exit module is a pre-connect exit module which enables channel definition to be obtained during the
MQCONN/MQCONNX call from an LDAP repository.

The exit module and schema might be implemented by:

• Customers who have already built a skill base using the existing CCDT file based technology and want to
ease the administration and distribution costs.

• Existing customers who already employ their own propriety technology for distributing client connection
definitions.

• New or existing customers who currently do not employ any type of client connection solution and want
to use the features offered by IBM MQ.

• New or existing customers who want to directly use or tune their messaging model inline with any
current LDAP business architecture.

Supported environments
Verify that you have a supported operating system and the relevant software before running the
Connection Endpoint Lookup sample.

The sample program for IBM MQ Connection Endpoint Lookup requires the following software:

• IBM WebSphere MQ 7.0, or later

Developing applications for IBM MQ 1105

• Tivoli Directory Server V6.3 Client, or later

Operating Systems supported:

1. Windows (7/8/2008/2012)

2. AIX

3. Linux

• RHEL v4 and v5 on System p
• SUSE v9 and v10 on System p
• RHEL v4 and v5 x86-64 32 bit and 64 bit
• SUSE v9 and v10 x86-64 32 bit and 64 bit

Note: The sample is not available for the following platforms:

• z/OS

• IBM i

Installation and configuration
Installing and configuring the exit module and connection endpoint schema.

Installing exit module
During installation of IBM MQ, the exit module is installed under tools/samples/c/preconnexit/
bin. For 32 bit platforms, the exit module must be copied to exit/installation_name/ before it can
be used. For 64 bit platforms, the exit module must be copied to exit64/installation_name/ before it can
be used.

Installing Connection Endpoint schema
The exit uses the Connection Endpoint schema, ibm-amq.schema. The schema file must be imported
into any LDAP server before the exit can be used. After importing the schema, values for the attributes
must be added.

Here is an example for importing Connection Endpoint schema. The example assumes IBM Tivoli
Directory Server (ITDS) is being used.

• Ensure that IBM Tivoli Directory Server is running, then copy or FTP the ibm-amq.schema file to the
ITDS server.

• On the ITDS server, enter the following command to install the schema into ITDS store, where LDAP ID
and LDAP password are the root DN and password for the LDAP server:

ldapadd -D "LDAP ID" -w "LDAP password" -f ibm-amq.schema
• In a command window, enter the following command or use a third party tool to browse the schema for
verification:

ldapsearch objectclass=ibm-amqClientConnection

Refer to your LDAP Server documentation for further details on importing the schema file.

Configuration
A new section called PreConnect must be added to the client configuration file, for example
mqclient.ini. The PreConnect section contains the following keywords:

1106 Developing Applications for IBM MQ

Module
The name of the module containing the API exit code. If this field contains the full path of the module,
it is used as is. Otherwise the exit or exit64 folder in the IBM MQ installation is searched.

Function
The name of the functional entry point into the library that contains the LdapPreConnect exit code.
The function definition adheres to the function prototype of your enterprise.

Attention: You should remove the quotation marks in the function statement when you specify
your actual exit entry point.

Data
URI of the LDAP repository containing channel definitions.

The following snippet is an example of the changes required in the mqclient.ini file.

PreConnect:
Module=amqlcelp
Function="LdapPreconnectExit"
Data=ldap:dap://myLDAPServer.com:389/cn=wmq,ou=ibm,ou=com
Sequence=1

Overview of the exit and schema
Syntax, and parameters used to establish a connection to a queue manager.

IBM MQ 9.3 defines the following syntax for an entry point in an exit module.

void MQENTRY MQ_PRECONNECT_EXIT (PMQNXP pExitParms
 , PMQCHAR pQMgrName
 , PPMQCNO ppConnectOpts
 , PMQLONG pCompCode
 , PMQLONG pReason)

During the MQCONN/X call execution, IBM MQ C Client loads the exit module containing an
implementation of the function syntax. It then invokes an exit function to retrieve channel definitions.
The retrieved channel definitions are then used to establish connection to a queue manager.

Parameters
pExitParms

Type: PMQNXP input/output
The PreConnection exit parameter structure. The structure is allocated and maintained by the caller of
the exit.

struct tagMQNXP
{
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ExitId; /* Type of exit */
 MQLONG ExitReason; /* Reason for invoking exit */
 MQLONG ExitResponse; /* Response from exit */
 MQLONG ExitResponse2; /* Secondary response from exit */
 MQLONG Feedback; /* Feedback code (reserved) */
 MQLONG ExitDataLength; /* Exit data length */
 PMQCHAR pExitDataPtr; /* Exit data */
 MQPTR pExitUserAreaPtr; /* Exit user area */
 PMQCD * ppMQCDArrayPtr; /* Array of pointers to MQCDs */
 MQLONG MQCDArrayCount; /* Number of entries found */
 MQLONG MaxMQCDVersion; /* Maximum MQCD version */
};

pQMgrName
Type: PMQCHAR input/output
Name of the queue manager. On input, this parameter is the filter string supplied to the MQCONN API
call through the QMgrName parameter. This field might be blank, explicit, or contain certain wildcard

Developing applications for IBM MQ 1107

characters. The field is changed by the exit. The parameter is NULL when the exit is called with
MQXR_TERM.

ppConnectOpts
Type: ppConnectOpts input/output
Options that control the action of MQCONNX. This is a pointer to an MQCNO connection options
structure that controls the action of the MQCONN API call. The parameter is NULL when the exit is
called with MQXR_TERM. The MQI client always provides an MQCNO structure to the exit, even if it
was not originally provided by the application. If an application provides an MQCNO structure, the
client makes a duplicate to pass it to the exit where it is modified. The client retains the ownership
of the MQCNO. An MQCD referenced through the MQCNO takes precedence over any connection
definition provided through the array. The client uses the MQCNO structure to connect to the queue
manager and the others are ignored.

pCompCode
Type: PMQLONG input/output
Completion code. Pointer to an MQLONG that receives the exits completion code. It must be one of
the following values:

• MQCC_OK - Successful completion
• MQCC_WARNING - Warning (partial completion)
• MQCC_FAILED - Call failed

pReason
Type: PMQLONG input/output
Reason qualifying pCompCode. Pointer to an MQLONG that receives the exit reason code. If the
completion code is MQCC_OK, the only valid value is: MQRC_NONE - (0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

MQ LDAP Context Information
The exit uses the following data structure for context information.
MQNLDAPCTX

The MQNLDAPCTX structure has the following C prototype.

typedef struct tagMQNLDAPCTX MQNLDAPCTX;
typedef MQNLDAPCTX MQPOINTER PMQNLDAPCTX;

struct tagMQNLDAPCTX
{
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 LDAP * objectDirectory /* LDAP Instance */
 MQLONG ldapVersion; /* Which LDAP version to use? */
 MQLONG port; /* Port number for LDAP server*/
 MQLONG sizeLimit; /* Size limit */
 MQBOOL ssl; /* SSL enabled? */
 MQCHAR * host; /* Hostname of LDAP server */
 MQCHAR * password; /* Password of LDAP server */
 MQCHAR * searchFilter; /* LDAP search filter */
 MQCHAR * baseDN; /* Base Distinguished Name */
 MQCHAR * charSet; /* Character set */
};

1108 Developing Applications for IBM MQ

Sample code for building the connection endpoint lookup exit
You can use the sample code snippets for compiling the source on AIX, or Linux, or Windows.

Compiling source
You can compile the source with any LDAP client libraries, for example, IBM Tivoli Directory Server
V6.3 Client libraries. This documentation assumes that you are using Tivoli Directory Server V6.3 client
libraries.

Note: The pre-connect exit library is supported with the following LDAP servers:

• IBM Tivoli Directory Server V6.3
• Novell eDirectory V8.2

The following code snippets describe how to compile the exits:

Compiling the exit on the Windows platform
You can use the following snippet for compiling the exit source:

CC=cl.exe
LL=link.exe
CCARGS=/c /I. /DWIN32 /W3 /DNDEBUG /EHsc /D_CRT_SECURE_NO_DEPRECATE /Zl

The libraries to include
LDLIBS=Ws2_32.lib Advapi32.lib libibmldapstatic.lib libibmldapdbgstatic.lib \
kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib \
shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib msvcrt.lib

OBJS=amqlcel0.obj

all: amqlcelp.dll

amqlcelp.dll: $(OBJS)
 $(LL) /OUT:amqlcelp.dll /INCREMENTAL /NOLOGO /DLL /SUBSYSTEM:WINDOWS /MACHINE: X86 \
 /DEF:amqlcelp.def $(OBJS) $(LDLIBS) /NODEFAULTLIB:msvcrt.lib

The exit source
amqlcel0.obj: amqlcel0.c
$(CC) $(CCARGS) $*.c

Note: If you are using the IBM Tivoli Directory Server V6.3 Client libraries that are compiled with Microsoft
Visual Studio 2003 compiler, you might get warnings while you are compiling the IBM Tivoli Directory
Server V6.3 Client libraries with Microsoft Visual Studio 2012, or later, compiler.

Compiling the exit on AIX, or Linux
The following code snippet is for compiling the exit source on Linux. Some compiler options might
differ on AIX.

#Make file to build exit
CC=gcc

MQML=/opt/mqm/lib
MQMI=/opt/mqm/inc
TDSI=/opt/ibm/ldap/V6.3/include
XFLAG=-m32

TDSL=/opt/ibm/ldap/V6.3/lib

IBM Tivoli Directory Server ships both static and dynamic link libraries, but you can use only one type
of library. This script assumes that you are using the static libraries.

#Use static libraries.
LDLIBS=-L$(TDSL) -libibmldapstatic

CFLAGS=-I. -I$(MQMI) -I$(TDSI)

all:amqlcepl

Developing applications for IBM MQ 1109

amqlcepl: amqlcel0.c
$(CC) -o cepl amqlcel0.c -shared -fPIC $(XFLAG) $(CFLAGS) $(LDLIBS)

Invocation of the PreConnect exit module
The PreConnect exit module can be invoked with three different reason codes: the MQXR_INIT reason
code for initializing and establishing a connection to an LDAP server, the MQXR_PRECONNECT reason
code for retrieving channel definitions from an LDAP server, or the MQXR_TERM reason code when the
exit is to be cleaned.
MQXR_INIT

The exit is invoked with MQXR_INIT reason code for initializing and establishing a connection to an
LDAP server.
Before the MQXR_INIT call, the pExitDataPtr field of the MQNXP structure is populated with the Data
attribute from the PreConnect stanza within the mqclient.ini file (that is, the LDAP).
An LDAP URL consists of at least the protocol, host name, port number, and base DN for the search.
The exit parses the LDAP URL contained within the pExitDataPtr field, allocates an MQNLDAPCTX
LDAP Lookup Context structure and populates it accordingly. The address of this structure is stored in
the pExitUserAreaPtr field. Failure to correctly parse the LDAP URL results in the error MQCC_FAILED.
At this point, the exit connects and binds to the LDAP server using the MQNLDAPCTX parameters. The
resulting LDAP API handles are also stored within this structure.

MQXR_PRECONNECT
The exit module is invoked with the MQXR_PRECONNECT reason code for retrieving channel
definitions from an LDAP server.
The exit searches the LDAP server for channel definitions matching the given filter. If the
QMgrNameparameter contains a specific queue manager name, the search returns all channel
definitions for which the ibm-amqQueueManagerName LDAP attribute value matches with the given
queue manager name.
If the QMgrName parameter is '*' or ' '(blank), then the search returns all channel definitions for which
the ibm-amqIsClientDefault Connection endpoint attribute is set to TRUE.
After a successful search, the exit prepares one or an array of MQCD definitions and returns back to
the caller.

MQXR_TERM
The exit is invoked with this reason code when the exit is to be cleaned. During this cleaning, the
exit disconnects from the LDAP server, and releases all the memory allocated and maintained by the
exit, including the MQNLDAPCTX structure, the pointer array, and every MQCD it references. Any other
fields are set to the default values. The pQMgrName and ppConnectOpts exit parameters are unused
during an exit with the MQXR_TERM reason code and may be NULL.

Related reference
PreConnect stanza of the client configuration file

LDAP schemas
Client connection data is stored in a global repository called the LDAP (Lightweight Directory Access
Protocol) directory. An IBM MQ client uses an LDAP directory to obtain the connection definitions. The
structure of the IBM MQ client connection definitions within the LDAP directory is known as the LDAP
schema. An LDAP schema is the collection of attribute type definitions, object class definitions, and other
information which a server uses to determine whether a filter or attribute value assertion matches against
the attributes of an entry, and whether to permit, add, and modify operations.

Storing data in the LDAP directory
The client connection definitions are located under a specific branch within the directory tree known
as the connection point. Like all other nodes within an LDAP directory, the connection point has a
Distinguished Name (DN) associated with it. You can use this node as the starting point for any queries

1110 Developing Applications for IBM MQ

you make on the directory. Use filtering when querying the LDAP directory to return a subset of client
connection definitions. You can restrict access to sub-trees based on permissions granted in other parts
of the directory tree - for example, to users, departments, or groups.

Defining your own attributes and classes
Store the client channel definition by modifying the LDAP schema. All LDAP data definitions require
objects and attributes. The objects and attributes are identified by an object identifier (OID) number
which uniquely identifies the object or attribute. All classes within an LDAP schema inherit either
directly or indirectly from the top object. The client channel definition object contains the attributes of
the top object. All LDAP data definitions require objects and attributes:

• Object definitions are collections of LDAP attributes.
• Attributes are LDAP data types.

The description of each attribute and how they map to the normal IBM MQ properties are described in
LDAP attributes.

LDAP attributes
LDAP attributes defined are specific to IBM MQ and maps directly to the client connection properties.
IBM MQ Client Channel Directory String Attributes

The character string attributes with their mapping to IBM MQ properties are listed in the following
table. The attributes can hold values of directoryString (UTF-8 encoded Unicode, that is, a variable
byte encoding system that includes IA5/ASCII as a subset) syntax. The syntax is specified by its
object identification number (OID).

Table 166. IBM MQ client channel directory string attributes

LDAP Attribute Description IBM MQ Property

CN The common name consisting of the channel name
and the defining queue manager name.

ibm-amqChannelName The name of the channel definition. CHANNEL

ibm-amqConnectionName The communication connection identifier. CONNAME

ibm-amqDescription The channel description. DESCR

ibm-amqLocalAddress The local communication address of the channel. LOCLADDR

ibm-amqModeName The LU 6.2 mode name. MODENAME

ibm-amqPassword The password that can be used. PASSWORD

ibm-amqQueueManagerName The name of the queue manager or queue manager
group to which an IBM MQ client application can
request connection.

QMNAME

ibm-amqSecurityExitUserData The user data that is passed to the security exit. SCYDATA

ibm-amqSecurityExitName The name of the exit program to be run by the
channel security exit.

SCYEXIT

ibm-amqSslCipherSpec A single CipherSpec for a TLS connection. SSLCIPH

ibm-amqSslPeerName Checks the Distinguished Name (DN) of the
certificate from the peer queue manager or client
at the other end of an IBM MQ channel.

SSLPEER

ibm-
amqTransactionProgramName

The transaction program name. TPNAME

Developing applications for IBM MQ 1111

Table 166. IBM MQ client channel directory string attributes (continued)

LDAP Attribute Description IBM MQ Property

ibm-amqUserID The user ID to be used by the MCA when
attempting to initiate a secure SNA session with a
remote MCA.

USERID

IBM MQ client connection integer attributes
The attributes with predefined values (for example, an enumerated type) are stored as standard
integers. These values are stored in the LDAP directory as integer values, and not by using the
associated constant name.

Table 167. IBM MQ client channel directory integer attributes

LDAP attribute Description
IBM MQ
Property

ibm-amqConnectionAffinity Determines whether client applications, which
connect multiple times through the same queue
manager name, use the same client channel.

AFFINITY

ibm-amqClientChannelWeight A weighting to influence which client connection
channel definition is used.

CLNTWGHT

ibm-amqHeartBeatInterval The approximate time between heartbeat flows that
are to be passed from a sending MCA when there
are no messages on the transmission queue.

HBINT

ibm-amqKeepAliveInterval A time-out value for a channel. KAINT

ibm-
amqMaximumMessageLength

The maximum length of a message that can be
transmitted on the channel.

MAXMSGL

ibm-
amqSharingConversations

The maximum number of conversations that share
each TCP/IP channel instance.

SHARECNV

ibm-amqTransportType The transport type to be used. TRPTYPE

IBM MQ client channel boolean attribute
This Boolean attribute is not mapped to any IBM MQ property. The syntax of this attribute indicates a
boolean value.

Table 168. IBM MQ client channel boolean attribute

LDAP attribute Description

ibm-amqIsClientDefault This boolean attribute is defined to resolve the problem of
searching entries whose ibm-amqQueueManagerName attribute
has not been defined.

IBM MQ client channel list attributes
IBM MQ properties are stored as single-value, comma-separated list attribute within the LDAP
directory. The attributes are defined in the same manner as the other directory string attributes.
The list attributes along with their mapping to the IBM MQ properties are described in the following
table.

1112 Developing Applications for IBM MQ

Table 169. IBM MQ client channel list attributes

LDAP attribute Description
IBM MQ
Property

ibm-amqHeaderCompression A list of header data compression techniques
supported by the channel.

COMPHDR

ibm-amqMessageCompression A list of message data compression techniques
supported by the channel.

COMPMSG

ibm-amqSendExitUserData The user data that is passed to the send exit. SENDDATA

ibm-amqSendExitUserName The name of the exit program to be run by the
channel send exit.

SENDEXIT

ibm-amqReceiveExitUserData The user data that is passed to the receive exit. RCVDATA

ibm-amqReceiveExitName The name of the user exit program to be run by the
channel receive user exit.

RCVEXIT

Common Name
The common name (CN) consists of the channel name and the defining queue manager name.

It is a preexisting attribute.

The format of the CN is:

CN=CHANNEL_NAME(DEFINING_Q_MGR_NAME)

For example:

CN=TC1(QM_T1)

You can specify only one value for this attribute.

This attribute is a string attribute and the values are not case-sensitive. The substring matching is ignored.
The substring matching is a matching rule used in sub-schema that specifies the behavior of the attribute
in a search filter, using a substring (for example, CN=jim* where CN is an attribute) and contains one or
more wildcards.

ibm-amqChannelName
This attribute specifies the name of the channel definition.

This attribute has a single string value with a maximum of 20 characters that are not case-sensitive. It is
not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter, using a substring and contains one or more
wildcards.

ibm-amqDescription
This LDAP attribute provides the channel description.

This attribute has a single string value with a maximum of 64 bytes, which are not case-sensitive. It is not
a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Developing applications for IBM MQ 1113

ibm-amqConnectionName
This LDAP attribute is the communications connection identifier. It specifies the particular
communications links to be used by this channel.

This attribute has a single string value with a maximum of 264 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqLocalAddress
This attribute specifies the local communications address for the channel.

This attribute has a single string value with a maximum of 48 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqModeName
This attribute is for use with LU 6.2 connections. It gives extra definition for the session characteristics of
the connection when a communication session allocation is performed.

This attribute has a single string value of exactly 8 characters, which are not case-sensitive. It is not a
pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqPassword
This LDAP attribute specifies a password that can be used by the MCA when attempting to initiate a
secure LU 6.2 session with a remote MCA.

This attribute has a single integer value with a maximum of 12 digits. It is not a pre-existing attribute.

ibm-amqQueueManagerName
This attribute specifies the name of the queue manager or queue manager group to which an IBM MQ
client application can request connection.

This attribute has a single string value with a maximum of 48 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Related reference
“ibm-amqIsClientDefault” on page 1116
This Boolean attribute solves the problem of searching entries where the ibm-amqQueueManagerName
attribute has not been defined.

ibm-amqSecurityExitUserData
This LDAP attribute specifies user data that is passed to the security exit.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

1114 Developing Applications for IBM MQ

ibm-amqSecurityExitName
This LDAP attribute specifies the name of the exit program to be run by the channel security exit.

Leave blank if no channel security exit is in effect.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive.
This attribute is not a pre-exiting one.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqSslCipherSpec
This LDAP attribute specifies a single CipherSpec for a TLS connection.

This attribute has a single string value with a maximum of 32 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqSslPeerName
This LDAP attribute is used to check the Distinguished Name (DN) of the certificate from the peer queue
manager or client at the other end of an IBM MQ channel.

This LDAP attribute has a single string value with a maximum of 1024 bytes, which are not case-sensitive.
It is not a pre-existing one.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqTransactionProgramName
This LDAP attribute specifies the transaction program name. It is for use with LU 6.2 connections.

This attribute has a single string value with a maximum of 64 characters, which are not case-sensitive. It
is not a pre-existing one.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqUserID
This LDAP attribute specifies the user ID to be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA.

This attribute has a single string value of exactly 12 characters, which are not case-sensitive. It is not a
pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqConnectionAffinity
This LDAP attribute specifies whether client applications, which connect multiple times using the same
queue manager name, use the same client channel.

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqClientChannelWeight
This LDAP attribute specifies a weighting that influences which client connection channel definition is
used.

The client channel weighting attribute is used to bias the selection of client channel definitions when
more than one suitable definition is available.

Developing applications for IBM MQ 1115

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqHeartBeatInterval
This LDAP attribute specifies the approximate time between heartbeat flows that are to be passed from a
sending MCA when there are no messages on the transmission queue.

This attribute has a single integer value. It is not a pre-existing attribute. The default value is 1. The
default is set in the current MQSERVER environment variable operation.

ibm-amqKeepAliveInterval
This LDAP attribute is used to specify a time-out value for a channel.

The value of this attribute is passed to the communications stack specifying the keepalive timing for the
channel. You can use this to specify a different keepalive value for each channel.

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqMaximumMessageLength
This LDAP attribute specifies the maximum length of a message that can be transmitted on the channel.

The default value of this attribute is 104857600 as per the current MQSERVER environment variable
operation. This attribute has a single integer value and it is not a pre-existing attribute.

ibm-amqSharingConversations
This LDAP attribute specifies the maximum number of conversations that share each TCP/IP channel
instance.

This attribute has a single integer value. This attribute is not a pre-existing attribute.

ibm-amqTransportType
This LDAP attribute specifies the transport type to be used.

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqIsClientDefault
This Boolean attribute solves the problem of searching entries where the ibm-amqQueueManagerName
attribute has not been defined.

Preconnect exit modules generally search the LDAP servers with the value of the ibm-
amqQueueManagerName attribute as the search criteria. Such a query would return all entries where
the ibm-amqQueueManagerName attribute value matches the name of the queue manager specified on
the MQCONN/X call. However when using the client channel definition tables (CCDT), you can either set
the queue manager name on a MQCONN/X call as blank or prefix the name with an asterisk (*). If the
name of the queue manager is blank, the client connects to the default queue manager. If the name is
prefixed with an asterisk (*) to the queue manager, then the client connects any queue manager.

Similarly, the ibm-amqQueueManagerName attribute in an entry can be left undefined. In this case, it is
expected that the client using this endpoint information can connect to any queue manager. For example,
an entry contains the following lines:

ibm-amqChannelName = "CHANNEL1"
ibm-amqConnectionName = myhost(1414)

In this example, the client attempts to connect to the specified queue manager running on myhost.

However in LDAP Servers, a search is not made on an attribute value that has not been defined.
For example, if an entry contains the connection information except ibm-amqQueueManagerName,
then the search results would not include this entry. To overcome this problem, you can set ibm-
amqIsClientDefault. This is a Boolean attribute and is assumed to have a value of FALSE if not defined.

1116 Developing Applications for IBM MQ

For entries where the ibm-amqQueueManagerName has not been defined and are expected to be part of
the search, set ibm-amqIsClientDefault to TRUE. When a blank or asterisk (*) is specified as the queue
manager name in a call to MQCONN/X, the preconnect exit searches the LDAP sever for all entries where
ibm-amqIsClientDefault attribute value is set to TRUE.

Note: Do not set or define ibm-amqQueueManagerName attribute if ibm-amqIsClientDefault is set to
TRUE.

Related reference
“ibm-amqQueueManagerName” on page 1114
This attribute specifies the name of the queue manager or queue manager group to which an IBM MQ
client application can request connection.

ibm-amqHeaderCompression
This LDAP attribute is a list of header data compression techniques supported by the channel.

The maximum size of this attribute is of 48 characters. It is not a pre-existing attribute.

You can specify only one value for this attribute.

This list attribute is specified as directory strings using a comma-separated format. For example, the
value specified for ibm-amqHeaderCompression is 0 which is mapped to NONE. Any values that exceed
the maximum allowed limit are ignored by the client. For example, ibm-amqHeaderCompression contains
a maximum of 2 integers in the list.

ibm-amqMessageCompression
This LDAP attribute is a list of message data compression techniques supported by the channel.

The maximum size of this attribute is of 48 characters. It is not a pre-existing attribute.

This attribute does not support multiple values.

This list attribute is specified as directory strings using a comma-separated format. For
example, the value specified for this attribute is 1,2,4,16,32 which maps to the underlying compression
sequence RLE, ZLIBFAST, ZLIBHIGH, LZ4FAST, and LZ4HIGH.

Any values that exceed the maximum allowed limit are ignored by the client. For example, ibm-
amqMessageCompression contains a maximum of 16 integers in the list.

ibm-amqSendExitUserData
This LDAP attribute specifies user data that is passed to the send exit.

This LDAP attribute has a single string value with a maximum of 999 characters, which are not case-
sensitive. It is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Note: ibm-amqSendExitName and ibm-amqSendExitUserData need to be synchronized in pairs . The
user data should be synchronized with the exit name. So if one is specified, the other also has to be
symmetrically specified, even if it contains no data.

ibm-amqSendExitName
This LDAP attribute specifies the name of the exit program to be run by the channel send exit.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Developing applications for IBM MQ 1117

Note: ibm-amqSendExitName and ibm-amqSendExitUserData must be synchronized in pairs. The
user data must be synchronized with the exit name. So if one is specified, the other also must be
symmetrically specified even if it contains no data.

ibm-amqReceiveExitUserData
This LDAP attribute specifies user data that is passed to the receive exit.

You can run a sequence of receive exits. The string of user data for a series of exits is separated by a
comma, spaces, or both.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Note: ibm-amqReceiveExitName and ibm-amqReceiveExitUserData must be synchronized in
pairs. The user data must be synchronized with the exit name. So if one is specified, the other also
must be symmetrically specified even if it contains no data.

ibm-amqReceiveExitName
This LDAP attribute specifies the name of the user exit program to be run by the channel receive user exit.

This attribute is a list of names of programs that are to be run in succession. Leave blank, if no channel
receive user exit is in effect.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Note: ibm-amqReceiveExitName and ibm-amqReceiveExitUserData must be synchronized in
pairs. The user data must be synchronized with the exit name. So if one is specified, the other must
also be symmetrically specified, even if it contains no data.

Using the sample programs for z/OS
The sample procedural applications that are delivered with IBM MQ for z/OS demonstrate typical uses of
the Message Queue Interface (MQI).

About this task
IBM MQ for z/OS also provides sample data-conversion exits, described in “Writing data-conversion exits”
on page 947.

All the sample applications are supplied in source form; several are also supplied in executable form. The
source modules include pseudocode that describes the program logic.

Note: Although some of the sample applications have basic panel-driven interfaces, they do not aim to
demonstrate how to design the look and feel of your applications. For more information about how to
design panel-driven interfaces for non-programmable terminals, see the SAA Common User Access: Basic
Interface Design Guide (SC26-4583) and its addendum (GG22-9508). These provide guidelines to help
you to design applications that are consistent both within the application and across other applications.

Procedure
• Use the following links to find out more about the sample programs:

– “Features demonstrated in the sample applications for z/OS” on page 1119
– “Preparing and running sample applications for the batch environment on z/OS” on page 1126
– “Preparing sample applications for the TSO environment on z/OS” on page 1128

1118 Developing Applications for IBM MQ

– “Preparing the sample applications for the CICS environment on z/OS” on page 1130
– “Preparing the sample application for the IMS environment on z/OS” on page 1133
– “The Put samples on z/OS” on page 1134
– “The Get samples on z/OS” on page 1136
– “The Browse sample on z/OS” on page 1139
– “The Print Message sample on z/OS” on page 1141
– “The Queue Attributes sample on z/OS” on page 1144
– “The Mail Manager sample on z/OS” on page 1145
– “The Credit Check sample on z/OS” on page 1152
– “The Message Handler sample on z/OS” on page 1163
– “The Asynchronous Put sample on z/OS” on page 1166
– “The Batch Asynchronous Consumption sample on z/OS” on page 1167
– “The CICS Asynchronous Consumption and Publish/Subscribe sample on z/OS” on page 1169
– “The Publish/Subscribe sample on z/OS” on page 1172
– “The Set and Inquire message property sample on z/OS” on page 1174

Related tasks
“Using the sample programs on Multiplatforms” on page 1018
These sample procedural programs are delivered with the product. The samples are written in C and
COBOL, and demonstrate typical uses of the Message Queue Interface (MQI).

Features demonstrated in the sample applications for z/OS
This section summarizes the MQI features demonstrated in each of the sample applications, shows the
programming languages in which each sample is written, and the environment in which each sample runs.

Put samples on z/OS
The Put samples demonstrate how to put messages on a queue using the MQPUT call.

The application uses these MQI calls:

• MQCONN
• MQOPEN
• MQPUT
• MQCLOSE
• MQDISC

The program is delivered in COBOL and C, and runs in the batch and CICS environment. See Table 172 on
page 1126 for the batch application and Table 179 on page 1131 for the CICS application.

Get samples on z/OS
The Get samples demonstrate how to get messages from a queue using the MQGET call.

The application uses these MQI calls:

• MQCONN
• MQOPEN
• MQGET
• MQCLOSE
• MQDISC

Developing applications for IBM MQ 1119

The program is delivered in COBOL and C, and runs in the batch and CICS environment. See Table 172 on
page 1126 for the batch application and Table 179 on page 1131 for the CICS application.

Browse sample on z/OS
The Browse sample demonstrates how to use the Browse option to find a message, print it, then step
through the messages on a queue.

The application uses these MQI calls:

• MQCONN
• MQOPEN
• MQGET for browsing messages
• MQCLOSE
• MQDISC

The program is delivered in the COBOL, assembler, PL/I, and C languages. The application runs in the
batch environment. See Table 173 on page 1127 for the batch application.

Print Message sample on z/OS
The Print Message sample demonstrates how to remove a message from a queue and print the data in
the message, together with all the fields of its message descriptor. It can, optionally, display all of the
message properties associated with each message.

By removing comment characters from two lines in the source module, you can change the program so
that it browses, rather than removes, the messages on a queue. This program can usefully be used for
diagnosing problems with an application that is putting messages on a queue.

The application uses these MQI calls:

• MQCONN
• MQOPEN
• MQGET for removing messages from a queue (with an option to browse)
• MQCLOSE
• MQDISC
• MQCRTMH
• MQDLTMH
• MQINQMP

The program is delivered in the C language. The application runs in the batch environment. See Table 174
on page 1127 for the batch application.

Queue Attributes sample on z/OS
The Queue Attributes sample demonstrates how to inquire about and set the values of IBM MQ for z/OS
object attributes.

The application uses these MQI calls:

• MQOPEN
• MQINQ
• MQSET
• MQCLOSE

The program is delivered in the COBOL, assembler, and C languages. The application runs in the CICS
environment. See Table 180 on page 1131 for the CICS application.

1120 Developing Applications for IBM MQ

Mail Manager sample on z/OS
Considerations to note when using Mail Manager sample.

The Mail Manager sample demonstrates these techniques:

• Using alias queues
• Using a model queue to create a temporary dynamic queue
• Using reply-to queues
• Using syncpoints in the CICS and batch environments
• Sending commands to the system-command input queue
• Testing return codes
• Sending messages to remote queue managers, both by using a local definition of a remote queue and by

putting messages directly on a named queue at a remote queue manager

The application uses these MQI calls:

• MQCONN
• MQOPEN
• MQPUT1
• MQGET
• MQINQ
• MQCMIT
• MQCLOSE
• MQDISC

Three versions of the application are provided:

• A CICS application written in COBOL
• A TSO application written in COBOL
• A TSO application written in C

The TSO applications use the IBM MQ for z/OS batch adapter and include some ISPF panels.

See Table 177 on page 1129 for the TSO application, and Table 181 on page 1132 for the CICS
application.

Credit Check sample on z/OS
This information contains points to consider when using Credit Check sample.

The Credit Check sample is a suite of programs that demonstrates these techniques:

• Developing an application that runs in more than one environment
• Using a model queue to create a temporary dynamic queue
• Using a correlation identifier
• Setting and passing context information
• Using message priority and persistence
• Starting programs by using triggering
• Using reply-to queues
• Using alias queues
• Using a dead-letter queue
• Using a namelist
• Testing return codes

The application uses these MQI calls:

Developing applications for IBM MQ 1121

• MQOPEN
• MQPUT
• MQPUT1
• MQGET for browsing and getting messages, using the wait and signal options, and for getting a specific

message
• MQINQ
• MQSET
• MQCLOSE

The sample can run as a stand-alone CICS application. However, to demonstrate how to design a message
queuing application that uses the facilities provided by both the CICS and IMS environments, one module
is also supplied as an IMS batch message processing program.

The CICS programs are delivered in C and COBOL. The single IMS program is delivered in C.

See Table 182 on page 1132 for the CICS application, and Table 184 on page 1134 for the IMS
application.

The Message Handler sample on z/OS
The Message Handler sample allows you to browse, forward, and delete messages on a queue.

The application uses these MQI calls:

• MQCONN
• MQOPEN
• MQINQ
• MQPUT1
• MQCMIT
• MQBACK
• MQGET
• MQCLOSE
• MQDISC

The program is delivered in C and COBOL programming languages. The application runs under TSO.
SeeTable 178 on page 1130for the TSO application.

Distributed queuing exit samples on z/OS
A table of source programs of Distributed queuing exit samples.

The names of the source programs of the distributed queuing exit samples are listed in the following
table:

Table 170. Source for the distributed queuing exit samples

Member name For language Description Supplied in library

CSQ4BAX0 Assembler Source program SCSQASMS

CSQ4BCX1 C Source program SCSQC37S

CSQ4BCX2 C Source program SCSQC37S

CSQ4BCX4 C Source program SCSQC37S

Note: The source programs are link-edited with CSQXSTUB.

1122 Developing Applications for IBM MQ

Data-conversion exit samples on z/OS
A skeleton is provided for a data-conversion exit routine, and a sample is shipped with IBM MQ illustrating
the MQXCNVC call.

The names of the source programs of the data-conversion exit samples are listed in the following table:

Table 171. Source for the data conversion exit samples (assembler language only)

Member name Description Supplied in library

CSQ4BAX8 Source program SCSQASMS

CSQ4BAX9 Source program SCSQASMS

CSQ4CAX9 Source program SCSQASMS

Note: The source programs are link-edited with CSQASTUB.

See “Writing data-conversion exits” on page 947 for more information.

Publish/Subscribe samples on z/OS
The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in
IBM MQ.

There are four C and two COBOL programming language sample programs demonstrating how to program
to the IBM MQ Publish/Subscribe interface.

The applications use these MQI calls:

• MQCONN
• MQOPEN
• MQPUT
• MQSUB
• MQGET
• MQCLOSE
• MQDISC
• MQCRTMH
• MQDLTMH
• MQINQMP

The Public/Subscribe sample programs are delivered in the C and COBOL programming languages.
The sample applications run in the batch environment. See Publish/Subscribe samples for the batch
applications.

Configuring a queue manager to accept client connections on z/OS
Before you can run the sample applications, you must first create a queue manager. You can then
configure the queue manager to securely accept incoming connection requests from applications that are
running in client mode.

Before you begin
Ensure the queue manager already exists and has been started. Determine whether channel
authentication records are already enabled by issuing the MQSC command:

DISPLAY QMGR CHLAUTH

Important: This task expects that channel authentication records are enabled. If this is a queue manager
used by other users and applications, changing this setting will affect all other users and applications. If

Developing applications for IBM MQ 1123

your queue manager does not make use of channel authentication records then step 4 can be replaced
with an alternate authentication method (for example a security exit) which sets the MCAUSER to the
non-privileged-user-id you will obtain in step “1” on page 1124.

You must know which channel name your application expects to use so that the application can be
permitted to use the channel. You must also know which objects, for example queues or topics, your
application expects to use so that your application can be permitted to use them.

About this task
This task creates a non-privileged user ID to be used for a client application which connects to the queue
manager. Access is granted for the client application only to be able to use the channel it needs and the
queue it needs by use of this user ID.

Procedure
1. Obtain a user ID on the system your queue manager is running on.

For this task this user ID must not be a privileged administrative user. This user ID is the authority
under which the client connection will run on the queue manager.

2. Start a listener program.
a) Ensure that your channel initiator is started. If not, start it by issuing the START CHINIT command.
b) Start the listener program by issuing the following command:

START LISTENER TRPTYPE(TCP) PORT(nnnn)

where nnnn is your chosen port number.
3. If your application uses the SYSTEM.DEF.SVRCONN then this channel is already defined. If your

application uses another channel, create it by issuing the MQSC command:

DEFINE CHANNEL(' channel-name ') CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Channel for use by sample programs')

channel-name is the name of your channel.
4. Create a channel authentication rule allowing only the IP address of your client system to use the

channel by issuing the MQSC command:

SET CHLAUTH(' channel-name ') TYPE(ADDRESSMAP) ADDRESS(' client-machine-IP-address ') +
MCAUSER(' non-privileged-user-id ')

where

channel-name is the name of your channel.
client-machine-IP-address is the IP address of your client system. If your sample client application
is running on the same machine as the queue manager then use an IP address of '127.0.0.1' if
your application is going to connect using 'localhost'. If several different client machines are going
to connect in, you can use a pattern or a range instead of a single IP address. See Generic IP
addresses for details.
non-privileged-user-id is the user ID you obtained in step “1” on page 1124

5. If your application uses the SYSTEM.DEFAULT.LOCAL.QUEUE, then this queue is already defined. If
your application uses another queue, create it by issuing the MQSC command:

DEFINE QLOCAL(' queue-name ') DESCR('Queue for use by sample programs')

where queue-name is the name of your queue.
6. Grant access to connect to and inquire the queue manager:

1124 Developing Applications for IBM MQ

a) Ensure that your channel initiator is started. If not, start the channel initiator by issuing the START
CHINIT command.

b) Start a TCP listener, for example issue the following command:

START LISTENER TRPTYPE(TCP) PORT(nnnn)

where nnnn is your chosen port number.
7. If your application is a point-to-point application, that is it makes use of queues, grant access to allow

inquiring and the putting and getting messages using your queue by the user ID to be used, by issuing
the MQSC commands:
Issue the RACF commands:

RDEFINE MQQUEUE qmgr-name.QUEUE. queue-name UACC(NONE)

PERMIT qmgr-name.QUEUE. queue-name CLASS(MQQUEUE) ID(non-privileged-user-id) ACCESS(UPDATE)

where

qmgr-name is the name of your queue manager
queue-name is the name of your queue.
non-privileged-user-id is the user ID you obtained in step “1” on page 1124

8. If your application is a publish/subscribe application, that is it makes use of topics, grant access to
allow publishing and subscribing using your topic by the user ID to be used, by issuing the following
RACF commands:

RDEFINE MQTOPIC qmgr-name.PUBLISH.SYSTEM.BASE.TOPIC UACC(NONE)

PERMIT qmgr-name.PUBLISH.SYSTEM.BASE.TOPIC CLASS(MQTOPIC) ID(non-privileged-user-id)
ACCESS(UPDATE)

RDEFINE MQTOPIC qmgr-name.SUBSCRIBE.SYSTEM.BASE.TOPIC UACC(NONE)

PERMIT qmgr-name.SUBSCRIBE.SYSTEM.BASE.TOPIC CLASS(MQTOPIC) ID(non-privileged-user-id)
ACCESS(UPDATE)

where

qmgr-name is the name of your queue manager
non-privileged-user-id is the user ID you obtained in step “1” on page 1124
This will give non-privileged-user-id access to any topic in the topic tree, alternatively, you can
define a topic object using DEFINE TOPIC and grant accesses only to the part of the topic tree
referenced by that topic object. For more information, see Controlling user access to topics.

What to do next
Your client application can now connect to the queue manager and put or get messages using the queue.
Related concepts

Authority to work with IBM MQ objects on z/OS
Related reference
SET CHLAUTH
DEFINE CHANNEL
DEFINE QLOCAL
SET AUTHREC

Developing applications for IBM MQ 1125

Preparing and running sample applications for the batch environment on
z/OS
To prepare a sample application that runs in the batch environment, perform the same steps that you
would when building any batch IBM MQ for z/OS application.

These steps are listed in “Building z/OS batch applications” on page 985.

Alternatively, where we supply an executable form of a sample, you can run it from the thlqual.SCSQLOAD
load library.

Note: The assembler language version of the Browse sample uses data control blocks (DCBs), so you
must link-edit it using RMODE(24).

The library members to use are listed in Table 172 on page 1126, Table 173 on page 1127, Table 174 on
page 1127, and Table 175 on page 1127.

You must edit the run JCL supplied for the samples that you want to use (see Table 172 on page 1126,
Table 173 on page 1127, Table 174 on page 1127, and Table 175 on page 1127).

The PARM statement in the supplied JCL contains a number of parameters that you need to modify.
To run the C sample programs, separate the parameters by spaces; to run the assembler, COBOL, and
PL/I sample programs, separate them by commas. For example, if the name of your queue manager
is CSQ1 and you want to run the application with a queue named LOCALQ1, in the COBOL, PL/I, and
assembler-language JCL, your PARM statement should look like this:

PARM=(CSQ1,LOCALQ1)

In the C language JCL, your PARM statement should look like this:

PARM=('CSQ1 LOCALQ1')

You are now ready to submit the jobs.

Names of the sample batch applications on z/OS
A summary of the programs that are supplied for sample batch applications.

The batch application programs are summarized in the following tables:

• Table 172 on page 1126 Put and Get samples
• Table 173 on page 1127 Browse sample
• Table 174 on page 1127 Print message sample
• Table 175 on page 1127 Publish/Subscribe samples
• Table 176 on page 1128 Other samples

Table 172. Batch Put and Get samples

Member name For language Description Source file
supplied in library

Executable file
supplied in library

CSQ4BCJ1 C Get source
program

SCSQC37S SCSQLOAD

CSQ4BCK1 C Put source
program

SCSQC37S SCSQLOAD

CSQ4BCJR C Sample run JCL
for CSQ4BCJ1 and
CSQBCK1

SCSQPROC None

CSQ4BVJ1 COBOL Get source
program

SCSQCOBS SCSQLOAD

1126 Developing Applications for IBM MQ

Table 172. Batch Put and Get samples (continued)

Member name For language Description Source file
supplied in library

Executable file
supplied in library

CSQ4BVK1 COBOL Put source
program

SCSQCOBS SCSQLOAD

CSQ4BVJR COBOL Sample run JCL
for CSQBVJ1 and
CSQBVK1

SCSQPROC None

Table 173. Batch Browse sample

Member name For language Description Source file
supplied in library

Executable file
supplied in library

CSQ4BVA1 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4BVAR COBOL Sample run JCL for
CSQ4BVA1

SCSQPROC None

CSQ4BAA1 Assembler Source program SCSQASMS SCSQLOAD

CSQ4BAAR Assembler Sample run JCL for
CSQ4BAA1

SCSQPROC None

CSQ4BCA1 C Source program SCSQC37S SCSQLOAD

CSQ4BCAR C Sample run JCL for
CSQ4BCA1

SCSQPROC None

CSQ4BPA1 PL/I Source program SCSQPLIS SCSQLOAD

CSQ4BPAR PL/I Sample run JCL for
CSQ4BPA1

SCSQPROC None

Table 174. Batch Print Message sample (C language only)

Member name Description Source file supplied in
library

Executable file supplied
in library

CSQ4BCG1 Source program SCSQC37S SCSQLOAD

CSQ4BCGR Sample run JCL for
CSQ4BCG1

SCSQPROC None

CSQ4BCL1 Browse source program SCSQC37S SCSQLOAD

CSQ4BCLR Sample run JCL for
CSQ4BCL1

SCSQPROC None

Table 175. Publish/Subscribe samples

Member
name

For
languag
e

Description Source file
supplied in
library

JCL in
SCSQPROC

Executable file
supplied in
library

CSQ4BCP1 C Publish to topic
source program

SCSQC37S CSQ4BCPP SCSQLOAD

CSQ4BCP2 C Subscribe to topic
and get messages
source program

SCSQC37S CSQ4BCPS SCSQLOAD

Developing applications for IBM MQ 1127

Table 175. Publish/Subscribe samples (continued)

Member
name

For
languag
e

Description Source file
supplied in
library

JCL in
SCSQPROC

Executable file
supplied in
library

CSQ4BCP3 C Subscribe to topic
using a user provided
destination and get
messages source
program

SCSQC37S CSQ4BCPD SCSQLOAD

CSQ4BCP4 C Subscribe to topic
using extended
options and get
messages source
program

SCSQC37S CSQ4BCPE SCSQLOAD

CSQ4BVP1 COBOL Publish to topic
source program

SCSQCOBS CSQ4BVPP SCSQLOAD

CSQ4BVP2 COBOL Subscribe to topic
and get messages
source program

SCSQCOBS CSQ4BVPS SCSQLOAD

Table 176. Other samples

Member
name

For
language

Description Source file
supplied in
library

JCL in
SCSQPROC

Executable file
supplied in
library

CSQ4BCS1 C Asynchronous
consumption source
program

SCSQC37S CSQ4BCSC SCSQLOAD

CSQ4BCS2 C Asynchronous Put,
and Check status
source program

SCSQC37S CSQ4BCSP SCSQLOAD

CSQ4BCM1 C Inquire message
properties source
program

SCSQC37S CSQ4BCMP SCSQLOAD

CSQ4BCM2 C Set message
properties source
program

SCSQC37S CSQ4BCMP SCSQLOAD

Preparing sample applications for the TSO environment on z/OS
To prepare a sample application that runs in the TSO environment, perform the same steps that you
would when building any batch IBM MQ for z/OS application.

These steps are listed in “Building z/OS batch applications” on page 985. The library members to use are
listed in Table 177 on page 1129.

Alternatively, where we supply an executable form of a sample, you can run it from the thlqual.SCSQLOAD
load library.

For the Mail Manager sample application, ensure that the queues that it uses are available on your
system. They are defined in the member thlqual.SCSQPROC(CSQ4CVD). To ensure that these queues are
always available, you could add these members to your CSQINP2 initialization input data set, or use the
CSQUTIL program to load these queue definitions.

1128 Developing Applications for IBM MQ

Names of the sample TSO applications on z/OS
Information about the names of the programs that are supplied for each of the sample TSO applications,
and the libraries where the source, JCL, and, for the Message Handler sample only, the executable files
reside.

The TSO application programs are summarized in the following tables:

• Table 177 on page 1129 Mail manager sample
• Table 178 on page 1130 Message handler sample

These samples use ISPF panels. You must therefore include the ISPF stub, ISPLINK, when you link-edit
the programs.

Table 177. TSO Mail Manager sample

Member name For language Description Source file supplied in
library

CSQ4CVD independent IBM MQ for z/OS object
definitions

SCSQPROC

CSQ40 independent ISPF messages SCSQMSGE

CSQ4RVD1 COBOL CLIST to initiate
CSQ4TVD1

SCSQCLST

CSQ4TVD1 COBOL Source program for
Menu program

SCSQCOBS

CSQ4TVD2 COBOL Source program for Get
Mail program

SCSQCOBS

CSQ4TVD4 COBOL Source program for Send
Mail program

SCSQCOBS

CSQ4TVD5 COBOL Source program for
Nickname program

SCSQCOBS

CSQ4VDP1-6 COBOL Panel definitions SCSQPNLA

CSQ4VD0 COBOL Data definition SCSQCOBC

CSQ4VD1 COBOL Data definition SCSQCOBC

CSQ4VD2 COBOL Data definition SCSQCOBC

CSQ4VD4 COBOL Data definition SCSQCOBC

CSQ4RCD1 C CLIST to initiate
CSQ4TCD1

SCSQCLST

CSQ4TCD1 C Source program for
Menu program

SCSQC37S

CSQ4TCD2 C Source program for Get
Mail program

SCSQC37S

CSQ4TCD4 C Source program for Send
Mail program

SCSQC37S

CSQ4TCD5 C Source program for
Nickname program

SCSQC37S

CSQ4CDP1-6 C Panel definitions SCSQPNLA

CSQ4TC0 C Include file SCSQC370

Developing applications for IBM MQ 1129

Table 178. TSO Message Handler sample

Member name For language Description Source file
supplied in library

Executable file
supplied in library

CSQ4TCH0 C Data definition SCSQC370 None

CSQ4TCH1 C Source program SCSQC37S SCSQLOAD

CSQ4TCH2 C Source program SCSQC37S SCSQLOAD

CSQ4TCH3 C Source program SCSQC37S SCSQLOAD

CSQ4RCH1 C and COBOL CLIST to initiate
CSQ4TCH1 or
CSQ4TVH1

SCSQCLST None

CSQ4CHP1 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP2 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP3 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP9 C and COBOL Panel definition SCSQPNLA None

CSQ4TVH0 COBOL Data definition SCSQCOBC None

CSQ4TVH1 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4TVH2 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4TVH3 COBOL Source program SCSQCOBS SCSQLOAD

Preparing the sample applications for the CICS environment on z/OS
Before you run the CICS sample programs, log on to CICS using a LOGMODE of 32702. This is because the
sample programs have been written to use a 3270 mode 2 screen.

To prepare a sample application that runs in the CICS environment, perform the following steps:

1. Create the symbolic description map and the physical screen map for the sample by assembling the
BMS screen definition source (supplied in library thlqual.SCSQMAPS, where thlqual is the high-level
qualifier used by your installation). When you name the maps, use the name of the BMS screen
definition source (not available for Put and Get sample programs), but omit the last character of that
name.

2. Perform the same steps that you would when building any CICS IBM MQ for z/OS application. These
steps are listed in “Building CICS applications in z/OS” on page 988. The library members to use are
listed in Table 179 on page 1131, Table 180 on page 1131, Table 181 on page 1132, and Table 182 on
page 1132.

Alternatively, where we supply an executable form of a sample, you can run it from the
thlqual.SCSQCICS load library.

3. Identify the map set, programs, and transaction to CICS by updating the CICS system definition (CSD)
data set. The definitions that you require are in the member thlqual.SCSQPROC(CSQ4S100). For
guidance on how to do this, see The CICS-IBM MQ Adapter section in the CICS Transaction Server for
z/OS 4.1 product documentation at: CICS Transaction Server for z/OS 4.1, The CICS-IBM MQ adapter.

Note: For the Credit Check sample application, you get an error message at this stage if you have not
already created the VSAM data set that the sample uses.

4. For the Credit Check and Mail Manager sample applications, ensure that the queues that they
use are available on your system. For the Credit Check sample, they are defined in the member
thlqual.SCSQPROC(CSQ4CVB) for COBOL, and thlqual.SCSQPROC(CSQ4CCB) for C. For the Mail
Manager sample, they are defined in the member thlqual.SCSQPROC(CSQ4CVD). To ensure that these

1130 Developing Applications for IBM MQ

queues are always available, you could add these members to your CSQINP2 initialization input data
set, or use the CSQUTIL program to load these queue definitions.

For the Queue Attributes sample application, you could use one or more of the queues that are
supplied for the other sample applications. Alternatively, you could use your own queues. However, in
the form that it is supplied, this sample works only with queues that have the characters CSQ4SAMP in
the first eight bytes of their name.

Names of the sample CICS applications on z/OS
This topic provides a summary of the programs supplied for sample CICS applications.

The CICS application programs are summarized in the following tables:

• Table 179 on page 1131 Put and Get samples
• Table 180 on page 1131 Queue Attributes sample
• Table 181 on page 1132 Mail Manager sample (COBOL only)
• Table 182 on page 1132 Credit Check sample
• Table 183 on page 1133 Asynchronous Consumption and Publish/Subscribe samples

Table 179. CICS Put and Get samples

Member name For language Description Source file
supplied in library

Executable file
supplied in library

CSQ4CCK1 C Put source
program

SCSQC37S SCSQCICS

CSQ4CCJ1 C Get source
program

SCSQC37S SCSQCICS

CSQ4CVJ1 COBOL Get source
program

SCSQCOBS SCSQCICS

CSQ4CVK1 COBOL Put source
program

SCSQCOBS SCSQCICS

CSQ4S100 independent CICS system
definition data set

SCSQPROC None

Table 180. CICS Queue Attributes sample

Member name For language Description Source file
supplied in library

Executable file
supplied in library

CSQ4CVC1 COBOL Source program SCSQCOBS SCSQCICS

CSQ4VMSG COBOL Message definition SCSQCOBC None

CSQ4VCMS COBOL BMS screen
definition

SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4CAC1 Assembler Source program SCSQASMS SCSQCICS

CSQ4AMSG Assembler Message definition SCSQMACS None

CSQ4ACMS Assembler BMS screen
definition

SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4CCC1 C Source program SCSQC37S SCSQCICS

CSQ4CMSG C Message definition SCSQC370 None

CSQ4CCMS C BMS screen
definition

SCSQMAPS SCSQCICS (named
CSQ4ACM)

Developing applications for IBM MQ 1131

Table 180. CICS Queue Attributes sample (continued)

Member name For language Description Source file
supplied in library

Executable file
supplied in library

CSQ4S100 independent CICS system
definition data set

SCSQPROC None

Table 181. CICS Mail Manager sample (COBOL only)

Member name Description Source file supplied in library

CSQ4CVD IBM MQ for z/OS object
definitions

SCSQPROC

CSQ4CVD1 Source for Menu program SCSQCOBS

CSQ4CVD2 Source for Get Mail program SCSQCOBS

CSQ4CVD3 Source for Display Message
program

SCSQCOBS

CSQ4CVD4 Source for Send Mail program SCSQCOBS

CSQ4CVD5 Source for Nickname program SCSQCOBS

CSQ4VDMS BMS screen definition source SCSQMAPS

CSQ4S100 CICS system definition data set SCSQPROC

CSQ4VD0 Data definition SCSQCOBC

CSQ4VD3 Data definition SCSQCOBC

CSQ4VD4 Data definition SCSQCOBC

Table 182. CICS Credit Check sample

Member name For language Description Source file
supplied in library

CSQ4CVB independent IBM MQ object definitions SCSQPROC

CSQ4CCB independent IBM MQ object definitions SCSQPROC

CSQ4CVB1 COBOL Source for user-interface program SCSQCOBS

CSQ4CVB2 COBOL Source for credit application manager SCSQCOBS

CSQ4CVB3 COBOL Source for checking-account program SCSQCOBS

CSQ4CVB4 COBOL Source for distribution program SCSQCOBS

CSQ4CVB5 COBOL Source for agency-query program SCSQCOBS

CSQ4CCB1 C Source for user-interface program SCSQC37S

CSQ4CCB2 C Source for credit application manager SCSQC37S

CSQ4CCB3 C Source for checking-account program SCSQC37S

CSQ4CCB4 C Source for distribution program SCSQC37S

CSQ4CCB5 C Source for agency-query program SCSQC37S

CSQ4CB0 C Include file SCSQC370

CSQ4CBMS C BMS screen definition source SCSQMAPS

1132 Developing Applications for IBM MQ

Table 182. CICS Credit Check sample (continued)

Member name For language Description Source file
supplied in library

CSQ4VBMS COBOL BMS screen definition source SCSQMAPS

CSQ4VB0 COBOL Data definition SCSQCOBC

CSQ4VB1 COBOL Data definition SCSQCOBC

CSQ4VB2 COBOL Data definition SCSQCOBC

CSQ4VB3 COBOL Data definition SCSQCOBC

CSQ4VB4 COBOL Data definition SCSQCOBC

CSQ4VB5 COBOL Data definition SCSQCOBC

CSQ4VB6 COBOL Data definition SCSQCOBC

CSQ4VB7 COBOL Data definition SCSQCOBC

CSQ4VB8 COBOL Data definition SCSQCOBC

CSQ4BAQ independent Source for VSAM data set SCSQPROC

CSQ4FILE independent JCL to build VSAM data set used by
CSQ4CVB3

SCSQPROC

CSQ4S100 independent CICS system definition data set SCSQPROC

Table 183. CICS Asynchronous Consumption and Publish/Subscribe samples

Member name Description Source file supplied in library

CSQ4CVCN Source for Simple Message
Consumption program

SCSQCOBS

CSQ4CVCT Source for Control Message
Consumption program

SCSQCOBS

CSQ4CVEV Source for Event Handler
program

SCSQCOBS

CSQ4CVPT Source for Message Put Client
program

SCSQCOBS

CSQ4CVRG Source for Registration Client
program

SCSQCOBS

CSQ4S100 CICS System Definition data set SCSQPROC

Preparing the sample application for the IMS environment on z/OS
Part of the Credit Check sample application can run in the IMS environment.

To prepare this part of the application to run with the CICS sample, first perform the steps described in
“Preparing the sample applications for the CICS environment on z/OS” on page 1130.

Then perform the following steps:

1. Perform the same steps that you would when building any IMS IBM MQ for z/OS application. These
steps are listed in “Building IMS (BMP or MPP) applications” on page 989. The library members to use
are listed in Table 184 on page 1134.

2. Identify the application program and database to IMS. Samples are provided with PSBGEN, DBDGEN,
ACB definition, IMSGEN, and IMSDALOC statements to enable this.

Developing applications for IBM MQ 1133

3. Load the database CSQ4CA by tailoring and running the sample JCL provided for this purpose
(CSQ4ILDB). This JCL loads the database with data from the file CSQ4BAQ. Update the IMS control
region with a DD statement for the database CSQ4CA.

4. Start the checking-account program as a batch message processing (BMP) program by tailoring and
running the sample JCL provided for this purpose. This JCL starts a batch-oriented BMP program. To
run the program as a message-oriented BMP program, remove the comment characters from the line
in the JCL that contains the IN= statement.

Names of the sample IMS application on z/OS
This information provides a table with the list of the sources and JCLs that are supplied for the Credit
Check sample IMS application.

Table 184. Source and JCL for the Credit Check IMS sample (C only)

Member name Description Supplied in library

CSQ4CVB IBM MQ object definitions SCSQPROC

CSQ4ICB3 Source for checking-account
program

SCSQC37S

CSQ4ICBL Source for loading the checking-
account database

SCSQC37S

CSQ4CBI Data definition SCSQC370

CSQ4PSBL PSBGEN JCL for database-load
program

SCSQPROC

CSQ4PSB3 PSBGEN JCL for checking-
account program

SCSQPROC

CSQ4DBDS DBDGEN JCL for database
CSQ4CA

SCSQPROC

CSQ4GIMS IMSGEN macro definitions for
CSQ4IVB3 and CSQ4CA

SCSQPROC

CSQ4ACBG Application control block (ACB)
definition for CSQ4IVB3

SCSQPROC

CSQ4BAQ Source for database SCSQPROC

CSQ4ILDB Sample run JCL for database-
load job

SCSQPROC

CSQ4ICBR Sample run JCL for checking-
account program

SCSQPROC

CSQ4DYNA IMSDALOC macro definitions for
database

SCSQPROC

The Put samples on z/OS
The Put sample programs put messages on a queue using the MQPUT call.

The source programs are supplied in C and COBOL in the batch and CICS environments (see Table 172 on
page 1126 and Table 179 on page 1131).

Design of the Put sample
The flow through the program logic is:

1134 Developing Applications for IBM MQ

1. Connect to the queue manager using the MQCONN call. If this call fails, print the completion and
reason codes and stop processing.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQCONN call;
if you do, it returns DEF_HCONN. You can use the connection handle MQHC_DEF_HCONN for the MQI
calls that follow.

2. Open the queue using the MQOPEN call with the MQOO_OUTPUT option. On input to this call, the
program uses the connection handle that is returned in step “1” on page 1136. For the object
descriptor structure (MQOD), it uses the default values for all fields except the queue name field,
which is passed as a parameter to the program. If the MQOPEN call fails, print the completion and
reason codes and stop processing.

3. Create a loop within the program issuing MQPUT calls until the required number of messages are
put on the queue. If an MQPUT call fails, the loop is abandoned early, no further MQPUT calls are
attempted, and the completion and reason codes are returned.

4. Close the queue using the MQCLOSE call with the object handle returned in step “2” on page 1137. If
this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the connection handle returned in
step “1” on page 1136. If this call fails, print the completion and reason codes.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQDISC call.

The Put samples for the batch environment on z/OS
Use this topic when considering Put samples for the batch environment.

To run the samples, edit and run the sample JCL, as described in “Preparing and running sample
applications for the batch environment on z/OS” on page 1126.

The programs take the following parameters in an EXEC PARM, separated by spaces in C and commas in
COBOL:

1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)
3. The number of messages (up to 4 digits)
4. The padding character to write in the message (1 character)
5. The number of characters to write in the message (up to 4 digits)
6. The persistence of the message (1 character: P for persistent or N for nonpersistent)

If you enter any of the these parameters wrongly, you receive appropriate error messages.

Any messages from the samples are written to the SYSPRINT data set.

Usage notes
• To keep the samples simple, there are some minor functional differences between language versions.

However, these differences are minimized if you use the layout of the parameters shown in the sample
run JCL, CSQ4BCJR, and CSQ4BVJR. None of the differences relate to the MQI.

• CSQ4BCK1 allows you to enter more than four digits for the number of messages sent and the length of
the messages.

• For the two numeric fields, enter any digit in the range 1 through 9999. The value that you enter should
be a positive number. For example, to put a single message, you can enter 1, 01, 001, or 0001 as the
value. If you enter nonnumeric or negative values, you might receive an error. For example, if you enter
-1, the COBOL program sends a 1-byte message, but the C program receives an error.

• For both programs, CSQ4BCK1 and CSQ4BVK1, you must enter P in the persistence parameter, ++PER+
+, if you want the message to be persistent. If you fail to do so, the message will be nonpersistent.

Developing applications for IBM MQ 1135

The Put samples for the CICS environment on z/OS
Use this topic when considering Put samples for the CICS environment.

The transactions take the following parameters separated by commas:

1. The number of messages (up to 4 digits)
2. The padding character to write in the message (1 character)
3. The number of characters to write in the message (up to 4 digits)
4. The persistence of the message (1 character: P for persistent or N for nonpersistent)
5. The name of the target queue (48 characters)

If you enter any of these parameters wrongly, you receive appropriate error messages.

For the COBOL sample, invoke the Put sample in the CICS environment by entering:

MVPT,9999,*,9999,P,QUEUE.NAME

For the C sample, invoke the Put sample in the CICS environment by entering:

MCPT,9999,*,9999,P,QUEUE.NAME

Any messages from the samples are displayed on the screen.

Usage notes
• To keep the samples simple, there are some minor functional differences between language versions.

None of the differences relate to the MQI.
• If you enter a queue name that is longer than 48 characters, its length is truncated to the maximum of

48 characters but no error message is returned.
• Before entering the transaction, press the CLEAR key.
• For the two numeric fields, enter any number in the range 1 through 9999. The value that you enter

should be a positive number. For example, to put a single message, you can enter the value 1, 01, 001,
or 0001. If you enter nonnumeric or negative values, you might receive an error. For example, if you
enter -1, the COBOL program sends a 1-byte message, and the C program abends with an error from
malloc().

• For both programs, CSQ4CCK1 and CSQ4CVK1, enter P in the persistence parameter if you want the
message to be persistent. For non-persistent messages, enter N in the persistence parameter. If you
enter any other value you receive an error message.

• The messages are put in syncpoint because default values are used for all parameters except those set
during program invocation.

The Get samples on z/OS
The Get sample programs get messages from a queue using the MQGET call.

The source programs are supplied in C and COBOL in the batch and CICS environments (see Table 172 on
page 1126 and Table 179 on page 1131).

Design of the Get sample on z/OS
Learn about the design of the Get sample, and some usage notes to consider.

The flow through the program logic is:

1. Connect to the queue manager using the MQCONN call. If this call fails, print the completion and
reason codes and stop processing.

1136 Developing Applications for IBM MQ

Note: If you are running the sample in a CICS environment, you do not need to issue an MQCONN call;
if you do, it returns DEF_HCONN. You can use the connection handle MQHC_DEF_HCONN for the MQI
calls that follow.

2. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED and MQOO_BROWSE options.
On input to this call, the program uses the connection handle that is returned in step “1” on page
1136. For the object descriptor structure (MQOD), it uses the default values for all fields except the
queue name field, which is passed as a parameter to the program. If the MQOPEN call fails, print the
completion and reason codes and stop processing.

3. Create a loop within the program issuing MQGET calls until the required number of messages are
retrieved from the queue. If an MQGET call fails, the loop is abandoned early, no further MQGET calls
are attempted, and the completion and reason codes are returned. The following options are specified
on the MQGET call:

• MQGMO_NO_WAIT
• MQGMO_ACCEPT_TRUNCATED_MESSAGE
• MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT
• MQGMO_BROWSE_FIRST and MQGMO_BROWSE_NEXT

For a description of these options, see MQGET. For each message, the message number is printed
followed by the length of the message and the message data.

4. Close the queue using the MQCLOSE call with the object handle returned in step “2” on page 1137. If
this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the connection handle returned in
step “1” on page 1136. If this call fails, print the completion and reason codes.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQDISC call.

Usage notes
• To keep the samples simple, there are some minor functional differences between language versions.

However, these differences are minimized if you use the layout of the parameters shown in the sample
run JCL, CSQ4BCJR, and CSQ4BVJR,. None of the differences relate to the MQI.

• CSQ4BCJ1 allows you to enter more than four digits for the number of messages retrieved.
• Messages longer than 64 KB are truncated.
• CSQ4BCJ1 can only correctly display character messages because it only displays until the first NULL

(\0) character is displayed.
• For the numeric number-of-messages field, enter any digit in the range 1 through 9999. The value that

you enter should be a positive number. For example, to get a single message, you can enter 1, 01,
001, or 0001 as the value. If you enter nonnumeric or negative values, you might receive an error.
For example, if you enter -1, the COBOL program retrieves one message, but the C program does not
retrieve any messages.

• For both programs, CSQ4BCJ1 and CSQ4BVJ1, enter B in the get parameter, ++GET++, if you want to
browse the messages.

• For both programs, CSQ4BCJ1 and CSQ4BVJ1, enter S in the syncpoint parameter, ++SYNC++, for
messages to be retrieved in syncpoint.

The Get samples for the batch environment on z/OS

To run the samples, edit and run the sample JCL, as described in “Preparing and running sample
applications for the batch environment on z/OS” on page 1126.

The programs take the following parameters in an EXEC PARM, separated by spaces in C and commas in
COBOL:

1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)

Developing applications for IBM MQ 1137

3. The number of messages to get (up to 4 digits)
4. The browse/get message option (1 character: B to browse or D to destructively get the messages)
5. The syncpoint control (1 character: S for syncpoint or N for no syncpoint)

If you enter any of these parameters incorrectly, you receive appropriate error messages.

Output from the samples is written to the SYSPRINT data set:

=====================================
PARAMETERS PASSED :
QMGR - VC9
QNAME - A.Q
NUMMSGS - 000000002
GET - D
SYNCPOINT - N
=====================================
MQCONN SUCCESSFUL
MQOPEN SUCCESSFUL
000000000 : 000000010 : **********
000000001 : 000000010 : **********
000000002 MESSAGES GOT FROM QUEUE
MQCLOSE SUCCESSFUL
MQDISC SUCCESSFUL

The Get samples for the CICS environment on z/OS
Special considerations for the Get samples for the CICS environment.

The transactions take the following parameters in an EXEC PARM, separated by commas:

1. The number of messages to get (up to four digits)
2. The browse/get message option (one character: B to browse or D to destructively get the messages)
3. The syncpoint control (one character: S for syncpoint or N for no syncpoint)
4. The name of the target queue (48 characters)

If you enter any of these parameters incorrectly, you receive appropriate error messages.

For the COBOL sample, invoke the Get sample in the CICS environment by entering:

MVGT,9999,B,S,QUEUE.NAME

For the C sample, invoke the Get sample in the CICS environment by entering:

MCGT,9999,B,S,QUEUE.NAME

When the messages are retrieved from the queue, they are put on a CICS temporary storage queue with
the same name as the CICS transaction (for example, MCGT for the C sample).

Here is example output of the Get samples:

**************************** TOP OF QUEUE ************************
000000000 : 000000010: **********
000000001 : 000000010 :**********
*************************** BOTTOM OF QUEUE **********************

Usage notes
• To keep the samples simple, there are some minor functional differences between language versions.

None of the differences relate to the MQI.
• If you enter a queue name that is longer than 48 characters, its length is truncated to the maximum of

48 characters but no error message is returned.
• Before entering the transaction, press the CLEAR key.

1138 Developing Applications for IBM MQ

• CSQ4CCJ1 can only correctly display character messages because it only displays until the first NULL
(\0) character is displayed.

• For the numeric field, enter any number in the range 1 through 9999. The value that you enter should be
a positive number. For example, to get a single message, you can enter the value 1, 01, 001, or 0001. If
you enter a nonnumeric or negative value, you might receive an error.

• Messages longer than 24 526 bytes in C and 9 950 bytes in COBOL are truncated. This is due to the way
that the CICS temporary storage queues are used.

• For both programs, CSQ4CCK1 and CSQ4CVK1, enter B in the get parameter if you want to browse the
messages, otherwise enter D. This performs destructive MQGET calls. If you enter any other value you
receive an error message.

• For both programs, CSQ4CCJ1 and CSQ4CVJ1, enter S in the syncpoint parameter to retrieve messages
in syncpoint. If you enter N in the syncpoint parameter, the MQGET calls are issued out of syncpoint. If
you enter any other value you receive an error message.

The Browse sample on z/OS
The Browse sample is a batch application that demonstrates how to browse messages on a queue using
the MQGET call.

The application steps through all the messages in a queue, printing the first 80 bytes of each one. You
could use this application to look at the messages on a queue without changing them.

Source programs and sample run JCL are supplied in the COBOL, assembler, PL/I, and C languages (see
Table 173 on page 1127).

To start the application, edit and run the sample run JCL, as described in “Preparing and running sample
applications for the batch environment on z/OS” on page 1126. You can look at messages on one of your
own queues by specifying the name of the queue in the run JCL.

When you run the application (and there are some messages on the queue), the output data set looks this:

07/12/1998 SAMPLE QUEUE REPORT PAGE 1
QUEUE MANAGER NAME : VC4
QUEUE NAME : CSQ4SAMP.DEAD.QUEUE
RELATIVE
MESSAGE MESSAGE
NUMBER LENGTH ------------------- MESSAGE DATA -------------

1 740 HELLO. PLEASE CALL ME WHEN YOU GET BACK.
2 429 CSQ4BQRM
3 429 CSQ4BQRM
4 429 CSQ4BQRM
5 22 THIS IS A TEST MESSAGE
6 8 CSQ4TEST
7 36 CSQ4MSG - ANOTHER TEST MESSAGE.....
!8 9 CSQ4STOP
********** END OF REPORT **********

If there are no messages on the queue, the data set contains the headings and the End of report
message only. If an error occurs with any of the MQI calls, the completion and reason codes are added to
the output data set.

Design of the Browse sample on z/OS
The Browse sample application uses a single program module; one is provided in each of the supported
programming languages.

The flow through the program logic is:

1. Open a print data set and print the title line of the report. Check that the names of the queue manager
and queue have been passed from the run JCL. If both names have been passed, print the lines of the
report that contain the names. If they have not, print an error message, close the print data set, and
stop processing.

Developing applications for IBM MQ 1139

The way that the program tests the parameters it is passed from the JCL depends on the language in
which the program is written; for more information, see “Language-dependent design considerations
on z/OS” on page 1140.

2. Connect to the queue manager using the MQCONN call. If this call is not successful, print the
completion and reason codes, close the print data set, and stop processing.

3. Open the queue using the MQOPEN call with the MQOO_BROWSE option. On input to this call, the
program uses the connection handle returned in step “2” on page 1140. For the object descriptor
structure (MQOD), it uses the default values for all the fields except the queue name (which was
passed in step “1” on page 1139). If this call is not successful, print the completion and reason codes,
close the print data set, and stop processing.

4. Browse the first message on the queue, using the MQGET call. On input to this call, the program
specifies:

• The connection and queue handles from steps “2” on page 1140 and “3” on page 1140
• An MQMD structure with all fields set to their initial values
• Two options:

– MQGMO_BROWSE_FIRST
– MQGMO_ACCEPT_TRUNCATED_MSG

• A buffer of size 80 bytes to hold the data copied from the message

The MQGMO_ACCEPT_TRUNCATED_MSG option allows the call to complete even if the message is
longer than the 80-byte buffer specified in the call. If the message is longer than the buffer, the
message is truncated to fit the buffer, and the completion and reason codes are set to show this. The
sample was designed so that messages are truncated to 80 characters to make the report easy to
read. The buffer size is set by a DEFINE statement, so you can easily change it if you want to.

5. Perform the following loop until the MQGET call fails:

a. Print a line of the report showing:

• The sequence number of the message (this is a count of the browse operations).
• The true length of the message (not the truncated length). This value is returned in the
DataLength field of the MQGET call.

• The first 80 bytes of the message data.
b. Reset the MsqId and CorrelId fields of the MQMD structure to nulls
c. Browse the next message, using the MQGET call with these two options:

• MQGMO_BROWSE_NEXT
• MQGMO_ACCEPT_TRUNCATED_MSG

6. If the MQGET call fails, test the reason code to see if the call has failed because the browse cursor
has got to the end of the queue. In this case, print the End of report message and go to step “7”
on page 1140 ; otherwise, print the completion and reason codes, close the print data set, and stop
processing.

7. Close the queue using the MQCLOSE call with the object handle returned in step “3” on page 1140.
8. Disconnect from the queue manager using the MQDISC call with the connection handle returned in

step “2” on page 1140.
9. Close the print data set and stop processing.

Language-dependent design considerations on z/OS
Source modules are provided for the Browse sample in four programming languages.

There are two main differences between the source modules:

• When testing the parameters passed from the run JCL, the COBOL, PL/I, and assembler-language
modules search for the comma character (,). If the JCL passes PARM=(,LOCALQ1), the application
attempts to open queue LOCALQ1 on the default queue manager. If there is no name after the comma

1140 Developing Applications for IBM MQ

(or no comma), the application returns an error. The C module does not search for the comma character.
If the JCL passes a single parameter (for example, PARM=('LOCALQ1')), the C module uses this as a
queue name on the default queue manager.

• To keep the assembler-language module simple, it uses the date format yy/ddd (for example, 05/116)
when it creates the print report. The other modules use the calendar date in mm/dd/yy format.

The Print Message sample on z/OS
The Print Message sample is a batch application that demonstrates how to remove all the messages from
a queue using the MQGET call.

The Print Message sample uses three parameters:

1. The name of the queue manager
2. The name of the source queue
3. An optional parameter for properties

It also prints, for each message, the fields of the message descriptor, followed by the message data. The
program prints the data both in hexadecimal and as characters (if they are printable). If a character is not
printable, the program replaces it with a period character (.). You can use the program when diagnosing
problems with an application that is putting messages on a queue.

Permissible values for the property parameter are:

Table 185. Permissible values for the property parameter

Value Behavior

0 Default behavior. The properties that get delivered to the application depend on the
PropertyControl queue attribute that the message is retrieved from.

1 A message handle is created and used with the MQGET. Properties of the message, except
those contained in the message descriptor (or extension) are displayed in a similar fashion
to the message descriptor. For example:

****Message properties****
 property name: property value

Or if no properties are available:

****Message properties****
 None

Numeric values are displayed using printf, string values are surrounding in single
quotation marks, and byte strings are surrounded with X and single quotation marks, as
for the message descriptor.

2 MQGMO_NO_PROPERTIES is specified, so that only message descriptor properties will be
returned.

3 MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, so that all properties are returned in
the message data.

4 MQGMO_PROPERTIES_COMPATIBILITY is specified, so that all properties can be returned
depending on whether an IBM MQ property is included, otherwise the properties are
discarded.

You can change the application so that it browses the messages, rather than removing them from the
queue. To do this, compile with the option of -DBROWSE, to define the BROWSE macro, as indicated in
“Design of the Print Message sample on z/OS” on page 1142. Executable code is provided for you in the
SCSQLOAD library. Module CSQ4BCG0 is built with -DBROWSE; module CSQ4BCG1 destructively reads
the queue.

Developing applications for IBM MQ 1141

The application has a single source program, which is written in the C language. Sample run JCL code is
also supplied (see Table 174 on page 1127).

To start the application, edit and run the sample run JCL, as described in “Preparing and running sample
applications for the batch environment on z/OS” on page 1126. When you run the application (and there
are some messages on the queue), the output data set looks like that in Figure 139 on page 1142.

CSQ4BCG1 - starts here

MQCONN to MQ1E
MQOPEN - 'TEST.QUEUE'
MQCRTMH

MQGET of message number 1
****Message descriptor****
StrucId : 'MD ' Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 785 CodedCharSetId : 500
Format : 'MQSTR '
Priority : 0 Persistence : 0
MsgId : X'C3E2D840D4D8F1C54040404040404040C1EA537F03167D88'
CorrelId : X'C3E2D840D4D8F1C54040404040404040C1EA537F0317A928'
BackoutCount : 0
ReplyToQ : ' '
ReplyToQMgr : ''
** Identity Context
UserIdentifier : 'FRED '
AccountingToken :
X'00'
ApplIdentityData : ' '
** Origin Context
PutApplType : '2'
PutApplName : 'FRED6 '
PutDate : '20080207' PutTime : '17373745'
ApplOriginData : ' '
GroupId : X'00'
MsgSeqNumber : '1'
Offset : '0'
MsgFlags : '0'
OriginalLength : '-1'

****Message properties****
None

**** Message ****

length - 30 bytes

00000000: E388 89A2 4089 A240 8140 A289 9497 9385 'This is a simple'
00000010: 40A3 85A2 A340 9485 A2A2 8187 855A ' test message! '

No more messages
MQDLTMH
MQCLOSE
MQDISC

Figure 139. Example of a report from the Print Message sample application

Design of the Print Message sample on z/OS
The Print Message sample application uses a single program written in the C language.

The flow through the program logic is:

1. Check that the names of the queue manager and queue have been passed from the run JCL. If they
have not, print an error message and stop processing.

2. Connect to the queue manager using the MQCONN call. If this call is not successful, print the
completion and reason codes and stop processing; otherwise print the name of the queue manager.

3. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED option.

1142 Developing Applications for IBM MQ

Note: If you want the application to browse the messages rather than remove them from the queue,
compile the sample with -DBROWSE, or, add #define BROWSE at the beginning of the source. When
you do this, the macro preprocessor adds the line in the program that selects the MQOO_BROWSE
option in the compilation.

On input to this call, the program uses the connection handle returned in step “2” on page 1142.
For the object descriptor structure (MQOD), it uses the default values for all the fields except the
queue name (which was passed in step “1” on page 1142). If this call is not successful, print the
completion and reason codes and stop processing; otherwise, print the name of the queue.

4. If you use a message handle to obtain the message properties use MQCRTMH to create such a handle
for use with subsequent MQGET calls. If this call is not successful, print the completion and reason
codes and stop processing.

5. Set the get message options to reflect the request action for any message properties.
6. Perform the following loop until the MQGET call fails:

a. Initialize the buffer to blanks so that the message data does not get corrupted by any data already
in the buffer.

b. Set the MsgId and CorrelId fields of the MQMD structure to nulls so that the MQGET call selects
the first message from the queue.

c. Get a message from the queue, using the MQGET call. On input to this call, the program specifies:

• The connection and object handles from steps “2” on page 1142 and “3” on page 1142.
• An MQMD structure with all fields set to their initial values. (MsgId and CorrelId are reset to

nulls for each MQGET call.)
• The option MQGMO_NO_WAIT.

Note: If you want the application to browse the messages rather than remove them from the
queue, compile the sample with -DBROWSE, or, add #define BROWSE at the beginning of the
source. When you do this, the macro preprocessor adds the line in the program that selects the
MQGMO_BROWSE_NEXT option to the compilation. When this option is used on a call against a
queue for which no browse cursor has previously been used with the current object handle, the
browse cursor is positioned logically before the first message.

• A buffer of size 64KB to hold the data copied from the message.
d. Call the printMD subroutine. This prints the name of each field in the message descriptor, followed

by its contents.
e. If you created a message handle in step “4” on page 1143 call the printProperties subroutine to

display any message properties.
f. Print the length of the message, followed by the message data. Each line of message data is in this

format:

• Relative position (in hexadecimal) of this part of the data
• 16 bytes of hexadecimal data
• The same 16 bytes of data in character format, if it is printable (nonprintable characters are

replaced by periods)
7. If the MQGET call fails, test the reason code to see if the call failed because there are no more

messages on the queue. In this case, print the message: No more messages; otherwise, print the
completion and reason codes. In both cases, go to step “9” on page 1144.

Note: The MQGET call fails if it finds a message that has more than 64KB of data. To change the
program to handle larger messages, you could do one of the following:

• Add the MQGMO_ACCEPT_TRUNCATED_MSG option to the MQGET call, so that the call gets the first
64KB of data and discards the remainder

• Make the program leave the message on the queue when it finds one with this amount of data
• Increase the size of the buffer

Developing applications for IBM MQ 1143

8. If you created a message handle in step “4” on page 1143 call MQDLTMH to delete it.
9. Close the queue using the MQCLOSE call with the object handle returned in step “3” on page 1142.

10. Disconnect from the queue manager using the MQDISC call with the connection handle returned in
step “2” on page 1142.

The Queue Attributes sample on z/OS
The Queue Attributes sample is a conversational-mode CICS application that demonstrates the use of the
MQINQ and MQSET calls.

It shows how to inquire about the values of the InhibitPut and InhibitGet attributes of queues, and
how to change them so that programs cannot put messages on, or get messages from, a queue. You might
want to lock a queue in this way when you are testing a program.

To prevent accidental interference with your own queues, this sample works only on a queue object that
has the characters CSQ4SAMP in the first eight bytes of its name. However, the source code includes
comments to show you how to remove this restriction.

Source programs are supplied in the COBOL, assembler, and C languages (see Table 180 on page 1131).

The assembler-language version of the sample uses reenterable code. To do this, you will notice that the
code for each MQI call in that version of the sample includes the MF keyword; for example:

CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

(The VL keyword means that you can use the CICS Execution Diagnostic Facility (CEDF) supplied
transaction for debugging the program.) For more information about writing reenterable programs, see
Coding in System/390 assembler language.

To start the application, start your CICS system and use the following CICS transactions:

• For COBOL, MVC1
• For assembler language, MAC1
• For C, MCC1

You can change the name of any of these transactions by changing the CSD data set mentioned in step 3.

Design of the sample
When you start the sample, it displays a screen map that has fields for:

• Name of the queue
• User request (valid actions are: inquire, allow, or inhibit)
• Current status of put operations for the queue
• Current status of get operations for the queue

The first two fields are for user input. The last two fields are filled by the application: they show the word
INHIBITED or the word ALLOWED.

The application validates the values that you enter in the first two fields. It checks that the queue name
starts with the characters CSQ4SAMP and that you entered one of the three valid requests in the Action
field. The application converts all your input to uppercase, so you cannot use any queues with names that
contain lowercase characters.

If you enter inquire in the Action field, the flow through the program logic is:

1. Open the queue using the MQOPEN call with the MQOO_INQUIRE option
2. Call MQINQ using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT
3. Close the queue using the MQCLOSE call
4. Analyze the attributes that are returned in the IntAttrs parameter of the MQINQ call and move the

words INHIBITED or ALLOWED, as appropriate, to the relevant screen fields

1144 Developing Applications for IBM MQ

If you enter inhibit in the Action field, the flow through the program logic is:

1. Open the queue using the MQOPEN call with the MQOO_SET option
2. Call MQSET using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT, and with the values

MQQA_GET_INHIBITED and MQQA_PUT_INHIBITED in the IntAttrs parameter
3. Close the queue using the MQCLOSE call
4. Move the word INHIBITED to the relevant screen fields

If you enter allow in the Action field, the application performs similar processing to that for an inhibit
request. The only differences are the settings of the attributes and the words displayed on the screen.

When the application opens the queue, it uses the default connection handle to the queue manager.
(CICS establishes a connection to the queue manager when you start your CICS system.) The application
can trap the following errors at this stage:

• The application is not connected to the queue manager
• The queue does not exist
• The user is not authorized to access the queue
• The application is not authorized to open the queue

For other MQI errors, the application displays the completion and reason codes.

The Mail Manager sample on z/OS
The Mail Manager sample application is a suite of programs that demonstrates sending and receiving
messages, both within a single environment and across different environments. The application is a
simple electronic mailing system that allows users to exchange messages, even if they use different
queue managers.

The application demonstrates how to create queues using the MQOPEN call and by putting IBM MQ for
z/OS commands on the system-command input queue.

Three versions of the application are provided:

• A CICS application written in COBOL
• A TSO application written in COBOL
• A TSO application written in C

Preparing the Mail Manager sample on z/OS
The Mail Manager is provided in versions that run in two environments. The preparation that you must
carry out before you run the application depends on the environment that you want to use.

Users can access mail queues and nickname queues from both TSO and CICS so long as their sign-on user
IDs are the same on each system.

Before you can send messages to another queue manager, you must set up a message channel to that
queue manager. To do this, use the channel control function of IBM MQ, described in Channel control
function.

Preparing the sample for the TSO environment
Follow these steps:

1. Prepare the sample as described in “Preparing sample applications for the TSO environment on z/OS”
on page 1128.

2. Tailor the CLIST provided for the sample to define:

• The location of the panels
• The location of the message file
• The location of the load modules

Developing applications for IBM MQ 1145

• The name of the queue manager that you want to use with the application

A separate CLIST is provided for each language version of the sample:

• For the COBOL version: CSQ4RVD1
• For the C version: CSQ4RCD1

3. Ensure that the queues used by the application are available on the queue manager. (The queues are
defined in CSQ4CVD.)

Note: VS COBOL II does not support multitasking with ISPF. This means that you cannot use the Mail
Manager sample application on both sides of a split screen. If you do, the results are unpredictable.

Running the Mail Manager sample on z/OS
To start the sample in the CICS Transaction Server for z/OS environment, run transaction MAIL. If you
have not already signed on to CICS, the application prompts you to enter a user ID to which it can send
your mail.

When you start the application, it opens your mail queue. If this queue does not exist, the application
creates one for you. Mail queues have names of the form CSQ4SAMP.MAILMGR. userid, where userid
depends on the environment:
In TSO

The user's TSO ID
In CICS

The user's CICS sign-on or the user ID entered by the user when prompted when the Mail Manager
started

All parts of the queue names that the Mail Manager uses must be uppercase.

The application then presents a menu panel that has options for:

• Read incoming mail
• Send mail
• Create nickname

The menu panel also shows you how many messages are waiting on your mail queue. Each of the menu
options displays a further panel:
Read incoming mail

The Mail Manager displays a list of the messages that are on your mail queue. (Only the first 99
messages on the queue are displayed.) For an example of this panel, see Figure 142 on page 1150.
When you select a message from this list, the contents of the message are displayed (see Figure 143
on page 1151).

Send mail
A panel prompts you to enter:

• The name of the user to whom you want to send a message
• The name of the queue manager that owns their mail queue
• The text of your message

In the user name field, you can enter either a user ID or a nickname that you created using the Mail
Manager. You can leave the queue manager name field blank if the user's mail queue is owned by the
same queue manager that you are using, and you must leave it blank if you entered a nickname in the
user name field:

• If you specify only a user name, the program first assumes that the name is a nickname, and sends
the message to the object defined by that name. If there is no such nickname, the program attempts
to send the message to a local queue of that name.

• If you specify both a user name and a queue manager name, the program sends the message to the
mail queue that is defined by those two names.

1146 Developing Applications for IBM MQ

For example, if you want to send a message to user JONESM on remote queue manager QM12, you
could send them a message in either of two ways:

• Use both fields to specify user JONESM at queue manager QM12.
• Define a nickname (for example, MARY) for that user and send them a message by putting MARY in

the user name field and nothing in the queue manager name field.

Create nickname
You can define an easy-to-remember name that you can use when you send a message to another
user who you contact frequently. You are prompted to enter the user ID of the other user and the
name of the queue manager that owns their mail queue.

Nicknames are queues that have names of the form CSQ4SAMP.MAILMGR. userid.nickname, where
userid is your own user ID and nickname is the nickname that you want to use. With names structured
in this way, users can each have their own set of nicknames.

The type of queue that the program creates depends on how you complete the fields of the Create
Nickname panel:

• If you specify only a user name, or the queue manager name is the same as that of the queue
manager to which the Mail Manager is connected, the program creates an alias queue.

• If you specify both a user name and a queue manager name (and the queue manager is not the one
to which the Mail Manager is connected), the program creates a local definition of a remote queue.
The program does not check the existence of the queue to which this definition resolves, or even
that the remote queue manager exists.

For example, if your own user ID is SMITHK and you create a nickname called MARY for user
JONESM (who uses the remote queue manager QM12), the nickname program creates a local
definition of a remote queue named CSQ4SAMP.MAILMGR.SMITHK.MARY. This definition resolves
to Mary's mail queue, which is CSQ4SAMP.MAILMGR.JONESM at queue manager QM12. If you are
using queue manager QM12 yourself, the program instead creates an alias queue of the same name
(CSQ4SAMP.MAILMGR.SMITHK.MARY).

The C version of the TSO application makes greater use of ISPF's message-handling capabilities than
does the COBOL version. You might notice that different error messages are displayed by the C and
COBOL versions.

Design of the Mail Manager sample on z/OS
The following sections describe each of the programs that make up the Mail Manager sample application.

The relationships between the programs and the panels that the application uses is shown in Figure 140
on page 1148 for the TSO version, and Figure 141 on page 1149 for the CICS Transaction Server for z/OS
version.

Developing applications for IBM MQ 1147

Figure 140. Programs and panels for the TSO versions of the Mail Manager

1148 Developing Applications for IBM MQ

Figure 141. Programs and panels for the CICS version of the Mail Manager

Menu program on z/OS
In the TSO environment, the menu program is invoked by the CLIST. In the CICS environment, the
program is invoked by transaction MAIL.

The menu program (CSQ4TVD1 for TSO, CSQ4CVD1 for CICS) is the initial program in the suite. It displays
the menu (CSQ4VDP1 for TSO, VD1 for CICS) and invokes the other programs when they are selected
from the menu.

The program first obtains the user's ID:

• In the CICS version of the program, if the user has signed on to CICS, the user ID is obtained by using
the CICS command ASSIGN USERID. If the user has not signed on, the program displays the sign on
panel (CSQ4VD0) to prompt the user to enter a user ID. There is no security processing within this
program; the user can give any user ID.

• In the TSO version, the user's ID is obtained from TSO in the CLIST. It is passed to the menu program as
a variable in the ISPF shared pool.

After the program has obtained the user ID, it checks to ensure that the user has a mail queue
(CSQ4SAMP.MAILMGR. userid). If a mail queue does not exist, the program creates one by putting a
message on the system-command input queue. The message contains the IBM MQ for z/OS command
DEFINE QLOCAL. The object definition that this command uses sets the maximum depth of the queue to
9999 messages.

Developing applications for IBM MQ 1149

The program also creates a temporary dynamic queue to handle replies from the system-command input
queue. To do this, the program uses the MQOPEN call, specifying the SYSTEM.DEFAULT.MODEL.QUEUE as
the template for the dynamic queue. The queue manager creates the temporary dynamic queue with a
name that has the prefix CSQ4SAMP; the remainder of the name is generated by the queue manager.

The program then opens the user's mail queue and finds the number of messages on the queue by
inquiring about the current depth of the queue. To do this, the program uses the MQINQ call, specifying
the MQIA_CURRENT_Q_DEPTH selector.

The program then performs a loop that displays the menu and processes the selection that the user
makes. The loop is stopped when the user presses the PF3 key. When a valid selection is made, the
appropriate program is started; otherwise an error message is displayed.

Get-mail and display-message programs on z/OS
In the TSO versions of the application, the get-mail and display-message functions are performed by the
same program (CSQ4TVD2). In the CICS version of the application, these functions are performed by
separate programs (CSQ4CVD2 and CSQ4CVD3).

The Mail Awaiting panel (CSQ4VDP2 for TSO, VD2 for CICS ; see Figure 142 on page 1150 for an example)
shows all the messages that are on the user's mail queue. To create this list, the program uses the MQGET
call to browse all the messages on the queue, saving information about each one. In addition to the
information displayed, the program records the MsgId and CorrelId of each message.

--------------------- IBM MQ for z/OS Sample Programs ------- ROW 16 OF 29
COMMAND ==> Scroll ===> PAGE
USERID - NTSFV02
Mail Manager System QMGR - VC4
Mail Awaiting

Msg Mail Date Time
No From Sent Sent
16
16 Deleted
17 JOHNJ 01/06/1993 12:52:02
18 JOHNJ 01/06/1993 12:52:02
19 JOHNJ 01/06/1993 12:52:03
20 JOHNJ 01/06/1993 12:52:03
21 JOHNJ 01/06/1993 12:52:03
22 JOHNJ 01/06/1993 12:52:04
23 JOHNJ 01/06/1993 12:52:04
24 JOHNJ 01/06/1993 12:52:04
25 JOHNJ 01/06/1993 12:52:05
26 JOHNJ 01/06/1993 12:52:05
27 JOHNJ 01/06/1993 12:52:05
28 JOHNJ 01/06/1993 12:52:06
29 JOHNJ 01/06/1993 12:52:06

Figure 142. Example of a panel showing a list of waiting messages

From the Mail Awaiting panel the user can select one message and display the contents of the message
(see Figure 143 on page 1151 for an example). The program uses the MQGET call to remove this
message from the queue, using the MsgId and CorrelId that the program noted when it browsed all the
messages. This MQGET call is performed using the MQGMO_SYNCPOINT option. The program displays
the contents of the message, then declares a syncpoint: this commits the MQGET call, so the message
now no longer exists.

1150 Developing Applications for IBM MQ

--------------------- IBM MQ for z/OS Sample Programs ---------------------
COMMAND ==>
USERID - NTSFV02
Mail Manager System QMGR - VC4
Received Mail

Mail sent from JOHNJ at VC4

Sent on the 01/06/1993 at 12:52:02
------------------------------------ Message -------------------------------
| HELLO FROM JOHNJ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
'--'

Figure 143. Example of a panel showing the contents of a message

An obvious extension to the function provided by the Mail Manager is to give the user the option to leave
the message on the queue after viewing its contents. To do this, you would have to back out the MQGET
call that removes the message from the queue, after displaying the message.

Send-mail program on z/OS
When the user has completed the Send Mail panel (CSQ4VDP4 for TSO, VD4 for CICS), the send-mail
program (CSQ4TVD4 for TSO, CSQ4CVD4 for CICS) puts the message on the receiver's mail queue.

To do this, the program uses the MQPUT1 call. The destination of the message depends on how the user
has filled the fields in the Send Mail panel:

• If the user has specified only a user name, the program first assumes that the name is a nickname,
and sends the message to the object defined by that name. If there is no such nickname, the program
attempts to send the message to a local queue of that name.

• If the user has specified both a user name and a queue manager name, the program sends the message
to the mail queue that is defined by those two names.

The program does not accept blank messages, and it removes leading blanks from each line of the
message text.

If the MQPUT1 call is successful, the program displays a message that shows that the user name and
queue manager name to which the message was put. If the call is unsuccessful, the program checks
specifically for the reason codes that indicate the queue or the queue manager do not exist; these
are MQRC_UNKNOWN_OBJECT_NAME and MQRC_UNKNOWN_OBJECT_Q_MGR. The program displays its
own error message for each of these errors; for other errors, the program displays the completion and
reason codes returned by the call.

Nickname program on z/OS
When the user defines a nickname, the nickname program (CSQ4TVD5 for TSO, CSQ4CVD5 for CICS)
creates a queue that has the nickname as part of its name.

The program does this by putting a message on the system-command input queue. The message contains
the IBM MQ for z/OS command DEFINE QALIAS or DEFINE QREMOTE. The type of queue that the
program creates depends on how the user has filled the fields of the Create Nickname panel (CSQ4VDP5
for TSO, VD5 for CICS):

• If the user has specified only a user name, or the queue manager name is the same as that of the queue
manager to which the Mail Manager is connected, the program creates an alias queue.

Developing applications for IBM MQ 1151

• If the user has specified both a user name and a queue manager name (and the queue manager is not
the one to which the Mail Manager is connected), the program creates a local definition of a remote
queue. The program does not check the existence of the queue to which this definition resolves, or even
that the remote queue manager exists.

The program also creates a temporary dynamic queue to handle replies from the system-command input
queue.

If the queue manager cannot create the nickname queue for a reason that the program expects (for
example, the queue already exists), the program displays its own error message. If the queue manager
cannot create the queue for a reason that the program does not expect, the program displays up to two of
the error messages that are returned to the program by the command server.

Note: For each nickname, the nickname program creates only an alias queue or a local definition of a
remote queue. The local queues to which these queue names resolve are created only when the user ID
that is contained in the nickname is used to start the Mail Manager application.

The Credit Check sample on z/OS
The Credit Check sample application is a suite of programs that demonstrates how to use many of the
features provided by IBM MQ for z/OS. It shows how the many component programs of an application can
pass messages to each other using message queuing techniques.

The sample can run as a stand-alone CICS application. However, to demonstrate how to design a message
queuing application that uses the facilities provided by both the CICS and IMS environments, one module
is also supplied as an IMS batch message processing program. This extension to the sample is described
in “The IMS extension to the Credit Check sample on z/OS” on page 1162.

You can also run the sample on more than one queue manager, and send messages between each
instance of the application. To do so, see “The Credit Check sample with multiple queue managers on
z/OS” on page 1161.

The CICS programs are delivered in C and COBOL. The single IMS program is delivered only in C. The
supplied data sets are shown in Table 182 on page 1132 and Table 184 on page 1134.

The application demonstrates a method of assessing the risk when bank customers ask for loans. The
application shows how a bank could work in two ways to process loan requests:

• When dealing directly with a customer, bank staff want immediate access to account and credit-risk
information.

• When dealing with written applications, bank staff can submit a series of requests for account and
credit-risk information, and deal with the replies at a later time.

The financial and security details in the application have been kept simple so that the message queuing
techniques are clear.

Preparing and running the Credit Check sample on z/OS

To prepare and run the Credit Check sample, perform the following steps:

1. Create the VSAM data set that holds information about some example accounts. Do this by editing and
running the JCL supplied in data set CSQ4FILE.

2. Perform the steps in “Preparing the sample applications for the CICS environment on z/OS” on page
1130. (The additional steps that you must perform if you want to use the IMS extension to the sample
are described in “The IMS extension to the Credit Check sample on z/OS” on page 1162.)

3. Start the CKTI trigger monitor (supplied with IBM MQ for z/OS) against queue
CSQ4SAMP.INITIATION.QUEUE, using the CICS transaction CKQC.

4. To start the application, start your CICS system and use the transaction MVB1.
5. Select Immediate or Batch inquiry from the first panel.

The immediate and batch inquiry panels are similar; Figure 144 on page 1153 shows the Immediate
Inquiry panel.

1152 Developing Applications for IBM MQ

CSQ4VB2 IBM MQ for z/OS Sample Programs

Credit Check - Immediate Inquiry

Specify details of the request, then press Enter.
Name ____________________
Social security number ___ __ ____
Bank account name . . ______________________________
Account number __________
Amount requested . . . 012345
Response from CHECKING ACCOUNT for name : ____________________
Account information not found
Credit worthiness index - NOT KNOWN
..
..
..
..
..
..
..
..
..
MESSAGE LINE
F1=Help F3=Exit F5=Make another inquiry

Figure 144. Immediate Inquiry panel for the Credit Check sample application
6. Enter an account number and loan amount in the appropriate fields. See “Entering information in the

inquiry panels” on page 1153 for guidance on what information to enter in these fields.

Entering information in the inquiry panels
The Credit Check sample application checks that the data you enter in the Amount requested field of the
inquiry panels is in the form of integers.

If you enter one of the following account numbers, the application finds the appropriate account name,
average account balance, and credit worthiness index in the VSAM data set CSQ4BAQ:

• 2222222222
• 3111234329
• 3256478962
• 3333333333
• 3501676212
• 3696879656
• 4444444444
• 5555555555
• 6666666666
• 7777777777

You can enter any, or no, information in the other fields. The application retains any information that you
enter and returns the same information in the reports that it generates.

Design of the Credit Check sample on z/OS
This section describes the design of each of the programs that make up the Credit Check sample
application.

For more information about of some of the techniques that were considered during the design of the
application, see “Design considerations for the Credit check sample on z/OS” on page 1159.

Figure 145 on page 1154 shows the programs that make up the application, and also the queues that
these programs serve. In this figure, the prefix CSQ4SAMP has been omitted from all the queue names to
make the figure easier to understand.

Developing applications for IBM MQ 1153

Figure 145. Programs and queues for the Credit Check sample application (COBOL programs only)

1154 Developing Applications for IBM MQ

User interface program (CSQ4CVB1) on z/OS
When you start the conversational-mode CICS transaction MVB1, this starts the user interface program
for the application.

This program puts inquiry messages on queue CSQ4SAMP.B2.INQUIRY and gets replies to those inquiries
from a reply-to queue that it specifies when it makes the inquiry. From the user interface you can submit
either immediate or batch inquiries:

• For immediate inquiries, the program creates a temporary dynamic queue that it uses as a reply-to
queue. This means that each inquiry has its own reply-to queue.

• For batch inquiries, the user-interface program gets replies from the queue CSQ4SAMP.B2.RESPONSE.
For simplicity, the program gets replies for all its inquiries from this one reply-to queue. It is easy to see
that a bank might want to use a separate reply-to queue for each user of MVB1, so that they could each
see replies to only those inquiries that they had initiated.

Important differences between the properties of messages used in the application when in batch and
immediate mode are:

• For batch working, the messages have a low priority, so they are processed after any loan requests
that are entered in immediate mode. Also, the messages are persistent, so they are recovered if the
application or the queue manager has to restart.

• For immediate working, the messages have a high priority, so they are processed before any loan
requests that are entered in batch mode. Also, messages are not persistent so they are discarded if the
application or the queue manager has to restart.

However, in all cases, the properties of loan request messages are propagated throughout the application.
So, for example, all messages that result from a high-priority request will also have a high priority.

Credit application manager (CSQ4CVB2) on z/OS
The Credit Application Manager (CAM) program performs most of the processing for the Credit Check
application.

The CAM is started by the CKTI trigger monitor (supplied with IBM MQ for z/OS) when a trigger event
occurs on either queue CSQ4SAMP.B2.INQUIRY or queue CSQ4SAMP.B2.REPLY. n, where n is an integer
that identifies one of a set of reply queues. The trigger message contains data that includes the name of
the queue on which the trigger event occurred.

The CAM uses queues with names of the form CSQ4SAMP.B2.WAITING.n to store information about
inquiries that it is processing. The queues are named so that they are each paired with a reply-to
queue; for example, queue CSQ4SAMP.B2.WAITING.3 contains the input data for a particular inquiry, and
queue CSQ4SAMP.B2.REPLY.3 contains a set of reply messages (from programs that query databases) all
relating to that same inquiry. To understand the reasons behind this design, see “Separate inquiry and
reply queues in the CAM” on page 1159.

Startup logic
If the trigger event occurs on queue CSQ4SAMP.B2.INQUIRY, the CAM opens the queue for shared
access. It then tries to open each reply queue until a free one is found. If it cannot find a free reply queue,
the CAM logs the fact and terminates normally.

If the trigger event occurs on queue CSQ4SAMP.B2.REPLY.n, the CAM opens the queue for exclusive
access. If the return code reports that the object is already in use, the CAM terminates normally. If any
other error occurs, the CAM logs the error and terminates. The CAM opens the corresponding waiting
queue and the inquiry queue, then starts getting and processing messages. From the waiting queue, the
CAM recovers details of partially-completed inquiries.

For the sake of simplicity in this sample, the names of the queues used are held in the program. In a
business environment, the queue names would probably be held in a file accessed by the program.

Developing applications for IBM MQ 1155

Getting a message from the enquiry queue
The CAM first attempts to get a message from the inquiry queue using the MQGET call with the
MQGMO_SET_SIGNAL option. If a message is available immediately, the message is processed; if no
message is available, a signal is set.

The CAM then attempts to get a message from the reply queue, again using the MQGET call with the same
option. If a message is available immediately, the message is processed; otherwise a signal is set.

When both signals are set, the program waits until one of the signals is posted. If a signal is posted to
indicate that a message is available, the message is retrieved and processed. If the signal expires or the
queue manager is terminating, the program terminates.

Processing the message retrieved by the CAM
A message retrieved by the CAM can be one of four types:

• An inquiry message
• A reply message
• A propagation message
• An unexpected or unwanted message

The CAM processes these messages as described in “Processing the message retrieved by the CAM on
z/OS” on page 1156.

Sending an answer
When the CAM has received all the replies it is expecting for an inquiry, it processes the replies and
creates a single response message. It consolidates into one message all the data from all reply messages
that have the same CorrelId. This response is put on the reply-to queue specified in the original loan
request. The response message is put within the same unit of work that contains the retrieval of the final
reply message. This is to simplify recovery by ensuring that there is never a completed message on queue
CSQ4SAMP.B2.WAITING.n.

Recovery of partially-completed inquiries
The CAM copies onto queue CSQ4SAMP.B2.WAITING.n all the messages that it receives. It sets the fields
of the message descriptor like this:

• Priority is determined by the type of message:

– For request messages, priority = 3
– For datagrams, priority = 2
– For reply messages, priority = 1

• CorrelId is set to the MsgId of the loan request message
• Other MQMD fields are copied from those of the received message

When an inquiry has been completed, the messages for a specific inquiry are removed from the waiting
queue during answer processing. Therefore, at any time, the waiting queue contains all messages relevant
to in-progress inquiries. These messages are used to recover details of in-progress inquiries if the
program has to restart. The different priorities are set so that inquiry messages are recovered before
propagations or reply messages.

Processing the message retrieved by the CAM on z/OS
A message retrieved by the Credit Application Manager (CAM) can be one of four types. The way in which
the CAM processes a message depends on its type.

A message retrieved by the CAM can be one of four types:

• An inquiry message

1156 Developing Applications for IBM MQ

• A reply message
• A propagation message
• An unexpected or unwanted message

The CAM processes these messages as follows:

Inquiry message
Inquiry messages come from the user interface program. It creates an inquiry message for each loan
request.

For all loan requests, the CAM requests the average balance of the customer's checking account.
It does this by putting a request message on alias queue CSQ4SAMP.B2.OUTPUT.ALIAS. This queue
name resolves to queue CSQ4SAMP.B3.MESSAGES, which is processed by the checking-account
program, CSQ4CVB3. When the CAM puts a message on this alias queue, it specifies the appropriate
CSQ4SAMP.B2.REPLY.n queue for the reply-to queue. An alias queue is used here so that program
CSQ4CVB3 can easily be replaced by another program that processes a base queue of a different
name. To do this, you redefine the alias queue so that its name resolves to the new queue. Also, you
could assign differing access authorities to the alias queue and to the base queue.

If a user requests a loan that is larger than 10000 units, the CAM initiates checks on other databases
as well. It does this by putting a request message on queue CSQ4SAMP.B4.MESSAGES, which is
processed by the distribution program, CSQ4CVB4. The process serving this queue propagates the
message to queues served by programs that have access to other records such as credit card history,
savings accounts, and mortgage payments. The data from these programs is returned to the reply-to
queue specified in the put operation. Additionally, a propagation message is sent to the reply-to
queue by this program to specify how many propagation messages have been sent.

In a business environment, the distribution program would probably reformat the data provided to
match the format required by each of the other types of bank account.

Any of the queues referred to can be on a remote system.

For each inquiry message, the CAM initiates an entry in the memory-resident Inquiry Record Table
(IRT). This record contains:

• The MsgId of the inquiry message
• In the ReplyExp field, the number of responses expected (equal to the number of messages sent)
• In the ReplyRec field, the number of replies received (zero at this stage)
• In the PropsOut field, an indication of whether a propagation message is expected

The CAM copies the inquiry message onto the waiting queue with:

• Priority set to 3
• CorrelId set to the MsgId of the inquiry message
• The other message-descriptor fields set to those of the inquiry message

Propagation message
A propagation message contains the number of queues to which the distribution program has
forwarded the inquiry. The message is processed as follows:

1. Add to the ReplyExp field of the appropriate record in the IRT the number of messages sent. This
information is in the message.

2. Increment by 1 the ReplyRec field of the record in the IRT.
3. Decrement by 1 the PropsOut field of the record in the IRT.
4. Copy the message onto the waiting queue. The CAM sets the Priority to 2 and the other fields of

the message descriptor to those of the propagation message.

Reply message
A reply message contains the response to one of the requests to the checking-account program or to
one of the agency-query programs. Reply messages are processed as follows:

Developing applications for IBM MQ 1157

1. Increment by 1 the ReplyRec field of the record in the IRT.
2. Copy the message onto the waiting queue with Priority set to 1 and the other fields of the

message descriptor set to those of the reply message.
3. If ReplyRec = ReplyExp, and PropsOut = 0, set the MsgComplete flag.

Other messages
The application does not expect other messages. However, the application might receive messages
broadcast by the system, or reply messages with a unknown CorrelIds.

The CAM puts these messages on queue CSQ4SAMP.DEAD.QUEUE, where they can be examined. If
this put operation fails, the message is lost and the program continues. For more information about
the design of this part of the program, see “How the sample handles unexpected messages” on page
1160.

Checking-account program (CSQ4CVB3) on z/OS
The checking-account program is started by a trigger event on queue CSQ4SAMP.B3.MESSAGES. After it
has opened the queue, this program gets a message from the queue using the MQGET call with the wait
option, and with the wait interval set to 30 seconds.

The program searches VSAM data set CSQ4BAQ for the account number in the loan request message. It
retrieves the corresponding account name, average balance, and credit worthiness index, or notes that
the account number is not in the data set.

The program then puts a reply message (using the MQPUT1 call) on the reply-to queue named in the loan
request message. For this reply message, the program:

• Copies the CorrelId of the loan request message
• Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program continues to get messages from the queue until the wait interval expires.

Distribution program (CSQ4CVB4) on z/OS
The distribution program is started by a trigger event on queue CSQ4SAMP.B4.MESSAGES.

To simulate the distribution of the loan request to other agencies that have access to records such as
credit card history, savings accounts, and mortgage payments, the program puts a copy of the same
message on all the queues in the namelist CSQ4SAMP.B4.NAMELIST. There are three of these queues,
with names of the form CSQ4SAMP.B n.MESSAGES, where n is 5, 6, or 7. In a business application, the
agencies could be at separate locations, so these queues could be remote queues. If you want to modify
the sample application to show this, see “The Credit Check sample with multiple queue managers on
z/OS” on page 1161.

The distribution program performs the following steps:

1. From the namelist, gets the names of the queues that the program is to use. The program does this by
using the MQINQ call to inquire about the attributes of the namelist object.

2. Opens these queues and also CSQ4SAMP.B4.MESSAGES.
3. Performs the following loop until there are no more messages on queue CSQ4SAMP.B4.MESSAGES:

a. Get a message using the MQGET call with the wait option, and with the wait interval set to 30
seconds.

b. Put a message on each queue listed in the namelist, specifying the name of the appropriate
CSQ4SAMP.B2.REPLY.n queue for the reply-to queue. The program copies the CorrelId of the
loan request message to these copy messages, and it uses the MQPMO_PASS_IDENTITY_CONTEXT
option on the MQPUT call.

c. Send a datagram message to queue CSQ4SAMP.B2.REPLY.n to show how many messages it has
successfully put.

d. Declare a syncpoint.

1158 Developing Applications for IBM MQ

Agency-query program (CSQ4CVB5/CSQ4CCB5) on z/OS
The agency-query program is supplied as both a COBOL program and a C program. Both programs have
the same design. This shows that programs of different types can easily coexist within an IBM MQ
application, and that the program modules that make up such an application can easily be replaced.

An instance of the program is started by a trigger event on any of these queues:

• For the COBOL program (CSQ4CVB5):

– CSQ4SAMP.B5.MESSAGES
– CSQ4SAMP.B6.MESSAGES
– CSQ4SAMP.B7.MESSAGES

• For the C program (CSQ4CCB5), queue CSQ4SAMP.B8.MESSAGES

Note: If you want to use the C program, you must alter the definition of the
namelist CSQ4SAMP.B4.NAMELIST to replace the queue CSQ4SAMP.B7.MESSAGES with
CSQ4SAMP.B8.MESSAGES. To do this, you can use any one of:

• The IBM MQ for z/OS operations and control panels
• The ALTER NAMELIST command
• The CSQUTIL utility

After it has opened the appropriate queue, this program gets a message from the queue using the MQGET
call with the wait option, and with the wait interval set to 30 seconds.

The program simulates the search of an agency's database by searching the VSAM data set CSQ4BAQ for
the account number that was passed in the loan request message. It then builds a reply that includes
the name of the queue that it is serving and a creditworthiness index. To simplify the processing, the
creditworthiness index is selected at random.

When putting the reply message, the program uses the MQPUT1 call and:

• Copies the CorrelId of the loan request message
• Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program sends the reply message to the reply-to queue named in the loan request message. (The
name of the queue manager that owns the reply-to queue is also specified in the loan request message.)

Design considerations for the Credit check sample on z/OS
Design considerations for the Credit Check sample.

This topic contains information about:

• “Separate inquiry and reply queues in the CAM” on page 1159
• “How the sample handles errors” on page 1160
• “How the sample handles unexpected messages” on page 1160
• “How the sample uses syncpoints” on page 1160
• “How the sample uses message context information” on page 1161
• “Use of message and correlation identifiers in the CAM” on page 1161

Separate inquiry and reply queues in the CAM
The application could use a single queue for both inquiries and replies, but it was designed to use
separate queues for the following reasons:

• When the program is handling the maximum number of inquiries, further inquiries can be left on the
queue. If a single queue is being used, this would have to be taken off the queue and stored elsewhere.

• Other instances of the CAM could be started automatically to service the same inquiry queue if message
traffic was high enough to warrant it. But the program must track in-progress inquiries, and to do this,

Developing applications for IBM MQ 1159

it must get back all replies to inquiries it has initiated. If only one queue is used, the program would
have to browse the messages to see if they were for this program or for another. This would make the
operation much less efficient.

The application can support multiple CAMs and can recover in-progress inquiries effectively by using
paired reply-to and waiting queues.

• The program can wait on multiple queues effectively by using signaling.

How the sample handles errors
The user interface program handles errors by reporting them directly to the user.

The other programs do not have user interfaces, so they have to handle errors in other ways. Also, in many
situations (for example, if an MQGET call fails) these other programs do not know the identity of the user
of the application.

The other programs put error messages on a CICS temporary storage queue called CSQ4SAMP. You can
browse this queue using the CICS-supplied transaction CEBR. The programs also write error messages to
the CICS CSML log.

How the sample handles unexpected messages
When you design a message-queuing application, you must decide how to handle messages that arrive on
a queue unexpectedly.

The two basic choices are:

• The application does no more work until it has processed the unexpected message. This probably
means that the application notifies an operator, terminates itself, and ensures that it is not restarted
automatically (it can do this by setting triggering off). This choice means that all processing for the
application can be halted by a single unexpected message, and the intervention of an operator is
required to restart the application.

• The application removes the message from the queue it is serving, puts the message in another
location, and continues processing. The best place to put this message is on the system dead-letter
queue.

If you choose the second option:

• An operator, or another program, should examine the messages that are put on the dead-letter queue to
find out where the messages are coming from.

• An unexpected message is lost if it cannot be put on the dead-letter queue.
• A long unexpected message is truncated if it is longer than the limit for messages on the dead-letter

queue, or longer than the buffer size in the program.

To ensure that the application smoothly handles all inquiries with minimal effect from outside activities,
the Credit Check sample application uses the second option. To allow you to keep the sample separate
from other applications that use the same queue manager, the Credit Check sample does not use
the system dead-letter queue; instead, it uses its own dead-letter queue. This queue is named
CSQ4SAMP.DEAD.QUEUE. The sample truncates any messages that are longer than the buffer area
provided for the sample programs. You can use the Browse sample application to browse messages
on this queue, or use the Print Message sample application to print the messages together with their
message descriptors.

However, if you extend the sample to run across more than one queue manager, unexpected messages, or
messages that cannot be delivered, could be put on the system dead-letter queue by the queue manager.

How the sample uses syncpoints
The programs in the Credit Check sample application declare syncpoints to ensure that:

• Only one reply message is sent in response to each expected message

1160 Developing Applications for IBM MQ

• Multiple copies of unexpected messages are never put on the sample's dead-letter queue
• The CAM can recover the state of all partially completed inquiries by getting persistent messages from

its waiting queue

To achieve this, a single unit of work is used to cover the getting of a message, the processing of that
message, and any subsequent put operations.

How the sample uses message context information
When the user interface program (CSQ4CVB1) sends messages, it uses the MQPMO_DEFAULT_CONTEXT
option. This means that the queue manager generates both identity and origin context information. The
queue manager gets this information from the transaction that started the program (MVB1) and from the
user ID that started the transaction.

When the CAM sends inquiry messages, it uses the MQPMO_PASS_IDENTITY_CONTEXT option. This
means that the identity context information of the message being put is copied from the identity context
of the original inquiry message. With this option, origin context information is generated by the queue
manager.

When the CAM sends reply messages, it uses the MQPMO_ALTERNATE_USER_AUTHORITY option. This
causes the queue manager to use an alternate user ID for its security check when the CAM opens a
reply-to queue. The CAM uses the user ID of the submitter of the original inquiry message. This means
that users are allowed to see replies to only those inquiries that they have originated. The alternate user
ID is obtained from the identity context information in the message descriptor of the original inquiry
message.

When the query programs (CSQ4CVB3/4/5) send reply messages, they use the
MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity context information of the
message being put is copied from the identity context of the original inquiry message. With this option,
origin context information is generated by the queue manager.

Note: The user ID associated with the MVB3/4/5 transactions requires access to the B2.REPLY.n
queues. These user IDs might not be the same as those associated with the request being
processed. To get around this possible security exposure, the query programs could use the
MQPMO_ALTERNATE_USER_AUTHORITY option when putting their replies. This would mean that each
individual user of MVB1 needs authority to open the B2.REPLY.n queues.

Use of message and correlation identifiers in the CAM
The application has to monitor the progress of all the live inquiries it is processing at any one time. To do
this it uses the unique message identifier of each loan request message to associate all the information
that it has about each inquiry.

The CAM copies the MsgId of the inquiry message into the CorrelId of all the request messages it
sends for that inquiry. The other programs in the sample (CSQ4CVB3 - 5) copy the CorrelId of each
message that they receive into the CorrelId of their reply message.

The Credit Check sample with multiple queue managers on z/OS
You can use the Credit Check sample application to demonstrate distributed queuing by installing the
sample on two queue managers and CICS systems (with each queue manager connected to a different
CICS system).

When the sample program is installed, and the trigger monitor (CKTI) is running on each system, you need
to:

1. Set up the communication link between the two queue managers. For information on how to do this,
see Configuring distributed queuing.

2. On one queue manager, create a local definition for each of the remote queues (on the other queue
manager) that you want to use. These queues can be any of CSQ4SAMP.B n.MESSAGES, where n
is 3, 5, 6, or 7. (These are the queues that are served by the checking-account program and the
agency-query program.) For information on how to do this, see DEFINE QREMOTE and DEFINE queues.

Developing applications for IBM MQ 1161

3. Change the definition of the namelist (CSQ4SAMP.B4.NAMELIST) so that it contains the names of the
remote queues that you want to use. For information on how to do this, see DEFINE NAMELIST.

The IMS extension to the Credit Check sample on z/OS
A version of the checking-account program is supplied as an IMS batch message processing (BMP)
program. It is written in the C language.

The program performs the same function as the CICS version, except that to obtain the account
information, the program reads an IMS database instead of a VSAM file. If you replace the CICS version
of the checking-account program with the IMS version, you see no difference in the method of using the
application.

To prepare and run the IMS version you must:

1. Follow the steps in “Preparing and running the Credit Check sample on z/OS” on page 1152.
2. Follow the steps in “Preparing the sample application for the IMS environment on z/OS” on page 1133.
3. Alter the definition of the alias queue CSQ4SAMP.B2.OUTPUT.ALIAS to resolve to queue

CSQ4SAMP.B3.IMS.MESSAGES (instead of CSQ4SAMP.B3.MESSAGES). To do this, you can use one
of:

• The IBM MQ for z/OS operations and control panels
• The ALTER QALIAS command .

Another way of using the IMS checking-account program is to make it serve one of the queues that
receives messages from the distribution program. In the delivered form of the Credit Check sample
application, there are three of these queues (B5/6/7.MESSAGES), all served by the agency-query
program. This program searches a VSAM data set. To compare the use of the VSAM data set and the
IMS database, you could make the IMS checking-account program serve one of these queues instead.
To do this, you must alter the definition of the namelist CSQ4SAMP.B4.NAMELIST to replace one of the
CSQ4SAMP.B n.MESSAGES queues with the CSQ4SAMP.B3.IMS.MESSAGES queue. You can use one of:

• The IBM MQ for z/OS operations and control panels
• The ALTER NAMELIST command.

You can then run the sample from CICS transaction MVB1. The user sees no difference in operation
or response. The IMS BMP stops either after receiving a stop message or after being inactive for five
minutes.

Design of the IMS checking-account program (CSQ4ICB3)
This program runs as a BMP. Start the program using its JCL before any IBM MQ messages are sent to it.

The program searches an IMS database for the account number in the loan request messages. It retrieves
the corresponding account name, average balance, and credit worthiness index.

The program sends the results of the database search to the reply-to queue named in the IBM MQ
message being processed. The message returned appends the account type and the results of the search
to the message received so that the transaction building the response can confirm that the correct query
is being processed. The message is in the form of three 79-character groups, as follows:

'Response from CHECKING ACCOUNT for name : JONES J B'
' Opened 870530, 3-month average balance = 000012.57'
' Credit worthiness index - BBB'

When running as a message-oriented BMP, the program drains the IMS message queue, then reads
messages from the IBM MQ for z/OS queue and processes them. No information is received from the
IMS message queue. The program reconnects to the queue manager after each checkpoint because the
handles have been closed.

When running in a batch-oriented BMP, the program continues to be connected to the queue manager
after each checkpoint because the handles are not closed.

1162 Developing Applications for IBM MQ

The Message Handler sample on z/OS
The Message Handler sample TSO application allows you to browse, forward, and delete messages on a
queue. The sample is available in C and COBOL.

Preparing and running the sample
Follow these steps:

1. Prepare the sample as described in “Preparing sample applications for the TSO environment on z/OS”
on page 1128.

2. Tailor the CLIST (CSQ4RCH1) provided for the sample to define the location of the panels, the location
of the message file, and the location of the load modules.

You can use CLIST CSQ4RCH1 to run both the C and the COBOL version of the sample. The supplied
version of CSQ4RCH1 runs the C version, and contains instructions on the tailoring necessary for the
COBOL version.

Note:

1. There are no sample queue definitions provided with the sample.
2. VS COBOL II does not support multitasking with ISPF, so do not use the Message Handler sample

application on both sides of a split screen. If you do, the results are unpredictable.

Using the Message Handler sample on z/OS

Having installed the sample and invoked it from the tailored CLIST CSQ4RCH1, the screen shown in Figure
146 on page 1163 is displayed.

----------------------- IBM MQ for z/OS -- Samples ------------------------
COMMAND ===>
User Id : JOHNJ

Enter information. Press ENTER :

Queue Manager Name : __ :

Queue Name : __ :

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 146. Initial screen for Message Handler sample

Enter the queue manager and queue name to be viewed (case sensitive) and the message list screen is
displayed (see Figure 147 on page 1164).

Developing applications for IBM MQ 1163

----------------------- IBM MQ for z/OS -- Samples ------- Row 1 to 4 of 4
COMMAND ==>

Queue Manager : VM03 :
Queue : MQEI.IMS.BRIDGE.QUEUE :

Message number 01 of 04

Msg Put Date Put Time Format User Put Application
No MM/DD/YYYY HH:MM:SS Name Identifier Type Name
01 10/16/1998 13:51:19 MQIMS NTSFV02 00000002 NTSFV02A
02 10/16/1998 13:55:45 MQIMS JOHNJ 00000011 EDIT\CLASSES\BIN\PROGTS
03 10/16/1998 13:54:01 MQIMS NTSFV02 00000002 NTSFV02B
04 10/16/1998 13:57:22 MQIMS johnj 00000011 EDIT\CLASSES\BIN\PROGTS
******************************* Bottom of data ********************************

Figure 147. Message list screen for Message Handler sample

This screen shows the first 99 messages on the queue and, for each, shows the following fields:
Msg No

Message number
Put Date MM/DD/YYYY

Date that the message was put on the queue (GMT)
Put Time HH:MM:SS

Time that the message was put on the queue (GMT)
Format Name

MQMD.Format field
User Identifier

MQMD.UserIdentifier field
Put Application Type

MQMD.PutApplType field
Put Application Name

MQMD.PutApplName field

The total number of messages on the queue is also displayed.

From this screen a message can be chosen, by number not by cursor position, and then displayed. For an
example, see Figure 148 on page 1165.

1164 Developing Applications for IBM MQ

----------------------- IBM MQ for z/OS -- Samples ----- Row 1 to 35 of 35
COMMAND ==>

Queue Manager : VM03 :
Queue : MQEI.IMS.BRIDGE.QUEUE :
Forward to Q Mgr : VM03 :
Forward to Queue : QL.TEST.ISCRES1 :

Action : _ : (D)elete (F)orward

Message Content :

Message Descriptor
StrucId : `MD `
Version : 000000001
Report : 000000000
MsgType : 000000001
Expiry : -00000001
Feedback : 000000000
Encoding : 000000785
CodedCharSetId : 000000500
Format : `MQIMS `
Priority : 000000000
Persistence : 000000001
MsgId : `C3E2D840E5D4F0F34040404040404040AF6B30F0A89B7605`X
CorrelId : `00`X
BackoutCount : 000000000
ReplyToQ : `QL.TEST.ISCRES1 `
ReplyToQMgr : `VM03 `
UserIdentifier : `NTSFV02 `
AccountingToken :
`06F2F5F5F3F0F100`X
ApplIdentityData : ` `
PutApplType : 000000002
PutApplName : `NTSFV02A `
PutDate : `19971016`
PutTime : `13511903`
ApplOriginData : ` `

Message Buffer : 108 byte(s)
00000000 : C9C9 C840 0000 0001 0000 0054 0000 0311 `IIH`
00000010 : 0000 0000 4040 4040 4040 4040 0000 0000 `.... `
00000020 : 4040 4040 4040 4040 4040 4040 4040 4040 ` `
00000030 : 4040 4040 4040 4040 4040 4040 4040 4040 ` `
00000040 : 0000 0000 0000 0000 0000 0000 0000 0000 `................`
00000050 : 40F1 C300 0018 0000 C9C1 D7D4 C4C9 F2F8 ` 1C.....IAPMDI28`
00000060 : 40C8 C5D3 D3D6 40E6 D6D9 D3C4 ` HELLO WORLD `
******************************* Bottom of data ********************************

Figure 148. Chosen message is displayed

Once the message has been displayed it can be deleted, left on the queue, or forwarded to another queue.
The Forward to Q Mgr and Forward to Queue fields are initialized with values from the MQMD,
these can be changed before forwarding the message.

The sample design allows only messages with unique MsgId / CorrelId combinations to be selected
and displayed, because the message is retrieved using the MsgId and CorrelId as the key. If the key is
not unique the sample cannot retrieve the chosen message with certainty.

Note: When you use the SCSQCLST(CSQ4RCH1) sample to browse messages, each invocation causes the
backout count of the message to increase. If you want to change the behavior of this sample, copy the
sample and modify the contents as necessary. You should be aware that other applications that rely on
this backout count can be influenced by this increasing count.

Design of the sample Message Handler sample on z/OS
This topic describes the design of each of the programs that make up the Message Handler sample
application.

Developing applications for IBM MQ 1165

Object validation program
This requests a valid queue and queue manager name.

If you do not specify a queue manager name, the default queue manager is used, if available. Only local
queues can be used; an MQINQ is issued to check that the queue type and an error is reported if the
queue is not local. If the queue is not opened successfully, or the MQGET call is inhibited on the queue,
error messages are returned indicating the CompCode and Reason return code.

Message list program
This displays a list of messages on a queue with information about them such as the putdate, puttime,
and the message format.

The maximum number of messages stored in the list is 99. If there are more messages on the queue
than this, the current queue depth is also displayed. To choose a message for display, type the message
number into the entry field (the default is 01). If your entry is not valid, you receive an appropriate error
message.

Message content program
This displays message content.

The content is formatted and split into two parts:

1. Message descriptor
2. Message buffer

The message descriptor shows the contents of each field on a separate line.

The message buffer is formatted depending on its contents. If the buffer holds a dead letter header
(MQDLH) or a transmission queue header (MQXQH), these are formatted and displayed before the buffer
itself.

Before the buffer data is formatted, a title line shows the buffer length of the message in bytes. The
maximum buffer size is 32768 bytes, and any message longer than this is truncated. The full size of the
buffer is displayed along with a message indicating that only the first 32768 bytes of the message are
displayed.

The buffer data is formatted in two ways:

1. After the offset into the buffer is printed, the buffer data is displayed in hexadecimal.
2. The buffer data is then displayed again as EBCDIC values. If any EBCDIC value cannot be printed, it

prints a period (.) instead.

You can enter D for delete, or F for forward into the action field. If you choose to forward the message, the
forward-to queue and queue manager name must be set correctly. The defaults for these fields are
read from the message descriptor ReplyToQ and ReplyToQMgr fields.

If you forward a message, any header block stored in the buffer is stripped. If the message is forwarded
successfully, it is removed from the original queue. If you enter invalid actions, error messages are
displayed.

An example help panel called CSQ4CHP9 is also available.

The Asynchronous Put sample on z/OS
The Asynchronous Put sample program puts messages on a queue using the asynchronous MQPUT call.
The sample also retrieves status information using the MQSTAT call.

The Asynchronous Put applications use these MQI calls:

• MQCONN
• MQOPEN

1166 Developing Applications for IBM MQ

• MQPUT
• MQSTAT
• MQCLOSE
• MQDISC

The sample programs are delivered in the C programming language.

The Asynchronous Put applications run in the batch environment. See Other samples for the batch
applications.

This topic also provides information about the design of the Asynchronous Consumption program, and
running the CSQ4BCS2 sample.

• “Running the CSQ4BCS2 sample” on page 1167
• “Design of the Asynchronous Put sample program” on page 1167

Running the CSQ4BCS2 sample
This sample program takes up to six parameters:

1. The name of the target queue (required).
2. The name of the queue manager (optional).
3. Open options (optional).
4. Close options (optional).
5. The name of the target queue manager (optional).
6. The name of the dynamic queue (optional).

If a queue manager is not specified, CSQ4BCS2 connects to the default queue manager. Message content
is provided through standard input (SYSIN DD).

There is a sample JCL to run the program, it resides in CSQ4BCSP.

Design of the Asynchronous Put sample program
The program uses the MQOPEN call with either the output options supplied, or with the MQOO_OUTPUT
and MQOO_FAIL_IF_QUIESCING options, to open the target queue for putting messages.

If the program cannot open the queue, the program outputs an error message containing the reason code
returned by the MQOPEN call. To keep the program simple on this and subsequent MQI calls, default
values are used for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call with
MQPMO_ASYNC_RESPONSE to create a datagram message containing the text of that line and
asynchronously puts the message on the target queue. The program continues until it reaches the end of
the input, or until the MQPUT call fails. If the program reaches the end of the input, it closes the queue
using the MQCLOSE call.

The program then issues the MQSTAT call which returns an MQSTS structure, and displays messages
containing the number of messages put successfully, the number of messages put with a warning, and the
number of failures.

Note: To observe what happens when an MQPUT error is detected by the MQSTAT call, set MAXDEPTH on
the target queue to a low value.

The Batch Asynchronous Consumption sample on z/OS
The CSQ4BCS1 sample program is delivered in C, it demonstrates the use of MQCB and MQCTL to
consume messages from multiple queues asynchronously.

The Asynchronous Consumption samples run in the batch environment. See Other samples for the batch
applications.

Developing applications for IBM MQ 1167

There is also a COBOL sample which runs in the CICS environment, see “The CICS Asynchronous
Consumption and Publish/Subscribe sample on z/OS” on page 1169.

The applications use these MQI calls:

• MQCONN
• MQOPEN
• MQCLOSE
• MQDISC
• MQCB
• MQCTL

This topic also provided information about the following headings:

• “Running the CSQ4BCS1 sample” on page 1168
• “Design of the Batch Asynchronous Consumption sample program” on page 1168

Running the CSQ4BCS1 sample
This sample program follows the following syntax:

CSQ4BCS1

-m Queue Manager Name

-0 Open options

-t Run time

Queue name
1

Notes:
1 A maximum of 10 queues are supported by this sample. Provide more than one queue name in
order to read messages from multiple queues.

There is a sample JCL to run this program, it resides in CSQ4BCSC.

Design of the Batch Asynchronous Consumption sample program
The sample shows how to read messages from multiple queues in the order of their arrival. This would
require more code using synchronous MQGET. With asynchronous consumption, no polling is required,
and thread and storage management is performed by IBM MQ. In the sample program, errors are written
to the console.

The sample code has the following steps:

1. Define the single message consumption callback function.

void MessageConsumer(MQHCONN hConn,
MQMD * pMsgDesc,
MQGMO * pGetMsgOpts,
MQBYTE * Buffer,
MQCBC * pContext)
{ ... }

2. Connect to the queue manager.

MQCONN(QMName,&Hcon,&CompCode,&CReason);

1168 Developing Applications for IBM MQ

3. Open the input queues, and associate each queue with the MessageConsumer callback function.

MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);
cbd.CallbackFunction = MessageConsumer;
MQCB(Hcon,MQOP_REGISTER,&cbd,Hobj,&md,&gmo,&CompCode,&Reason);

cbd.CallbackFunction does not need to be set for each queue; it is an input-only field. You can
associate a different callback function with each queue.

4. Start consumption of the messages.

MQCTL(Hcon,MQOP_START,&ctlo,&CompCode,&Reason);

5. Wait for the user to press Enter, then stop consumption of messages.

MQCTL(Hcon,MQOP_STOP,&ctlo,&CompCode,&Reason);

6. Finally, disconnect from the queue manager.

MQDISC(&Hcon,&CompCode,&Reason);

The CICS Asynchronous Consumption and Publish/Subscribe sample on
z/OS
The Asynchronous Consumption and Publish/Subscribe sample programs demonstrate the use of
asynchronous consumption, and publish and subscribe features within CICS.

A Registration client program registers three Callback handlers (an event handler, and two message
consumers), and starts Asynchronous Consumption. A Messaging client program puts messages to a
queue, or publishes suitable messages from a CICS console for consumption by the two Message
Consumers (CSQ4CVCN and CSQ4CVCT).

To provide runtime control over the behavior of the sample, one of the message consumers can be
instructed using the messages it receives, to SUSPEND, RESUME, or DEREGISTER any of the Callback
handlers. It can also be used to issue an MQCTL STOP to end Asynchronous Consumption under control.
The other message consumer is registered to subscribe to a topic.

Each program issues COBOL DISPLAY statements at appropriate points to display the behavior of the
sample.

The applications use these MQI calls:

• MQOPEN
• MQPUT
• MQSUB
• MQGET
• MQCLOSE
• MQCB
• MQCTL

The programs are delivered in the COBOL language. See CICS Asynchronous Consumption and Publish/
Subscribe samples for the CICS applications.

This topic also provides the following information:

• “Setup” on page 1170
• “Registration Client CSQ4CVRG” on page 1170
• “Event handler CSQ4CVEV” on page 1170
• “Simple Message Consumer CSQ4CVCN” on page 1170

Developing applications for IBM MQ 1169

• “Control Message Consumer CSQ4CVCT” on page 1170
• “Messaging Client CSQ4CVPT” on page 1170

Setup
The names of the Queue and Topic used by the Message Consumers are hardcoded in the Registration
and Messaging Client programs.

The Queue, SAMPLE.CONTROL.QUEUE, should be defined to the Queue Manager associated with the
CICS region before running the sample. The Topic, News/Media/Movies, can be defined if required, or it
is created at runtime under the default Administrative Object if it does not exist.

CICS programs and transaction definitions can be installed by installing a group: CSQ4SAMP.

Registration Client CSQ4CVRG
The Registration Client program must be started under the CICS transaction MVRG. It takes no input.

When started, the Registration Client registers the following Callback handlers using MQCB:

• CSQ4CVEV as an Event Handler.
• CSQ4CVCN as a Message Consumer on a topic, News/Media/Movies.
• CSQ4CVCT as a Message Consumer on a Queue, SAMPLE.CONTROL.QUEUE.

The Registration Client passes a data structure containing the names of all three registered Callback
handlers to CSQ4CVCT, together with the object handles associated with the two message consumers.

Having registered the Callback handlers, the Registration Client issues an MQCTL START_WAIT to start
Asynchronous Consumption, and suspend until control is returned to it (for example, by one of the
Callback handlers issuing an MQCTL STOP).

Event handler CSQ4CVEV
When driven, the Event Handler displays a message indicating the call type (for example, START). When
driven for IBM MQ reason code CONNECTION_QUIESCING, the Event Handler issues an MQCTL STOP to
end Asynchronous Consumption and return control to the Registration Client.

Simple Message Consumer CSQ4CVCN
When driven, this Message Consumer displays a message indicating the call type (for example,
REGISTER). When driven for the MSG_REMOVED call type, the Message Consumer retrieves the inbound
message and outputs it to the CICS job log.

Control Message Consumer CSQ4CVCT
When driven, this Message Consumer displays a message indicating the call type (for example, START).
When driven for the MSG_REMOVED call type, the Message Consumer retrieves the inbound message and
the data structure passed by the Registration Client. Based on the message content, it issues appropriate
MQCB or MQCTL commands to one of the following:

• STOP Asynchronous Consumption (returning control to the Registration Client).
• SUSPEND, RESUME, or DEREGISTER a named Callback handler (including itself).

Messaging Client CSQ4CVPT
The Messaging Client has two functions:

• It publishes a message to a topic for consumption by the Message Consumer CSQ4CVCN.
• It puts a control message to a queue for consumption by the Control Message Consumer CSQ4CVCT,

resulting in a potential change in behavior of the sample.

1170 Developing Applications for IBM MQ

The Messaging Client program must be started from a CICS console under a CICS transaction, and it takes
command line input with the following syntax:

CSQ4CVPT
MVMP , PUBLISH , , ?

Message Text ,

STOP ,

DEREGISTER ,

RESUME ,

SUSPEND ,

Callback Handler ,

PUBLISH
Publish the Message Text (or a default message) as a Retained Message for consumption by the
Simple Message Consumer.

STOP
Stop Asynchronous Consumption.

DEREGISTER
Deregister the named Callback handler.

RESUME
Resume the named Callback handler.

SUSPEND
Suspend the named Callback handler.

Input fields are positional, and comma-separated. Keywords and Callback Handler names are not case-
sensitive.

Examples:

Table 186. Input examples

Example Description

MVMP,PUBLISH,, Publish a default message

MVMP,publish, A short message, Publish the given text

MVMP,STOP, Stop Asynchronous Consumption

MVMP,DEREGISTER,CSQ4CVEV, Deregister the Event Handler

MVMP,resume,csq4cvcn, Resume the Simple Message Consumer

MVMP,SUSPEND,CSQ4CVEV, Suspend the Event Handler

Where MVMP is the CICS transaction associated with the Messaging Client program CSQ4CVPT.

Note:

• Suspending or deregistering all Callback handlers terminates the START_WAIT issued by the
Registration Client, returning control to it, and ending the task.

• Suspending or deregistering the Control Callback Handler has deliberately not been prevented, but it
removes the ability to further control the behavior of the sample.

Developing applications for IBM MQ 1171

The Publish/Subscribe sample on z/OS
The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in
IBM MQ.

There are four C and two COBOL programming language sample programs demonstrating how to program
to the IBM MQ Publish/Subscribe interface. The programs are delivered in the C and COBOL language. The
applications run in the batch environment; see Publish/Subscribe samples for the batch applications.

There are also COBOL samples that run in the CICS environment; see “The CICS Asynchronous
Consumption and Publish/Subscribe sample on z/OS” on page 1169.

This topic also provides information about how to run Publish/Subscribe sample programs. These sample
programs include:

• “Running the CSQ4BCP1 sample” on page 1172
• “Running the CSQ4BCP2 sample” on page 1172
• “Running the CSQ4BCP3 sample” on page 1172
• “Running the CSQ4BCP4 sample” on page 1173
• “Running the CSQ4BVP1 sample” on page 1173
• “Running the CSQ4BVP2 sample” on page 1173

Running the CSQ4BCP1 sample
This program is written in C; it publishes messages to a topic. Start one of the subscriber samples before
running this program.

This program takes up to four parameters:

1. The name of the target topic string (required).
2. The name of the queue manager (optional).
3. Open options (optional).
4. Close options (optional).

If a queue manager is not specified, CSQ4BCP1 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPP.

Message content is provided through standard input (SYSIN DD).

Running the CSQ4BCP2 sample
This program is written in C; it subscribes to a topic and prints the messages received.

This program takes up to three parameters:

1. The name of the target topic string (required).
2. The name of the queue manager (optional).
3. MQSD subscription options (optional).

If a queue manager is not specified, CSQ4BCP2 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPS.

Running the CSQ4BCP3 sample
This program is written in C; it subscribes to a topic using a user-specified destination queue and prints
the messages received.

This program takes up to four parameters:

1. The name of the target topic string (required).
2. The name of the destination (required).

1172 Developing Applications for IBM MQ

3. The name of the queue manager (optional).
4. MQSD subscription options (optional).

If a queue manager is not specified, CSQ4BCP3 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPD.

Running the CSQ4BCP4 sample
This program is written in C; it subscribes and gets messages from a topic allowing the use of extended
options on the MQSUB call, extending those available on the simpler MQSUB sample: CSQ4BCP2. In
addition to the message payload, message properties for each message are received and displayed.

This program takes a variable set of parameters:

• -t Topic string.
• -o Topic object name.

Important: One of -t or -o, or both, is required
• -m Queue manager name (optional).
• -b Connection binding type (optional), where type can have any of the following values:

– standard : MQCNO_STANDARD_BINDING , which is the default value
– shared: MQCNO_SHARED_BINDING
– fastpath: MQCNO_FASTPATH_BINDING
– isolated: MQCNO_ISOLATED_BINDING

• -q Destination queue name (optional).
• -w Wait interval on MQGET in seconds (optional), where seconds can have any of the following

values:

– unlimited: MQWI_UNLIMITED
– none: No wait
– n: Wait interval in seconds
– No value specified: When no value is specified, the default is 30 seconds

• -d Subscription name (optional). Creates or resumes named durable subscription.
• -k (optional). Keeps durable subscription on MQCLOSE.

If a queue manager is not specified, CSQ4BCP4 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPE.

Running the CSQ4BVP1 sample
This program is written in COBOL, it publishes messages to a topic. Start one of the subscriber samples
before running this program.

This program takes no parameters. SYSIN DD provides the input topic name, queue manager name, and
message content.

If a queue manager is not specified, CSQ4BVP1 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BVPP.

Running the CSQ4BVP2 sample
This program is written in COBOL, it subscribes to a topic and prints the messages received.

This program takes no parameters. SYSIN DD provides the input for topic name and queue manager
name.

Developing applications for IBM MQ 1173

If a queue manager is not specified, CSQ4BVP1 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BVPP.

The Set and Inquire message property sample on z/OS
The message property sample programs demonstrate the addition of user-defined properties to a
message handle, and the inquisition of the properties associated with that message.

The applications use these MQI calls:

• MQCONN
• MQOPEN
• MQPUT
• MQGET
• MQCLOSE
• MQDISC
• MQCRTMH
• MQDLTMH
• MQINQMP
• MQSETMP

The programs are delivered in the C language. The applications run in the batch environment. See Other
samples for the batch applications.

The CSQ4BCM1 program is used to inquire the properties of a message handle from a message queue,
and it is an example of the use of the MQINQMP API call. The sample gets one message from a queue and
then prints all the message handle properties.

The CSQ4BCM2 program is used to set the properties of a message handle on a message queue, and it is
an example of the use of the MQSETMP API call. The sample creates a message handle and puts it into
the MsgHandle field of the MQGMO structure. It then puts the message to a queue.

Other examples of inquiring and printing message properties are included in the CSQ4BCG1 and
CSQ4BCP4 sample programs.

This topic also provides information on running the Set and Inquire message property samples under the
following headings:

• “Running the CSQ4BCM1 sample” on page 1174
• “Running the CSQ4BCM2 sample” on page 1174

Running the CSQ4BCM1 sample
This program takes up to four parameters:

1. The name of the target queue (required).
2. The name of the queue manager (optional).
3. Open options (optional).
4. Close options (optional).

Running the CSQ4BCM2 sample
This program takes up to six parameters:

1. The name of the target queue (required).
2. The name of the queue manager (optional).
3. Open options (optional).
4. Close options (optional).

1174 Developing Applications for IBM MQ

5. The name of the target queue manager (optional).
6. The name of the dynamic queue (optional).

The property names, values, and message content are provided through the standard input (SYSIN DD).
There is a sample JCL to run the program, it resides in CSQ4BCMP.

Developing applications for Managed File Transfer
Specify programs to run with Managed File Transfer, use Apache Ant with Managed File Transfer,
customise Managed File Transfer with user exits, and control Managed File Transfer by putting messages
on the agent command queue.

Specifying programs to run with MFT
You can run programs on a system where a Managed File Transfer Agent is running. As part of a file
transfer request, you can specify a program to run either before a transfer starts, or after it finishes.
Additionally, you can start a program that is not part of a file transfer request by submitting a managed
call request.

About this task
There are five scenarios in which you can specify a program to run:

• As part of a transfer request, at the source agent, before the transfer starts.
• As part of a transfer request, at the destination agent, before the transfer starts.
• As part of a transfer request, at the source agent, after the transfer completes.
• As part of a transfer request, at the destination agent, after the transfer completes.
• Not as part of a transfer request. You can submit a request to an agent to run a program. This scenario is

sometimes referred to as a managed call.

User exits and program calls are invoked in the following order:

- SourceTransferStartExit(onSourceTransferStart).
- PRE_SOURCE Command.
- DestinationTransferStartExits(onDestinationTransferStart).
- PRE_DESTINATION Command.
- The Transfer request is performed.
- DestinationTransferEndExits(onDestinationTransferENd).
- POST_DESTINATION Command.
- SourceTransferEndExits(onSourceTransferEnd.
- POST_SOURCE Command.

Notes:

1. The DestinationTransferEndExits is run only when the transfer completes, either successfully
or partially successfully.

2. The postDestinationCall is run only when the transfer completes, either successfully or partially
successfully.

3. The SourceTransferEndExits is run for successful, partially successful, or failed transfers.
4. The postSourceCall is called only if:

• The transfer was not canceled.
• There is a successful or partially successful outcome.
• Any post-destination transfer programs ran successfully.

Procedure
• Specify the program that you want to run by using one of the following options:

Developing applications for IBM MQ 1175

Use an Apache Ant task

Use one of the fte:filecopy, fte:filemove, and fte:call Ant tasks to start a program.
Using an Ant task, you can specify a program in any of the five scenarios, using the fte:presrc,
fte:predst, fte:postdst, fte:postsrc, and fte:command nested elements. For more
information, see Program invocation nested elements.

Edit the file transfer request message

You can edit the XML that is generated by a transfer request. Using this method, you can
run a program in any of the five scenarios, by adding preSourceCall, postSourceCall,
preDestinationCall, postDestinationCall, and managedCall elements to the XML file.
Then, use this modified XML file as the transfer definition for a new file transfer request, for
example with the fteCreateTransfer -td parameter. For more information, see MFT agent call
request message examples.

Use the fteCreateTransfer command

You can use the fteCreateTransfer command to specify programs to start. You can use
the command to specify programs to run in the first four scenarios, as part of a transfer
request, but you cannot start a managed call. For information about the parameters to use,
see fteCreateTransfer: start a new file transfer. For examples of using this command, see
Examples of using fteCreateTransfer to start programs.

Related reference
commandPath MFT property

Managed calls
Managed File Transfer (MFT) agents are typically used to transfer files or messages. These are known
as Managed Transfers. Agents can also be used to run commands, scripts or JCL without the need for
transferring files or messages. This capability is known as Managed Calls.

Managed call requests can be submitted to an agent in several ways:

• Using the fte:call Ant task.
• Configuring a resource monitor with a task XML that runs a command or a script. See Configuring

monitor tasks to start commands and scripts for more information.
• Directly putting an XML message into the agent's command queue. See File transfer request message

format for more details on the Managed Call XML schema.

For managed calls, the directory containing the command or script that is being run must be specified in
the agent property commandPath.

Managed calls cannot run commands or scripts that are located in directories which are not specified in
the agent's commandPath. This is to ensure that the agent does not run any malicious code.

Important: To ensure this is the case, by default, when you specify commandPath:

• Any existing agent sandbox is configured by the agent when it starts up so that all commandPath
directories are automatically added to the list of directories that have denied access for a transfer.

• Any existing user sandboxes are updated when the agent starts up so that all the commandPath
directories (and their sub-directories) are added as <exclude> elements to the <read> and <write>
elements.

• If the agent is not configured to use either an agent sandbox, or user sandboxes, then a new agent
sandbox is created when the agent starts up that has the commandPath directories specified as denied
directories.

Additionally, you can also enable authority checking on an agent to ensure that only authorized users are
allowed to submit managed call requests. For more information on this, see Restricting user authorities on
MFT agent actions.

1176 Developing Applications for IBM MQ

The command, script, or JCL invoked as part of a managed call runs as an external process, which is
monitored by the agent. When the process exits, the managed call completes and the return code from
the process is made available to either the agent or the Ant script that invoked the fte:call Ant task.

If the managed call was started by the fte:call Ant task, then your Ant script can check the value of the
return code to determine whether the managed call was successful or not.

For all other types of managed calls, you can specify which return code values should be used to indicate
that the managed call completed successfully. The agent compares the return code from the process
against these return codes when the external process finishes.

Note: Because managed calls run as external processes, they cannot be canceled once they have started.

Managed calls and source transfer slots
An agent contains a number of source transfer slots, as specified by the agent property
maxSourceTransfers, described in Advanced agent properties: Transfer limit.

Whenever a managed call or a managed transfer is run, they occupy a source transfer slot. The slot is
released when the managed call or managed transfer completes.

If all the source transfer slots are in use when an agent receives either a new managed call or managed
transfer request, the request is queued by the agent until a slot becomes available.

If a managed call starts a managed transfer (for example, if a managed call runs an Ant script and that
Ant script uses the fte:filecopy or fte:filemove task to transfer a file), then two source transfer slots are
required:

• One for the managed transfer
• One for the managed call

In this situation, it is important to note that if the managed transfer either takes a long time to complete,
or goes into recovery, then the two source transfer slots are occupied until either the managed transfer
completes, is canceled or times out due to a transferRecoveryTimeout. See Transfer recovery
timeout concepts for details on transferRecoveryTimeout. This can potentially limit the number of
other managed transfers or managed calls that the agent can process.

Because of this, you should consider the design of a managed call to ensure that it does not occupy
source transfer slots for a long period of time.

Using the REST API with managed calls
The HTTP GET and HTTP POST verbs are supported for enabling managed calls, and work only on Version
3 of the REST API.

Other verbs, for example, HTTP DELETE and HTTP UPDATE are not supported and return the HTTP 405
error code if you attempt to use them.

Attention: Once submitted a managed call cannot be canceled using the REST API.

Using Apache Ant with MFT
Managed File Transfer provides tasks that you can use to integrate file transfer function into the Apache
Ant tool.

You can use the fteAnt command to run Ant tasks in a Managed File Transfer environment that you have
already configured. You can use file transfer Ant tasks from your Ant scripts to coordinate complex file
transfer operations from an interpreted scripting language.

For more information about Apache Ant, see the Apache Ant project web page: https://ant.apache.org/

Developing applications for IBM MQ 1177

https://ant.apache.org/

Related concepts
“Getting started using Ant scripts with MFT” on page 1178
Using Ant scripts with Managed File Transfer allows you to coordinate complex file transfer operations
from an interpreted scripting language.
fteAnt: run Ant tasks in MFT
Related reference
“Sample Ant tasks for MFT” on page 1179
There are a number of sample Ant scripts provided with your installation of Managed File Transfer. These
samples are located in the directory MQ_INSTALLATION_PATH/mqft/samples/fteant. Each sample
script contains an init target, edit the properties set in the init target to run these scripts with your
configuration.

Getting started using Ant scripts with MFT
Using Ant scripts with Managed File Transfer allows you to coordinate complex file transfer operations
from an interpreted scripting language.

Ant scripts
Ant scripts (or build files) are XML documents defining one or more targets. These targets contain task
elements to run. Managed File Transfer provides tasks which you can use to integrate file transfer function
into Apache Ant. To learn about Ant scripts, see the Apache Ant project web page: https://ant.apache.org/

Examples of Ant scripts that use Managed File Transfer tasks are provided with your product installation
in the directory MQ_INSTALLATION_PATH/mqft/samples/fteant

On protocol bridge agents, Ant scripts are run on the protocol bridge agent system. These Ant scripts do
not have direct access to the files on the FTP or SFTP server.

Namespace
A namespace is used to differentiate the file transfer Ant tasks from other Ant tasks that might share the
same name. You define the namespace in the project tag of your Ant script.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:fte="antlib:com.ibm.wmqfte.ant.taskdefs" default="do_ping">

 <target name="do_ping">
 <fte:ping cmdqm="qm@localhost@1414@SYSTEM.DEF.SVRCONN" agent="agent1@qm1"
 rcproperty="ping.rc" timeout="15"/>
 </target>

</project>

The attribute xmlns:fte="antlib:com.ibm.wmqfte.ant.taskdefs" tells Ant to look for the
definitions of tasks prefixed by fte in the library com.ibm.wmqfte.ant.taskdefs.

You do not need to use fte as your namespace prefix; you can use any value. The namespace prefix fte
is used in all examples and sample Ant scripts.

Running Ant scripts
To run Ant scripts that contain the file transfer Ant tasks use the fteAnt command. For example:

fteAnt -file ant_script_location/ant_script_name

For more information, see fteAnt: run Ant tasks in MFT.

Return codes
The file transfer Ant tasks return the same return codes as the Managed File Transfer commands. For
more information, see Return codes for MFT.

1178 Developing Applications for IBM MQ

https://ant.apache.org/

Related reference
fteAnt: run Ant tasks in MFT
“Sample Ant tasks for MFT” on page 1179
There are a number of sample Ant scripts provided with your installation of Managed File Transfer. These
samples are located in the directory MQ_INSTALLATION_PATH/mqft/samples/fteant. Each sample
script contains an init target, edit the properties set in the init target to run these scripts with your
configuration.

Sample Ant tasks for MFT
There are a number of sample Ant scripts provided with your installation of Managed File Transfer. These
samples are located in the directory MQ_INSTALLATION_PATH/mqft/samples/fteant. Each sample
script contains an init target, edit the properties set in the init target to run these scripts with your
configuration.

email
The email sample demonstrates how to use Ant tasks to transfer a file and send an email to a specified
email address if the transfer fails. The script checks that the source and destination agents are active
and able to process transfers by using the Managed File Transfer ping task. If both agents are active,
the script uses the Managed File Transfer fte:filecopy task to transfer a file between the source and
destination agents, without deleting the original file. If the transfer fails the script sends an email
containing information about the failure by using the standard Ant email task.

hub
The hub sample is made up of two scripts: hubcopy.xml and hubprocess.xml. The hubcopy.xml
script shows how you can use Ant scripting to build 'hub and spoke' style topologies. In this sample, two
files are transferred from agents running on spoke machines to an agent running on the hub machine.
Both files are transferred at the same time, and when the transfers are complete the hubprocess.xml
Ant script is run on the hub machine to process the files. If both files transfer correctly, the Ant script
concatenates the contents of the files. If the files do not transfer correctly, the Ant script cleans up
by deleting any file data that was transferred. For this example to work correctly, you must put the
hubprocess.xml script on the command path of the hub agent. For more information about setting the
command path of an agent, see commandPath MFT property.

librarytransfer (IBM i platform only)

The librarytransfer sample demonstrates how to use Ant tasks to transfer an IBM i library on
one IBM i system to a second IBM i system.

The librarytransfer sample uses the native save file support on IBM i with predefined Ant
tasks available in Managed File Transfer to transfer native library objects between two IBM i systems.
The sample uses a <presrc> nested element in a Managed File Transfer filecopy task to invoke an
executable script librarysave.sh that saves the requested library on the source agent system into a
temporary save file. The save file is moved by the filecopy ant task to the destination agent system where
a <postdst> nested element is used to invoke the executable script libraryrestore.sh to restore the
library saved in the save file to the destination system.

Before you run this sample, you need to complete some configuration as described in the
librarytransfer.xml file. You must also have a working Managed File Transfer environment on two
IBM i machines. The setup must consist of a source agent running on the first IBM i machine and a
destination agent running on the second IBM i machine. The two agents must be able to communicate
with each other.

The librarytransfer sample consists of the following three files:

Developing applications for IBM MQ 1179

• librarytransfer.xml
• librarysave.sh (<presrc> executable script)
• libraryrestore.sh (<postdst> executable script)

The sample files are located in the following directory: /QIBM/ProdData/WMQFTE/V7/samples/
fteant/ibmi/librarytransfer

 To run this sample the user must complete the following steps:

1. Start a Qshell session. At an IBM i command window type: STRQSH
2. Change directory to the bin directory as follows:

cd /QIBM/ProdData/WMQFTE/V7/bin

3. After completing the required configuration, run the sample by using the following command:

fteant -f /QIBM/ProdData/WMQFTE/V7/samples/fteant/ibmi/librarytransfer/librarytransfer.xml

physicalfiletransfer (IBM i platform only)
The physicalfiletransfer sample demonstrates how to use Ant tasks to transfer a Source

Physical or Database file from a library on one IBM i system to a library on a second IBM i system.

The physicalfiletransfer sample uses the native save file support on IBM i with predefined
Ant Tasks available in Managed File Transfer to transfer complete Source Physical and Database files
between two IBM i systems. The sample uses a <presrc> nested element within a Managed File Transfer
filecopy task to invoke an executable script physicalfilesave.sh to save the requested Source
Physical or Database file from a library on the source agent system into a temporary save file. The save file
is moved by the filecopy ant task to the destination agent system where a <postdst> nested element is
used to invoke the executable script physicalfilerestore.sh then restores the file object inside the
save file into a specified library on the destination system.

Before you run this sample, you must complete some configuration as described in the
physicalfiletransfer.xml file. You must also have a working Managed File Transfer environment
on two IBM i systems. The setup must consist of a source agent running on the first IBM i system and a
destination agent running on the second IBM i system. The two agents must be able to communicate with
each other.

The physicalfiletransfer sample consists of the following three files:

• physicalfiletransfer.xml
• physicalfilesave.sh (<presrc> executable script)
• physicalfilerestore.sh (<postdst> executable script)

The sample files are located in the following directory: /QIBM/ProdData/WMQFTE/V7/samples/
fteant/ibmi/physicalfiletransfer

To run this sample the user must complete the following steps:

1. Start a Qshell session. At an IBM i command window type: STRQSH
2. Change directory to the bin directory as follows:

cd /QIBM/ProdData/WMQFTE/V7/bin

3. After completing the required configuration, run the sample by using the following command:

1180 Developing Applications for IBM MQ

fteant -f /QIBM/ProdData/WMQFTE/V7/samples/fteant/ibmi/physicalfiletransfer/
physicalfiletransfer.xml

timeout
The timeout sample demonstrates how to use Ant tasks to attempt a file transfer and to cancel the
transfer if it takes longer than a specified timeout value. The script initiates a file transfer by using the
Managed File Transfer fte:filecopy task. The outcome of this transfer is deferred. The script uses the
Managed File Transfer fte:awaitoutcome Ant task to wait a given number of seconds for the transfer to
complete. If the transfer does not complete in the given time, the Managed File Transfer fte:cancel Ant
task is used to cancel the file transfer.

vsamtransfer

 The vsamtransfer sample demonstrates how to use Ant tasks to transfer from a VSAM
data set to another VSAM data set by using Managed File Transfer. Managed File Transfer currently
does not support transferring VSAM data sets. The sample script unloads the VSAM data records to a
sequential data set by using the presrc Program invocation nested elements to call the executable file
datasetcopy.sh. The script uses the Managed File Transfer fte:filemove task to transfer the sequential
data set from the source agent to the destination agent. The script then uses the postdst Program
invocation nested elements to call the loadvsam.jcl script. This JCL script loads the transferred data
set records into a destination VSAM data set. This sample uses JCL for the destination call to demonstrate
this language option. The same result can also be achieved by using a second shell script instead.

This sample does not require the source and destination data sets to be VSAM. The sample
works for any data sets if the source and destination data sets are of the same type.

For this sample to work correctly, you must put the datasetcopy.sh script on the
command path of the source agent and the loadvsam.jcl script on the command path of the
destination agent. For more information about setting the command path of an agent, see commandPath
MFT property.

zip
The zip sample is made up of two scripts: zip.xml and zipfiles.xml. The sample demonstrates how
to use the presrc nested element inside the Managed File Transfer fte:filemove task to run an Ant script
before performing a file transfer move operation. The zipfiles.xml script called by the presrc nested
element in the zip.xml script compresses the contents of a directory. The zip.xml script transfers the
compressed file. This sample requires that the zipfiles.xml Ant script is present on the command
path of the source agent. This is because the zipfiles.xml Ant script contains the target used to
compress the contents of the directory at the source agent. For more information about setting the
command path of an agent, see commandPath MFT property.

Related concepts
“Getting started using Ant scripts with MFT” on page 1178
Using Ant scripts with Managed File Transfer allows you to coordinate complex file transfer operations
from an interpreted scripting language.
Related reference
fteAnt: run Ant tasks in MFT

Developing applications for IBM MQ 1181

Customizing MFT with user exits
You can customize the features of Managed File Transfer by using your own programs known as user exit
routines.

Important: Any code within a user exit is not supported by IBM, and any issues with that code need to be
initially investigated by either your enterprise, or the vendor who provided the exit.

Managed File Transfer provides points in the code where Managed File Transfer can pass control to a
program that you have written (a user exit routine). These points are known as user exit points. Managed
File Transfer can then resume control when your program has finished its work. You do not have to
use any of the user exits, but they are useful if you want to extend and customize the function of your
Managed File Transfer system to meet your specific requirements.

There are two points during file transfer processing where you can invoke a user exit at the source system
and two points during file transfer processing where you can invoke a user exit at the destination system.
The following table summarizes each of these user exit points and the Java interface that you must
implement to use the exit points.

Table 187. Summary of source-side and destination-side exit points and Java interfaces

Exit point Java interface to implement

Source-side exit points:

Before the entire file transfer starts SourceTransferStartExit.java interface

After the entire file transfer is complete SourceTransferEndExit.java interface

Destination-side exit points:

Before the entire file transfer starts DestinationTransferStartExit.java interface

After the entire file transfer is complete DestinationTransferEndExit.java interface

The user exits are invoked in the following order:

1. SourceTransferStartExit
2. DestinationTransferStartExit
3. DestinationTransferEndExit
4. SourceTransferEndExit

Changes made by the SourceTransferStartExit and DestinationTransferStartExit exits are propagated as
input to subsequent exits. For example if the SourceTransferStartExit exit modifies the transfer metadata,
the changes are reflected in the input transfer metadata to the other exits.

User exits and program calls are invoked in the following order:

- SourceTransferStartExit(onSourceTransferStart).
- PRE_SOURCE Command.
- DestinationTransferStartExits(onDestinationTransferStart).
- PRE_DESTINATION Command.
- The Transfer request is performed.
- DestinationTransferEndExits(onDestinationTransferENd).
- POST_DESTINATION Command.
- SourceTransferEndExits(onSourceTransferEnd.
- POST_SOURCE Command.

Notes:

1. The DestinationTransferEndExits is run only when the transfer completes, either successfully
or partially successfully.

2. The postDestinationCall is run only when the transfer completes, either successfully or partially
successfully.

3. The SourceTransferEndExits is run for successful, partially successful, or failed transfers.

1182 Developing Applications for IBM MQ

4. The postSourceCall is called only if:

• The transfer was not canceled.
• There is a successful or partially successful outcome.
• Any post-destination transfer programs ran successfully.

Building your user exit
The interfaces to build a user exit are contained in MQ_INSTALL_DIRECTORY/mqft/lib/
com.ibm.wmqfte.exitroutines.api.jar. You must include this .jar file in the class path when you
build your exit. To run the exit, extract the exit as a .jar file and place this .jar file in a directory as
described in the following section.

User exit locations
You can store your user exit routines in two possible locations:

• The exits directory. There is an exits directory under each agent directory. For example:
var\mqm\mqft\config\QM_JUPITER\agents\AGENT1\exits

• You can set the exitClassPath property to specify an alternative location. If there are exit classes in both
the exits directory and the class path set by exitClassPath, the classes in the exits directory take
priority, which means that if there are classes in both locations with the same name, the classes in the
exits directory take priority.

Configuring an agent to use user exits
There are four agent properties that can be set to specify the user exits that an agent invokes. These
agent properties are sourceTransferStartExitClasses, sourceTransferEndExitClasses,
destinationTransferStartExitClasses, and destinationTransferEndExitClasses. For
information about how to use these properties, see MFT Agent properties for user exits.

Running user exits on protocol bridge agents
When the source agent invokes the exit, it passes the exit a list of the source items for the transfer. For
normal agents, this is a list of fully-qualified filenames. Because the files should be local (or accessible via
a mount), then the exit is able to access it and encrypt it.

However, for a Protocol Bridge Agent, the entries in the list are of the following format:

"<file server identifier>:<fully-qualified file name of the file on the remote file server>"

For each entry in the list, the exit needs to connect to the file server first (using either the FTP. FTPS or
SFTP protocols), download the file, encrypt it locally and then upload the encrypted file back to the file
server.

Running user exits on Connect:Direct bridge agents
You cannot run user exits on Connect:Direct® bridge agents.
Related concepts
“MFT source and destination user exits” on page 1184
Metadata for MFT user exits
Java interfaces for MFT user exits
Related reference
“Enabling remote debugging for MFT user exits” on page 1188
While you are developing your user exits, you might want to use a debugger to help locate problems in
your code.
“Sample MFT source transfer user exit” on page 1189
“Sample protocol bridge credential user exit” on page 1190

Developing applications for IBM MQ 1183

MFT resource monitor user exits
MFT Agent properties for user exits

MFT source and destination user exits

Directory separators
Directory separators in source file specifications are always represented using forward slash (/)
characters, regardless of how you have specified directory separators in the fteCreateTransfer
command or in the IBM MQ Explorer. You must take this into account when you write an exit. For example,
if you want to check that the following source file exists: c:\a\b.txt and you have specified this source
file using the fteCreateTransfer command or the IBM MQ Explorer, note the file name is actually
stored as: c:/a/b.txt So if you search for the original string of c:\a\b.txt, you will not find a match.

Source side exit points
Before the entire file transfer starts

This exit is called by the source agent when a transfer request is next in the list of pending transfers
and the transfer is about to start.

Example uses of this exit point are to send files in stages to a directory that the agent has read/write
access to using an external command, or to rename the files on the destination system.

Pass the following arguments to this exit:

• Source agent name
• Destination agent name
• Environment metadata
• Transfer metadata
• File specifications (including file metadata)

The data returned from this exit is as follows:

• Updated transfer metadata. Entries can be added, modified, and deleted.
• Updated list of file specifications, which consists of source file name and destination file name pairs.

Entries can be added, modified, and deleted
• Indicator that specifies whether to continue the transfer
• String to insert to the Transfer Log.

Implement the SourceTransferStartExit.java interface to call user exit code at this exit point.

After the entire file transfer is complete
This exit is called by the source agent after the entire file transfer has completed.

An example use of this exit point is to perform some completion tasks, such as sending an e-mail or
an IBM MQ message to flag that the transfer has completed.

Pass the following arguments to this exit:

• Transfer exit result
• Source agent name
• Destination agent name
• Environment metadata
• Transfer metadata
• File results

The data returned from this exit is as follows:

1184 Developing Applications for IBM MQ

• Updated string to insert to the Transfer Log.

Implement the SourceTransferEndExit.java interface to call user exit code at this exit point.

Destination side exit points
Before the entire file transfer starts

An example use of this exit point is to validate the permissions at the destination.

Pass the following arguments to this exit:

• Source agent name
• Destination agent name
• Environment metadata
• Transfer metadata
• File specifications

The data returned from this exit is as follows:

• Updated set of destination file names. Entries can be modified but not added or deleted.
• Indicator that specifies whether to continue the transfer
• String to insert into the Transfer Log.

Implement the DestinationTransferStartExit.java interface to call user exit code at this exit point.

After the entire file transfer is complete
An example use of this user exit is to start a batch process that uses the transferred files or to send an
e-mail if the transfer has failed.

Pass the following arguments to this exit:

• Transfer exit result
• Source agent name
• Destination agent name
• Environment metadata
• Transfer metadata
• File results

The data returned from this exit is as follows:

• Updated string to insert to the Transfer Log.

Implement the DestinationTransferEndExit.java interface to call user exit code at this exit point.

Related concepts
Java interfaces for MFT user exits
Related reference
“Enabling remote debugging for MFT user exits” on page 1188
While you are developing your user exits, you might want to use a debugger to help locate problems in
your code.
“Sample MFT source transfer user exit” on page 1189
MFT resource monitor user exits

Developing applications for IBM MQ 1185

Using MFT transfer I/O user exits
You can use Managed File Transfer transfer I/O user exits to configure custom code to perform the
underlying file system I/O work for Managed File Transfer transfers.

Usually for MFT transfers, an agent selects from one of the built-in I/O providers to interact with the
appropriate file systems for the transfer. Built-in I/O providers support the following types of file system:

• Regular UNIX-type and Windows-type file systems

• z/OS sequential and partitioned data sets (on z/OS only)

• IBM i native save files (on IBM i only)
• IBM MQ queues
• Remote FTP and SFTP protocol servers (for protocol bridge agents only)
• Remote Connect:Direct nodes (for Connect:Direct bridge agents only)

For file systems that are not supported, or where you require custom I/O behavior, you can write a
transfer I/O user exit.

Transfer I/O user exits use the existing infrastructure for user exits. However, these transfer I/O user exits
differ from other user exits because their function is accessed multiple times throughout the transfer for
each file.

Use the agent property IOExitClasses (in the agent.properties file) to specify which I/O exit classes to
load. Separate each exit class with a comma, for example:

IOExitClasses=testExits.TestExit1,testExits.testExit2

The Java interfaces for the transfer I/O user exits are as follows:
IOExit

The main entry point used to determine if the I/O exit is used. This instance is responsible for making
IOExitPath instances.

You need specify only the IOExit I/O exit interface for the agent property IOExitClasses.

IOExitPath
Represents an abstract interface; for example, a data container or wildcard representing a set of data
containers. You cannot create a class instance that implements this interface. The interface allows the
path to be examined and derived paths to be listed. The IOExitResourcePath and IOExitWildcardPath
interfaces extend IOExitPath.

IOExitChannel
Enables data to be read from or written to an IOExitPath resource.

IOExitRecordChannel
Extends the IOExitChannel interface for record-oriented IOExitPath resources, which enables data to
be read from or written to an IOExitPath resource in multiples of records.

IOExitLock
Represents a lock on an IOExitPath resource for shared or exclusive access.

IOExitRecordResourcePath
Extends the IOExitResourcePath interface to represent a data container for a record-oriented file; for
example, a z/OS data set. You can use the interface to locate data and to create IOExitRecordChannel
instances for read or write operations.

1186 Developing Applications for IBM MQ

IOExitResourcePath
Extends the IOExitPath interface to represent a data container; for example, a file or directory. You
can use the interface to locate data. If the interface represents a directory, you can use the listPaths
method to return a list of paths.

IOExitWildcardPath
Extends the IOExitPath interface to represent a path that denotes a wildcard. You can use this
interface to match multiple IOExitResourcePaths.

IOExitProperties
Specifies properties that determine how Managed File Transfer handles IOExitPath for certain aspects
of I/O. For example, whether to use intermediate files or whether to reread a resource from the
beginning if a transfer is restarted.

Related concepts
“Customizing MFT with user exits” on page 1182
You can customize the features of Managed File Transfer by using your own programs known as user exit
routines.
Related reference
IOExit.java interface
IOExitChannel.java interface
IOExitLock.java interface
IOExitPath.java interface
IOExitProperties.java interface
IOExitRecordChannel.java interface

IOExitRecordResourcePath.java interface
IOExitResourcePath.java interface
IOExitWildcardPath.java interface
The MFTagent.properties file

Sample MFT on IBM i user exits
Managed File Transfer provides sample user exits specific to IBM i with your installation. The samples
are in the directories MQMFT_install_dir/samples/ioexit-IBMi and MQMFT_install_dir/
samples/userexit-IBMi.

com.ibm.wmqfte.exit.io.ibmi.qdls.FTEQDLSExit
The com.ibm.wmqfte.exit.io.ibmi.qdls.FTEQDLSExit sample user exit transfers files in the QDLS file
system on IBM i. After the exit is installed, any transfers to files that begin with /QDLS automatically
use the exit.

To install this exit, complete the following steps:

1. Copy the com.ibm.wmqfte.samples.ibmi.ioexits.jar file from the
WMQFTE_install_dir/samples/ioexit-IBMi directory to the agent's exits directory.

2. Add com.ibm.wmqfte.exit.io.ibmi.qdls.FTEQDLSExit to the IOExitClasses property.
3. Restart the agent.

com.ibm.wmqfte.exit.user.ibmi.FileMemberMonitorExit
The com.ibm.wmqfte.exit.user.ibmi.FileMemberMonitorExit sample user exit behaves like an MFT file
monitor and automatically transfers physical file members from an IBM i library.

To run this exit, specify a value for the "library.qsys.monitor" metadata field (using the -md
parameter, for example). This parameter takes an IFS-style path to a file member and can contain
file and member wildcards. For example, /QSYS.LIB/FOO.LIB/BAR.FILE/*.MBR, /QSYS.LIB/FOO.LIB/
.FILE/BAR.MBR, /QSYS.LIB/FOO.LIB/.FILE/*.MBR.

Developing applications for IBM MQ 1187

This sample exit also has an optional metadata field "naming.scheme.qsys.monitor", which you can
use to determine the naming scheme that is used during the transfer. By default, this field is set to
"unix,", which causes the destination file to be called FOO.MBR. You can also specify the value "ibmi"
to use the IBM i FTP FILE.MEMBER scheme, for example, /QSYS.LIB/FOO.LIB/BAR.FILE/BAZ.MBR is
transferred as BAR.BAZ.

To install this exit, complete the following steps:

1. Copy the com.ibm.wmqfte.samples.ibmi.userexits.jar file from the
WMQFTE_install_dir/samples/userexit-IBMi directory to the agent's exits directory.

2. Add com.ibm.wmqfte.exit.user.ibmi.FileMemberMonitorExit to the sourceTransferStartExitClasses
property in the agent.properties file.

3. Restart the agent.

com.ibm.wmqfte.exit.user.ibmi.EmptyFileDeleteExit
The com.ibm.wmqfte.exit.user.ibmi.EmptyFileDeleteExit sample user exit deletes an empty file object
when the source file member is deleted as part of the transfer. Because IBM i file objects can
potentially hold many members, file objects are treated like directories by MFT. Therefore, you cannot
perform a move operation on a file object using MFT; move operations are supported at the member
level only. Consequently, when you perform a move operation on a member, the now empty file is left
behind. Use this sample exit if you want to delete these empty files as part of the transfer request.

If you specify "true" for the "empty.file.delete" metadata and transfer an FTEFileMember, the sample
exit deletes the parent file if the file is empty.

To install this exit, complete the following steps:

1. Copy the com.ibm.wmqfte.samples.ibmi.userexits.jar file from WMQFTE_install_dir/samples/
userexit-IBMi to the agent's exits directory.

2. Add com.ibm.wmqfte.exit.user.ibmi.EmptyFileDeleteExit to the sourceTransferStartExitClasses
property in the agent.properties file.

3. Restart the agent.

Related reference
“Using MFT transfer I/O user exits” on page 1186
You can use Managed File Transfer transfer I/O user exits to configure custom code to perform the
underlying file system I/O work for Managed File Transfer transfers.
MFT Agent properties for user exits

Enabling remote debugging for MFT user exits
While you are developing your user exits, you might want to use a debugger to help locate problems in
your code.

Because exits run inside the Java virtual machine that runs the agent, you cannot use the direct
debugging support that is typically included in an integrated development environment. However, you
can enable remote debugging of the JVM and then connect a suitable remote debugger.

To enable remote debugging, use the standard JVM parameters -Xdebug and -Xrunjdwp. These
properties are passed to the JVM that runs the agent by the BFG_JVM_PROPERTIES environment
variable. For example, on AIX and Linux the following commands start the agent and cause the JVM
to listen for debugger connections on TCP port 8765.

export BFG_JVM_PROPERTIES="-Xdebug -Xrunjdwp:transport=dt_socket,server=y,address=8765"
fteStartAgent -F TEST_AGENT

The agent does not start until the debugger connects. Use the set command on Windows instead of the
export command.

1188 Developing Applications for IBM MQ

You can also use other communication methods between the debugger and JVM. For example, the JVM
can open the connection to the debugger instead of vice versa, or you can use shared memory instead of
TCP. See the Java Platform Debugger Architecture documentation for further details.

You must use the -F (foreground) parameter when you start the agent in remote debug mode.

Using the Eclipse debugger
The following steps apply to the remote debugging capability in the Eclipse development environment.
You can also use other remote debuggers that are JPDA-compatible.

1. Click Run > Open Debug Dialog (or Run > Debug Configurations or Run > Debug Dialog depending
on your version of Eclipse).

2. Double-click Remote Java Application in the list of configuration types to create a debug
configuration.

3. Complete the configuration fields and save the debug configuration. If you have already started the
agent JVM in debug mode, you can connect to the JVM now.

Sample MFT source transfer user exit

/*
 * A Sample Source Transfer End Exit that prints information about a transfer to standard
output.
 * If the agent is run in the background the output will be sent to the agent's event log file.
If
 * the agent is started in the foreground by specifying the -F parameter on the fteStartAgent
 * command the output will be sent to the console.
 *
 * To run the exit execute the following steps:
 *
 * Compile and build the exit into a jar file. You need the following in the class path:
 * {MQ_INSTALLATION_PATH}\mqft\lib\com.ibm.wmqfte.exitroutines.api.jar
 *
 * Put the jar in your agent's exits directory:
 * {MQ_DATA_PATH}\config\coordQmgrName\agents\agentName\exits\
 *
 * Update the agent's properties file:
 * {MQ_DATA_PATH}\config\coordQmgrName\agents\agentName\agent.properties
 * to include the following property:
 * sourceTransferEndExitClasses=[packageName.]SampleEndExit
 *
 * Restart agent to pick up the exit
 *
 * Send the agent a transfer request:
 * For example: fteCreateTransfer -sa myAgent -da YourAgent -df output.txt input.txt
 */

import java.util.List;
import java.util.Map;
import java.util.Iterator;

import com.ibm.wmqfte.exitroutine.api.SourceTransferEndExit;
import com.ibm.wmqfte.exitroutine.api.TransferExitResult;
import com.ibm.wmqfte.exitroutine.api.FileTransferResult;

public class SampleEndExit implements SourceTransferEndExit {

 public String onSourceTransferEnd(TransferExitResult transferExitResult,
 String sourceAgentName,
 String destinationAgentName,
 Map<String, String>environmentMetaData,
 Map<String, String>transferMetaData,
 List<FileTransferResult>fileResults) {

 System.out.println("Environment Meta Data: " + environmentMetaData);
 System.out.println("Transfer Meta Data: " + transferMetaData);

 System.out.println("Source agent: " +
 sourceAgentName);
 System.out.println("Destination agent: " +
 destinationAgentName);

Developing applications for IBM MQ 1189

https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html

 if (fileResults.isEmpty()) {
 System.out.println("No files in the list");
 return "No files";
 }
 else {

 System.out.println("File list: ");

 final Iterator<FileTransferResult> iterator = fileResults.iterator();

 while (iterator.hasNext()){
 final FileTransferResult thisFileSpec = iterator.next();
 System.out.println("Source file spec: " +
 thisFileSpec.getSourceFileSpecification() +
 ", Destination file spec: " +
 thisFileSpec.getDestinationFileSpecification());
 }
 }
 return "Done";
 }
}

Sample protocol bridge credential user exit

For information about how to use this sample user exit, see Mapping credentials for a file server by using
exit classes.

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.StringTokenizer;

import com.ibm.wmqfte.exitroutine.api.CredentialExitResult;
import com.ibm.wmqfte.exitroutine.api.CredentialExitResultCode;
import com.ibm.wmqfte.exitroutine.api.CredentialPassword;
import com.ibm.wmqfte.exitroutine.api.CredentialUserId;
import com.ibm.wmqfte.exitroutine.api.Credentials;
import com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit;

/**
 * A sample protocol bridge credential exit
 *
 * This exit reads a properties file that maps mq user ids to server user ids
 * and server passwords. The format of each entry in the properties file is:
 *
 * mqUserId=serverUserId,serverPassword
 *
 * The location of the properties file is taken from the protocol bridge agent
 * property protocolBridgeCredentialConfiguration.
 *
 * To install the sample exit compile the class and export to a jar file.
 * Place the jar file in the exits subdirectory of the agent data directory
 * of the protocol bridge agent on which the exit is to be installed.
 * In the agent.properties file of the protocol bridge agent set the
 * protocolBridgeCredentialExitClasses to SampleCredentialExit
 * Create a properties file that contains the mqUserId to serverUserId and
 * serverPassword mappings applicable to the agent. In the agent.properties
 * file of the protocol bridge agent set the protocolBridgeCredentialConfiguration
 * property to the absolute path name of this properties file.
 * To activate the changes stop and restart the protocol bridge agent.
 *
 * For further information on protocol bridge credential exits refer to
 * the WebSphere MQ Managed File Transfer documentation online at:
 * https://www.ibm.com/docs/SSEP7X_7.0.4/welcome/WelcomePagev7r0.html
 */
public class SampleCredentialExit implements ProtocolBridgeCredentialExit {

 // The map that holds mq user ID to serverUserId and serverPassword mappings
 final private Map<String,Credentials> credentialsMap = new HashMap<String, Credentials>();

1190 Developing Applications for IBM MQ

 /* (non-Javadoc)
 * @see com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit#initialize(java.util.Map)
 */
 public synchronized boolean initialize(Map<String, String> bridgeProperties) {

 // Flag to indicate whether the exit has been successfully initialized or not
 boolean initialisationResult = true;

 // Get the path of the mq user ID mapping properties file
 final String propertiesFilePath = bridgeProperties.get("protocolBridgeCredentialConfiguration");

 if (propertiesFilePath == null || propertiesFilePath.length() == 0) {
 // The properties file path has not been specified. Output an error and return false
 System.err.println("Error initializing SampleCredentialExit.");
 System.err.println("The location of the mqUserID mapping properties file has not been
specified in the
 protocolBridgeCredentialConfiguration property");
 initialisationResult = false;
 }

 if (initialisationResult) {

 // The Properties object that holds mq user ID to serverUserId and serverPassword
 // mappings from the properties file
 final Properties mappingProperties = new Properties();

 // Open and load the properties from the properties file
 final File propertiesFile = new File (propertiesFilePath);
 FileInputStream inputStream = null;
 try {
 // Create a file input stream to the file
 inputStream = new FileInputStream(propertiesFile);

 // Load the properties from the file
 mappingProperties.load(inputStream);
 }
 catch (FileNotFoundException ex) {
 System.err.println("Error initializing SampleCredentialExit.");
 System.err.println("Unable to find the mqUserId mapping properties file: " +
propertiesFilePath);
 initialisationResult = false;
 }
 catch (IOException ex) {
 System.err.println("Error initializing SampleCredentialExit.");
 System.err.println("Error loading the properties from the mqUserId mapping properties
file: " + propertiesFilePath);
 initialisationResult = false;
 }
 finally {
 // Close the inputStream
 if (inputStream != null) {
 try {
 inputStream.close();
 }
 catch (IOException ex) {
 System.err.println("Error initializing SampleCredentialExit.");
 System.err.println("Error closing the mqUserId mapping properties file: " +
propertiesFilePath);
 initialisationResult = false;
 }
 }
 }

 if (initialisationResult) {
 // Populate the map of mqUserId to server credentials from the properties
 final Enumeration<?> propertyNames = mappingProperties.propertyNames();
 while (propertyNames.hasMoreElements()) {
 final Object name = propertyNames.nextElement();
 if (name instanceof String) {
 final String mqUserId = ((String)name).trim();
 // Get the value and split into serverUserId and serverPassword
 final String value = mappingProperties.getProperty(mqUserId);
 final StringTokenizer valueTokenizer = new StringTokenizer(value, ",");
 String serverUserId = "";
 String serverPassword = "";
 if (valueTokenizer.hasMoreTokens()) {
 serverUserId = valueTokenizer.nextToken().trim();
 }
 if (valueTokenizer.hasMoreTokens()) {
 serverPassword = valueTokenizer.nextToken().trim();
 }

Developing applications for IBM MQ 1191

 // Create a Credential object from the serverUserId and serverPassword
final Credentials credentials = new Credentials(new CredentialUserId(serverUserId), new
CredentialPassword(serverPassword));
 // Insert the credentials into the map
 credentialsMap.put(mqUserId, credentials);
 }
 }

 }
 }

 return initialisationResult;
 }
 /* (non-Javadoc)
 * @see com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit#mapMQUserId(java.lang.String)
 */
 public synchronized CredentialExitResult mapMQUserId(String mqUserId) {
 CredentialExitResult result = null;
 // Attempt to get the server credentials for the given mq user id
 final Credentials credentials = credentialsMap.get(mqUserId.trim());
 if (credentials == null) {
 // No entry has been found so return no mapping found with no credentials
 result = new CredentialExitResult(CredentialExitResultCode.NO_MAPPING_FOUND, null);
 }
 else {
 // Some credentials have been found so return success to the user along with the credentials
 result = new CredentialExitResult(CredentialExitResultCode.USER_SUCCESSFULLY_MAPPED,
credentials);
 }
 return result;
 }
 /* (non-Javadoc)
 * @see com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit#shutdown(java.util.Map)
 */
 public void shutdown(Map<String, String> bridgeProperties) {
 // Nothing to do in this method because there are no resources that need to be released
 }
 }

Sample protocol bridge properties user exit

For information about how to use this sample user exit, see ProtocolBridgePropertiesExit2: Looking up
protocol file server properties

SamplePropertiesExit2.java

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Properties;

import com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit2;
import com.ibm.wmqfte.exitroutine.api.ProtocolServerPropertyConstants;

/**
 * A sample protocol bridge properties exit. This exit reads a properties file
 * that contains properties for protocol servers.
 * <p>
 * The format of each entry in the properties file is:
 * {@literal serverName=type://host:port}
 * Ensure there is a default entry such as
 * {@literal default=type://host:port}
 * otherwise the agent will fail to start with a BFGBR0168 as it must have a
 * default server.
 * <p>
 * The location of the properties file is taken from the protocol bridge agent
 * property {@code protocolBridgePropertiesConfiguration}.
 * <p>
 * The methods {@code getCredentialLocation} returns the location of the associated
 * ProtocolBridgeCredentials.xml, this sample it is defined to be stored in a directory
 * defined by the environment variable CREDENTIALSHOME
 * <p>

1192 Developing Applications for IBM MQ

 * To install the sample exit:
 *
 * Compile the class and export to a jar file.
 * Place the jar file in the {@code exits} subdirectory of the agent data directory
 * of the protocol bridge agent on which the exit is to be installed.
 * In the {@code agent.properties} file of the protocol bridge agent
 * set the {@code protocolBridgePropertiesExitClasses} to
 * {@code SamplePropertiesExit2}.
 * Create a properties file that contains the appropriate properties to specify the
 * required servers.
 * In the {@code agent.properties} file of the protocol bridge agent
 * set the <code>protocolBridgePropertiesConfiguration</code> property to the
 * absolute path name of this properties file.
 * To activate the changes stop and restart the protocol bridge agent.
 *
 * <p>
 * For further information on protocol bridge properties exits refer to the
 * WebSphere MQ Managed File Transfer documentation online at:
 * <p>
 * {@link https://www.ibm.com/docs/SSEP7X_7.0.4/welcome/WelcomePagev7r0.html}
 */
public class SamplePropertiesExit2 implements ProtocolBridgePropertiesExit2 {

 /**
 * Helper class to encapsulate protocol server information.
 */
 private static class ServerInformation {
 private final String type;
 private final String host;
 private final int port;

 public ServerInformation(String url) {
 int index = url.indexOf("://");
 if (index == -1) throw new IllegalArgumentException("Invalid server URL: "+url);
 type = url.substring(0, index);

 int portIndex = url.indexOf(":", index+3);
 if (portIndex == -1) {
 host = url.substring(index+3);
 port = -1;
 } else {
 host = url.substring(index+3,portIndex);
 port = Integer.parseInt(url.substring(portIndex+1));
 }
 }

 public String getType() {
 return type;
 }

 public String getHost() {
 return host;
 }

 public int getPort() {
 return port;
 }
 }

 /** A {@code Map} that holds information for each configured protocol server */
 final private Map<String, ServerInformation> servers = new HashMap<String, ServerInformation>();

 /* (non-Javadoc)
 * @see
com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit#getProtocolServerProperties(java.lang.String)
 */
 public Properties getProtocolServerProperties(String protocolServerName) {
 // Attempt to get the protocol server information for the given protocol server name
 // If no name has been supplied then this implies the default.
 final ServerInformation info;
 if (protocolServerName == null || protocolServerName.length() == 0) {
 protocolServerName = "default";
 }
 info = servers.get(protocolServerName);

 // Build the return set of properties from the collected protocol server information, when
available.
 // The properties set here is the minimal set of properties to be a valid set.
 final Properties result;
 if (info != null) {
 result = new Properties();

Developing applications for IBM MQ 1193

 result.setProperty(ProtocolServerPropertyConstants.SERVER_NAME, protocolServerName);
 result.setProperty(ProtocolServerPropertyConstants.SERVER_TYPE, info.getType());
 result.setProperty(ProtocolServerPropertyConstants.SERVER_HOST_NAME, info.getHost());
 if (info.getPort() != -1)
result.setProperty(ProtocolServerPropertyConstants.SERVER_PORT_VALUE, ""+info.getPort());
 result.setProperty(ProtocolServerPropertyConstants.SERVER_PLATFORM, "UNIX");
 if (info.getType().toUpperCase().startsWith("FTP")) { // FTP & FTPS
 result.setProperty(ProtocolServerPropertyConstants.SERVER_TIMEZONE, "Europe/London");
 result.setProperty(ProtocolServerPropertyConstants.SERVER_LOCALE, "en-GB");
 }
 result.setProperty(ProtocolServerPropertyConstants.SERVER_FILE_ENCODING, "UTF-8");
 } else {
 System.err.println("Error no default protocol file server entry has been supplied");
 result = null;
 }

 return result;
 }

 /* (non-Javadoc)
 * @see com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit#initialize(java.util.Map)
 */
 public boolean initialize(Map<String, String> bridgeProperties) {
 // Flag to indicate whether the exit has been successfully initialized or not
 boolean initialisationResult = true;

 // Get the path of the properties file
 final String propertiesFilePath = bridgeProperties.get("protocolBridgePropertiesConfiguration");
 if (propertiesFilePath == null || propertiesFilePath.length() == 0) {
 // The protocol server properties file path has not been specified. Output an error and
return false
 System.err.println("Error initializing SamplePropertiesExit.");
 System.err.println("The location of the protocol server properties file has not been
specified in the
 protocolBridgePropertiesConfiguration property");
 initialisationResult = false;
 }

 if (initialisationResult) {
 // The Properties object that holds protocol server information
 final Properties mappingProperties = new Properties();

 // Open and load the properties from the properties file
 final File propertiesFile = new File (propertiesFilePath);
 FileInputStream inputStream = null;
 try {
 // Create a file input stream to the file
 inputStream = new FileInputStream(propertiesFile);

 // Load the properties from the file
 mappingProperties.load(inputStream);
 } catch (final FileNotFoundException ex) {
 System.err.println("Error initializing SamplePropertiesExit.");
 System.err.println("Unable to find the protocol server properties file: " +
propertiesFilePath);
 initialisationResult = false;
 } catch (final IOException ex) {
 System.err.println("Error initializing SamplePropertiesExit.");
 System.err.println("Error loading the properties from the protocol server properties
file: " + propertiesFilePath);
 initialisationResult = false;
 } finally {
 // Close the inputStream
 if (inputStream != null) {
 try {
 inputStream.close();
 } catch (final IOException ex) {
 System.err.println("Error initializing SamplePropertiesExit.");
 System.err.println("Error closing the protocol server properties file: " +
propertiesFilePath);
 initialisationResult = false;
 }
 }
 }

 if (initialisationResult) {
 // Populate the map of protocol servers from the properties
 for (Entry<Object, Object> entry : mappingProperties.entrySet()) {
 final String serverName = (String)entry.getKey();
 final ServerInformation info = new ServerInformation((String)entry.getValue());
 servers.put(serverName, info);
 }

1194 Developing Applications for IBM MQ

 }
 }

 return initialisationResult;
 }

 /* (non-Javadoc)
 * @see com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit#shutdown(java.util.Map)
 */
 public void shutdown(Map<String, String> bridgeProperties) {
 // Nothing to do in this method because there are no resources that need to be released
 }

 /* (non-Javadoc)
 * @see com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit2#getCredentialLocation()
 */
 public String getCredentialLocation() {
 String envLocationPath;
 if (System.getProperty("os.name").toLowerCase().contains("win")) {
 // Windows style
 envLocationPath = "%CREDENTIALSHOME%\\ProtocolBridgeCredentials.xml";
 }
 else {
 // Unix style
 envLocationPath = "$CREDENTIALSHOME/ProtocolBridgeCredentials.xml";
 }
 return envLocationPath;
 }

}

Controlling MFT by putting messages on the agent command queue
You can write an application that controls Managed File Transfer by putting messages on agent command
queues.

You can put a message on the command queue of an agent to request that the agent performs one of the
following actions:

• Create a file transfer
• Create a scheduled file transfer
• Cancel a file transfer
• Cancel a scheduled file transfer
• Call a command
• Create a monitor
• Delete a monitor
• Return a ping to indicate that the agent is active

To request that the agent performs one of these actions, the message must be in an XML format that
complies with one of the following schema:
FileTransfer.xsd

Messages in this format can be used to create a file transfer or scheduled file transfer, to call a
command, or to cancel a file transfer or scheduled file transfer. For more information, see File transfer
request message format.

Monitor.xsd
Messages in this format can be used to create or delete a resource monitor. For more information, see
MFT monitor request message formats.

PingAgent.xsd
Messages in this format can be used to ping an agent to check that it is active. For more information,
see Ping MFT agent request message format.

The agent returns a reply to the request messages. The reply message is put to a reply queue that is
defined in the request message. The reply message is in an XML format defined by the following schema:

Developing applications for IBM MQ 1195

Reply.xsd
For more information, see MFT agent reply message format.

Developing applications for MQ Telemetry
Telemetry applications integrate sense and control devices with other sources of information available on
the internet and in enterprises.

Develop applications for MQ Telemetry using design patterns, worked examples, sample programs,
programming concepts, and reference information.
Related concepts
MQ Telemetry
Telemetry use cases
Related tasks
Installing MQ Telemetry
Administering MQ Telemetry
Troubleshooting MQ Telemetry problems
Related reference
MQ Telemetry Reference

IBM MQ Telemetry Transport sample programs
Sample scripts are provided that work with a sample IBM MQ Telemetry Transport v3 client application
(mqttv3app.jar). For IBM MQ 8.0.0 and later, the sample client application is no longer included in MQ
Telemetry. It was part of the (no longer available) IBM Messaging Telemetry Clients SupportPac. Similar
sample applications continue to be freely available from Eclipse Paho and MQTT.org.

For the latest information and downloads, see the following resources:

• The Eclipse Paho project, and MQTT.org, have free downloads of the latest telemetry clients and
samples for a range of programming languages. Use these sites to help you develop sample programs
for publishing and subscribing IBM MQ Telemetry Transport, and for adding security features.

• The IBM Messaging Telemetry Clients SupportPac is no longer available for download. If you have a
previously downloaded copy, it has the following contents:

– The MA9B version of the IBM Messaging Telemetry Clients SupportPac included a compiled sample
application (mqttv3app.jar) and associated client library (mqttv3.jar). They were provided in
the following directories:

- ma9b/SDK/clients/java/org.eclipse.paho.sample.mqttv3app.jar
- ma9b/SDK/clients/java/org.eclipse.paho.client.mqttv3.jar

– In the MA9C version of this SupportPac, the /SDK/ directory and contents was removed:

- Only the source for the sample application (mqttv3app.jar) was provided. It was in this
directory:

ma9c/clients/java/samples/org/eclipse/paho/sample/mqttv3app/*.java

- The compiled client library was still provided. It was in this directory:

ma9c/clients/java/org.eclipse.paho.client.mqttv3-1.0.2.jar

If you still have a copy of the (no longer available) IBM Messaging Telemetry Clients SupportPac,
information about installing and running the sample application is provided in Verifying the installation of
MQ Telemetry using the command line.

1196 Developing Applications for IBM MQ

http://www.eclipse.org/paho
https://mqtt.org/

MQTTV3Sample program
Reference information about sample syntax and parameters for the MQTTV3Sample program.

Purpose
The MQTTV3Sample program can be used to publish a message and subscribe to a topic. For information
about how to get this sample program, see “IBM MQ Telemetry Transport sample programs” on page
1196.

MQTTV3Sample syntax

MQTTV3Sample

-h

-q false

-q true

-a publish

-a subscribe

-t SYSTEM.BASE.TOPIC

-t topic

-m default text

-m message text

-s 2

-s 0

-s 1

-b localhost

-b host name

-b IP address

-p 1883

-p port

Parameters
-h

Print this help text and quit
-q

Set quiet mode, instead of using the default mode of false.
-a

Set publish or subscribe, instead of assuming the default action of publishing.
-t

Publish or subscribe to topic, instead of publishing or subscribing to the default topic
-m

Publish message text instead of sending the default publication text, "Hello from an MQTT v3
application".

-s
Set QoS instead of using the default QoS, 2.

-b
Connect to this host name or IP address instead of connecting to the default host name, localhost.

-p
Use this port instead of using the default, 1883.

Run the MQTTV3Sample program

To subscribe to a topic on Windows, use the command:

run MQTTV3Sample -a subscribe

Developing applications for IBM MQ 1197

To publish a message on Windows, use the command:

run MQTTV3Sample

MQTT client programming concepts
The concepts described in this section help you to understand the client libraries for the MQTT protocol.
The concepts complement the API documentation accompanying the client libraries.

For the latest information and downloads, see the following resources:

• The Eclipse Paho project, and MQTT.org, have free downloads of the latest telemetry clients and
samples for a range of programming languages. Use these sites to help you develop sample programs
for publishing and subscribing IBM MQ Telemetry Transport, and for adding security features.

• The IBM Messaging Telemetry Clients SupportPac is no longer available for download. If you have a
previously downloaded copy, it has the following contents:

– The MA9B version of the IBM Messaging Telemetry Clients SupportPac included a compiled sample
application (mqttv3app.jar) and associated client library (mqttv3.jar). They were provided in
the following directories:

- ma9b/SDK/clients/java/org.eclipse.paho.sample.mqttv3app.jar
- ma9b/SDK/clients/java/org.eclipse.paho.client.mqttv3.jar

– In the MA9C version of this SupportPac, the /SDK/ directory and contents was removed:

- Only the source for the sample application (mqttv3app.jar) was provided. It was in this
directory:

ma9c/clients/java/samples/org/eclipse/paho/sample/mqttv3app/*.java

- The compiled client library was still provided. It was in this directory:

ma9c/clients/java/org.eclipse.paho.client.mqttv3-1.0.2.jar

To develop and run an MQTT client you need to copy or install these resources on the client device. You do
not need to install a separate client runtime.

The licensing conditions for clients are associated with the server that you are connecting the clients to.

The MQTT client libraries are reference implementations of the MQTT protocol. You can implement
your own clients in different languages suitable for different device platforms. See IBM MQ Telemetry
Transport format and protocol.

The API documentation makes no assumptions about which MQTT server the client is connected to. The
behavior of the client might differ slightly when connected to different servers. The descriptions that
follow describe the behavior of the client when connected to the IBM MQ telemetry service.

Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.

Callbacks
Note: See the Eclipse Paho website for the latest changes to MqttCallback. For example
MqttCallback is defined as an Interface in the Paho version of the client, and asynchronous methods
are provided by the Paho MqttAsyncClient class.

The MqttCallback interface has three callback methods:

1198 Developing Applications for IBM MQ

http://www.eclipse.org/paho
https://mqtt.org/
https://eclipse.org/paho/

connectionLost(java.lang.Throwable cause)

connectionLost is called when a communications error leads to the connection dropping. It
is also called if the server drops the connection as a result of an error on the server after the
connection has been established. Server errors are logged to the queue manager error log. The
server drops the connection to the client, and the client calls MqttCallback.connectionLost.
The only remote errors thrown as exceptions on the same thread as the client application are
exceptions from MqttClient.connect. Errors detected by the server after the connection is
established are reported back to the MqttCallback.connectionLost callback method as
throwables.
Typical server errors that result in connectionLost are authorization errors. For example, the
telemetry server tries to publish on a topic on behalf of a client that is not authorized to publish
on the topic. Anything that results in a MQCC_FAIL condition code being returned to the telemetry
server can result in the connection being dropped.

deliveryComplete(IMqttDeliveryToken token)

deliveryComplete is called by the MQTT client to pass a delivery token back to the client
application; see “Delivery tokens” on page 1205. Using the delivery token, the callback can access
the published message with the method token.getMessage.
When the application callback returns control to the MQTT client after being called by the
deliveryComplete method, delivery is completed. Until delivery is completed, messages with
QoS 1 or 2 are retained by the persistence class.
The call to deliveryComplete is a point of synchronization between the application and the
persistence class. The deliveryComplete method is never called twice for the same message.
When the application callback returns from deliveryComplete to the MQTT client,
the client calls MqttClientPersistence.remove for messages with QoS 1 or 2.
MqttClientPersistence.remove deletes the locally stored copy of the published message.
From a transaction processing perspective, the call to deliveryComplete is a single phase
transaction that commits the delivery. If processing fails during the callback, on restart of the
client MqttClientPersistence.remove is called again to delete the local copy of the published
message. The callback is not called again. If you are using the callback to store a log of delivered
messages, you cannot synchronize the log with the MQTT client. If you want to store a log reliably,
then update the log in the MqttClientPersistence class.
The delivery token and message are referenced by the main application thread and the MQTT
client. The MQTT client dereferences the MqttMessage object when delivery is completed, and
the delivery token object when the client disconnects. The MqttMessage object can be garbage
collected after delivery is completed if the client application dereferences it. The delivery token
can be garbage collected after the session is disconnected.
You can get IMqttDeliveryToken and MqttMessage attributes after a message has been
published. If you attempt to set any MqttMessage attributes after the message has been
published the result is undefined.
The MQTT client continues to process delivery acknowledgments if the client reconnects to the
previous session with the same ClientIdentifier ; see “Clean sessions” on page 1202.
The MQTT client application must set MqttClient.CleanSession to false for the previous
session, and set it to false in the new session. The MQTT client creates new delivery tokens
and message objects in the new session for pending deliveries. It recovers the objects using the
MqttClientPersistence class. If the application client still has references to the old delivery
tokens and messages, dereference them. The application callback is called in the new session for
any deliveries initiated in the previous session and completed in this session.
The application callback is called after the application client connects, when a pending delivery
is completed. Before the application client connects, it can retrieve pending deliveries using the
MqttClient.getPendingDeliveryTokens method.
Notice that the client application originally created the message object that is published,
and its payload byte array. The MQTT client references these objects. The message object
returned by the delivery token in the method token.getMessage is not necessarily the same
message object created by the client. If a new MQTT client instance re-creates the delivery
token, the MqttClientPersistence class re-creates the MqttMessage object. For consistency

Developing applications for IBM MQ 1199

token.getMessage returns null if token.isCompleted is true, regardless of whether the
message object was created by the application client or the MqttClientPersistence class.

messageArrived(String topic, MqttMessage message)

messageArrived is called when a publication arrives for the client that matches a subscription
topic. topic is the publication topic, not the subscription filter. The two can be different if the filter
contains wildcards.
If the topic matches multiple subscriptions created by the client, the client receives multiple
copies of the publication. If a client publishes to a topic that it also subscribes to, it receives a copy
of its own publication.
If a message is sent with a QoS of 1 or 2, the message is stored by the MqttClientPersistence
class before the MQTT client calls messageArrived. messageArrived behaves like
deliveryComplete: it is only called once for a publication, and the local copy of the publication
is removed by MqttClientPersistence.remove when messageArrived returns to the MQTT
client. The MQTT client drops its references to the topic and message when messageArrived
returns to the MQTT client. The topic and message objects are garbage collected, if the application
client has not held onto a reference to the objects.

Callbacks, threading, and client application synchronization
The MQTT client calls a callback method on a separate thread to the main application thread. The client
application does not create a thread for the callback, it is created by the MQTT client.

The MQTT client synchronizes callback methods. Only one instance of the callback method runs at a time.
The synchronization makes it easy to update an object that tallies which publications have been delivered.
One instance of the MqttCallback.deliveryComplete runs at a time, and so it is safe to update the
tally without further synchronization. It is also the case that only one publication arrives at a time. Your
code in the messageArrived method can update an object without synchronizing it. If you are referring
to the tally, or the object that is being updated, in another thread, synchronize the tally or object.

The delivery token provides a synchronization mechanism between the main application thread
and delivery of a publication. The method token.waitForCompletion waits until delivery
of a specific publication is completed, or until an optional timeout expires. You might use
token.waitForCompletion in the following way to process one publication at a time.

To synchronize with the MqttCallback.deliveryComplete method. Only when
MqttCallback.deliveryComplete returns to the MQTT Client does token.waitForCompletion
resume. Using this mechanism you can synchronize running code in
MqttCallback.deliveryComplete before code runs in the main application thread.

What if you wanted to publish without waiting for each publication to be delivered, but want confirmation
when all the publications have been delivered? If you publish on a single thread, the last publication to be
sent is also the last to be delivered.

Synchronization of requests sent to the server
Table 188 on page 1201 describes the methods in the MQTT Java client that send a request to the server.
Unless the application client sets an indefinite timeout, the client never waits indefinitely for the server. If
the client hangs, it is either an application programming problem, or a defect in the MQTT client.

1200 Developing Applications for IBM MQ

Table 188. Synchronization behavior of methods that result in requests to the server

Method Synchronization Timeout interval

MqttClient.Connect Waits for a connection to be
established with the server.

Defaults to 30 seconds, or as
set by a parameter, then throws
an exception.

MqttClient.Disconnect

Waits for the MQTT client to
finish any work it must do,
and for the TCP/IP session to
disconnect.

MqttClient.Subscribe Waits for completion of the
Subscribe or UnSubscribe
method.MqttClient.UnSubscribe

MqttClient.Publish
Returns immediately to the
application thread after passing
the request to the MQTT client.

None.

IMqttDeliveryToken.waitFor
Completion

Waits for the delivery token to
be returned.

Indefinite, or as set as a
parameter.

Related concepts
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients

Developing applications for IBM MQ 1201

A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.

When you connect an MQTT client application using the MqttClient.connect method, the client
identifies the connection using the client identifier and the address of the server. The server checks
whether session information has been saved from a previous connection to the server. If a previous
session still exists, and cleanSession=true, then the previous session information at the client and
server is cleared. If cleanSession=false the previous session is resumed. If no previous session
exists, a new session is started.

Note: The IBM MQ Administrator can forcibly close an open session and delete all the session
information. If the client reopens the session with cleanSession=false, a new session is started.

Publications
If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to true
before connecting the client, all pending publication deliveries for the client are removed when the client
connects.

The clean session setting has no effect on publications sent with QoS=0. For QoS=1 and QoS=2, using
cleanSession=true might result in losing a publication.

Subscriptions
If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to true
before connecting the client, any old subscriptions for the client are removed when the client connects.
Any new subscriptions the client makes during the session are removed when it disconnects.

If you set MqttConnectOptions.cleanSession to false before connecting, any subscriptions the
client creates are added to all the subscriptions that existed for the client before it connected. All the
subscriptions remain active when the client disconnects.

Another way of understanding the way the cleanSession attribute affects subscriptions is to
think of it as a modal attribute. In its default mode, cleanSession=true, the client creates
subscriptions and receives publications only within the scope of the session. In the alternative mode,
cleanSession=false, subscriptions are durable. The client can connect and disconnect and its
subscriptions remain active. When the client reconnects, it receives any undelivered publications. While it
is connected, it can modify the set of subscriptions that are active on its behalf.

You must set the cleanSession mode before connecting; the mode lasts for the whole session. To
change its setting, you must disconnect and reconnect the client. If you change modes from using
cleanSession=false to cleanSession=true, all previous subscriptions for the client, and any
publications that have not been received, are discarded.

1202 Developing Applications for IBM MQ

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.

The client identifier is used in the administration of an MQTT system. With potentially hundreds of
thousands of clients to administer, you need to be able to identify a particular client rapidly. For example,
suppose a device has malfunctioned and you are notified, perhaps by a customer ringing a help desk. The
customer needs to be able to identify the device, and you need to be able to correlate that identification
with the server that is typically connected to the client.

Developing applications for IBM MQ 1203

When you browse through MQTT client connections, each connection is labeled with the client identifier.
To help decide how best to map this identifier to the device and server, ask yourself the following
questions:

• Would it be convenient to maintain and use a database that maps each device to a client identifier and
to a server?

• Could the name of the device identify the server to which it is attached?
• Do you need a look-up table that maps a client identifier to a physical device?
• Does the client identifier identify a particular device, a user, or an application running at the client?
• If a customer replaces a faulty device with a new one, does the new device have the same identifier

as the old device, or do you allocate a new identifier? (If you change a physical device and keep the
same identifier, outstanding publications and active subscriptions are automatically transferred to the
new device.)

You also need a system to ensure that client identifiers are unique, and you must have a reliable process
for setting the identifier on the client. If the client device is a "black-box", with no user interface, you could
manufacture the device with a client identifier, or you could have a software installation and configuration
process that configures the device before it is activated.

To keep the identifier short and unique, you could create a client identifier from the 48 bit device MAC
address. If transmission size is not a critical issue, you could then use the remaining 17 bytes to make the
address easier to administer.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Delivery tokens
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients

1204 Developing Applications for IBM MQ

A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Delivery tokens
When a client publishes on a topic a new delivery token is created. Use the delivery token to monitor the
delivery of a publication, or to block the client application until delivery is complete.

The token is an MqttDeliveryToken object. It is created by calling the MqttTopic.publish() method and
is retained by the MQTT client until the client session is disconnected and the delivery is completed.

The normal use of the token is to check whether delivery is complete. Block the client application until
delivery is complete by using the returned token to call token.waitForCompletion. Alternatively,
provide a MqttCallBack handler. When the MQTT client has received all the acknowledgments it
expects as part of delivering the publication, it calls MqttCallBack.deliveryComplete passing the
delivery token as a parameter.

Until delivery is complete, you can inspect the publication using the returned delivery token by calling
token.getMessage.

Completed deliveries
The completion of deliveries is asynchronous and depends on the quality of service associated with the
publication.
At most once

QoS=0
Delivery is complete immediately on return from MqttTopic.publish.
MqttCallback.deliveryComplete is called immediately.

At least once

QoS=1
Delivery is complete when an acknowledgment to the publication has been received
from the queue manager. MqttCallback.deliveryComplete is called when the
acknowledgment is received. The message might be delivered more than once before
MqttCallback.deliveryComplete is called, if communications are slow or unreliable.

Exactly once

QoS=2
Delivery is complete when the client receives a completion message that the publication has
been published to subscribers. MqttCallback.deliveryComplete is called as soon as the
publication message is received. It does not wait for the completion message.

In rare circumstances, your client application might not return to the MQTT client from
MqttCallback.deliveryComplete normally. You know that delivery has completed, because
the MqttCallback.deliveryComplete was called. If the client restarts the same session,
MqttCallback.deliveryComplete does not get called again.

Developing applications for IBM MQ 1205

Incomplete deliveries
If the delivery is not complete after the client session is disconnected you can connect the client again
and complete the delivery. You can only complete the delivery of a message if the message was published
in a session with the MqttConnectionOptions attribute set to false.

Create the client using the same client identifier and server address, and then connect, setting the
cleanSession MqttConnectionOptions attribute to false again. If you set cleanSession to true,
pending delivery tokens are thrown away.

You can check if there are any pending deliveries
by calling MqttClient.getPendingDeliveryTokens. You can call
MqttClient.getPendingDeliveryTokens before connecting the client.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.

1206 Developing Applications for IBM MQ

Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.

Create a topic for the last will and testament. You might create a topic such as MQTTManagement/
Connections/server URI/client identifer/Lost.

Set up a "last will and testament" using the MqttConnectionOptions.setWill(MqttTopic
lastWillTopic, byte [] lastWillPayload, int lastWillQos, boolean
lastWillRetained) method.

Consider creating a time stamp in the lastWillPayload message. Include other client information
that assists in identifying the client and the circumstances of the connection. Pass the
MqttConnectionOptions object to the MqttClient constructor.

Set lastWillQos to 1 or 2, to make the message persistent in IBM MQ, and to guarantee delivery. To
retain the last lost connection information, set the lastWillRetained to true.

The "last will and testament" publication is sent to subscribers if the connection ends unexpectedly. It is
sent if the connection ends without the client calling the MqttClient.disconnect method.

To monitor connections, complement the "last will and testament" publication with other publications to
record connections and programmed disconnections.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client

Developing applications for IBM MQ 1207

An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.

In MQTT, message persistence has two aspects; how the message is transferred, and whether it is
queued in IBM MQ as a persistent message.

1. The MQTT client couples message persistence with quality of service. Depending on what quality of
service you choose for a message, the message is made persistent. Message persistence is necessary
to implement the required quality of service.

If you specify "at most once", QoS=0, the client discards the message as soon as it is published. If
there is any failure in the upstream processing of the message, the message is not sent again. Even
if the client remains active the message is not sent again. The behavior of QoS=0 messages is the
same as IBM MQ fast nonpersistent messages.
If a message is published by a client with QoS of 1 or 2, it is made persistent. The message is stored
locally, and only discarded from the client when it is no longer needed to guarantee "at least once",
QoS=1, or "exactly once", QoS=2, delivery.

2. If a message is marked as QoS 1 or 2, it is queued in IBM MQ as a persistent message. If it is
marked as QoS=0, then it is queued in IBM MQ as a nonpersistent message. In IBM MQ nonpersistent
messages are transferred between queue managers "exactly once", unless the message channel has
the NPMSPEED attribute set to FAST.

A persistent publication is stored on the client until it is received by a client application. For QoS=2, the
publication is discarded from the client when the application callback returns control. For QoS=1 the
application might receive the publication again, if a failure occurs. For QoS=0, the callback receives the
publication no more than once. It might not receive the publication if there is a failure, or if the client is
disconnected at the time of publication.

When you subscribe to a topic, you can reduce the QoS with which the subscriber receives messages to
match its persistence capabilities. Publications that are created at a higher QoS are sent with the highest
QoS that the subscriber requested.

Storing messages
The implementation of data storage on small devices varies a great deal. The model of temporarily saving
persistent messages in storage that is managed by the MQTT client might be too slow, or demand too
much storage. In mobile devices, the mobile operating system might provide a storage service that is
ideal for MQTT messages.

1208 Developing Applications for IBM MQ

To provide flexibility in meeting the constraints of small devices, the MQTT client has two persistence
interfaces. The interfaces define the operations that are involved in storing persistent messages. The
interfaces are described in the API documentation for the MQTT client for Java. For links to client API
documentation for the MQTT client libraries, see MQTT client programming reference. You can implement
the interfaces to suit a device. The MQTT client that runs on Java SE has a default implementation of the
interfaces that store persistent messages in the file system. It uses the java.io package.

Persistence classes
MqttClientPersistence

Pass an instance of your implementation of MqttClientPersistence to the MQTT client as a
parameter of the MqttClient constructor. If you omit the MqttClientPersistence parameter
from the MqttClient constructor, the MQTT client stores persistent messages using the class
MqttDefaultFilePersistence.

MqttPersistable
MqttClientPersistence gets and puts MqttPersistable objects using a storage key. You
must provide an implementation of MqttPersistable as well as the implementation of
MqttClientPersistence if you are not using the MqttDefaultFilePersistence.

MqttDefaultFilePersistence

The MQTT client provides the MqttDefaultFilePersistence class. If you instantiate
MqttDefaultFilePersistence in your client application, you can provide the directory to store
persistent messages as a parameter of the MqttDefaultFilePersistence constructor.

Alternatively, the MQTT client can instantiate MqttDefaultFilePersistence and place files in the
following default directory:

client identifier -tcp hostname portnumber

The following characters are removed from the directory name string:

"\", "\\", "/", ":" and " "

The path to the directory is the value of the system property rcp.data; If rcp.data is not set, the
path is the value of the system property usr.data, where

• rcp.data is a property associated with installation of an OSGi or Eclipse Rich Client Platform (RCP).
• usr.data is the directory in which the Java command that started the application was launched.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Last will and testament publication

Developing applications for IBM MQ 1209

If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.

An MqttMessage has a byte array as its payload. Aim to keep messages as small as possible. The
maximum length of message permitted by the MQTT protocol is 250 MB.

Typically, an MQTT client program uses java.lang.String or java.lang.StringBuffer to
manipulate message contents. For convenience, the MqttMessage class has a toString method
to convert its payload to a string. To create the byte array payload from a java.lang.String or
java.lang.StringBuffer, use the getBytes method.

The getBytes method converts a string to the default character set for the platform. The default
character set is generally UTF-8. MQTT publications that contain only text are usually encoded in UTF-8.
Use the method getBytes("UTF8") to override the default character set.

In IBM MQ, an MQTT publication is received as a jms-bytes message. The message includes an MQRFH2
folder containing an <mqtt>, and an <mqps> folder. The <mqtt> folder contains the clientId, msgId,
and qos, but this content might change in the future.

An MqttMessage has three additional attributes: quality of service, whether it is retained, and whether it
is a duplicate. The duplicate flag is only set if the quality of service is "at least once" or "exactly once". If
the message was sent previously, and not acknowledged quickly enough by the MQTT client, the message
is sent again, with the duplicate attribute set to true.

Publishing
To create a publication in an MQTT client application, create an MqttMessage. Set its payload, quality
of service and whether it is retained, and call the MqttTopic.publish(MqttMessage message)
method; MqttDeliveryToken is returned and the completion of the publication is asynchronous.

Alternatively, the MQTT client can create a temporary message object for you from the parameters on
the MqttTopic.publish(byte [] payload, int qos, boolean retained) method when it
creates a publication.

1210 Developing Applications for IBM MQ

If the publication has an "at least once" or an "exactly once" quality of service, QoS=1 or QoS=2, the
MQTT client calls the MqttClientPersistence interface. It calls MqttClientPersistence to store
the message before returning a delivery token to the application.

The application can choose to block until the message is delivered to the server, using the
MqttDeliveryToken.waitForCompletion method. Alternatively, the application can continue
without blocking. If you want to check if publications are delivered, without blocking, register an instance
of a callback class that implements MqttCallback with the MQTT client. The MQTT client calls the
MqttCallback.deliveryComplete method as soon as the publication has been delivered. Depending
on the quality of service, the delivery might be almost immediate for QoS=0, or it might take some time for
QoS=2.

Use the MqttDeliveryToken.isComplete method to poll if delivery is complete. While the value
of MqttDeliveryToken.isComplete is false, you can call MqttDeliveryToken.getMessage
to get the message contents. If the result of calling MqttDeliveryToken.isComplete is true,
the message has been discarded and calling MqttDeliveryToken.getMessage would throw a null
pointer exception. There is no built-in synchronization between MqttDeliveryToken.getMessage and
MqttDeliveryToken.isComplete.

If the client disconnects before receiving all the pending delivery tokens, a new instance of
the client can query pending delivery tokens before connecting. Until the client connects, no
new deliveries are completed, and it is safe to call MqttDeliveryToken.getMessage. Use the
MqttDeliveryToken.getMessage method to find out which publications have not been delivered.
Pending delivery tokens are discarded if you connect with MqttConnectOptions.cleanSession set to
its default value, true.

Subscribing
A queue manager is responsible for creating publications to send to an MQTT subscriber. The queue
manager checks if the topic filter in a subscription created by an MQTT client matches the topic string in
a publication. The match can either be an exact match, or the match can include wildcards. Before the
publication is forwarded to the subscriber by the queue manager, the queue manager checks the topic
attributes associated with the publication. It follows the search procedure described in Subscribing using
a topic string that contains wildcard characters to identify if an administrative topic object grants the user
authority to subscribe.

When the MQTT client receives a publication with "at least once" quality of service, it calls the
MqttCallback.messageArrived method to process the publication. If the quality of service of the
publication is "exactly once", QoS=2, the MQTT client calls the MqttClientPersistence interface to
store the message when it is received. It then calls MqttCallback.messageArrived.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens

Developing applications for IBM MQ 1211

Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.

The quality of service of a publication is an attribute of MqttMessage. It is set by the method
MqttMessage.setQos.

The method MqttClient.subscribe can reduce the quality of service applied to publications sent to a
client on a topic. The quality of service of a publication forwarded to a subscriber might be different to the
quality of service of the publication. The lower of the two values is used to forward a publication.

At most once
QoS=0

The message is delivered at most once, or it is not delivered at all. Its delivery across the network
is not acknowledged.
The message is not stored. The message might be lost if the client is disconnected, or if the server
fails.
QoS=0 is the fastest mode of transfer. It is sometimes called "fire and forget".
The MQTT protocol does not require servers to forward publications at QoS=0 to a client. If the
client is disconnected at the time the server receives the publication, the publication might be
discarded, depending on the server. The telemetry (MQXR) service does not discard messages
sent with QoS=0. They are stored as nonpersistent messages, and are only discarded if the queue
manager stops.

At least once
QoS=1

QoS=1 is the default mode of transfer.

1212 Developing Applications for IBM MQ

The message is always delivered at least once. If the sender does not receive an acknowledgment,
the message is sent again with the DUP flag set until an acknowledgment is received. As a result,
the receiver can be sent the same message multiple times, and might process it multiple times.
The message must be stored locally at the sender and the receiver until it is processed.
The message is deleted from the receiver after it has processed the message. If the receiver is
a broker, the message is published to its subscribers. If the receiver is a client, the message
is delivered to the subscriber application. After the message is deleted, the receiver sends an
acknowledgment to the sender.
The message is deleted from the sender after it has received an acknowledgment from the
receiver.

Exactly once
QoS=2

The message is always delivered exactly once.
The message must be stored locally at the sender and the receiver until it is processed.
QoS=2 is the safest, but slowest mode of transfer. It takes at least two pairs of transmissions
between the sender and receiver before the message is deleted from the sender. The message can
be processed at the receiver after the first transmission.
In the first pair of transmissions, the sender transmits the message and gets acknowledgment
from the receiver that it has stored the message. If the sender does not receive an
acknowledgment, the message is sent again with the DUP flag set until an acknowledgment is
received.
In the second pair of transmissions, the sender tells the receiver that it can complete processing
the message, "PUBREL". If the sender does not receive an acknowledgment of the "PUBREL"
message, the "PUBREL" message is sent again until an acknowledgment is received. The sender
deletes the message it saved when it receives the acknowledgment to the "PUBREL" message
The receiver can process the message in the first or second phases, provided that it does not
reprocess the message. If the receiver is a broker, it publishes the message to subscribers. If the
receiver is a client, it delivers the message to the subscriber application. The receiver sends a
completion message back to the sender that it has finished processing the message.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients

Developing applications for IBM MQ 1213

Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.

Use the MqttMessage.setRetained method to specify whether a publication on a topic is retained.

When you create or update a retained publication, send the publication with a QoS of 1 or 2. If you send
it with a QoS of 0, IBM MQ creates a nonpersistent retained publication. The publication is not retained if
the queue manager stops.

If you publish a non-retained publication to a topic that has a retained publication, the retained
publication is not affected. Current subscribers receive the new publication. New subscribers receive
the retained publication first, then receive any new publications.

You can use a retained publication to record the latest value of a measurement. New subscribers to a
topic immediately receive the most recent value of the measurement. If no new measurements are taken
since the subscriber last subscribed to the publication topic, and if the subscriber subscribes again, the
subscriber receives the most recent retained publication on the topic again.

To delete a retained publication, you have two options:

• Run the CLEAR TOPICSTR MQSC command.
• Create a zero-length retained publication. As specified in the MQTT 3.1.1 specification, if a zero-length

retained message is published to a topic, any retained message for that topic is cleared.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.

1214 Developing Applications for IBM MQ

Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.

Create subscriptions using the MqttClient.subscribe methods, passing one or more topic filters and
quality of service parameters. The quality of service parameter sets the maximum quality of service that
the subscriber is prepared to use to receive a message. Messages sent to this client cannot be delivered
with a higher quality of service. The quality of service is set to the lower of the original value when the
message was published and the level specified for the subscription. The default quality of service for
receiving messages is QoS=1, at least once.

The subscription request itself is sent with QoS=1.

Publications are received by a subscriber when the MQTT client calls the
MqttCallback.messageArrived method. The messageArrived method also passes the topic string
with which the message was published to the subscriber.

You can remove a subscription, or a set or subscriptions, using the MqttClient.unsubscribe
methods.

Developing applications for IBM MQ 1215

An IBM MQ command can remove a subscription. List subscriptions using IBM MQ Explorer, or by using
runmqsc or PCF commands. All MQTT client subscriptions are named. They are given a name of the form:
ClientIdentifier:Topic name

If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to true
before connecting the client, any old subscriptions for the client are removed when the client connects.
Any new subscriptions the client makes during the session are removed when it disconnects.

If you set MqttConnectOptions.cleanSession to false before connecting, any subscriptions the
client creates are added to all the subscriptions that existed for the client before it connected. All the
subscriptions remain active when the client disconnects.

Another way of understanding the way the cleanSession attribute affects subscriptions is to
think of it as a modal attribute. In its default mode, cleanSession=true, the client creates
subscriptions and receives publications only within the scope of the session. In the alternative mode,
cleanSession=false, subscriptions are durable. The client can connect and disconnect and its
subscriptions remain active. When the client reconnects, it receives any undelivered publications. While it
is connected, it can modify the set of subscriptions that are active on its behalf.

You must set the cleanSession mode before connecting; the mode lasts for the whole session. To
change its setting, you must disconnect and reconnect the client. If you change modes from using
cleanSession=false to cleanSession=true, all previous subscriptions for the client, and any
publications that have not been received, are discarded.

Publications that match active subscriptions are sent to the client as soon as they are published. If the
client is disconnected, they are sent to the client if it reconnects to the same server with the same client
identifier and MqttConnectOptions.cleanSession set to false.

Subscriptions for a particular client are identified by the client identifier. You can reconnect the client
from a different client device to the same server, and continue with the same subscriptions and receive
undelivered publications.

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the

1216 Developing Applications for IBM MQ

default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters in
MQTT clients is largely the same as topic strings in IBM MQ.

Topics strings are used to send publications to subscribers. Create a topic string using the method,
MqttClient.getTopic(java.lang.String topicString).

Topic filters are used to subscribe to topics and receive publications. Topic filters can contain wildcards.
With wildcards, you can subscribe to multiple topics. Create a topic filter by using a subscription method;
for example, MqttClient.subscribe(java.lang.String topicFilter).

Topic strings
The syntax of an IBM MQ topic string is described in Topic Strings. The syntax of MQTT topic strings is
described in the MqttClient class in the API documentation for the MQTT client for Java. For links to
client API documentation for the MQTT client libraries, see MQTT client programming reference.

The syntax of each type of topic string is almost identical. There are four minor differences:

1. Topic strings sent to IBM MQ by MQTT clients must follow the convention for queue manager names.
2. The maximum lengths differ. IBM MQ topic strings are limited to 10,240 characters. An MQTT client

can create topic strings of up to 65535 bytes.
3. A topic string created by an MQTT client cannot contain a null character.
4. In IBM Integration Bus, a null topic level, '...//...' is invalid. Null topic levels are supported by

IBM MQ.

Unlike IBM MQ publish/subscribe, the mqttv3 protocol does not have a concept of an administrative
topic object. You cannot construct a topic string from a topic object and a topic string. However, a
topic string is mapped to an administrative topic in IBM MQ. The access control associated with the
administrative topic determines whether a publication is published to the topic, or discarded. The
attributes that are applied to a publication when it is forwarded to subscribers, are influenced by the
attributes of the administrative topic.

Topic filters
The syntax of an IBM MQ topic filter is described in Topic-based wildcard scheme. The syntax of the
topic filters you can construct with an MQTT client are described in the MqttClient class in the API
documentation for the MQTT client for Java. For links to client API documentation for the MQTT client
libraries, see MQTT client programming reference.

Developing applications for IBM MQ 1217

Related concepts
Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.
Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure "at least once" and "exactly once" delivery, and "exactly once" receipt
of publications. Session state also includes subscriptions created by an MQTT client. You can choose to
run an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.
Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.
Delivery tokens
Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure MQ Telemetry to send a "last will and
testament" publication. Predefine the content of the publication, and the topic to send it to. The "last will
and testament" is a connection property. Create it before connecting the client.
Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of "at least once",
or "exactly once". You can implement your own persistence mechanism on the client, or use the
default persistence mechanism that is provided with the client. Persistence works in both directions,
for publications sent to or from the client.
Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT clients can
create publications to send to IBM MQ, and subscribe to topics on IBM MQ to receive publications.
Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the MQTT
client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to IBM
MQ to create a subscription, the request is sent with the "at least once" quality of service.
Retained publications and MQTT clients
A topic can have one, and only one, retained publication. If you create a subscription to a topic that has a
retained publication, the publication is immediately forwarded to you.
Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.

Developing Microsoft Windows Communication Foundation
applications with IBM MQ

The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.
Related concepts
“Introduction to the IBM MQ custom channel for WCF with .NET” on page 1219

1218 Developing Applications for IBM MQ

The custom channel for IBM MQ is a transport channel using the Microsoft Windows Communication
Foundation (WCF) unified programming model.
“Using IBM MQ custom channels for WCF” on page 1223
Overview of the information available for programmers using IBM MQ custom channels for Windows
Communication Foundation (WCF).
“Using the WCF samples” on page 1242
The Windows Communication Foundation (WCF) samples provide some simple examples of how the IBM
MQ custom channel can be used.
FFST: WCF XMS First Failure Support Technology
Related tasks
Tracing the WCF custom channel for IBM MQ
Troubleshooting WCF custom channel for IBM MQ problems

Introduction to the IBM MQ custom channel for WCF with .NET
The custom channel for IBM MQ is a transport channel using the Microsoft Windows Communication
Foundation (WCF) unified programming model.

The Microsoft Windows Communication Foundation framework, introduced in Microsoft.NET 3,
enables .NET applications and services to be developed independently from the transport and protocols
used to connect them, enabling alternative transports or configurations to be used according to the
environment that the service or application is deployed in.

Connections are managed at run time by WCF by building a channel stack containing the required
combination of:

• Protocol elements: An optional set of elements where none, one, or more can be added to support
protocols such as the WS-* standards.

• Message encoder: A mandatory element in the stack controlling the serializing of the message into its
wire format.

• Transport channel: A mandatory element in the stack responsible for transporting the serialized
message to its endpoint.

The custom channel for IBM MQ is a transport channel, and as such must be paired with a message
encoder and optional protocols as required by the application using a WCF custom binding. In this way,
applications which have been developed to use WCF can use the custom channel for IBM MQ to send and
receive data in the same way as they use the built-in transports provided by Microsoft, enabling simple
integration with the asynchronous, scalable, and reliable messaging functions of IBM MQ. For a full list of
supported functions, see: “WCF Custom channel features and capabilities” on page 1223.

When and why do I use the IBM MQ custom channel for WCF?
You can use the IBM MQ custom channel to send and receive messages between WCF clients and
services in the same way as the built-in transports provided by Microsoft, enabling applications to access
the features of IBM MQ within the WCF unified programming model.

A typical usage pattern scenarios for the IBM MQ custom channel for WCF is as a non-SOAP interface for
transmission of native IBM MQ messages.

Messages carried using the Non-SOAP/Non-JMS message (Pure MQMessage) format
When you use the IBM MQ custom channel for WCF as a non-SOAP interface for the transmission of
native IBM MQ messages, the messages are carried by using the Non-SOAP/Non-JMS message (Pure
MQMessage) format of IBM MQ.

WCF users are able to start the service, or in other words, service users are able to send a message to
an IBM MQ queue by using MQMessages. Applications can get and set the MQMD fields and payload.
When the message is available in IBM MQ queues, this message can be processed by any WCF service or
non-WCF applications such as C or Java applications that are running on AIX, Linux, Windows, or z/OS.

Developing applications for IBM MQ 1219

Software requirements for the IBM MQ custom channel for WCF
This topic outlines the software requirements for the IBM MQ custom channel for WCF. The IBM MQ
custom channel for WCF can only connect to IBM WebSphere MQ 7.0 or higher queue managers.

Runtime environment requirements
• Microsoft.NET Framework v4.7.2 or higher must be installed on the host machine.
• Java and .NET Messaging and Web Services is installed by default as part of the IBM MQ installer.

This component installs the .NET assemblies needed for the custom channel into the Global Assembly
Cache.

Note: If the Microsoft .NET Framework V4.7.2 or higher is not installed before you install IBM MQ,
then the IBM MQ product installation continues without error, but the IBM MQ classes for .NET is not
available. If the.NET Framework is installed after you install IBM MQ, then the IBM MQ.NET assemblies
must be registered by running the WMQInstallDir\bin\amqiRegisterdotNet.cmd script, where
WMQInstallDir is the directory where IBM MQ is installed. This script installs the required assemblies
in the Global Assembly Cache (GAC). A set of amqi*.log files that record the actions that are taken
are created in the %TEMP% directory. It is not necessary to rerun the amqiRegisterdotNet.cmd script
if .NET is upgraded to V4.7.2 or higher from an earlier version, for example, from .NET V3.5.

Development environment requirements
• Microsoft Visual Studio 2015 or Windows Software Development Kit for .NET 4.7.2 or later.
• Microsoft.NET Framework V4.7.2 or higher must be installed on the host machine in order to build the

sample solution files.

IBM MQ custom channel for WCF: What's installed?
The custom channel for IBM MQ is a transport channel using the Microsoft Windows Communication
Foundation (WCF) unified programming model. The custom channel is installed by default as part of the
installation.

IBM MQ custom channel for WCF
The custom channel and its dependencies are contained within the Java and .NET Messaging and
Web Services component, which is installed by default. When upgrading IBM MQ from an earlier
version thanIBM MQ 8.0, the update installs the IBM MQ custom channel for WCF by default if the
Java and .NET Messaging and Web Services component was previously installed in an earlier
installation.

The .NET Messaging and Web Services component contains the IBM.XMS.WCF.dll file, and the
IBM.WMQ.WCF.dll file, and these files are the main custom channel assembly, which contains the WCF
interface classes. These files are installed in the Global Assembly Cache (GAC) and are also available in
the following directory: MQ_INSTALLATION_PATH \bin where MQ_INSTALLATION_PATH is the directory
in which IBM MQ is installed.

The following table summarizes the key classes that are required for using the custom channel.

Table 189. Key classes required for using the custom channel

SOAP/JMS interface (Existing)
Non-SOAP/Non-JMS interface (From
IBM MQ 8.0)

Custom Channel
Assembly

IBM.XMS.WCF.dll IBM.WMQ.WCF.dll

Transport Binding
Name

IBM.XMS.WCF.SoapJmsIbmTransport
BindingElement

IBM.WMQ.WCF.WmqIbmTransportBindin
gElement

1220 Developing Applications for IBM MQ

Table 189. Key classes required for using the custom channel (continued)

SOAP/JMS interface (Existing)
Non-SOAP/Non-JMS interface (From
IBM MQ 8.0)

Transport Binding
Importer

IBM.XMS.WCF.SoapJmsIbmTransport
BindingElementImporter

IBM.WMQ.WCF.WmqIbmTransportBindin
gElementImporter

Transport Binding
Config

IBM.XMS.WCF.SoapJmsIbmTransport
BindingElementConfig

IBM.WMQ.WCF.WmqIbmTransportBindin
gElementConfig

Samples(Oneway) SimpleOneWay_Client,
SimpleOneWay_Service

MQMessaging_OneWay_Client,MQMessa
ging_OneWay_Service

Samples(RequestRep
ly)

SimpleRequestReply_Client,
SimpleRequestReply_Service

MQMessaging_RequestReply_Client,MQ
Messaging_RequestReply_Service

IBM.WMQ.WCF.dll supports both SOAP/JMS and Non-SOAP/Non-JMS interfaces. New applications
developed are recommended to use the IBM.WMQ.WCF assembly as it supports both interfaces.

Sending MQSTR formatted messages
If the request message is of type MQSTR, you can select to send the reply message in MQSTR format.

You must use an additional URI parameter replyMessageFormat to change the format of the reply
message. The supported values are:
""

" " is the default value.
The reply message is in byte (MQMFT_NONE) format. For example:

"jms:/queue?
destination=SampleQ@QM1&connectionFactory=binding(server)connectQueueManager(QM1)
&initialContextFactory=com.ibm.mq.jms.Nojndi&replyDestination=SampleReplyQ&replyMessageForma
t= "

MQSTR
The reply message is in MQSTR (MQMFT_STRING) format. For example:

"jms:/queue?
destination=SampleQ@QM1&connectionFactory=binding(server)connectQueueManager(QM1)
&initialContextFactory=com.ibm.mq.jms.Nojndi&replyDestination=SampleReplyQ&replyMessageForma
t=MQSTR"

Notes:

1. The value for replyMessageFormat is case insensitive.
2. Using any value other than " " or MQSTR, causes an invalid parameter value exception.

IBM MQ custom channel samples
The samples provide some simple examples of how the IBM MQ custom channel for WCF can
be used. The samples and their associated files are located in the MQ_INSTALLATION_PATH
\tools\dotnet\samples\cs\wcf directory, where MQ_INSTALLATION_PATH is the installation
directory for IBM MQ. For more information on the IBM MQ custom channel samples, see “Using the
WCF samples” on page 1242.

svcutil.exe.config
The svcutil.exe.config is an example of the configuration settings required to enable the Microsoft
WCF svcutil client proxy generation tool to recognize the custom channel. The svcutil.exe.config

Developing applications for IBM MQ 1221

file is located in the MQ_INSTALLATION_PATH \tools\wcf\docs\examples\ directory, where
MQ_INSTALLATION_PATH is the installation directory for IBM MQ. For more information on using the
svcutil.exe.config, see “Generating a WCF client proxy and application configuration files using the
svcutil tool with metadata from a running service” on page 1239.

WCF architecture
The IBM MQ custom channel for WCF is integrated on top of the IBM Message Service Client
for .NET (XMS .NET) API.

SOAP/JMS interface
The WCF architecture is as shown in the following diagram:

Figure 149. WCF architecture for the SOAP/JMS interface

All the required components are installed by default with the product installation.

The three connections are:

• Managed client connections
• Unmanaged server connections
• Unmanaged client connections

For more information about these connections, see “WCF Connection options” on page 1229.

Non-SOAP/Non-JMS interface
The IBM MQ custom channel for WCF supports both the SOAP/JMS interface (available from IBM
WebSphere MQ 7.0.1) and the Non-SOAP/Non-JMS interface.

The WCF architecture is as shown in the following diagram:

1222 Developing Applications for IBM MQ

Figure 150. WCF architecture for the Non-SOAP/Non-JMS interface

Using IBM MQ custom channels for WCF
Overview of the information available for programmers using IBM MQ custom channels for Windows
Communication Foundation (WCF).

The Microsoft Windows Communication Foundation underpins the web services and messaging support
in the Microsoft.NET Framework 3. IBM MQ can be used as a custom channel within WCF in the .NET
Framework 3 in the same manner as the built-in channels offered by Microsoft.

Messages transported across the custom channel are formatted according to the SOAP over JMS
implementation of IBM MQ. Applications can then communicate with services hosted by WCF or by the
WebSphere SOAP over JMS service infrastructure.

WCF Custom channel features and capabilities
Use the following topics for information regarding WCF custom channel features and capabilities.

WCF custom channel shapes
Overview of the custom channel shapes that IBM MQ can be used as within the Microsoft Windows
Communication Foundation (WCF) custom channels.

The IBM MQ custom channel for WCF supports two channel shapes:

• One-way
• Request-reply

WCF automatically selects the channel shape according to the service contract being hosted.

Contracts that include methods that only use the IsOneWay parameter are serviced by the one-way
channel shape, for example:

[OperationContract(IsOneWay = true)]
void printString(String text);

Developing applications for IBM MQ 1223

Contracts that include either a mixture of one-way and request-reply methods, or all request-reply
methods, are serviced by the request-reply channel shape. For example:

 [OperationContract]
 int subtract(int a, int b);

 [OperationContract(IsOneWay = true)]
 void printString(string text);

Note: When mixing one-way and request-reply methods in the same contract, you must ensure that the
behavior is as intended, especially when working within a mixed environment because one-way methods
wait until they receive a null reply from the service.

One-way channel
The IBM MQ one-way custom channel for WCF is used, for example, to send messages from a WCF client
using a one-way channel shape. The channel can send messages in one direction only, for example; from
a client queue manager to a queue on a WCF service.

Request-reply channel
The IBM MQ request-reply custom channel for WCF is used, for example, to send messages in two
directions asynchronously; The same client instance must be used for asynchronous messaging. The
channel can send messages in one direction, for example; from a client queue manager to a queue on a
WCF service, and then send a reply message from the WCF to a queue on the client queue manager.

WCF URI parameter names and values
URI parameter names and values for the SOAP/JMS interface and Non-SOAP/Non JMS interface.

SOAP/JMS interface
connectionFactory

The connectionFactory parameter is required.
initialContextFactory

The initialContextFactory parameter is required and must be set to "com.ibm.mq.jms.Nojndi" for
compatibility with WebSphere Application Server and other products.

Non-SOAP/Non JMS interface
The URI format is as for the MA93 specifications. See SupportPac - MA93 for further details of the IBM
MQ IRI specifications.

IBM MQ URI syntax

wmq-iri = "wmq:" ["//" connection-name] "/" wmq-dest ["?" parm *("&" parm)]
connection-name = tcp-connection-name / other-connection-name
tcp-connection-name = ihost [":" port]
other-connection-name = 1*(iunreserved / pct-encoded)
wmq-dest = queue-dest / topic-dest
queue-dest = "msg/queue/" wmq-queue ["@" wmq-qmgr]
wmq-queue = wmq-name
wmq-qmgr = wmq-name
wmq-name = 1*48(wmq-char)
topic-dest = "msg/topic/" wmq-topic
wmq-topic = segment *("/" segment)

IBM MQ IRI example
The following example IRI tells a service requester that it can use a IBM MQ TCP client-binding
connection to a machine called example.com on port 1414 and put persistent request messages to

1224 Developing Applications for IBM MQ

a queue called SampleQ on queue manager QM1. The IRI specifies that the service provider will put
replies to a queue called SampleReplyQ.

1)wmq://example.com:1414/msg/queue/SampleQ@QM1?
ReplyTo=SampleReplyQ&persistence=MQPER_NOT_PERSISTENT
2)wmq://localhost:1414/msg/queue/Q1?
connectQueueManager=QM1&replyTo=Q2&connectionmode=managed

For TLS enabled connections
To make Secured (TLS) connections using the WCF Client/Service, set following properties with
appropriate values in the URI. All the properties that are prefixed with "*" are mandatory to make
a secured connection.

• sslKeyRepository: *SYSTEM or *USER
• * sslCipherSpec: a valid CipherSpec, for example TLS_RSA_WITH_AES_128_CBC_SHA256.
• sslCertRevocationCheck: true or false.
• sslKeyResetCount: a value greater than 32kb.
• sslPeerName: the distinguished name of the server certificate

For example:

"wmq://localhost:1414/msg/queue/SampleQ?
connectQueueManager=QM1&sslkeyrepository=*SYSTEM&sslcipherspec=
TLS_RSA_WITH_AES_128_CBC_SHA&sslcertrevocationcheck=true&"sslpe
ername=" + "" + "CN=ibmwebspheremqqmm&sslkeyresetcount=45000"

WCF custom channel assured delivery
Assured Delivery guarantees that a service request or reply is actioned and not lost.

A request message is received and any reply message is sent under a local transaction sync point, which
can be rolled back in the case of runtime failure. Examples of these failures are: An unhandled exception
thrown by the service, failure to dispatch the message to the service, or failure to deliver the reply
message.

AssuredDelivery is the assured delivery attribute which can be specified on a service contract to
guarantee that any request messages received by a service, and any reply message sent from a service, is
not lost in the event of a runtime failure.

To ensure that messages are also preserved in the event of system failure or power outage, messages
must be sent as persistent. To use persistent messages the client application must have this option
specified on its endpoint URI.

Distributed transactions are not supported, and the scope of the transaction does not extend beyond the
request and reply message processing performed by IBM MQ. Any work performed within the service
might get rerun as a result of a failure which causes the message to be received again. The following
diagram shows the scope of the transaction:

Developing applications for IBM MQ 1225

Assured delivery is enabled by applying the AssuredDelivery attribute to the service class as shown in
the following example:

[AssuredDelivery]
class TestCalculatorService : IWMQSampleCalculatorContract
{
 public int add(int a, int b)
 {
 int ans = a + b;
 return ans;
 }
}

When using the AssuredDelivery attribute, you must be aware of the following points:

• When a channel determines that a failure is likely to recur if a message was rolled-back and received
again, the message is treated as a poison message and is not returned to the request queue for
reprocessing. For example: If the received message is not correctly formatted or cannot be dispatched
to a service. Unhandled exceptions thrown from a service operation are always resent until the message
has been redelivered the maximum number of times specified by the backout threshold property of the
request queue. For more information, see: “WCF custom channel poison messages” on page 1227

• The channel performs the reading, processing, and replying of each request message as an atomic
operation using a single thread of execution to enforce transactional integrity. To enable service
operations to run concurrently, the channel enables WCF to create multiple instances of the channel.
The number of channel instances available for processing requests is controlled by the binding property
MaxConcurrentCalls. For more information, see: “WCF binding configuration options” on page 1235

• The assured delivery function uses both the IOperationInvoker and the IErrorHandler WCF extensibility
points. If these extensibility points are used externally by an application, the application must ensure
that any previously registered extensibility points are called. Failure to do so for IErrorHandler can
result in errors going unreported. Failure to do so for IOperationInvoker can cause WCF to stop
responding.

WCF custom channel security
The IBM MQ custom channel for WCF supports the use of TLS only for unmanaged client connections to
the queue manager.

Specify TLS using an entry in the client channel definition table (CCDT). For more information about
CCDTs, see Client channel definition table.

WCF client channel definition tables (CCDT)
The IBM MQ custom channel for WCF supports the use of client channel definition tables (CCDT) to
configure the connection information for client connections.

CCDTs are controlled through these two environment variables:

1226 Developing Applications for IBM MQ

• MQCHLLIB specifies the directory where the table is located.
• MQCHLTAB specifies the file name of the table.

If these environment variables are defined, then they take priority over any client connection details
specified in the URI.

For more information about client channel definition tables, see: Client channel definition table.

WCF custom channel poison messages
When a service fails to process a request message, or fails to deliver a reply message to a reply queue,
then the message is treated as a poison message.

Poison request messages
If a request message cannot be processed, then it is treated as a poison message. This action prevents
the service from receiving the same unprocessable message again. For an unprocessable request
message to be treated as a poison message, one of the following situations must be true:

• The messages backout count exceeded the backout threshold specified on the request queue, which
only occurs if assured delivery was specified for the service. For more information about assured
delivery, see: “WCF custom channel assured delivery” on page 1225

• The message was not formatted correctly and could not be interpreted as a SOAP over JMS message.

Poison reply messages
If a service fails to deliver a reply message to the reply queue, then the reply message is treated as a
poison message. For reply messages, this action enables the reply messages to be retrieved later to aid
problem determination.

Poison message handling
The action taken for a poison message depends on the queue manager configuration and the values set
in the report options of the message. For SOAP over JMS, the following report options are set on request
messages by default and are not configurable:

• MQRO_EXCEPTION_WITH_FULL_DATA
• MQRO_EXPIRATION_WITH_FULL_DATA
• MQRO_DISCARD_MSG

For SOAP over JMS, the following report option is set on reply messages by default and is not
configurable:

• MQRO_DEAD_LETTER_Q

If messages come from a non-WCF source, then refer to the documentation for that source.

The following diagram shows the possible actions and the steps taken if poison message handling fails:

Developing applications for IBM MQ 1227

IBM MQ message capabilities for WCF applications
Non-SOAP/Non-JMS (that is, IBM MQ) message capabilities for WCF applications.

For the Non-SOAP/Non-JMS interface, the IBM MQ message capabilities for WCF applications are as
follows:

• WCF applications can send and receive the base IBM MQ messages which can be processed by any IBM
MQ application.

• WCF applications have full control to update the MQMD and payload.
• The WCF client can send IBM MQ messages that can be consumed by any IBM MQ clients, for example

C, Java, JMS, and .NET clients.

The WCF for Non-SOAP/Non-JMS interface must use the following classes for setting the message
payload and MQMD for the message:

• WmqStringMessage for a payload of type String
• WmqBytesMessage for a payload of type Bytes
• WmqXmlMessage for a payload of type XML

1228 Developing Applications for IBM MQ

To set the payload of the message, use the Data property for the WmqStringMessage, WmqBytesMessage
or WmqXmlMessage class, depending on the payload type. For example, use the following code to set a
payload of type String:

WmqStringMessage strMsg = new WmqStringMessage();
//Setting the Message PayLoad
strMsg.Data = "Hello World";
//MQMD property
strMsg.Format = WmqMessageFormat.MQFMT_STRING;

WCF Connection options
There are three modes of connecting an IBM MQ custom channel for WCF to a queue manager. Consider
which type of connection best suits your requirements.

For more information about connection options, see: “Connection differences” on page 559

For more information about WCF architecture, see: “WCF architecture” on page 1222

Unmanaged client connection
A connection made in this mode connects as an IBM MQ client to an IBM MQ server running either on the
local machine or on a remote machine.

To use the IBM MQ custom channel for WCF as an IBM MQ client, you can install it, with the IBM MQ MQI
client, either on the IBM MQ server, or on a separate machine.

Unmanaged server connection
When used in server bindings mode, the IBM MQ custom channel for WCF uses the queue manager API,
rather than communicating through a network. Using bindings connections provides better performance
for IBM MQ applications than using network connections.

To use the bindings connection, you must install the IBM MQ custom channel for WCF on the IBM MQ
server.

Managed client connection
A connection made in this mode connects as an IBM MQ client to an IBM MQ server running either on the
local machine or on a remote machine.

The IBM MQ custom channel classes for .NET 3 connecting in this mode remain in .NET managed
code and make no calls to native services. For more information about managed code, see Microsoft
documentation.

There are a number of limitations to using the managed client. For more information about these
limitations, see “Managed client connections” on page 559.

Creating and configuring the IBM MQ custom channel for WCF
The IBM MQ custom channels for WCF work in the same manner as transport WCF channels offered by
Microsoft. The IBM MQ custom channel for WCF can be created in one of two ways.

About this task
The IBM MQ custom channel integrates with WCF as a WCF transport channel, and as such must be
paired with a message encoder and optional protocol channels, so it can create a complete channel stack
that can be used by an application. Two elements are required for a complete channel stack to be created
successfully:

1. A binding definition: Specifies which elements are required to build the applications channel stack,
including transport channel, message encoder, and any protocols, plus any general configuration

Developing applications for IBM MQ 1229

settings. For the custom channel, the binding definition must be created in the form of a WCF custom
binding.

2. An endpoint definition: Links the service contract with the binding definition, and also provides the
actual connection URI which describes where the application can connect. For the custom channel,
the URI is in the form of a SOAP over JMS URI.

These definitions can be created in one of two different ways:

• Administratively; The definitions are created by providing the details in an application configuration file
(for example: app.config).

• Programmatically; The definitions are created directly from the application code.

The decision over which method to use to create the definitions must be based on the requirements of the
application as follows:

• The Administrative method for configuration provides the flexibility to alter the details of the service and
client post-deployment without rebuilding the application.

• The Programmatic method for configuration provides greater protection from configuration errors, and
the ability to dynamically generate a configuration at run time.

Creating a WCF custom channel administratively by supplying binding and endpoint
information in an application configuration file
The IBM MQ custom channel for WCF is a transport level WCF channel. An endpoint and binding must
be defined to use the custom channel, and these definitions can be done by supplying the binding and
endpoint information in an application configuration file.

To configure and use the IBM MQ custom channel for WCF, which is a transport level WCF channel, a
binding and an endpoint definition must be defined. The binding holds the configuration information for
the channel, and the endpoint definition holds the connection details. These definitions can be created in
two ways:

• Programmatically directly from the application code, as described here: “Creating a WCF custom
channel by suppling binding and endpoint information programmatically” on page 1232

• Administratively, by providing the details in an application configuration file, as described in the
following procedure.

The client or service application configuration file is commonly named yourappname.exe.config
where yourappname is the name of your application. The application configuration file is most easily
modified by using the Microsoft service configuration editor tool called SvcConfigEditor.exe in the
following way:

• Start the SvcConfigEditor.exe configuration editor tool. The default installation location for the
tool is: Drive:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SvcConfigEditor.exe
where Drive: is the name of the installation drive.

Step 1: Add a binding element extension to enable WCF to locate the custom
channel
1. Right-click Advanced > Extension > binding element to open the menu, and select New
2. Complete the fields as shown in this table:

Table 190. New binding element fields

Field Value

Name IBM.XMS.WCF.SoapJmsIbmTransportChannel

Type Navigate to IBM.XMS.WCF.dll in the Global
Assembly Cache (GAC) and select
IBM.XMS.WCFSoapJmsIbmTransportBindingEle
mentConfig

1230 Developing Applications for IBM MQ

Step 2: Create a custom binding definition which pairs the custom channel with a
WCF message encoder
1. Right-click Bindings to open the menu, and select New Binding Configuration
2. Complete the fields as shown in this table:

Table 191. New binding configuration fields

Field Value

Name CustomBinding_WMQ

BindingElement 1 textMessageEncoding (MessageVersion:
Soap11)

BindingElement 2 IBM.XMS.WCF.SoapJmsIbmTransportChannel

Step 3: Specify the binding properties
1. Select the IBM.XMS.WCF.SoapJmsIbmTransportChannel transport binding from the binding you

created in: “Step 2: Create a custom binding definition which pairs the custom channel with a WCF
message encoder” on page 1231

2. Make any required changes to the default values of the properties as described in: “WCF binding
configuration options” on page 1235

Step 4: Create an endpoint definition
Create an endpoint definition which references the custom binding you created in: “Step 2: Create a
custom binding definition which pairs the custom channel with a WCF message encoder” on page 1231
and provides the connection details of the service. The way this information is specified is dependent on
whether the definition is for a client application or a service application.

For a client application, add an endpoint definition to the client section as follows:

1. Right-click Client > Endpoints to open the menu, and select New Client Endpoint
2. Complete the fields as shown in this table:

Table 192. New client endpoint fields

Field Value

Name Endpoint_WMQ

Address The SOAP/JMS URI describing the WMQ connection
details required to access the service. For further
details see: “IBM MQ custom channel for WCF
endpoint URI address format” on page 1234

Binding customBinding

BindingConfiguration CustomBinding_WMQ

Contract The name of your service contract interface

For a service application, add a service definition to the services section as follows:

1. Right-click Services to open the menu, and select New Service, then select the service class to be
hosted.

2. Add an endpoint definition to the Endpoints section for your new service, and complete the fields as
shown in this table:

Developing applications for IBM MQ 1231

Table 193. New service endpoint fields

Field Value

Name Endpoint_WMQ

Address The SOAP/JMS URI describing the WMQ connection
details required to access the service. For further
details see: “IBM MQ custom channel for WCF
endpoint URI address format” on page 1234

Binding customBinding

BindingConfiguration CustomBinding_WMQ

Contract The name of your service implementation class

Creating a WCF custom channel by suppling binding and endpoint information
programmatically
The IBM MQ custom channel for WCF is a transport level WCF channel. An endpoint and binding must be
defined to use the custom channel, and these definitions can be done programmatically directly from the
application code.

To configure and use the IBM MQ custom channel for WCF, which is a transport level WCF channel, a
binding and an endpoint definition must be defined. The binding holds the configuration information for
the channel, and the endpoint definition holds the connection details. For more information see “Using
the WCF samples” on page 1242.

These definitions can be created in two ways:

• Administratively, by providing the details in an application configuration file, as described in “Creating a
WCF custom channel administratively by supplying binding and endpoint information in an application
configuration file” on page 1230.

• Programmatically directly from the application code, as described in the following subtopics.

Defining binding and endpoint information programmatically: SOAP/JMS interface
For the SOAP/JMS interface, you can define an endpoint and binding programmatically directly from the
application code.

About this task
To supply binding and endpoint information programmatically, add the required code to your application
by completing the following steps.

Procedure
1. Create an instance of the transport binding element of the channel by adding the following code to

your application:

SoapJmsIbmTransportBindingElement transportBindingElement = new
SoapJmsIbmTransportBindingElement();

2. Set any required binding properties, for example, by adding the following code to your application to
set the ClientConnectionMode:

transportBindingElement.ClientConnectionMode = XmsWCFBindingProperty.AS_URI;

3. Create a custom binding that pairs the transport channel with a message encoder by adding the
following code to your application:

1232 Developing Applications for IBM MQ

Binding binding = new CustomBinding(new TextMessageEncodingBindingElement(),
transportBindingElement);

4. Create the SOAP/JMS URI.
The SOAP/JMS URI that describes the IBM MQ connection details required to access the service, must
be provided as the endpoint address. The address that you specify depends on whether the channel is
being used for a service application or a client application.

• For client applications, the SOAP/JMS URI must be created as an EndpointAddress as follows:

EndpointAddress address = new EndpointAddress("jms:/queue?
destination=SampleQ@QM1&connectionFactory
=connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

• For service applications, the SOAP/JMS URI must be created as a URI as follows:

Uri address = new Uri("jms:/queue?destination=SampleQ@QM1&connectionFactory=
connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

For more information about endpoint addresses, see “IBM MQ custom channel for WCF endpoint
URI address format” on page 1234.

Defining binding and endpoint information programmatically: Non-SOAP/Non-JMS interface
For the Non-SOAP/Non-JMS interface, you can define an endpoint and binding programmatically directly
from the application code.

About this task
To supply binding and endpoint information programmatically, add the required code to your application
by completing the following steps.

Procedure
1. Create a WmqBinding by adding the following code to your application:

WmqBinding binding = new WmqBinding();

This code creates a binding that pairs the WmqMsgEncodingElement and
WmqIbmTransportBindingElement required for the Non-SOAP/Non-JMS interface.

2. Provide the wmq:// URI that describes the IBM MQ connection details required to access the service.
The way in which you provide the wmq:// URI depends on whether the channel is being used for a
service application or a client application.

• For client applications, the wmq:// URI must be created as an EndpointAddress as follows:

EndpointAddress address = new EndpointAddress
("wmq://localhost:1414/msg/queue/Q1?connectQueueManager=QM1&replyTo=Q2");

• For service applications, the wmq:// URI must be created as a URI as follows:

Uri sampleAddress = new Uri(
"wmq://localhost:1414/msg/queue/Q1?connectQueueManager=QM1&replyTo=Q2");

Developing applications for IBM MQ 1233

IBM MQ custom channel for WCF endpoint URI address format
A web service is specified using a Universal Resource Identifier (URI) that provides location and
connection details. The URI format depends on whether you are using the SOAP/JMS interface or the
Non-SOAP/Non-JMS interface.

SOAP/JMS interface
The URI format that is supported in the IBM MQ transport for SOAP permits a comprehensive degree of
control over SOAP/ IBM MQ -specific parameters and options when accessing target services. This format
is compatible with WebSphere Application Server and with CICS, facilitating the integration of IBM MQ
with both those products.

The URI syntax is as follows:

jms:/queue? name=value&name=value...

where name is a parameter name and value is an appropriate value, and the name = value element can
be repeated any number of times with the second and subsequent occurrences being preceded by an
ampersand (&).

Parameter names are case-sensitive, as are names of IBM MQ objects. If any parameter is specified more
than once, the final occurrence of the parameter takes effect meaning client applications can override
parameter values by appending to the URI. If any additional unrecognized parameters are included, they
are ignored.

If you store a URI in an XML string, you must represent the ampersand character as "&". Similarly, if
a URI is coded in a script, take care to escape characters such as & which would otherwise be interpreted
by the shell.

This is an example of a simple URI for an Axis service:

jms:/queue?destination=myQ&connectionFactory=()
&initialContextFactory=com.ibm.mq.jms.Nojndi

Here is an example of a simple URI for a .NET service:

jms:/queue?destination=myQ&connectionFactory=()&targetService=MyService.asmx
&initialContextFactory=com.ibm.mq.jms.Nojndi

Only the required parameters are supplied (targetService is required for .NET services only), and
connectionFactory is given no options.

In this Axis example, connectionFactory contains a number of options:

jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)
binding(client)clientChannel(myChannel)clientConnection(myConnection)
&initialContextFactory=com.ibm.mq.jms.Nojndi

In this Axis example, the sslPeerName option of connectionFactory has also been specified. The
value of sslPeerName itself contains name value pairs and significant embedded blanks:

jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)
binding(client)clientChannel(myChannel)clientConnection(myConnection)
sslPeerName(CN=MQ Test 1,O=IBM,S=Hampshire,C=GB)
&initialContextFactory=com.ibm.mq.jms.Nojndi

NON-SOAP/Non-JMS interface
The URI format for the NON-SOAP/Non-JMS interface permits a comprehensive degree of control over
IBM MQ -specific parameters and options when accessing target services.

1234 Developing Applications for IBM MQ

The URI syntax is as follows:

wmq://example.com:1415/msg/queue/INS.QUOTE.REQUEST@MOTOR.INS ?ReplyTo=msg/queue/
INS.QUOTE.REPLY@BRANCH452&persistence=MQPER_NOT_PERSISTENT

This IRI tells a service requester that it can use an IBM MQ TCP client-binding connection to a
machine called example.com on port 1415 and put persistent request messages to a queue called
INS.QUOTE.REQUEST on queue manager MOTOR.INS. The IRI specifies that the service provider puts
replies to a queue called INS.QUOTE.REPLY on queue manager BRANCH452. The URI format is as
specified for SupportPac MA93. See SupportPac MA93: IBM MQ - Service Definition for more details
about the IBM MQ IRI specifications.

WCF binding configuration options
There are two ways of applying configuration options to the custom channels binding information. You
either set the properties administratively, or set them programmatically.

The binding configuration options can be set in one of two different ways:

1. Administratively: The binding property settings must be specified in the transport section of the
custom binding definition in the applications configuration file, for example: app.config.

2. Programmatically: The application code must be modified to specify the property during initialization
of the custom binding.

Setting the binding properties administratively
The binding property settings can be specified in the application configuration file, for example:
app.config. The configuration file is generated by svcutil, as shown in the following examples.
SOAP/JMS interface

<customBinding>
...
 <IBM.XMS.WCF.SoapJmsIbmTransportChannel maxBufferPoolSize="524288"
 maxMessageSize="4000000" clientConnectionMode="0" maxConcurrentCalls="16"/>
...
</customBinding>

Non-SOAP/Non-JMS interface

<customBinding>
 <IBM.WMQ.WCF.WmqMsgEncodingElement/>
 <IBM.WMQ.WCF.WmqIbmTransportChannel maxBufferPoolSize="524288"
 maxMessageSize="65536" clientConnectionMode="managedclient"/>
</customBinding>

Setting the binding properties programmatically
To add a WCF binding property to specify the client connection mode, you must modify the service code to
specify the property during initialization of the custom binding.

Use the following example to specify unmanaged client connection mode:

SoapJmsIbmTransportBindingElement
transportBindingElement = new SoapJmsIbmTransportBindingElement();
transportBindingElement.ClientConnectionMode = XmsWCFBindingProperty.CLIENT_UNMANAGED;

Binding sampleBinding = new CustomBinding(new TextMessageEncodingBindingElement(),
 transportBindingElement);

Developing applications for IBM MQ 1235

https://www.ibm.com/support/pages/node/574607

WCF binding properties
Table 194. Values of binding properties when setting administratively or programmatically

Property name

Client or
Service
applicati
on

Administra
tive value Programmatic value Description

maxBufferPoolSize Both 0 to 64 bit
signed
integer

0 to 64 bit signed integer Specifies the maximum size of
the memory that can be used to
store WCF message buffers for an
instance of the channel.

maxMessageSize Both 1 to 32 bit
signed
integer

1 to 32 bit signed integer Specifies the maximum memory
that can be used for an individual
WCF message.

clientConnectionMode Both 0 (Default
value)

1

AS_URI (Default value)

CLIENT_UNMANAGED

Specifies the client connection
mode of the transport channel.

0 means that the client
connection mode is as specified
in the URI. Only used if the client
connection is used. Specifies that
the client connection mode is
as specified in the URI. 0 is
the default value if no client
connection mode is set.

1 means that the client
connection mode is an
unmanaged client. Only used if
the client connection is used.

MaxConcurrentCalls Client The range is
0 - 2 147
483 647

16 is the
default
value

The range is 0 - 2 147
483 647

16 is the default value

This property defines the
maximum number of concurrent
operations that can take place
on an individual client proxy at
any one time. If more operations
are started, they are queued until
an in-progress operation either
completes or times out. This
setting can be used to control the
maximum threads and resources
which can be consumed by an
individual proxy.

0 removes this limit, enabling
all operations to be attempted
concurrently.

1236 Developing Applications for IBM MQ

Table 194. Values of binding properties when setting administratively or programmatically (continued)

Property name

Client or
Service
applicati
on

Administra
tive value Programmatic value Description

MaxConcurrentCalls Service The range is
1 - 2 147
483 647

16 is the
default
value

The range is 1 - 2 147
483 647

16 is the default value

This property is only used if
the assured delivery feature is
enabled (For more information
about assured delivery, see “WCF
custom channel assured delivery”
on page 1225). It specifies the
maximum number of concurrent
operations that can be in progress
at the same time for the given
endpoint.

Care is needed when changing
this setting. Each concurrent
operation requires additional
resources, in particular a new
instance of the custom channel
and the associated threads
from the thread pool to action
the requests. Over-allocating
can be counter productive and
affect performance severely.
Appropriate configuration of the
thread pool must be made to
support this property.

Building and hosting services for WCF
Overview of Microsoft Windows Communication Foundation (WCF) services explaining how to create and
configure WCF services.

The IBM MQ custom channel for WCF and the WCF services which use it, can be hosted by the following
methods:

• Self-hosting
• Windows Service

The IBM MQ custom channel for WCF cannot be hosted in Windows Process Activation Service.

The following topics provide some simple self-hosting examples to demonstrate the steps involved. The
Microsoft WCF online documentation, which contains further information and the latest details, can be
found on the Microsoft MSDN website at https://msdn.microsoft.com.

Building WCF service applications using method 1: Self-hosting administratively using
an application configuration file
Having created an application configuration file, open an instance of the service and add the specified
code to your application.

Before you begin
Create or edit an application configuration file for the service, as described in: “Creating a WCF custom
channel administratively by supplying binding and endpoint information in an application configuration
file” on page 1230

Developing applications for IBM MQ 1237

https://msdn.microsoft.com/

About this task
1. Instantiate and open an instance of the service in the service host. The service type must be the same

as the service type specified in the service configuration file.
2. Add the following code to your application:

ServiceHost service = new ServiceHost(typeof(MyService));
service.Open();
...
service.Close();

Building WCF service applications using method 2: Self-hosting programmatically
directly from the application
Add the binding properties, create the service host with an instance of the required service class and open
the service.

Before you begin
1. Add a reference to the custom channel IBM.XMS.WCF.dll file to the project. The IBM.XMS.WCF.dll

is in the WMQInstallDir\bin where WMQInstallDir is the directory that IBM MQ is installed in.
2. Add a using statement to the IBM.XMS.WCF namespace, for example: using IBM.XMS.WCF
3. Create an instance of the channels binding element and endpoint as described in: “Creating a WCF

custom channel by suppling binding and endpoint information programmatically” on page 1232

About this task
If changes to the binding properties of the channel are required, then complete the following steps:

1. Add the binding properties to transportBindingElement as shown in the following example:

SoapJmsIbmTransportBindingElement transportBindingElement = new
SoapJmsIbmTransportBindingElement();
Binding binding = new CustomBinding(new TextMessageEncodingBindingElement(),
transportBindingElement);
Uri address = new Uri("jms:/queue?destination=SampleQ@QM1&connectionFactory=

connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

2. Create the service host with an instance of the required service class:

ServiceHost service = new ServiceHost(typeof(MyService));

3. Open the service:

service.AddServiceEndpoint(typeof(IMyServiceContract), binding, address);
service.Open();
...
service.Close();

Exposing metadata using an HTTP endpoint
Instructions for exposing the metadata of a service which is configured to use the IBM MQ custom
channel for WCF.

About this task
If the services metadata must be exposed (so that tools such as svcutil can access it directly from
the running service rather than from an offline WSDL file for example) it must be done by exposing
the services metadata with an HTTP endpoint. The following steps can be used to add this additional
endpoint.

1238 Developing Applications for IBM MQ

1. Add the base address of where the metadata must be exposed to the ServiceHost, for example:

ServiceHost service = new ServiceHost(typeof(TestService),
 new Uri("http://localhost:8000/MyService"));

2. Add the following code to the ServiceHost before the service is opened:

ServiceMetadataBehavior metadataBehavior = new ServiceMetadataBehavior();
 metadataBehavior.HttpGetEnabled = true;
 service.Description.Behaviors.Add(metadataBehavior);
 service.AddServiceEndpoint(typeof(IMetadataExchange),
 MetadataExchangeBindings.CreateMexHttpBinding(), "mex");

Results
The metadata is now available at the following address: http://localhost:8000/MyService

Building client applications for WCF
Overview of generating and building Microsoft Windows Communication Foundation (WCF) client
applications.

A client application can be created for a WCF service; client applications are typically generated by using
the Microsoft ServiceModel Metadata Utility Tool (Svcutil.exe) to create the required configuration and
proxy files which can be used directly by the application.

Generating a WCF client proxy and application configuration files using the svcutil tool
with metadata from a running service
Instructions for using the Microsoft svcutil.exe tool to generate a client for a service which is configured to
use the IBM MQ custom channel for WCF.

Before you begin
There are three prerequisites for using the svcutil tool to create to required configuration and proxy files
which can be used directly by the application:

• The WCF service must be running before the svcutil tool is started.
• The WCF service must expose its metadata using an HTTP port in addition to the IBM MQ custom

channel endpoint references to generate a client directly from a running service.
• The custom channel must be registered in the configuration data for svcutil.

About this task
The following steps explain how to generate a client for a service which is configured to use the IBM MQ
custom channel, but also exposes its metadata at run time via a separate HTTP port:

1. Start the WCF service (The service must be running before the svcutil tool is started).
2. Add the details from the svcutil.exe config file from the root of the installation,

into the active svcutil configuration file, typically C:\Program Files\Microsoft
SDKs\Windows\v6.0A\bin\svcutil.exe.config so svcutil recognizes the IBM MQ custom
channel.

3. Run svcutil from a command prompt, for example:

svcutil /language:C# /r: installlocation\bin\IBM.XMS.WCF.dll
/config:app.config http://localhost:8000/IBM.XMS.WCF/samples

4. Copy the generated app.config and YourService.cs files to the Microsoft Visual studio client
project.

Developing applications for IBM MQ 1239

What to do next
If the services metadata cannot be directly retrieved, svcutil can be used to generate the client files from
wsdl instead. For more information see: “Generating a WCF client proxy and application configuration files
using the svcutil tool with WSDL” on page 1240

Generating a WCF client proxy and application configuration files using the svcutil tool
with WSDL
Instructions for generating WCF clients from WSDL if the metadata of the service is unavailable.

If the metadata of the service cannot be directly retrieved to generate a client from the metadata from
a running service, then, svcutil can be used to generate the client files from WSDL instead. The following
modifications must be made to the WSDL to specify that the IBM MQ custom channel is to be used:

1. Add the following namespace definitions and policy information:

<wsdl:definitions
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">

 <wsp:Policy wsu:Id="CustomBinding_IWMQSampleContract_policy">
 <wsp:ExtactlyOne>
 <wsp:All>
 <xms:xms xmlns:xms="http://sample.schemas.ibm.com/policy/xms" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

...

</wsdl:definitions>

2. Modify the bindings section to refer to the new policy section and remove any transport definition
from the underlying binding element:

<wsdl:definitions ...>

 <wsdl:binding ...>
 <wsp:PolicyReference URI="#CustomerBinding_IWMQSampleContract_policy" />
 <[soap]:binding ... transport="" />
 ...
 </wsdl:binding>
</wsdl:definitions>

3. Run svcutil from a command prompt, for example:

svcutil /language:C# /r: MQ_INSTALLATION_PATH\bin\IBM.XMS.WCF.dll
/config:app.config MQ_INSTALLATION_PATH\src\samples\WMQAxis\default\service
\soap.server.stockQuoteAxis_Wmq.wsdl

Building WCF client applications using a client proxy with an application configuration
file

Before you begin
Create or edit an application configuration file for the client, as described in: “Creating a WCF custom
channel administratively by supplying binding and endpoint information in an application configuration
file” on page 1230

About this task
Instantiate and open an instance of the client proxy. The parameter passed to the generated proxy must
be the same as the endpoint name specified in the client configuration file, for example Endpoint_WMQ:

MyClientProxy myClient = new MyClientProxy("Endpoint_WMQ");

1240 Developing Applications for IBM MQ

 try {
 myClient.myMethod("HelloWorld!");
 myClient.Close();
 }
 catch (TimeoutException e) {
 Console.Out.WriteLine(e);
 myClient.Abort();
 }
 catch (CommunicationException e) {
 Console.Out.WriteLine(e);
 myClient.Abort();
 }
 catch (Exception e) {
 Console.Out.WriteLine(e);
 myClient.Abort();
 }

Building WCF client applications using a client proxy with programmatic configuration

Before you begin
1. Add a reference to the custom channel IBM.XMS.WCF.dll file to the project. The IBM.XMS.WCF.dll

is in the WMQInstallDir\bin directory where WMQInstallDir is the directory that IBM MQ is installed
in.

2. Add a using statement to the IBM.XMS.WCF namespace, for example: using IBM.XMS.WCF
3. Create an instance of th' binding element and endpoint of the channel as described in: “Creating a WCF

custom channel by suppling binding and endpoint information programmatically” on page 1232

About this task
If changes to the binding properties of the channel are required, complete the following steps.

1. Add the binding properties to transportBindingElement as shown in the following figure:

SoapJmsIbmTransportBindingElement transportBindingElement = new
SoapJmsIbmTransportBindingElement();
Binding binding = new CustomBinding(new TextMessageEncodingBindingElement(),
transportBindingElement);
EndpointAddress address =
 new EndpointAddress("jms:/queue?destination=SampleQ@QM1&connectionFactory=
 connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

2. Create the client proxy as shown in the following figure, where binding and endpoint address are the
binding and endpoint address configured in step 1 and passed in:

 MyClientProxy myClient = new MyClientProxy(binding, endpoint address);
 try {
 myClient.myMethod("HelloWorld!");
 myClient.Close();
 }
 catch (TimeoutException e) {
 Console.Out.WriteLine(e);
 myClient.Abort();
 }
 catch (CommunicationException e) {
 Console.Out.WriteLine(e);
 myClient.Abort();
 }
 catch (Exception e) {
 Console.Out.WriteLine(e);
 myClient.Abort();
 }

Developing applications for IBM MQ 1241

Using the WCF samples
The Windows Communication Foundation (WCF) samples provide some simple examples of how the IBM
MQ custom channel can be used.

To build the sample projects, either the Microsoft.NET 3.5 SDK, or Microsoft Visual Studio 2008 is needed.

Simple one-way client and server WCF sample
This sample demonstrates the IBM MQ custom channel being used to start a Windows Communication
foundation (WCF) service from a WCF client using a one-way channel shape.

About this task
The service implements a single method which outputs a string to the console. The client has been
generated by using the svcutil tool to retrieve the service metadata from a separately exposed HTTP
endpoint as described in “Generating a WCF client proxy and application configuration files using the
svcutil tool with metadata from a running service” on page 1239

The sample has been configured with specific resource names as described in the
following procedure. If you must change the resource names, then you must also
change the corresponding value on the client application in the MQ_INSTALLATION_PATH
\tools\dotnet\samples\cs\wcf\samples\WCF\oneway\client\app.config file, and
on the service application in the MQ_INSTALLATION_PATH
\tools\dotnet\samples\cs\wcf\samples\WCF\oneway\service\TestServices.cs file,
where MQ_INSTALLATION_PATH is the installation directory for IBM MQ. For more information about
formatting the JMS endpoint URI, see IBM MQ Transport for SOAP in the IBM MQ product documentation.
If you need to modify the sample solution and source, then you need an IDE, for example, Microsoft Visual
Studio 8 or higher.

Procedure
1. Create a queue manager called QM1
2. Create a queue destination called SampleQ
3. Start the service so the listener is waiting for messages: Run the MQ_INSTALLATION_PATH
\tools\dotnet\samples\cs\wcf\samples\WCF\oneway\service\bin\Release\TestServ
ice.exe file, where MQ_INSTALLATION_PATH is the installation directory for IBM MQ.

4. Run the client once: Run the MQ_INSTALLATION_PATH
\tools\dotnet\samples\cs\wcf\samples\WCF\oneway\client\bin\Release\TestClien
t.exe file, where MQ_INSTALLATION_PATH is the installation directory for IBM MQ.
The client application loops five times sending five messages to SampleQ

Results
The service application gets the messages from SampleQ and displays Hello World on the screen five
times.

What to do next

Simple request-reply client and server WCF sample
This sample demonstrates the IBM MQ custom channel being used to start a Windows Communication
foundation (WCF) service from a WCF client using a request-reply channel shape.

About this task
This service provides some simple calculator methods to add and subtract two numbers, and then return
the result. The client has been generated by using the svcutil tool to retrieve the service metadata
from a separately exposed HTTP endpoint as described in “Generating a WCF client proxy and application
configuration files using the svcutil tool with metadata from a running service” on page 1239

1242 Developing Applications for IBM MQ

The sample has been configured with specific resource names as in the
following procedure described. If you need to change the resource names, then
you also need to change the corresponding value on the client application in
the MQ_INSTALLATION_PATH \Tools\wcf\samples\WCF\requestreply\client\app.config
file, and on the service application in the MQ_INSTALLATION_PATH
\Tools\wcf\samples\WCF\requestreply\service\RequestReplyService.cs file, where
MQ_INSTALLATION_PATH is the installation directory for IBM MQ. For more information about formatting
the JMS endpoint URI, see IBM MQ Transport for SOAP in the IBM MQ product documentation. If you need
to modify the sample solution and source, then you need an IDE, for example, Microsoft Visual Studio 8 or
higher.

Procedure
1. Create a queue manager called QM1
2. Create a queue destination called SampleQ
3. Create a queue destination called SampleReplyQ
4. Start the service so the listener is waiting for messages: Run the MQ_INSTALLATION_PATH
\Tools\wcf\samples\WCF\requestreply\service\bin\Release\SimpleRequestReply_S
ervice.exe file, where MQ_INSTALLATION_PATH is the installation directory for IBM MQ.

5. Run the client once: Run the MQ_INSTALLATION_PATH
\Tools\wcf\samples\WCF\requestreply\client\bin\Release\SimpleRequestReply_Cl
ient.exe file, where MQ_INSTALLATION_PATH is the installation directory for IBM MQ.

Results
When the client has been run, the following process is started and repeats four times so a total of five
messages are sent each way:

1. The client puts a request message on SampleQ and waits for a response.
2. The service gets the request message from SampleQ.
3. The service adds and subtracts some values using the contents of the message.
4. The service then puts the results into a message on SampleReplyQ, and waits for the client to put a

new message.
5. The client gets the message from SampleReplyQ and displays the results on the screen.

What to do next

WCF client to a .NET service hosted by IBM MQ sample
Sample client applications and sample service proxy applications are supplied for both .NET and Java.
The samples are based on a Stock Quote service that takes a request for a stock quote and then provides
the stock quote.

Before you begin
The sample requires that the .NET SOAP over JMS service hosting environment is correctly installed and
configured in IBM MQ and is accessible from a local queue manager.

When the .NET SOAP over JMS service hosting environment is correctly installed and configured in IBM
MQ and is accessible from a local queue manager, additional configuration steps must be completed.

1. Set the WMQSOAP_HOME environment variable to the IBM MQ installation directory, for example:
C:\Program Files\IBM\MQ

2. Ensure that the Java compiler javac is available and on the PATH.
3. Copy the file axis.jar from the prereqs/axis directory of the installation image to the IBM MQ

production directory, for example: C:\Program Files\IBM\MQ\java\lib\soap

Developing applications for IBM MQ 1243

4. Add to the PATH: MQ_INSTALLATION_PATH\Java\lib where MQ_INSTALLATION_PATH represents
the directory where IBM MQ is installed, for example: C:\Program Files\IBM\MQ

5. Ensure that the location of .NET is specified correctly in
MQ_INSTALLATION_PATH\bin\amqwcallWSDL.cmd where MQ_INSTALLATION_PATH represents the
directory where IBM MQ is installed, for example: C:\Program Files\IBM\MQ. The location
of .NET can be specified for example: set msfwdir=%ProgramFiles%\Microsoft Visual
Studio .NET 2003\SDK\v1.1\Bin

When the previous steps are complete, test and run the service:

1. Navigate to your SOAP over JMS working directory.
2. Enter one of the following commands to run the verification test and leave the service listener running:

• For .NET: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt dotnet hold where
MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

• For AXIS: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt Dotnet2AxisClient
hold where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

The hold argument keeps the listeners running after the test completes.

If errors are reported during this configuration, you can remove all the changes so that the procedure may
be restarted in the following way:

1. Delete the generated SOAP over JMS directory.
2. Delete the queue manager.

About this task
This sample demonstrates a connection from a WCF client to the .NET SOAP over JMS sample service
provided in IBM MQ using a one-way channel shape. The service implements a simple StockQuote
example, which outputs a text string to the console.

The client has been generated by using WSDL to generate client files as described in “Generating a WCF
client proxy and application configuration files using the svcutil tool with WSDL” on page 1240

The sample has been configured with specific resource names as described in the following procedure. If
you need to change the resource names, then you must also change the corresponding value on the client
application in the MQ_INSTALLATION_PATH
\tools\wcf\samples\WMQNET\default\client\app.config file, and on the service application in
the MQ_INSTALLATION_PATH
\tools\wcf\samples\WMQNET\default\service\WmqDefaultSample_StockQuoteDotNet.wsd
l file, where MQ_INSTALLATION_PATH represents the installation directory for IBM MQ. For more
information about formatting the JMS endpoint URI, see IBM MQ Transport for SOAP in the IBM MQ
product documentation.

Procedure
Run the client once: Run the MQ_INSTALLATION_PATH
\tools\wcf\samples\WMQNET\default\client\bin\Release\TestClient.exe file, where
MQ_INSTALLATION_PATH represents the installation directory for IBM MQ.
The client application loops five times sending five messages to the sample queue.

Results
The service application gets the messages from the sample queue and displays Hello World five times
on the screen.

1244 Developing Applications for IBM MQ

WCF client to an Axis Java service hosted by IBM MQ sample
Sample client applications and sample service proxy applications are supplied for both Java and .NET.
The samples are based on a Stock Quote service that takes a request for a stock quote and then provides
the stock quote.

Before you begin
This sample requires that the .NET SOAP over JMS service hosting environment is correctly installed and
configured in IBM MQ and is accessible from a local queue manager.

When the .NET SOAP over JMS service hosting environment is correctly installed and configured in IBM
MQ and is accessible from a local queue manager, additional configuration steps must be completed.

1. Set the WMQSOAP_HOME environment variable to the IBM MQ installation directory, for example:
C:\Program Files\IBM\MQ

2. Ensure that the Java compiler javac is available and on the PATH.
3. Copy the file axis.jar from the prereqs/axis directory of the installation image to the IBM MQ

installation directory.
4. Add to the PATH: MQ_INSTALLATION_PATH\Java\lib where MQ_INSTALLATION_PATH represents

the directory where IBM MQ is installed, for example: C:\Program Files\IBM\MQ
5. Ensure that the location of .NET is specified correctly in

MQ_INSTALLATION_PATH\bin\amqwcallWSDL.cmd where MQ_INSTALLATION_PATH represents the
directory where IBM MQ is installed, for example: C:\Program Files\IBM\MQ. The location
of .NET can be specified for example: set msfwdir=%ProgramFiles%\Microsoft Visual
Studio .NET 2003\SDK\v1.1\Bin

When the previous steps are complete, test and run the service:

1. Navigate to your SOAP over JMS working directory.
2. Enter one of the following commands to run the verification test and leave the service listener running:

• For .NET: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt dotnet hold where
MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

• For AXIS: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt Dotnet2AxisClient
hold where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

The hold argument keeps the listeners running after the test completes.

If errors are reported during this configuration, you can remove all the changes so that the procedure is
restarted in the following way:

1. Delete the generated SOAP over JMS directory.
2. Delete the queue manager.

About this task
The sample demonstrates a connection from a WCF client to the Axis Java SOAP over JMS sample
service provided in IBM MQ using a one-way channel shape. The service implements a simple StockQuote
example, which outputs a text string to a file which is saved in the current directory.

The client has been generated by using WSDL to generate client files as described in “Generating a WCF
client proxy and application configuration files using the svcutil tool with WSDL” on page 1240

The sample has been configured with specific resource names as described in this paragraph. If you need
to change the resource names, then you must also change the corresponding value on the client
application in the MQ_INSTALLATION_PATH
\tools\wcf\samples\WMQAxis\default\client\app.config file, and on the service application
in the MQ_INSTALLATION_PATH
\tools\wcf\samples\WMQAxis\default\service\WmqDefaultSample_StockQuoteDotNet.ws
dl file, where MQ_INSTALLATION_PATH represents the installation directory for IBM MQ.

Developing applications for IBM MQ 1245

Procedure
Run the client once: Run the MQ_INSTALLATION_PATH
\tools\wcf\samples\WMQAxis\default\client\bin\Release\TestClient.exe file, where
MQ_INSTALLATION_PATH represents the installation directory for IBM MQ.
The client application loops five times sending five messages to the sample queue.

Results
The service application gets the messages from the sample queue and adds Hello World five times to a
file in the current directory.

WCF client to Java service hosted by WebSphere Application Server sample
Sample client applications and sample service proxy applications are supplied for WebSphere Application
Server 6. A request-response service is also provided.

Before you begin
This sample requires that the following IBM MQ configuration is used:

Table 195. IBM MQ required configuration

Object Required name

Queue manager QM1

Local queue HelloWorld

Local queue HelloWorldReply

This sample also requires that a WebSphere Application Server 6 hosting environment is correctly
installed and configured. WebSphere Application Server 6 uses a bindings mode connection to connect to
IBM MQ by default. Therefore WebSphere Application Server 6 must be installed on the same machine as
the queue manager.

After the WAS environment is configured, the following additional configuration steps must be completed:

1. Create the following JNDI objects in the WebSphere Application Server JNDI repository:

a. A JMS queue destination called HelloWorld

• Set the JNDI name to jms/HelloWorld
• Set the queue name to HelloWorld

b. A JMS queue connection factory called HelloWorldQCF

• Set the JNDI name to jms/HelloWorldQCF
• Set the queue manager name to QM1

c. A JMS queue connection factory called WebServicesReplyQCF

• Set the JNDI name to jms/WebServicesReplyQCF
• Set the queue manager name to QM1

2. Create a Message Listener Port called HelloWorldPort in WebSphere Application Server with the
following configuration:

• Set the connection factory JNDI name to jms/HelloWorldQCF
• Set the destination JNDI name to jms/HelloWorld

3. Install the web service HelloWorldEJBEAR.ear application to your WebSphere Application Server
as follows:

a. Click Applications > New Application > New Enterprise Application.

1246 Developing Applications for IBM MQ

b. Navigate to MQ_INSTALLATION_PATH\tools\wcf\samples\WAS\HelloWorldsEJBEAR.ear
where MQ_INSTALLATION_PATH is the installation directory of IBM MQ.

c. Do not change any of the default option in the wizard, and restart the application server after the
application has been installed.

When the WAS configuration is complete, test the service by running it once:

1. Navigate to your Soap over JMS working directory.
2. Enter this command to run the sample: MQ_INSTALLATION_PATH
\tools\wcf\samples\WAS\TestClient.exe where MQ_INSTALLATION_PATH is the installation
directory of IBM MQ.

About this task
The sample demonstrates a connection from a WCF client to the WebSphere Application Server SOAP
over JMS sample service provided in the WCF samples included in IBM MQ, using a request-response
channel shape. Messages flow between WCF and the WebSphere Application Server using IBM MQ
queues. The service implements the HelloWorld(...) method, which takes a string and returns a
greeting to the client.

The client has been generated by using the svcutil tool to retrieve the service metadata from a separately
exposed HTTP endpoint as described in “Generating a WCF client proxy and application configuration files
using the svcutil tool with metadata from a running service” on page 1239

The sample has been configured with specific resource names as described in the
following procedure. If you need to change the resource names, then you must also
change the corresponding value on the client application in the MQ_INSTALLATION_PATH
\tools\wcf\samples\WAS\default\client\app.config file, and on the service application
in the MQ_INSTALLATION_PATH \tools\wcf\samples\WAS\HelloWorldsEJBEAR.ear where
MQ_INSTALLATION_PATH is the installation directory of IBM MQ.

The service and client are based upon the service and client outlined in the IBM Developer article Building
a JMS web service using SOAP over JMS and WebSphere Studio. For more information about developing
SOAP over JMS web services that are compatible with the IBM MQ WCF custom channel, see https://
www.ibm.com/developerworks/websphere/library/techarticles/0402_du/0402_du.html.

Procedure
Run the client once: Run the MQ_INSTALLATION_PATH
\tools\wcf\samples\WAS\default\client\bin\Release\TestClient.exe file, where
MQ_INSTALLATION_PATH is the installation directory for IBM MQ.
The client application starts both of the service methods at the same time, sending two messages to the
sample queue.

Results
The service application gets the messages from the sample queue and provides a response to the
HelloWorld(...) method call which the client application outputs to the console.

Developing applications for IBM MQ 1247

https://www.ibm.com/developerworks/websphere/library/techarticles/0402_du/0402_du.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0402_du/0402_du.html

1248 Developing Applications for IBM MQ

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2024 1249

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

1250 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (https://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 1251

1252 Developing Applications for IBM MQ

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Developing applications
	Application development concepts
	Actions that your applications can perform
	Applications, application names, and application instances
	Application programs using the MQI
	Using client connections to connect to multiple IBM MQ queue managers
	Developing flexible and scalable client applications
	Object-oriented applications
	The IBM MQ Object Model

	IBM MQ messages
	Types of message
	Reports and segmented messages

	Format of message control information and message data
	Application data conversion

	Message priorities
	Message properties
	Message properties and message length
	Property names
	Property name restrictions
	Message descriptor fields as properties

	Property data types and values

	Selecting messages from queues
	Selectors
	Selection behavior
	Message selector syntax
	Selection string rules and restrictions
	UTF-8 and Unicode considerations when using message selectors

	Selecting on the content of a message

	Asynchronous consumption of IBM MQ messages
	Message groups
	Message persistence
	Messages that fail to be delivered
	Messages that are backed out
	Reply-to queue and queue manager
	Message context

	Preparing and running Microsoft Transaction Server applications

	Design considerations for IBM MQ applications
	Specifying the application name in supported programming languages
	Using the application name in supported programming languages

	Design techniques for messages
	Application design and performance considerations
	Design techniques for advanced applications
	Design and performance considerations for IBM i applications
	Design considerations for Linux on Power Systems - Little Endian applications
	Design and performance considerations for z/OS applications
	IMS and IMS bridge applications on IBM MQ for z/OS
	Writing IMS applications using IBM MQ
	Syncpoints in IMS applications
	MQI calls in IMS applications

	Writing IMS bridge applications
	How the IMS bridge deals with messages
	Mapping IBM MQ messages to IMS transaction types
	If the message cannot be put to the IMS queue
	IMS bridge feedback codes
	The MQMD fields in messages from the IMS bridge
	The MQIIH fields in messages from the IMS bridge
	Reply messages from IMS
	Using alternate response PCBs in IMS transactions
	Sending unsolicited messages from IMS
	Message segmentation
	Data conversion for messages to and from the IMS bridge

	Developing JMS/Jakarta Messaging and Java applications
	Using IBM MQ classes for JMS/Jakarta Messaging
	Why should I use IBM MQ classes for Jakarta Messaging?
	Why should I use IBM MQ classes for JMS?
	Accessing IBM MQ from Java - Choice of API
	Prerequisites for IBM MQ classes for Jakarta Messaging
	Prerequisites for IBM MQ classes for JMS
	Installing and configuring IBM MQ classes for JMS/Jakarta Messaging
	What is installed for IBM MQ classes for JMS
	IBM MQ classes for JMS/Jakarta Messaging relocatable JAR files
	Setting environment variables for IBM MQ classes for JMS/Jakarta Messaging
	Configuring the Java Native Interface (JNI) libraries
	The IBM MQ classes for JMS/Jakarta Messaging configuration file
	Using Java Standard Environment Trace to configure JMS trace
	Logging stanza
	Java SE Specifics stanza
	IBM MQ Properties stanza
	Client-mode specifics stanza
	Properties used to configure JMS client behavior

	STEPLIB configuration for IBM MQ classes for JMS on z/OS
	IBM MQ classes for JMS and software management tools

	Running IBM MQ classes for JMS applications under the Java security manager
	Post installation setup for IBM MQ classes for JMS applications
	Objects used by JMS that require authorization for non-privileged users
	Connection modes for IBM MQ classes for JMS
	Configuring your queue manager so that IBM MQ classes for JMS applications can connect in client mode

	The point-to-point IVT for IBM MQ classes for JMS
	The publish/subscribe IVT for IBM MQ classes for JMS
	Using the IBM MQ classes for JMS sample applications
	Scripts provided with IBM MQ classes for JMS/Jakarta Messaging
	Support for OSGi with IBM MQ classes for JMS

	JMS/Jakarta Messaging client connectivity to batch applications running on z/OS
	Obtaining the IBM MQ classes for JMS and IBM MQ classes for Jakarta Messaging separately
	Allowlisting in IBM MQ classes for JMS/Jakarta Messaging
	Allowlisting concepts
	Setting up and using a JMS or Jakarta Messaging allowlist
	Allowlisting in WebSphere Application Server

	Character string conversions in IBM MQ classes for JMS
	Writing IBM MQ classes for JMS/Jakarta Messaging applications
	The JMS and Jakarta Messaging model
	JMS messages
	Message selectors in JMS
	Mapping JMS messages onto IBM MQ messages
	The MQRFH2 header and JMS
	JMS fields and properties with corresponding MQMD fields
	Mapping JMS fields onto IBM MQ fields (outgoing messages)
	Mapping JMS header fields at send() or publish()
	Mapping JMS property fields
	Mapping JMS provider-specific fields

	Mapping IBM MQ fields onto JMS fields (incoming messages)
	Exchanging messages between a JMS application and a traditional IBM MQ application
	The JMS message body

	JMS message conversion
	JMS message conversion approaches
	JMS message types and conversion
	JMS client message conversion and encoding
	Queue manager data conversion
	Exchanging a formatted record with a non-JMS application
	Writing classes to encapsulate a record layout in a JMSBytesMessage

	Creating and configuring connection factories and destinations
	Using JNDI to retrieve administered objects in a JMS or Jakarta Messaging application
	Using the IBM JMS extensions
	Using the IBM MQ JMS extensions

	Connecting to IBM MQ from a JMS application
	Building a connection in a JMS application
	Creating a session in a JMS application
	Transacted sessions in JMS applications
	Acknowledgment modes of JMS sessions

	Creating destinations in a JMS application
	Sending messages in a JMS application
	Receiving messages in a JMS application
	Retrieval of subscription user data
	Closing down an IBM MQ classes for JMS application
	Handling poison messages in IBM MQ classes for JMS
	Exceptions in IBM MQ classes for JMS
	Handling checked exceptions
	Handling unchecked exceptions
	ExceptionListeners

	Accessing IBM MQ features from an IBM MQ classes for JMS application
	Reading and writing the message descriptor from an IBM MQ classes for JMS application
	JMS destination object properties
	JMS message object properties

	Accessing IBM MQ Message data from an application using IBM MQ classes for JMS
	Destination property WMQ_MESSAGE_BODY

	JMS persistent messages
	Using TLS with IBM MQ classes for JMS
	SSLCIPHERSUITE object property
	SSLFIPSREQUIRED object property
	SSLPEERNAME object property
	SSLCERTSTORES object property
	SSLRESETCOUNT object property
	SSLSocketFactory object property
	Making changes to the JSSE keystore or truststore
	TLS CipherSpecs and CipherSuites in IBM MQ classes for JMS

	Writing channel exits in Java for IBM MQ classes for JMS
	Configuring IBM MQ classes for JMS to use channel exits
	Specifying the user data to be passed to channel exits when using IBM MQ classes for JMS
	Using a client channel definition table with IBM MQ classes for JMS
	Automatic JMS client reconnection
	Using automatic JMS client reconnection
	Reason codes indicating that a queue manager is no longer available
	Using automatic client reconnection in Java SE and Java EE environments
	Using automatic client reconnection in Java SE environments
	Using automatic client reconnection in Java EE environments
	Support for automatic client reconnection in Java EE environments
	Activation specifications
	WebSphere Application Server listener ports
	Enterprise JavaBeans and web-based applications
	Applications running inside client containers
	Using CONNECTIONNAMELIST or CCDT in a connection pool
	Implementing reconnection logic in a Java EE application

	IBM MQ classes for JMS object pooling
	Object pooling in a Java EE environment
	Advanced connection pool properties
	Examples of using the connection pool
	Free connection pool maintenance threads
	Pool maintenance thread examples
	JMS connections and IBM MQ

	Object pooling in a Java SE environment

	Sharing a TCP/IP connection in IBM MQ classes for JMS
	Specifying a range of ports for client connections in IBM MQ classes for JMS
	Channel compression in IBM MQ classes for JMS
	Putting messages asynchronously in IBM MQ classes for JMS
	Using read ahead with IBM MQ classes for JMS
	Retained publications in IBM MQ classes for JMS

	XA support in IBM MQ classes for JMS
	Delivery delay for JMS messages
	Cloned and shared subscriptions
	SupportMQExtensions property
	Using shared subscriptions in JMS applications

	Configuring your modular application to use IBM MQ classes for JMS or IBM MQ classes for Jakarta Messaging
	IBM MQ classes for JMS Application Server Facilities
	The JMS ConnectionConsumer
	Planning an application with ASF
	General principles for point-to-point messaging using ASF
	General principles for publish/subscribe messaging using ASF
	Removing messages from the queue in ASF
	Handling poison messages in ASF

	Error handling
	Recovering from error conditions in the ASF
	Reason and feedback codes in ASF

	The function of a server session pool in AFS

	Using IBM MQ classes for JMS in a CICS Liberty JVM server
	Using IBM MQ classes for JMS/ Jakarta Messaging in IMS
	Setting up the IMS adapter for use with IBM MQ classes for JMS/Jakarta Messaging
	Transactional behavior
	Implications of IMS syncpoints
	Considerations when using the IMS adapter
	JMS API restrictions

	Using IBM MQ classes for Java
	Why should I use IBM MQ classes for Java?
	Prerequisites for IBM MQ classes for Java
	Running IBM MQ classes for Java applications within Java EE
	Character string conversions in IBM MQ classes for Java
	Installing and configuring IBM MQ classes for Java
	What is installed for IBM MQ classes for Java
	IBM MQ classes for Java relocatable JAR files
	Installation directories for IBM MQ classes for Java
	Environment variables relevant to IBM MQ classes for Java
	IBM MQ classes for Java libraries
	Support for OSGi with IBM MQ classes for Java
	Installation of IBM MQ classes for Java on z/OS
	The IBM MQ classes for Java configuration file
	Using Java Standard Environment Trace to configure Java trace

	IBM MQ classes for Java and software management tools

	Post installation setup for IBM MQ classes for Java applications
	Configuring your queue manager to accept client connections from IBM MQ classes for Java
	Running IBM MQ classes for Java applications under the Java security manager
	Running IBM MQ classes for Java applications under CICS Transaction Server

	Verifying the IBM MQ classes for Java installation
	Using the IBM MQ classes for Java sample applications
	Solving IBM MQ classes for Java problems

	Java client connectivity to batch applications running on z/OS
	Writing IBM MQ classes for Java applications
	IBM MQ classes for Java connection modes
	IBM MQ classes for Java client connections
	IBM MQ classes for Java bindings mode
	Defining which IBM MQ classes for Java connection to use

	Operations on queue managers
	Setting up the IBM MQ environment for IBM MQ classes for Java
	Connecting to a queue manager in IBM MQ classes for Java
	Using a client channel definition table with IBM MQ classes for Java
	Specifying a range of ports for IBM MQ classes for Java client connections

	Accessing queues, topics, and processes in IBM MQ classes for Java
	Handling messages in IBM MQ classes for Java
	Improving the performance of nonpersistent messages in IBM MQ classes for Java
	Putting messages asynchronously using IBM MQ classes for Java

	Publish/subscribe in IBM MQ classes for Java
	Handling IBM MQ message headers with IBM MQ classes for Java
	Printing all the headers in a message using IBM MQ classes for Java
	Skipping over the headers in a message using IBM MQ classes for Java
	Finding the reason code in a dead-letter message using IBM MQ classes for Java
	Reading and removing the header from a dead-letter message using IBM MQ classes for Java
	Printing the content of a message using IBM MQ classes for Java
	Finding a specific type of header in a message using IBM MQ classes for Java
	Analyzing an MQRFH2 header using IBM MQ classes for Java
	Reading and writing byte streams other than MQMessage objects using IBM MQ classes for Java
	Creating classes for new header types using IBM MQ classes for Java

	Handling PCF messages with IBM MQ classes for Java
	Handling message properties in IBM MQ classes for Java
	Handling errors in IBM MQ classes for Java
	Getting and setting attribute values in IBM MQ classes for Java
	Multithreaded programs in Java
	Using channel exits in IBM MQ classes for Java
	Creating a channel exit in IBM MQ classes for Java
	Assigning a channel exit in IBM MQ classes for Java
	Passing data to channel exits in IBM MQ classes for Java
	Using channel exits not written in Java with IBM MQ classes for Java
	Using a sequence of channel send or receive exits in IBM MQ classes for Java

	Channel compression in IBM MQ classes for Java
	Sharing a TCP/IP connection in IBM MQ classes for Java
	Connection pooling in IBM MQ classes for Java
	Controlling the default connection pool in IBM MQ classes for Java
	The default connection pool and multiple components in IBM MQ classes for Java
	Supplying a different connection pool in IBM MQ classes for Java

	JTA/JDBC coordination using IBM MQ classes for Java
	Configuring JTA/JDBC coordination on Windows
	Configuring JTA/JDBC coordination on platforms other than Windows
	Using JTA/JDBC coordination
	Known problems and limitations with JTA/JDBC coordination

	Transport Layer Security (TLS) support in IBM MQ classes for Java
	Enabling TLS in IBM MQ classes for Java
	Using the distinguished name of the queue manager in IBM MQ classes for Java
	Using certificate revocation lists in IBM MQ classes for Java
	Renegotiating the secret key in IBM MQ classes for Java
	Supplying a customized SSLSocketFactory in IBM MQ classes for Java
	Making changes to the JSSE keystore or truststore in IBM MQ classes for Java
	Error handling when using TLS with IBM MQ classes for Java
	TLS CipherSpecs and CipherSuites in IBM MQ classes for Java

	Running IBM MQ classes for Java applications

	IBM MQ classes for Java environment-dependent behavior
	Core classes in IBM MQ classes for Java
	Restrictions and variations for core classes of IBM MQ classes for Java
	Restrictions for MQGMO_* values in IBM MQ classes for Java
	Restrictions for MQPMRF_* values in IBM MQ classes for Java
	Restrictions for MQPMO_* values in IBM MQ classes for Java
	Restrictions and variations for MQCNO_* values in IBM MQ classes for Java
	Restrictions for MQRO_* values in IBM MQ classes for Java
	Miscellaneous differences between IBM MQ classes for Java on z/OS and other platforms

	Features outside the core classes of IBM MQ classes for Java
	Variations in the MQQueueManager constructor option
	Restrictions on the MQQueueManager.begin() method
	Variations in the MQGetMessageOptions fields
	Restrictions in distribution lists in IBM MQ classes for Java
	Variations in MQPutMessageOptions fields
	Restrictions in MQMD fields with IBM MQ classes for Java

	Restrictions for IBM MQ classes for Java under CICS Transaction Server

	Using the IBM MQ resource adapter
	IBM MQ resource adapter statement of support
	Limitations of the IBM MQ resource adapter
	WebSphere Application Server and the IBM MQ resource adapter
	Liberty and the IBM MQ resource adapter
	Installing the IBM MQ resource adapter
	Installing the resource adapter in Liberty

	Configuring the IBM MQ resource adapter
	Configuration for ResourceAdapter object properties
	Configuring the resource adapter for inbound communication
	Examples of how to define the sharedSubscription property

	Configuring the resource adapter for outbound communication
	Configuring the targetClientMatching property for an activation specification
	IBM MQ message-driven bean pause in WebSphere Liberty

	Verifying the resource adapter installation
	Installing and testing the resource adapter in GlassFish Server
	Installing and testing the resource adapter in WildFly

	Using IBM MQ and WebSphere Application Server together
	Using WebSphere Application Server with IBM MQ
	Determining the number of TCP/IP connections that are created from WebSphere Application Server to IBM MQ
	JMS connection factories
	Activation specifications
	Listener ports running in Application Server Facilities (ASF) mode
	Listener ports running in non Application Server Facilities (non-ASF) mode

	Configuring authentication aliases to secure WebSphere Application Server connection to IBM MQ
	Using authentication aliases with enterprise applications
	Using the connection factory through a direct lookup
	Using the connection factory through an indirect lookup

	Workload balancing for message driven beans when using WebSphere Application Server clusters

	Using the IBM MQ Headers package
	Using with IBM MQ classes for Java
	Using with IBM MQ classes for JMS

	Setting up IBM MQ on IBM i with Java and JMS
	Testing IBM MQ on IBM i with Java
	Testing IBM MQ on IBM i with JMS

	Java application development using a Maven repository

	Developing C++ applications
	C++ sample programs
	Sample program HELLO WORLD (imqwrld.cpp)
	Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)
	Sample program DPUT (imqdput.cpp)

	C++ language considerations
	C++ Header files
	C++ methods and attributes
	Data types in C++
	Manipulating binary strings in C++
	Manipulating character strings in C++
	Initial state of objects in C++
	Using C from C++
	C++ notational conventions
	Implicit operations in C++
	Binary and character strings in C++
	Unsupported functions in C++

	Messaging in C++
	Preparing message data in C++
	Reading messages in C++
	Writing a message to the dead-letter queue in C++
	Writing a message to the IMS bridge in C++
	Writing a message to the CICS bridge in C++
	Writing a message with a work header in C++

	Building IBM MQ C++ programs
	Building C++ programs on AIX
	Building C++ programs on IBM i
	Building C++ programs on Linux
	Building C++ programs on Windows
	Building C++ programs on z/OS Batch, RRS Batch and CICS
	Building C++ programs on z/OS UNIX System Services

	Developing .NET applications
	Installing IBM MQ classes for .NET
	Downloading IBM MQ classes for .NET from the NuGet repository

	Installing IBM MQ classes for .NET Framework
	Options for connecting IBM MQ classes for .NET to a queue manager
	Sample applications for .NET
	Configuring your queue manager to accept TCP/IP client connections
	Distributed transactions in .NET
	Distributed transactions in .NET managed mode
	Distributed transactions in .NET unmanaged mode
	Creating simple put and get messages within a TransactionScope
	Recovering transactions in IBM MQ .NET
	Transaction recovery process for IBM MQ .NET
	Transaction recovery use cases for IBM MQ .NET
	Using the WMQDotnetXAMonitor application
	WmqDotNETXAMonitor application configuration file settings
	WmqDotNetXAMonitor Application log

	Writing and deploying IBM MQ .NET programs
	Connection differences
	Managed client connections
	Defining which connection type to use

	Using the IBM MQ .NET project template
	Configuration files for IBM MQ classes for .NET
	Example C# code fragment for use with .NET
	Setting up the IBM MQ environment
	Connecting to and disconnecting from a queue manager
	Accessing queues and topics
	Handling messages
	Handling message properties

	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Using a client channel definition table with .NET
	How a .NET application determines what channel definition to use
	Using channel exits in IBM MQ .NET
	Specifying channel exits (managed client)
	Specifying channel exit user data (managed client)

	Automatic client reconnection in .NET
	Transport Layer Security (TLS) support for .NET
	TLS support for the unmanaged .NET client
	Enabling TLS for the unmanaged .NET client
	Using the Distinguished Name of the queue manager
	Error handling when using TLS

	TLS support for the managed .NET client
	TLS protocol support for the managed .NET client
	CipherSpec support for the managed .NET client
	CipherSpec mappings for the managed .NET client
	Key repositories for the managed .NET client
	Using certificates for the managed .NET client
	SSLPEERNAME
	Secret key reset or renegotiation for the managed .NET client
	Revocation check
	Configuring TLS for managed IBM MQ .NET
	Writing a simple application
	Configuring trace for SSLStream
	Sample applications for implementing TLS in managed .NET

	Using the .NET Monitor
	Example code fragments

	Compiling IBM MQ .NET programs
	Using the stand-alone IBM MQ .NET client
	OutboundSNI property

	Developing XMS .NET applications
	Styles of messaging supported by XMS
	The XMS object model
	Administered objects

	The XMS message model
	Installing IBM MQ classes for XMS .NET
	Downloading IBM MQ classes for XMS .NET from the NuGet repository

	Setting up the messaging server environment
	Message listeners in XMS .NET
	Configuring the queue manager and broker for an application that connects to an IBM MQ queue manager
	Configuring a broker for an application that uses a real-time connection to a broker
	Configuring the service integration bus for an application that connects to WebSphere Application Server

	Using the XMS sample applications
	Running the .NET sample applications
	Building the .NET sample applications
	Building your own applications

	Writing XMS .NET applications
	Managed and unmanaged operations in .NET
	Using the IBM MQ XMS .NET project template
	The threading model
	Properties in XMS .NET
	ConnectionFactories and Connection objects
	Sessions
	Transacted sessions
	Message acknowledgment
	Message delivery
	Managed IBM MQ XA transactions through XMS

	Destinations
	Topic uniform resource identifiers
	Queue uniform resource identifiers
	Temporary destinations

	Message producers
	Message consumers
	Poison messages in XMS

	Queue browsers
	Requestors
	Object deletion
	Data types for XMS .NET
	XMS primitive types
	Implicit conversion of a property value from one data type to another
	Iterators
	Error handling in XMS .NET
	Using message and exception listeners in .NET
	Automatic IBM MQ Client reconnection through XMS

	Working with XMS .NET administered objects
	XMS .NET supported types of administered object repository
	XMS .NET property mapping for administered objects
	XMS .NET required properties for administered ConnectionFactory objects
	XMS .NET required properties for administered Destination objects
	XMS .NET creating administered objects
	XMS .NET creating InitialContext objects
	XMS .NET InitialContext properties
	URI format for XMS initial contexts
	JNDI Lookup web service for XMS .NET
	XMS .NET retrieval of administered objects

	Preventing applications from using a newer XMS version
	Securing communications for XMS applications
	Secure connections to an IBM MQ queue manager
	CipherSuite and CipherSpec name mappings for XMS connections to an IBM MQ queue manager

	Secure connections to a WebSphere Application Server service integration bus messaging engine
	CipherSuite and CipherSpec name mappings for connections to a WebSphere Application Server service integration bus

	XMS messages
	Parts of an XMS message
	Header fields in an XMS message
	Properties of an XMS message
	JMS-defined properties of a message
	IBM-defined properties of a message
	Application-defined properties of a message

	The body of an XMS message
	Data types for elements of application data

	Message selectors
	Mapping XMS messages onto IBM MQ messages
	Reading and writing the message descriptor from a IBM MQ Message Service Client (XMS) for .NET application
	Accessing IBM MQ Message data from a IBM MQ Message Service Client (XMS) for .NET application

	Developing AMQP client applications
	MQ Light, Apache Qpid JMS, and AMQP (Advanced Message Queuing Protocol)
	AMQP 1.0 support
	Point-to-point support on AMQP channels
	Mapping AMQP and IBM MQ message fields
	Mapping IBM MQ fields onto AMQP fields (outgoing messages)
	Mapping AMQP fields onto IBM MQ fields (incoming messages)

	Message delivery reliability
	MQ Light message reliability
	Apache Qpid JMS message reliability
	Removing acknowledged AMQP messages from the queue in batches

	Topologies for AMQP clients with IBM MQ
	AMQP clients communicating over IBM MQ
	AMQP clients exchanging messages with IBM MQ applications
	Configuring AMQP clients to interact directly with applications on IBM MQ queues
	Configuring an AMQP client for high availability
	Configuring publish/subscribe for AMQP clients
	AMQP client using a queue alias to receive messages from an IBM MQ application
	AMQP client submitting requests to and consuming responses from an application server
	Interoperability between MQ Light and Apache Qpid JMS applications

	IBM MQ AMQP listener control properties

	Developing REST applications with IBM MQ
	Messaging using the REST API
	Getting started with the messaging REST API
	Using the messaging REST API
	Setting up a remote queue manager to use with the messaging REST API
	Setting up a queue manager group to use with the messaging REST API
	Determining the security principal used by the messaging REST API

	Developing MQI applications with IBM MQ
	IBM MQ data definition files
	Writing a procedural application for queuing
	The Message Queue Interface overview
	MQI calls
	Sync point calls
	Data conversion, data types, data definitions, and structures
	IBM MQ stub programs and library files
	IBM MQ for AIX library files
	IBM MQ for IBM i library files
	IBM MQ for Linux library files
	IBM MQ for Windows library files
	IBM MQ for z/OS stub programs

	Parameters common to all the calls
	Specifying buffers
	z/OS batch considerations
	AIX and Linux considerations
	The fork system call in AIX and Linux systems
	AIX and Linux signal handling
	Unthreaded applications
	Threaded applications
	Additional considerations when using AIX and Linux signal handling in MQI

	Connecting to and disconnecting from a queue manager
	Connecting to a queue manager using the MQCONN call
	Connecting to a queue manager using the MQCONNX call
	Restrictions for trusted applications
	Shared (thread independent) connections with MQCONNX
	Use of MQCONNX call options with MQ_CONNECT_TYPE

	Authentication and Identity for MQCONN and MQCONNX
	Disconnecting programs from a queue manager using MQDISC

	Opening and closing objects
	Opening objects using the MQOPEN call
	Name resolution
	Using the options of the MQOPEN call
	MQOPEN option for cluster queue
	MQOPEN option for putting messages
	MQOPEN option for browsing messages
	MQOPEN options for removing messages
	MQOPEN options for setting and inquiring about attributes
	MQOPEN options relating to message context
	MQOPEN option for alternative user authority
	MQOPEN option for queue manager quiescing
	MQOPEN option for resolving local queue names

	Creating dynamic queues
	Opening remote queues
	Closing objects using the MQCLOSE call

	Putting messages on a queue
	Putting messages on a local queue using the MQPUT call
	Putting messages on a remote queue
	Setting properties of a message
	Controlling message context information
	Putting one message on a queue using the MQPUT1 call
	Distribution lists
	Opening distribution lists
	Putting messages to a distribution list

	Some cases where the put calls fail

	Getting messages from a queue
	Getting messages from a queue using the MQGET call
	The order in which messages are retrieved from a queue
	Priority
	Logical and physical ordering
	Grouping logical messages
	Putting and getting a group that spans units of work

	Getting a particular message
	Improving performance of non-persistent messages
	MQGET options and read ahead
	Enabling and disabling read ahead
	Tuning performance for nonpersistent messages on AIX

	Type of index
	Handling messages greater than 4 MB long
	Message segmentation
	Segmentation and reassembly by queue manager
	Application segmentation
	Application segmentation of logical messages

	Reference messages and large object transfers

	Waiting for messages
	Signaling
	Skipping backout
	Application data conversion
	Browsing messages on a queue
	The browse cursor
	Browsing messages when the message length is unknown
	Removing a message that you have browsed
	Browsing messages in logical order
	Browsing messages in groups
	Browsing and retrieving destructively

	Avoiding repeated delivery of browsed messages

	Some cases where the MQGET call fails

	Writing publish/subscribe applications
	Writing publisher applications
	Example 1: Publisher to a fixed topic
	Example 2: Publisher to a variable topic

	Writing subscriber applications
	Example 1: MQ Publication consumer
	Example 2: Managed MQ subscriber
	Example 3: Unmanaged MQ subscriber

	Publish/subscribe lifecycles
	Publish/subscribe message properties
	Message ordering
	Intercepting publications
	Subscription levels
	Intercepting publications and distributed publish/subscribe

	Publishing options
	Subscription options

	Inquiring about and setting object attributes
	Inquiring about the attributes of an object
	Some cases where the MQINQ call fails
	Setting queue attributes

	Committing and backing out units of work
	Syncpoint considerations in IBM MQ applications
	Syncpoints in IBM MQ for z/OS applications
	Syncpoints in CICS Transaction Server for z/OS applications
	Syncpoints in IMS applications
	Syncpoints in z/OS batch applications

	Syncpoints in CICS for IBM i applications
	Syncpoints in IBM MQ for Multiplatforms
	Local units of work on Multiplatforms
	Global units of work on AIX, Linux, and Windows
	Implicit syncpoint on Multiplatforms
	Interfaces to external syncpoint managers on Multiplatforms

	Interfaces to the IBM i external syncpoint manager

	Starting IBM MQ applications using triggers
	Prerequisites for triggering
	Conditions for a trigger event
	Controlling trigger events
	Designing an application that uses triggered queues
	Initiation queue processing by trigger monitors
	Trigger monitors on AIX, Linux, and Windows systems
	Trigger monitor for CICS

	Trigger monitors on IBM i

	Properties of trigger messages
	When triggering does not work

	Working with the MQI and clusters
	MQOPEN and clusters
	MQPUT, MQPUT1 and clusters
	MQINQ and clusters
	MQSET and clusters
	Return codes

	Using and writing applications on IBM MQ for z/OS
	Environment-dependent IBM MQ for z/OS functions
	Debugging facilities, syncpoint support, and recovery support
	The IBM MQ for z/OS interface with the application environment
	The batch adapter
	The RRS batch adapter
	The IMS adapter

	Writing z/OS UNIX System Services applications
	The API-crossing exit for z/OS
	Writing your own exit program
	The sample API-crossing exit program, CSQCAPX
	Preparing and using the API-crossing exit

	Application programming with shared queues
	Serializing your applications
	Applications that are not suitable for use with shared queues
	Deciding whether to share non-application queues
	Migrating your existing applications to use shared queues

	IMS and IMS bridge applications on IBM MQ for z/OS
	Writing IMS applications using IBM MQ
	Syncpoints in IMS applications
	MQI calls in IMS applications

	Writing IMS bridge applications
	How the IMS bridge deals with messages
	Mapping IBM MQ messages to IMS transaction types
	If the message cannot be put to the IMS queue
	IMS bridge feedback codes
	The MQMD fields in messages from the IMS bridge
	The MQIIH fields in messages from the IMS bridge
	Reply messages from IMS
	Using alternate response PCBs in IMS transactions
	Sending unsolicited messages from IMS
	Message segmentation
	Data conversion for messages to and from the IMS bridge

	Writing IMS transaction programs through IBM MQ

	Writing client procedural applications
	Using the MQI in a client application
	Limiting the size of a message in a client application
	Choosing client or server CCSID
	Using MQINQ in a client aplication
	Using sync point coordination in a client application
	Using read ahead in a client application
	Using asynchronous put in a client application
	Using sharing conversations in a client application
	Using MQCONNX

	Building applications for IBM MQ MQI clients
	Linking C applications with the IBM MQ MQI client code
	Linking C++ applications with the IBM MQ MQI client code
	Linking COBOL applications with the IBM MQ MQI client code
	Linking Visual Basic applications with the IBM MQ MQI client code

	Running applications in the IBM MQ MQI client environment
	Connecting IBM MQ MQI client applications to queue managers
	Connecting client applications to queue managers using environment variables
	Connecting client applications to queue managers using the MQCNO structure
	Connecting client applications to queue managers using a client channel definition table
	Using automatic client reconnection
	Role of the client channel definition table
	Queue manager groups in the CCDT
	Connecting to queue sharing groups

	Examples of channel weighting and affinity
	Example 1. Selecting channels when ConnectionAffinity is set to PREFERRED
	Example 2. Selecting channels when ConnectionAffinity is set to NONE

	Examples of MQCONN calls
	What the MQCONN examples demonstrate
	Example 1. Queue manager name includes an asterisk (*)
	Example 2. Queue manager name specified
	Example 3. Queue manager name is blank or an asterisk (*)

	Triggering in the client environment
	Process definition
	Trigger monitor
	CICS applications (non-z/OS)

	Preparing and running CICS and Tuxedo applications
	CICS and Tuxedo sample programs
	Error message AMQ5203, as modified for CICS and Tuxedo applications

	Preparing and running Microsoft Transaction Server applications
	Preparing and running IBM MQ JMS applications

	User exits, API exits, and IBM MQ installable services
	Writing exits and installable services on AIX, Linux, and Windows
	API exits not linked with an MQI library

	Installable services and components for AIX, Linux, and Windows
	Writing a service component
	Initialization and termination of components
	Object authority manager (OAM)
	Name service
	Authorization service interface
	Name service interface
	Using multiple service components

	Configuring services and components
	Refreshing the OAM after changing a user's authorization

	Installable services and components on IBM i
	Functions and components on IBM i
	Initialization on IBM i
	Configuring services and components on IBM i
	Creating your own service component on IBM i
	Authorization service on IBM i
	Authorization service interface on IBM i

	Writing and compiling API exits on Multiplatforms
	Writing API exits
	Compiling API exits
	Compiling API exits on AIX and Linux systems
	Compiling API exits on Windows systems
	Compliling API exits on IBM i

	Configuring API exits

	Channel-exit programs for messaging channels
	Processing overview
	Writing channel-exit programs
	Writing channel exit programs on z/OS
	Writing channel exit programs on IBM i
	Writing channel-exit programs on AIX, Linux, and Windows
	Channel security exit programs
	Writing a security exit
	Differences in behavior between security exits defined on CLNTCONN/SVRCONN channel pairs and other channel pairs

	SSPI security exit
	Channel send and receive exit programs
	Channel send exit programs - reserving space

	Channel message exit programs
	Message conversion outside the message exit

	Channel message retry exit program
	Channel auto-definition exit program

	Compiling channel exit programs on AIX, Linux, and Windows systems
	Configuring channel exits

	Writing data-conversion exits
	Invoking the data-conversion exit
	Writing a data-conversion exit program for IBM i
	Writing a data-conversion exit program for IBM MQ for z/OS
	Writing a data-conversion exit for IBM MQ for AIX or Linux systems
	Compiling data-conversion exits on AIX and Linux systems

	Writing a data-conversion exit for IBM MQ for Windows
	Exit and switch load files on Windows operating systems

	Referencing connection definitions using a pre-connect exit from a repository
	Writing and compiling publish exits
	Configuring publish exits

	Writing and compiling cluster workload exits
	Sample cluster workload exit
	Cluster workload exit programming for IBM MQ for z/OS

	Building a procedural application
	Building your procedural application on AIX
	Preparing C programs in AIX
	Preparing COBOL programs in AIX
	Preparing CICS application programs in AIX
	TXSeries CICS support

	Building your procedural application on IBM i
	Preparing C programs in IBM i
	Preparing COBOL programs in IBM i
	Preparing CICS programs in IBM i
	Preparing RPG programs in IBM i
	SQL programming considerations for IBM i

	Building your procedural application on Linux
	Preparing C programs in Linux
	Building 31-bit applications
	Building 32-bit applications
	Building 64-bit applications

	Preparing COBOL programs in Linux

	Building your procedural application on Windows
	Building 64-bit applications on Windows
	Preparing C programs in Windows
	Preparing COBOL programs in Windows
	Preparing Visual Basic programs in Windows
	SSPI security exit

	Building your procedural application on z/OS
	Preparing your program to run
	Building 64 bit C applications
	Building z/OS batch applications
	Building z/OS batch applications using 31-bit Language Environment or XPLINK
	Building CICS applications in z/OS
	Building IMS (BMP or MPP) applications
	Building z/OS UNIX System Services applications

	Dynamically calling the IBM MQ stub
	RRS Considerations

	Debugging your programs

	Handling procedural program errors
	Locally determined errors
	Using report messages for problem determination
	Remotely determined errors
	Using the dead-letter (undelivered message) queue
	Dead-letter queue processing

	Multicast programming
	Multicast and the MQI
	High availability for multicast
	Data conversion in the MQI for multicast messaging
	Multicast exception reporting

	Coding in C
	Coding in Visual Basic
	Coding in COBOL
	Coding in System/390 assembler language (Message queue interface)
	Using the MQI calls

	Coding IBM MQ programs in RPG (IBM i only)
	Coding in PL/I (z/OS only)
	Using the IBM MQ sample procedural programs
	Using the sample programs on Multiplatforms
	Features demonstrated in the sample programs on Multiplatforms
	Samples for AIX and Linux systems
	Samples for IBM MQ for Windows
	Visual Basic samples for IBM MQ for Windows
	Samples for IBM i

	Preparing and running the sample programs
	Configuring a queue manager to accept client connections on Multiplatforms
	Preparing and running sample programs on IBM i
	Preparing and running sample programs on AIX and Linux
	Preparing and running sample programs on Windows

	The API exit sample program
	The Asynchronous consumption sample program
	The Asynchronous Put sample program
	The Browse sample programs
	The Browse sample programs for AIX, Linux, and Windows
	The Browse sample programs on IBM i

	The Browser sample program
	The CICS transaction sample
	The Connect sample program
	The Data-Conversion sample program
	Database coordination samples
	Creating the databases and tables
	Precompiling, compiling, and linking the samples
	Running the samples

	Dead-letter queue handler sample
	The Distribution List sample program
	The Echo sample programs
	The Get sample programs
	Running the amqsget and amqsgetc samples

	High availability sample programs
	The Inquire sample programs
	The Inquire Properties of a Message Handle sample program
	The Publish/Subscribe sample programs
	Running the MQPubSubApiSample Java sample

	The Publish Exit sample program
	The Put sample programs
	Running the Put sample programs

	The Reference Message sample programs
	Notes for IBM i users
	Running the Reference Message samples
	Design of the Put Reference Message sample (amqsprma.c, AMQSPRM4)
	Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)
	Compiling the Reference Message Exit sample

	Design of the Get Reference Message sample (amqsgrma.c, AMQSGRM4)

	The Request sample programs
	Running the Request sample programs
	Running the Request sample using triggering
	Running the Request sample using triggering on AIX, Linux, and Windows
	Running the Request sample using triggering on IBM i

	Design of the Request sample program

	The Set sample programs
	The TLS sample program
	Running the TLS sample program

	The Triggering sample programs
	Running the Triggering sample programs
	Design of the trigger server

	Using the TUXEDO samples on AIX, Linux, and Windows
	Building the server environment
	Building the server environment for AIX (32-bit)
	Building the server environment for AIX (64-bit)
	Building the server environment for Windows (32-bit)
	Building the server environment for Windows (64-bit)

	Sample server program for TUXEDO
	Put sample program for TUXEDO
	Get sample for TUXEDO

	Using the SSPI security exit on Windows
	Running the samples using remote queues
	The Cluster Queue Monitoring sample program (AMQSCLM)
	AMQSCLM: Design and Planning for using the sample
	AMQSCLM: Preparing and running the sample
	AMQSCLM: Troubleshooting

	Sample program for Connection Endpoint Lookup (CEPL)
	Introduction
	Supported environments
	Installation and configuration
	Overview of the exit and schema
	MQ LDAP Context Information
	Sample code for building the connection endpoint lookup exit
	Invocation of the PreConnect exit module
	LDAP schemas
	LDAP attributes
	Common Name
	ibm-amqChannelName
	ibm-amqDescription
	ibm-amqConnectionName
	ibm-amqLocalAddress
	ibm-amqModeName
	ibm-amqPassword
	ibm-amqQueueManagerName
	ibm-amqSecurityExitUserData
	ibm-amqSecurityExitName
	ibm-amqSslCipherSpec
	ibm-amqSslPeerName
	ibm-amqTransactionProgramName
	ibm-amqUserID
	ibm-amqConnectionAffinity
	ibm-amqClientChannelWeight
	ibm-amqHeartBeatInterval
	ibm-amqKeepAliveInterval
	ibm-amqMaximumMessageLength
	ibm-amqSharingConversations
	ibm-amqTransportType
	ibm-amqIsClientDefault
	ibm-amqHeaderCompression
	ibm-amqMessageCompression
	ibm-amqSendExitUserData
	ibm-amqSendExitName
	ibm-amqReceiveExitUserData
	ibm-amqReceiveExitName

	Using the sample programs for z/OS
	Features demonstrated in the sample applications for z/OS
	Put samples on z/OS
	Get samples on z/OS
	Browse sample on z/OS
	Print Message sample on z/OS
	Queue Attributes sample on z/OS
	Mail Manager sample on z/OS
	Credit Check sample on z/OS
	The Message Handler sample on z/OS
	Distributed queuing exit samples on z/OS
	Data-conversion exit samples on z/OS
	Publish/Subscribe samples on z/OS

	Configuring a queue manager to accept client connections on z/OS
	Preparing and running sample applications for the batch environment on z/OS
	Names of the sample batch applications on z/OS

	Preparing sample applications for the TSO environment on z/OS
	Names of the sample TSO applications on z/OS

	Preparing the sample applications for the CICS environment on z/OS
	Names of the sample CICS applications on z/OS

	Preparing the sample application for the IMS environment on z/OS
	Names of the sample IMS application on z/OS

	The Put samples on z/OS
	The Put samples for the batch environment on z/OS
	The Put samples for the CICS environment on z/OS

	The Get samples on z/OS
	Design of the Get sample on z/OS
	The Get samples for the batch environment on z/OS
	The Get samples for the CICS environment on z/OS

	The Browse sample on z/OS
	Design of the Browse sample on z/OS
	Language-dependent design considerations on z/OS

	The Print Message sample on z/OS
	Design of the Print Message sample on z/OS

	The Queue Attributes sample on z/OS
	The Mail Manager sample on z/OS
	Preparing the Mail Manager sample on z/OS
	Running the Mail Manager sample on z/OS
	Design of the Mail Manager sample on z/OS
	Menu program on z/OS
	Get-mail and display-message programs on z/OS
	Send-mail program on z/OS
	Nickname program on z/OS

	The Credit Check sample on z/OS
	Preparing and running the Credit Check sample on z/OS
	Design of the Credit Check sample on z/OS
	User interface program (CSQ4CVB1) on z/OS
	Credit application manager (CSQ4CVB2) on z/OS
	Processing the message retrieved by the CAM on z/OS

	Checking-account program (CSQ4CVB3) on z/OS
	Distribution program (CSQ4CVB4) on z/OS
	Agency-query program (CSQ4CVB5/CSQ4CCB5) on z/OS

	Design considerations for the Credit check sample on z/OS
	The Credit Check sample with multiple queue managers on z/OS
	The IMS extension to the Credit Check sample on z/OS

	The Message Handler sample on z/OS
	Using the Message Handler sample on z/OS
	Design of the sample Message Handler sample on z/OS

	The Asynchronous Put sample on z/OS
	The Batch Asynchronous Consumption sample on z/OS
	The CICS Asynchronous Consumption and Publish/Subscribe sample on z/OS
	The Publish/Subscribe sample on z/OS
	The Set and Inquire message property sample on z/OS

	Developing applications for Managed File Transfer
	Specifying programs to run with MFT
	Managed calls

	Using Apache Ant with MFT
	Getting started using Ant scripts with MFT
	Sample Ant tasks for MFT

	Customizing MFT with user exits
	MFT source and destination user exits
	Using MFT transfer I/O user exits
	Sample MFT on IBM i user exits
	Enabling remote debugging for MFT user exits
	Sample MFT source transfer user exit
	Sample protocol bridge credential user exit
	Sample protocol bridge properties user exit

	Controlling MFT by putting messages on the agent command queue

	Developing applications for MQ Telemetry
	IBM MQ Telemetry Transport sample programs
	MQTTV3Sample program

	MQTT client programming concepts
	Callbacks and synchronization in MQTT client applications
	Clean sessions
	Client identifier
	Delivery tokens
	Last will and testament publication
	Message persistence in MQTT clients
	Publications
	Qualities of service provided by an MQTT client
	Retained publications and MQTT clients
	Subscriptions
	Topic strings and topic filters in MQTT clients

	Developing Microsoft Windows Communication Foundation applications with IBM MQ
	Introduction to the IBM MQ custom channel for WCF with .NET
	When and why do I use the IBM MQ custom channel for WCF?
	Software requirements for the IBM MQ custom channel for WCF
	IBM MQ custom channel for WCF: What's installed?
	WCF architecture

	Using IBM MQ custom channels for WCF
	WCF Custom channel features and capabilities
	WCF custom channel shapes
	WCF URI parameter names and values
	WCF custom channel assured delivery
	WCF custom channel security
	WCF client channel definition tables (CCDT)
	WCF custom channel poison messages
	IBM MQ message capabilities for WCF applications

	WCF Connection options
	Creating and configuring the IBM MQ custom channel for WCF
	Creating a WCF custom channel administratively by supplying binding and endpoint information in an application configuration file
	Creating a WCF custom channel by suppling binding and endpoint information programmatically
	Defining binding and endpoint information programmatically: SOAP/JMS interface
	Defining binding and endpoint information programmatically: Non-SOAP/Non-JMS interface

	IBM MQ custom channel for WCF endpoint URI address format
	WCF binding configuration options

	Building and hosting services for WCF
	Building WCF service applications using method 1: Self-hosting administratively using an application configuration file
	Building WCF service applications using method 2: Self-hosting programmatically directly from the application
	Exposing metadata using an HTTP endpoint

	Building client applications for WCF
	Generating a WCF client proxy and application configuration files using the svcutil tool with metadata from a running service
	Generating a WCF client proxy and application configuration files using the svcutil tool with WSDL
	Building WCF client applications using a client proxy with an application configuration file
	Building WCF client applications using a client proxy with programmatic configuration

	Using the WCF samples
	Simple one-way client and server WCF sample
	Simple request-reply client and server WCF sample
	WCF client to a .NET service hosted by IBM MQ sample
	WCF client to an Axis Java service hosted by IBM MQ sample
	WCF client to Java service hosted by WebSphere Application Server sample

	Notices
	Programming interface information
	Trademarks

